1269 |
kakl |
1 |
/*! \file uart2.c \brief Dual UART driver with buffer support. */ |
|
|
2 |
//***************************************************************************** |
|
|
3 |
// |
|
|
4 |
// File Name : 'uart2.c' |
|
|
5 |
// Title : Dual UART driver with buffer support |
|
|
6 |
// Author : Pascal Stang - Copyright (C) 2000-2004 |
|
|
7 |
// Created : 11/20/2000 |
|
|
8 |
// Revised : 07/04/2004 |
|
|
9 |
// Version : 1.0 |
|
|
10 |
// Target MCU : ATMEL AVR Series |
|
|
11 |
// Editor Tabs : 4 |
|
|
12 |
// |
|
|
13 |
// Description : This is a UART driver for AVR-series processors with two |
|
|
14 |
// hardware UARTs such as the mega161 and mega128 |
|
|
15 |
// |
|
|
16 |
// This code is distributed under the GNU Public License |
|
|
17 |
// which can be found at http://www.gnu.org/licenses/gpl.txt |
|
|
18 |
// |
|
|
19 |
//***************************************************************************** |
|
|
20 |
|
|
|
21 |
#include <avr/io.h> |
|
|
22 |
#include <avr/interrupt.h> |
|
|
23 |
|
|
|
24 |
#include "buffer.h" |
|
|
25 |
#include "uart2.h" |
|
|
26 |
|
|
|
27 |
// UART global variables |
|
|
28 |
// flag variables |
|
|
29 |
volatile u08 uartReadyTx[2]; |
|
|
30 |
volatile u08 uartBufferedTx[2]; |
|
|
31 |
// receive and transmit buffers |
|
|
32 |
cBuffer uartRxBuffer[2]; |
|
|
33 |
cBuffer uartTxBuffer[2]; |
|
|
34 |
unsigned short uartRxOverflow[2]; |
|
|
35 |
#ifndef UART_BUFFER_EXTERNAL_RAM |
|
|
36 |
// using internal ram, |
|
|
37 |
// automatically allocate space in ram for each buffer |
|
|
38 |
static char uart0RxData[UART0_RX_BUFFER_SIZE]; |
|
|
39 |
static char uart0TxData[UART0_TX_BUFFER_SIZE]; |
|
|
40 |
static char uart1RxData[UART1_RX_BUFFER_SIZE]; |
|
|
41 |
static char uart1TxData[UART1_TX_BUFFER_SIZE]; |
|
|
42 |
#endif |
|
|
43 |
|
|
|
44 |
typedef void (*voidFuncPtru08)(unsigned char); |
|
|
45 |
volatile static voidFuncPtru08 UartRxFunc[2]; |
|
|
46 |
|
|
|
47 |
void uartInit(void) |
|
|
48 |
{ |
|
|
49 |
// initialize both uarts |
|
|
50 |
uart0Init(); |
|
|
51 |
uart1Init(); |
|
|
52 |
} |
|
|
53 |
|
|
|
54 |
void uart0Init(void) |
|
|
55 |
{ |
|
|
56 |
// initialize the buffers |
|
|
57 |
uart0InitBuffers(); |
|
|
58 |
// initialize user receive handlers |
|
|
59 |
UartRxFunc[0] = 0; |
|
|
60 |
// enable RxD/TxD and interrupts |
|
|
61 |
outb(UCSR0B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
|
|
62 |
// set default baud rate |
|
|
63 |
uartSetBaudRate(0, UART0_DEFAULT_BAUD_RATE); |
|
|
64 |
// initialize states |
|
|
65 |
uartReadyTx[0] = TRUE; |
|
|
66 |
uartBufferedTx[0] = FALSE; |
|
|
67 |
// clear overflow count |
|
|
68 |
uartRxOverflow[0] = 0; |
|
|
69 |
// enable interrupts |
|
|
70 |
sei(); |
|
|
71 |
} |
|
|
72 |
|
|
|
73 |
void uart1Init(void) |
|
|
74 |
{ |
|
|
75 |
// initialize the buffers |
|
|
76 |
uart1InitBuffers(); |
|
|
77 |
// initialize user receive handlers |
|
|
78 |
UartRxFunc[1] = 0; |
|
|
79 |
// enable RxD/TxD and interrupts |
|
|
80 |
outb(UCSR1B, BV(RXCIE)|BV(TXCIE)|BV(RXEN)|BV(TXEN)); |
|
|
81 |
// set default baud rate |
|
|
82 |
uartSetBaudRate(1, UART1_DEFAULT_BAUD_RATE); |
