2571 |
kaklik |
1 |
/* |
|
|
2 |
Copyright (c) 2007, Jim Studt (original old version - many contributors since) |
|
|
3 |
|
|
|
4 |
The latest version of this library may be found at: |
|
|
5 |
http://www.pjrc.com/teensy/td_libs_OneWire.html |
|
|
6 |
|
|
|
7 |
Version 2.1: |
|
|
8 |
Arduino 1.0 compatibility, Paul Stoffregen |
|
|
9 |
Improve temperature example, Paul Stoffregen |
|
|
10 |
DS250x_PROM example, Guillermo Lovato |
|
|
11 |
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com |
|
|
12 |
Improvements from Glenn Trewitt: |
|
|
13 |
- crc16() now works |
|
|
14 |
- check_crc16() does all of calculation/checking work. |
|
|
15 |
- Added read_bytes() and write_bytes(), to reduce tedious loops. |
|
|
16 |
- Added ds2408 example. |
|
|
17 |
Delete very old, out-of-date readme file (info is here) |
|
|
18 |
|
|
|
19 |
Version 2.0: Modifications by Paul Stoffregen, January 2010: |
|
|
20 |
http://www.pjrc.com/teensy/td_libs_OneWire.html |
|
|
21 |
Search fix from Robin James |
|
|
22 |
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 |
|
|
23 |
Use direct optimized I/O in all cases |
|
|
24 |
Disable interrupts during timing critical sections |
|
|
25 |
(this solves many random communication errors) |
|
|
26 |
Disable interrupts during read-modify-write I/O |
|
|
27 |
Reduce RAM consumption by eliminating unnecessary |
|
|
28 |
variables and trimming many to 8 bits |
|
|
29 |
Optimize both crc8 - table version moved to flash |
|
|
30 |
|
|
|
31 |
Modified to work with larger numbers of devices - avoids loop. |
|
|
32 |
Tested in Arduino 11 alpha with 12 sensors. |
|
|
33 |
26 Sept 2008 -- Robin James |
|
|
34 |
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 |
|
|
35 |
|
|
|
36 |
Updated to work with arduino-0008 and to include skip() as of |
|
|
37 |
2007/07/06. --RJL20 |
|
|
38 |
|
|
|
39 |
Modified to calculate the 8-bit CRC directly, avoiding the need for |
|
|
40 |
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 |
|
|
41 |
-- Tom Pollard, Jan 23, 2008 |
|
|
42 |
|
|
|
43 |
Jim Studt's original library was modified by Josh Larios. |
|
|
44 |
|
|
|
45 |
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008 |
|
|
46 |
|
|
|
47 |
Permission is hereby granted, free of charge, to any person obtaining |
|
|
48 |
a copy of this software and associated documentation files (the |
|
|
49 |
"Software"), to deal in the Software without restriction, including |
|
|
50 |
without limitation the rights to use, copy, modify, merge, publish, |
|
|
51 |
distribute, sublicense, and/or sell copies of the Software, and to |
|
|
52 |
permit persons to whom the Software is furnished to do so, subject to |
|
|
53 |
the following conditions: |
|
|
54 |
|
|
|
55 |
The above copyright notice and this permission notice shall be |
|
|
56 |
included in all copies or substantial portions of the Software. |
|
|
57 |
|
|
|
58 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
|
59 |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
|
60 |
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
|
61 |
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
|
|
62 |
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
|
|
63 |
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
|
64 |
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
65 |
|
|
|
66 |
Much of the code was inspired by Derek Yerger's code, though I don't |
|
|
67 |
