Rev Author Line No. Line
3328 povik 1 /**
2 ******************************************************************************
3 * @file stm32f10x_can.c
4 * @author MCD Application Team
5 * @version V3.1.0
6 * @date 06/19/2009
7 * @brief This file provides all the CAN firmware functions.
8 ******************************************************************************
9 * @copy
10 *
11 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
12 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
13 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
14 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
15 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
16 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
17 *
18 * <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
19 */
20  
21 /* Includes ------------------------------------------------------------------*/
22 #include "stm32f10x_can.h"
23 #include "stm32f10x_rcc.h"
24  
25 /** @addtogroup STM32F10x_StdPeriph_Driver
26 * @{
27 */
28  
29 /** @defgroup CAN
30 * @brief CAN driver modules
31 * @{
32 */
33  
34 /** @defgroup CAN_Private_TypesDefinitions
35 * @{
36 */
37  
38 /**
39 * @}
40 */
41  
42 /** @defgroup CAN_Private_Defines
43 * @{
44 */
45  
46 /* CAN Master Control Register bits */
47 #define MCR_INRQ ((uint32_t)0x00000001) /* Initialization request */
48 #define MCR_SLEEP ((uint32_t)0x00000002) /* Sleep mode request */
49 #define MCR_TXFP ((uint32_t)0x00000004) /* Transmit FIFO priority */
50 #define MCR_RFLM ((uint32_t)0x00000008) /* Receive FIFO locked mode */
51 #define MCR_NART ((uint32_t)0x00000010) /* No automatic retransmission */
52 #define MCR_AWUM ((uint32_t)0x00000020) /* Automatic wake up mode */
53 #define MCR_ABOM ((uint32_t)0x00000040) /* Automatic bus-off management */
54 #define MCR_TTCM ((uint32_t)0x00000080) /* time triggered communication */
55 #define MCR_RESET ((uint32_t)0x00008000) /* time triggered communication */
56 #define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
57  
58 /* CAN Master Status Register bits */
59 #define MSR_INAK ((uint32_t)0x00000001) /* Initialization acknowledge */
60 #define MSR_WKUI ((uint32_t)0x00000008) /* Wake-up interrupt */
61 #define MSR_SLAKI ((uint32_t)0x00000010) /* Sleep acknowledge interrupt */
62  
63 /* CAN Transmit Status Register bits */
64 #define TSR_RQCP0 ((uint32_t)0x00000001) /* Request completed mailbox0 */
65 #define TSR_TXOK0 ((uint32_t)0x00000002) /* Transmission OK of mailbox0 */
66 #define TSR_ABRQ0 ((uint32_t)0x00000080) /* Abort request for mailbox0 */
67 #define TSR_RQCP1 ((uint32_t)0x00000100) /* Request completed mailbox1 */
68 #define TSR_TXOK1 ((uint32_t)0x00000200) /* Transmission OK of mailbox1 */
69 #define TSR_ABRQ1 ((uint32_t)0x00008000) /* Abort request for mailbox1 */
70 #define TSR_RQCP2 ((uint32_t)0x00010000) /* Request completed mailbox2 */
71 #define TSR_TXOK2 ((uint32_t)0x00020000) /* Transmission OK of mailbox2 */
72 #define TSR_ABRQ2 ((uint32_t)0x00800000) /* Abort request for mailbox2 */
73 #define TSR_TME0 ((uint32_t)0x04000000) /* Transmit mailbox 0 empty */
74 #define TSR_TME1 ((uint32_t)0x08000000) /* Transmit mailbox 1 empty */
75 #define TSR_TME2 ((uint32_t)0x10000000) /* Transmit mailbox 2 empty */
76  
77 /* CAN Receive FIFO 0 Register bits */
78 #define RF0R_FULL0 ((uint32_t)0x00000008) /* FIFO 0 full */
79 #define RF0R_FOVR0 ((uint32_t)0x00000010) /* FIFO 0 overrun */
80 #define RF0R_RFOM0 ((uint32_t)0x00000020) /* Release FIFO 0 output mailbox */
81  
82 /* CAN Receive FIFO 1 Register bits */
83 #define RF1R_FULL1 ((uint32_t)0x00000008) /* FIFO 1 full */
84 #define RF1R_FOVR1 ((uint32_t)0x00000010) /* FIFO 1 overrun */
85 #define RF1R_RFOM1 ((uint32_t)0x00000020) /* Release FIFO 1 output mailbox */
86  
87 /* CAN Error Status Register bits */
88 #define ESR_EWGF ((uint32_t)0x00000001) /* Error warning flag */
89 #define ESR_EPVF ((uint32_t)0x00000002) /* Error passive flag */
90 #define ESR_BOFF ((uint32_t)0x00000004) /* Bus-off flag */
91  
92 /* CAN Mailbox Transmit Request */
93 #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
94  
95 /* CAN Filter Master Register bits */
96 #define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
97  
98 /* Time out for INAK bit */