|
|
83 |
// initialize states |
|
|
84 |
uartReadyTx[1] = TRUE; |
|
|
85 |
uartBufferedTx[1] = FALSE; |
|
|
86 |
// clear overflow count |
|
|
87 |
uartRxOverflow[1] = 0; |
|
|
88 |
// enable interrupts |
|
|
89 |
sei(); |
|
|
90 |
} |
|
|
91 |
|
|
|
92 |
void uart0InitBuffers(void) |
|
|
93 |
{ |
|
|
94 |
#ifndef UART_BUFFER_EXTERNAL_RAM |
|
|
95 |
// initialize the UART0 buffers |
|
|
96 |
bufferInit(&uartRxBuffer[0], uart0RxData, UART0_RX_BUFFER_SIZE); |
|
|
97 |
bufferInit(&uartTxBuffer[0], uart0TxData, UART0_TX_BUFFER_SIZE); |
|
|
98 |
#else |
|
|
99 |
// initialize the UART0 buffers |
|
|
100 |
bufferInit(&uartRxBuffer[0], (u08*) UART0_RX_BUFFER_ADDR, UART0_RX_BUFFER_SIZE); |
|
|
101 |
bufferInit(&uartTxBuffer[0], (u08*) UART0_TX_BUFFER_ADDR, UART0_TX_BUFFER_SIZE); |
|
|
102 |
#endif |
|
|
103 |
} |
|
|
104 |
|
|
|
105 |
void uart1InitBuffers(void) |
|
|
106 |
{ |
|
|
107 |
#ifndef UART_BUFFER_EXTERNAL_RAM |
|
|
108 |
// initialize the UART1 buffers |
|
|
109 |
bufferInit(&uartRxBuffer[1], uart1RxData, UART1_RX_BUFFER_SIZE); |
|
|
110 |
bufferInit(&uartTxBuffer[1], uart1TxData, UART1_TX_BUFFER_SIZE); |
|
|
111 |
#else |
|
|
112 |
// initialize the UART1 buffers |
|
|
113 |
bufferInit(&uartRxBuffer[1], (u08*) UART1_RX_BUFFER_ADDR, UART1_RX_BUFFER_SIZE); |
|
|
114 |
bufferInit(&uartTxBuffer[1], (u08*) UART1_TX_BUFFER_ADDR, UART1_TX_BUFFER_SIZE); |
|
|
115 |
#endif |
|
|
116 |
} |
|
|
117 |
|
|
|
118 |
void uartSetRxHandler(u08 nUart, void (*rx_func)(unsigned char c)) |
|
|
119 |
{ |
|
|
120 |
// make sure the uart number is within bounds |
|
|
121 |
if(nUart < 2) |
|
|
122 |
{ |
|
|
123 |
// set the receive interrupt to run the supplied user function |
|
|
124 |
UartRxFunc[nUart] = rx_func; |
|
|
125 |
} |
|
|
126 |
} |
|
|
127 |
|
|
|
128 |
void uartSetBaudRate(u08 nUart, u32 baudrate) |
|
|
129 |
{ |
|
|
130 |
// calculate division factor for requested baud rate, and set it |
|
|
131 |
u16 bauddiv = ((F_CPU+(baudrate*8L))/(baudrate*16L)-1); |
|
|
132 |
if(nUart) |
|
|
133 |
{ |
|
|
134 |
outb(UBRR1L, bauddiv); |
|
|
135 |
#ifdef UBRR1H |
|
|
136 |
outb(UBRR1H, bauddiv>>8); |
|
|
137 |
#endif |
|
|
138 |
} |
|
|
139 |
else |
|
|
140 |
{ |
|
|
141 |
outb(UBRR0L, bauddiv); |
|
|
142 |
#ifdef UBRR0H |
|
|
143 |
outb(UBRR0H, bauddiv>>8); |
|
|
144 |
#endif |
|
|
145 |
} |
|
|
146 |
} |
|
|
147 |
|
|
|
148 |
cBuffer* uartGetRxBuffer(u08 nUart) |
|
|
149 |
{ |
|
|
150 |
// return rx buffer pointer |
|
|
151 |
return &uartRxBuffer[nUart]; |
|
|
152 |
} |
|
|
153 |
|
|
|
154 |
cBuffer* uartGetTxBuffer(u08 nUart) |
|
|
155 |
{ |
|
|
156 |
// return tx buffer pointer |
|
|
157 |
return &uartTxBuffer[nUart]; |
|
|
158 |
} |
|
|
159 |
|
|
|
160 |
void uartSendByte(u08 nUart, u08 txData) |
|
|
161 |
{ |
|
|
162 |
// wait for the transmitter to be ready |
|
|
163 |
// while(!uartReadyTx[nUart]); |
|
|
164 |
// send byte |
|
|
165 |
if(nUart) |
|
|
166 |
{ |
|
|
167 |
while(!(UCSR1A & (1<<UDRE))); |
|
|
168 |
outb(UDR1, txData); |
|
|
169 |
} |
|
|
170 |
else |
|
|
171 |
{ |
|
|
172 |
while(!(UCSR0A & (1<<UDRE))); |
|
|
173 |
outb(UDR0, txData); |