think much of that remains. In any event that was.. |
|
|
68 |
(copyleft) 2006 by Derek Yerger - Free to distribute freely. |
|
|
69 |
|
|
|
70 |
The CRC code was excerpted and inspired by the Dallas Semiconductor |
|
|
71 |
sample code bearing this copyright. |
|
|
72 |
//--------------------------------------------------------------------------- |
|
|
73 |
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. |
|
|
74 |
// |
|
|
75 |
// Permission is hereby granted, free of charge, to any person obtaining a |
|
|
76 |
// copy of this software and associated documentation files (the "Software"), |
|
|
77 |
// to deal in the Software without restriction, including without limitation |
|
|
78 |
// the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
|
79 |
// and/or sell copies of the Software, and to permit persons to whom the |
|
|
80 |
// Software is furnished to do so, subject to the following conditions: |
|
|
81 |
// |
|
|
82 |
// The above copyright notice and this permission notice shall be included |
|
|
83 |
// in all copies or substantial portions of the Software. |
|
|
84 |
// |
|
|
85 |
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
|
|
86 |
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
|
|
87 |
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
|
|
88 |
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES |
|
|
89 |
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
|
|
90 |
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
|
|
91 |
// OTHER DEALINGS IN THE SOFTWARE. |
|
|
92 |
// |
|
|
93 |
// Except as contained in this notice, the name of Dallas Semiconductor |
|
|
94 |
// shall not be used except as stated in the Dallas Semiconductor |
|
|
95 |
// Branding Policy. |
|
|
96 |
//-------------------------------------------------------------------------- |
|
|
97 |
*/ |
|
|
98 |
|
|
|
99 |
#include "OneWire.h" |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
OneWire::OneWire(uint8_t pin) |
|
|
103 |
{ |
|
|
104 |
pinMode(pin, INPUT); |
|
|
105 |
bitmask = PIN_TO_BITMASK(pin); |
|
|
106 |
baseReg = PIN_TO_BASEREG(pin); |
|
|
107 |
#if ONEWIRE_SEARCH |
|
|
108 |
reset_search(); |
|
|
109 |
#endif |
|
|
110 |
} |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
// Perform the onewire reset function. We will wait up to 250uS for |
|
|
114 |
// the bus to come high, if it doesn't then it is broken or shorted |
|
|
115 |
// and we return a 0; |
|
|
116 |
// |
|
|
117 |
// Returns 1 if a device asserted a presence pulse, 0 otherwise. |
|
|
118 |
// |
|
|
119 |
uint8_t OneWire::reset(void) |
|
|
120 |
{ |
|
|
121 |
IO_REG_TYPE mask = bitmask; |
|
|
122 |
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; |
|
|
123 |
uint8_t r; |
|
|
124 |
uint8_t retries = 125; |
|
|
125 |
|
|
|
126 |
noInterrupts(); |
|
|
127 |
DIRECT_MODE_INPUT(reg, mask); |
|
|
128 |
interrupts(); |
|
|
129 |
// wait until the wire is high... just in case |
|
|
130 |
do { |
|
|
131 |
if (--retries == 0) return 0; |
|
|
132 |
delayMicroseconds(2); |
|
|
133 |
} while ( !DIRECT_READ(reg, mask)); |
|
|
134 |
|
|
|
135 |
noInterrupts(); |
|
|
136 |
DIRECT_WRITE_LOW(reg, mask); |
|
|
137 |
DIRECT_MODE_OUTPUT(reg, mask); // drive output low |
|
|
138 |
interrupts(); |
|
|
139 |
delayMicroseconds(500); |
|
|
140 |
noInterrupts(); |
|
|
141 |
DIRECT_MODE_INPUT(reg, mask); // allow it to float |
|
|
142 |
delayMicroseconds(80); |
|
|
143 |
r = !DIRECT_READ(reg, mask); |