99 #define INAK_TimeOut ((uint32_t)0x0000FFFF)
100  
101 /* Time out for SLAK bit */
102 #define SLAK_TimeOut ((uint32_t)0x0000FFFF)
103  
104 /**
105 * @}
106 */
107  
108 /** @defgroup CAN_Private_Macros
109 * @{
110 */
111  
112 /**
113 * @}
114 */
115  
116 /** @defgroup CAN_Private_Variables
117 * @{
118 */
119  
120 /**
121 * @}
122 */
123  
124 /** @defgroup CAN_Private_FunctionPrototypes
125 * @{
126 */
127  
128 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
129  
130 /**
131 * @}
132 */
133  
134 /** @defgroup CAN_Private_Functions
135 * @{
136 */
137  
138 /**
139 * @brief Deinitializes the CAN peripheral registers to their default reset values.
140 * @param CANx: where x can be 1 or 2 to select the CAN peripheral.
141 * @retval None.
142 */
143 void CAN_DeInit(CAN_TypeDef* CANx)
144 {
145 /* Check the parameters */
146 assert_param(IS_CAN_ALL_PERIPH(CANx));
147  
148 if (CANx == CAN1)
149 {
150 /* Enable CAN1 reset state */
151 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
152 /* Release CAN1 from reset state */
153 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
154 }
155 else
156 {
157 /* Enable CAN2 reset state */
158 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
159 /* Release CAN2 from reset state */
160 RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
161 }
162 }
163  
164 /**
165 * @brief Initializes the CAN peripheral according to the specified
166 * parameters in the CAN_InitStruct.
167 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
168 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
169 * contains the configuration information for the CAN peripheral.
170 * @retval Constant indicates initialization succeed which will be
171 * CANINITFAILED or CANINITOK.
172 */
173 uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
174 {
175 uint8_t InitStatus = CANINITFAILED;
176 uint32_t wait_ack = 0x00000000;
177 /* Check the parameters */
178 assert_param(IS_CAN_ALL_PERIPH(CANx));
179 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
180 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
181 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
182 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
183 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
184 assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
185 assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
186 assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
187 assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
188 assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
189 assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
190  
191 /* exit from sleep mode */
192 CANx->MCR &= ~MCR_SLEEP;
193  
194 /* Request initialisation */
195 CANx->MCR |= MCR_INRQ ;
196  
197 /* Wait the acknowledge */
198 while (((CANx->MSR & MSR_INAK) != MSR_INAK) && (wait_ack != INAK_TimeOut))
199 {
200 wait_ack++;
201 }
202  
203 /* ...and check acknowledged */
204 if ((CANx->MSR & MSR_INAK) != MSR_INAK)
205 {
206 InitStatus = CANINITFAILED;
207 }
208 else
209 {
210 /* Set the time triggered communication mode */
211 if (CAN_InitStruct->CAN_TTCM == ENABLE)
212 {
213 CANx->MCR |= MCR_TTCM;
214 }
215 else
216 {
217 CANx->MCR &= ~MCR_TTCM;
218 }
219  
220 /* Set the automatic bus-off management */
221 if (CAN_InitStruct->CAN_ABOM == ENABLE)
222 {
223 CANx->MCR |= MCR_ABOM;
224 }
225 else
226 {
227 CANx->MCR &= ~MCR_ABOM;
228 }
229  
230 /* Set the automatic wake-up mode */
231 if (CAN_InitStruct->CAN_AWUM == ENABLE)
232 {
233 CANx->MCR |= MCR_AWUM;
234 }
235 else
236 {
237 CANx->MCR &= ~MCR_AWUM;
238 }
239  
240 /* Set the no automatic retransmission */
241 if (CAN_InitStruct->CAN_NART == ENABLE)
242 {
243 CANx->MCR |= MCR_NART;
244 }
245 else
246 {
247 CANx->MCR &= ~MCR_NART;
248 }
249  
250 /* Set the receive FIFO locked mode */
251 if (CAN_InitStruct->CAN_RFLM == ENABLE)
252 {
253 CANx->MCR |= MCR_RFLM;
254 }
255 else
256 {
257 CANx->MCR &= ~MCR_RFLM;
258 }
259  
260 /* Set the transmit FIFO priority */
261 if (CAN_InitStruct->CAN_TXFP == ENABLE)
262 {
263 CANx->MCR |= MCR_TXFP;
264 }
265 else
266 {
267 CANx->MCR &= ~MCR_TXFP;
268 }
269  
270 /* Set the bit timing register */
