1661 |
kaklik |
1 |
/******************************************************************** |
|
|
2 |
FileName: user.c |
|
|
3 |
Dependencies: See INCLUDES section |
|
|
4 |
Processor: PIC18 or PIC24 USB Microcontrollers |
|
|
5 |
Hardware: The code is natively intended to be used on the following |
|
|
6 |
hardware platforms: PICDEM FS USB Demo Board, |
|
|
7 |
PIC18F87J50 FS USB Plug-In Module, or |
|
|
8 |
Explorer 16 + PIC24 USB PIM. The firmware may be |
|
|
9 |
modified for use on other USB platforms by editing the |
|
|
10 |
HardwareProfile.h file. |
|
|
11 |
Complier: Microchip C18 (for PIC18) or C30 (for PIC24) |
|
|
12 |
* Company: Microchip Technology, Inc. |
|
|
13 |
* |
|
|
14 |
* Software License Agreement |
|
|
15 |
|
|
|
16 |
The software supplied herewith by Microchip Technology Incorporated |
|
|
17 |
(the Company) for its PIC® Microcontroller is intended and |
|
|
18 |
supplied to you, the Companys customer, for use solely and |
|
|
19 |
exclusively on Microchip PIC Microcontroller products. The |
|
|
20 |
software is owned by the Company and/or its supplier, and is |
|
|
21 |
protected under applicable copyright laws. All rights are reserved. |
|
|
22 |
* Any use in violation of the foregoing restrictions may subject the |
|
|
23 |
* user to criminal sanctions under applicable laws, as well as to |
|
|
24 |
* civil liability for the breach of the terms and conditions of this |
|
|
25 |
* license. |
|
|
26 |
* |
|
|
27 |
* THIS SOFTWARE IS PROVIDED IN AN AS IS CONDITION. NO WARRANTIES, |
|
|
28 |
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED |
|
|
29 |
* TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
|
|
30 |
* PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, |
|
|
31 |
* IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR |
|
|
32 |
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. |
|
|
33 |
|
|
|
34 |
******************************************************************** |
|
|
35 |
File Description: |
|
|
36 |
|
|
|
37 |
Change History: |
|
|
38 |
Rev Date Description |
|
|
39 |
1.0 11/19/2004 Initial release |
|
|
40 |
2.1 02/26/2007 Updated for simplicity and to use common |
|
|
41 |
coding style |
|
|
42 |
********************************************************************/ |
|
|
43 |
|
|
|
44 |
/** INCLUDES *******************************************************/ |
|
|
45 |
#include "usb.h" |
|
|
46 |
|
|
|
47 |
#include "HardwareProfile.h" |
|
|
48 |
#include "user.h" |
|
|
49 |
#include "usbavrcmd.h" |
|
|
50 |
#include <math.h> |
|
|
51 |
#include <stdlib.h> |
|
|
52 |
#include <string.h> |
|
|
53 |
#include <ctype.h> |
|
|
54 |
|
|
|
55 |
#if defined(__18CXX) |
|
|
56 |
#include <delays.h> |
|
|
57 |
#include <i2c.h> |
|
|
58 |
#include <eep.h> |
|
|
59 |
#elif defined(__PIC32MX__) |
|
|
60 |
#include <peripheral/i2c.h> |
|
|
61 |
#include <dee_emulation/dee_emulation_pic32.h> |
|
|
62 |
#endif |
|
|
63 |
|
|
|
64 |
#if defined (UBW) |
|
|
65 |
#pragma romdata dataEEPROM=0xF00000 |
|
|
66 |
// F_CAL_DONE, 4 bytes cal data, F_INIT_FREQ, 4 bytes freq, F_SMOOTH, 2 bytes |
|
|
67 |
// F_SUB_MUL, 4 bytes sub and 4 bytes mul |
|
|
68 |
// F_CROSS_OVER, 16 bytes or 8 words of 7 cross over points and 1 flag for BPF |
|
|
69 |
// followed by 16 bytes or 8 words of 7 cross over points and 1 flag for LPF |
|
|
70 |
// F_BLINK_LED, 1 byte boolean |
|
|
71 |
rom unsigned char init_data[] = {0xff, 0,0,0,0, 0xff, 0,0,0,0, 0xff, 0,0, |
|
|
72 |
0xff, 0,0,0,0,0,0,0,0, |
|
|
73 |
0xff, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, |
|
|
74 |
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
|
|
75 |
TRUE}; |
|
|
76 |
#endif |
|
|
77 |
|
|
|
78 |
/** V A R I A B L E S ********************************************************/ |
|
|
79 |
#pragma udata |
|
|
80 |
BYTE old_SW; |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
BYTE i2c_adr; |
|
|
84 |
BYTE command; |
|
|
85 |
BYTE replybuf[8]; |
|
|
86 |
WORD wCount; |
|
|
87 |
BYTE abpf_flag; |
|
|
88 |
|
|
|
89 |
COMMAND_BUFFER_t command_buffer[COMMAND_BUFFER_SIZE]; |
|
|
90 |
BYTE current_command_in, current_command_out; |
|
|
91 |
BYTE command_count; |
|
|
92 |
|
|
|
93 |
avr_freq_t avr_freq, fcryst_freq; // avr freq [MHz]*2^21 |
|
|
94 |
// fcryst freq [Mhz]*2^24 |
|
|
95 |
unsigned short R137, R135 = 0; |
|
|
96 |
unsigned char registers[6]; |
|
|
97 |
unsigned char tempBuf[8]; |
|
|
98 |
unsigned char counter; |
|
|
99 |
double delta_rfreq; |
|
|
100 |
double rfreq, Old_rfreq; |
|
|
101 |
double fcryst_double, Old_freq_double, Smooth_double; |
|
|
102 |
|
|
|
103 |
double set_frequency; |
|
|
104 |
avr_freq_t f_mul; |
|
|
105 |
offset_t f_sub; |
|
|
106 |
unsigned char validCombo; |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
#if defined(__18F14K50) || defined(__18F13K50) || defined(__18LF14K50) || defined(__18LF13K50) |
|
|
111 |
#pragma udata usbram2 |
|
|
112 |
#elif defined(__18F2455) || defined(__18F2550) || defined(__18F4455) || defined(__18F4550)\ |
|
|
113 |
|| defined(__18F4450) || defined(__18F2450)\ |
|
|
114 |
|| defined(__18F2458) || defined(__18F2453) || defined(__18F4558) || defined(__18F4553) |
|
|
115 |
#pragma udata USB_VARIABLES=0x500 |
|
|
116 |
#else |
|
|
117 |
#pragma udata |
|
|
118 |
#endif |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
#pragma udata |
|
|
122 |
|
|
|
123 |
BOOL blinkStatusValid = TRUE; |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
/** P R I V A T E P R O T O T Y P E S ***************************************/ |
|
|
127 |
|
|
|
128 |
void BlinkUSBStatus(void); |
|
|
129 |
BOOL SwitchIsPressed(void); |
|
|
130 |
void ServiceRequests(void); |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
/** D E C L A R A T I O N S **************************************************/ |
|
|
137 |
#pragma code |
|
|
138 |
|
|
|
139 |
float Cross2Switch(WORD_VAL val){ // convert from 11.5 bit format in [Mhz] |
|
|
140 |
float whole, fraction; |
|
|
141 |
whole = (float) (val.Val >> 5); |
|
|
142 |
fraction = ((float) (val.Val & 0x001f)) / 32.0; |
|
|
143 |
return (whole + fraction); |
|
|
144 |
} |
|
|
145 |