|
|
144 |
interrupts(); |
|
|
145 |
delayMicroseconds(420); |
|
|
146 |
return r; |
|
|
147 |
} |
|
|
148 |
|
|
|
149 |
// |
|
|
150 |
// Write a bit. Port and bit is used to cut lookup time and provide |
|
|
151 |
// more certain timing. |
|
|
152 |
// |
|
|
153 |
void OneWire::write_bit(uint8_t v) |
|
|
154 |
{ |
|
|
155 |
IO_REG_TYPE mask=bitmask; |
|
|
156 |
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; |
|
|
157 |
|
|
|
158 |
if (v & 1) { |
|
|
159 |
noInterrupts(); |
|
|
160 |
DIRECT_WRITE_LOW(reg, mask); |
|
|
161 |
DIRECT_MODE_OUTPUT(reg, mask); // drive output low |
|
|
162 |
delayMicroseconds(10); |
|
|
163 |
DIRECT_WRITE_HIGH(reg, mask); // drive output high |
|
|
164 |
interrupts(); |
|
|
165 |
delayMicroseconds(55); |
|
|
166 |
} else { |
|
|
167 |
noInterrupts(); |
|
|
168 |
DIRECT_WRITE_LOW(reg, mask); |
|
|
169 |
DIRECT_MODE_OUTPUT(reg, mask); // drive output low |
|
|
170 |
delayMicroseconds(65); |
|
|
171 |
DIRECT_WRITE_HIGH(reg, mask); // drive output high |
|
|
172 |
interrupts(); |
|
|
173 |
delayMicroseconds(5); |
|
|
174 |
} |
|
|
175 |
} |
|
|
176 |
|
|
|
177 |
// |
|
|
178 |
// Read a bit. Port and bit is used to cut lookup time and provide |
|
|
179 |
// more certain timing. |
|
|
180 |
// |
|
|
181 |
uint8_t OneWire::read_bit(void) |
|
|
182 |
{ |
|
|
183 |
IO_REG_TYPE mask=bitmask; |
|
|
184 |
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; |
|
|
185 |
uint8_t r; |
|
|
186 |
|
|
|
187 |
noInterrupts(); |
|
|
188 |
DIRECT_MODE_OUTPUT(reg, mask); |
|
|
189 |
DIRECT_WRITE_LOW(reg, mask); |
|
|
190 |
delayMicroseconds(3); |
|
|
191 |
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise |
|
|
192 |
delayMicroseconds(10); |
|
|
193 |
r = DIRECT_READ(reg, mask); |
|
|
194 |
interrupts(); |
|
|
195 |
delayMicroseconds(53); |
|
|
196 |
return r; |
|
|
197 |
} |
|
|
198 |
|
|
|
199 |
// |
|
|
200 |
// Write a byte. The writing code uses the active drivers to raise the |
|
|
201 |
// pin high, if you need power after the write (e.g. DS18S20 in |
|
|
202 |
// parasite power mode) then set 'power' to 1, otherwise the pin will |
|
|
203 |
// go tri-state at the end of the write to avoid heating in a short or |
|
|
204 |
// other mishap. |
|
|
205 |
// |
|
|
206 |
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { |
|
|
207 |
uint8_t bitMask; |
|
|
208 |
|
|
|
209 |
for (bitMask = 0x01; bitMask; bitMask <<= 1) { |
|
|
210 |
OneWire::write_bit( (bitMask & v)?1:0); |
|
|
211 |
} |
|
|
212 |
if ( !power) { |
|
|
213 |
noInterrupts(); |
|
|
214 |
DIRECT_MODE_INPUT(baseReg, bitmask); |
|
|
215 |
DIRECT_WRITE_LOW(baseReg, bitmask); |
|
|
216 |
interrupts(); |
|
|
217 |
} |
|
|
218 |
} |
|
|
219 |
|
|
|
220 |
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) { |
|
|
221 |
for (uint16_t i = 0 ; i < count ; i++) |
|
|
222 |
write(buf[i]); |
|
|
223 |
if (!power) { |
|
|
224 |
noInterrupts(); |
|
|
225 |
DIRECT_MODE_INPUT(baseReg, bitmask); |
|
|
226 |
DIRECT_WRITE_LOW(baseReg, bitmask); |
|
|
227 |
interrupts(); |
|
|
228 |
} |
|
|
229 |
} |
|
|
230 |
|
|
|
231 |
// |
|
|
232 |
// Read a byte |
|
|
233 |
// |
|
|
234 |
uint8_t OneWire::read() { |
|
|
235 |
uint8_t bitMask; |
|
|
236 |
uint8_t r = 0; |
|
|
237 |
|
|
|
238 |
for (bitMask = 0x01; bitMask; bitMask <<= 1) { |
|
|
239 |
if ( OneWire::read_bit()) r |= bitMask; |
|
|
240 |
} |
|
|
241 |
return r; |
|
|
242 |
} |
|
|
243 |
|
|
|
244 |