271 CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | ((uint32_t)CAN_InitStruct->CAN_SJW << 24) |
272 ((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) |
273 ((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
274  
275 /* Request leave initialisation */
276 CANx->MCR &= ~MCR_INRQ;
277  
278 /* Wait the acknowledge */
279 wait_ack = 0x00;
280  
281 while (((CANx->MSR & MSR_INAK) == MSR_INAK) && (wait_ack != INAK_TimeOut))
282 {
283 wait_ack++;
284 }
285  
286 /* ...and check acknowledged */
287 if ((CANx->MSR & MSR_INAK) == MSR_INAK)
288 {
289 InitStatus = CANINITFAILED;
290 }
291 else
292 {
293 InitStatus = CANINITOK ;
294 }
295 }
296  
297 /* At this step, return the status of initialization */
298 return InitStatus;
299 }
300  
301 /**
302 * @brief Initializes the CAN peripheral according to the specified
303 * parameters in the CAN_FilterInitStruct.
304 * @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
305 * structure that contains the configuration information.
306 * @retval None.
307 */
308 void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
309 {
310 uint32_t filter_number_bit_pos = 0;
311 /* Check the parameters */
312 assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
313 assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
314 assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
315 assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
316 assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
317  
318 filter_number_bit_pos = ((uint32_t)0x00000001) << CAN_FilterInitStruct->CAN_FilterNumber;
319  
320 /* Initialisation mode for the filter */
321 CAN1->FMR |= FMR_FINIT;
322  
323 /* Filter Deactivation */
324 CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
325  
326 /* Filter Scale */
327 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
328 {
329 /* 16-bit scale for the filter */
330 CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
331  
332 /* First 16-bit identifier and First 16-bit mask */
333 /* Or First 16-bit identifier and Second 16-bit identifier */
334 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
335 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
336 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
337  
338 /* Second 16-bit identifier and Second 16-bit mask */
339 /* Or Third 16-bit identifier and Fourth 16-bit identifier */
340 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
341 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
342 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
343 }
344  
345 if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
346 {
347 /* 32-bit scale for the filter */
348 CAN1->FS1R |= filter_number_bit_pos;
349 /* 32-bit identifier or First 32-bit identifier */
350 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
351 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
352 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
353 /* 32-bit mask or Second 32-bit identifier */
354 CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
355 ((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
356 (0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
357 }
358  
359 /* Filter Mode */
360 if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
361 {
362 /*Id/Mask mode for the filter*/
363 CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
364 }
365 else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
366 {
367 /*Identifier list mode for the filter*/
368 CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
369 }
370  
371 /* Filter FIFO assignment */
372 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO0)
373 {
374 /* FIFO 0 assignation for the filter */
375 CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
376 }
377  
378 if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO1)
379 {
380 /* FIFO 1 assignation for the filter */
381 CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
382 }
383  
384 /* Filter activation */
385 if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
386 {
387 CAN1->FA1R |= filter_number_bit_pos;
388 }
389  
390 /* Leave the initialisation mode for the filter */
391 CAN1->FMR &= ~FMR_FINIT;
392 }
393  
394 /**
395 * @brief Fills each CAN_InitStruct member with its default value.
