Rev Author Line No. Line
3298 kaklik 1 (* Content-type: application/vnd.wolfram.mathematica *)
2  
3 (*** Wolfram Notebook File ***)
4 (* http://www.wolfram.com/nb *)
5  
6 (* CreatedBy='Mathematica 8.0' *)
7  
8 (*CacheID: 234*)
9 (* Internal cache information:
10 NotebookFileLineBreakTest
11 NotebookFileLineBreakTest
12 NotebookDataPosition[ 157, 7]
13 NotebookDataLength[ 21630, 691]
14 NotebookOptionsPosition[ 20709, 656]
15 NotebookOutlinePosition[ 21044, 671]
16 CellTagsIndexPosition[ 21001, 668]
17 WindowFrame->Normal*)
18  
19 (* Beginning of Notebook Content *)
20 Notebook[{
21 Cell[BoxData[
22 RowBox[{"Simplify", "[",
23 RowBox[{"Solve", "[",
24 RowBox[{
25 RowBox[{"{",
26 RowBox[{
27 RowBox[{"f", "\[Equal]",
28 RowBox[{
29 RowBox[{"Sqrt", "[",
30 RowBox[{
31 RowBox[{"y", "^", "2"}], "+",
32 RowBox[{
33 RowBox[{"(",
34 RowBox[{"x", "-", "Xl"}], ")"}], "^", "2"}]}], "]"}], " ", "+",
35 " ",
36 RowBox[{"Sqrt", "[",
37 RowBox[{
38 RowBox[{"x", "^", "2"}], "+",
39 RowBox[{"y", "^", "2"}]}], "]"}]}]}], ",",
40 RowBox[{"g", "\[Equal]",
41 RowBox[{
42 RowBox[{"Sqrt", "[",
43 RowBox[{
44 RowBox[{"y", "^", "2"}], "+",
45 RowBox[{
46 RowBox[{"(",
47 RowBox[{"x", "-", "Xr"}], ")"}], "^", "2"}]}], "]"}], " ", "+",
48 " ",
49 RowBox[{"Sqrt", "[",
50 RowBox[{
51 RowBox[{"x", "^", "2"}], "+",
52 RowBox[{"y", "^", "2"}]}], "]"}]}]}]}], "}"}], ",", " ",
53 RowBox[{"{",
54 RowBox[{"x", ",", "y"}], "}"}]}], "]"}], "]"}]], "Input",
55 CellChangeTimes->{{3.515426716401871*^9, 3.51542694508688*^9}, {
56 3.515494250442916*^9, 3.515494312592763*^9}, {3.515494443619315*^9,
57 3.515494481698374*^9}, {3.515495886073002*^9, 3.515495892041057*^9}, {
58 3.515496075998226*^9, 3.515496077798789*^9}}],
59  
60 Cell[BoxData[
61 RowBox[{"{",
62 RowBox[{
63 RowBox[{"{",
64 RowBox[{
65 RowBox[{"x", "\[Rule]",
66 FractionBox[
67 RowBox[{
68 RowBox[{
69 SuperscriptBox["f", "2"], " ", "g"}], "-",
70 RowBox[{"g", " ",
71 SuperscriptBox["Xl", "2"]}], "+",
72 RowBox[{"f", " ",
73 RowBox[{"(",
74 RowBox[{
75 RowBox[{"-",
76 SuperscriptBox["g", "2"]}], "+",
77 SuperscriptBox["Xr", "2"]}], ")"}]}]}],
78 RowBox[{
79 RowBox[{
80 RowBox[{"-", "2"}], " ", "g", " ", "Xl"}], "+",
81 RowBox[{"2", " ", "f", " ", "Xr"}]}]]}], ",",
82 RowBox[{"y", "\[Rule]",
83 RowBox[{"-",
84 FractionBox[
85 SqrtBox[
86 RowBox[{"-",
87 FractionBox[
88 RowBox[{
89 SuperscriptBox["g", "2"], " ",
90 RowBox[{"(",
91 RowBox[{
92 SuperscriptBox["f", "2"], "-",
93 SuperscriptBox["Xl", "2"]}], ")"}], " ",
94 RowBox[{"(",
95 RowBox[{
96 SuperscriptBox["f", "2"], "-",
97 RowBox[{"2", " ", "f", " ", "g"}], "+",
98 SuperscriptBox["g", "2"], "-",
99 SuperscriptBox[
100 RowBox[{"(",
101 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