|
|
|
146 |
WORD_VAL Switch2Cross(float val){ // convert from float to 11.5 bit format [Mhz] |
|
|
147 |
WORD_VAL w; |
|
|
148 |
unsigned int i; |
|
|
149 |
i = val; |
|
|
150 |
w.Val = i * 32.0; |
|
|
151 |
w.Val += (val - (float) i) * 32.0; |
|
|
152 |
return (w); |
|
|
153 |
} |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
void UserInit(void) |
|
|
157 |
{ |
|
|
158 |
WORD_VAL w; |
|
|
159 |
|
|
|
160 |
//#if defined (UBW) |
|
|
161 |
// unsigned char i; |
|
|
162 |
//#elif |
|
|
163 |
unsigned int i; |
|
|
164 |
unsigned int value; |
|
|
165 |
//#endif |
|
|
166 |
|
|
|
167 |
#if defined(UBW) |
|
|
168 |
// Port A - RA0 BPF_S0, RA1 BPF_S1, RA2 RXTX, RA3-5 LPF0-2 |
|
|
169 |
LATA = 0x00; |
|
|
170 |
TRISA = 0x00; // 00000000 |
|
|
171 |
|
|
|
172 |
// Turn all analog inputs into digital inputs |
|
|
173 |
ADCON1 = 0x0F; |
|
|
174 |
// Turn off the ADC |
|
|
175 |
ADCON0bits.ADON = 0; |
|
|
176 |
CMCON = 0x07; // Comparators as digital inputs |
|
|
177 |
// RB0-1 for i2c, RB6-7 Paddle dit/dah, RB2-5 LPF 3-6 |
|
|
178 |
LATB = 0x00; |
|
|
179 |
TRISB = 0xc3; // 11000011 |
|
|
180 |
INTCON2bits.RBPU = 0; // enable RB weak internal pullup |
|
|
181 |
// Make all of PORTC inputs |
|
|
182 |
LATC = 0x00; |
|
|
183 |
TRISC = 0xFF; |
|
|
184 |
|
|
|
185 |
mInitAllLEDs(); |
|
|
186 |
mInitSwitch(); |
|
|
187 |
old_SW = UserSW; |
|
|
188 |
|
|
|
189 |
#elif defined(UBW32) |
|
|
190 |
|
|
|
191 |
// gO through each I/O register, setting them all to digital i/o |
|
|
192 |
// and making none of them open drain and turning off all pullups and |
|
|
193 |
// setting all of the latches to zero. We have PORTA through PORTG on |
|
|
194 |
// this chip. That's 7 total. |
|
|
195 |
|
|
|
196 |
|
|
|
197 |
LATA = 0x0000; |
|
|
198 |
TRISA = 0x0000; |
|
|
199 |
ODCA = 0x0000; |
|
|
200 |
LATB = 0x0000; |
|
|
201 |
TRISB = 0x0000; |
|
|
202 |
ODCB = 0x0000; |
|
|
203 |
LATC = 0x0000; |
|
|
204 |
TRISC = 0x0000; |
|
|
205 |
ODCC = 0x0000; |
|
|
206 |
LATD = 0x0000; |
|
|
207 |
TRISD = 0x0000; |
|
|
208 |
ODCD = 0x0000; |
|
|
209 |
LATE = 0x0000; |
|
|
210 |
TRISE = 0x0000; |
|
|
211 |
ODCE = 0x0000; |
|
|
212 |
LATF = 0x0000; |
|
|
213 |
TRISF = 0x0030; // RF4-5 paddle input |
|
|
214 |
ODCF = 0x0000; |
|
|
215 |
CNPUE = 0x060000; // Pull up on CNPUE17-18, corresponding to RF4-5 |
|
|
216 |
LATG = 0x0000; |
|
|
217 |
TRISG = 0x0000; |
|
|
218 |
ODCG = 0x0000; |
|
|
219 |
|
|
|
220 |
//Initialize all of the LED pins |
|
|
221 |
mInitAllLEDs(); |
|
|
222 |
|
|
|
223 |
mInitAllSwitches(); |
|
|
224 |
old_SW = UserSW; |
|
|
225 |
|
|
|
226 |
// Initialize Data EEPROM Emulation |
|
|
227 |
if (DataEEInit()) { |
|
|
228 |
mLED_4_On(); // Error occured |
|
|
229 |
} |
|
|
230 |
else { |
|
|
231 |
mLED_4_Off(); |
|
|
232 |
}; |
|
|
233 |
|
|
|
234 |
#endif |
|
|
235 |
|
|
|
236 |
i2c_adr = DEFAULT_I2C_ADDRESS; |
|
|
237 |
|
|
|
238 |
// check for previous calibration, which sets fcryst, the actual crystal freq |
|
|
239 |
#if defined (UBW) |
|
|
240 |
if (Read_b_eep(F_CAL_DONE) != F_CAL_DONE_VALUE){ // cal not done before, use default |
|
|
241 |
fcryst_freq.qw = (double) DEFAULT_FCRYST * (double) (1L << 24); // 114.285 Mhz |
|
|
242 |
} |
|
|
243 |
else { // cal done before, read into fcryst |
|
|
244 |
for (i=0; i<4; i++) fcryst_freq.bytes[i] = Read_b_eep(i + F_CAL_DONE +1); |
|
|
245 |
}; |
|
|
246 |
|
|
|
247 |
#elif defined (UBW32) |
|
|
248 |
DataEERead(&value, F_CAL_DONE); |
|
|
249 |
if ( value != F_CAL_DONE_VALUE){ // cal not done before, use default |
|
|
250 |
fcryst_freq.qw = (double) DEFAULT_FCRYST * (double) (1L << 24); // 114.285 Mhz |
|
|
251 |
} |
|
|
252 |
else { // cal done before, read into fcryst |
|
|
253 |
DataEERead(&value, (F_CAL_DONE +1)); |
|
|
254 |
fcryst_freq.qw = value; |
|
|
255 |
}; |
|
|
256 |
#endif |
|
|
257 |
|
|
|
258 |
// Now that fcryst is checked, set it first so that it can be used by startup freq setting |
|
|
259 |
|
|
|
260 |
fcryst_double = (double) fcryst_freq.qw / (double) (1L << 24); |
|
|
261 |
validCombo = 1; |
|
|
262 |
command_count = 0; |
|
|
263 |
current_command_in = 0; |
|
|
264 |
current_command_out = 0; |
|
|
265 |
Old_freq_double = 0; |
|
|
266 |
|
|
|
267 |
// check for previous startup freq setting |
|
|
268 |
#if defined (UBW) |
|
|
269 |
if (Read_b_eep(F_INIT_FREQ) != F_INIT_FREQ_VALUE){ // not set before, use default |
|
|
270 |
avr_freq.qw = (double) DEFAULT_INIT_FREQ * (double) (1L << 21); |
|
|
271 |
} |
|
|
272 |
else { // startup freq set before, read into avr |
|
|
273 |
for (i=0; i<4; i++) avr_freq.bytes[i] = Read_b_eep(i + F_INIT_FREQ +1); |
|
|
274 |
}; |
|
|
275 |
|
|
|
276 |
#elif defined (UBW32) |
|
|
277 |
DataEERead(&value, F_INIT_FREQ); |
|
|
278 |
if ( value != F_INIT_FREQ_VALUE){ // not set before, use default |
|
|
279 |
avr_freq.qw = (double) DEFAULT_INIT_FREQ * (double) (1L << 21); |
|
|
280 |
} |
|
|
281 |
else { // set before, read |
|
|
282 |
DataEERead(&value, (F_INIT_FREQ +1)); |
|
|
283 |
avr_freq.qw = value; |
|
|
284 |
}; |
|
|
285 |
|
|
|
286 |
#endif |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
// check for previous smooth setting |
|
|
291 |
#if defined (UBW) |
|
|
292 |
if (Read_b_eep(F_SMOOTH) != F_SMOOTH_VALUE){ // not set before, use default |
|
|
293 |
Smooth_double = (double) DEFAULT_SMOOTH / 1000000L; // in ppm |
|
|
294 |
} |
|
|
295 |
else { // set before, read |
|
|
296 |
for (i=0; i<2; i++) w.v[i] = Read_b_eep(i + F_SMOOTH +1); |
|
|
297 |
Smooth_double = (double) w.Val / 1000000L; |
|
|
298 |
}; |
|
|
299 |
|
|
|
300 |
#elif defined (UBW32) |
|
|
301 |
DataEERead(&value, F_SMOOTH); |
|
|
302 |
if ( value != F_SMOOTH_VALUE){ // not set before, use default |
|
|
303 |
Smooth_double = (double) DEFAULT_SMOOTH / 1000000L; |
|
|
304 |
} |
|
|
305 |
else { // set before, read |
|
|
306 |
DataEERead(&value, (F_SMOOTH +1)); |
|
|
307 |
w.Val = value; |
|
|
308 |
Smooth_double = (double) w.Val / 1000000L; |
|
|
309 |
} |
|
|
310 |
#endif |
|
|
311 |
|
|
|
312 |
// check for previous sub mul setting |
|
|
313 |
#if defined (UBW) |
|
|
314 |