396 * @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
397 * will be initialized.
398 * @retval None.
399 */
400 void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
401 {
402 /* Reset CAN init structure parameters values */
403 /* Initialize the time triggered communication mode */
404 CAN_InitStruct->CAN_TTCM = DISABLE;
405 /* Initialize the automatic bus-off management */
406 CAN_InitStruct->CAN_ABOM = DISABLE;
407 /* Initialize the automatic wake-up mode */
408 CAN_InitStruct->CAN_AWUM = DISABLE;
409 /* Initialize the no automatic retransmission */
410 CAN_InitStruct->CAN_NART = DISABLE;
411 /* Initialize the receive FIFO locked mode */
412 CAN_InitStruct->CAN_RFLM = DISABLE;
413 /* Initialize the transmit FIFO priority */
414 CAN_InitStruct->CAN_TXFP = DISABLE;
415 /* Initialize the CAN_Mode member */
416 CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
417 /* Initialize the CAN_SJW member */
418 CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
419 /* Initialize the CAN_BS1 member */
420 CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
421 /* Initialize the CAN_BS2 member */
422 CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
423 /* Initialize the CAN_Prescaler member */
424 CAN_InitStruct->CAN_Prescaler = 1;
425 }
426  
427 /**
428 * @brief Select the start bank filter for slave CAN.
429 * @note This function applies only to STM32 Connectivity line devices.
430 * @param CAN_BankNumber: Select the start slave bank filter from 1..27.
431 * @retval None.
432 */
433 void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
434 {
435 /* Check the parameters */
436 assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
437 /* enter Initialisation mode for the filter */
438 CAN1->FMR |= FMR_FINIT;
439 /* Select the start slave bank */
440 CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
441 CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
442 /* Leave Initialisation mode for the filter */
443 CAN1->FMR &= ~FMR_FINIT;
444 }
445  
446 /**
447 * @brief Enables or disables the specified CAN interrupts.
448 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
449 * @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
450 * This parameter can be: CAN_IT_TME, CAN_IT_FMP0, CAN_IT_FF0,
451 * CAN_IT_FOV0, CAN_IT_FMP1, CAN_IT_FF1,
452 * CAN_IT_FOV1, CAN_IT_EWG, CAN_IT_EPV,
453 * CAN_IT_LEC, CAN_IT_ERR, CAN_IT_WKU or
454 * CAN_IT_SLK.
455 * @param NewState: new state of the CAN interrupts.
456 * This parameter can be: ENABLE or DISABLE.
457 * @retval None.
458 */
459 void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
460 {
461 /* Check the parameters */
462 assert_param(IS_CAN_ALL_PERIPH(CANx));
463 assert_param(IS_CAN_ITConfig(CAN_IT));
464 assert_param(IS_FUNCTIONAL_STATE(NewState));
465  
466 if (NewState != DISABLE)
467 {
468 /* Enable the selected CAN interrupt */
469 CANx->IER |= CAN_IT;
470 }
471 else
472 {
473 /* Disable the selected CAN interrupt */
474 CANx->IER &= ~CAN_IT;
475 }
476 }
477  
478 /**
479 * @brief Initiates the transmission of a message.
480 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
481 * @param TxMessage: pointer to a structure which contains CAN Id, CAN
482 * DLC and CAN datas.
483 * @retval The number of the mailbox that is used for transmission
484 * or CAN_NO_MB if there is no empty mailbox.
