/Aparatus/DART01B/SW/1_00/A.BAT
0,0 → 1,4
call picpgr stop
call picpgr erase pic16f88
call picpgr program DART.hex hex pic16f88
call picpgr run
/Aparatus/DART01B/SW/1_00/DART.C
0,0 → 1,415
// DART01A verze programu 1.00
// (c)miho 2005
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlosti nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug;
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// Test menice PWM a rozjezdoveho PWM
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// Testovani rozjezdu
// Zadava se cas mezi stupni razeni pro rozjezd v ms
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN: %3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// Test nabijeciho algoritmu
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// Standardni beh
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int1 Run;
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(65);
}
}
}
}
/Aparatus/DART01B/SW/1_00/DART.H
0,0 → 1,10
// DART01A verze programu 1.00
// (c)miho 2005
 
#include <16F88.h> // standardni definice konstant
#include <16F88_Reg.h> // standardni definice vsech FSR
 
#device adc=8 // AD prevodnik jen na 8 bitu
#define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
#use delay(clock=xclock,restart_wdt)
#fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
/Aparatus/DART01B/SW/1_00/DART.HEX
0,0 → 1,124
:1000000000308A00042A0000FF00030E8301A100D3
:100010007F08A0000A08A8008A01A00E0408A20018
:100020007708A3007808A4007908A5007A08A6003C
:100030007B08A700831383128C308400801D222844
:100040008C1939288B1E26280B193B28220884007E
:100050002308F7002408F8002508F9002608FA000C
:100060002708FB0028088A00210E8300FF0E7F0E60
:1000700009008A1196288A11C4280A108A100A11C8
:100080008207023406340E341E343E347E34FE348D
:10009000FF340A108A100A1182070C344D346F3471
:1000A000643465343A342534643400340A108A10D8
:1000B0000A1182070A34503457344D343A34253407
:1000C0003034333475342034523455344E343A3469
:1000D000253430343334753400340A108A100A1150
:1000E00082070A34523455344E343A34203425349D
:1000F000333475346D347334203400340A108A106C
:100100000A1182070A3441344C3447343A342534D6
:10011000303433347534203425343034333475344A
:1001200020342534303433347534003429089300B6
:100130008C118A112628C308031DAA2883160611CC
:1001400083120611831694018312940183168C1175
:10015000C22883124308073C0318B0280830C300A4
:10016000C30343083D20F800A9008316061183123B
:1001700006118316940122308312940029089300FB
:1001800083168C15831200342A082B040319CC28FB
:100190002A080319AB03AA03AC080319D028AC033F
:1001A000AE080319E0282E08073C031CE028AC0821
:1001B000031DE0282D08AC00AE0A2E08C3009B20CA
:1001C0000B118A1126281A30831699008030831269
:1001D000980024308316980083128A11282A3C3014
:1001E00084000008031905290130F800BF30F7002A
:1001F0006400F70BF828F80BF6285830F700F70BD7
:10020000FF2800006400800BF428003400308316BF
:1002100098180130003A031D10298312062983160D
:1002200083124008990000344108F8014002031885
:100230001C294008F7002829F7010830C200C00D2A
:10024000F70D410877020318F700F80DC20B1F29BC
:1002500000343D08F700BD1B31293E1D3B292030ED
:100260003629F709F70A7708BD002D30F800C000DD
:1002700006213E1DBE153D08C0006430C10014219A
:100280007708BD0078083030031D4D293E18BE1593
:10029000BE1953293E1A20304F29BE113E12F807CD
:1002A0007808C00006213D08C0000A30C1001421B2
:1002B0007708BD0078083030031D6229BE19662911
:1002C0003E1A2030F8077808C00006213030BD07FC
:1002D0003D08C00006218A11692A83160108C03929
:1002E0000138810083128B16C0308B048A11772A63
:1002F0003C08043C031D8029831686108312861453
:10030000303083169F0083123C0DF700F70DF70D78
:10031000F830F7057708413E9F001130F700F70BE2
:100320008F291F151130F700F70B942983168610BB
:10033000831286101E08F800003478083E08C000BA
:100340006430C10014217708BE0078083030031DE6
:10035000B0293F18BF15BF19B6293F1A2030B2295E
:10036000BF113F12F8077808C00006213E08C00000
:100370000A30C10014217708BE0078083030031D10
:10038000C529BF19C9293F1A2030F8077808C000CD
:1003900006213030BE073E08C000062100340B089D
:1003A0000B058B13A0003C08C3009B20A01B8B17E0
:1003B000C0308B0400348B123D08AB003C08AA000F
:1003C0008B1600348B12AA08031DE929AB08031908
:1003D000EB293C10EC293C148B1600303C18013002
:1003E000F80000348B120130AE003C08AD002D083F
:1003F000AC008B160B080B058B13A0000130C3005B
:100400009B20A01B8B17003484011F3083058316AB
:100410009F019D01073083129F00623083168F0079
:100420008611831286118316061183120611831614
:100430008610831286108316811381110E30831269
:10044000031785001F30831603139B008312E328D4
:100450000130B00030081D3C031C452A3118322AF7
:100460000513332A05178316051301308312B106CD
:1004700031183C2A85133D2A8517831685130130D0
:100480008312BC00EF20B00A2A2AAF018316861718
:100490008312861B4C2A2F14831606178312061B01
:1004A000522AAF14831686138312861383160613FB
:1004B00083120613BC013C084920BC0AC000062177
:1004C00006303C02031D5B2A2F08BD001830BE0019
:1004D00029291F30831692000430831292000C30B9
:1004E0009700950183168611831286116D292F0BB3
:1004F000B02A6400BC0178217808B200B20CB20CBA
:100500003F30B2050130BC0078217808B300B30E4B
:100510000F30B305BC013C085620BC0AC0000621C0
:1005200005303C02031D8B2A3208BE00BF019D210D
:100530000930BD003D085620BD0AC00006210E301E
:100540003D02031D9A2A3308BE00BF019D211430CD
:10055000BC00EF20320895003308BC00CF21792A77
:100560002F08023C031D002BB5010130BC0078218F
:100570007808B400BC013C086D20BC0AC00006210C
:1005800006303C02031DBB2A3408BE001030BF00F9
:100590009D216D30C00006217330C000062120303F
:1005A000C00006210A30BC00EF20B508031DDE2A7A
:1005B000B50A0730BD00D030BC00DB21350BF02A76
:1005C000E221F8080319F02AB50A5230C0000621CA
:1005D0003408BC00F2210730BD00D030BC00DB2164
:1005E0003508023C031DFE2AE221F8080319FE2A01
:1005F000B50A5330C0000621BC01CF216400B52AE2
:100600002F08033C031D5A2BB6016400BC0178215E
:100610007808B700BC0178210310780CF700323E4F
:10062000B7000430BC0078217808B80037083802D9
:1006300003181F2B36081D3C031C1F2BB60A370856
:100640003802031C272BB6080319272BB6030A30E0
:10065000B807370838020318322B36081D3C031C34
:10066000322BB60A3608183C0318382B1830B6005F
:1006700036089500BC013C087E20BC0AC00006215B
:1006800005303C02031D3B2B3708BE00BF019D21F6
:100690002030C00006213808BE00BF019D21203057
:1006A000C00006213608BE00BF019D210A30BC00F3
:1006B000EF20052BAF08031DC32BB9013630BD0059
:1006C000B030BC00DB21B1146400BC017821780893
:1006D000BA00BC0178210310780CF700323EBA0052
:1006E0000430BC0078217808BB003A083B020318AC
:1006F0007E2B39081D3C031C7E2BB90A3A083B02AD
:10070000031C862BB9080319862BB9030A30BB07D3
:100710003A083B020318912B39081D3C031C912B0E
:10072000B90A3908183C0318972B1830B900390852
:100730009500BC013C087E20BC0AC00006210530A3
:100740003C02031D9A2B3A08BE00BF019D212030B8
:10075000C00006213B08BE00BF019D212030C00023
:1007600006213908BE00BF019D210A30BC00EF20E0
:10077000E221F8080319C22BB11CC22BB110413081
:08078000BC00F221642B6300B0
:02400E003C2F45
:00000001FF
;PIC16F88
/Aparatus/DART01B/SW/1_00/DART.LST
0,0 → 1,1408
CCS PCW C Compiler, Version 3.110, 15448
 