void OneWire::read_bytes(uint8_t *buf, uint16_t count) { |
|
|
245 |
for (uint16_t i = 0 ; i < count ; i++) |
|
|
246 |
buf[i] = read(); |
|
|
247 |
} |
|
|
248 |
|
|
|
249 |
// |
|
|
250 |
// Do a ROM select |
|
|
251 |
// |
|
|
252 |
void OneWire::select( uint8_t rom[8]) |
|
|
253 |
{ |
|
|
254 |
int i; |
|
|
255 |
|
|
|
256 |
write(0x55); // Choose ROM |
|
|
257 |
|
|
|
258 |
for( i = 0; i < 8; i++) write(rom[i]); |
|
|
259 |
} |
|
|
260 |
|
|
|
261 |
// |
|
|
262 |
// Do a ROM skip |
|
|
263 |
// |
|
|
264 |
void OneWire::skip() |
|
|
265 |
{ |
|
|
266 |
write(0xCC); // Skip ROM |
|
|
267 |
} |
|
|
268 |
|
|
|
269 |
void OneWire::depower() |
|
|
270 |
{ |
|
|
271 |
noInterrupts(); |
|
|
272 |
DIRECT_MODE_INPUT(baseReg, bitmask); |
|
|
273 |
interrupts(); |
|
|
274 |
} |
|
|
275 |
|
|
|
276 |
#if ONEWIRE_SEARCH |
|
|
277 |
|
|
|
278 |
// |
|
|
279 |
// You need to use this function to start a search again from the beginning. |
|
|
280 |
// You do not need to do it for the first search, though you could. |
|
|
281 |
// |
|
|
282 |
void OneWire::reset_search() |
|
|
283 |
{ |
|
|
284 |
// reset the search state |
|
|
285 |
LastDiscrepancy = 0; |
|
|
286 |
LastDeviceFlag = FALSE; |
|
|
287 |
LastFamilyDiscrepancy = 0; |
|
|
288 |
for(int i = 7; ; i--) |
|
|
289 |
{ |
|
|
290 |
ROM_NO[i] = 0; |
|
|
291 |
if ( i == 0) break; |
|
|
292 |
} |
|
|
293 |
} |
|
|
294 |
|
|
|
295 |
// |
|
|
296 |
// Perform a search. If this function returns a '1' then it has |
|
|
297 |
// enumerated the next device and you may retrieve the ROM from the |
|
|
298 |
// OneWire::address variable. If there are no devices, no further |
|
|
299 |
// devices, or something horrible happens in the middle of the |
|
|
300 |
// enumeration then a 0 is returned. If a new device is found then |
|
|
301 |
// its address is copied to newAddr. Use OneWire::reset_search() to |
|
|
302 |
// start over. |
|
|
303 |
// |
|
|
304 |
// --- Replaced by the one from the Dallas Semiconductor web site --- |
|
|
305 |
//-------------------------------------------------------------------------- |
|
|
306 |
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing |
|
|
307 |
// search state. |
|
|
308 |
// Return TRUE : device found, ROM number in ROM_NO buffer |
|
|
309 |
// FALSE : device not found, end of search |
|
|
310 |
// |
|
|
311 |
uint8_t OneWire::search(uint8_t *newAddr) |
|
|
312 |
{ |
|
|
313 |
uint8_t id_bit_number; |
|
|
314 |
uint8_t last_zero, rom_byte_number, search_result; |
|
|
315 |
uint8_t id_bit, cmp_id_bit; |
|
|
316 |
|
|
|
317 |
unsigned char rom_byte_mask, search_direction; |
|
|
318 |
|
|
|
319 |
// initialize for search |
|
|
320 |
id_bit_number = 1; |
|
|
321 |
last_zero = 0; |
|
|
322 |
rom_byte_number = 0; |
|
|
323 |
rom_byte_mask = 1; |
|
|
324 |
search_result = 0; |
|
|
325 |
|
|
|
326 |
// if the last call was not the last one |
|
|
327 |
if (!LastDeviceFlag) |
|
|
328 |
{ |
|
|
329 |
// 1-Wire reset |
|
|
330 |
if (!reset()) |
|
|
331 |
{ |
|
|
332 |
// reset the search |
|
|
333 |
LastDiscrepancy = 0; |
|
|
334 |
LastDeviceFlag = FALSE; |
|
|
335 |
LastFamilyDiscrepancy = 0; |
|
|
336 |
return FALSE; |
|
|
337 |
} |
|
|
338 |
|
|
|
339 |
// issue the search command |
|
|
340 |
write(0xF0); |
|
|
341 |
|
|
|
342 |
// loop to do the search |
|
|
343 |
do |
|
|
344 |
{ |
|
|
345 |
// read a bit and its complement |
|
|
346 |
id_bit = read_bit(); |
|
|
347 |
cmp_id_bit = read_bit(); |
|
|
348 |
|
|