485 */
486 uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
487 {
488 uint8_t transmit_mailbox = 0;
489 /* Check the parameters */
490 assert_param(IS_CAN_ALL_PERIPH(CANx));
491 assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
492 assert_param(IS_CAN_RTR(TxMessage->RTR));
493 assert_param(IS_CAN_DLC(TxMessage->DLC));
494  
495 /* Select one empty transmit mailbox */
496 if ((CANx->TSR&TSR_TME0) == TSR_TME0)
497 {
498 transmit_mailbox = 0;
499 }
500 else if ((CANx->TSR&TSR_TME1) == TSR_TME1)
501 {
502 transmit_mailbox = 1;
503 }
504 else if ((CANx->TSR&TSR_TME2) == TSR_TME2)
505 {
506 transmit_mailbox = 2;
507 }
508 else
509 {
510 transmit_mailbox = CAN_NO_MB;
511 }
512  
513 if (transmit_mailbox != CAN_NO_MB)
514 {
515 /* Set up the Id */
516 CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
517 if (TxMessage->IDE == CAN_ID_STD)
518 {
519 assert_param(IS_CAN_STDID(TxMessage->StdId));
520 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | TxMessage->RTR);
521 }
522 else
523 {
524 assert_param(IS_CAN_EXTID(TxMessage->ExtId));
525 CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId<<3) | TxMessage->IDE |
526 TxMessage->RTR);
527 }
528  
529  
530 /* Set up the DLC */
531 TxMessage->DLC &= (uint8_t)0x0000000F;
532 CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
533 CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
534  
535 /* Set up the data field */
536 CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
537 ((uint32_t)TxMessage->Data[2] << 16) |
538 ((uint32_t)TxMessage->Data[1] << 8) |
539 ((uint32_t)TxMessage->Data[0]));
540 CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
541 ((uint32_t)TxMessage->Data[6] << 16) |
542 ((uint32_t)TxMessage->Data[5] << 8) |
543 ((uint32_t)TxMessage->Data[4]));
544 /* Request transmission */
545 CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
546 }
547 return transmit_mailbox;
548 }
549  
550 /**
551 * @brief Checks the transmission of a message.
552 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
553 * @param TransmitMailbox: the number of the mailbox that is used for transmission.
554 * @retval CANTXOK if the CAN driver transmits the message, CANTXFAILED in an other case.
555 */
556 uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
557 {
558 /* RQCP, TXOK and TME bits */
559 uint8_t state = 0;
560 /* Check the parameters */
561 assert_param(IS_CAN_ALL_PERIPH(CANx));
562 assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
563 switch (TransmitMailbox)
564 {
565 case (0): state |= (uint8_t)((CANx->TSR & TSR_RQCP0) << 2);
566 state |= (uint8_t)((CANx->TSR & TSR_TXOK0) >> 0);
567 state |= (uint8_t)((CANx->TSR & TSR_TME0) >> 26);
568 break;
569 case (1): state |= (uint8_t)((CANx->TSR & TSR_RQCP1) >> 6);
570 state |= (uint8_t)((CANx->TSR & TSR_TXOK1) >> 8);
571 state |= (uint8_t)((CANx->TSR & TSR_TME1) >> 27);
572 break;
573 case (2): state |= (uint8_t)((CANx->TSR & TSR_RQCP2) >> 14);
574 state |= (uint8_t)((CANx->TSR & TSR_TXOK2) >> 16);
575 state |= (uint8_t)((CANx->TSR & TSR_TME2) >> 28);
576 break;
577 default:
578 state = CANTXFAILED;
579 break;
580 }
581 switch (state)
582 {
583 /* transmit pending */
584 case (0x0): state = CANTXPENDING;
585 break;
586 /* transmit failed */
587 case (0x5): state = CANTXFAILED;
588 break;
589 /* transmit succedeed */
590 case (0x7): state = CANTXOK;
591 break;
592 default:
593 state = CANTXFAILED;
594 break;
595 }
596 return state;
597 }
598  
599 /**
600 * @brief Cancels a transmit request.
601 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
602 * @param Mailbox: Mailbox number.
603 * @retval None.