if (Read_b_eep(F_SUB_MUL) != F_SUB_MUL_VALUE){ // not set before, use default |
|
|
315 |
f_sub.qw = (double) DEFAULT_SUB * (double) (1L << 21); |
|
|
316 |
f_mul.qw = (double) DEFAULT_MUL * (double) (1L << 21); |
|
|
317 |
} |
|
|
318 |
else { // startup freq set before, read into avr |
|
|
319 |
for (i=0; i<4; i++) f_sub.bytes[i] = Read_b_eep(i + F_SUB_MUL +1); |
|
|
320 |
for (i=0; i<4; i++) f_mul.bytes[i] = Read_b_eep(i + F_SUB_MUL +5); |
|
|
321 |
}; |
|
|
322 |
|
|
|
323 |
#elif defined (UBW32) |
|
|
324 |
DataEERead(&value, F_SUB_MUL); |
|
|
325 |
if ( value != F_SUB_MUL_VALUE){ // not set before, use default |
|
|
326 |
f_sub.qw = (double) DEFAULT_SUB * (double) (1L << 21); |
|
|
327 |
f_mul.qw = (double) DEFAULT_MUL * (double) (1L << 21); |
|
|
328 |
} |
|
|
329 |
else { // set before, read |
|
|
330 |
DataEERead(&value, (F_SUB_MUL +1)); |
|
|
331 |
f_sub.qw = value; |
|
|
332 |
DataEERead(&value, (F_SUB_MUL +2)); |
|
|
333 |
f_mul.qw = value; |
|
|
334 |
}; |
|
|
335 |
|
|
|
336 |
#endif |
|
|
337 |
|
|
|
338 |
|
|
|
339 |
|
|
|
340 |
|
|
|
341 |
|
|
|
342 |
// Check for Cross Over Points |
|
|
343 |
#if defined (UBW) |
|
|
344 |
if (Read_b_eep(F_CROSS_OVER) != F_CROSS_OVER_VALUE){ // not set before, use default |
|
|
345 |
|
|
|
346 |
#if defined (YAS) |
|
|
347 |
FilterSwitchOver[0] = (2.4 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; // default BPF switchover points |
|
|
348 |
FilterSwitchOver[1] = (8.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
349 |
FilterSwitchOver[2] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
350 |
FilterSwitchOver[3] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
351 |
FilterSwitchOver[4] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
352 |
FilterSwitchOver[5] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
353 |
FilterSwitchOver[6] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
354 |
#else |
|
|
355 |
FilterSwitchOver[0] = (2.4 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; // default BPF switchover points |
|
|
356 |
FilterSwitchOver[1] = (8.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
357 |
FilterSwitchOver[2] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
358 |
#endif |
|
|
359 |
for (i = 0; i < (NUM_BPF - 1); i++) FilterCrossOver[i] = Switch2Cross(FilterSwitchOver[i]); |
|
|
360 |
FilterCrossOver[(NUM_BPF-1)].Val = 1; // Enabled |
|
|
361 |
abpf_flag = 1; |
|
|
362 |
|
|
|
363 |
#if defined (K5OOR) |
|
|
364 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
365 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
366 |
LPFSwitchOver[2] = (7.45 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
367 |
LPFSwitchOver[3] = (15.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
368 |
LPFSwitchOver[4] = (21.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
369 |
LPFSwitchOver[5] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
370 |
LPFSwitchOver[6] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
371 |
#elif defined (ALEX) |
|
|
372 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
373 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
374 |
LPFSwitchOver[2] = (9.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
375 |
LPFSwitchOver[3] = (11.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
376 |
LPFSwitchOver[4] = (14.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
377 |
LPFSwitchOver[5] = (20.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
378 |
LPFSwitchOver[6] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
379 |
#elif defined (MARC) |
|
|
380 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
381 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
382 |
LPFSwitchOver[2] = (8.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
383 |
LPFSwitchOver[3] = (11.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
384 |
LPFSwitchOver[4] = (14.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
385 |
LPFSwitchOver[5] = (18.2 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
386 |
LPFSwitchOver[6] = (21.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
387 |
#else |
|
|
388 |
#error "Must define an LPF configuration." |
|
|
389 |
#endif |
|
|
390 |
|
|
|
391 |
for (i = 0; i < 7; i++) LPFCrossOver[i] = Switch2Cross(LPFSwitchOver[i]); |
|
|
392 |
LPFCrossOver[7].Val = 1; // Enabled |
|
|
393 |
} |
|
|
394 |
else { // set before, read |
|
|
395 |
for (i = 0; i < NUM_BPF; i++){ |
|
|
396 |
w.v[0] = Read_b_eep(2 * i + F_CROSS_OVER +1); |
|
|
397 |
w.v[1] = Read_b_eep(2 * i + 1 + F_CROSS_OVER + 1); |
|
|
398 |
FilterCrossOver[i].Val = w.Val; |
|
|
399 |
}; |
|
|
400 |
|
|
|
401 |
abpf_flag = FilterCrossOver[(NUM_BPF-1)].v[0]; |
|
|
402 |
|
|
|
403 |
for (i = 0; i < 8; i++){ |
|
|
404 |
w.v[0] = Read_b_eep(2 * i + F_CROSS_OVER +17); |
|
|
405 |
w.v[1] = Read_b_eep(2 * i + 1 + F_CROSS_OVER + 17); |
|
|
406 |
LPFCrossOver[i].Val = w.Val; |
|
|
407 |
}; |
|
|
408 |
|
|
|
409 |
} |
|
|
410 |
|
|
|
411 |
#elif defined (UBW32) |
|
|
412 |
DataEERead(&value, F_CROSS_OVER); |
|
|
413 |
if ( value != F_CROSS_OVER_VALUE){ // not set before, use default |
|
|
414 |
FilterSwitchOver[0] = (2.4 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; // default BPF switchover points |
|
|
415 |
FilterSwitchOver[1] = (8.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
416 |
FilterSwitchOver[2] = (19.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
417 |
for (i = 0; i < 3; i++) FilterCrossOver[i] = Switch2Cross(FilterSwitchOver[i]); |
|
|
418 |
FilterCrossOver[3].Val = 1; // Enabled |
|
|
419 |
abpf_flag = 1; |
|
|
420 |
|
|
|
421 |
#if defined (K5OOR) |
|
|
422 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
423 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
424 |
LPFSwitchOver[2] = (7.45 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
425 |
LPFSwitchOver[3] = (15.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
426 |
LPFSwitchOver[4] = (21.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
427 |
LPFSwitchOver[5] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
428 |
LPFSwitchOver[6] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
