1,17 → 1,17 |
CCS PCM C Compiler, Version 4.106, 47914 26-VIII-13 19:04 |
CCS PCM C Compiler, Version 4.106, 47914 03-IX-13 00:32 |
|
Filename: Z:\home\kaklik\svnMLAB\Designs\Measuring_instruments\GeoMet01A\SW\PIC16F887\main.lst |
Filename: D:\MLAB\Designs\Measuring_instruments\GeoMet01A\SW\PIC16F887\main.lst |
|
ROM used: 2940 words (36%) |
ROM used: 3183 words (39%) |
Largest free fragment is 2048 |
RAM used: 21 (6%) at main() level |
46 (12%) worst case |
RAM used: 27 (7%) at main() level |
52 (14%) worst case |
Stack: 5 locations |
|
* |
0000: MOVLW 0A |
0001: MOVWF 0A |
0002: GOTO 228 |
0002: GOTO 2B7 |
0003: NOP |
.................... #include "main.h" |
.................... #include <16F887.h> |
37,171 → 37,172 |
.................... |
.................... #use delay(clock=8000000) |
* |
0078: MOVLW 3D |
0079: MOVWF 04 |
007A: BCF 03.7 |
007B: MOVF 00,W |
007C: BTFSC 03.2 |
007D: GOTO 08B |
007E: MOVLW 02 |
007F: MOVWF 78 |
0080: CLRF 77 |
0081: DECFSZ 77,F |
0082: GOTO 081 |
0083: DECFSZ 78,F |
0084: GOTO 080 |
0085: MOVLW 97 |
0086: MOVWF 77 |
0087: DECFSZ 77,F |
0088: GOTO 087 |
0089: DECFSZ 00,F |
008A: GOTO 07E |
008B: RETURN |
00FB: MOVLW 43 |
00FC: MOVWF 04 |
00FD: BCF 03.7 |
00FE: MOVF 00,W |
00FF: BTFSC 03.2 |
0100: GOTO 10E |
0101: MOVLW 02 |
0102: MOVWF 78 |
0103: CLRF 77 |
0104: DECFSZ 77,F |
0105: GOTO 104 |
0106: DECFSZ 78,F |
0107: GOTO 103 |
0108: MOVLW 97 |
0109: MOVWF 77 |
010A: DECFSZ 77,F |
010B: GOTO 10A |
010C: DECFSZ 00,F |
010D: GOTO 101 |
010E: RETURN |
.................... #use i2c(master, sda=PIN_C4, scl=PIN_C3) |
* |
0202: MOVLW 08 |
0203: MOVWF 78 |
0204: NOP |
0205: BCF 07.3 |
0206: BCF 20.3 |
0207: MOVF 20,W |
0208: BSF 03.5 |
0209: MOVWF 07 |
020A: NOP |
020B: BCF 03.5 |
020C: RLF 34,F |
020D: BCF 07.4 |
020E: BTFSS 03.0 |
020F: GOTO 216 |
0210: BSF 20.4 |
0211: MOVF 20,W |
0212: BSF 03.5 |
0213: MOVWF 07 |
0214: GOTO 21A |
0215: BCF 03.5 |
0216: BCF 20.4 |
0217: MOVF 20,W |
0218: BSF 03.5 |
0219: MOVWF 07 |
021A: NOP |
021B: BCF 03.5 |
021C: BSF 20.3 |
021D: MOVF 20,W |
021E: BSF 03.5 |
021F: MOVWF 07 |
0220: BCF 03.5 |
0221: BTFSS 07.3 |
0222: GOTO 221 |
0223: DECFSZ 78,F |
0224: GOTO 204 |
0225: NOP |
0226: BCF 07.3 |
0227: BCF 20.3 |
0228: MOVF 20,W |
0229: BSF 03.5 |
022A: MOVWF 07 |
022B: NOP |
022C: BCF 03.5 |
022D: BSF 20.4 |
022E: MOVF 20,W |
022F: BSF 03.5 |
0230: MOVWF 07 |
0231: NOP |
0232: NOP |
0233: BCF 03.5 |
0234: BSF 20.3 |
0235: MOVF 20,W |
0236: BSF 03.5 |
0237: MOVWF 07 |
0238: BCF 03.5 |
0239: BTFSS 07.3 |
023A: GOTO 239 |
023B: CLRF 78 |
023C: NOP |
023D: BTFSC 07.4 |
023E: BSF 78.0 |
023F: BCF 07.3 |
0240: BCF 20.3 |
0241: MOVF 20,W |
0242: BSF 03.5 |
0243: MOVWF 07 |
0244: BCF 03.5 |
0245: BCF 07.4 |
0246: BCF 20.4 |
0247: MOVF 20,W |
0248: BSF 03.5 |
0249: MOVWF 07 |
024A: BCF 03.5 |
024B: RETURN |
024C: MOVLW 08 |
024D: MOVWF 35 |
024E: MOVF 77,W |
024F: MOVWF 36 |
0250: BSF 20.4 |
0251: MOVF 20,W |
0252: BSF 03.5 |
0253: MOVWF 07 |
0254: NOP |
0255: BCF 03.5 |
0256: BSF 20.3 |
0257: MOVF 20,W |
0258: BSF 03.5 |
0259: MOVWF 07 |
025A: BCF 03.5 |
025B: BTFSS 07.3 |
025C: GOTO 25B |
025D: BTFSC 07.4 |
025E: BSF 03.0 |
025F: BTFSS 07.4 |
0260: BCF 03.0 |
0261: RLF 78,F |
0262: NOP |
0263: BCF 20.3 |
0264: MOVF 20,W |
0265: BSF 03.5 |
0266: MOVWF 07 |
0267: BCF 03.5 |
0268: BCF 07.3 |
0269: DECFSZ 35,F |
026A: GOTO 250 |
026B: BSF 20.4 |
026C: MOVF 20,W |
026D: BSF 03.5 |
026E: MOVWF 07 |
026F: NOP |
0270: BCF 03.5 |
0271: BCF 07.4 |
0272: MOVF 36,W |
0273: BTFSC 03.2 |
0274: GOTO 27A |
0275: BCF 20.4 |
0276: MOVF 20,W |
0277: BSF 03.5 |
0278: MOVWF 07 |
0279: BCF 03.5 |
027A: NOP |
027B: BSF 20.3 |
027C: MOVF 20,W |
027D: BSF 03.5 |
027E: MOVWF 07 |
027F: BCF 03.5 |
0280: BTFSS 07.3 |
0281: GOTO 280 |
0282: NOP |
0283: BCF 07.3 |
0284: BCF 20.3 |
0285: MOVF 20,W |
0286: BSF 03.5 |
0287: MOVWF 07 |
0288: NOP |
0289: BCF 03.5 |
028A: BCF 07.4 |
028B: BCF 20.4 |
028C: MOVF 20,W |
028D: BSF 03.5 |
028E: MOVWF 07 |
028F: BCF 03.5 |
0290: RETURN |
0078: MOVLW 08 |
0079: MOVWF 78 |
007A: NOP |
007B: BCF 07.3 |
007C: BCF 20.3 |
007D: MOVF 20,W |
007E: BSF 03.5 |
007F: MOVWF 07 |
0080: NOP |
0081: BCF 03.5 |
0082: RLF 3B,F |
0083: BCF 07.4 |
0084: BTFSS 03.0 |
0085: GOTO 08C |
0086: BSF 20.4 |
0087: MOVF 20,W |
0088: BSF 03.5 |
0089: MOVWF 07 |
008A: GOTO 090 |
008B: BCF 03.5 |
008C: BCF 20.4 |
008D: MOVF 20,W |
008E: BSF 03.5 |
008F: MOVWF 07 |
0090: NOP |
0091: BCF 03.5 |
0092: BSF 20.3 |
0093: MOVF 20,W |
0094: BSF 03.5 |
0095: MOVWF 07 |
0096: BCF 03.5 |
0097: BTFSS 07.3 |
0098: GOTO 097 |
0099: DECFSZ 78,F |
009A: GOTO 07A |
009B: NOP |
009C: BCF 07.3 |
009D: BCF 20.3 |
009E: MOVF 20,W |
009F: BSF 03.5 |
00A0: MOVWF 07 |
00A1: NOP |
00A2: BCF 03.5 |
00A3: BSF 20.4 |
00A4: MOVF 20,W |
00A5: BSF 03.5 |
00A6: MOVWF 07 |
00A7: NOP |
00A8: NOP |
00A9: BCF 03.5 |
00AA: BSF 20.3 |
00AB: MOVF 20,W |
00AC: BSF 03.5 |
00AD: MOVWF 07 |
00AE: BCF 03.5 |
00AF: BTFSS 07.3 |
00B0: GOTO 0AF |
00B1: CLRF 78 |
00B2: NOP |
00B3: BTFSC 07.4 |
00B4: BSF 78.0 |
00B5: BCF 07.3 |
00B6: BCF 20.3 |
00B7: MOVF 20,W |
00B8: BSF 03.5 |
00B9: MOVWF 07 |
00BA: BCF 03.5 |
00BB: BCF 07.4 |
00BC: BCF 20.4 |
00BD: MOVF 20,W |
00BE: BSF 03.5 |
00BF: MOVWF 07 |
00C0: BCF 03.5 |
00C1: RETURN |
* |
0285: MOVLW 08 |
0286: MOVWF 3C |
0287: MOVF 77,W |
0288: MOVWF 3D |
0289: BSF 20.4 |
028A: MOVF 20,W |
028B: BSF 03.5 |
028C: MOVWF 07 |
028D: NOP |
028E: BCF 03.5 |
028F: BSF 20.3 |
0290: MOVF 20,W |
0291: BSF 03.5 |
0292: MOVWF 07 |
0293: BCF 03.5 |
0294: BTFSS 07.3 |
0295: GOTO 294 |
0296: BTFSC 07.4 |
0297: BSF 03.0 |
0298: BTFSS 07.4 |
0299: BCF 03.0 |
029A: RLF 78,F |
029B: NOP |
029C: BCF 20.3 |
029D: MOVF 20,W |
029E: BSF 03.5 |
029F: MOVWF 07 |
02A0: BCF 03.5 |
02A1: BCF 07.3 |
02A2: DECFSZ 3C,F |
02A3: GOTO 289 |
02A4: BSF 20.4 |
02A5: MOVF 20,W |
02A6: BSF 03.5 |
02A7: MOVWF 07 |
02A8: NOP |
02A9: BCF 03.5 |
02AA: BCF 07.4 |
02AB: MOVF 3D,W |
02AC: BTFSC 03.2 |
02AD: GOTO 2B3 |
02AE: BCF 20.4 |
02AF: MOVF 20,W |
02B0: BSF 03.5 |
02B1: MOVWF 07 |
02B2: BCF 03.5 |
02B3: NOP |
02B4: BSF 20.3 |
02B5: MOVF 20,W |
02B6: BSF 03.5 |
02B7: MOVWF 07 |
02B8: BCF 03.5 |
02B9: BTFSS 07.3 |
02BA: GOTO 2B9 |
02BB: NOP |
02BC: BCF 07.3 |
02BD: BCF 20.3 |
02BE: MOVF 20,W |
02BF: BSF 03.5 |
02C0: MOVWF 07 |
02C1: NOP |
02C2: BCF 03.5 |
02C3: BCF 07.4 |
02C4: BCF 20.4 |
02C5: MOVF 20,W |
02C6: BSF 03.5 |
02C7: MOVWF 07 |
02C8: BCF 03.5 |
02C9: RETURN |
.................... #use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) |
.................... |
.................... |
410,13 → 411,13 |
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7)) |
.................... output_float(LCD_DATA4); |
* |
00F1: BSF 08.4 |
0174: BSF 08.4 |
.................... output_float(LCD_DATA5); |
00F2: BSF 08.5 |
0175: BSF 08.5 |
.................... output_float(LCD_DATA6); |
00F3: BSF 08.6 |
0176: BSF 08.6 |
.................... output_float(LCD_DATA7); |
00F4: BSF 08.7 |
0177: BSF 08.7 |
.................... #else |
.................... lcdtris.data = 0xF; |
.................... #endif |
423,48 → 424,48 |
.................... #endif |
.................... |
.................... lcd_output_rw(1); |
00F5: BCF 03.5 |
00F6: BSF 09.2 |
00F7: BSF 03.5 |
00F8: BCF 09.2 |
0178: BCF 03.5 |
0179: BSF 09.2 |
017A: BSF 03.5 |
017B: BCF 09.2 |
.................... delay_cycles(1); |
00F9: NOP |
017C: NOP |
.................... lcd_output_enable(1); |
00FA: BCF 03.5 |
00FB: BSF 09.0 |
00FC: BSF 03.5 |
00FD: BCF 09.0 |
017D: BCF 03.5 |
017E: BSF 09.0 |
017F: BSF 03.5 |
0180: BCF 09.0 |
.................... delay_cycles(1); |
00FE: NOP |
0181: NOP |
.................... high = lcd_read_nibble(); |
00FF: BCF 03.5 |
0100: CALL 0B8 |
0101: MOVF 78,W |
0102: MOVWF 44 |
0182: BCF 03.5 |
0183: CALL 13B |
0184: MOVF 78,W |
0185: MOVWF 4A |
.................... |
.................... lcd_output_enable(0); |
0103: BCF 09.0 |
0104: BSF 03.5 |
0105: BCF 09.0 |
0186: BCF 09.0 |
0187: BSF 03.5 |
0188: BCF 09.0 |
.................... delay_cycles(1); |
0106: NOP |
0189: NOP |
.................... lcd_output_enable(1); |
0107: BCF 03.5 |
0108: BSF 09.0 |
0109: BSF 03.5 |
010A: BCF 09.0 |
018A: BCF 03.5 |
018B: BSF 09.0 |
018C: BSF 03.5 |
018D: BCF 09.0 |
.................... delay_us(1); |
010B: GOTO 10C |
018E: GOTO 18F |
.................... low = lcd_read_nibble(); |
010C: BCF 03.5 |
010D: CALL 0B8 |
010E: MOVF 78,W |
010F: MOVWF 43 |
018F: BCF 03.5 |
0190: CALL 13B |
0191: MOVF 78,W |
0192: MOVWF 49 |
.................... |
.................... lcd_output_enable(0); |
0110: BCF 09.0 |
0111: BSF 03.5 |
0112: BCF 09.0 |
0193: BCF 09.0 |
0194: BSF 03.5 |
0195: BCF 09.0 |
.................... |
.................... #if defined(__PCB__) |
.................... set_tris_lcd(LCD_OUTPUT_MAP); |
471,13 → 472,13 |
.................... #else |
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7)) |
.................... output_drive(LCD_DATA4); |
0113: BCF 08.4 |
0196: BCF 08.4 |
.................... output_drive(LCD_DATA5); |
0114: BCF 08.5 |
0197: BCF 08.5 |
.................... output_drive(LCD_DATA6); |
0115: BCF 08.6 |
0198: BCF 08.6 |
.................... output_drive(LCD_DATA7); |
0116: BCF 08.7 |
0199: BCF 08.7 |
.................... #else |
.................... lcdtris.data = 0x0; |
.................... #endif |
484,14 → 485,14 |
.................... #endif |
.................... |
.................... return( (high<<4) | low); |
0117: BCF 03.5 |
0118: SWAPF 44,W |
0119: MOVWF 77 |
011A: MOVLW F0 |
011B: ANDWF 77,F |
011C: MOVF 77,W |
011D: IORWF 43,W |
011E: MOVWF 78 |
019A: BCF 03.5 |
019B: SWAPF 4A,W |
019C: MOVWF 77 |
019D: MOVLW F0 |
019E: ANDWF 77,F |
019F: MOVF 77,W |
01A0: IORWF 49,W |
01A1: MOVWF 78 |
.................... } |
.................... |
.................... BYTE lcd_read_nibble(void) |
498,68 → 499,68 |
.................... { |
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7)) |
* |
00B8: CLRF 45 |
013B: CLRF 4B |
.................... BYTE n = 0x00; |
.................... |
.................... /* Read the data port */ |
.................... n |= input(LCD_DATA4); |
00B9: BSF 03.5 |
00BA: BSF 08.4 |
00BB: MOVLW 00 |
00BC: BCF 03.5 |
00BD: BTFSC 08.4 |
00BE: MOVLW 01 |
00BF: IORWF 45,F |
013C: BSF 03.5 |
013D: BSF 08.4 |
013E: MOVLW 00 |
013F: BCF 03.5 |
0140: BTFSC 08.4 |
0141: MOVLW 01 |
0142: IORWF 4B,F |
.................... n |= input(LCD_DATA5) << 1; |
00C0: BSF 03.5 |
00C1: BSF 08.5 |
00C2: MOVLW 00 |
00C3: BCF 03.5 |
00C4: BTFSC 08.5 |
00C5: MOVLW 01 |
00C6: MOVWF 77 |
00C7: BCF 03.0 |
00C8: RLF 77,F |
00C9: MOVF 77,W |
00CA: IORWF 45,F |
0143: BSF 03.5 |
0144: BSF 08.5 |
0145: MOVLW 00 |
0146: BCF 03.5 |
0147: BTFSC 08.5 |
0148: MOVLW 01 |
0149: MOVWF 77 |
014A: BCF 03.0 |
014B: RLF 77,F |
014C: MOVF 77,W |
014D: IORWF 4B,F |
.................... n |= input(LCD_DATA6) << 2; |
00CB: BSF 03.5 |
00CC: BSF 08.6 |
00CD: MOVLW 00 |
00CE: BCF 03.5 |
00CF: BTFSC 08.6 |
00D0: MOVLW 01 |
00D1: MOVWF 77 |
00D2: RLF 77,F |
00D3: RLF 77,F |
00D4: MOVLW FC |
00D5: ANDWF 77,F |
00D6: MOVF 77,W |
00D7: IORWF 45,F |
014E: BSF 03.5 |
014F: BSF 08.6 |
0150: MOVLW 00 |
0151: BCF 03.5 |
0152: BTFSC 08.6 |
0153: MOVLW 01 |
0154: MOVWF 77 |
0155: RLF 77,F |
0156: RLF 77,F |
0157: MOVLW FC |
0158: ANDWF 77,F |
0159: MOVF 77,W |
015A: IORWF 4B,F |
.................... n |= input(LCD_DATA7) << 3; |
00D8: BSF 03.5 |
00D9: BSF 08.7 |
00DA: MOVLW 00 |
00DB: BCF 03.5 |
00DC: BTFSC 08.7 |
00DD: MOVLW 01 |
00DE: MOVWF 77 |
00DF: RLF 77,F |
00E0: RLF 77,F |
00E1: RLF 77,F |
00E2: MOVLW F8 |
00E3: ANDWF 77,F |
00E4: MOVF 77,W |
00E5: IORWF 45,F |
015B: BSF 03.5 |
015C: BSF 08.7 |
015D: MOVLW 00 |
015E: BCF 03.5 |
015F: BTFSC 08.7 |
0160: MOVLW 01 |
0161: MOVWF 77 |
0162: RLF 77,F |
0163: RLF 77,F |
0164: RLF 77,F |
0165: MOVLW F8 |
0166: ANDWF 77,F |
0167: MOVF 77,W |
0168: IORWF 4B,F |
.................... |
.................... return(n); |
00E6: MOVF 45,W |
00E7: MOVWF 78 |
0169: MOVF 4B,W |
016A: MOVWF 78 |
.................... #else |
.................... return(lcd.data); |
.................... #endif |
.................... } |
00E8: RETURN |
016B: RETURN |
.................... |
.................... void lcd_send_nibble(BYTE n) |
.................... { |
567,62 → 568,62 |
.................... /* Write to the data port */ |