102 RowBox[{"(",
103 RowBox[{
104 SuperscriptBox["g", "2"], "-",
105 SuperscriptBox["Xr", "2"]}], ")"}]}],
106 SuperscriptBox[
107 RowBox[{"(",
108 RowBox[{
109 RowBox[{"g", " ", "Xl"}], "-",
110 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
111 RowBox[{"2", " ", "g"}]]}]}]}], "}"}], ",",
112 RowBox[{"{",
113 RowBox[{
114 RowBox[{"x", "\[Rule]",
115 FractionBox[
116 RowBox[{
117 RowBox[{
118 SuperscriptBox["f", "2"], " ", "g"}], "-",
119 RowBox[{"g", " ",
120 SuperscriptBox["Xl", "2"]}], "+",
121 RowBox[{"f", " ",
122 RowBox[{"(",
123 RowBox[{
124 RowBox[{"-",
125 SuperscriptBox["g", "2"]}], "+",
126 SuperscriptBox["Xr", "2"]}], ")"}]}]}],
127 RowBox[{
128 RowBox[{
129 RowBox[{"-", "2"}], " ", "g", " ", "Xl"}], "+",
130 RowBox[{"2", " ", "f", " ", "Xr"}]}]]}], ",",
131 RowBox[{"y", "\[Rule]",
132 FractionBox[
133 SqrtBox[
134 RowBox[{"-",
135 FractionBox[
136 RowBox[{
137 SuperscriptBox["g", "2"], " ",
138 RowBox[{"(",
139 RowBox[{
140 SuperscriptBox["f", "2"], "-",
141 SuperscriptBox["Xl", "2"]}], ")"}], " ",
142 RowBox[{"(",
143 RowBox[{
144 SuperscriptBox["f", "2"], "-",
145 RowBox[{"2", " ", "f", " ", "g"}], "+",
146 SuperscriptBox["g", "2"], "-",
147 SuperscriptBox[
148 RowBox[{"(",
149 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
150 RowBox[{"(",
151 RowBox[{
152 SuperscriptBox["g", "2"], "-",
153 SuperscriptBox["Xr", "2"]}], ")"}]}],
154 SuperscriptBox[
155 RowBox[{"(",
156 RowBox[{
157 RowBox[{"g", " ", "Xl"}], "-",
158 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
159 RowBox[{"2", " ", "g"}]]}]}], "}"}]}], "}"}]], "Input",
160 CellChangeTimes->{{3.515496935952406*^9, 3.515496938796506*^9}}],
161  
162 Cell[BoxData[
163 RowBox[{
164 RowBox[{"position", "[",
165 RowBox[{"f_", ",", "g_"}], "]"}], ":=",
166 RowBox[{"{",
167 RowBox[{
168 FractionBox[
169 RowBox[{
170 RowBox[{
171 SuperscriptBox["f", "2"], " ", "g"}], "-",
172 RowBox[{"g", " ",
173 SuperscriptBox["Xl", "2"]}], "+",
174 RowBox[{"f", " ",
175 RowBox[{"(",
176 RowBox[{
177 RowBox[{"-",
178 SuperscriptBox["g", "2"]}], "+",
179 SuperscriptBox["Xr", "2"]}], ")"}]}]}],
180 RowBox[{
181 RowBox[{
182 RowBox[{"-", "2"}], " ", "g", " ", "Xl"}], "+",
183 RowBox[{"2", " ", "f", " ", "Xr"}]}]], ",",
184 FractionBox[
185 SqrtBox[
186 RowBox[{"-",
187 FractionBox[
188 RowBox[{
189 SuperscriptBox["g", "2"], " ",
190 RowBox[{"(",
191 RowBox[{
192 SuperscriptBox["f", "2"], "-",
193 SuperscriptBox["Xl", "2"]}], ")"}], " ",
194 RowBox[{"(",
195 RowBox[{
196 SuperscriptBox["f", "2"], "-",
197 RowBox[{"2", " ", "f", " ", "g"}], "+",
198 SuperscriptBox["g", "2"], "-",
199 SuperscriptBox[
200 RowBox[{"(",
201 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
202 RowBox[{"(",
203 RowBox[{