|
349 |
// check for no devices on 1-wire |
|
|
350 |
if ((id_bit == 1) && (cmp_id_bit == 1)) |
|
|
351 |
break; |
|
|
352 |
else |
|
|
353 |
{ |
|
|
354 |
// all devices coupled have 0 or 1 |
|
|
355 |
if (id_bit != cmp_id_bit) |
|
|
356 |
search_direction = id_bit; // bit write value for search |
|
|
357 |
else |
|
|
358 |
{ |
|
|
359 |
// if this discrepancy if before the Last Discrepancy |
|
|
360 |
// on a previous next then pick the same as last time |
|
|
361 |
if (id_bit_number < LastDiscrepancy) |
|
|
362 |
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); |
|
|
363 |
else |
|
|
364 |
// if equal to last pick 1, if not then pick 0 |
|
|
365 |
search_direction = (id_bit_number == LastDiscrepancy); |
|
|
366 |
|
|
|
367 |
// if 0 was picked then record its position in LastZero |
|
|
368 |
if (search_direction == 0) |
|
|
369 |
{ |
|
|
370 |
last_zero = id_bit_number; |
|
|
371 |
|
|
|
372 |
// check for Last discrepancy in family |
|
|
373 |
if (last_zero < 9) |
|
|
374 |
LastFamilyDiscrepancy = last_zero; |
|
|
375 |
} |
|
|
376 |
} |
|
|
377 |
|
|
|
378 |
// set or clear the bit in the ROM byte rom_byte_number |
|
|
379 |
// with mask rom_byte_mask |
|
|
380 |
if (search_direction == 1) |
|
|
381 |
ROM_NO[rom_byte_number] |= rom_byte_mask; |
|
|
382 |
else |
|
|
383 |
ROM_NO[rom_byte_number] &= ~rom_byte_mask; |
|
|
384 |
|
|
|
385 |
// serial number search direction write bit |
|
|
386 |
write_bit(search_direction); |
|
|
387 |
|
|
|
388 |
// increment the byte counter id_bit_number |
|
|
389 |
// and shift the mask rom_byte_mask |
|
|
390 |
id_bit_number++; |
|
|
391 |
rom_byte_mask <<= 1; |
|
|
392 |
|
|
|
393 |
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask |
|
|
394 |
if (rom_byte_mask == 0) |
|
|
395 |
{ |
|
|
396 |
rom_byte_number++; |
|
|
397 |
rom_byte_mask = 1; |
|
|
398 |
} |
|
|
399 |
} |
|
|
400 |
} |
|
|
401 |
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 |
|
|
402 |
|
|
|
403 |
// if the search was successful then |
|
|
404 |
if (!(id_bit_number < 65)) |
|
|
405 |
{ |
|
|
406 |
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result |
|
|
407 |
LastDiscrepancy = last_zero; |
|
|
408 |
|
|
|
409 |
// check for last device |
|
|
410 |
if (LastDiscrepancy == 0) |
|
|
411 |
LastDeviceFlag = TRUE; |
|
|
412 |
|
|
|
413 |
search_result = TRUE; |
|
|
414 |
} |
|
|
415 |
} |
|
|
416 |
|
|
|
417 |
// if no device found then reset counters so next 'search' will be like a first |
|
|
418 |
if (!search_result || !ROM_NO[0]) |
|
|
419 |
{ |
|
|
420 |
LastDiscrepancy = 0; |
|
|
421 |
LastDeviceFlag = FALSE; |
|
|
422 |
LastFamilyDiscrepancy = 0; |
|
|
423 |
search_result = FALSE; |
|
|
424 |
} |
|
|
425 |
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; |
|
|
426 |
return search_result; |
|
|
427 |
} |
|
|
428 |
|
|
|
429 |
#endif |
|
|
430 |
|
|
|
431 |
#if ONEWIRE_CRC |
|
|
432 |
// The 1-Wire CRC scheme is described in Maxim Application Note 27: |
|
|
433 |
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" |
|
|
434 |
// |
|
|
435 |
|
|
|
436 |
#if ONEWIRE_CRC8_TABLE |
|
|
437 |
// This table comes from Dallas sample code where it is freely reusable, |
|
|
438 |
// though Copyright (C) 2000 Dallas Semiconductor Corporation |
|
|
439 |
static const uint8_t PROGMEM dscrc_table[] = { |
|
|
440 |
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, |
|
|
441 |
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, |