Filename: c:\miho_dat\dart\dart.LST
 
ROM used: 964 (24%)
Largest free fragment is 2048
RAM used: 24 (14%) at main() level
41 (23%) worst case
Stack: 6 worst case (3 in main + 3 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 204
0003: NOP
0004: MOVWF 7F
0005: SWAPF 03,W
0006: CLRF 03
0007: MOVWF 21
0008: MOVF 7F,W
0009: MOVWF 20
000A: MOVF 0A,W
000B: MOVWF 28
000C: CLRF 0A
000D: SWAPF 20,F
000E: MOVF 04,W
000F: MOVWF 22
0010: MOVF 77,W
0011: MOVWF 23
0012: MOVF 78,W
0013: MOVWF 24
0014: MOVF 79,W
0015: MOVWF 25
0016: MOVF 7A,W
0017: MOVWF 26
0018: MOVF 7B,W
0019: MOVWF 27
001A: BCF 03.7
001B: BCF 03.5
001C: MOVLW 8C
001D: MOVWF 04
001E: BTFSS 00.3
001F: GOTO 022
0020: BTFSC 0C.3
0021: GOTO 039
0022: BTFSS 0B.5
0023: GOTO 026
0024: BTFSC 0B.2
0025: GOTO 03B
0026: MOVF 22,W
0027: MOVWF 04
0028: MOVF 23,W
0029: MOVWF 77
002A: MOVF 24,W
002B: MOVWF 78
002C: MOVF 25,W
002D: MOVWF 79
002E: MOVF 26,W
002F: MOVWF 7A
0030: MOVF 27,W
0031: MOVWF 7B
0032: MOVF 28,W
0033: MOVWF 0A
0034: SWAPF 21,W
0035: MOVWF 03
0036: SWAPF 7F,F
0037: SWAPF 7F,W
0038: RETFIE
0039: BCF 0A.3
003A: GOTO 096
003B: BCF 0A.3
003C: GOTO 0C4
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include "DART.h"
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include <16F88.h> // standardni definice konstant
.................... //////// Header file for the PIC16F88
.................... #device PIC16F88
.................... #list
.................... #include <16F88_Reg.h> // standardni definice vsech FSR
.................... #list
....................
....................
.................... #device adc=8 // AD prevodnik jen na 8 bitu
.................... #define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
.................... #use delay(clock=xclock,restart_wdt)
*
00EF: MOVLW 3C
00F0: MOVWF 04
00F1: MOVF 00,W
00F2: BTFSC 03.2
00F3: GOTO 105
00F4: MOVLW 01
00F5: MOVWF 78
00F6: MOVLW BF
00F7: MOVWF 77
00F8: CLRWDT
00F9: DECFSZ 77,F
00FA: GOTO 0F8
00FB: DECFSZ 78,F
00FC: GOTO 0F6
00FD: MOVLW 58
00FE: MOVWF 77
00FF: DECFSZ 77,F
0100: GOTO 0FF
0101: NOP
0102: CLRWDT
0103: DECFSZ 00,F
0104: GOTO 0F4
0105: RETLW 00
.................... #fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
....................
....................
....................
.................... #define BEEP0 PIN_A6 // pipak, prvni vystup
.................... #define BEEP1 PIN_A7 // pipak, druhy vystup
.................... #define PWM PIN_B3 // PWM vystup pro menic
.................... #define REFPOWER PIN_B1 // napajeni zdroje Vref
.................... #define MOTOR PIN_B2 // zapinani motoru
.................... #define SW0 PIN_B7 // konfiguracni prepinac 0
.................... #define SW1 PIN_B6 // konfiguracni prepinac 1
....................
....................
.................... void InitRS232()
.................... // Inicializace HW RS232
.................... {
.................... SPBRG=xclock/9600/16-1; // ryclost 9600Bd
*
00E3: MOVLW 1A
00E4: BSF 03.5
00E5: MOVWF 19
.................... RCSTA=0b10000000; // enable USART
00E6: MOVLW 80
00E7: BCF 03.5
00E8: MOVWF 18
.................... TXSTA=0b00100100; // BRGH=1, TX enable
00E9: MOVLW 24
00EA: BSF 03.5
00EB: MOVWF 18
00EC: BCF 03.5
00ED: BCF 0A.3
00EE: GOTO 228 (RETURN)
.................... }
....................
....................
.................... void Putc(char c)
.................... // Posilani znaku pres HW RS232
.................... {
.................... while(TRMT==0); // cekej na prazdny TX buffer
*
0106: MOVLW 00
0107: BSF 03.5
0108: BTFSC 18.1
0109: MOVLW 01
010A: XORLW 00
010B: BTFSS 03.2
010C: GOTO 110
010D: BCF 03.5
010E: GOTO 106
010F: BSF 03.5
.................... TXREG=c; // predej data
0110: BCF 03.5
0111: MOVF 40,W
0112: MOVWF 19
0113: RETLW 00
.................... }
....................
....................
.................... // Globalni promenna pro data posilana na SSP
.................... // Nastavuje se funkci MotorPatternSet()
.................... // Vyuziva se v prerusovaci rutine IntSSP()
.................... unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
....................
....................
.................... void MotorPatternSet(unsigned int Gear)
.................... // Na zaklade rychlosti nastavi MotorPattern pro SSP
.................... // Rychlost 0 znamena stop, rychlost 8 je maximum
.................... {
.................... // Tabulka rychlost -> pattern pro SSP
.................... unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
*
003D: BCF 0A.0
003E: BCF 0A.1
003F: BCF 0A.2
0040: ADDWF 02,F
0041: RETLW 02
0042: RETLW 06
0043: RETLW 0E
0044: RETLW 1E
0045: RETLW 3E
0046: RETLW 7E
0047: RETLW FE
0048: RETLW FF
....................
.................... // Vyber patternu
.................... if (Gear==0) // stav 0 znamena stop
*
009B: MOVF 43,F
009C: BTFSS 03.2
009D: GOTO 0AA
.................... {
.................... output_low(MOTOR); // klidovy stav
009E: BSF 03.5
009F: BCF 06.2
00A0: BCF 03.5
00A1: BCF 06.2
.................... SSPSTAT = 0;
00A2: BSF 03.5
00A3: CLRF 14
.................... SSPCON1 = 0; // SPI stop
00A4: BCF 03.5
00A5: CLRF 14
.................... disable_interrupts(INT_SSP); // neni preruseni od SSP
00A6: BSF 03.5
00A7: BCF 0C.3
.................... }
.................... else // rizeny vykon
00A8: GOTO 0C2
00A9: BCF 03.5
.................... {
.................... if (Gear>7) // stav 8 a vice znamena plny vykon
00AA: MOVF 43,W
00AB: SUBLW 07
00AC: BTFSC 03.0
00AD: GOTO 0B0
.................... {
.................... Gear=8; // plny plyn
00AE: MOVLW 08
00AF: MOVWF 43
.................... }
....................
.................... MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
00B0: DECF 43,F
00B1: MOVF 43,W
00B2: CALL 03D
00B3: MOVWF 78
00B4: MOVWF 29
.................... output_low(MOTOR); // klidovy stav
00B5: BSF 03.5
00B6: BCF 06.2
00B7: BCF 03.5
00B8: BCF 06.2
.................... SSPSTAT = 0;
00B9: BSF 03.5
00BA: CLRF 14
.................... SSPCON1 = 0x22; // SPI OSC/64
00BB: MOVLW 22
00BC: BCF 03.5
00BD: MOVWF 14
....................
.................... SSPBUF=MotorPattern; // prvni data pro vyslani
00BE: MOVF 29,W
00BF: MOVWF 13
.................... enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
00C0: BSF 03.5
00C1: BSF 0C.3
.................... }
00C2: BCF 03.5
00C3: RETLW 00
.................... }
....................
....................
.................... // Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
.................... #INT_SSP
.................... void IntSSP()
.................... {
.................... SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
*
0096: MOVF 29,W
0097: MOVWF 13
0098: BCF 0C.3
0099: BCF 0A.3
009A: GOTO 026
.................... }