204 SuperscriptBox["g", "2"], "-",
205 SuperscriptBox["Xr", "2"]}], ")"}]}],
206 SuperscriptBox[
207 RowBox[{"(",
208 RowBox[{
209 RowBox[{"g", " ", "Xl"}], "-",
210 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
211 RowBox[{"2", " ", "g"}]]}], "}"}]}]], "Input",
212 CellChangeTimes->{{3.515496295181325*^9, 3.515496373145641*^9}}],
213  
214 Cell[BoxData[
215 RowBox[{
216 RowBox[{"distance", "[",
217 RowBox[{"x_", ",", "y_"}], "]"}], ":=",
218 RowBox[{"{",
219 RowBox[{
220 RowBox[{
221 RowBox[{"Sqrt", "[",
222 RowBox[{
223 RowBox[{"y", "^", "2"}], "+",
224 RowBox[{
225 RowBox[{"(",
226 RowBox[{"x", "-", "Xl"}], ")"}], "^", "2"}]}], "]"}], " ", "+", " ",
227  
228 RowBox[{"Sqrt", "[",
229 RowBox[{
230 RowBox[{"x", "^", "2"}], "+",
231 RowBox[{"y", "^", "2"}]}], "]"}]}], ",",
232 RowBox[{
233 RowBox[{"Sqrt", "[",
234 RowBox[{
235 RowBox[{"y", "^", "2"}], "+",
236 RowBox[{
237 RowBox[{"(",
238 RowBox[{"x", "-", "Xr"}], ")"}], "^", "2"}]}], "]"}], " ", "+", " ",
239  
240 RowBox[{"Sqrt", "[",
241 RowBox[{
242 RowBox[{"x", "^", "2"}], "+",
243 RowBox[{"y", "^", "2"}]}], "]"}]}]}], "}"}]}]], "Input",
244 CellChangeTimes->{{3.515496905741654*^9, 3.515496944394813*^9}}],
245  
246 Cell[CellGroupData[{
247  
248 Cell[BoxData[
249 RowBox[{"distance", "[",
250 RowBox[{"0.3", ",", "7.4"}], "]"}]], "Input",
251 CellChangeTimes->{{3.515496403004589*^9, 3.515496473593597*^9}, {
252 3.515496631709924*^9, 3.515496675661791*^9}, {3.515496758217258*^9,
253 3.51549676557555*^9}, {3.515496952775792*^9, 3.515496982312476*^9}}],
254  
255 Cell[BoxData[
256 RowBox[{"{",
257 RowBox[{"14.919400087018944`", ",", "14.839112958173462`"}],
258 "}"}]], "Output",
259 CellChangeTimes->{3.515496996655669*^9}]
260 }, Open ]],
261  
262 Cell[CellGroupData[{
263  
264 Cell[BoxData[
265 RowBox[{"position", "[",
266 RowBox[{"14.919400087018944`", ",", "14.839112958173462`"}], "]"}]], "Input",
267 CellChangeTimes->{{3.515496988909477*^9, 3.515497012744518*^9}}],
268  
269 Cell[BoxData[
270 RowBox[{"{",
271 RowBox[{"0.3000000000000122`", ",", "7.399999999999991`"}], "}"}]], "Output",\
272  
273 CellChangeTimes->{3.515497013951068*^9}]
274 }, Open ]],
275  
276 Cell[BoxData[""], "Input",
277 CellChangeTimes->{{3.515496949744564*^9, 3.515496949783665*^9}}],
278  
279 Cell[CellGroupData[{
280  
281 Cell[BoxData[
282 RowBox[{"Simplify", "[",
283 RowBox[{"Solve", "[",
284 RowBox[{
285 RowBox[{"{",
286 RowBox[{
287 RowBox[{"f", "\[Equal]",
288 RowBox[{
289 RowBox[{"Sqrt", "[",
290 RowBox[{
291 RowBox[{"y", "^", "2"}], "+",
292 RowBox[{
293 RowBox[{"(",
294 RowBox[{"x", "-", "Xl"}], ")"}], "^", "2"}]}], "]"}], " ", "+",
295 " ",
296 RowBox[{"Sqrt", "[",
297 RowBox[{
298 RowBox[{"x", "^", "2"}], "+",
299 RowBox[{"y", "^", "2"}]}], "]"}]}]}], ",",