604 */
605 void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
606 {
607 /* Check the parameters */
608 assert_param(IS_CAN_ALL_PERIPH(CANx));
609 assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
610 /* abort transmission */
611 switch (Mailbox)
612 {
613 case (0): CANx->TSR |= TSR_ABRQ0;
614 break;
615 case (1): CANx->TSR |= TSR_ABRQ1;
616 break;
617 case (2): CANx->TSR |= TSR_ABRQ2;
618 break;
619 default:
620 break;
621 }
622 }
623  
624 /**
625 * @brief Releases a FIFO.
626 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
627 * @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
628 * @retval None.
629 */
630 void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
631 {
632 /* Check the parameters */
633 assert_param(IS_CAN_ALL_PERIPH(CANx));
634 assert_param(IS_CAN_FIFO(FIFONumber));
635 /* Release FIFO0 */
636 if (FIFONumber == CAN_FIFO0)
637 {
638 CANx->RF0R = RF0R_RFOM0;
639 }
640 /* Release FIFO1 */
641 else /* FIFONumber == CAN_FIFO1 */
642 {
643 CANx->RF1R = RF1R_RFOM1;
644 }
645 }
646  
647 /**
648 * @brief Returns the number of pending messages.
649 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
650 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
651 * @retval NbMessage which is the number of pending message.
652 */
653 uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
654 {
655 uint8_t message_pending=0;
656 /* Check the parameters */
657 assert_param(IS_CAN_ALL_PERIPH(CANx));
658 assert_param(IS_CAN_FIFO(FIFONumber));
659 if (FIFONumber == CAN_FIFO0)
660 {
661 message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
662 }
663 else if (FIFONumber == CAN_FIFO1)
664 {
665 message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
666 }
667 else
668 {
669 message_pending = 0;
670 }
671 return message_pending;
672 }
673  
674 /**
675 * @brief Receives a message.
676 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
677 * @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
678 * @param RxMessage: pointer to a structure receive message which
679 * contains CAN Id, CAN DLC, CAN datas and FMI number.
680 * @retval None.
681 */
682 void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
683 {
684 /* Check the parameters */
685 assert_param(IS_CAN_ALL_PERIPH(CANx));
686 assert_param(IS_CAN_FIFO(FIFONumber));
687 /* Get the Id */
688 RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
689 if (RxMessage->IDE == CAN_ID_STD)
690 {
691 RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
692 }
693 else
694 {
695 RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
696 }
697  
698 RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
699 /* Get the DLC */
700 RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
701 /* Get the FMI */
702 RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
703 /* Get the data field */
704 RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
705 RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
706 RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
707 RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
708 RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
709 RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
710 RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
711 RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
712 /* Release the FIFO */
713 CAN_FIFORelease(CANx, FIFONumber);
714 }
715  
716 /**
717 * @brief Enables or disables the DBG Freeze for CAN.
718 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
719 * @param NewState: new state of the CAN peripheral.
720 * This parameter can be: ENABLE or DISABLE.
721 * @retval None.
722 */
723 void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
724 {
725 /* Check the parameters */
726 assert_param(IS_CAN_ALL_PERIPH(CANx));
727 assert_param(IS_FUNCTIONAL_STATE(NewState));
728  
729 if (NewState != DISABLE)
730 {
731 /* Enable Debug Freeze */
732 CANx->MCR |= MCR_DBF;
733 }
734 else
735 {
736 /* Disable Debug Freeze */
737 CANx->MCR &= ~MCR_DBF;
738 }
739 }
740  
741 /**
742 * @brief Enters the low power mode.
743 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
744 * @retval CANSLEEPOK if sleep entered, CANSLEEPFAILED in an other case.
745 */
746 uint8_t CAN_Sleep(CAN_TypeDef* CANx)
747 {
748 uint8_t sleepstatus = CANSLEEPFAILED;
749  
750 /* Check the parameters */
751 assert_param(IS_CAN_ALL_PERIPH(CANx));
752  
753 /* Request Sleep mode */
754 CANx->MCR = (((CANx->MCR) & (uint32_t)(~MCR_INRQ)) | MCR_SLEEP);
755  
756 /* Sleep mode status */
757 if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
758 {
759 /* Sleep mode not entered */
760 sleepstatus = CANSLEEPOK;
761 }
762 /* At this step, sleep mode status */
763 return (uint8_t)sleepstatus;
764 }
765  
766 /**
767 * @brief Wakes the CAN up.