429 |
#elif defined (ALEX) |
|
|
430 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
431 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
432 |
LPFSwitchOver[2] = (9.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
433 |
LPFSwitchOver[3] = (11.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
434 |
LPFSwitchOver[4] = (14.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
435 |
LPFSwitchOver[5] = (20.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
436 |
LPFSwitchOver[6] = (30.0 - DEFAULT_SUB) * DEFAULT_MUL* 4.0; |
|
|
437 |
#elif defined (MARC) |
|
|
438 |
LPFSwitchOver[0] = (2.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
439 |
LPFSwitchOver[1] = (4.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
440 |
LPFSwitchOver[2] = (8.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
441 |
LPFSwitchOver[3] = (11.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
442 |
LPFSwitchOver[4] = (14.5 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
443 |
LPFSwitchOver[5] = (18.2 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
444 |
LPFSwitchOver[6] = (21.0 - DEFAULT_SUB) * DEFAULT_MUL * 4.0; |
|
|
445 |
#else |
|
|
446 |
#error "Must define an LPF configuration." |
|
|
447 |
#endif |
|
|
448 |
|
|
|
449 |
for (i = 0; i < 7; i++) LPFCrossOver[i] = Switch2Cross(LPFSwitchOver[i]); |
|
|
450 |
LPFCrossOver[7].Val = 1; // Enabled |
|
|
451 |
|
|
|
452 |
|
|
|
453 |
} |
|
|
454 |
else { // set before, read |
|
|
455 |
for (i=0; i< NUM_BPF; i++) { |
|
|
456 |
DataEERead(&value, (i + F_CROSS_OVER +1)); |
|
|
457 |
FilterCrossOver[i].Val = value; |
|
|
458 |
}; |
|
|
459 |
|
|
|
460 |
|
|
|
461 |
abpf_flag = FilterCrossOver[(NUM_BPF-1)].Val; |
|
|
462 |
|
|
|
463 |
for (i=0; i<8; i++) { |
|
|
464 |
DataEERead(&value, (i + F_CROSS_OVER +9)); |
|
|
465 |
LPFCrossOver[i].Val = value; |
|
|
466 |
}; |
|
|
467 |
}; |
|
|
468 |
#endif // UBW32 |
|
|
469 |
|
|
|
470 |
for (i = 0; i < (NUM_BPF-1); i++) FilterSwitchOver[i] = Cross2Switch(FilterCrossOver[i]); |
|
|
471 |
for (i = 0; i < 7; i++) LPFSwitchOver[i] = Cross2Switch(LPFCrossOver[i]); |
|
|
472 |
|
|
|
473 |
// End initialising filter switchover points |
|
|
474 |
|
|
|
475 |
#if defined(UBW) |
|
|
476 |
blinkStatusValid = Read_b_eep(F_BLINK_LED); |
|
|
477 |
#elif defined (UBW32) |
|
|
478 |
DataEERead(&value, F_BLINK_LED); |
|
|
479 |
blinkStatusValid = value; |
|
|
480 |
#endif |
|
|
481 |
|
|
|
482 |
#if defined (UBW) |
|
|
483 |
OpenI2C(MASTER, SLEW_ON);// Initialize I2C module |
|
|
484 |
SSPADD = 48; //400kHz Baud clock(9) @16MHz |
|
|
485 |
//100kHz Baud clock(39) @16MHz |
|
|
486 |
|
|
|
487 |
#elif defined (UBW32) |
|
|
488 |
OpenI2C1(I2C_ON, ( GetPeripheralClock() / 400000UL - 2) ); |
|
|
489 |
#endif |
|
|
490 |
|
|
|
491 |
// IF we don't reset Si570 on startup, it will not hang if Si570 not connected |
|
|
492 |
#if defined (INIT_SI570_ON_STARTUP) |
|
|
493 |
Reset_Si570(); |
|
|
494 |
#endif |
|
|
495 |
|
|
|
496 |
// check for previous startup freq setting, if set, then set Si570 to startup freq |
|
|
497 |
#if defined (UBW32) |
|
|
498 |
DataEERead(&value, F_INIT_FREQ); |
|
|
499 |
if ( value == F_INIT_FREQ_VALUE){ |
|
|
500 |
#else |
|
|
501 |
if (Read_b_eep(F_INIT_FREQ) == F_INIT_FREQ_VALUE){ |
|
|
502 |
#endif |
|
|
503 |
// avr_freq has been setup by the reading of the startup freq |
|
|
504 |
set_frequency = (double) avr_freq.qw / (double)(1L << 21); |
|
|
505 |
SetFrequency(set_frequency); |
|
|
506 |
}; |
|
|
507 |
|
|
|
508 |
}//end UserInit |
|
|
509 |
|
|
|
510 |
|
|
|
511 |
/****************************************************************************** |
|
|
512 |
* Function: void ProcessIO(void) |
|
|
513 |
* |
|
|
514 |
* PreCondition: None |
|
|
515 |
* |
|
|
516 |
* Input: None |
|
|
517 |
* |
|
|
518 |
* Output: None |
|
|
519 |
* |
|
|
520 |
* Side Effects: None |
|
|
521 |
* |
|
|
522 |
* Overview: This function is a place holder for other user routines. |
|
|
523 |
* It is a mixture of both USB and non-USB tasks. |
|
|
524 |
* |
|
|
525 |
* Note: None |
|
|
526 |
*****************************************************************************/ |
|
|
527 |
void ProcessIO(void) |
|
|
528 |
{ |
|
|
529 |
if (SwitchIsPressed()){ |
|
|
530 |
blinkStatusValid = !blinkStatusValid; // toggle blink led |
|
|
531 |
#if defined(UBW) |
|
|
532 |
Write_b_eep(F_BLINK_LED, blinkStatusValid); |
|
|
533 |
#elif defined(UBW32) |
|
|
534 |
DataEEWrite(blinkStatusValid, F_BLINK_LED); |
|
|
535 |
#endif |
|
|
536 |
}; |
|
|
537 |
|
|
|
538 |
//Blink the LEDs according to the USB device status |
|
|
539 |
if(blinkStatusValid) BlinkUSBStatus(); |
|
|
540 |
else mLED_Both_Off(); |
|
|
541 |
// User Application USB tasks |
|
|
542 |
if((USBDeviceState < ADDRESS_STATE)||(USBSuspendControl==1)) return; |
|
|
543 |
|
|
|
544 |
//respond to any USB commands that might have come over the bus |
|
|
545 |
ServiceRequests(); |
|
|
546 |
|
|
|
547 |
|
|
|
548 |
}//end ProcessIO |
|
|
549 |
|
|
|
550 |
|
|
|
551 |
/****************************************************************************** |
|
|
552 |
* Function: void ServiceRequests(void) |
|
|
553 |
* |
|
|
554 |
* PreCondition: None |
|
|
555 |
* |
|
|
556 |
* Input: None |
|
|
557 |
* |
|
|
558 |
* Output: None |
|
|
559 |
* |
|
|
560 |
* Side Effects: USB traffic can be generated |
|
|
561 |
* |
|
|
562 |
* Overview: This function takes in the commands from the PC from the |
|
|
563 |
* application and executes the commands requested |
|
|
564 |
* |
|
|
565 |
* Note: None |
|
|
566 |
*****************************************************************************/ |
|
|
567 |
void ServiceRequests(void) |
|
|
568 |
{ |
|
|
569 |
BYTE command_to_process; |
|
|
570 |
|
|
|
571 |
|
|
|
572 |
if (command_count > 0) { // there is command in buffer |
|
|
573 |
command_to_process = command_buffer[current_command_out].command; |
|
|
574 |
|
|
|
575 |
switch (command_to_process){ |
|
|
576 |
case CMD_SET_FREQ_REG: |
|
|
577 |
Set_Register_Handler(); |
|
|
578 |
break; |
|
|
579 |
case CMD_SET_LO_SM: |
|
|
580 |