300 RowBox[{"g", "\[Equal]",
301 RowBox[{
302 RowBox[{"Sqrt", "[",
303 RowBox[{
304 RowBox[{"y", "^", "2"}], "+",
305 RowBox[{
306 RowBox[{"(",
307 RowBox[{"x", "-", "Xr"}], ")"}], "^", "2"}]}], "]"}], " ", "+",
308 " ",
309 RowBox[{"Sqrt", "[",
310 RowBox[{
311 RowBox[{"x", "^", "2"}], "+",
312 RowBox[{"y", "^", "2"}]}], "]"}]}]}], ",",
313 RowBox[{"a", "==",
314 RowBox[{"Sqrt", "[",
315 RowBox[{
316 RowBox[{"y", "^", "2"}], "+",
317 RowBox[{
318 RowBox[{"(",
319 RowBox[{"x", "-", "Xl"}], ")"}], "^", "2"}]}], "]"}]}], ",",
320 RowBox[{"b", "==",
321 RowBox[{"Sqrt", "[",
322 RowBox[{
323 RowBox[{"y", "^", "2"}], "+",
324 RowBox[{
325 RowBox[{"(",
326 RowBox[{"x", "-", "Xr"}], ")"}], "^", "2"}]}], "]"}]}], ",",
327 RowBox[{"c", "==",
328 RowBox[{"Sqrt", "[",
329 RowBox[{
330 RowBox[{"x", "^", "2"}], "+",
331 RowBox[{"y", "^", "2"}]}], "]"}]}]}], "}"}], ",", " ",
332 RowBox[{"{",
333 RowBox[{"x", ",", "y", ",", "a", ",", "b", ",", "c"}], "}"}]}], "]"}],
334 "]"}]], "Input",
335 CellChangeTimes->{{3.515497849255536*^9, 3.515497856520988*^9}, {
336 3.515497888462276*^9, 3.515497937952609*^9}},
337 FontWeight->"Plain"],
338  
339 Cell[BoxData[
340 RowBox[{"{",
341 RowBox[{
342 RowBox[{"{",
343 RowBox[{
344 RowBox[{"x", "\[Rule]",
345 FractionBox[
346 RowBox[{
347 RowBox[{
348 SuperscriptBox["f", "2"], " ", "g"}], "-",
349 RowBox[{"g", " ",
350 SuperscriptBox["Xl", "2"]}], "+",
351 RowBox[{"f", " ",
352 RowBox[{"(",
353 RowBox[{
354 RowBox[{"-",
355 SuperscriptBox["g", "2"]}], "+",
356 SuperscriptBox["Xr", "2"]}], ")"}]}]}],
357 RowBox[{
358 RowBox[{
359 RowBox[{"-", "2"}], " ", "g", " ", "Xl"}], "+",
360 RowBox[{"2", " ", "f", " ", "Xr"}]}]]}], ",",
361 RowBox[{"y", "\[Rule]",
362 RowBox[{"-",
363 FractionBox[
364 SqrtBox[
365 RowBox[{"-",
366 FractionBox[
367 RowBox[{
368 SuperscriptBox["g", "2"], " ",
369 RowBox[{"(",
370 RowBox[{
371 SuperscriptBox["f", "2"], "-",
372 SuperscriptBox["Xl", "2"]}], ")"}], " ",
373 RowBox[{"(",
374 RowBox[{
375 SuperscriptBox["f", "2"], "-",
376 RowBox[{"2", " ", "f", " ", "g"}], "+",
377 SuperscriptBox["g", "2"], "-",
378 SuperscriptBox[
379 RowBox[{"(",
380 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
381 RowBox[{"(",
382 RowBox[{
383 SuperscriptBox["g", "2"], "-",
384 SuperscriptBox["Xr", "2"]}], ")"}]}],
385 SuperscriptBox[
386 RowBox[{"(",
387 RowBox[{
388 RowBox[{"g", " ", "Xl"}], "-",
389 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
390 RowBox[{"2", " ", "g"}]]}]}], ",",
391 RowBox[{"a", "\[Rule]",
392 RowBox[{"f", "-",
393 RowBox[{
394 FractionBox["1", "2"], " ",
395 SqrtBox[
396 FractionBox[
397 SuperscriptBox[
398 RowBox[{"(",
399 RowBox[{
400 RowBox[{
401 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