768 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
769 * @retval CANWAKEUPOK if sleep mode left, CANWAKEUPFAILED in an other case.
770 */
771 uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
772 {
773 uint32_t wait_slak = SLAK_TimeOut ;
774 uint8_t wakeupstatus = CANWAKEUPFAILED;
775  
776 /* Check the parameters */
777 assert_param(IS_CAN_ALL_PERIPH(CANx));
778  
779 /* Wake up request */
780 CANx->MCR &= ~MCR_SLEEP;
781  
782 /* Sleep mode status */
783 while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
784 {
785 wait_slak--;
786 }
787 if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
788 {
789 /* Sleep mode exited */
790 wakeupstatus = CANWAKEUPOK;
791 }
792 /* At this step, sleep mode status */
793 return (uint8_t)wakeupstatus;
794 }
795  
796 /**
797 * @brief Checks whether the specified CAN flag is set or not.
798 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
799 * @param CAN_FLAG: specifies the flag to check.
800 * This parameter can be: CAN_FLAG_EWG, CAN_FLAG_EPV or CAN_FLAG_BOF.
801 * @retval The new state of CAN_FLAG (SET or RESET).
802 */
803 FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
804 {
805 FlagStatus bitstatus = RESET;
806 /* Check the parameters */
807 assert_param(IS_CAN_ALL_PERIPH(CANx));
808 assert_param(IS_CAN_FLAG(CAN_FLAG));
809 /* Check the status of the specified CAN flag */
810 if ((CANx->ESR & CAN_FLAG) != (uint32_t)RESET)
811 {
812 /* CAN_FLAG is set */
813 bitstatus = SET;
814 }
815 else
816 {
817 /* CAN_FLAG is reset */
818 bitstatus = RESET;
819 }
820 /* Return the CAN_FLAG status */
821 return bitstatus;
822 }
823  
824 /**
825 * @brief Clears the CAN's pending flags.
826 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
827 * @param CAN_FLAG: specifies the flag to clear.
828 * @retval None.
829 */
830 void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
831 {
832 /* Check the parameters */
833 assert_param(IS_CAN_ALL_PERIPH(CANx));
834 assert_param(IS_CAN_FLAG(CAN_FLAG));
835 /* Clear the selected CAN flags */
836 CANx->ESR &= ~CAN_FLAG;
837 }
838  
839 /**
840 * @brief Checks whether the specified CAN interrupt has occurred or not.
841 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
842 * @param CAN_IT: specifies the CAN interrupt source to check.
843 * This parameter can be: CAN_IT_RQCP0, CAN_IT_RQCP1, CAN_IT_RQCP2,
844 * CAN_IT_FF0, CAN_IT_FOV0, CAN_IT_FF1,
845 * CAN_IT_FOV1, CAN_IT_EWG, CAN_IT_EPV,
846 * CAN_IT_BOF, CAN_IT_WKU or CAN_IT_SLK.
847 * @retval The new state of CAN_IT (SET or RESET).