.................... output_bit(LCD_DATA4, bit_test(n, 0)); |
* |
008C: BTFSC 44.0 |
008D: GOTO 090 |
008E: BCF 08.4 |
008F: GOTO 091 |
0090: BSF 08.4 |
0091: BSF 03.5 |
0092: BCF 08.4 |
010F: BTFSC 4A.0 |
0110: GOTO 113 |
0111: BCF 08.4 |
0112: GOTO 114 |
0113: BSF 08.4 |
0114: BSF 03.5 |
0115: BCF 08.4 |
.................... output_bit(LCD_DATA5, bit_test(n, 1)); |
0093: BCF 03.5 |
0094: BTFSC 44.1 |
0095: GOTO 098 |
0096: BCF 08.5 |
0097: GOTO 099 |
0098: BSF 08.5 |
0099: BSF 03.5 |
009A: BCF 08.5 |
0116: BCF 03.5 |
0117: BTFSC 4A.1 |
0118: GOTO 11B |
0119: BCF 08.5 |
011A: GOTO 11C |
011B: BSF 08.5 |
011C: BSF 03.5 |
011D: BCF 08.5 |
.................... output_bit(LCD_DATA6, bit_test(n, 2)); |
009B: BCF 03.5 |
009C: BTFSC 44.2 |
009D: GOTO 0A0 |
009E: BCF 08.6 |
009F: GOTO 0A1 |
00A0: BSF 08.6 |
00A1: BSF 03.5 |
00A2: BCF 08.6 |
011E: BCF 03.5 |
011F: BTFSC 4A.2 |
0120: GOTO 123 |
0121: BCF 08.6 |
0122: GOTO 124 |
0123: BSF 08.6 |
0124: BSF 03.5 |
0125: BCF 08.6 |
.................... output_bit(LCD_DATA7, bit_test(n, 3)); |
00A3: BCF 03.5 |
00A4: BTFSC 44.3 |
00A5: GOTO 0A8 |
00A6: BCF 08.7 |
00A7: GOTO 0A9 |
00A8: BSF 08.7 |
00A9: BSF 03.5 |
00AA: BCF 08.7 |
0126: BCF 03.5 |
0127: BTFSC 4A.3 |
0128: GOTO 12B |
0129: BCF 08.7 |
012A: GOTO 12C |
012B: BSF 08.7 |
012C: BSF 03.5 |
012D: BCF 08.7 |
.................... #else |
.................... lcdlat.data = n; |
.................... #endif |
.................... |
.................... delay_cycles(1); |
00AB: NOP |
012E: NOP |
.................... lcd_output_enable(1); |
00AC: BCF 03.5 |
00AD: BSF 09.0 |
00AE: BSF 03.5 |
00AF: BCF 09.0 |
012F: BCF 03.5 |
0130: BSF 09.0 |
0131: BSF 03.5 |
0132: BCF 09.0 |
.................... delay_us(2); |
00B0: GOTO 0B1 |
00B1: GOTO 0B2 |
0133: GOTO 134 |
0134: GOTO 135 |
.................... lcd_output_enable(0); |
00B2: BCF 03.5 |
00B3: BCF 09.0 |
00B4: BSF 03.5 |
00B5: BCF 09.0 |
0135: BCF 03.5 |
0136: BCF 09.0 |
0137: BSF 03.5 |
0138: BCF 09.0 |
.................... } |
00B6: BCF 03.5 |
00B7: RETURN |
0139: BCF 03.5 |
013A: RETURN |
.................... |
.................... void lcd_send_byte(BYTE address, BYTE n) |
.................... { |
631,67 → 632,67 |
.................... #else |
.................... lcd_enable_tris(); |
* |
00E9: BSF 03.5 |
00EA: BCF 09.0 |
016C: BSF 03.5 |
016D: BCF 09.0 |
.................... lcd_rs_tris(); |
00EB: BCF 09.1 |
016E: BCF 09.1 |
.................... lcd_rw_tris(); |
00EC: BCF 09.2 |
016F: BCF 09.2 |
.................... #endif |
.................... |
.................... lcd_output_rs(0); |
00ED: BCF 03.5 |
00EE: BCF 09.1 |
00EF: BSF 03.5 |
00F0: BCF 09.1 |
0170: BCF 03.5 |
0171: BCF 09.1 |
0172: BSF 03.5 |
0173: BCF 09.1 |
.................... while ( bit_test(lcd_read_byte(),7) ) ; |
* |
011F: MOVF 78,W |
0120: MOVWF 43 |
0121: BTFSS 43.7 |
0122: GOTO 125 |
0123: BSF 03.5 |
0124: GOTO 0F1 |
01A2: MOVF 78,W |
01A3: MOVWF 49 |
01A4: BTFSS 49.7 |
01A5: GOTO 1A8 |
01A6: BSF 03.5 |
01A7: GOTO 174 |
.................... lcd_output_rs(address); |
0125: MOVF 41,F |
0126: BTFSS 03.2 |
0127: GOTO 12A |
0128: BCF 09.1 |
0129: GOTO 12B |
012A: BSF 09.1 |
012B: BSF 03.5 |
012C: BCF 09.1 |
01A8: MOVF 47,F |
01A9: BTFSS 03.2 |
01AA: GOTO 1AD |
01AB: BCF 09.1 |
01AC: GOTO 1AE |
01AD: BSF 09.1 |
01AE: BSF 03.5 |
01AF: BCF 09.1 |
.................... delay_cycles(1); |
012D: NOP |
01B0: NOP |
.................... lcd_output_rw(0); |
012E: BCF 03.5 |
012F: BCF 09.2 |
0130: BSF 03.5 |
0131: BCF 09.2 |
01B1: BCF 03.5 |
01B2: BCF 09.2 |
01B3: BSF 03.5 |
01B4: BCF 09.2 |
.................... delay_cycles(1); |
0132: NOP |
01B5: NOP |
.................... lcd_output_enable(0); |
0133: BCF 03.5 |
0134: BCF 09.0 |
0135: BSF 03.5 |
0136: BCF 09.0 |
01B6: BCF 03.5 |
01B7: BCF 09.0 |
01B8: BSF 03.5 |
01B9: BCF 09.0 |
.................... lcd_send_nibble(n >> 4); |
0137: BCF 03.5 |
0138: SWAPF 42,W |
0139: MOVWF 43 |
013A: MOVLW 0F |
013B: ANDWF 43,F |
013C: MOVF 43,W |
013D: MOVWF 44 |
013E: CALL 08C |
01BA: BCF 03.5 |
01BB: SWAPF 48,W |
01BC: MOVWF 49 |
01BD: MOVLW 0F |
01BE: ANDWF 49,F |
01BF: MOVF 49,W |
01C0: MOVWF 4A |
01C1: CALL 10F |
.................... lcd_send_nibble(n & 0xf); |
013F: MOVF 42,W |
0140: ANDLW 0F |
0141: MOVWF 43 |
0142: MOVWF 44 |
0143: CALL 08C |
01C2: MOVF 48,W |
01C3: ANDLW 0F |
01C4: MOVWF 49 |
01C5: MOVWF 4A |
01C6: CALL 10F |
.................... } |
0144: RETURN |
01C7: RETURN |
.................... |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
.................... unsigned int8 g_LcdX, g_LcdY; |
706,93 → 707,93 |
.................... #else |
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7)) |
.................... output_drive(LCD_DATA4); |
0145: BSF 03.5 |
0146: BCF 08.4 |
01C8: BSF 03.5 |
01C9: BCF 08.4 |
.................... output_drive(LCD_DATA5); |
0147: BCF 08.5 |
01CA: BCF 08.5 |
.................... output_drive(LCD_DATA6); |
0148: BCF 08.6 |
01CB: BCF 08.6 |
.................... output_drive(LCD_DATA7); |
0149: BCF 08.7 |
01CC: BCF 08.7 |
.................... #else |
.................... lcdtris.data = 0x0; |
.................... #endif |
.................... lcd_enable_tris(); |
014A: BCF 09.0 |
01CD: BCF 09.0 |
.................... lcd_rs_tris(); |
014B: BCF 09.1 |
01CE: BCF 09.1 |
.................... lcd_rw_tris(); |
014C: BCF 09.2 |
01CF: BCF 09.2 |
.................... #endif |
.................... |
.................... lcd_output_rs(0); |
014D: BCF 03.5 |
014E: BCF 09.1 |
014F: BSF 03.5 |
0150: BCF 09.1 |
01D0: BCF 03.5 |
01D1: BCF 09.1 |
01D2: BSF 03.5 |
01D3: BCF 09.1 |
.................... lcd_output_rw(0); |
0151: BCF 03.5 |
0152: BCF 09.2 |
0153: BSF 03.5 |
0154: BCF 09.2 |
01D4: BCF 03.5 |
01D5: BCF 09.2 |
01D6: BSF 03.5 |
01D7: BCF 09.2 |
.................... lcd_output_enable(0); |
0155: BCF 03.5 |
0156: BCF 09.0 |
0157: BSF 03.5 |
0158: BCF 09.0 |
01D8: BCF 03.5 |
01D9: BCF 09.0 |
01DA: BSF 03.5 |
01DB: BCF 09.0 |
.................... |
.................... delay_ms(15); |
0159: MOVLW 0F |
015A: BCF 03.5 |
015B: MOVWF 3D |
015C: CALL 078 |
01DC: MOVLW 0F |
01DD: BCF 03.5 |
01DE: MOVWF 43 |
01DF: CALL 0FB |
.................... for(i=1;i<=3;++i) |
015D: MOVLW 01 |
015E: MOVWF 2F |
015F: MOVF 2F,W |
0160: SUBLW 03 |
0161: BTFSS 03.0 |
0162: GOTO 16B |
01E0: MOVLW 01 |
01E1: MOVWF 35 |
01E2: MOVF 35,W |
01E3: SUBLW 03 |
01E4: BTFSS 03.0 |
01E5: GOTO 1EE |
.................... { |
.................... lcd_send_nibble(3); |
0163: MOVLW 03 |
0164: MOVWF 44 |
0165: CALL 08C |
01E6: MOVLW 03 |
01E7: MOVWF 4A |
01E8: CALL 10F |
.................... delay_ms(5); |
0166: MOVLW 05 |
0167: MOVWF 3D |
0168: CALL 078 |
01E9: MOVLW 05 |
01EA: MOVWF 43 |
01EB: CALL 0FB |
.................... } |
0169: INCF 2F,F |
016A: GOTO 15F |
01EC: INCF 35,F |
01ED: GOTO 1E2 |
.................... |
.................... lcd_send_nibble(2); |
016B: MOVLW 02 |
016C: MOVWF 44 |
016D: CALL 08C |
01EE: MOVLW 02 |
01EF: MOVWF 4A |
01F0: CALL 10F |
.................... for(i=0;i<=3;++i) |
016E: CLRF 2F |
016F: MOVF 2F,W |
0170: SUBLW 03 |
0171: BTFSS 03.0 |
0172: GOTO 17C |
01F1: CLRF 35 |
01F2: MOVF 35,W |
01F3: SUBLW 03 |
01F4: BTFSS 03.0 |
01F5: GOTO 1FF |
.................... lcd_send_byte(0,LCD_INIT_STRING[i]); |
0173: MOVF 2F,W |
0174: CALL 004 |
0175: MOVWF 30 |
0176: CLRF 41 |
0177: MOVF 30,W |
0178: MOVWF 42 |
0179: CALL 0E9 |
01F6: MOVF 35,W |
01F7: CALL 004 |
01F8: MOVWF 36 |
01F9: CLRF 47 |
01FA: MOVF 36,W |
01FB: MOVWF 48 |
01FC: CALL 16C |
.................... |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
017A: INCF 2F,F |
017B: GOTO 16F |
01FD: INCF 35,F |
01FE: GOTO 1F2 |
.................... g_LcdX = 0; |
.................... g_LcdY = 0; |
.................... #endif |
.................... } |
017C: RETURN |
01FF: RETURN |
.................... |
.................... void lcd_gotoxy(BYTE x, BYTE y) |
.................... { |
799,29 → 800,29 |
.................... BYTE address; |
.................... |
.................... if(y!=1) |
017D: DECFSZ 3E,W |
017E: GOTO 180 |
017F: GOTO 183 |
0200: DECFSZ 44,W |
0201: GOTO 203 |
0202: GOTO 206 |
.................... address=LCD_LINE_TWO; |
0180: MOVLW 40 |
0181: MOVWF 3F |
0203: MOVLW 40 |
0204: MOVWF 45 |
.................... else |
0182: GOTO 184 |
0205: GOTO 207 |
.................... address=0; |
0183: CLRF 3F |
0206: CLRF 45 |
.................... |
.................... address+=x-1; |
0184: MOVLW 01 |
0185: SUBWF 3D,W |
0186: ADDWF 3F,F |
0207: MOVLW 01 |
0208: SUBWF 43,W |
0209: ADDWF 45,F |
.................... lcd_send_byte(0,0x80|address); |
0187: MOVF 3F,W |
0188: IORLW 80 |
0189: MOVWF 40 |
018A: CLRF 41 |
018B: MOVF 40,W |
018C: MOVWF 42 |
018D: CALL 0E9 |
020A: MOVF 45,W |
020B: IORLW 80 |
020C: MOVWF 46 |
020D: CLRF 47 |
020E: MOVF 46,W |
020F: MOVWF 48 |
0210: CALL 16C |
.................... |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
.................... g_LcdX = x - 1; |
828,48 → 829,48 |
.................... g_LcdY = y - 1; |
.................... #endif |
.................... } |
018E: RETURN |
0211: RETURN |
.................... |
.................... void lcd_putc(char c) |
.................... { |
.................... switch (c) |
.................... { |
018F: MOVF 3C,W |
0190: XORLW 07 |
0191: BTFSC 03.2 |
0192: GOTO 19D |
0193: XORLW 0B |
0194: BTFSC 03.2 |
0195: GOTO 1A2 |
0196: XORLW 06 |
0197: BTFSC 03.2 |
0198: GOTO 1AA |
0199: XORLW 02 |
019A: BTFSC 03.2 |
019B: GOTO 1B0 |
019C: GOTO 1B5 |
0212: MOVF 42,W |
0213: XORLW 07 |
0214: BTFSC 03.2 |
0215: GOTO 220 |
0216: XORLW 0B |
0217: BTFSC 03.2 |
0218: GOTO 225 |
0219: XORLW 06 |
021A: BTFSC 03.2 |
021B: GOTO 22D |
021C: XORLW 02 |
021D: BTFSC 03.2 |
021E: GOTO 233 |
021F: GOTO 238 |
.................... case '\a' : lcd_gotoxy(1,1); break; |
019D: MOVLW 01 |
019E: MOVWF 3D |
019F: MOVWF 3E |
01A0: CALL 17D |
01A1: GOTO 1BB |
0220: MOVLW 01 |
0221: MOVWF 43 |
0222: MOVWF 44 |
0223: CALL 200 |
0224: GOTO 23E |
.................... |
.................... case '\f' : lcd_send_byte(0,1); |
01A2: CLRF 41 |
01A3: MOVLW 01 |
01A4: MOVWF 42 |
01A5: CALL 0E9 |
0225: CLRF 47 |
0226: MOVLW 01 |
0227: MOVWF 48 |
0228: CALL 16C |
.................... delay_ms(2); |
01A6: MOVLW 02 |
01A7: MOVWF 3D |
01A8: CALL 078 |
0229: MOVLW 02 |
022A: MOVWF 43 |
022B: CALL 0FB |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
.................... g_LcdX = 0; |
.................... g_LcdY = 0; |
.................... #endif |
.................... break; |
01A9: GOTO 1BB |
022C: GOTO 23E |
.................... |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
.................... case '\r' : lcd_gotoxy(1, g_LcdY+1); break; |
882,20 → 883,20 |
.................... break; |
.................... #else |
.................... case '\n' : lcd_gotoxy(1,2); break; |
01AA: MOVLW 01 |
01AB: MOVWF 3D |
01AC: MOVLW 02 |
01AD: MOVWF 3E |
01AE: CALL 17D |
01AF: GOTO 1BB |
022D: MOVLW 01 |
022E: MOVWF 43 |
022F: MOVLW 02 |
0230: MOVWF 44 |
0231: CALL 200 |
0232: GOTO 23E |
.................... #endif |
.................... |
.................... case '\b' : lcd_send_byte(0,0x10); break; |
01B0: CLRF 41 |
01B1: MOVLW 10 |
01B2: MOVWF 42 |
01B3: CALL 0E9 |
01B4: GOTO 1BB |
0233: CLRF 47 |
0234: MOVLW 10 |
0235: MOVWF 48 |
0236: CALL 16C |
0237: GOTO 23E |
.................... |
.................... #if defined(LCD_EXTENDED_NEWLINE) |
.................... default : |
907,16 → 908,16 |
.................... break; |
.................... #else |
.................... default : lcd_send_byte(1,c); break; |
01B5: MOVLW 01 |
01B6: MOVWF 41 |
01B7: MOVF 3C,W |
01B8: MOVWF 42 |
01B9: CALL 0E9 |
01BA: GOTO 1BB |
0238: MOVLW 01 |
0239: MOVWF 47 |
023A: MOVF 42,W |
023B: MOVWF 48 |
023C: CALL 16C |
023D: GOTO 23E |
.................... #endif |
.................... } |
.................... } |
01BB: RETURN |
023E: RETURN |
.................... |
.................... char lcd_getc(BYTE x, BYTE y) |
.................... { |
994,231 → 995,231 |
.................... |
.................... i2c_start(); |
* |
052E: BSF 20.4 |
052F: MOVF 20,W |
0530: BSF 03.5 |
0531: MOVWF 07 |
0532: NOP |
0533: BCF 03.5 |
0534: BSF 20.3 |
0535: MOVF 20,W |
0536: BSF 03.5 |
0537: MOVWF 07 |
0538: NOP |
0539: BCF 03.5 |
053A: BTFSS 07.3 |