402 RowBox[{"Xr", " ",
403 RowBox[{"(",
404 RowBox[{
405 SuperscriptBox["f", "2"], "+",
406 RowBox[{"Xl", " ",
407 RowBox[{"(",
408 RowBox[{
409 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
410 ")"}], "2"],
411 SuperscriptBox[
412 RowBox[{"(",
413 RowBox[{
414 RowBox[{"g", " ", "Xl"}], "-",
415 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], ",",
416 RowBox[{"b", "\[Rule]",
417 RowBox[{"g", "-",
418 RowBox[{
419 FractionBox["1", "2"], " ",
420 SqrtBox[
421 FractionBox[
422 SuperscriptBox[
423 RowBox[{"(",
424 RowBox[{
425 RowBox[{
426 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
427 RowBox[{"Xr", " ",
428 RowBox[{"(",
429 RowBox[{
430 SuperscriptBox["f", "2"], "+",
431 RowBox[{"Xl", " ",
432 RowBox[{"(",
433 RowBox[{
434 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
435 ")"}], "2"],
436 SuperscriptBox[
437 RowBox[{"(",
438 RowBox[{
439 RowBox[{"g", " ", "Xl"}], "-",
440 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], ",",
441 RowBox[{"c", "\[Rule]",
442 RowBox[{
443 FractionBox["1", "2"], " ",
444 SqrtBox[
445 FractionBox[
446 SuperscriptBox[
447 RowBox[{"(",
448 RowBox[{
449 RowBox[{
450 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
451 RowBox[{"Xr", " ",
452 RowBox[{"(",
453 RowBox[{
454 SuperscriptBox["f", "2"], "+",
455 RowBox[{"Xl", " ",
456 RowBox[{"(",
457 RowBox[{
458 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
459 ")"}], "2"],
460 SuperscriptBox[
461 RowBox[{"(",
462 RowBox[{
463 RowBox[{"g", " ", "Xl"}], "-",
464 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], "}"}], ",",
465 RowBox[{"{",
466 RowBox[{
467 RowBox[{"x", "\[Rule]",
468 FractionBox[
469 RowBox[{
470 RowBox[{
471 SuperscriptBox["f", "2"], " ", "g"}], "-",
472 RowBox[{"g", " ",
473 SuperscriptBox["Xl", "2"]}], "+",
474 RowBox[{"f", " ",
475 RowBox[{"(",
476 RowBox[{
477 RowBox[{"-",
478 SuperscriptBox["g", "2"]}], "+",
479 SuperscriptBox["Xr", "2"]}], ")"}]}]}],
480 RowBox[{
481 RowBox[{
482 RowBox[{"-", "2"}], " ", "g", " ", "Xl"}], "+",
483 RowBox[{"2", " ", "f", " ", "Xr"}]}]]}], ",",
484 RowBox[{"y", "\[Rule]",
485 FractionBox[
486 SqrtBox[
487 RowBox[{"-",
488 FractionBox[
489 RowBox[{
490 SuperscriptBox["g", "2"], " ",
491 RowBox[{"(",
492 RowBox[{
493 SuperscriptBox["f", "2"], "-",
494 SuperscriptBox["Xl", "2"]}], ")"}], " ",
495 RowBox[{"(",
496 RowBox[{
497 SuperscriptBox["f", "2"], "-",
498 RowBox[{"2", " ", "f", " ", "g"}], "+",
499 SuperscriptBox["g", "2"], "-",
500 SuperscriptBox[
501 RowBox[{"(",
502 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
503 RowBox[{"(",
504 RowBox[{
505 SuperscriptBox["g", "2"], "-",
506 SuperscriptBox["Xr", "2"]}], ")"}]}],
507 SuperscriptBox[
508 RowBox[{"(",
509 RowBox[{