Set_Sub_Mul_Handler(); |
|
|
581 |
break; |
|
|
582 |
case CMD_SET_FREQ: |
|
|
583 |
Set_Freq_Handler(); |
|
|
584 |
break; |
|
|
585 |
case CMD_SET_XTAL: |
|
|
586 |
Set_Cal_Handler(); |
|
|
587 |
break; |
|
|
588 |
case CMD_SET_STARTUP: |
|
|
589 |
Set_Init_Freq_Handler(); |
|
|
590 |
break; |
|
|
591 |
case CMD_SET_PPM: |
|
|
592 |
Set_Smooth_Handler(); |
|
|
593 |
break; |
|
|
594 |
}; |
|
|
595 |
// end switch |
|
|
596 |
current_command_out++; |
|
|
597 |
if (current_command_out >= COMMAND_BUFFER_SIZE) current_command_out = 0; |
|
|
598 |
command_count--; |
|
|
599 |
} // end command_count > 0 |
|
|
600 |
|
|
|
601 |
|
|
|
602 |
}//end ServiceRequests |
|
|
603 |
|
|
|
604 |
/******************************************************************** |
|
|
605 |
* Function: void BlinkUSBStatus(void) |
|
|
606 |
* |
|
|
607 |
* PreCondition: None |
|
|
608 |
* |
|
|
609 |
* Input: None |
|
|
610 |
* |
|
|
611 |
* Output: None |
|
|
612 |
* |
|
|
613 |
* Side Effects: None |
|
|
614 |
* |
|
|
615 |
* Overview: BlinkUSBStatus turns on and off LEDs |
|
|
616 |
* corresponding to the USB device state. |
|
|
617 |
* |
|
|
618 |
* Note: mLED macros can be found in HardwareProfile.h |
|
|
619 |
* USBDeviceState is declared and updated in |
|
|
620 |
* usb_device.c. |
|
|
621 |
*******************************************************************/ |
|
|
622 |
void BlinkUSBStatus(void) |
|
|
623 |
{ |
|
|
624 |
static WORD led_count=0; |
|
|
625 |
|
|
|
626 |
if(led_count == 0)led_count = 10000U; |
|
|
627 |
led_count--; |
|
|
628 |
|
|
|
629 |
|
|
|
630 |
if(USBSuspendControl == 1) |
|
|
631 |
{ |
|
|
632 |
if(led_count==0) |
|
|
633 |
{ |
|
|
634 |
mLED_1_Toggle(); |
|
|
635 |
mLED_2 = mLED_1; |
|
|
636 |
}//end if |
|
|
637 |
} |
|
|
638 |
else |
|
|
639 |
{ |
|
|
640 |
if(USBDeviceState == DETACHED_STATE) |
|
|
641 |
{ |
|
|
642 |
mLED_1_Off(); mLED_2_Off(); |
|
|
643 |
} |
|
|
644 |
else if(USBDeviceState == ATTACHED_STATE) |
|
|
645 |
{ |
|
|
646 |
mLED_1_On(); mLED_2_On(); |
|
|
647 |
} |
|
|
648 |
else if(USBDeviceState == POWERED_STATE) |
|
|
649 |
{ |
|
|
650 |
mLED_1_On(); mLED_2_Off(); |
|
|
651 |
} |
|
|
652 |
else if(USBDeviceState == DEFAULT_STATE) |
|
|
653 |
{ |
|
|
654 |
mLED_1_Off(); mLED_2_On(); |
|
|
655 |
} |
|
|
656 |
else if(USBDeviceState == ADDRESS_STATE) |
|
|
657 |
{ |
|
|
658 |
if(led_count == 0) |
|
|
659 |
{ |
|
|
660 |
mLED_1_Toggle(); |
|
|
661 |
mLED_2_Off(); |
|
|
662 |
}//end if |
|
|
663 |
} |
|
|
664 |
else if(USBDeviceState == CONFIGURED_STATE) |
|
|
665 |
{ |
|
|
666 |
if(led_count==0) |
|
|
667 |
{ |
|
|
668 |
mLED_1_Toggle(); |
|
|
669 |
mLED_2 = !mLED_1; |
|
|
670 |
|
|
|
671 |
}//end if |
|
|
672 |
}//end if(...) |
|
|
673 |
}//end if(UCONbits.SUSPND...) |
|
|
674 |
|
|
|
675 |
}//end BlinkUSBStatus |
|
|
676 |
|
|
|
677 |
|
|
|
678 |
/****************************************************************************** |
|
|
679 |
* Function: BOOL SwitchIsPressed(void) |
|
|
680 |
* |
|
|
681 |
* PreCondition: None |
|
|
682 |
* |
|
|
683 |
* Input: None |
|
|
684 |
* |
|
|
685 |
* Output: BOOL - TRUE if the SW2 was pressed and FALSE otherwise |
|
|
686 |
* |
|
|
687 |
* Side Effects: None |
|
|
688 |
* |
|
|
689 |
* Overview: returns TRUE if the SW2 was pressed and FALSE otherwise |
|
|
690 |
* |
|
|
691 |
* Note: None |
|
|
692 |
*****************************************************************************/ |
|
|
693 |
|
|
|
694 |
BOOL SwitchIsPressed(void) |
|
|
695 |
{ |
|
|
696 |
if(UserSW != old_SW) |
|
|
697 |
{ |
|
|
698 |
old_SW = UserSW; // Save new value |
|
|
699 |
if(UserSW == 0) // If pressed |
|
|
700 |
return TRUE; // Was pressed |
|
|
701 |
}//end if |
|
|
702 |
return FALSE; // Was not pressed |
|
|
703 |
}//end SwitchIsPressed |
|
|
704 |
|
|
|
705 |
void Reset_Si570() |
|
|
706 |
{ |
|
|
707 |
#if defined (UBW) |
|
|
708 |
StartI2C(); //Reset Si570 to Startup |
|
|
709 |
IdleI2C(); |
|
|
710 |
WriteI2C(i2c_adr << 1); |
|
|
711 |
WriteI2C(135); //REG 135 |
|
|
712 |
WriteI2C(0x01); // reset |
|
|
713 |
StopI2C(); |
|
|
714 |
IdleI2C(); |
|
|
715 |
#elif defined (UBW32) |
|
|
716 |
StartI2C1(); //Reset Si570 to Startup |
|
|
717 |
IdleI2C1(); |
|
|
718 |
MasterWriteI2C1(i2c_adr << 1); |
|
|
719 |
MasterWriteI2C1(135); //REG 135 |
|
|
720 |
MasterWriteI2C1(0x01); // reset |
|
|
721 |
StopI2C1(); |
|
|
722 |
IdleI2C1(); |
|
|
723 |
#endif |
|
|
724 |
|
|
|
725 |
} |
|
|
726 |
|
|
|
727 |
void ReadRegs() |
|
|
728 |
{ |
|
|
729 |
unsigned int i; |
|
|
730 |
|
|
|
731 |
for(i=0;i<6;i++) |
|
|
732 |
{ |
|
|
733 |
|
|
|
734 |
#if defined (UBW) |
|
|
735 |
StartI2C(); |
|
|
736 |
IdleI2C(); |
|
|
737 |
WriteI2C(i2c_adr << 1); |
|
|
738 |
WriteI2C(i+7); //specify register |
|
|
739 |
RestartI2C(); |
|
|
740 |
IdleI2C(); |
|
|
741 |
WriteI2C(i2c_adr << 1 | 0x01); |
|
|
742 |
registers[i] = ReadI2C(); |
|
|
743 |
StopI2C(); |
|
|
744 |
IdleI2C(); |
|
|
745 |
#elif defined (UBW32) |
|
|
746 |
StartI2C1(); |
|
|
747 |
IdleI2C1(); |
|
|
748 |
MasterWriteI2C1(i2c_adr << 1); |
|
|
749 |
MasterWriteI2C1(i+7); |
|
|
750 |
RestartI2C1(); |
|
|
751 |
IdleI2C1(); |
|
|
752 |
MasterWriteI2C1(i2c_adr << 1 | 0x01); |
|
|
753 |
registers[i] = MasterReadI2C1(); |
|
|
754 |
StopI2C1(); |
|
|
755 |
IdleI2C1(); |
|
|
756 |
#endif |
|
|
757 |
} |
|
|
758 |
} |
|
|
759 |
|
|
|
760 |
|
|
|
761 |
void Freeze () { |
|
|
762 |
Prep_rd(137); //get current value |
|
|
763 |
#if defined (UBW) |
|
|
764 |
R137 = ReadI2C(); |
|
|
765 |
#elif defined (UBW32) |
|
|
766 |
R137 = MasterReadI2C1(); |
|
|
767 |
#endif |
|
|
768 |
R137 = R137 | 0x10; //turn on freeze |
|
|
769 |
WriteBk(); |
|
|
770 |
} |
|
|
771 |
|
|
|
772 |
void Unfreeze () { |
|
|
773 |
Prep_rd(137); |
|
|
774 |
#if defined (UBW) |
|
|
775 |
R137 = ReadI2C(); |
|
|
776 |
#elif defined (UBW32) |
|
|
777 |
R137 = MasterReadI2C1(); |
|
|
778 |
#endif |
|
|
779 |
R137 = R137 & 0xEF; |
|
|
780 |
WriteBk(); |
|
|
781 |
} |
|
|
782 |
|
|
|
783 |
void WriteBk () { //Write back |
|
|
784 |
#if defined (UBW) |
|
|
785 |
StopI2C(); |
|
|
786 |
IdleI2C(); |
|
|
787 |
StartI2C(); |
|
|
788 |
IdleI2C(); |
|
|
789 |