....................
....................
.................... void MotorSet(unsigned int Gear)
.................... // Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
.................... // od SSP jednotky
.................... // 0 stop
.................... // 1-7 pocet 1/8 vykonu
.................... // >7 plny vykon
.................... {
*
01CF: MOVF 0B,W
01D0: ANDWF 0B,W
01D1: BCF 0B.7
01D2: MOVWF 20
.................... // Nastav PWM pattern
.................... MotorPatternSet(Gear); // nastav PWM pattern pro SSP
01D3: MOVF 3C,W
01D4: MOVWF 43
01D5: CALL 09B
01D6: BTFSC 20.7
01D7: BSF 0B.7
....................
.................... // Povol preruseni
.................... enable_interrupts(GLOBAL); // povol preruseni
01D8: MOVLW C0
01D9: IORWF 0B,F
01DA: RETLW 00
.................... }
....................
....................
.................... void InitT0()
.................... // Inicializace casovace T0 (cca 1000x za sekundu)
.................... {
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
*
016D: BSF 03.5
016E: MOVF 01,W
016F: ANDLW C0
0170: IORLW 01
0171: MOVWF 01
.................... enable_interrupts(INT_RTCC); // generuj preruseni od T0
0172: BCF 03.5
0173: BSF 0B.5
.................... enable_interrupts(GLOBAL); // povol preruseni
0174: MOVLW C0
0175: IORWF 0B,F
0176: BCF 0A.3
0177: GOTO 277 (RETURN)
.................... }
....................
....................
.................... // Globalni promenna pro mereni casu
.................... // Nastavuje se procedurou TimeSet()
.................... // Testuje se funkci TimeIf()
.................... // Modifikuje se pri preruseni od casovace IntTo()
.................... unsigned int16 TimeTime;
....................
....................
.................... void TimerSet(unsigned int16 Time)
.................... // Nastavi casovac na zadany pocet ms
.................... // Test uplynuti casu se dela pomoci TimerIf()
.................... {
.................... // Nastav hodnotu
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
*
01DB: BCF 0B.5
.................... TimeTime=Time; // pri nastavovani hodnoty
01DC: MOVF 3D,W
01DD: MOVWF 2B
01DE: MOVF 3C,W
01DF: MOVWF 2A
.................... enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
01E0: BSF 0B.5
01E1: RETLW 00
.................... }
....................
....................
.................... int1 TimerIf()
.................... // Vraci TRUE pokud casovac jiz dobehl
.................... {
.................... int1 Flag; // pomocna promenna
....................
.................... // Otestuj casovac
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
01E2: BCF 0B.5
.................... Flag=(TimeTime==0); // behem testu promenne
01E3: MOVF 2A,F
01E4: BTFSS 03.2
01E5: GOTO 1E9
01E6: MOVF 2B,F
01E7: BTFSC 03.2
01E8: GOTO 1EB
01E9: BCF 3C.0
01EA: GOTO 1EC
01EB: BSF 3C.0
.................... enable_interrupts(INT_RTCC); // ted uz muze
01EC: BSF 0B.5
....................
.................... // Navratova hodnota
.................... return Flag; // TRUE znamena dobehl casovac
01ED: MOVLW 00
01EE: BTFSC 3C.0
01EF: MOVLW 01
01F0: MOVWF 78
01F1: RETLW 00
.................... }
....................
....................
.................... // Globalni promenne pro akceleraci
.................... // Nastavuje se metodou MotorStart()
.................... // Pouziva se v obsluze preruseni IntT0()
.................... unsigned int8 MotorTime; // aktualni casovac pro rozjezd
.................... unsigned int8 MotorDelay; // spozdeni mezi razenim
.................... unsigned int8 MotorGear; // rychlostni stupen
....................
....................
.................... void MotorStart(unsigned int8 Delay)
.................... // Provede rizeny rozjezd motoru
.................... {
.................... disable_interrupts(INT_RTCC);
01F2: BCF 0B.5
.................... MotorGear=1;
01F3: MOVLW 01
01F4: MOVWF 2E
.................... MotorDelay=Delay;
01F5: MOVF 3C,W
01F6: MOVWF 2D
.................... MotorTime=MotorDelay;
01F7: MOVF 2D,W
01F8: MOVWF 2C
.................... enable_interrupts(INT_RTCC);
01F9: BSF 0B.5
01FA: MOVF 0B,W
01FB: ANDWF 0B,W
01FC: BCF 0B.7
01FD: MOVWF 20
....................
.................... MotorPatternSet(1);
01FE: MOVLW 01
01FF: MOVWF 43
0200: CALL 09B
0201: BTFSC 20.7
0202: BSF 0B.7
0203: RETLW 00
.................... }
....................
....................
.................... #INT_TIMER0
.................... void IntT0()
.................... // Preruseni od casovace cca 1000x za sekundu
.................... {
.................... // Odpocitavani casovace
.................... if (TimeTime) TimeTime--;
*
00C4: MOVF 2A,W
00C5: IORWF 2B,W
00C6: BTFSC 03.2
00C7: GOTO 0CC
00C8: MOVF 2A,W
00C9: BTFSC 03.2
00CA: DECF 2B,F
00CB: DECF 2A,F
....................
.................... // Obsluha akcelerace
.................... if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
00CC: MOVF 2C,F
00CD: BTFSC 03.2
00CE: GOTO 0D0
00CF: DECF 2C,F
.................... if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
00D0: MOVF 2E,F
00D1: BTFSC 03.2
00D2: GOTO 0E0
00D3: MOVF 2E,W
00D4: SUBLW 07
00D5: BTFSS 03.0
00D6: GOTO 0E0
00D7: MOVF 2C,F
00D8: BTFSS 03.2
00D9: GOTO 0E0
.................... {
.................... MotorTime=MotorDelay; // znovu nastav casovac
00DA: MOVF 2D,W
00DB: MOVWF 2C
.................... MotorGear++; // dalsi rychlost
00DC: INCF 2E,F
.................... MotorPatternSet(MotorGear); // nastav rychlost
00DD: MOVF 2E,W
00DE: MOVWF 43
00DF: CALL 09B
.................... }
00E0: BCF 0B.2
00E1: BCF 0A.3
00E2: GOTO 026
.................... }
....................
....................
.................... // Cteni dat z AD prevodniku, zadava se cislo kanalu
.................... int8 ReadAD(int8 Ch)
.................... {
.................... // Pokud merim Vref zapnu si jeho napajeni
.................... if (Ch==4) output_high(REFPOWER);
*
0178: MOVF 3C,W
0179: SUBLW 04
017A: BTFSS 03.2
017B: GOTO 180
017C: BSF 03.5
017D: BCF 06.1
017E: BCF 03.5
017F: BSF 06.1
....................
.................... // Inicializace a cislo kanalu
.................... ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
0180: MOVLW 30
0181: BSF 03.5
0182: MOVWF 1F
.................... ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
0183: BCF 03.5
0184: RLF 3C,W
0185: MOVWF 77
0186: RLF 77,F
0187: RLF 77,F
0188: MOVLW F8
0189: ANDWF 77,F
018A: MOVF 77,W
018B: ADDLW 41
018C: MOVWF 1F
....................
.................... // Mereni
.................... delay_us(50); // doba na prepnuti kanalu
018D: MOVLW 11
018E: MOVWF 77
018F: DECFSZ 77,F
0190: GOTO 18F
.................... ADCON0 |= 4; // start prevodu
0191: BSF 1F.2