053B: GOTO 53A |
053C: BCF 07.4 |
053D: BCF 20.4 |
053E: MOVF 20,W |
053F: BSF 03.5 |
0540: MOVWF 07 |
0541: NOP |
0542: BCF 03.5 |
0543: BCF 07.3 |
0544: BCF 20.3 |
0545: MOVF 20,W |
0546: BSF 03.5 |
0547: MOVWF 07 |
0567: BSF 20.4 |
0568: MOVF 20,W |
0569: BSF 03.5 |
056A: MOVWF 07 |
056B: NOP |
056C: BCF 03.5 |
056D: BSF 20.3 |
056E: MOVF 20,W |
056F: BSF 03.5 |
0570: MOVWF 07 |
0571: NOP |
0572: BCF 03.5 |
0573: BTFSS 07.3 |
0574: GOTO 573 |
0575: BCF 07.4 |
0576: BCF 20.4 |
0577: MOVF 20,W |
0578: BSF 03.5 |
0579: MOVWF 07 |
057A: NOP |
057B: BCF 03.5 |
057C: BCF 07.3 |
057D: BCF 20.3 |
057E: MOVF 20,W |
057F: BSF 03.5 |
0580: MOVWF 07 |
.................... I2C_Write(SHT25_ADDR); |
0548: MOVLW 80 |
0549: BCF 03.5 |
054A: MOVWF 34 |
054B: CALL 202 |
0581: MOVLW 80 |
0582: BCF 03.5 |
0583: MOVWF 3B |
0584: CALL 078 |
.................... I2C_write(0xE3); |
054C: MOVLW E3 |
054D: MOVWF 34 |
054E: CALL 202 |
0585: MOVLW E3 |
0586: MOVWF 3B |
0587: CALL 078 |
.................... i2c_stop(); |
054F: BCF 20.4 |
0550: MOVF 20,W |
0551: BSF 03.5 |
0552: MOVWF 07 |
0553: NOP |
0554: BCF 03.5 |
0555: BSF 20.3 |
0556: MOVF 20,W |
0557: BSF 03.5 |
0558: MOVWF 07 |
0559: BCF 03.5 |
055A: BTFSS 07.3 |
055B: GOTO 55A |
055C: NOP |
055D: GOTO 55E |
055E: NOP |
055F: BSF 20.4 |
0560: MOVF 20,W |
0561: BSF 03.5 |
0562: MOVWF 07 |
0563: NOP |
0588: BCF 20.4 |
0589: MOVF 20,W |
058A: BSF 03.5 |
058B: MOVWF 07 |
058C: NOP |
058D: BCF 03.5 |
058E: BSF 20.3 |
058F: MOVF 20,W |
0590: BSF 03.5 |
0591: MOVWF 07 |
0592: BCF 03.5 |
0593: BTFSS 07.3 |
0594: GOTO 593 |
0595: NOP |
0596: GOTO 597 |
0597: NOP |
0598: BSF 20.4 |
0599: MOVF 20,W |
059A: BSF 03.5 |
059B: MOVWF 07 |
059C: NOP |
.................... |
.................... delay_ms(100); |
0564: MOVLW 64 |
0565: BCF 03.5 |
0566: MOVWF 3D |
0567: CALL 078 |
059D: MOVLW 64 |
059E: BCF 03.5 |
059F: MOVWF 43 |
05A0: CALL 0FB |
.................... |
.................... i2c_start(); |
0568: BSF 20.4 |
0569: MOVF 20,W |
056A: BSF 03.5 |
056B: MOVWF 07 |
056C: NOP |
056D: BCF 03.5 |
056E: BSF 20.3 |
056F: MOVF 20,W |
0570: BSF 03.5 |
0571: MOVWF 07 |
0572: NOP |
0573: BCF 03.5 |
0574: BCF 07.4 |
0575: BCF 20.4 |
0576: MOVF 20,W |
0577: BSF 03.5 |
0578: MOVWF 07 |
0579: NOP |
057A: BCF 03.5 |
057B: BCF 07.3 |
057C: BCF 20.3 |
057D: MOVF 20,W |
057E: BSF 03.5 |
057F: MOVWF 07 |
05A1: BSF 20.4 |
05A2: MOVF 20,W |
05A3: BSF 03.5 |
05A4: MOVWF 07 |
05A5: NOP |
05A6: BCF 03.5 |
05A7: BSF 20.3 |
05A8: MOVF 20,W |
05A9: BSF 03.5 |
05AA: MOVWF 07 |
05AB: NOP |
05AC: BCF 03.5 |
05AD: BCF 07.4 |
05AE: BCF 20.4 |
05AF: MOVF 20,W |
05B0: BSF 03.5 |
05B1: MOVWF 07 |
05B2: NOP |
05B3: BCF 03.5 |
05B4: BCF 07.3 |
05B5: BCF 20.3 |
05B6: MOVF 20,W |
05B7: BSF 03.5 |
05B8: MOVWF 07 |
.................... I2C_Write(SHT25_ADDR+1); |
0580: MOVLW 81 |
0581: BCF 03.5 |
0582: MOVWF 34 |
0583: CALL 202 |
05B9: MOVLW 81 |
05BA: BCF 03.5 |
05BB: MOVWF 3B |
05BC: CALL 078 |
.................... MSB=i2c_read(1); |
0584: MOVLW 01 |
0585: MOVWF 77 |
0586: CALL 24C |
0587: MOVF 78,W |
0588: MOVWF 2F |
05BD: MOVLW 01 |
05BE: MOVWF 77 |
05BF: CALL 285 |
05C0: MOVF 78,W |
05C1: MOVWF 35 |
.................... LSB=i2c_read(1); |
0589: MOVLW 01 |
058A: MOVWF 77 |
058B: CALL 24C |
058C: MOVF 78,W |
058D: MOVWF 30 |
05C2: MOVLW 01 |
05C3: MOVWF 77 |
05C4: CALL 285 |
05C5: MOVF 78,W |
05C6: MOVWF 36 |
.................... Check=i2c_read(0); |
058E: CLRF 77 |
058F: CALL 24C |
0590: MOVF 78,W |
0591: MOVWF 31 |
05C7: CLRF 77 |
05C8: CALL 285 |
05C9: MOVF 78,W |
05CA: MOVWF 37 |
.................... i2c_stop(); |
0592: BCF 20.4 |
0593: MOVF 20,W |
0594: BSF 03.5 |
0595: MOVWF 07 |
0596: NOP |
0597: BCF 03.5 |
0598: BSF 20.3 |
0599: MOVF 20,W |
059A: BSF 03.5 |
059B: MOVWF 07 |
059C: BCF 03.5 |
059D: BTFSS 07.3 |
059E: GOTO 59D |
059F: NOP |
05A0: GOTO 5A1 |
05A1: NOP |
05A2: BSF 20.4 |
05A3: MOVF 20,W |
05A4: BSF 03.5 |
05A5: MOVWF 07 |
05A6: NOP |
05CB: BCF 20.4 |
05CC: MOVF 20,W |
05CD: BSF 03.5 |
05CE: MOVWF 07 |
05CF: NOP |
05D0: BCF 03.5 |
05D1: BSF 20.3 |
05D2: MOVF 20,W |
05D3: BSF 03.5 |
05D4: MOVWF 07 |
05D5: BCF 03.5 |
05D6: BTFSS 07.3 |
05D7: GOTO 5D6 |
05D8: NOP |
05D9: GOTO 5DA |
05DA: NOP |
05DB: BSF 20.4 |
05DC: MOVF 20,W |
05DD: BSF 03.5 |
05DE: MOVWF 07 |
05DF: NOP |
.................... |
.................... LSB = LSB >> 2; // trow out status bits |
05A7: BCF 03.5 |
05A8: RRF 30,F |
05A9: RRF 30,F |
05AA: MOVLW 3F |
05AB: ANDWF 30,F |
05E0: BCF 03.5 |
05E1: RRF 36,F |
05E2: RRF 36,F |
05E3: MOVLW 3F |
05E4: ANDWF 36,F |
.................... |
.................... data = (((unsigned int16) MSB << 8) + (LSB << 4)); |
05AC: CLRF 35 |
05AD: MOVF 2F,W |
05AE: MOVWF 34 |
05AF: MOVWF 35 |
05B0: CLRF 34 |
05B1: SWAPF 30,W |
05B2: MOVWF 77 |
05B3: MOVLW F0 |
05B4: ANDWF 77,F |
05B5: MOVF 77,W |
05B6: ADDWF 34,W |
05B7: MOVWF 32 |
05B8: MOVF 35,W |
05B9: MOVWF 33 |
05BA: BTFSC 03.0 |
05BB: INCF 33,F |
05E5: CLRF 3B |
05E6: MOVF 35,W |
05E7: MOVWF 3A |
05E8: MOVWF 3B |
05E9: CLRF 3A |
05EA: SWAPF 36,W |
05EB: MOVWF 77 |
05EC: MOVLW F0 |
05ED: ANDWF 77,F |
05EE: MOVF 77,W |
05EF: ADDWF 3A,W |
05F0: MOVWF 38 |
05F1: MOVF 3B,W |
05F2: MOVWF 39 |
05F3: BTFSC 03.0 |
05F4: INCF 39,F |
.................... return(-46.85 + 175.72*((float)data/0xFFFF)); |
05BC: MOVF 33,W |
05BD: MOVWF 35 |
05BE: MOVF 32,W |
05BF: MOVWF 34 |
05C0: CALL 291 |
05C1: MOVF 77,W |
05C2: MOVWF 34 |
05C3: MOVF 78,W |
05C4: MOVWF 35 |
05C5: MOVF 79,W |
05C6: MOVWF 36 |
05C7: MOVF 7A,W |
05C8: MOVWF 37 |
05C9: MOVWF 3B |
05CA: MOVF 79,W |
05CB: MOVWF 3A |
05CC: MOVF 78,W |
05CD: MOVWF 39 |
05CE: MOVF 77,W |
05CF: MOVWF 38 |
05D0: CLRF 3F |
05D1: MOVLW FF |
05D2: MOVWF 3E |
05D3: MOVLW 7F |
05D4: MOVWF 3D |
05D5: MOVLW 8E |
05D6: MOVWF 3C |
05D7: CALL 2AE |
05D8: MOVLW 52 |
05D9: MOVWF 3F |
05DA: MOVLW B8 |
05DB: MOVWF 3E |
05DC: MOVLW 2F |
05DD: MOVWF 3D |
05DE: MOVLW 86 |
05DF: MOVWF 3C |
05E0: MOVF 7A,W |
05E1: MOVWF 43 |
05E2: MOVF 79,W |
05E3: MOVWF 42 |
05E4: MOVF 78,W |
05E5: MOVWF 41 |
05E6: MOVF 77,W |
05E7: MOVWF 40 |
05E8: CALL 378 |
05E9: BCF 03.1 |
05EA: MOVLW 66 |
05EB: MOVWF 37 |
05EC: MOVWF 36 |
05ED: MOVLW BB |
05EE: MOVWF 35 |
05EF: MOVLW 84 |
05F0: MOVWF 34 |
05F1: MOVF 7A,W |
05F2: MOVWF 3B |
05F3: MOVF 79,W |
05F4: MOVWF 3A |
05F5: MOVF 78,W |
05F6: MOVWF 39 |
05F7: MOVF 77,W |
05F8: MOVWF 38 |
05F9: CALL 3ED |
05F5: MOVF 39,W |
05F6: MOVWF 3B |
05F7: MOVF 38,W |
05F8: MOVWF 3A |
05F9: CALL 2CA |
05FA: MOVF 77,W |
05FB: MOVWF 3A |
05FC: MOVF 78,W |
05FD: MOVWF 3B |
05FE: MOVF 79,W |
05FF: MOVWF 3C |
0600: MOVF 7A,W |
0601: MOVWF 3D |
0602: MOVWF 41 |
0603: MOVF 79,W |
0604: MOVWF 40 |
0605: MOVF 78,W |
0606: MOVWF 3F |
0607: MOVF 77,W |
0608: MOVWF 3E |
0609: CLRF 45 |
060A: MOVLW FF |
060B: MOVWF 44 |
060C: MOVLW 7F |
060D: MOVWF 43 |
060E: MOVLW 8E |
060F: MOVWF 42 |
0610: CALL 2E7 |
0611: MOVLW 52 |
0612: MOVWF 45 |
0613: MOVLW B8 |
0614: MOVWF 44 |
0615: MOVLW 2F |
0616: MOVWF 43 |
0617: MOVLW 86 |
0618: MOVWF 42 |
0619: MOVF 7A,W |
061A: MOVWF 49 |
061B: MOVF 79,W |
061C: MOVWF 48 |
061D: MOVF 78,W |
061E: MOVWF 47 |
061F: MOVF 77,W |
0620: MOVWF 46 |
0621: CALL 3B1 |
0622: BCF 03.1 |
0623: MOVLW 66 |
0624: MOVWF 3D |
0625: MOVWF 3C |
0626: MOVLW BB |
0627: MOVWF 3B |
0628: MOVLW 84 |
0629: MOVWF 3A |
062A: MOVF 7A,W |
062B: MOVWF 41 |
062C: MOVF 79,W |
062D: MOVWF 40 |
062E: MOVF 78,W |
062F: MOVWF 3F |
0630: MOVF 77,W |
0631: MOVWF 3E |
0632: CALL 426 |
.................... } |
05FA: BSF 0A.3 |
05FB: BCF 0A.4 |
05FC: GOTO 2E4 (RETURN) |
0633: BSF 0A.3 |
0634: BCF 0A.4 |
0635: GOTO 38B (RETURN) |
.................... |
.................... float SHT25_get_hum() |
.................... { |
1226,205 → 1227,205 |
.................... unsigned int16 data; |
.................... |
.................... i2c_start(); //RH |
05FD: BSF 20.4 |
05FE: MOVF 20,W |
05FF: BSF 03.5 |
0600: MOVWF 07 |
0601: NOP |
0602: BCF 03.5 |
0603: BSF 20.3 |
0604: MOVF 20,W |
0605: BSF 03.5 |
0606: MOVWF 07 |
0607: NOP |
0608: BCF 03.5 |
0609: BCF 07.4 |
060A: BCF 20.4 |
060B: MOVF 20,W |
060C: BSF 03.5 |
060D: MOVWF 07 |
060E: NOP |
060F: BCF 03.5 |
0610: BCF 07.3 |
0611: BCF 20.3 |
0612: MOVF 20,W |
0613: BSF 03.5 |
0614: MOVWF 07 |
0636: BSF 20.4 |
0637: MOVF 20,W |
0638: BSF 03.5 |
0639: MOVWF 07 |
063A: NOP |
063B: BCF 03.5 |
063C: BSF 20.3 |
063D: MOVF 20,W |
063E: BSF 03.5 |
063F: MOVWF 07 |
0640: NOP |
0641: BCF 03.5 |
0642: BCF 07.4 |
0643: BCF 20.4 |
0644: MOVF 20,W |
0645: BSF 03.5 |
0646: MOVWF 07 |
0647: NOP |
0648: BCF 03.5 |
0649: BCF 07.3 |
064A: BCF 20.3 |
064B: MOVF 20,W |
064C: BSF 03.5 |
064D: MOVWF 07 |
.................... I2C_Write(SHT25_ADDR); |
0615: MOVLW 80 |
0616: BCF 03.5 |
0617: MOVWF 34 |
0618: CALL 202 |
064E: MOVLW 80 |
064F: BCF 03.5 |
0650: MOVWF 3B |
0651: CALL 078 |
.................... I2C_write(0xE5); |
0619: MOVLW E5 |
061A: MOVWF 34 |
061B: CALL 202 |
0652: MOVLW E5 |
0653: MOVWF 3B |
0654: CALL 078 |
.................... |
.................... delay_ms(100); |
061C: MOVLW 64 |
061D: MOVWF 3D |
061E: CALL 078 |
0655: MOVLW 64 |
0656: MOVWF 43 |
0657: CALL 0FB |
.................... |
.................... i2c_start(); |
061F: BSF 20.4 |
0620: MOVF 20,W |
0621: BSF 03.5 |
0622: MOVWF 07 |
0623: NOP |
0624: BCF 03.5 |
0625: BSF 20.3 |
0626: MOVF 20,W |
0627: BSF 03.5 |
0628: MOVWF 07 |
0629: NOP |
062A: BCF 03.5 |
062B: BTFSS 07.3 |
062C: GOTO 62B |
062D: BCF 07.4 |
062E: BCF 20.4 |
062F: MOVF 20,W |
0630: BSF 03.5 |
0631: MOVWF 07 |
0632: NOP |
0633: BCF 03.5 |
0634: BCF 07.3 |
0635: BCF 20.3 |
0636: MOVF 20,W |
0637: BSF 03.5 |
0638: MOVWF 07 |
0658: BSF 20.4 |
0659: MOVF 20,W |
065A: BSF 03.5 |
065B: MOVWF 07 |
065C: NOP |
065D: BCF 03.5 |
065E: BSF 20.3 |
065F: MOVF 20,W |
0660: BSF 03.5 |
0661: MOVWF 07 |
0662: NOP |
0663: BCF 03.5 |
0664: BTFSS 07.3 |
0665: GOTO 664 |
0666: BCF 07.4 |
0667: BCF 20.4 |
0668: MOVF 20,W |
0669: BSF 03.5 |
066A: MOVWF 07 |
066B: NOP |
066C: BCF 03.5 |
066D: BCF 07.3 |
066E: BCF 20.3 |
066F: MOVF 20,W |
0670: BSF 03.5 |
0671: MOVWF 07 |
.................... I2C_Write(SHT25_ADDR+1); |
0639: MOVLW 81 |
063A: BCF 03.5 |
063B: MOVWF 34 |
063C: CALL 202 |
0672: MOVLW 81 |
0673: BCF 03.5 |
0674: MOVWF 3B |
0675: CALL 078 |
.................... MSB=i2c_read(1); |
063D: MOVLW 01 |
063E: MOVWF 77 |
063F: CALL 24C |
0640: MOVF 78,W |
0641: MOVWF 2F |
0676: MOVLW 01 |
0677: MOVWF 77 |
0678: CALL 285 |
0679: MOVF 78,W |
067A: MOVWF 35 |
.................... LSB=i2c_read(1); |
0642: MOVLW 01 |
0643: MOVWF 77 |
0644: CALL 24C |
0645: MOVF 78,W |
0646: MOVWF 30 |
067B: MOVLW 01 |
067C: MOVWF 77 |
067D: CALL 285 |
067E: MOVF 78,W |
067F: MOVWF 36 |
.................... Check=i2c_read(0); |
0647: CLRF 77 |
0648: CALL 24C |
0649: MOVF 78,W |
064A: MOVWF 31 |
0680: CLRF 77 |
0681: CALL 285 |
0682: MOVF 78,W |
0683: MOVWF 37 |
.................... i2c_stop(); |
064B: BCF 20.4 |
064C: MOVF 20,W |
064D: BSF 03.5 |
064E: MOVWF 07 |
064F: NOP |
0650: BCF 03.5 |
0651: BSF 20.3 |
0652: MOVF 20,W |
0653: BSF 03.5 |
0654: MOVWF 07 |
0655: BCF 03.5 |
0656: BTFSS 07.3 |
0657: GOTO 656 |
0658: NOP |
0659: GOTO 65A |
065A: NOP |
065B: BSF 20.4 |
065C: MOVF 20,W |
065D: BSF 03.5 |
065E: MOVWF 07 |
065F: NOP |
0684: BCF 20.4 |
0685: MOVF 20,W |
0686: BSF 03.5 |
0687: MOVWF 07 |
0688: NOP |
0689: BCF 03.5 |
068A: BSF 20.3 |
068B: MOVF 20,W |
068C: BSF 03.5 |
068D: MOVWF 07 |
068E: BCF 03.5 |
068F: BTFSS 07.3 |
0690: GOTO 68F |
0691: NOP |
0692: GOTO 693 |
0693: NOP |
0694: BSF 20.4 |
0695: MOVF 20,W |
0696: BSF 03.5 |
0697: MOVWF 07 |
0698: NOP |
.................... |
.................... LSB = LSB >> 2; // trow out status bits |
0660: BCF 03.5 |
0661: RRF 30,F |
0662: RRF 30,F |
0663: MOVLW 3F |
0664: ANDWF 30,F |
0699: BCF 03.5 |
069A: RRF 36,F |
069B: RRF 36,F |
069C: MOVLW 3F |
069D: ANDWF 36,F |
.................... |
.................... data = (((unsigned int16) MSB << 8) + (LSB << 4) ); |
0665: CLRF 35 |
0666: MOVF 2F,W |
0667: MOVWF 34 |
0668: MOVWF 35 |
0669: CLRF 34 |
066A: SWAPF 30,W |
066B: MOVWF 77 |
066C: MOVLW F0 |
066D: ANDWF 77,F |
066E: MOVF 77,W |
066F: ADDWF 34,W |
0670: MOVWF 32 |
0671: MOVF 35,W |
0672: MOVWF 33 |
0673: BTFSC 03.0 |
0674: INCF 33,F |
069E: CLRF 3B |
069F: MOVF 35,W |
06A0: MOVWF 3A |
06A1: MOVWF 3B |
06A2: CLRF 3A |
06A3: SWAPF 36,W |
06A4: MOVWF 77 |