WriteI2C(i2c_adr<<1); |
|
|
790 |
WriteI2C(137); //REG |
|
|
791 |
WriteI2C(R137); // new data |
|
|
792 |
StopI2C(); |
|
|
793 |
IdleI2C(); |
|
|
794 |
#elif defined (UBW32) |
|
|
795 |
StopI2C1(); |
|
|
796 |
IdleI2C1(); |
|
|
797 |
StartI2C1(); |
|
|
798 |
IdleI2C1(); |
|
|
799 |
MasterWriteI2C1(i2c_adr<<1); |
|
|
800 |
MasterWriteI2C1(137); //REG |
|
|
801 |
MasterWriteI2C1(R137); // new data |
|
|
802 |
StopI2C1(); |
|
|
803 |
IdleI2C1(); |
|
|
804 |
#endif |
|
|
805 |
} |
|
|
806 |
|
|
|
807 |
void Prep_rd (unsigned short r) { // get ready to read |
|
|
808 |
#if defined (UBW) |
|
|
809 |
StartI2C(); |
|
|
810 |
IdleI2C(); |
|
|
811 |
WriteI2C(i2c_adr<<1); |
|
|
812 |
WriteI2C(r); //REG |
|
|
813 |
RestartI2C(); |
|
|
814 |
IdleI2C(); |
|
|
815 |
WriteI2C(i2c_adr<<1 | 0x01); |
|
|
816 |
#elif defined (UBW32) |
|
|
817 |
StartI2C1(); |
|
|
818 |
IdleI2C1(); |
|
|
819 |
MasterWriteI2C1(i2c_adr<<1); |
|
|
820 |
MasterWriteI2C1(r); //REG |
|
|
821 |
RestartI2C1(); |
|
|
822 |
IdleI2C1(); |
|
|
823 |
MasterWriteI2C1(i2c_adr<<1 | 0x01); |
|
|
824 |
#endif |
|
|
825 |
} |
|
|
826 |
|
|
|
827 |
void NewF () { |
|
|
828 |
|
|
|
829 |
Prep_rd(135); |
|
|
830 |
|
|
|
831 |
#if defined (UBW) |
|
|
832 |
R135 = ReadI2C(); |
|
|
833 |
R135 |= 0x40; // set New Data bit |
|
|
834 |
StopI2C(); |
|
|
835 |
IdleI2C(); |
|
|
836 |
StartI2C(); |
|
|
837 |
IdleI2C(); |
|
|
838 |
WriteI2C(i2c_adr<<1); |
|
|
839 |
WriteI2C(135); //REG |
|
|
840 |
WriteI2C(R135); |
|
|
841 |
StopI2C(); |
|
|
842 |
IdleI2C(); |
|
|
843 |
#elif defined (UBW32) |
|
|
844 |
R135 = MasterReadI2C1(); |
|
|
845 |
R135 |= 0x40; // set New Data bit |
|
|
846 |
StopI2C1(); |
|
|
847 |
IdleI2C1(); |
|
|
848 |
StartI2C1(); |
|
|
849 |
IdleI2C1(); |
|
|
850 |
MasterWriteI2C1(i2c_adr<<1); |
|
|
851 |
MasterWriteI2C1(135); //REG |
|
|
852 |
MasterWriteI2C1(R135); |
|
|
853 |
StopI2C1(); |
|
|
854 |
IdleI2C1(); |
|
|
855 |
#endif |
|
|
856 |
} |
|
|
857 |
|
|
|
858 |
|
|
|
859 |
|
|
|
860 |
void RunFreqProg(double f) |
|
|
861 |
{ |
|
|
862 |
double rfreq_fraction; |
|
|
863 |
unsigned long rfreq_integer_part; |
|
|
864 |
unsigned long rfreq_fraction_part; |
|
|
865 |
const float FDCO_MAX = 5670; //MHz |
|
|
866 |
const float FDCO_MIN = 4850; |
|
|
867 |
|
|
|
868 |
// Register finding the lowest DCO frequenty - code from Fred |
|
|
869 |
unsigned char xHS_DIV; |
|
|
870 |
unsigned int xN1; |
|
|
871 |
unsigned int xN; |
|
|
872 |
|
|
|
873 |
// Registers to save the found dividers |
|
|
874 |
unsigned char sHS_DIV=0; |
|
|
875 |
unsigned char sN1=0; |
|
|
876 |
unsigned int sN=0; // Total dividing |
|
|
877 |
unsigned int N0; // Total divider needed (N1 * HS_DIV) |
|
|
878 |
|
|
|
879 |
// Find the total division needed. |
|
|
880 |
// It is always one too low (not in the case reminder is zero, reminder not used here). |
|
|
881 |
|
|
|
882 |
N0 = FDCO_MIN / (float) f; |
|
|
883 |
sN = 11*128; |
|
|
884 |
for(xHS_DIV = 11; xHS_DIV > 3; xHS_DIV--) |
|
|
885 |
{ |
|
|
886 |
// Skip the unavailable divider's |
|
|
887 |
if (xHS_DIV == 8 || xHS_DIV == 10) |
|
|
888 |
continue; |
|
|
889 |
|
|
|
890 |
// Calculate the needed low speed divider |
|
|
891 |
xN1 = N0 / xHS_DIV + 1; |
|
|
892 |
|
|
|
893 |
if (xN1 > 128) |
|
|
894 |
continue; |
|
|
895 |
|
|
|
896 |
// Skip the unavailable divider's |
|
|
897 |
if (xN1 != 1 && (xN1 & 1) == 1) |
|
|
898 |
xN1 += 1; |
|
|
899 |
|
|
|
900 |
xN = xHS_DIV * xN1; |
|
|
901 |
if (sN > xN) |
|
|
902 |
{ |
|
|
903 |
sN = xN; |
|
|
904 |
sN1 = xN1; |
|
|
905 |
sHS_DIV = xHS_DIV; |
|
|
906 |
} |
|
|
907 |
}; |
|
|
908 |
|
|
|
909 |
validCombo = 0; |
|
|
910 |
|
|
|
911 |
if (sHS_DIV == 0) return; // no valid dividers found |
|
|
912 |
|
|
|
913 |
rfreq = f * (double) sN; // DCO freq |
|
|
914 |
if ((float)rfreq > FDCO_MAX) return; // calculated DCO freq > max |
|
|
915 |
|
|
|
916 |
validCombo = 1; |
|
|
917 |
|
|
|
918 |
// rfreq is a 38 bit number, MSB 10 bits integer portion, and LSB 28 fraction |
|
|
919 |
// in the Si570 registers, tempBuf[1] has 6 bits, and tempBuf[2] has 4 bits of the integer portion |
|
|
920 |
|
|
|
921 |
rfreq /= fcryst_double; // DCO divided by fcryst |
|
|
922 |
rfreq_integer_part = rfreq; |
|
|
923 |
rfreq_fraction = rfreq - rfreq_integer_part; |
|
|
924 |
rfreq_fraction_part = rfreq_fraction * (1L << 28); |
|
|
925 |
|
|
|
926 |
sHS_DIV -= 4; |
|
|
927 |
sN1 -= 1; |
|
|
928 |
tempBuf[0] = (sHS_DIV << 5) | (sN1 >> 2); |
|
|
929 |
tempBuf[1] = (sN1 & 3) << 6; |
|
|
930 |
tempBuf[1] |= ((rfreq_integer_part >> 4) & 0x3f); |
|
|
931 |
tempBuf[2] = ((rfreq_integer_part & 0x0f) << 4) | (rfreq_fraction_part >> 24); |
|
|
932 |
tempBuf[3] = rfreq_fraction_part >> 16; |
|
|
933 |
tempBuf[4] = rfreq_fraction_part >> 8; |
|
|
934 |
tempBuf[5] = rfreq_fraction_part; |
|
|
935 |
|
|
|
936 |
} |
|
|
937 |
|
|
|
938 |
|
|
|
939 |
void SetNewFreq() |
|
|
940 |
{ int i; |
|
|
941 |
double freq_double; |
|
|
942 |
double delta_freq; |
|
|
943 |
|
|
|
944 |
if(validCombo) |
|
|
945 |
{ |
|
|
946 |
|
|
|
947 |
Freeze(); // freeze DCO |
|
|
948 |
|
|
|
949 |
for (i=7; i<=12; i++){ //Data to Si570 |
|
|
950 |
#if defined (UBW) |
|
|
951 |
StartI2C(); |
|
|
952 |
IdleI2C(); |
|
|
953 |
WriteI2C(i2c_adr<<1); |
|
|
954 |
WriteI2C(i); //specify register |
|
|
955 |
WriteI2C(tempBuf[i-7]); // new data to registers |
|
|
956 |
StopI2C(); |
|
|
957 |
IdleI2C(); |
|
|
958 |
#elif defined (UBW32) |
|
|
959 |
StartI2C1(); |
|
|
960 |
IdleI2C1(); |
|
|
961 |
MasterWriteI2C1(i2c_adr<<1); |
|
|
962 |
MasterWriteI2C1(i); //specify register |
|
|
963 |
MasterWriteI2C1(tempBuf[i-7]); // new data to registers |
|
|
964 |
StopI2C1(); |
|
|
965 |
IdleI2C1(); |
|
|
966 |
#endif |
|
|
967 |
} |
|
|
968 |
Unfreeze (); // thaw (unfreeze) |
|
|
969 |
|
|
|
970 |
// check for smooth tune range |
|
|
971 |
freq_double = Freq_From_Register(fcryst_double); |
|
|
972 |
|
|
|
973 |
if (freq_double >= Old_freq_double) delta_freq = freq_double - Old_freq_double; |
|
|
974 |
else delta_freq = Old_freq_double - freq_double; |
|
|
975 |
|
|
|
976 |
if (((delta_rfreq / Old_rfreq ) > Smooth_double) || (delta_freq > 0.5)){ |