.................... delay_us(50); // doba na prevod
0192: MOVLW 11
0193: MOVWF 77
0194: DECFSZ 77,F
0195: GOTO 194
....................
.................... // Vypnu napajeni Vref (vzdycky)
.................... output_low(REFPOWER);
0196: BSF 03.5
0197: BCF 06.1
0198: BCF 03.5
0199: BCF 06.1
....................
.................... // Navrat hodnoty
.................... return ADRESH;
019A: MOVF 1E,W
019B: MOVWF 78
019C: RETLW 00
.................... }
....................
....................
.................... void main()
.................... {
.................... unsigned int8 Debug;
.................... unsigned int8 i;
*
0204: CLRF 04
0205: MOVLW 1F
0206: ANDWF 03,F
0207: BSF 03.5
0208: CLRF 1F
0209: CLRF 1D
020A: MOVLW 07
020B: BCF 03.5
020C: MOVWF 1F
....................
.................... // Hodiny
.................... OSCCON = 0x62; // 4 MHz interni RC oscilator
020D: MOVLW 62
020E: BSF 03.5
020F: MOVWF 0F
....................
.................... // Digitalni vystupy
.................... output_low(PWM); // PWM vystup
0210: BCF 06.3
0211: BCF 03.5
0212: BCF 06.3
.................... output_low(MOTOR); // Proud do motoru
0213: BSF 03.5
0214: BCF 06.2
0215: BCF 03.5
0216: BCF 06.2
.................... output_low(REFPOWER); // Napajeni Vref
0217: BSF 03.5
0218: BCF 06.1
0219: BCF 03.5
021A: BCF 06.1
.................... port_b_pullups(TRUE); // Zbyvajici vyvody portu B
021B: BSF 03.5
021C: BCF 01.7
....................
.................... // Watch Dog
.................... PSA=0; // preddelic prirazen casovaci
021D: BCF 01.3
.................... WDTCON=0x0E; // Watch Dog cca 130ms
021E: MOVLW 0E
021F: BCF 03.5
0220: BSF 03.6
0221: MOVWF 05
....................
.................... // Analogove vstupy
.................... ANSEL = 0x1F; // AN0 az AN4
0222: MOVLW 1F
0223: BSF 03.5
0224: BCF 03.6
0225: MOVWF 1B
....................
.................... // nastaveni RS232
.................... InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
0226: BCF 03.5
0227: GOTO 0E3
....................
.................... // Pipnuti (a cekani)
.................... for (i=1;i<30;i++) // pocet 1/2 period
0228: MOVLW 01
0229: MOVWF 30
022A: MOVF 30,W
022B: SUBLW 1D
022C: BTFSS 03.0
022D: GOTO 245
.................... {
.................... int1 beep; // stavova promenna pro pipak
....................
.................... output_bit(BEEP0,beep);
022E: BTFSC 31.0
022F: GOTO 232
0230: BCF 05.6
0231: GOTO 233
0232: BSF 05.6
0233: BSF 03.5
0234: BCF 05.6
.................... beep=~beep;
0235: MOVLW 01
0236: BCF 03.5
0237: XORWF 31,F
.................... output_bit(BEEP1,beep);
0238: BTFSC 31.0
0239: GOTO 23C
023A: BCF 05.7
023B: GOTO 23D
023C: BSF 05.7
023D: BSF 03.5
023E: BCF 05.7
.................... delay_us(1000);
023F: MOVLW 01
0240: BCF 03.5
0241: MOVWF 3C
0242: CALL 0EF
.................... }
0243: INCF 30,F
0244: GOTO 22A
....................
.................... // Rozhodnuti o rezimu cinnosti
.................... Debug=0;
0245: CLRF 2F
.................... if (~input(SW0)) Debug|=1; // precti bit 0
0246: BSF 03.5
0247: BSF 06.7
0248: BCF 03.5
0249: BTFSC 06.7
024A: GOTO 24C
024B: BSF 2F.0
.................... if (~input(SW1)) Debug|=2; // precti bit 1
024C: BSF 03.5
024D: BSF 06.6
024E: BCF 03.5
024F: BTFSC 06.6
0250: GOTO 252
0251: BSF 2F.1
.................... output_low(SW0); // nastav L aby se snizila spotreba
0252: BSF 03.5
0253: BCF 06.7
0254: BCF 03.5
0255: BCF 06.7
.................... output_low(SW1); // na obou vstupech
0256: BSF 03.5
0257: BCF 06.6
0258: BCF 03.5
0259: BCF 06.6
....................
.................... // Zobrazeni rezimu
.................... printf(Putc,"\fMode:%d",Debug);
*
0049: BCF 0A.0
004A: BCF 0A.1
004B: BCF 0A.2
004C: ADDWF 02,F
004D: RETLW 0C
004E: RETLW 4D
004F: RETLW 6F
0050: RETLW 64
0051: RETLW 65
0052: RETLW 3A
0053: RETLW 25
0054: RETLW 64
0055: RETLW 00
*
0129: MOVF 3D,W
012A: MOVWF 77
012B: BTFSC 3D.7
012C: GOTO 131
012D: BTFSS 3E.2
012E: GOTO 13B
012F: MOVLW 20
0130: GOTO 136
0131: COMF 77,F
0132: INCF 77,F
0133: MOVF 77,W
0134: MOVWF 3D
0135: MOVLW 2D
0136: MOVWF 78
0137: MOVWF 40
0138: CALL 106
0139: BTFSS 3E.2
013A: BSF 3E.3
013B: MOVF 3D,W
013C: MOVWF 40
013D: MOVLW 64
013E: MOVWF 41
013F: CALL 114
0140: MOVF 77,W
0141: MOVWF 3D
0142: MOVF 78,W
0143: MOVLW 30
0144: BTFSS 03.2
0145: GOTO 14D
0146: BTFSC 3E.0
0147: BSF 3E.3
0148: BTFSC 3E.3
0149: GOTO 153
014A: BTFSC 3E.4
014B: MOVLW 20
014C: GOTO 14F
014D: BCF 3E.3
014E: BCF 3E.4
014F: ADDWF 78,F
0150: MOVF 78,W
0151: MOVWF 40
0152: CALL 106
0153: MOVF 3D,W
0154: MOVWF 40
0155: MOVLW 0A
0156: MOVWF 41
0157: CALL 114
0158: MOVF 77,W
0159: MOVWF 3D
015A: MOVF 78,W
015B: MOVLW 30
015C: BTFSS 03.2
015D: GOTO 162
015E: BTFSC 3E.3
015F: GOTO 166
0160: BTFSC 3E.4
0161: MOVLW 20
0162: ADDWF 78,F
0163: MOVF 78,W
0164: MOVWF 40
0165: CALL 106
0166: MOVLW 30
0167: ADDWF 3D,F
0168: MOVF 3D,W
0169: MOVWF 40
016A: CALL 106
016B: BCF 0A.3
016C: GOTO 269 (RETURN)
*
025A: CLRF 3C
025B: MOVF 3C,W
025C: CALL 049
025D: INCF 3C,F
025E: MOVWF 40
025F: CALL 106
0260: MOVLW 06
0261: SUBWF 3C,W
0262: BTFSS 03.2
0263: GOTO 25B
0264: MOVF 2F,W
0265: MOVWF 3D
0266: MOVLW 18
0267: MOVWF 3E
0268: GOTO 129
....................
.................... // Inicializace PWM
.................... PR2 = 0x1F; // perioda PWM casovace
0269: MOVLW 1F
026A: BSF 03.5
026B: MOVWF 12
.................... T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
026C: MOVLW 04
026D: BCF 03.5
026E: MOVWF 12
.................... CCP1CON = 0x0C; // PWM mode, lsb bity nulove
026F: MOVLW 0C
0270: MOVWF 17
.................... CCPR1L = 0; // na zacatku nulova data
0271: CLRF 15
.................... output_low(PWM); // PWM vystup
0272: BSF 03.5
0273: BCF 06.3
0274: BCF 03.5
0275: BCF 06.3
....................
.................... // Inicializace casovace
.................... InitT0(); // nastav casovac na cca 1ms
0276: GOTO 16D
....................
.................... // Test menice PWM a rozjezdoveho PWM
.................... if (Debug==1)
0277: DECFSZ 2F,W
0278: GOTO 2B0
.................... {
.................... unsigned int8 Data1; // poteniometr P1 = PWM
.................... unsigned int8 Data2; // poteniometr P2 = Rozjezd
....................
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0279: CLRWDT
....................
.................... // mereni vstupu
.................... Data1=ReadAD(0); // nacti parametr pro PWM
027A: CLRF 3C
027B: CALL 178
027C: MOVF 78,W
027D: MOVWF 32
.................... Data1>>=2; // redukuj rozsah na 0 az 63
027E: RRF 32,F
027F: RRF 32,F
0280: MOVLW 3F
0281: ANDWF 32,F
.................... Data2=ReadAD(1); // nacti parametr pro rozjezd
0282: MOVLW 01
0283: MOVWF 3C
0284: CALL 178
0285: MOVF 78,W
0286: MOVWF 33