|
|
442 |
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, |
|
|
443 |
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, |
|
|
444 |
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, |
|
|
445 |
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, |
|
|
446 |
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, |
|
|
447 |
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, |
|
|
448 |
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, |
|
|
449 |
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, |
|
|
450 |
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, |
|
|
451 |
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, |
|
|
452 |
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, |
|
|
453 |
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, |
|
|
454 |
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, |
|
|
455 |
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; |
|
|
456 |
|
|
|
457 |
// |
|
|
458 |
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM |
|
|
459 |
// and the registers. (note: this might better be done without to |
|
|
460 |
// table, it would probably be smaller and certainly fast enough |
|
|
461 |
// compared to all those delayMicrosecond() calls. But I got |
|
|
462 |
// confused, so I use this table from the examples.) |
|
|
463 |
// |
|
|
464 |
uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) |
|
|
465 |
{ |
|
|
466 |
uint8_t crc = 0; |
|
|
467 |
|
|
|
468 |
while (len--) { |
|
|
469 |
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); |
|
|
470 |
} |
|
|
471 |
return crc; |
|
|
472 |
} |
|
|
473 |
#else |
|
|
474 |
// |
|
|
475 |
// Compute a Dallas Semiconductor 8 bit CRC directly. |
|
|
476 |
// this is much slower, but much smaller, than the lookup table. |
|
|
477 |
// |
|
|
478 |
uint8_t OneWire::crc8( uint8_t *addr, uint8_t len) |
|
|
479 |
{ |
|
|
480 |
uint8_t crc = 0; |
|
|
481 |
|
|
|
482 |
while (len--) { |
|
|
483 |
uint8_t inbyte = *addr++; |
|
|
484 |
for (uint8_t i = 8; i; i--) { |
|
|
485 |
uint8_t mix = (crc ^ inbyte) & 0x01; |
|
|
486 |
crc >>= 1; |
|
|
487 |
if (mix) crc ^= 0x8C; |
|
|
488 |
inbyte >>= 1; |
|
|
489 |
} |
|
|
490 |
} |
|
|
491 |
return crc; |
|
|
492 |
} |
|
|
493 |
#endif |
|
|
494 |
|
|
|
495 |
#if ONEWIRE_CRC16 |
|
|
496 |
bool OneWire::check_crc16(uint8_t* input, uint16_t len, uint8_t* inverted_crc) |
|
|
497 |
{ |
|
|
498 |
uint16_t crc = ~crc16(input, len); |
|
|
499 |
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; |
|
|
500 |
} |
|
|
501 |
|
|
|
502 |
uint16_t OneWire::crc16(uint8_t* input, uint16_t len) |
|
|
503 |
{ |
|
|
504 |
static const uint8_t oddparity[16] = |
|
|
505 |
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; |
|
|
506 |
uint16_t crc = 0; // Starting seed is zero. |
|
|
507 |
|
|
|
508 |
for (uint16_t i = 0 ; i < len ; i++) { |
|
|
509 |
// Even though we're just copying a byte from the input, |
|
|
510 |
// we'll be doing 16-bit computation with it. |
|
|
511 |
uint16_t cdata = input[i]; |
|
|
512 |
cdata = (cdata ^ (crc & 0xff)) & 0xff; |
|
|
513 |
crc >>= 8; |
|
|
514 |
|
|
|
515 |
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) |
|
|
516 |
crc ^= 0xC001; |
|
|
517 |
|
|
|
518 |
cdata <<= 6; |
|
|
519 |
crc ^= cdata; |
|
|
520 |
cdata <<= 1; |
|
|
521 |
crc ^= cdata; |
|
|
522 |
} |
|
|
523 |
return crc; |
|
|
524 |
} |
|
|
525 |
#endif |
|
|
526 |
|
|
|
527 |
#endif |