|
|
977 |
NewF (); // indicate new freq. This will cause a pause in the Si570 output |
|
|
978 |
Old_rfreq = rfreq; |
|
|
979 |
Old_freq_double = freq_double; |
|
|
980 |
}; |
|
|
981 |
|
|
|
982 |
// set filters, using set freq without offset and multiplier |
|
|
983 |
|
|
|
984 |
if (abpf_flag) Set_BPF((float) set_frequency); |
|
|
985 |
Set_LPF((float)set_frequency); |
|
|
986 |
|
|
|
987 |
}; // valid combo |
|
|
988 |
} |
|
|
989 |
|
|
|
990 |
double Freq_From_Register(double fcryst){ // side effects: rfreq and delta_rfreq are set |
|
|
991 |
double freq_double; |
|
|
992 |
unsigned char n1; |
|
|
993 |
unsigned char hsdiv; |
|
|
994 |
unsigned long rfreq_integer_portion, rfreq_fraction_portion; |
|
|
995 |
|
|
|
996 |
// Now find out the current rfreq and freq |
|
|
997 |
|
|
|
998 |
hsdiv = ((tempBuf[0] & 0xE0) >> 5) + 4; |
|
|
999 |
n1 = ((tempBuf[0] & 0x1f ) << 2 ) + ((tempBuf[1] & 0xc0 ) >> 6 ); |
|
|
1000 |
// if(n1 == 0) n1 = 1; |
|
|
1001 |
// else if((n1 & 1) !=0) n1 += 1; |
|
|
1002 |
n1 += 1; |
|
|
1003 |
|
|
|
1004 |
rfreq_integer_portion = ((unsigned long)(tempBuf[1] & 0x3f)) << 4 | |
|
|
1005 |
((unsigned long)(tempBuf[2] & 0xf0)) >> 4; |
|
|
1006 |
|
|
|
1007 |
rfreq_fraction_portion = ((unsigned long) (tempBuf[2] & 0x0f)) << 24; |
|
|
1008 |
rfreq_fraction_portion += ((unsigned long)(tempBuf[3])) << 16; |
|
|
1009 |
rfreq_fraction_portion += ((unsigned long)(tempBuf[4])) << 8; |
|
|
1010 |
rfreq_fraction_portion += ((unsigned long)(tempBuf[5])); |
|
|
1011 |
|
|
|
1012 |
rfreq = (double)rfreq_integer_portion + ((double)rfreq_fraction_portion / (1L << 28)); |
|
|
1013 |
|
|
|
1014 |
if (rfreq >= Old_rfreq) delta_rfreq = rfreq - Old_rfreq; |
|
|
1015 |
else delta_rfreq = Old_rfreq - rfreq; |
|
|
1016 |
|
|
|
1017 |
freq_double = fcryst * rfreq / (double) hsdiv / (double) n1; |
|
|
1018 |
return (freq_double); |
|
|
1019 |
} |
|
|
1020 |
|
|
|
1021 |
|
|
|
1022 |
|
|
|
1023 |
void Set_BPF(float freq){ // note the freq used is the Si570 freq |
|
|
1024 |
|
|
|
1025 |
#if defined(YAS) |
|
|
1026 |
if (freq < FilterSwitchOver[0]) {BPF_S2 = 0;BPF_S1 = 0; BPF_S0 = 0;} |
|
|
1027 |
else if (freq < FilterSwitchOver[1]) {BPF_S2 = 0; BPF_S1=0;BPF_S0=1;} |
|
|
1028 |
else if (freq < FilterSwitchOver[2]) {BPF_S2 = 0;BPF_S1=1;BPF_S0=0;} |
|
|
1029 |
else if (freq < FilterSwitchOver[3]) {BPF_S2 = 0; BPF_S1 = 1; BPF_S0 = 1;} |
|
|
1030 |
else if (freq < FilterSwitchOver[4]) {BPF_S2 = 1; BPF_S1 = 0; BPF_S0 = 0;} |
|
|
1031 |
else if (freq < FilterSwitchOver[5]) {BPF_S2 = 1; BPF_S1 = 0; BPF_S0 = 1;} |
|
|
1032 |
else if (freq < FilterSwitchOver[6]) {BPF_S2 = 1; BPF_S1 = 1; BPF_S0 = 0;} |
|
|
1033 |
else {BPF_S2 = 1;BPF_S1=1; BPF_S0=1;}; |
|
|
1034 |
|
|
|
1035 |
#else |
|
|
1036 |
if (freq < FilterSwitchOver[0]) {BPF_S1 = 0; BPF_S0 = 0;} |
|
|
1037 |
else if (freq < FilterSwitchOver[1]) {BPF_S1=0;BPF_S0=1;} |
|
|
1038 |
else if (freq < FilterSwitchOver[2]) {BPF_S1=1;BPF_S0=0;} |
|
|
1039 |
else {BPF_S1=1; BPF_S0=1;}; |
|
|
1040 |
#endif |
|
|
1041 |
} |
|
|
1042 |
|
|
|
1043 |
void Set_LPF(float freq){ |
|
|
1044 |
|
|
|
1045 |
unsigned char LPF_select; |
|
|
1046 |
|
|
|
1047 |
LPF_0 = 0; |
|
|
1048 |
LPF_1 = 0; |
|
|
1049 |
LPF_2 = 0; |
|
|
1050 |
|
|
|
1051 |
#if defined(YAS) |
|
|
1052 |
if (freq < LPFSwitchOver[0]) {LPF_0 = 0; LPF_1 = 0; LPF_2 = 0; LPF_select = 0x01;} |
|
|
1053 |
else if (freq < LPFSwitchOver[1]) {LPF_0 = 1; LPF_1 = 0; LPF_2 = 0; LPF_select = 0x02;} |
|
|
1054 |
else if (freq < LPFSwitchOver[2]) {LPF_0 = 0; LPF_1 = 1; LPF_2 = 0; LPF_select = 0x04;} |
|
|
1055 |
else if (freq < LPFSwitchOver[3]) {LPF_0 = 1; LPF_1 = 1; LPF_2 = 0; LPF_select = 0x08;} |
|
|
1056 |
else if (freq < LPFSwitchOver[4]) {LPF_0 = 0; LPF_1 = 0; LPF_2 = 1; LPF_select = 0x10;} |
|
|
1057 |
else if (freq < LPFSwitchOver[5]) {LPF_0 = 1; LPF_1 = 0; LPF_2 =1; LPF_select = 0x20;} |
|
|
1058 |
else if (freq < LPFSwitchOver[6]) {LPF_0 = 0; LPF_1 = 1; LPF_2 = 1; LPF_select = 0x40;} |
|
|
1059 |
else {LPF_0 = 1; LPF_1 = 1; LPF_2 = 1; LPF_select = 0x80;}; |
|
|
1060 |
|
|
|
1061 |
#else |
|
|
1062 |
LPF_3 = 0; |
|
|
1063 |
LPF_4 = 0; |
|
|
1064 |
LPF_5 = 0; |
|
|
1065 |
LPF_6 = 0; |
|
|
1066 |
|
|
|
1067 |
if (freq < LPFSwitchOver[0]) {LPF_0 = 1; LPF_select = 0x01;} |
|
|
1068 |
else if (freq < LPFSwitchOver[1]) {LPF_1 = 1; LPF_select = 0x02;} |
|
|
1069 |
else if (freq <= LPFSwitchOver[2]) {LPF_2 = 1; LPF_select = 0x04;} |
|
|
1070 |
else if (freq < LPFSwitchOver[3]) {LPF_3 = 1; LPF_select = 0x08;} |
|
|
1071 |
else if (freq < LPFSwitchOver[4]) {LPF_4 = 1; LPF_select = 0x10;} |
|
|
1072 |
else if (freq < LPFSwitchOver[5]) {LPF_5 = 1; LPF_select = 0x20;} |
|
|
1073 |
else if (freq < LPFSwitchOver[6]) {LPF_6 = 1; LPF_select = 0x40;} |
|
|
1074 |
else {LPF_6 = 1; LPF_select = 0x80;}; |
|
|
1075 |
|
|
|
1076 |
#endif |
|
|
1077 |
|
|
|
1078 |
|
|
|
1079 |
|
|
|
1080 |
// Now use i2c bus to switch LPF |
|
|
1081 |
#if defined (UBW) |
|
|
1082 |
StartI2C(); |
|
|
1083 |
IdleI2C(); |
|
|
1084 |
WriteI2C(PCF8574 << 1); |
|
|
1085 |
WriteI2C(LPF_select); |
|
|
1086 |
StopI2C(); |
|
|
1087 |
IdleI2C(); |
|
|
1088 |
#elif defined (UBW32) |
|
|
1089 |
StartI2C1(); |
|
|
1090 |
IdleI2C1(); |
|
|
1091 |
MasterWriteI2C1(PCF8574 << 1); |
|
|
1092 |
MasterWriteI2C1(LPF_select); |
|
|
1093 |
StopI2C1(); |
|
|
1094 |
IdleI2C1(); |
|
|
1095 |
#endif |
|
|
1096 |
|
|
|
1097 |
|
|
|
1098 |
} |
|
|
1099 |
|
|
|
1100 |
void SetFrequency(double f) |
|
|
1101 |
{ |
|
|
1102 |
// introduce the offset and mul here |
|
|
1103 |
RunFreqProg((f - ((double)f_sub.qw / (double)(1L << 21))) * (double)f_mul.qw/(double)(1L <<21)); |
|
|
1104 |
SetNewFreq(); |
|
|
1105 |
} |
|
|
1106 |
|
|
|
1107 |
void Set_Freq_Handler(void){ // 4 byte freq value in avr_freq format |
|
|
1108 |
BYTE i; |
|
|
1109 |
|
|
|
1110 |
if (command_buffer[current_command_out].wCount == 4){ |
|
|
1111 |
for (i=0; i<4; i++) avr_freq.bytes[i] = command_buffer[current_command_out].data[i]; |
|
|
1112 |
set_frequency = (double) avr_freq.qw / (double)(1L << 21); |
|
|
1113 |
SetFrequency(set_frequency); |
|
|
1114 |
} |
|
|
1115 |
} |
|
|
1116 |
|