.................... Data2>>=4; // redukuj rozsah na 0 az 15
0287: SWAPF 33,F
0288: MOVLW 0F
0289: ANDWF 33,F
....................
.................... // zobrazeni
.................... printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
*
0056: BCF 0A.0
0057: BCF 0A.1
0058: BCF 0A.2
0059: ADDWF 02,F
005A: RETLW 0A
005B: RETLW 50
005C: RETLW 57
005D: RETLW 4D
005E: RETLW 3A
005F: RETLW 25
0060: RETLW 30
0061: RETLW 33
0062: RETLW 75
0063: RETLW 20
0064: RETLW 52
0065: RETLW 55
0066: RETLW 4E
0067: RETLW 3A
0068: RETLW 25
0069: RETLW 30
006A: RETLW 33
006B: RETLW 75
006C: RETLW 00
*
019D: MOVF 78,W
019E: MOVF 3E,W
019F: MOVWF 40
01A0: MOVLW 64
01A1: MOVWF 41
01A2: CALL 114
01A3: MOVF 77,W
01A4: MOVWF 3E
01A5: MOVF 78,W
01A6: MOVLW 30
01A7: BTFSS 03.2
01A8: GOTO 1B0
01A9: BTFSC 3F.0
01AA: BSF 3F.3
01AB: BTFSC 3F.3
01AC: GOTO 1B6
01AD: BTFSC 3F.4
01AE: MOVLW 20
01AF: GOTO 1B2
01B0: BCF 3F.3
01B1: BCF 3F.4
01B2: ADDWF 78,F
01B3: MOVF 78,W
01B4: MOVWF 40
01B5: CALL 106
01B6: MOVF 3E,W
01B7: MOVWF 40
01B8: MOVLW 0A
01B9: MOVWF 41
01BA: CALL 114
01BB: MOVF 77,W
01BC: MOVWF 3E
01BD: MOVF 78,W
01BE: MOVLW 30
01BF: BTFSS 03.2
01C0: GOTO 1C5
01C1: BTFSC 3F.3
01C2: GOTO 1C9
01C3: BTFSC 3F.4
01C4: MOVLW 20
01C5: ADDWF 78,F
01C6: MOVF 78,W
01C7: MOVWF 40
01C8: CALL 106
01C9: MOVLW 30
01CA: ADDWF 3E,F
01CB: MOVF 3E,W
01CC: MOVWF 40
01CD: CALL 106
01CE: RETLW 00
*
028A: CLRF 3C
028B: MOVF 3C,W
028C: CALL 056
028D: INCF 3C,F
028E: MOVWF 40
028F: CALL 106
0290: MOVLW 05
0291: SUBWF 3C,W
0292: BTFSS 03.2
0293: GOTO 28B
0294: MOVF 32,W
0295: MOVWF 3E
0296: CLRF 3F
0297: CALL 19D
0298: MOVLW 09
0299: MOVWF 3D
029A: MOVF 3D,W
029B: CALL 056
029C: INCF 3D,F
029D: MOVWF 40
029E: CALL 106
029F: MOVLW 0E
02A0: SUBWF 3D,W
02A1: BTFSS 03.2
02A2: GOTO 29A
02A3: MOVF 33,W
02A4: MOVWF 3E
02A5: CLRF 3F
02A6: CALL 19D
.................... delay_ms(20);
02A7: MOVLW 14
02A8: MOVWF 3C
02A9: CALL 0EF
....................
.................... // nastaveni parametru PWM
.................... CCPR1L = Data1;
02AA: MOVF 32,W
02AB: MOVWF 15
....................
.................... // nastaveni parametru RUN
.................... MotorSet(Data2);
02AC: MOVF 33,W
02AD: MOVWF 3C
02AE: CALL 1CF
.................... }
02AF: GOTO 279
.................... }
....................
.................... // Testovani rozjezdu
.................... // Zadava se cas mezi stupni razeni pro rozjezd v ms
.................... if (Debug==2)
02B0: MOVF 2F,W
02B1: SUBLW 02
02B2: BTFSS 03.2
02B3: GOTO 300
.................... {
.................... int8 Data;
.................... int8 Start;
....................
.................... Start=0; // uvodni stav
02B4: CLRF 35
.................... while(1)
.................... {
.................... // Nacti a zobraz parametr
.................... Data=ReadAD(1); // potenciometr P2 = rozjezd
02B5: MOVLW 01
02B6: MOVWF 3C
02B7: CALL 178
02B8: MOVF 78,W
02B9: MOVWF 34
.................... printf(Putc,"\nRUN: %3ums ",Data); // zobraz
*
006D: BCF 0A.0
006E: BCF 0A.1
006F: BCF 0A.2
0070: ADDWF 02,F
0071: RETLW 0A
0072: RETLW 52
0073: RETLW 55
0074: RETLW 4E
0075: RETLW 3A
0076: RETLW 20
0077: RETLW 25
0078: RETLW 33
0079: RETLW 75
007A: RETLW 6D
007B: RETLW 73
007C: RETLW 20
007D: RETLW 00
*
02BA: CLRF 3C
02BB: MOVF 3C,W
02BC: CALL 06D
02BD: INCF 3C,F
02BE: MOVWF 40
02BF: CALL 106
02C0: MOVLW 06
02C1: SUBWF 3C,W
02C2: BTFSS 03.2
02C3: GOTO 2BB
02C4: MOVF 34,W
02C5: MOVWF 3E
02C6: MOVLW 10
02C7: MOVWF 3F
02C8: CALL 19D
02C9: MOVLW 6D
02CA: MOVWF 40
02CB: CALL 106
02CC: MOVLW 73
02CD: MOVWF 40
02CE: CALL 106
02CF: MOVLW 20
02D0: MOVWF 40
02D1: CALL 106
.................... delay_ms(10); // prodleva pro terminal
02D2: MOVLW 0A
02D3: MOVWF 3C
02D4: CALL 0EF
....................
.................... // Uvodni pauza
.................... if (Start==0) // spousti se 1x na zacatku
02D5: MOVF 35,F
02D6: BTFSS 03.2
02D7: GOTO 2DE
.................... {
.................... Start++; // dalsi stav je cekani
02D8: INCF 35,F
.................... TimerSet(2000); // na dokonceni uvodni prodlevy
02D9: MOVLW 07
02DA: MOVWF 3D
02DB: MOVLW D0
02DC: MOVWF 3C
02DD: CALL 1DB
.................... }
....................
.................... // Rozjezd
.................... if ((Start==1) && TimerIf())
02DE: DECFSZ 35,W
02DF: GOTO 2F0
02E0: CALL 1E2
02E1: MOVF 78,F
02E2: BTFSC 03.2
02E3: GOTO 2F0
.................... {
.................... Start++;
02E4: INCF 35,F
.................... printf(Putc,"R");
02E5: MOVLW 52
02E6: MOVWF 40
02E7: CALL 106
.................... MotorStart(Data); // rozjezd s nastavenim prodlevy
02E8: MOVF 34,W
02E9: MOVWF 3C
02EA: CALL 1F2
....................
.................... TimerSet(2000); // nastav celkovy cas jizdy
02EB: MOVLW 07
02EC: MOVWF 3D
02ED: MOVLW D0
02EE: MOVWF 3C
02EF: CALL 1DB
.................... }
....................
.................... // Zastaveni
.................... if ((Start==2) && TimerIf())
02F0: MOVF 35,W
02F1: SUBLW 02
02F2: BTFSS 03.2
02F3: GOTO 2FE
02F4: CALL 1E2
02F5: MOVF 78,F
02F6: BTFSC 03.2
02F7: GOTO 2FE
.................... {
.................... Start++;
02F8: INCF 35,F
.................... printf(Putc,"S");
02F9: MOVLW 53
02FA: MOVWF 40
02FB: CALL 106
.................... MotorSet(0); // pokud dobehl casovac zastav motor
02FC: CLRF 3C
02FD: CALL 1CF
.................... }
....................
.................... // watch dog
.................... restart_wdt();
02FE: CLRWDT
.................... }
02FF: GOTO 2B5
.................... }
....................
.................... // Test nabijeciho algoritmu
.................... if (Debug==3)
0300: MOVF 2F,W
0301: SUBLW 03
0302: BTFSS 03.2
0303: GOTO 35A
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
0304: CLRF 36
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0305: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
0306: CLRF 3C
0307: CALL 178
0308: MOVF 78,W
0309: MOVWF 37
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
030A: CLRF 3C
030B: CALL 178
030C: BCF 03.0
030D: RRF 78,W
030E: MOVWF 77
030F: ADDLW 32
0310: MOVWF 37
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0311: MOVLW 04
0312: MOVWF 3C
0313: CALL 178
0314: MOVF 78,W
0315: MOVWF 38
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
0316: MOVF 37,W
0317: SUBWF 38,W
0318: BTFSC 03.0
0319: GOTO 31F
031A: MOVF 36,W
031B: SUBLW 1D
031C: BTFSS 03.0
031D: GOTO 31F
031E: INCF 36,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
031F: MOVF 37,W
0320: SUBWF 38,W
0321: BTFSS 03.0
0322: GOTO 327
0323: MOVF 36,F
0324: BTFSC 03.2
0325: GOTO 327
0326: DECF 36,F
.................... Vref+=10;
0327: MOVLW 0A
0328: ADDWF 38,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
0329: MOVF 37,W
032A: SUBWF 38,W
032B: BTFSC 03.0
032C: GOTO 332
032D: MOVF 36,W
032E: SUBLW 1D
032F: BTFSS 03.0