06A5: MOVLW F0 |
06A6: ANDWF 77,F |
06A7: MOVF 77,W |
06A8: ADDWF 3A,W |
06A9: MOVWF 38 |
06AA: MOVF 3B,W |
06AB: MOVWF 39 |
06AC: BTFSC 03.0 |
06AD: INCF 39,F |
.................... return( -6.0 + 125.0*((float)data/0xFFFF)); |
0675: MOVF 33,W |
0676: MOVWF 35 |
0677: MOVF 32,W |
0678: MOVWF 34 |
0679: CALL 291 |
067A: MOVF 77,W |
067B: MOVWF 34 |
067C: MOVF 78,W |
067D: MOVWF 35 |
067E: MOVF 79,W |
067F: MOVWF 36 |
0680: MOVF 7A,W |
0681: MOVWF 37 |
0682: MOVWF 3B |
0683: MOVF 79,W |
0684: MOVWF 3A |
0685: MOVF 78,W |
0686: MOVWF 39 |
0687: MOVF 77,W |
0688: MOVWF 38 |
0689: CLRF 3F |
068A: MOVLW FF |
068B: MOVWF 3E |
068C: MOVLW 7F |
068D: MOVWF 3D |
068E: MOVLW 8E |
068F: MOVWF 3C |
0690: CALL 2AE |
0691: CLRF 3F |
0692: CLRF 3E |
0693: MOVLW 7A |
0694: MOVWF 3D |
0695: MOVLW 85 |
0696: MOVWF 3C |
0697: MOVF 7A,W |
0698: MOVWF 43 |
0699: MOVF 79,W |
069A: MOVWF 42 |
069B: MOVF 78,W |
069C: MOVWF 41 |
069D: MOVF 77,W |
069E: MOVWF 40 |
069F: CALL 378 |
06A0: BCF 03.1 |
06A1: CLRF 37 |
06A2: CLRF 36 |
06A3: MOVLW C0 |
06A4: MOVWF 35 |
06A5: MOVLW 81 |
06A6: MOVWF 34 |
06A7: MOVF 7A,W |
06A8: MOVWF 3B |
06A9: MOVF 79,W |
06AA: MOVWF 3A |
06AB: MOVF 78,W |
06AC: MOVWF 39 |
06AD: MOVF 77,W |
06AE: MOVWF 38 |
06AF: CALL 3ED |
06AE: MOVF 39,W |
06AF: MOVWF 3B |
06B0: MOVF 38,W |
06B1: MOVWF 3A |
06B2: CALL 2CA |
06B3: MOVF 77,W |
06B4: MOVWF 3A |
06B5: MOVF 78,W |
06B6: MOVWF 3B |
06B7: MOVF 79,W |
06B8: MOVWF 3C |
06B9: MOVF 7A,W |
06BA: MOVWF 3D |
06BB: MOVWF 41 |
06BC: MOVF 79,W |
06BD: MOVWF 40 |
06BE: MOVF 78,W |
06BF: MOVWF 3F |
06C0: MOVF 77,W |
06C1: MOVWF 3E |
06C2: CLRF 45 |
06C3: MOVLW FF |
06C4: MOVWF 44 |
06C5: MOVLW 7F |
06C6: MOVWF 43 |
06C7: MOVLW 8E |
06C8: MOVWF 42 |
06C9: CALL 2E7 |
06CA: CLRF 45 |
06CB: CLRF 44 |
06CC: MOVLW 7A |
06CD: MOVWF 43 |
06CE: MOVLW 85 |
06CF: MOVWF 42 |
06D0: MOVF 7A,W |
06D1: MOVWF 49 |
06D2: MOVF 79,W |
06D3: MOVWF 48 |
06D4: MOVF 78,W |
06D5: MOVWF 47 |
06D6: MOVF 77,W |
06D7: MOVWF 46 |
06D8: CALL 3B1 |
06D9: BCF 03.1 |
06DA: CLRF 3D |
06DB: CLRF 3C |
06DC: MOVLW C0 |
06DD: MOVWF 3B |
06DE: MOVLW 81 |
06DF: MOVWF 3A |
06E0: MOVF 7A,W |
06E1: MOVWF 41 |
06E2: MOVF 79,W |
06E3: MOVWF 40 |
06E4: MOVF 78,W |
06E5: MOVWF 3F |
06E6: MOVF 77,W |
06E7: MOVWF 3E |
06E8: CALL 426 |
.................... } |
06B0: BSF 0A.3 |
06B1: BCF 0A.4 |
06B2: GOTO 2EF (RETURN) |
06E9: BSF 0A.3 |
06EA: BCF 0A.4 |
06EB: GOTO 396 (RETURN) |
.................... |
.................... |
.................... |
1443,607 → 1444,3139 |
.................... signed int16 data; |
.................... |
.................... i2c_start(); |
06B3: BSF 20.4 |
06B4: MOVF 20,W |
06B5: BSF 03.5 |
06B6: MOVWF 07 |
06B7: NOP |
06B8: BCF 03.5 |
06B9: BSF 20.3 |
06BA: MOVF 20,W |
06BB: BSF 03.5 |
06BC: MOVWF 07 |
06BD: NOP |
06BE: BCF 03.5 |
06BF: BCF 07.4 |
06C0: BCF 20.4 |
06C1: MOVF 20,W |
06C2: BSF 03.5 |
06C3: MOVWF 07 |
06C4: NOP |
06C5: BCF 03.5 |
06C6: BCF 07.3 |
06C7: BCF 20.3 |
06C8: MOVF 20,W |
06C9: BSF 03.5 |
06CA: MOVWF 07 |
06EC: BSF 20.4 |
06ED: MOVF 20,W |
06EE: BSF 03.5 |
06EF: MOVWF 07 |
06F0: NOP |
06F1: BCF 03.5 |
06F2: BSF 20.3 |
06F3: MOVF 20,W |
06F4: BSF 03.5 |
06F5: MOVWF 07 |
06F6: NOP |
06F7: BCF 03.5 |
06F8: BCF 07.4 |
06F9: BCF 20.4 |
06FA: MOVF 20,W |
06FB: BSF 03.5 |
06FC: MOVWF 07 |
06FD: NOP |
06FE: BCF 03.5 |
06FF: BCF 07.3 |
0700: BCF 20.3 |
0701: MOVF 20,W |
0702: BSF 03.5 |
0703: MOVWF 07 |
.................... I2C_Write(LTS01A_address); |
06CB: MOVLW 90 |
06CC: BCF 03.5 |
06CD: MOVWF 34 |
06CE: CALL 202 |
0704: MOVLW 90 |
0705: BCF 03.5 |
0706: MOVWF 3B |
0707: CALL 078 |
.................... I2C_write(0x00); |
06CF: CLRF 34 |
06D0: CALL 202 |
0708: CLRF 3B |
0709: CALL 078 |
.................... i2c_stop(); |
06D1: BCF 20.4 |
06D2: MOVF 20,W |
06D3: BSF 03.5 |
06D4: MOVWF 07 |
06D5: NOP |
06D6: BCF 03.5 |
06D7: BSF 20.3 |
06D8: MOVF 20,W |
06D9: BSF 03.5 |
06DA: MOVWF 07 |
06DB: BCF 03.5 |
06DC: BTFSS 07.3 |
06DD: GOTO 6DC |
06DE: NOP |
06DF: GOTO 6E0 |
06E0: NOP |
06E1: BSF 20.4 |
06E2: MOVF 20,W |
06E3: BSF 03.5 |
06E4: MOVWF 07 |
06E5: NOP |
070A: BCF 20.4 |
070B: MOVF 20,W |
070C: BSF 03.5 |
070D: MOVWF 07 |
070E: NOP |
070F: BCF 03.5 |
0710: BSF 20.3 |
0711: MOVF 20,W |
0712: BSF 03.5 |
0713: MOVWF 07 |
0714: BCF 03.5 |
0715: BTFSS 07.3 |
0716: GOTO 715 |
0717: NOP |
0718: GOTO 719 |
0719: NOP |
071A: BSF 20.4 |
071B: MOVF 20,W |
071C: BSF 03.5 |
071D: MOVWF 07 |
071E: NOP |
.................... i2c_start(); |
06E6: BCF 03.5 |
06E7: BSF 20.4 |
06E8: MOVF 20,W |
06E9: BSF 03.5 |
06EA: MOVWF 07 |
06EB: NOP |
06EC: BCF 03.5 |
06ED: BSF 20.3 |
06EE: MOVF 20,W |
06EF: BSF 03.5 |
06F0: MOVWF 07 |
06F1: NOP |
06F2: BCF 03.5 |
06F3: BCF 07.4 |
06F4: BCF 20.4 |
06F5: MOVF 20,W |
06F6: BSF 03.5 |
06F7: MOVWF 07 |
06F8: NOP |
06F9: BCF 03.5 |
06FA: BCF 07.3 |
06FB: BCF 20.3 |
06FC: MOVF 20,W |
06FD: BSF 03.5 |
06FE: MOVWF 07 |
071F: BCF 03.5 |
0720: BSF 20.4 |
0721: MOVF 20,W |
0722: BSF 03.5 |
0723: MOVWF 07 |
0724: NOP |
0725: BCF 03.5 |
0726: BSF 20.3 |
0727: MOVF 20,W |
0728: BSF 03.5 |
0729: MOVWF 07 |
072A: NOP |
072B: BCF 03.5 |
072C: BCF 07.4 |
072D: BCF 20.4 |
072E: MOVF 20,W |
072F: BSF 03.5 |
0730: MOVWF 07 |
0731: NOP |
0732: BCF 03.5 |
0733: BCF 07.3 |
0734: BCF 20.3 |
0735: MOVF 20,W |
0736: BSF 03.5 |
0737: MOVWF 07 |
.................... I2C_Write(LTS01A_address+1); |
06FF: MOVLW 91 |
0700: BCF 03.5 |
0701: MOVWF 34 |
0702: CALL 202 |
0738: MOVLW 91 |
0739: BCF 03.5 |
073A: MOVWF 3B |
073B: CALL 078 |
.................... MSB=i2c_read(1); |
0703: MOVLW 01 |
0704: MOVWF 77 |
0705: CALL 24C |
0706: MOVF 78,W |
0707: MOVWF 2F |
073C: MOVLW 01 |
073D: MOVWF 77 |
073E: CALL 285 |
073F: MOVF 78,W |
0740: MOVWF 35 |
.................... LSB=i2c_read(0); |
0708: CLRF 77 |
0709: CALL 24C |
070A: MOVF 78,W |
070B: MOVWF 30 |
0741: CLRF 77 |
0742: CALL 285 |
0743: MOVF 78,W |
0744: MOVWF 36 |
.................... i2c_stop(); |
070C: BCF 20.4 |
070D: MOVF 20,W |
070E: BSF 03.5 |
070F: MOVWF 07 |
0710: NOP |
0711: BCF 03.5 |
0712: BSF 20.3 |
0713: MOVF 20,W |
0714: BSF 03.5 |
0715: MOVWF 07 |
0716: BCF 03.5 |
0717: BTFSS 07.3 |
0718: GOTO 717 |
0719: NOP |
071A: GOTO 71B |
071B: NOP |
071C: BSF 20.4 |
071D: MOVF 20,W |
071E: BSF 03.5 |
071F: MOVWF 07 |
0720: NOP |
0745: BCF 20.4 |
0746: MOVF 20,W |
0747: BSF 03.5 |
0748: MOVWF 07 |
0749: NOP |
074A: BCF 03.5 |
074B: BSF 20.3 |
074C: MOVF 20,W |
074D: BSF 03.5 |
074E: MOVWF 07 |
074F: BCF 03.5 |
0750: BTFSS 07.3 |
0751: GOTO 750 |
0752: NOP |
0753: GOTO 754 |
0754: NOP |
0755: BSF 20.4 |
0756: MOVF 20,W |
0757: BSF 03.5 |
0758: MOVWF 07 |
0759: NOP |
.................... |
.................... data = MAKE16(MSB,LSB); |
0721: BCF 03.5 |
0722: MOVF 2F,W |
0723: MOVWF 32 |
0724: MOVF 30,W |
0725: MOVWF 31 |
075A: BCF 03.5 |
075B: MOVF 35,W |
075C: MOVWF 38 |
075D: MOVF 36,W |
075E: MOVWF 37 |
.................... |
.................... return (data * 0.00390625 ); |
0726: MOVF 32,W |
0727: MOVWF 34 |
0728: MOVF 31,W |
0729: MOVWF 33 |
072A: MOVF 34,W |
072B: MOVWF 36 |
072C: MOVF 33,W |
072D: MOVWF 35 |
075F: MOVF 38,W |
0760: MOVWF 3A |
0761: MOVF 37,W |
0762: MOVWF 39 |
0763: MOVF 3A,W |
0764: MOVWF 3C |
0765: MOVF 39,W |
0766: MOVWF 3B |
* |
0752: MOVF 7A,W |
0753: MOVWF 3F |
0754: MOVF 79,W |
0755: MOVWF 3E |
0756: MOVF 78,W |
0757: MOVWF 3D |
0758: MOVF 77,W |
0759: MOVWF 3C |
075A: CLRF 43 |
075B: CLRF 42 |
075C: CLRF 41 |
075D: MOVLW 77 |
075E: MOVWF 40 |
075F: CALL 378 |
078B: MOVF 7A,W |
078C: MOVWF 45 |
078D: MOVF 79,W |
078E: MOVWF 44 |
078F: MOVF 78,W |
0790: MOVWF 43 |
0791: MOVF 77,W |
0792: MOVWF 42 |
0793: CLRF 49 |
0794: CLRF 48 |
0795: CLRF 47 |
0796: MOVLW 77 |
0797: MOVWF 46 |
0798: CALL 3B1 |
.................... |
.................... } |
0760: BSF 0A.3 |
0761: BCF 0A.4 |
0762: GOTO 2FA (RETURN) |
0799: BSF 0A.3 |
079A: BCF 0A.4 |
079B: GOTO 3A1 (RETURN) |
.................... |
.................... |
.................... |
.................... #include "./HMC5883L.h" |
.................... // i2c slave addresses |
.................... #define HMC5883L_WRT_ADDR 0x3C |
.................... #define HMC5883L_READ_ADDR 0x3D |
.................... |
.................... // Register addresses |
.................... #define HMC5883L_CFG_A_REG 0x00 |
.................... #define HMC5883L_CFG_B_REG 0x01 |
.................... #define HMC5883L_MODE_REG 0x02 |
.................... #define HMC5883L_X_MSB_REG 0x03 |
.................... |
.................... //Konstanty nastavujici rozsah |
.................... //pro void set_mag_roz (unsigned int8 h) |
.................... #define MAG_ROZ088 0x00 |
.................... #define MAG_ROZ130 0x20 |
.................... #define MAG_ROZ190 0x40 |
.................... #define MAG_ROZ250 0x60 |
.................... #define MAG_ROZ400 0x80 |
.................... #define MAG_ROZ470 0xA0 |
.................... #define MAG_ROZ560 0xC0 |
.................... #define MAG_ROZ810 0xE0 |
.................... |
.................... |
.................... #include "HMC5883L.c" |
.................... //------------------------------ |
.................... // Low level routines |
.................... //------------------------------ |
.................... void hmc5883l_write_reg(int8 reg, int8 data) |
.................... { |
.................... i2c_start(); |
* |
00C2: BSF 20.4 |
00C3: MOVF 20,W |
00C4: BSF 03.5 |
00C5: MOVWF 07 |
00C6: NOP |
00C7: BCF 03.5 |
00C8: BSF 20.3 |
00C9: MOVF 20,W |
00CA: BSF 03.5 |
00CB: MOVWF 07 |
00CC: NOP |
00CD: BCF 03.5 |
00CE: BCF 07.4 |
00CF: BCF 20.4 |
00D0: MOVF 20,W |
00D1: BSF 03.5 |
00D2: MOVWF 07 |
00D3: NOP |
00D4: BCF 03.5 |
00D5: BCF 07.3 |
00D6: BCF 20.3 |
00D7: MOVF 20,W |
00D8: BSF 03.5 |
00D9: MOVWF 07 |
.................... i2c_write(HMC5883L_WRT_ADDR); |
00DA: MOVLW 3C |
00DB: BCF 03.5 |
00DC: MOVWF 3B |
00DD: CALL 078 |
.................... i2c_write(reg); |
00DE: MOVF 35,W |
00DF: MOVWF 3B |
00E0: CALL 078 |
.................... i2c_write(data); |
00E1: MOVF 36,W |
00E2: MOVWF 3B |
00E3: CALL 078 |
.................... i2c_stop(); |
00E4: BCF 20.4 |
00E5: MOVF 20,W |
00E6: BSF 03.5 |
00E7: MOVWF 07 |
00E8: NOP |
00E9: BCF 03.5 |
00EA: BSF 20.3 |
00EB: MOVF 20,W |
00EC: BSF 03.5 |
00ED: MOVWF 07 |
00EE: BCF 03.5 |
00EF: BTFSS 07.3 |
00F0: GOTO 0EF |
00F1: NOP |
00F2: GOTO 0F3 |
00F3: NOP |
00F4: BSF 20.4 |
00F5: MOVF 20,W |
00F6: BSF 03.5 |
00F7: MOVWF 07 |
00F8: NOP |
.................... } |
00F9: BCF 03.5 |
00FA: RETURN |
.................... |
.................... //------------------------------ |
.................... int8 hmc5883l_read_reg(int8 reg) |
.................... { |
.................... int8 retval; |
.................... |
.................... i2c_start(); |
.................... i2c_write(HMC5883L_WRT_ADDR); |
.................... i2c_write(reg); |
.................... i2c_start(); |
.................... i2c_write(HMC5883L_READ_ADDR); |
.................... retval = i2c_read(0); |
.................... i2c_stop(); |
.................... |
.................... return(retval); |
.................... } |
.................... |
.................... //------------------------------ |
.................... typedef struct |
.................... { |
.................... signed int16 x; |
.................... signed int16 y; |
.................... signed int16 z; |
.................... }hmc5883l_result; |
.................... |
.................... // This global structure holds the values read |
.................... // from the HMC5883L x,y,z registers. |
.................... hmc5883l_result compass = {0,0,0}; |
* |
0ADB: CLRF 21 |
0ADC: CLRF 22 |
0ADD: CLRF 23 |
0ADE: CLRF 24 |
0ADF: CLRF 25 |
0AE0: CLRF 26 |
.................... |
.................... //------------------------------ |
.................... void hmc5883l_read_data(void) |
.................... { |
.................... unsigned int8 x_lsb; |
.................... unsigned int8 x_msb; |
.................... |
.................... unsigned int8 y_lsb; |
.................... unsigned int8 y_msb; |
.................... |
.................... unsigned int8 z_lsb; |
.................... unsigned int8 z_msb; |
.................... |
.................... i2c_start(); |
* |
0800: BSF 20.4 |
0801: MOVF 20,W |
0802: BSF 03.5 |
0803: MOVWF 07 |
0804: NOP |