|
|
1117 |
void Set_Register_Handler(void){ // 6 byte register value |
|
|
1118 |
unsigned char i; |
|
|
1119 |
|
|
|
1120 |
if (command_buffer[current_command_out].wCount == 6){ |
|
|
1121 |
for (i=0; i<6; i++) tempBuf[i] = command_buffer[current_command_out].data[i]; |
|
|
1122 |
set_frequency = Freq_From_Register(DEFAULT_FCRYST); |
|
|
1123 |
SetFrequency(set_frequency); |
|
|
1124 |
} |
|
|
1125 |
} |
|
|
1126 |
|
|
|
1127 |
void Set_Cal_Handler(void){ |
|
|
1128 |
|
|
|
1129 |
// 4 bytes of fcryst freq in avr_freq format |
|
|
1130 |
int i; |
|
|
1131 |
|
|
|
1132 |
if (command_buffer[current_command_out].wCount == 4){ |
|
|
1133 |
|
|
|
1134 |
for (i=0; i<4; i++)fcryst_freq.bytes[i] = command_buffer[current_command_out].data[i]; |
|
|
1135 |
fcryst_double = (double) fcryst_freq.qw / (double)(1L << 24); |
|
|
1136 |
|
|
|
1137 |
#if defined(UBW) |
|
|
1138 |
for (i=0; i<4; i++){ |
|
|
1139 |
Write_b_eep (i+F_CAL_DONE+1, fcryst_freq.bytes[i]); |
|
|
1140 |
Busy_eep (); |
|
|
1141 |
}; |
|
|
1142 |
#elif defined (UBW32) |
|
|
1143 |
DataEEWrite( (unsigned int) fcryst_freq.qw, (F_CAL_DONE + 1)); |
|
|
1144 |
#endif |
|
|
1145 |
|
|
|
1146 |
#if defined (UBW) |
|
|
1147 |
Write_b_eep(F_CAL_DONE, F_CAL_DONE_VALUE); |
|
|
1148 |
Busy_eep(); |
|
|
1149 |
#elif defined (UBW32) |
|
|
1150 |
DataEEWrite(F_CAL_DONE_VALUE, F_CAL_DONE); |
|
|
1151 |
#endif |
|
|
1152 |
}; |
|
|
1153 |
} |
|
|
1154 |
|
|
|
1155 |
void Set_Init_Freq_Handler(void) |
|
|
1156 |
{ |
|
|
1157 |
#if defined (UBW) |
|
|
1158 |
unsigned char i; |
|
|
1159 |
#else |
|
|
1160 |
unsigned int i; |
|
|
1161 |
#endif |
|
|
1162 |
|
|
|
1163 |
if (command_buffer[current_command_out].wCount == 4){ |
|
|
1164 |
for (i=0; i<4; i++) avr_freq.bytes[i] = command_buffer[current_command_out].data[i]; |
|
|
1165 |
#if defined (UBW) |
|
|
1166 |
for (i=0; i<4; i++){ |
|
|
1167 |
Write_b_eep((i + F_INIT_FREQ +1), avr_freq.bytes[i]); |
|
|
1168 |
Busy_eep(); |
|
|
1169 |
}; |
|
|
1170 |
#elif defined (UBW32) |
|
|
1171 |
DataEEWrite( (unsigned int) avr_freq.qw, (F_INIT_FREQ +1)); |
|
|
1172 |
#endif |
|
|
1173 |
|
|
|
1174 |
#if defined (UBW) |
|
|
1175 |
Write_b_eep(F_INIT_FREQ, F_INIT_FREQ_VALUE); |
|
|
1176 |
Busy_eep(); |
|
|
1177 |
#elif defined (UBW32) |
|
|
1178 |
DataEEWrite(F_INIT_FREQ_VALUE, F_INIT_FREQ); |
|
|
1179 |
#endif |
|
|
1180 |
}; |
|
|
1181 |
} |
|
|
1182 |
|
|
|
1183 |
void Set_Sub_Mul_Handler(void) |
|
|
1184 |
{ |
|
|
1185 |
#if defined (UBW) |
|
|
1186 |
unsigned char i; |
|
|
1187 |
#else |
|
|
1188 |
unsigned int i; |
|
|
1189 |
#endif |
|
|
1190 |
|
|
|
1191 |
avr_freq_t old_f_mul; |
|
|
1192 |
offset_t old_f_sub; |
|
|
1193 |
double filter_value; |
|
|
1194 |
|
|
|
1195 |
|
|
|
1196 |
if (command_buffer[current_command_out].wCount == 8){ |
|
|
1197 |
|
|
|
1198 |
old_f_sub = f_sub; // save old values first |
|
|
1199 |
old_f_mul = f_mul; |
|
|
1200 |
|
|
|
1201 |
for (i=0; i<4; i++) f_sub.bytes[i] = command_buffer[current_command_out].data[i]; |
|
|
1202 |
for (i=0; i<4; i++) f_mul.bytes[i] = command_buffer[current_command_out].data[i+4]; |
|
|
1203 |
#if defined (UBW) |
|
|
1204 |
for (i=0; i<4; i++){ |
|
|
1205 |
Write_b_eep((i + F_SUB_MUL +1), f_sub.bytes[i]); |
|
|
1206 |
Busy_eep(); |
|
|
1207 |
}; |
|
|
1208 |
for (i=0; i<4; i++){ |
|
|
1209 |
Write_b_eep((i + F_SUB_MUL +5), f_mul.bytes[i]); |
|
|
1210 |
Busy_eep(); |
|
|
1211 |
}; |
|
|
1212 |
#elif defined (UBW32) |
|
|
1213 |
DataEEWrite( (unsigned int) f_sub.qw, (F_SUB_MUL +1)); |
|
|
1214 |
DataEEWrite( (unsigned int) f_mul.qw, (F_SUB_MUL +5)); |
|
|
1215 |
#endif |
|
|
1216 |
|
|
|
1217 |
#if defined (UBW) |
|
|
1218 |
Write_b_eep(F_SUB_MUL, F_SUB_MUL_VALUE); |
|
|
1219 |
Busy_eep(); |
|
|
1220 |
#elif defined (UBW32) |
|
|
1221 |
DataEEWrite(F_SUB_MUL_VALUE, F_SUB_MUL); |
|
|
1222 |
#endif |
|
|
1223 |
|
|
|
1224 |
// Now update the filter switchover points as well |
|
|
1225 |
for (i = 0; i < (NUM_BPF - 1); i++){ |
|
|
1226 |
// get back filter_value in Mhz |
|
|
1227 |
filter_value = FilterSwitchOver[i] / (old_f_mul.qw / ((double) (1L << 21))) / 4 + (old_f_sub.qw / ((double) (1L << 21))); |
|
|
1228 |
// now convert to new translated values |
|
|
1229 |
FilterSwitchOver[i] = (filter_value - (f_sub.qw / (double)(1L << 21))) * (f_mul.qw / (double)(1L << 21)) * 4; |
|
|
1230 |
FilterCrossOver[i] = Switch2Cross(FilterSwitchOver[i]); |
|
|
1231 |
}; |
|
|
1232 |
for (i = 0; i < 7; i++){ |
|
|
1233 |
// get back filter_value in Mhz |
|
|
1234 |
filter_value = LPFSwitchOver[i] / (old_f_mul.qw / ((double) (1L << 21))) / 4 + (old_f_sub.qw / ((double) (1L << 21))); |
|
|
1235 |
// now convert to new translated values |
|
|
1236 |
LPFSwitchOver[i] = (filter_value - (f_sub.qw / (double)(1L << 21))) * (f_mul.qw / (double)(1L << 21)) * 4; |
|
|
1237 |
LPFCrossOver[i] = Switch2Cross(LPFSwitchOver[i]); |
|
|
1238 |
}; |
|
|
1239 |
}; // if wCount == 8 |
|
|
1240 |
} |
|
|
1241 |
|
|
|
1242 |
|
|
|
1243 |
|
|
|
1244 |
|
|
|
1245 |
void Set_Smooth_Handler(void) |
|
|
1246 |
{ |
|
|
1247 |
WORD_VAL w; |
|
|
1248 |
unsigned int i; |
|
|
1249 |
|
|
|
1250 |
if (command_buffer[current_command_out].wCount == 2){ // 2 bytes of Smooth Tune value in ppm |
|
|
1251 |
w.v[0] = command_buffer[current_command_out].data[0]; |
|
|
1252 |
w.v[1] = command_buffer[current_command_out].data[1]; |
|
|
1253 |
|
|
|
1254 |
Smooth_double = (double) w.Val / 1000000L; |
|
|
1255 |
|
|
|
1256 |
#if defined (UBW) |
|
|
1257 |
for (i=0; i<2; i++){ |
|
|
1258 |
Write_b_eep (i+F_SMOOTH+1, w.v[i]); |
|
|
1259 |
Busy_eep (); |
|
|
1260 |
}; |
|
|
1261 |
|
|
|
1262 |
#elif defined (UBW32) |
|
|
1263 |
DataEEWrite( (unsigned int) w.Val, (i + F_SMOOTH + 1)); |
|
|
1264 |
#endif |
|
|
1265 |
|
|
|
1266 |
#if defined (UBW) |
|
|
1267 |
Write_b_eep(F_SMOOTH, F_SMOOTH_VALUE); |
|
|
1268 |
Busy_eep(); |
|
|
1269 |
#elif defined (UBW32) |
|
|
1270 |
DataEEWrite( F_SMOOTH_VALUE, F_SMOOTH); |
|
|
1271 |
#endif |
|
|
1272 |
|
|
|
1273 |
} |
|
|
1274 |
} |
|
|
1275 |
|
|
|
1276 |
|
|
|
1277 |
|
|
|
1278 |
/** EOF user.c ***************************************************************/ |