0330: GOTO 332
0331: INCF 36,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0332: MOVF 36,W
0333: SUBLW 18
0334: BTFSC 03.0
0335: GOTO 338
0336: MOVLW 18
0337: MOVWF 36
.................... CCPR1L = PwmOut; // pouziti vystupu
0338: MOVF 36,W
0339: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
*
007E: BCF 0A.0
007F: BCF 0A.1
0080: BCF 0A.2
0081: ADDWF 02,F
0082: RETLW 0A
0083: RETLW 41
0084: RETLW 4C
0085: RETLW 47
0086: RETLW 3A
0087: RETLW 25
0088: RETLW 30
0089: RETLW 33
008A: RETLW 75
008B: RETLW 20
008C: RETLW 25
008D: RETLW 30
008E: RETLW 33
008F: RETLW 75
0090: RETLW 20
0091: RETLW 25
0092: RETLW 30
0093: RETLW 33
0094: RETLW 75
0095: RETLW 00
*
033A: CLRF 3C
033B: MOVF 3C,W
033C: CALL 07E
033D: INCF 3C,F
033E: MOVWF 40
033F: CALL 106
0340: MOVLW 05
0341: SUBWF 3C,W
0342: BTFSS 03.2
0343: GOTO 33B
0344: MOVF 37,W
0345: MOVWF 3E
0346: CLRF 3F
0347: CALL 19D
0348: MOVLW 20
0349: MOVWF 40
034A: CALL 106
034B: MOVF 38,W
034C: MOVWF 3E
034D: CLRF 3F
034E: CALL 19D
034F: MOVLW 20
0350: MOVWF 40
0351: CALL 106
0352: MOVF 36,W
0353: MOVWF 3E
0354: CLRF 3F
0355: CALL 19D
.................... delay_ms(10);
0356: MOVLW 0A
0357: MOVWF 3C
0358: CALL 0EF
.................... }
0359: GOTO 305
.................... }
....................
.................... // Standardni beh
.................... if (Debug==0)
035A: MOVF 2F,F
035B: BTFSS 03.2
035C: GOTO 3C3
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
.................... int1 Run;
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
035D: CLRF 39
.................... TimerSet(14000); // casovani startu
035E: MOVLW 36
035F: MOVWF 3D
0360: MOVLW B0
0361: MOVWF 3C
0362: CALL 1DB
.................... Run=1;
0363: BSF 31.1
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0364: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
0365: CLRF 3C
0366: CALL 178
0367: MOVF 78,W
0368: MOVWF 3A
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
0369: CLRF 3C
036A: CALL 178
036B: BCF 03.0
036C: RRF 78,W
036D: MOVWF 77
036E: ADDLW 32
036F: MOVWF 3A
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0370: MOVLW 04
0371: MOVWF 3C
0372: CALL 178
0373: MOVF 78,W
0374: MOVWF 3B
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
0375: MOVF 3A,W
0376: SUBWF 3B,W
0377: BTFSC 03.0
0378: GOTO 37E
0379: MOVF 39,W
037A: SUBLW 1D
037B: BTFSS 03.0
037C: GOTO 37E
037D: INCF 39,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
037E: MOVF 3A,W
037F: SUBWF 3B,W
0380: BTFSS 03.0
0381: GOTO 386
0382: MOVF 39,F
0383: BTFSC 03.2
0384: GOTO 386
0385: DECF 39,F
.................... Vref+=10;
0386: MOVLW 0A
0387: ADDWF 3B,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
0388: MOVF 3A,W
0389: SUBWF 3B,W
038A: BTFSC 03.0
038B: GOTO 391
038C: MOVF 39,W
038D: SUBLW 1D
038E: BTFSS 03.0
038F: GOTO 391
0390: INCF 39,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0391: MOVF 39,W
0392: SUBLW 18
0393: BTFSC 03.0
0394: GOTO 397
0395: MOVLW 18
0396: MOVWF 39
.................... CCPR1L = PwmOut; // pouziti vystupu
0397: MOVF 39,W
0398: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
0399: CLRF 3C
039A: MOVF 3C,W
039B: CALL 07E
039C: INCF 3C,F
039D: MOVWF 40
039E: CALL 106
039F: MOVLW 05
03A0: SUBWF 3C,W
03A1: BTFSS 03.2
03A2: GOTO 39A
03A3: MOVF 3A,W
03A4: MOVWF 3E
03A5: CLRF 3F
03A6: CALL 19D
03A7: MOVLW 20
03A8: MOVWF 40
03A9: CALL 106
03AA: MOVF 3B,W
03AB: MOVWF 3E
03AC: CLRF 3F
03AD: CALL 19D
03AE: MOVLW 20
03AF: MOVWF 40
03B0: CALL 106
03B1: MOVF 39,W
03B2: MOVWF 3E
03B3: CLRF 3F
03B4: CALL 19D
.................... delay_ms(10);
03B5: MOVLW 0A
03B6: MOVWF 3C
03B7: CALL 0EF
....................
.................... // rozjezd
.................... if (TimerIf()&&Run)
03B8: CALL 1E2
03B9: MOVF 78,F
03BA: BTFSC 03.2
03BB: GOTO 3C2
03BC: BTFSS 31.1
03BD: GOTO 3C2
.................... {
.................... Run=0;
03BE: BCF 31.1
.................... MotorStart(65);
03BF: MOVLW 41
03C0: MOVWF 3C
03C1: CALL 1F2
.................... }
.................... }
03C2: GOTO 364
.................... }
.................... }
....................
03C3: SLEEP
/Aparatus/DART01B/SW/1_00/DART_.C
0,0 → 1,430
// DART01A verze programu 1.00
// (c)miho 2005
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232 (pro ladici vystupy)
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
// Parametrem je prodleva mezi razenim rychlosti v ms
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu (na ladici seriovy vystup)
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// Test menice PWM a rozjezdoveho PWM
// ==================================
// P1 nastavuje primo stridu hlavniho PWM menice
// P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
// Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// Testovani rozjezdu
// ==================
// P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
// Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN: %3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// Test nabijeciho algoritmu
// =========================
// P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
// Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
// algoritmus jako pro standardni beh
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// Standardni beh
// ==============
// P1 nastavuje pozadovane napeti na clancich
// Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
// rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int1 Run;
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(65);
}
}
}
}
/Aparatus/DART01B/SW/1_00/LIB/16f88.h
0,0 → 1,216
//////// Header file for the PIC16F88
#device PIC16F88
#nolist
//////// Program memory: 4096x14 Data RAM: 368 Stack: 8
//////// I/O: 16 Analog Pins: 7
//////// Data EEPROM: 256
//////// C Scratch area: 77 ID Location: 2000
// Fuses:
// Oscilator: LP - oscilator LP
// XT - oscilator XT
// HS - oscilator HS
// EC_IO - externi vstup, RA6/CLKO je IO port
// INTRC - RC oscilator, RA6/CLKO je CLKO, RA7/CLKI je IO port port,
// INTRC_IO - RC oscilator, RA6 i RA7 je IO port
// RC - ext RC, RA6/CLKO je CLKO
// RC_IO - ext RC, RA6 je IO port
// Watch: NOWDT - neni watchog
// WDT - je watchdog
// PUT: NOPUT - neni power up timer
// PUT - je power up timer
// MCLR: MCLR - RA5/MCLR je MCLR
// NOMCLR - RA5/MCLR je IO port
// BOR: BROWNOUT - BOR povolen
// NOBROWNOUT - BOR zakazan
// LVP: LVP - RB3/PGM je PGM
// NOLVP - RB3/PGM je IO port
// CPD: CPD - je ochrana EEPROM
// NOCPD - neni ochrana EEPROM
// WRT WRT - zakaz zapisu do pameti programu
// NOWRT - povolen zapis do pameti programu
// DEBUG: DEBUG - RB6 a RB7 jsou ICD port
// NODEBUG - RB6 a RB7 jsou IO port
// CCPMX: CCPB0 - CCP/PWM na RB0
// CCPB3 - CCP/PWM na RB3
// CP: PROTECT - pamet programu je chranena
// NOPROTECT - pamet programu neni chranena
//
 