848 */
849 ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
850 {
851 ITStatus pendingbitstatus = RESET;
852 /* Check the parameters */
853 assert_param(IS_CAN_ALL_PERIPH(CANx));
854 assert_param(IS_CAN_ITStatus(CAN_IT));
855 switch (CAN_IT)
856 {
857 case CAN_IT_RQCP0:
858 pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP0);
859 break;
860 case CAN_IT_RQCP1:
861 pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP1);
862 break;
863 case CAN_IT_RQCP2:
864 pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP2);
865 break;
866 case CAN_IT_FF0:
867 pendingbitstatus = CheckITStatus(CANx->RF0R, RF0R_FULL0);
868 break;
869 case CAN_IT_FOV0:
870 pendingbitstatus = CheckITStatus(CANx->RF0R, RF0R_FOVR0);
871 break;
872 case CAN_IT_FF1:
873 pendingbitstatus = CheckITStatus(CANx->RF1R, RF1R_FULL1);
874 break;
875 case CAN_IT_FOV1:
876 pendingbitstatus = CheckITStatus(CANx->RF1R, RF1R_FOVR1);
877 break;
878 case CAN_IT_EWG:
879 pendingbitstatus = CheckITStatus(CANx->ESR, ESR_EWGF);
880 break;
881 case CAN_IT_EPV:
882 pendingbitstatus = CheckITStatus(CANx->ESR, ESR_EPVF);
883 break;
884 case CAN_IT_BOF:
885 pendingbitstatus = CheckITStatus(CANx->ESR, ESR_BOFF);
886 break;
887 case CAN_IT_SLK:
888 pendingbitstatus = CheckITStatus(CANx->MSR, MSR_SLAKI);
889 break;
890 case CAN_IT_WKU:
891 pendingbitstatus = CheckITStatus(CANx->MSR, MSR_WKUI);
892 break;
893 default :
894 pendingbitstatus = RESET;
895 break;
896 }
897 /* Return the CAN_IT status */
898 return pendingbitstatus;
899 }
900  
901 /**
902 * @brief Clears the CAN’s interrupt pending bits.
903 * @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
904 * @param CAN_IT: specifies the interrupt pending bit to clear.
905 * @retval None.
906 */
907 void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
908 {
909 /* Check the parameters */
910 assert_param(IS_CAN_ALL_PERIPH(CANx));
911 assert_param(IS_CAN_ITStatus(CAN_IT));
912 switch (CAN_IT)
913 {
914 case CAN_IT_RQCP0:
915 CANx->TSR = TSR_RQCP0; /* rc_w1*/
916 break;
917 case CAN_IT_RQCP1:
918 CANx->TSR = TSR_RQCP1; /* rc_w1*/
919 break;
920 case CAN_IT_RQCP2:
921 CANx->TSR = TSR_RQCP2; /* rc_w1*/
922 break;
923 case CAN_IT_FF0:
924 CANx->RF0R = RF0R_FULL0; /* rc_w1*/
925 break;
926 case CAN_IT_FOV0:
927 CANx->RF0R = RF0R_FOVR0; /* rc_w1*/
928 break;
929 case CAN_IT_FF1:
930 CANx->RF1R = RF1R_FULL1; /* rc_w1*/
931 break;
932 case CAN_IT_FOV1:
933 CANx->RF1R = RF1R_FOVR1; /* rc_w1*/
934 break;
935 case CAN_IT_EWG:
936 CANx->ESR &= ~ ESR_EWGF; /* rw */
937 break;
938 case CAN_IT_EPV:
939 CANx->ESR &= ~ ESR_EPVF; /* rw */
940 break;
941 case CAN_IT_BOF:
942 CANx->ESR &= ~ ESR_BOFF; /* rw */
943 break;
944 case CAN_IT_WKU:
945 CANx->MSR = MSR_WKUI; /* rc_w1*/
946 break;
947 case CAN_IT_SLK:
948 CANx->MSR = MSR_SLAKI; /* rc_w1*/
949 break;
950 default :
951 break;
952 }
953 }
954  
955 /**
956 * @brief Checks whether the CAN interrupt has occurred or not.
957 * @param CAN_Reg: specifies the CAN interrupt register to check.
958 * @param It_Bit: specifies the interrupt source bit to check.
959 * @retval The new state of the CAN Interrupt (SET or RESET).
960 */
961 static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
962 {
963 ITStatus pendingbitstatus = RESET;
964  
965 if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
966 {
967 /* CAN_IT is set */
968 pendingbitstatus = SET;
969 }
970 else
971 {
972 /* CAN_IT is reset */
973 pendingbitstatus = RESET;
974 }
975 return pendingbitstatus;
976 }
977  
978 /**
979 * @}
980 */
981  
982 /**
983 * @}
984 */
985  
986 /**
987 * @}
988 */
989  
990 /******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/