0805: BCF 03.5 |
0806: BSF 20.3 |
0807: MOVF 20,W |
0808: BSF 03.5 |
0809: MOVWF 07 |
080A: NOP |
080B: BCF 03.5 |
080C: BCF 07.4 |
080D: BCF 20.4 |
080E: MOVF 20,W |
080F: BSF 03.5 |
0810: MOVWF 07 |
0811: NOP |
0812: BCF 03.5 |
0813: BCF 07.3 |
0814: BCF 20.3 |
0815: MOVF 20,W |
0816: BSF 03.5 |
0817: MOVWF 07 |
.................... i2c_write(HMC5883L_WRT_ADDR); |
0818: MOVLW 3C |
0819: BCF 03.5 |
081A: MOVWF 3B |
081B: BCF 0A.3 |
081C: CALL 078 |
081D: BSF 0A.3 |
.................... i2c_write(HMC5883L_X_MSB_REG); // Point to X-msb register |
081E: MOVLW 03 |
081F: MOVWF 3B |
0820: BCF 0A.3 |
0821: CALL 078 |
0822: BSF 0A.3 |
.................... i2c_start(); |
0823: BSF 20.4 |
0824: MOVF 20,W |
0825: BSF 03.5 |
0826: MOVWF 07 |
0827: NOP |
0828: BCF 03.5 |
0829: BSF 20.3 |
082A: MOVF 20,W |
082B: BSF 03.5 |
082C: MOVWF 07 |
082D: NOP |
082E: BCF 03.5 |
082F: BTFSS 07.3 |
0830: GOTO 02F |
0831: BCF 07.4 |
0832: BCF 20.4 |
0833: MOVF 20,W |
0834: BSF 03.5 |
0835: MOVWF 07 |
0836: NOP |
0837: BCF 03.5 |
0838: BCF 07.3 |
0839: BCF 20.3 |
083A: MOVF 20,W |
083B: BSF 03.5 |
083C: MOVWF 07 |
.................... i2c_write(HMC5883L_READ_ADDR); |
083D: MOVLW 3D |
083E: BCF 03.5 |
083F: MOVWF 3B |
0840: BCF 0A.3 |
0841: CALL 078 |
0842: BSF 0A.3 |
.................... |
.................... x_msb = i2c_read(); |
0843: MOVLW 01 |
0844: MOVWF 77 |
0845: BCF 0A.3 |
0846: CALL 285 |
0847: BSF 0A.3 |
0848: MOVF 78,W |
0849: MOVWF 36 |
.................... x_lsb = i2c_read(); |
084A: MOVLW 01 |
084B: MOVWF 77 |
084C: BCF 0A.3 |
084D: CALL 285 |
084E: BSF 0A.3 |
084F: MOVF 78,W |
0850: MOVWF 35 |
.................... |
.................... z_msb = i2c_read(); |
0851: MOVLW 01 |
0852: MOVWF 77 |
0853: BCF 0A.3 |
0854: CALL 285 |
0855: BSF 0A.3 |
0856: MOVF 78,W |
0857: MOVWF 3A |
.................... z_lsb = i2c_read(); |
0858: MOVLW 01 |
0859: MOVWF 77 |
085A: BCF 0A.3 |
085B: CALL 285 |
085C: BSF 0A.3 |
085D: MOVF 78,W |
085E: MOVWF 39 |
.................... |
.................... y_msb = i2c_read(); |
085F: MOVLW 01 |
0860: MOVWF 77 |
0861: BCF 0A.3 |
0862: CALL 285 |
0863: BSF 0A.3 |
0864: MOVF 78,W |
0865: MOVWF 38 |
.................... y_lsb = i2c_read(0); // do a NACK on last read |
0866: CLRF 77 |
0867: BCF 0A.3 |
0868: CALL 285 |
0869: BSF 0A.3 |
086A: MOVF 78,W |
086B: MOVWF 37 |
.................... |
.................... i2c_stop(); |
086C: BCF 20.4 |
086D: MOVF 20,W |
086E: BSF 03.5 |
086F: MOVWF 07 |
0870: NOP |
0871: BCF 03.5 |
0872: BSF 20.3 |
0873: MOVF 20,W |
0874: BSF 03.5 |
0875: MOVWF 07 |
0876: BCF 03.5 |
0877: BTFSS 07.3 |
0878: GOTO 077 |
0879: NOP |
087A: GOTO 07B |
087B: NOP |
087C: BSF 20.4 |
087D: MOVF 20,W |
087E: BSF 03.5 |
087F: MOVWF 07 |
0880: NOP |
.................... |
.................... // Combine high and low bytes into 16-bit values. |
.................... compass.x = make16(x_msb, x_lsb); |
0881: BCF 03.5 |
0882: MOVF 36,W |
0883: MOVWF 22 |
0884: MOVF 35,W |
0885: MOVWF 21 |
.................... compass.y = make16(y_msb, y_lsb); |
0886: MOVF 38,W |
0887: MOVWF 24 |
0888: MOVF 37,W |
0889: MOVWF 23 |
.................... compass.z = make16(z_msb, z_lsb); |
088A: MOVF 3A,W |
088B: MOVWF 26 |
088C: MOVF 39,W |
088D: MOVWF 25 |
.................... } |
088E: BSF 0A.3 |
088F: BCF 0A.4 |
0890: GOTO 3AB (RETURN) |
.................... |
.................... |
.................... |
.................... |
.................... #include <math.h> |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... //// (C) Copyright 1996,2008 Custom Computer Services //// |
.................... //// This source code may only be used by licensed users of the CCS C //// |
.................... //// compiler. This source code may only be distributed to other //// |
.................... //// licensed users of the CCS C compiler. No other use, reproduction //// |
.................... //// or distribution is permitted without written permission. //// |
.................... //// Derivative programs created using this software in object code //// |
.................... //// form are not restricted in any way. //// |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... //// //// |
.................... //// History: //// |
.................... //// * 9/20/2001 : Improvments are made to sin/cos code. //// |
.................... //// The code now is small, much faster, //// |
.................... //// and more accurate. //// |
.................... //// * 2/21/2007 : Compiler handles & operator differently and does |
.................... //// not return generic (int8 *) so type cast is done //// |
.................... //// //// |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... |
.................... #ifndef MATH_H |
.................... #define MATH_H |
.................... |
.................... #ifdef PI |
.................... #undef PI |
.................... #endif |
.................... #define PI 3.1415926535897932 |
.................... |
.................... |
.................... #define SQRT2 1.4142135623730950 |
.................... |
.................... //float const ps[4] = {5.9304945, 21.125224, 8.9403076, 0.29730279}; |
.................... //float const qs[4] = {1.0000000, 15.035723, 17.764134, 2.4934718}; |
.................... |
.................... ///////////////////////////// Round Functions ////////////////////////////// |
.................... |
.................... float32 CEIL_FLOOR(float32 x, unsigned int8 n) |
.................... { |
.................... float32 y, res; |
.................... unsigned int16 l; |
.................... int1 s; |
.................... |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y <= 32768.0) |
.................... res = (float32)(unsigned int16)y; |
.................... |
.................... else if (y < 10000000.0) |
.................... { |
.................... l = (unsigned int16)(y/32768.0); |
.................... y = 32768.0*(y/32768.0 - (float32)l); |
.................... res = 32768.0*(float32)l; |
.................... res += (float32)(unsigned int16)y; |
.................... } |
.................... |
.................... else |
.................... res = y; |
.................... |
.................... y = y - (float32)(unsigned int16)y; |
.................... |
.................... if (s) |
.................... res = -res; |
.................... |
.................... if (y != 0) |
.................... { |
.................... if (s == 1 && n == 0) |
.................... res -= 1.0; |
.................... |
.................... if (s == 0 && n == 1) |
.................... res += 1.0; |
.................... } |
.................... if (x == 0) |
.................... res = 0; |
.................... |
.................... return (res); |
.................... } |
.................... |
.................... // Overloaded Functions to take care for new Data types in PCD |
.................... // Overloaded function CEIL_FLOOR() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 CEIL_FLOOR(float48 x, unsigned int8 n) |
.................... { |
.................... float48 y, res; |
.................... unsigned int16 l; |
.................... int1 s; |
.................... |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y <= 32768.0) |
.................... res = (float48)(unsigned int16)y; |
.................... |
.................... else if (y < 10000000.0) |
.................... { |
.................... l = (unsigned int16)(y/32768.0); |
.................... y = 32768.0*(y/32768.0 - (float48)l); |
.................... res = 32768.0*(float32)l; |
.................... res += (float48)(unsigned int16)y; |
.................... } |
.................... |
.................... else |
.................... res = y; |
.................... |
.................... y = y - (float48)(unsigned int16)y; |
.................... |
.................... if (s) |
.................... res = -res; |
.................... |
.................... if (y != 0) |
.................... { |
.................... if (s == 1 && n == 0) |
.................... res -= 1.0; |
.................... |
.................... if (s == 0 && n == 1) |
.................... res += 1.0; |
.................... } |
.................... if (x == 0) |
.................... res = 0; |
.................... |
.................... return (res); |
.................... } |
.................... |
.................... |
.................... // Overloaded function CEIL_FLOOR() for data type - Float64 |
.................... float64 CEIL_FLOOR(float64 x, unsigned int8 n) |
.................... { |
.................... float64 y, res; |
.................... unsigned int16 l; |
.................... int1 s; |
.................... |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y <= 32768.0) |
.................... res = (float64)(unsigned int16)y; |
.................... |
.................... else if (y < 10000000.0) |
.................... { |
.................... l = (unsigned int16)(y/32768.0); |
.................... y = 32768.0*(y/32768.0 - (float64)l); |
.................... res = 32768.0*(float64)l; |
.................... res += (float64)(unsigned int16)y; |
.................... } |
.................... |
.................... else |
.................... res = y; |
.................... |
.................... y = y - (float64)(unsigned int16)y; |
.................... |
.................... if (s) |
.................... res = -res; |
.................... |
.................... if (y != 0) |
.................... { |
.................... if (s == 1 && n == 0) |
.................... res -= 1.0; |
.................... |
.................... if (s == 0 && n == 1) |
.................... res += 1.0; |
.................... } |
.................... if (x == 0) |
.................... res = 0; |
.................... |
.................... return (res); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float floor(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : rounds down the number x. |
.................... // Date : N/A |
.................... // |
.................... float32 floor(float32 x) |
.................... { |
.................... return CEIL_FLOOR(x, 0); |
.................... } |
.................... // Following 2 functions are overloaded functions of floor() for PCD |
.................... // Overloaded function floor() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 floor(float48 x) |
.................... { |
.................... return CEIL_FLOOR(x, 0); |
.................... } |
.................... |
.................... // Overloaded function floor() for data type - Float64 |
.................... float64 floor(float64 x) |
.................... { |
.................... return CEIL_FLOOR(x, 0); |
.................... } |
.................... #endif |
.................... |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float ceil(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : rounds up the number x. |
.................... // Date : N/A |
.................... // |
.................... float32 ceil(float32 x) |
.................... { |
.................... return CEIL_FLOOR(x, 1); |
.................... } |
.................... // Following 2 functions are overloaded functions of ceil() for PCD |
.................... // Overloaded function ceil() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 ceil(float48 x) |
.................... { |
.................... return CEIL_FLOOR(x, 1); |
.................... } |
.................... |
.................... // Overloaded function ceil() for data type - Float64 |
.................... float64 ceil(float64 x) |
.................... { |
.................... return CEIL_FLOOR(x, 1); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float fabs(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : Computes the absolute value of floating point number x |
.................... // Returns : returns the absolute value of x |
.................... // Date : N/A |
.................... // |
.................... #define fabs abs |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float fmod(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : Computes the floating point remainder of x/y |