510 RowBox[{"g", " ", "Xl"}], "-",
511 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
512 RowBox[{"2", " ", "g"}]]}], ",",
513 RowBox[{"a", "\[Rule]",
514 RowBox[{"f", "-",
515 RowBox[{
516 FractionBox["1", "2"], " ",
517 SqrtBox[
518 FractionBox[
519 SuperscriptBox[
520 RowBox[{"(",
521 RowBox[{
522 RowBox[{
523 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
524 RowBox[{"Xr", " ",
525 RowBox[{"(",
526 RowBox[{
527 SuperscriptBox["f", "2"], "+",
528 RowBox[{"Xl", " ",
529 RowBox[{"(",
530 RowBox[{
531 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
532 ")"}], "2"],
533 SuperscriptBox[
534 RowBox[{"(",
535 RowBox[{
536 RowBox[{"g", " ", "Xl"}], "-",
537 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], ",",
538 RowBox[{"b", "\[Rule]",
539 RowBox[{"g", "-",
540 RowBox[{
541 FractionBox["1", "2"], " ",
542 SqrtBox[
543 FractionBox[
544 SuperscriptBox[
545 RowBox[{"(",
546 RowBox[{
547 RowBox[{
548 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
549 RowBox[{"Xr", " ",
550 RowBox[{"(",
551 RowBox[{
552 SuperscriptBox["f", "2"], "+",
553 RowBox[{"Xl", " ",
554 RowBox[{"(",
555 RowBox[{
556 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
557 ")"}], "2"],
558 SuperscriptBox[
559 RowBox[{"(",
560 RowBox[{
561 RowBox[{"g", " ", "Xl"}], "-",
562 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], ",",
563 RowBox[{"c", "\[Rule]",
564 RowBox[{
565 FractionBox["1", "2"], " ",
566 SqrtBox[
567 FractionBox[
568 SuperscriptBox[
569 RowBox[{"(",
570 RowBox[{
571 RowBox[{
572 SuperscriptBox["g", "2"], " ", "Xl"}], "-",
573 RowBox[{"Xr", " ",
574 RowBox[{"(",
575 RowBox[{
576 SuperscriptBox["f", "2"], "+",
577 RowBox[{"Xl", " ",
578 RowBox[{"(",
579 RowBox[{
580 RowBox[{"-", "Xl"}], "+", "Xr"}], ")"}]}]}], ")"}]}]}],
581 ")"}], "2"],
582 SuperscriptBox[
583 RowBox[{"(",
584 RowBox[{
585 RowBox[{"g", " ", "Xl"}], "-",
586 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]]}]}]}], "}"}]}],
587 "}"}]], "Output",
588 CellChangeTimes->{3.515497857789938*^9, 3.515497938817161*^9,
589 3.515498443550477*^9, 3.515498495049169*^9}]
590 }, Open ]],
591  
592 Cell[CellGroupData[{
593  
594 Cell[BoxData[
595 RowBox[{"CForm", "[",
596 FractionBox[
597 SqrtBox[
598 RowBox[{"-",
599 FractionBox[
600 RowBox[{
601 SuperscriptBox["g", "2"], " ",
602 RowBox[{"(",
603 RowBox[{
604 SuperscriptBox["f", "2"], "-",
605 SuperscriptBox["Xl", "2"]}], ")"}], " ",
606 RowBox[{"(",
607 RowBox[{
608 SuperscriptBox["f", "2"], "-",
609 RowBox[{"2", " ", "f", " ", "g"}], "+",
610 SuperscriptBox["g", "2"], "-",
611 SuperscriptBox[
612 RowBox[{"(",
613 RowBox[{"Xl", "-", "Xr"}], ")"}], "2"]}], ")"}], " ",
614 RowBox[{"(",
615 RowBox[{
616 SuperscriptBox["g", "2"], "-",