////////////////////////////////////////////////////////////////// I/O
// Discrete I/O Functions: SET_TRIS_x(), OUTPUT_x(), INPUT_x(),
// PORT_B_PULLUPS(), INPUT(),
// OUTPUT_LOW(), OUTPUT_HIGH(),
// OUTPUT_FLOAT(), OUTPUT_BIT()
// Constants used to identify pins in the above are:
 
 
 
#define PIN_A0 40
#define PIN_A1 41
#define PIN_A2 42
#define PIN_A3 43
#define PIN_A4 44
#define PIN_A5 45
#define PIN_A6 46
#define PIN_A7 47
 
#define PIN_B0 48
#define PIN_B1 49
#define PIN_B2 50
#define PIN_B3 51
#define PIN_B4 52
#define PIN_B5 53
#define PIN_B6 54
#define PIN_B7 55
 
////////////////////////////////////////////////////////////////// Useful defines
#define FALSE 0
#define TRUE 1
 
#define BYTE int
#define BOOLEAN short int
 
#define getc getch
#define fgetc getch
#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts
 
////////////////////////////////////////////////////////////////// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART_CAUSE()
// Constants returned from RESTART_CAUSE() are:
#define WDT_FROM_SLEEP 0
#define WDT_TIMEOUT 8
#define MCLR_FROM_SLEEP 16
#define NORMAL_POWER_UP 24
 
 
////////////////////////////////////////////////////////////////// Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER0(),
// SET_TIMER0() or SET_RTCC(),
// GET_TIMER0() or GET_RTCC()
// Constants used for SETUP_TIMER0() are:
#define RTCC_INTERNAL 0
#define RTCC_EXT_L_TO_H 32
#define RTCC_EXT_H_TO_L 48
 
#define RTCC_DIV_1 8
#define RTCC_DIV_2 0
#define RTCC_DIV_4 1
#define RTCC_DIV_8 2
#define RTCC_DIV_16 3
#define RTCC_DIV_32 4
#define RTCC_DIV_64 5
#define RTCC_DIV_128 6
#define RTCC_DIV_256 7
 
 
#define RTCC_8_BIT 0
 
// Constants used for SETUP_COUNTERS() are the above
// constants for the 1st param and the following for
// the 2nd param:
 
////////////////////////////////////////////////////////////////// WDT
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT()
//
#define WDT_18MS 8
#define WDT_36MS 9
#define WDT_72MS 10
#define WDT_144MS 11
#define WDT_288MS 12
#define WDT_576MS 13
#define WDT_1152MS 14
#define WDT_2304MS 15
 
////////////////////////////////////////////////////////////////// Timer 1
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1, SET_TIMER1
// Constants used for SETUP_TIMER_1() are:
// (or (via |) together constants from each group)
#define T1_DISABLED 0
#define T1_INTERNAL 0x85
#define T1_EXTERNAL 0x87
#define T1_EXTERNAL_SYNC 0x83
 
#define T1_CLK_OUT 8
 
#define T1_DIV_BY_1 0
#define T1_DIV_BY_2 0x10
#define T1_DIV_BY_4 0x20
#define T1_DIV_BY_8 0x30
 
////////////////////////////////////////////////////////////////// Timer 2
// Timer 2 Functions: SETUP_TIMER_2, GET_TIMER2, SET_TIMER2
// Constants used for SETUP_TIMER_2() are:
#define T2_DISABLED 0
#define T2_DIV_BY_1 4
#define T2_DIV_BY_4 5
#define T2_DIV_BY_16 6
 
////////////////////////////////////////////////////////////////// CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY
// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH
// Constants used for SETUP_CCPx() are:
#define CCP_OFF 0
#define CCP_CAPTURE_FE 4
#define CCP_CAPTURE_RE 5
#define CCP_CAPTURE_DIV_4 6
#define CCP_CAPTURE_DIV_16 7
#define CCP_COMPARE_SET_ON_MATCH 8
#define CCP_COMPARE_CLR_ON_MATCH 9
#define CCP_COMPARE_INT 0xA
#define CCP_COMPARE_RESET_TIMER 0xB
#define CCP_PWM 0xC
#define CCP_PWM_PLUS_1 0x1c
#define CCP_PWM_PLUS_2 0x2c
#define CCP_PWM_PLUS_3 0x3c
long CCP_1;
#byte CCP_1 = 0x15
#byte CCP_1_LOW= 0x15
#byte CCP_1_HIGH= 0x16
////////////////////////////////////////////////////////////////// COMP
// Comparator Variables: C1OUT, C2OUT
// Constants used in setup_comparators() are:
#define A0_A3_A1_A2 4
#define A0_A2_A1_A2 3
#define NC_NC_A1_A2 5
#define NC_NC_NC_NC 7
#define A0_VR_A1_VR 2
#define A3_VR_A2_VR 10
#define A0_A2_A1_A2_OUT_ON_A3_A4 6
#define A3_A2_A1_A2 9
 
//#bit C1OUT = 0x1f.6
//#bit C2OUT = 0x1f.7
 
////////////////////////////////////////////////////////////////// VREF
// Constants used in setup_vref() are:
#define VREF_LOW 0xa0
#define VREF_HIGH 0x80
#define VREF_A2 0x40
 
////////////////////////////////////////////////////////////////// INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),
// EXT_INT_EDGE()
//
// Constants used in EXT_INT_EDGE() are:
#define L_TO_H 0x40
#define H_TO_L 0
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:
#define GLOBAL 0x0BC0
#define INT_RTCC 0x0B20
#define INT_RB 0x0B08
#define INT_EXT 0x0B10
#define INT_TBE 0x8C10
#define INT_RDA 0x8C20
#define INT_TIMER1 0x8C01
#define INT_TIMER2 0x8C02
#define INT_CCP1 0x8C04
#define INT_SSP 0x8C08
#define INT_COMP 0x8D40
#define INT_EEPROM 0x8D10
#define INT_TIMER0 0x0B20
#list
/Aparatus/DART01B/SW/1_00/LIB/16f88_reg.h
0,0 → 1,314
#nolist
//
// Komplete definition of all Special Feature Registers for CCS C compiler
//
// PIC16F87
// PIC16F88
//
// (c)miho 2005
//
// History:
//
// 1.00 First Version, not verified yet
 
 
// SFR Registers in Memory Bank 0
//
#byte INDF = 0x00
#byte TMR0 = 0x01
#byte PCL = 0x02
#byte STATUS = 0x03
#bit IRP = STATUS.7
#bit RP1 = STATUS.6
#bit RP0 = STATUS.5
#bit TO = STATUS.4
#bit PD = STATUS.3
#bit Z = STATUS.2
#bit DC = STATUS.1
#bit C = STATUS.0
#byte FSR = 0x04
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PCLATH = 0x0A
#byte INTCON = 0x0B
#bit GIE = INTCON.7
#bit PEIE = INTCON.6
#bit TMR0IE = INTCON.5
#bit INT0IE = INTCON.4
#bit RBIE = INTCON.3
#bit TMR0IF = INTCON.2
#bit INT0IF = INTCON.1
#bit RBIF = INTCON.0
#byte PIR1 = 0x0C
#bit ADIF = PIR1.6
#bit RCIF = PIR1.5
#bit TXIF = PIR1.4
#bit SSPIF = PIR1.3
#bit CCP1IF = PIR1.2
#bit TMR2IF = PIR1.1
#bit TMR1IF = PIR1.0
#byte PIR2 = 0x0D
#bit OSFIF = PIR2.7
#bit CMIF = PIR2.6
#bit EEIF = PIR2.4
#byte TMR1L = 0x0E
#byte TMR1H = 0x0F
#byte T1CON = 0x10
#bit T1RUN = T1CON.6
#bit T1CKPS1 = T1CON.5
#bit T1CKPS0 = T1CON.4
#bit T1OSCEN = T1CON.3
#bit T1SYNC = T1CON.2
#bit TMR1CS = T1CON.1
#bit TMR1ON = T1CON.0
#byte TMR2 = 0x11
#byte T2CON = 0x12
#bit TOUTPS3 = T2CON.6
#bit TOUTPS2 = T2CON.5
#bit TOUTPS1 = T2CON.4
#bit TOUTPS0 = T2CON.3
#bit TMR2ON = T2CON.2
#bit T2CKPS1 = T2CON.1
#bit T2CKPS0 = T2CON.0
#byte SSPBUF = 0x13
#byte SSPCON1 = 0x14
#bit WCOL = SSPCON1.7
#bit SSPOV = SSPCON1.6
#bit SSPEN = SSPCON1.5
#bit CKP = SSPCON1.4
#bit SSPM3 = SSPCON1.3
#bit SSPM2 = SSPCON1.2
#bit SSPM1 = SSPCON1.1
#bit SSPM0 = SSPCON1.0
#byte CCPR1L = 0x15
#byte CCPR1H = 0x16
#byte CCP1CON = 0x17
#bit CCP1X = CCP1CON.5
#bit CCP1Y = CCP1CON.4
#bit CCP1M3 = CCP1CON.3
#bit CCP1M2 = CCP1CON.2
#bit CCP1M1 = CCP1CON.1
#bit CCP1M0 = CCP1CON.0
#byte RCSTA = 0x18
#bit SPEN = RCSTA.7
#bit RX9 = RCSTA.6
#bit SREN = RCSTA.5
#bit CREN = RCSTA.4
#bit ADDEN = RCSTA.3
#bit FERR = RCSTA.2
#bit OERR = RCSTA.1
#bit RX9D = RCSTA.0
#byte TXREG = 0x19
#byte RCREG = 0x1A
#byte ADRESH = 0x1E // F88 only
#byte ADCON0 = 0x1F // F88 only
#bit ADCS1 = ADCON0.7
#bit ADCS0 = ADCON0.6
#bit CHS2 = ADCON0.5
#bit CHS1 = ADCON0.4
#bit CHS0 = ADCON0.3
#bit GO = ADCON0.2
#bit ADON = ADCON0.0
 