.................... // Returns : returns the value of x= i*y, for some integer i such that, if y |
.................... // is non zero, the result has the same isgn of x na dmagnitude less than the |
.................... // magnitude of y. If y is zero then a domain error occurs. |
.................... // Date : N/A |
.................... // |
.................... |
.................... float fmod(float32 x,float32 y) |
.................... { |
.................... float32 i; |
.................... if (y!=0.0) |
.................... { |
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y); |
.................... return(x-(i*y)); |
.................... } |
.................... else |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... } |
.................... //Overloaded function for fmod() for PCD |
.................... // Overloaded function fmod() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 fmod(float48 x,float48 y) |
.................... { |
.................... float48 i; |
.................... if (y!=0.0) |
.................... { |
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y); |
.................... return(x-(i*y)); |
.................... } |
.................... else |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... } |
.................... // Overloaded function fmod() for data type - Float64 |
.................... float64 fmod(float64 x,float64 y) |
.................... { |
.................... float64 i; |
.................... if (y!=0.0) |
.................... { |
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y); |
.................... return(x-(i*y)); |
.................... } |
.................... else |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... } |
.................... #endif |
.................... //////////////////// Exponential and logarithmic functions //////////////////// |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float exp(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the value (e^x) |
.................... // Date : N/A |
.................... // |
.................... #define LN2 0.6931471805599453 |
.................... |
.................... float const pe[6] = {0.000207455774, 0.00127100575, 0.00965065093, |
.................... 0.0554965651, 0.240227138, 0.693147172}; |
.................... |
.................... |
.................... float32 exp(float32 x) |
.................... { |
.................... float32 y, res, r; |
.................... #if defined(__PCD__) |
.................... int8 data1; |
.................... #endif |
.................... signed int8 n; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x > 88.722838) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... n = (signed int16)(x/LN2); |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... n = -n; |
.................... y = -y; |
.................... } |
.................... |
.................... res = 0.0; |
.................... #if !defined(__PCD__) |
.................... *((unsigned int8 *)(&res)) = n + 0x7F; |
.................... #endif |
.................... |
.................... #if defined(__PCD__) // Takes care of IEEE format for PCD |
.................... data1 = n+0x7F; |
.................... if(bit_test(data1,0)) |
.................... bit_set(*(((unsigned int8 *)(&res)+2)),7); |
.................... rotate_right(&data1,1); |
.................... bit_clear(data1,7); |
.................... *(((unsigned int8 *)(&res)+3)) = data1; |
.................... #endif |
.................... |
.................... y = y/LN2 - (float32)n; |
.................... |
.................... r = pe[0]*y + pe[1]; |
.................... r = r*y + pe[2]; |
.................... r = r*y + pe[3]; |
.................... r = r*y + pe[4]; |
.................... r = r*y + pe[5]; |
.................... |
.................... res = res*(1.0 + y*r); |
.................... |
.................... if (s) |
.................... res = 1.0/res; |
.................... return(res); |
.................... } |
.................... |
.................... |
.................... //Overloaded function for exp() for PCD |
.................... // Overloaded function exp() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 exp(float48 x) |
.................... { |
.................... float48 y, res, r; |
.................... int8 data1; |
.................... signed int8 n; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x > 88.722838) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... n = (signed int16)(x/LN2); |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... n = -n; |
.................... y = -y; |
.................... } |
.................... |
.................... res = 0.0; |
.................... |
.................... data1 = n+0x7F; |
.................... if(bit_test(data1,0)) |
.................... bit_set(*(((unsigned int8 *)(&res)+4)),7); |
.................... rotate_right(&data1,1); |
.................... bit_clear(data1,7); |
.................... *(((unsigned int8 *)(&res)+5)) = data1; |
.................... |
.................... y = y/LN2 - (float48)n; |
.................... |
.................... r = pe[0]*y + pe[1]; |
.................... r = r*y + pe[2]; |
.................... r = r*y + pe[3]; |
.................... r = r*y + pe[4]; |
.................... r = r*y + pe[5]; |
.................... |
.................... res = res*(1.0 + y*r); |
.................... |
.................... if (s) |
.................... res = 1.0/res; |
.................... return(res); |
.................... } |
.................... |
.................... // Overloaded function exp() for data type - Float64 |
.................... float64 exp(float64 x) |
.................... { |
.................... float64 y, res, r; |
.................... unsigned int16 data1, data2; |
.................... unsigned int16 *p; |
.................... signed int16 n; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x > 709.7827128) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... n = (signed int16)(x/LN2); |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... n = -n; |
.................... y = -y; |
.................... } |
.................... |
.................... res = 0.0; |
.................... |
.................... #if !defined(__PCD__) |
.................... *((unsigned int16 *)(&res)) = n + 0x7F; |
.................... #endif |
.................... p= (((unsigned int16 *)(&res))+3); |
.................... data1 = *p; |
.................... data2 = *p; |
.................... data1 = n + 0x3FF; |
.................... data1 = data1 <<4; |
.................... if(bit_test(data2,15)) |
.................... bit_set(data1,15); |
.................... data2 = data2 & 0x000F; |
.................... data1 ^= data2; |
.................... |
.................... *(((unsigned int16 *)(&res)+3)) = data1; |
.................... |
.................... |
.................... y = y/LN2 - (float64)n; |
.................... |
.................... r = pe[0]*y + pe[1]; |
.................... r = r*y + pe[2]; |
.................... r = r*y + pe[3]; |
.................... r = r*y + pe[4]; |
.................... r = r*y + pe[5]; |
.................... |
.................... res = res*(1.0 + y*r); |
.................... |
.................... if (s) |
.................... res = 1.0/res; |
.................... return(res); |
.................... } |
.................... |
.................... #ENDIF |
.................... |
.................... |
.................... /************************************************************/ |
.................... |
.................... float32 const pl[4] = {0.45145214, -9.0558803, 26.940971, -19.860189}; |
.................... float32 const ql[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943}; |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float log(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the the natural log of x |
.................... // Date : N/A |
.................... // |
.................... float32 log(float32 x) |
.................... { |
.................... float32 y, res, r, y2; |
.................... #if defined(__PCD__) |
.................... unsigned int8 data1,data2; |
.................... #endif |
.................... signed int8 n; |
.................... #ifdef _ERRNO |
.................... if(x <0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... if(x ==0) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... y = x; |
.................... |
.................... if (y != 1.0) |
.................... { |
.................... #if !defined(__PCD__) |
.................... *((unsigned int8 *)(&y)) = 0x7E; |
.................... #endif |
.................... |
.................... #if defined(__PCD__) // Takes care of IEEE format |
.................... data2 = *(((unsigned int8 *)(&y))+3); |
.................... *(((unsigned int8 *)(&y))+3) = 0x3F; |
.................... data1 = *(((unsigned int8 *)(&y))+2); |
.................... bit_clear(data1,7); |
.................... *(((unsigned int8 *)(&y))+2) = data1; |
.................... if(bit_test(data2,7)) |
.................... bit_set(*(((unsigned int8 *)(&y))+3),7); |
.................... #endif |
.................... |
.................... y = (y - 1.0)/(y + 1.0); |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pl[0]*y2 + pl[1]; |
.................... res = res*y2 + pl[2]; |
.................... res = res*y2 + pl[3]; |
.................... |
.................... r = ql[0]*y2 + ql[1]; |
.................... r = r*y2 + ql[2]; |
.................... r = r*y2 + ql[3]; |
.................... |
.................... res = y*res/r; |
.................... #if !defined(__PCD__) |
.................... n = *((unsigned int8 *)(&x)) - 0x7E; |
.................... #endif |
.................... #if defined(__PCD__) |
.................... data1 = *(((unsigned int8 *)(&x)+3)); |
.................... rotate_left(&data1,1); |
.................... data2 = *(((unsigned int8 *)(&x)+2)); |
.................... if(bit_test (data2,7)) |
.................... bit_set(data1,0); |
.................... n = data1 - 0x7E; |
.................... #endif |
.................... |
.................... if (n<0) |
.................... r = -(float32)-n; |
.................... else |
.................... r = (float32)n; |
.................... |
.................... res += r*LN2; |
.................... } |
.................... |
.................... else |
.................... res = 0.0; |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... //Overloaded function for log() for PCD |
.................... // Overloaded function log() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 log(float48 x) |
.................... { |
.................... float48 y, res, r, y2; |
.................... unsigned int8 data1,data2; |
.................... signed int8 n; |
.................... #ifdef _ERRNO |
.................... if(x <0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... if(x ==0) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... y = x; |
.................... |
.................... if (y != 1.0) |
.................... { |
.................... |
.................... #if !defined(__PCD__) |
.................... *((unsigned int8 *)(&y)) = 0x7E; |
.................... #endif |
.................... data2 = *(((unsigned int8 *)(&y))+5); |
.................... *(((unsigned int8 *)(&y))+5) = 0x3F; |
.................... data1 = *(((unsigned int8 *)(&y))+4); |
.................... bit_clear(data1,7); |
.................... *(((unsigned int8 *)(&y))+4) = data1; |
.................... |
.................... if(bit_test(data2,7)) |
.................... bit_set(*(((unsigned int8 *)(&y))+4),7); |
.................... y = (y - 1.0)/(y + 1.0); |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pl[0]*y2 + pl[1]; |
.................... res = res*y2 + pl[2]; |
.................... res = res*y2 + pl[3]; |
.................... |
.................... r = ql[0]*y2 + ql[1]; |
.................... r = r*y2 + ql[2]; |
.................... r = r*y2 + ql[3]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... data1 = *(((unsigned int8 *)(&x)+5)); |
