4429 |
jacho |
1 |
#!/usr/bin/python |
|
|
2 |
|
4666 |
jacho |
3 |
# MLAB meteostation wind speed gauge with magnetic rotation sensor. |
|
|
4 |
# This simple algorithm calculate difference between five time equidistant points during the rotation. The result is angular speed per time step. |
|
|
5 |
# Size of time-step could be varied depending on expected wind speed range to measure. |
|
|
6 |
# Algorithm should be expanded by Kalman filtering to minimize dependence on fast reading. |
|
|
7 |
# The measuring principle could introduce time-stamped reading to increase precision of measurement. It could be possible because the readings are not exactly time equidistant in real Linux word. |
4429 |
jacho |
8 |
|
|
|
9 |
#uncomment for debbug purposes |
|
|
10 |
#import logging |
|
|
11 |
#logging.basicConfig(level=logging.DEBUG) |
|
|
12 |
|
|
|
13 |
import time |
|
|
14 |
import datetime |
|
|
15 |
import sys |
4666 |
jacho |
16 |
import numpy as np |
4429 |
jacho |
17 |
from pymlab import config |
|
|
18 |
|
|
|
19 |
#### Script Arguments ############################################### |
|
|
20 |
|
|
|
21 |
if len(sys.argv) != 2: |
|
|
22 |
sys.stderr.write("Invalid number of arguments.\n") |
|
|
23 |
sys.stderr.write("Usage: %s PORT ADDRESS\n" % (sys.argv[0], )) |
|
|
24 |
sys.exit(1) |
|
|
25 |
|
|
|
26 |
port = eval(sys.argv[1]) |
|
|
27 |
#### Sensor Configuration ########################################### |
|
|
28 |
|
|
|
29 |
'''' |
|
|
30 |
cfg = config.Config( |
|
|
31 |
i2c = { |
|
|
32 |
"port": port, |
|
|
33 |
}, |
|
|
34 |
|
|
|
35 |
bus = [ |
|
|
36 |
{ |
|
|
37 |
"type": "i2chub", |
|
|
38 |
"address": 0x72, |
|
|
39 |
|
|
|
40 |
"children": [ |
|
|
41 |
{"name": "encoder", "type": "rps01", "channel": 1, } |
|
|
42 |
], |
|
|
43 |
}, |
|
|
44 |
], |
|
|
45 |
) |
|
|
46 |
|
|
|
47 |
''' |
|
|
48 |
cfg = config.Config( |
|
|
49 |
i2c = { |
|
|
50 |
"port": port, |
|
|
51 |
}, |
|
|
52 |
bus = [ |
|
|
53 |
{ |
|
|
54 |
"name": "encoder", |
|
|
55 |
"type": "rps01", |
|
|
56 |
}, |
|
|
57 |
], |
|
|
58 |
) |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
cfg.initialize() |
|
|
62 |
|
|
|
63 |
print "RPS01A magnetic position sensor RPS01 readout example \r\n" |
|
|
64 |
sensor = cfg.get_device("encoder") |
|
|
65 |
|
|
|
66 |
print sensor.get_address() |
|
|
67 |
print sensor.get_zero_position() |
|
|
68 |
|
|
|
69 |
#### Data Logging ################################################### |
|
|
70 |
|
|
|
71 |
try: |
4666 |
jacho |
72 |
angles = np.zeros(5) |
|
|
73 |
angles[4] = sensor.get_angle(verify = False) |
|
|
74 |
time.sleep(0.01) |
|
|
75 |
angles[3] = sensor.get_angle(verify = False) |
|
|
76 |
time.sleep(0.01) |
|
|
77 |
angles[2] = sensor.get_angle(verify = False) |
|
|
78 |
time.sleep(0.01) |
|
|
79 |
angles[1] = sensor.get_angle(verify = False) |
|
|
80 |
n = 0 |
|
|
81 |
speed = 0 |
|
|
82 |
AVERAGING = 50 |
|
|
83 |
|
4429 |
jacho |
84 |
while True: |
4666 |
jacho |
85 |
for i in range(AVERAGING): |
|
|
86 |
time.sleep(0.01) |
|
|
87 |
angles[0] = sensor.get_angle(verify = False) |
4429 |
jacho |
88 |
|
4666 |
jacho |
89 |
if (angles[0] + n*360 - angles[1]) > 300: |
|
|
90 |
n -= 1 |
|
|
91 |
angles[0] = angles[0] + n*360 |
|
|
92 |
|
|
|
93 |
elif (angles[0] + n*360 - angles[1]) < -300: # compute angular speed in backward direction. |
|
|
94 |
n += 1 |
|
|
95 |
angles[0] = angles[0] + n*360 |
|
|
96 |
|
|
|
97 |
else: |
|
|
98 |
angles[0] = angles[0] + n*360 |
|
|
99 |
|
|
|
100 |
speed += (-angles[4] + 8*angles[3] - 8*angles[1] + angles[0])/12 |
|
|
101 |
angles = np.roll(angles, 1) |
|
|
102 |
|
|
|
103 |
speed = speed/AVERAGING # apply averaging on acummulated value. |
|
|
104 |
print "Speed: %0.2f \t Total Angle: %0.2f \r\n" % (speed, angles[0]) |
|
|
105 |
|
4429 |
jacho |
106 |
except KeyboardInterrupt: |
|
|
107 |
sys.exit(0) |