|
|
174 |
} |
|
|
175 |
// set ready state to FALSE |
|
|
176 |
uartReadyTx[nUart] = FALSE; |
|
|
177 |
} |
|
|
178 |
|
|
|
179 |
void uart0SendByte(u08 data) |
|
|
180 |
{ |
|
|
181 |
// send byte on UART0 |
|
|
182 |
uartSendByte(0, data); |
|
|
183 |
} |
|
|
184 |
|
|
|
185 |
void uart1SendByte(u08 data) |
|
|
186 |
{ |
|
|
187 |
// send byte on UART1 |
|
|
188 |
uartSendByte(1, data); |
|
|
189 |
} |
|
|
190 |
|
|
|
191 |
int uart0GetByte(void) |
|
|
192 |
{ |
|
|
193 |
// get single byte from receive buffer (if available) |
|
|
194 |
u08 c; |
|
|
195 |
if(uartReceiveByte(0,&c)) |
|
|
196 |
return c; |
|
|
197 |
else |
|
|
198 |
return -1; |
|
|
199 |
} |
|
|
200 |
|
|
|
201 |
int uart1GetByte(void) |
|
|
202 |
{ |
|
|
203 |
// get single byte from receive buffer (if available) |
|
|
204 |
u08 c; |
|
|
205 |
if(uartReceiveByte(1,&c)) |
|
|
206 |
return c; |
|
|
207 |
else |
|
|
208 |
return -1; |
|
|
209 |
} |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
u08 uartReceiveByte(u08 nUart, u08* rxData) |
|
|
213 |
{ |
|
|
214 |
// make sure we have a receive buffer |
|
|
215 |
if(uartRxBuffer[nUart].size) |
|
|
216 |
{ |
|
|
217 |
// make sure we have data |
|
|
218 |
if(uartRxBuffer[nUart].datalength) |
|
|
219 |
{ |
|
|
220 |
// get byte from beginning of buffer |
|
|
221 |
*rxData = bufferGetFromFront(&uartRxBuffer[nUart]); |
|
|
222 |
return TRUE; |
|
|
223 |
} |
|
|
224 |
else |
|
|
225 |
return FALSE; // no data |
|
|
226 |
} |
|
|
227 |
else |
|
|
228 |
return FALSE; // no buffer |
|
|
229 |
} |
|
|
230 |
|
|
|
231 |
void uartFlushReceiveBuffer(u08 nUart) |
|
|
232 |
{ |
|
|
233 |
// flush all data from receive buffer |
|
|
234 |
bufferFlush(&uartRxBuffer[nUart]); |
|
|
235 |
} |
|
|
236 |
|
|
|
237 |
u08 uartReceiveBufferIsEmpty(u08 nUart) |
|
|
238 |
{ |
|
|
239 |
return (uartRxBuffer[nUart].datalength == 0); |
|
|
240 |
} |
|
|
241 |
|
|
|
242 |
void uartAddToTxBuffer(u08 nUart, u08 data) |
|
|
243 |
{ |
|
|
244 |
// add data byte to the end of the tx buffer |
|
|
245 |
bufferAddToEnd(&uartTxBuffer[nUart], data); |
|
|
246 |
} |
|
|
247 |
|
|
|
248 |
void uart0AddToTxBuffer(u08 data) |
|
|
249 |
{ |
|
|
250 |
uartAddToTxBuffer(0,data); |
|
|
251 |
} |
|
|
252 |
|
|
|
253 |
void uart1AddToTxBuffer(u08 data) |
|
|
254 |
{ |
|
|
255 |
uartAddToTxBuffer(1,data); |
|
|
256 |
} |
|
|
257 |
|
|
|
258 |
void uartSendTxBuffer(u08 nUart) |
|
|
259 |
{ |
|
|
260 |
// turn on buffered transmit |
|
|
261 |
uartBufferedTx[nUart] = TRUE; |
|
|
262 |
// send the first byte to get things going by interrupts |
|
|
263 |
uartSendByte(nUart, bufferGetFromFront(&uartTxBuffer[nUart])); |
|
|
264 |
} |
|
|
265 |
|
|
|
266 |
u08 uartSendBuffer(u08 nUart, char *buffer, u16 nBytes) |
|
|
267 |
{ |
|
|
268 |
register u08 first; |
|
|
269 |
register u16 i; |
|
|
270 |
|
|
|
271 |
// check if there's space (and that we have any bytes to send at all) |
|
|
272 |
if((uartTxBuffer[nUart].datalength + nBytes < uartTxBuffer[nUart].size) && nBytes) |
|
|
273 |
{ |
|
|
274 |
// grab first character |
|
|
275 |
first = *buffer++; |
|
|
276 |