.................... rotate_left(&data1,1); |
.................... data2 = *(((unsigned int8 *)(&x)+4)); |
.................... if(bit_test (data2,7)) |
.................... bit_set(data1,0); |
.................... |
.................... n = data1 - 0x7E; |
.................... |
.................... if (n<0) |
.................... r = -(float48)-n; |
.................... else |
.................... r = (float48)n; |
.................... |
.................... res += r*LN2; |
.................... } |
.................... |
.................... else |
.................... res = 0.0; |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... // Overloaded function log() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float32 const pl_64[4] = {0.45145214, -9.0558803, 26.940971, -19.860189}; |
.................... float32 const ql_64[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943}; |
.................... #endif |
.................... float64 log(float64 x) |
.................... { |
.................... float64 y, res, r, y2; |
.................... unsigned int16 data1,data2; |
.................... unsigned int16 *p; |
.................... signed int16 n; |
.................... #ifdef _ERRNO |
.................... if(x <0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... if(x ==0) |
.................... { |
.................... errno=ERANGE; |
.................... return(0); |
.................... } |
.................... #endif |
.................... y = x; |
.................... |
.................... if (y != 1.0) |
.................... { |
.................... #if !defined(__PCD__) |
.................... *((unsigned int8 *)(&y)) = 0x7E; |
.................... #endif |
.................... p= (((unsigned int16 *)(&y))+3); |
.................... data1 = *p; |
.................... data2 = *p; |
.................... data1 = 0x3FE; |
.................... data1 = data1 <<4; |
.................... if(bit_test (data2,15)) |
.................... bit_set(data1,15); |
.................... data2 = data2 & 0x000F; |
.................... data1 ^=data2; |
.................... |
.................... *p = data1; |
.................... |
.................... y = (y - 1.0)/(y + 1.0); |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pl_64[0]*y2 + pl_64[1]; |
.................... res = res*y2 + pl_64[2]; |
.................... res = res*y2 + pl_64[3]; |
.................... |
.................... r = ql_64[0]*y2 + ql_64[1]; |
.................... r = r*y2 + ql_64[2]; |
.................... r = r*y2 + ql_64[3]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... p= (((unsigned int16 *)(&x))+3); |
.................... data1 = *p; |
.................... bit_clear(data1,15); |
.................... data1 = data1 >>4; |
.................... n = data1 - 0x3FE; |
.................... |
.................... |
.................... if (n<0) |
.................... r = -(float64)-n; |
.................... else |
.................... r = (float64)n; |
.................... |
.................... res += r*LN2; |
.................... } |
.................... |
.................... else |
.................... res = 0.0; |
.................... |
.................... return(res); |
.................... } |
.................... #endif |
.................... |
.................... |
.................... #define LN10 2.3025850929940456 |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float log10(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the the log base 10 of x |
.................... // Date : N/A |
.................... // |
.................... float32 log10(float32 x) |
.................... { |
.................... float32 r; |
.................... |
.................... r = log(x); |
.................... r = r/LN10; |
.................... return(r); |
.................... } |
.................... |
.................... //Overloaded functions for log10() for PCD |
.................... // Overloaded function log10() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 log10(float48 x) |
.................... { |
.................... float48 r; |
.................... |
.................... r = log(x); |
.................... r = r/LN10; |
.................... return(r); |
.................... } |
.................... |
.................... // Overloaded function log10() for data type - Float64 |
.................... float64 log10(float64 x) |
.................... { |
.................... float64 r; |
.................... |
.................... r = log(x); |
.................... r = r/LN10; |
.................... return(r); |
.................... } |
.................... #endif |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float modf(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description :breaks the argument value int integral and fractional parts, |
.................... // ach of which have the same sign as the argument. It stores the integral part |
.................... // as a float in the object pointed to by the iptr |
.................... // Returns : returns the signed fractional part of value. |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 modf(float32 value,float32 *iptr) |
.................... { |
.................... *iptr=(value < 0.0)? ceil(value): floor(value); |
.................... return(value - *iptr); |
.................... } |
.................... //Overloaded functions for modf() for PCD |
.................... // Overloaded function modf() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 modf(float48 value,float48 *iptr) |
.................... { |
.................... *iptr=(value < 0.0)? ceil(value): floor(value); |
.................... return(value - *iptr); |
.................... } |
.................... // Overloaded function modf() for data type - Float64 |
.................... float64 modf(float64 value,float64 *iptr) |
.................... { |
.................... *iptr=(value < 0.0)? ceil(value): floor(value); |
.................... return(value - *iptr); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float pwr(float x,float y) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the value (x^y) |
.................... // Date : N/A |
.................... // Note : 0 is returned when the function will generate an imaginary number |
.................... // |
.................... float32 pwr(float32 x,float32 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... //Overloaded functions for pwr() for PCD |
.................... // Overloaded function pwr() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 pwr(float48 x,float48 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... // Overloaded function pwr() for data type - Float64 |
.................... float64 pwr(float64 x,float64 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... #endif |
.................... |
.................... //////////////////// Power functions //////////////////// |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float pow(float x,float y) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the value (x^y) |
.................... // Date : N/A |
.................... // Note : 0 is returned when the function will generate an imaginary number |
.................... // |
.................... float32 pow(float32 x,float32 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... //Overloaded functions for pow() for PCD |
.................... // Overloaded function for pow() data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 pow(float48 x,float48 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... |
.................... // Overloaded function pow() for data type - Float64 |
.................... float64 pow(float64 x,float64 y) |
.................... { |
.................... if(0 > x && fmod(y, 1) == 0) { |
.................... if(fmod(y, 2) == 0) { |
.................... return (exp(log(-x) * y)); |
.................... } else { |
.................... return (-exp(log(-x) * y)); |
.................... } |
.................... } else if(0 > x && fmod(y, 1) != 0) { |
.................... return 0; |
.................... } else { |
.................... if(x != 0 || 0 >= y) { |
.................... return (exp(log(x) * y)); |
.................... } |
.................... } |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float sqrt(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the square root of x |
.................... // Date : N/A |
.................... // |
.................... float32 sqrt(float32 x) |
.................... { |
.................... float32 y, res; |
.................... #if defined(__PCD__) |
.................... unsigned int16 data1,data2; |
.................... #endif |
.................... BYTE *p; |
.................... |
.................... #ifdef _ERRNO |
.................... if(x < 0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... |
.................... if( x<=0.0) |
.................... return(0.0); |
.................... |
.................... y=x; |
.................... |
.................... #if !defined(__PCD__) |
.................... p=&y; |
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1); |
.................... #endif |
.................... |
.................... #if defined(__PCD__) |
.................... p = (((unsigned int8 *)(&y))+3); |
.................... data1 = *(((unsigned int8 *)(&y))+3); |
.................... data2 = *(((unsigned int8 *)(&y))+2); |
.................... rotate_left(&data1,1); |
.................... if(bit_test(data2,7)) |
.................... bit_set(data1,0); |
.................... data1 = ((data1+127) >>1); |
.................... bit_clear(data2,7); |
.................... if(bit_test(data1,0)) |
.................... bit_set(data2,7); |
.................... data1 = data1 >>1; |
.................... *(((unsigned int8 *)(&y))+3) = data1; |
.................... *(((unsigned int8 *)(&y))+2) = data2; |
.................... |
.................... #endif |
.................... |
.................... do { |
.................... res=y; |
.................... y+=(x/y); |
.................... |
.................... #if !defined(__PCD__) |
.................... (*p)--; |
.................... #endif |
.................... |
.................... #if defined(__PCD__) |
.................... data1 = *(((unsigned int8 *)(&y))+3); |
.................... data2 = *(((unsigned int8 *)(&y))+2); |
.................... rotate_left(&data1,1); |
.................... if(bit_test(data2,7)) |
.................... bit_set(data1,0); |
.................... data1--; |
.................... bit_clear(data2,7); |
.................... if(bit_test(data1,0)) |
.................... bit_set(data2,7); |
.................... data1 = data1 >>1; |
.................... *(((unsigned int8 *)(&y))+3) = data1; |
.................... *(((unsigned int8 *)(&y))+2) = data2; |
.................... |
.................... #endif |
.................... } while(res != y); |
.................... |
.................... return(res); |
.................... } |
.................... //Overloaded functions for sqrt() for PCD |
.................... // Overloaded function sqrt() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 sqrt(float48 x) |
.................... { |
.................... float48 y, res; |
.................... unsigned int16 data1,data2; |
.................... BYTE *p; |
.................... |
.................... #ifdef _ERRNO |
.................... if(x < 0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... |
.................... if( x<=0.0) |
.................... return(0.0); |
.................... |
.................... y=x; |
.................... |
.................... #if !defined(__PCD__) |
.................... p=&y; |
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1); |
.................... #endif |
.................... |
.................... #if defined(__PCD__) |
.................... p = (((unsigned int8 *)(&y))+5); |
.................... data1 = *(((unsigned int8 *)(&y))+5); |
.................... data2 = *(((unsigned int8 *)(&y))+4); |
.................... rotate_left(&data1,1); |
.................... if(bit_test(data2,7)) |
.................... bit_set(data1,0); |
.................... data1 = ((data1+127) >>1); |
