0,0 → 1,104 |
#!/usr/bin/python |
|
import pandas as pd |
import sys |
import os |
import time |
import datetime |
|
from mlabutils import ejson |
|
parser = ejson.Parser() |
|
#### Script Arguments ############################################### |
|
if len(sys.argv) != 2: |
sys.stderr.write("Invalid number of arguments.\n") |
sys.stderr.write("Usage: %s CONFIG_FILE\n" % (sys.argv[0], )) |
sys.exit(1) |
|
value = parser.parse_file(sys.argv[1]) |
dataSource = value['data_path'] # raw data |
dataArchive = value['data_archive'] # archive for row data |
dataUpload = value['data_upload'] # computed mean values for upload |
stationName = value['origin'] |
|
loop = 1 |
csvHeader = "Date;LevelMeter;Temperature1;Conductivity;Salinity;TDSKcl;Temperature2;pH;Redox" #csv header |
sleepTime = 1000 # sleep time in seconds |
|
|
while True: |
try: |
print("Start") |
## Create sorted list of csv files |
listOfDataFiles = list() #empty list |
listOfSpecDataFiles = list() #empty list |
files = list() #empty list |
flag = False # is computation needed |
|
files = sorted(os.listdir(dataSource)) # list of all files and folders in directory |
for idx, val in enumerate(files): #goes through files |
if val.endswith("data.csv"): # in case of *data.csv |
listOfDataFiles.append(val) #add file to listOfFiles |
|
## Find the newest and oldest and compare them. If they are from different day, compute the average of all measurement from oldest day |
if len(listOfDataFiles)>=2: # if there are more than 2 data files |
first = listOfDataFiles[0] # get first of them |
last = listOfDataFiles[-1] # get last of them |
|
if time.mktime(datetime.datetime.strptime(last[:8], "%Y%m%d").timetuple()) > time.mktime(datetime.datetime.strptime(first[:8], "%Y%m%d").timetuple()): # if the last is older than first |
flag = True # computation needed |
print("Computing...") |
print(loop) |
loop +=1 |
listOfSpecDataFiles = list() # empty list |
|
for file in listOfDataFiles: # go through data files and create lis of data files measured on same day |
# if the day is same like the first one |
if time.mktime(datetime.datetime.strptime(first[:8], "%Y%m%d").timetuple()) == time.mktime(datetime.datetime.strptime(file[:8], "%Y%m%d").timetuple()): |
listOfSpecDataFiles.append(file) |
|
filename = dataUpload + first[:8]+'000000_' + stationName + '_data_mean.csv' |
|
for file in listOfSpecDataFiles: |
df=pd.read_csv(dataSource + file, sep=';', header=None) # read current csv |
dim=df.shape # gets data file dimensions |
rowsInd=dim[0] # maximal index of rows |
columnsInd=dim[1] # maximal index of columns |
values=pd.DataFrame() # empty DataFrame |
|
for x in range(0,columnsInd): # for each column |
values = values.set_value(0,x,round(df[x].mean(),3),0) #calculates mean value for all cloumns and round it by 3 |
|
outfile = open(filename, 'a') |
values.to_csv(filename, sep=';', header=False, index=False, mode='a') # save (add) DataFrame to csv |
outfile.close() |
|
#adding header |
with open(filename, 'r+') as f: |
content = f.read() |
f.seek(0, 0) |
f.write(csvHeader.rstrip('\r\n') + '\n' + content) |
|
|
# move files to archive structure |
for file in listOfSpecDataFiles: |
year = file[:4] |
month = file[4:6] |
day = file[6:8] |
directory = dataArchive + year + "/" + month + "/" + day + "/" |
if not os.path.exists(directory): |
os.makedirs(directory) |
os.rename(dataSource + file, directory + file) # move file |
|
else: |
flag = False # computation is not needed |
else: |
flag = False # computation is not needed |
|
if flag == False: |
time.sleep(sleepTime) #long sleep, because is nothing to process |
|
except ValueError: |
print ValueError |