617 SuperscriptBox["Xr", "2"]}], ")"}]}],
618 SuperscriptBox[
619 RowBox[{"(",
620 RowBox[{
621 RowBox[{"g", " ", "Xl"}], "-",
622 RowBox[{"f", " ", "Xr"}]}], ")"}], "2"]]}]],
623 RowBox[{"2", " ", "g"}]], "]"}]], "Input",
624 CellChangeTimes->{{3.515498536581236*^9, 3.515498539213621*^9}, {
625 3.515498650974364*^9, 3.515498653572732*^9}, {3.515499109832382*^9,
626 3.515499111554484*^9}, 3.515499287277104*^9}],
627  
628 Cell["\<\
629 Sqrt(-((Power(g,2)*(Power(f,2) - Power(Xl,2))*
630 (Power(f,2) - 2*f*g + Power(g,2) - Power(Xl - Xr,2))*
631 (Power(g,2) - Power(Xr,2)))/Power(g*Xl - f*Xr,2)))/(2.*g)\
632 \>", "Output",
633 GeneratedCell->False,
634 CellAutoOverwrite->False,
635 CellChangeTimes->{{3.515498539771723*^9, 3.515498545680778*^9},
636 3.515498654644995*^9, 3.515499112485191*^9, 3.515499287974278*^9}],
637  
638 Cell["\<\
639 (Power(f,2)*g - g*Power(Xl,2) + f*(-Power(g,2) + Power(Xr,2)))/
640 (-2*g*Xl + 2*f*Xr)\
641 \>", "Output",
642 GeneratedCell->False,
643 CellAutoOverwrite->False,
644 CellChangeTimes->{{3.515498539771723*^9, 3.515498545680778*^9},
645 3.515498654644995*^9, 3.515499112485191*^9}],
646  
647 Cell["\<\
648 g - Sqrt(Power(Power(g,2)*Xl - Xr*(Power(f,2) + Xl*(-Xl + Xr)),
649 2)/Power(g*Xl - f*Xr,2))/2.\
650 \>", "Output",
651 GeneratedCell->False,
652 CellAutoOverwrite->False,
653 CellChangeTimes->{{3.515498539771723*^9, 3.515498545680778*^9},
654 3.515498654644995*^9}]
655 }, Open ]]
656 },
657 WindowSize->{1280, 723},
658 WindowMargins->{{0, Automatic}, {Automatic, 0}},
659 FrontEndVersion->"8.0 for Linux x86 (32-bit) (October 10, 2011)",
660 StyleDefinitions->"Default.nb"
661 ]
662 (* End of Notebook Content *)
663  
664 (* Internal cache information *)
665 (*CellTagsOutline
666 CellTagsIndex->{}
667 *)
668 (*CellTagsIndex
669 CellTagsIndex->{}
670 *)
671 (*NotebookFileOutline
672 Notebook[{
673 Cell[557, 20, 1292, 37, 30, "Input"],
674 Cell[1852, 59, 3322, 100, 176, "Input"],
675 Cell[5177, 161, 1590, 50, 88, "Input"],
676 Cell[6770, 213, 894, 30, 30, "Input"],
677 Cell[CellGroupData[{
678 Cell[7689, 247, 297, 5, 30, "Input"],
679 Cell[7989, 254, 154, 4, 30, "Output"]
680 }, Open ]],
681 Cell[CellGroupData[{
682 Cell[8180, 263, 186, 3, 30, "Input"],
683 Cell[8369, 268, 152, 4, 30, "Output"]
684 }, Open ]],
685 Cell[8536, 275, 92, 1, 30, "Input"],
686 Cell[CellGroupData[{
687 Cell[8653, 280, 1821, 56, 50, "Input"],
688 Cell[10477, 338, 8155, 250, 297, "Output"]
689 }, Open ]],
690 Cell[CellGroupData[{
691 Cell[18669, 593, 1086, 32, 88, "Input"],
692 Cell[19758, 627, 388, 8, 62, "Output"],
693 Cell[20149, 637, 275, 7, 46, "Output"],
694 Cell[20427, 646, 266, 7, 46, "Output"]
695 }, Open ]]
696 }
697 ]
698 *)
699  
700 (* End of internal cache information *)