 
// SFR Registers in Memory Bank 1
//
#byte INDF_1 = 0x80 // miror
#byte OPTION = 0x81
#bit RBPU = OPTION.7
#bit INTEDG = OPTION.6
#bit T0CS = OPTION.5
#bit T0SE = OPTION.4
#bit PSA = OPTION.3
#bit PS2 = OPTION.2
#bit PS1 = OPTION.1
#bit PS0 = OPTION.0
#byte PCL = 0x82
#byte STATUS_1 = 0x83 // mirror
#bit IRP_1 = STATUS_1.7
#bit RP1_1 = STATUS_1.6
#bit RP0_1 = STATUS_1.5
#bit TO_1 = STATUS_1.4
#bit PD_1 = STATUS_1.3
#bit Z_1 = STATUS_1.2
#bit DC_1 = STATUS_1.1
#bit C_1 = STATUS_1.0
#byte FSR = 0x84
#byte TRISA = 0x85
#byte TRISB = 0x86
#byte PCLATH_1 = 0x8A // mirror
#byte INTCON_1 = 0x8B // mirror
#bit GIE_1 = INTCON_1.7
#bit PEIE_1 = INTCON_1.6
#bit TMR0IE_1 = INTCON_1.5
#bit INT0IE_1 = INTCON_1.4
#bit RBIE_1 = INTCON_1.3
#bit TMR0IF_1 = INTCON_1.2
#bit INT0IF_1 = INTCON_1.1
#bit RBIF_1 = INTCON_1.0
#byte PIE1 = 0x8C
#bit ADIE = PIE1.6
#bit RCIE = PIE1.5
#bit TXIE = PIE1.4
#bit SSPIE = PIE1.3
#bit CCP1IE = PIE1.2
#bit TMR2IE = PIE1.1
#bit TMR1IE = PIE1.0
#byte PIE2 = 0x8D
#bit OSFIE = PIE2.7
#bit CMIE = PIE2.6
#bit EEIE = PIE2.4
#byte PCON = 0x8E
#bit POR = PCON.1
#bit BOR = PCON.0
#byte OSCCON = 0x8F
#bit IRCF2 = OSCCON.6
#bit IRCF1 = OSCCON.5
#bit IRCF0 = OSCCON.4
#bit OSTS = OSCCON.3
#bit IOFS = OSCCON.2
#bit SCS1 = OSCCON.1
#bit SCS0 = OSCCON.0
#byte OSCTUNE = 0x90
#bit TUN5 = OSCTUNE.5
#bit TUN4 = OSCTUNE.4
#bit TUN3 = OSCTUNE.3
#bit TUN2 = OSCTUNE.2
#bit TUN1 = OSCTUNE.1
#bit TUN0 = OSCTUNE.0
#byte PR2 = 0x92
#byte SSPADD = 0x93
#byte SSPSTAT = 0x94
#bit SMP = SSPSTAT.7
#bit CKE = SSPSTAT.6
#bit DA = SSPSTAT.5
#bit P = SSPSTAT.4
#bit S = SSPSTAT.3
#bit RW = SSPSTAT.2
#bit UA = SSPSTAT.1
#bit BF = SSPSTAT.0
#byte TXSTA = 0x98
#bit CSRC = TXSTA.7
#bit TX9 = TXSTA.6
#bit TXEN = TXSTA.5
#bit SYNC = TXSTA.4
#bit BRGH = TXSTA.2
#bit TRMT = TXSTA.1
#bit TX9D = TXSTA.0
#byte SPBRG = 0x99
#byte ANSEL = 0x9B // F88 only
#bit ANS6 = ANSEL.6
#bit ANS5 = ANSEL.5
#bit ANS4 = ANSEL.4
#bit ANS3 = ANSEL.3
#bit ANS2 = ANSEL.2
#bit ANS1 = ANSEL.1
#bit ANS0 = ANSEL.0
#byte CMCON = 0x9C
#bit C2OUT = CMCON.7
#bit C1OUT = CMCON.6
#bit C2INV = CMCON.5
#bit C1INV = CMCON.4
#bit CIS = CMCON.3
#bit CM2 = CMCON.2
#bit CM1 = CMCON.1
#bit CM0 = CMCON.0
#byte CVRCON = 0x9D
#bit CVREN = CVRCON.7
#bit CVROE = CVRCON.6
#bit CVRR = CVRCON.5
#bit CVR3 = CVRCON.3
#bit CVR2 = CVRCON.2
#bit CVR1 = CVRCON.1
#bit CVR0 = CVRCON.0
#byte ADRESL = 0x9E // F88 only
#byte ADCON1 = 0x9F // F88 only
#bit ADFM = ADCON1.7
#bit ADCS2 = ADCON1.6
#bit VCFG1 = ADCON1.5
#bit VCFG0 = ADCON1.4
 
 
// SFR Registers in Memory Bank 2
//
#byte INDF_2 = 0x100 // mirror
#byte TMR0_2 = 0x101 // mirror
#byte PCL_2 = 0x102 // mirror
#byte STATUS_2 = 0x103 // mirror
#bit IRP_2 = STATUS_2.7
#bit RP1_2 = STATUS_2.6
#bit RP0_2 = STATUS_2.5
#bit TO_2 = STATUS_2.4
#bit PD_2 = STATUS_2.3
#bit Z_2 = STATUS_2.2
#bit DC_2 = STATUS_2.1
#bit C_2 = STATUS_2.0
#byte FSR_2 = 0x104 // mirror
#byte WDTCON = 0x105
#bit WDTPS3 = WDTCON.4
#bit WDTPS2 = WDTCON.3
#bit WDTPS1 = WDTCON.2
#bit WDTPS0 = WDTCON.1
#bit SWDTEN = WDTCON.0
#byte PORTB_2 = 0x106 // mirror
#byte PCLATH_2 = 0x10A // mirror
#byte INTCON_2 = 0x10B // mirror
#bit GIE_2 = INTCON_2.7
#bit PEIE_2 = INTCON_2.6
#bit TMR0IE_2 = INTCON_2.5
#bit INT0IE_2 = INTCON_2.4
#bit RBIE_2 = INTCON_2.3
#bit TMR0IF_2 = INTCON_2.2
#bit INT0IF_2 = INTCON_2.1
#bit RBIF_2 = INTCON_2.0
#byte EEDATA = 0x10C
#byte EEADR = 0x10D
#byte EEDATH = 0x10E
#byte EEADRH = 0x10F
 
 
// SFR Registers in Memory Bank 3
//
#byte INDF_3 = 0x180 // mirror
#byte OPTION_3 = 0x181 // mirror
#bit RBPU_3 = OPTION_3.7
#bit INTEDG_3 = OPTION_3.6
#bit T0CS_3 = OPTION_3.5
#bit T0SE_3 = OPTION_3.4
#bit PSA_3 = OPTION_3.3
#bit PS2_3 = OPTION_3.2
#bit PS1_3 = OPTION_3.1
#bit PS0_3 = OPTION_3.0
#byte PCL_3 = 0x182 // mirror
#byte STATUS_3 = 0x183 // mirror
#bit IRP_3 = STATUS_3.7
#bit RP1_3 = STATUS_3.6
#bit RP0_3 = STATUS_3.5
#bit TO_3 = STATUS_3.4
#bit PD_3 = STATUS_3.3
#bit Z_3 = STATUS_3.2
#bit DC_3 = STATUS_3.1
#bit C_3 = STATUS_3.0
#byte FSR_3 = 0x184 // mirror
#byte TRISB_3 = 0x186 // mirror
#byte PLATH_3 = 0x18A // mirror
#byte INTCON_3 = 0x18B // mirror
#bit GIE_3 = INTCON_3.7
#bit PEIE_3 = INTCON_3.6
#bit TMR0IE_3 = INTCON_3.5
#bit INT0IE_3 = INTCON_3.4
#bit RBIE_3 = INTCON_3.3
#bit TMR0IF_3 = INTCON_3.2
#bit INT0IF_3 = INTCON_3.1
#bit RBIF_3 = INTCON_3.0
#byte EECON1 = 0x18C
#bit EEPGD = EECON1.7
#bit FREE = EECON1.4
#bit WRERR = EECON1.3
#bit WREN = EECON1.2
#bit WR = EECON1.1
#bit RD = EECON1.0
#byte EECON2 = 0x18D
 
 
#list