// copy user buffer to uart transmit buffer |
|
|
277 |
for(i = 0; i < nBytes-1; i++) |
|
|
278 |
{ |
|
|
279 |
// put data bytes at end of buffer |
|
|
280 |
bufferAddToEnd(&uartTxBuffer[nUart], *buffer++); |
|
|
281 |
} |
|
|
282 |
|
|
|
283 |
// send the first byte to get things going by interrupts |
|
|
284 |
uartBufferedTx[nUart] = TRUE; |
|
|
285 |
uartSendByte(nUart, first); |
|
|
286 |
// return success |
|
|
287 |
return TRUE; |
|
|
288 |
} |
|
|
289 |
else |
|
|
290 |
{ |
|
|
291 |
// return failure |
|
|
292 |
return FALSE; |
|
|
293 |
} |
|
|
294 |
} |
|
|
295 |
|
|
|
296 |
// UART Transmit Complete Interrupt Function |
|
|
297 |
void uartTransmitService(u08 nUart) |
|
|
298 |
{ |
|
|
299 |
// check if buffered tx is enabled |
|
|
300 |
if(uartBufferedTx[nUart]) |
|
|
301 |
{ |
|
|
302 |
// check if there's data left in the buffer |
|
|
303 |
if(uartTxBuffer[nUart].datalength) |
|
|
304 |
{ |
|
|
305 |
// send byte from top of buffer |
|
|
306 |
if(nUart) |
|
|
307 |
outb(UDR1, bufferGetFromFront(&uartTxBuffer[1]) ); |
|
|
308 |
else |
|
|
309 |
outb(UDR0, bufferGetFromFront(&uartTxBuffer[0]) ); |
|
|
310 |
} |
|
|
311 |
else |
|
|
312 |
{ |
|
|
313 |
// no data left |
|
|
314 |
uartBufferedTx[nUart] = FALSE; |
|
|
315 |
// return to ready state |
|
|
316 |
uartReadyTx[nUart] = TRUE; |
|
|
317 |
} |
|
|
318 |
} |
|
|
319 |
else |
|
|
320 |
{ |
|
|
321 |
// we're using single-byte tx mode |
|
|
322 |
// indicate transmit complete, back to ready |
|
|
323 |
uartReadyTx[nUart] = TRUE; |
|
|
324 |
} |
|
|
325 |
} |
|
|
326 |
|
|
|
327 |
// UART Receive Complete Interrupt Function |
|
|
328 |
void uartReceiveService(u08 nUart) |
|
|
329 |
{ |
|
|
330 |
u08 c; |
|
|
331 |
// get received char |
|
|
332 |
if(nUart) |
|
|
333 |
c = inb(UDR1); |
|
|
334 |
else |
|
|
335 |
c = inb(UDR0); |
|
|
336 |
|
|
|
337 |
// if there's a user function to handle this receive event |
|
|
338 |
if(UartRxFunc[nUart]) |
|
|
339 |
{ |
|
|
340 |
// call it and pass the received data |
|
|
341 |
UartRxFunc[nUart](c); |
|
|
342 |
} |
|
|
343 |
else |
|
|
344 |
{ |
|
|
345 |
// otherwise do default processing |
|
|
346 |
// put received char in buffer |
|
|
347 |
// check if there's space |
|
|
348 |
if( !bufferAddToEnd(&uartRxBuffer[nUart], c) ) |
|
|
349 |
{ |
|
|
350 |
// no space in buffer |
|
|
351 |
// count overflow |
|
|
352 |
uartRxOverflow[nUart]++; |
|
|
353 |
} |
|
|
354 |
} |
|
|
355 |
} |
|
|
356 |
|
|
|
357 |
UART_INTERRUPT_HANDLER(SIG_UART0_TRANS) |
|
|
358 |
{ |
|
|
359 |
// service UART0 transmit interrupt |
|
|
360 |
uartTransmitService(0); |
|
|
361 |
} |
|
|
362 |
|
|
|
363 |
UART_INTERRUPT_HANDLER(SIG_UART1_TRANS) |
|
|
364 |
{ |
|
|
365 |
// service UART1 transmit interrupt |
|
|
366 |
uartTransmitService(1); |
|
|
367 |
} |
|
|
368 |
|
|
|
369 |
UART_INTERRUPT_HANDLER(SIG_UART0_RECV) |
|
|
370 |
{ |
|
|
371 |
// service UART0 receive interrupt |
|
|
372 |
uartReceiveService(0); |
|
|
373 |
} |
|
|
374 |
|
|
|
375 |
UART_INTERRUPT_HANDLER(SIG_UART1_RECV) |
|
|
376 |
{ |
|
|
377 |
// service UART1 receive interrupt |
|
|
378 |
uartReceiveService(1); |
|
|
379 |
} |