.................... bit_clear(data2,7); |
.................... if(bit_test(data1,0)) |
.................... bit_set(data2,7); |
.................... data1 = data1 >>1; |
.................... *(((unsigned int8 *)(&y))+5) = data1; |
.................... *(((unsigned int8 *)(&y))+4) = data2; |
.................... |
.................... #endif |
.................... |
.................... do { |
.................... res=y; |
.................... y+=(x/y); |
.................... |
.................... #if !defined(__PCD__) |
.................... (*p)--; |
.................... #endif |
.................... |
.................... data1 = *(((unsigned int8 *)(&y))+5); |
.................... data2 = *(((unsigned int8 *)(&y))+4); |
.................... rotate_left(&data1,1); |
.................... if(bit_test(data2,7)) |
.................... bit_set(data1,0); |
.................... data1--; |
.................... bit_clear(data2,7); |
.................... if(bit_test(data1,0)) |
.................... bit_set(data2,7); |
.................... data1 = data1 >>1; |
.................... *(((unsigned int8 *)(&y))+5) = data1; |
.................... *(((unsigned int8 *)(&y))+4) = data2; |
.................... |
.................... } while(res != y); |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... // Overloaded function sqrt() for data type - Float64 |
.................... float64 sqrt(float64 x) |
.................... { |
.................... float64 y, res; |
.................... unsigned int16 *p; |
.................... unsigned int16 temp1,temp2; |
.................... |
.................... #ifdef _ERRNO |
.................... if(x < 0) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... |
.................... if( x<=0.0) |
.................... return(0.0); |
.................... |
.................... y=x; |
.................... p= (((unsigned int16 *)(&y))+3); |
.................... temp1 = *p; |
.................... temp2 = *p; |
.................... bit_clear(temp1,15); |
.................... temp1 = (temp1>>4)+1023; |
.................... temp1 = temp1 >> 1; |
.................... temp1 = (temp1<<4) & 0xFFF0; |
.................... if(bit_test(temp2,15)) |
.................... bit_set(temp1,15); |
.................... temp2 = temp2 & 0x000F; |
.................... temp1 ^= temp2; |
.................... |
.................... (*p) = temp1; |
.................... |
.................... do { |
.................... res=y; |
.................... y+=(x/y); |
.................... temp1 = *p; |
.................... temp2 = *p; |
.................... bit_clear(temp1,15); |
.................... temp1 = (temp1>>4); |
.................... temp1--; |
.................... temp1 = (temp1<<4) & 0xFFF0; |
.................... if(bit_test(temp2,15)) |
.................... bit_set(temp1,15); |
.................... temp2 = temp2 & 0x000F; |
.................... temp1 ^= temp2; |
.................... (*p) = temp1; |
.................... |
.................... } while(res != y); |
.................... |
.................... return(res); |
.................... } |
.................... #endif |
.................... |
.................... ////////////////////////////// Trig Functions ////////////////////////////// |
.................... #ifdef PI_DIV_BY_TWO |
.................... #undef PI_DIV_BY_TWO |
.................... #endif |
.................... #define PI_DIV_BY_TWO 1.5707963267948966 |
.................... #ifdef TWOBYPI |
.................... #undef TWOBYPI |
.................... #define TWOBYPI 0.6366197723675813 |
.................... #endif |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float cos(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the cosine value of the angle x, which is in radian |
.................... // Date : 9/20/2001 |
.................... // |
.................... float32 cos(float32 x) |
.................... { |
.................... float32 y, t, t2 = 1.0; |
.................... unsigned int8 quad, i; |
.................... float32 frac; |
.................... float32 p[6] = { //by the series definition for cosine |
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! ) |
.................... 0.04166666666667, |
.................... -0.00138888888889, |
.................... 0.00002480158730, |
.................... -0.00000027557319, |
.................... 0.00000000208767, |
.................... //-0.00000000001147, |
.................... // 0.00000000000005 |
.................... }; |
.................... |
.................... if (x < 0) x = -x; // absolute value of input |
.................... |
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant |
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input |
.................... quad = quad % 4; // quadrant (0 to 3) |
.................... |
.................... if (quad == 0 || quad == 2) |
.................... t = frac * PI_DIV_BY_TWO; |
.................... else if (quad == 1) |
.................... t = (1-frac) * PI_DIV_BY_TWO; |
.................... else // should be 3 |
.................... t = (frac-1) * PI_DIV_BY_TWO; |
.................... |
.................... y = 1.0; |
.................... t = t * t; |
.................... for (i = 0; i <= 5; i++) |
.................... { |
.................... t2 = t2 * t; |
.................... y = y + p[i] * t2; |
.................... } |
.................... |
.................... if (quad == 2 || quad == 1) |
.................... y = -y; // correct sign |
.................... |
.................... return (y); |
.................... } |
.................... |
.................... |
.................... //Overloaded functions for cos() for PCD |
.................... // Overloaded function cos() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 cos(float48 x) |
.................... { |
.................... float48 y, t, t2 = 1.0; |
.................... unsigned int8 quad, i; |
.................... float48 frac; |
.................... float48 p[6] = { //by the series definition for cosine |
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! ) |
.................... 0.04166666666667, |
.................... -0.00138888888889, |
.................... 0.00002480158730, |
.................... -0.00000027557319, |
.................... 0.00000000208767, |
.................... //-0.00000000001147, |
.................... // 0.00000000000005 |
.................... }; |
.................... |
.................... if (x < 0) x = -x; // absolute value of input |
.................... |
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant |
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input |
.................... quad = quad % 4; // quadrant (0 to 3) |
.................... |
.................... if (quad == 0 || quad == 2) |
.................... t = frac * PI_DIV_BY_TWO; |
.................... else if (quad == 1) |
.................... t = (1-frac) * PI_DIV_BY_TWO; |
.................... else // should be 3 |
.................... t = (frac-1) * PI_DIV_BY_TWO; |
.................... |
.................... y = 0.999999999781; |
.................... t = t * t; |
.................... for (i = 0; i <= 5; i++) |
.................... { |
.................... t2 = t2 * t; |
.................... y = y + p[i] * t2; |
.................... } |
.................... |
.................... if (quad == 2 || quad == 1) |
.................... y = -y; // correct sign |
.................... |
.................... return (y); |
.................... } |
.................... |
.................... // Overloaded function cos() for data type - Float48 |
.................... float64 cos(float64 x) |
.................... { |
.................... float64 y, t, t2 = 1.0; |
.................... unsigned int8 quad, i; |
.................... float64 frac; |
.................... float64 p[6] = { //by the series definition for cosine |
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! ) |
.................... 0.04166666666667, |
.................... -0.00138888888889, |
.................... 0.00002480158730, |
.................... -0.00000027557319, |
.................... 0.00000000208767, |
.................... //-0.00000000001147, |
.................... // 0.00000000000005 |
.................... }; |
.................... |
.................... if (x < 0) x = -x; // absolute value of input |
.................... |
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant |
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input |
.................... quad = quad % 4; // quadrant (0 to 3) |
.................... |
.................... if (quad == 0 || quad == 2) |
.................... t = frac * PI_DIV_BY_TWO; |
.................... else if (quad == 1) |
.................... t = (1-frac) * PI_DIV_BY_TWO; |
.................... else // should be 3 |
.................... t = (frac-1) * PI_DIV_BY_TWO; |
.................... |
.................... y = 0.999999999781; |
.................... t = t * t; |
.................... for (i = 0; i <= 5; i++) |
.................... { |
.................... t2 = t2 * t; |
.................... y = y + p[i] * t2; |
.................... } |
.................... |
.................... if (quad == 2 || quad == 1) |
.................... y = -y; // correct sign |
.................... |
.................... return (y); |
.................... } |
.................... |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float sin(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the sine value of the angle x, which is in radian |
.................... // Date : 9/20/2001 |
.................... // |
.................... float32 sin(float32 x) |
.................... { |
.................... return cos(x - PI_DIV_BY_TWO); |
.................... } |
.................... |
.................... //Overloaded functions for sin() for PCD |
.................... // Overloaded function sin() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 sin(float48 x) |
.................... { |
.................... return cos(x - PI_DIV_BY_TWO); |
.................... } |
.................... |
.................... // Overloaded function sin() for data type - Float48 |
.................... float64 sin(float64 x) |
.................... { |
.................... return cos(x - PI_DIV_BY_TWO); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float tan(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the tangent value of the angle x, which is in radian |
.................... // Date : 9/20/2001 |
.................... // |
.................... float32 tan(float32 x) |
.................... { |
.................... float32 c, s; |
.................... |
.................... c = cos(x); |
.................... if (c == 0.0) |
.................... return (1.0e+36); |
.................... |
.................... s = sin(x); |
.................... return(s/c); |
.................... } |
.................... //Overloaded functions for tan() for PCD |
.................... // Overloaded function tan() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 tan(float48 x) |
.................... { |
.................... float48 c, s; |
.................... |
.................... c = cos(x); |
.................... if (c == 0.0) |
.................... return (1.0e+36); |
.................... |
.................... s = sin(x); |
.................... return(s/c); |
.................... } |
.................... |
.................... // Overloaded function tan() for data type - Float48 |
.................... float64 tan(float64 x) |
.................... { |
.................... float64 c, s; |
.................... |
.................... c = cos(x); |
.................... if (c == 0.0) |
.................... return (1.0e+36); |
.................... |
.................... s = sin(x); |
.................... return(s/c); |
.................... } |
.................... #endif |
.................... |
.................... float32 const pas[3] = {0.49559947, -4.6145309, 5.6036290}; |
.................... float32 const qas[3] = {1.0000000, -5.5484666, 5.6036290}; |
.................... |
.................... float32 ASIN_COS(float32 x, unsigned int8 n) |
.................... { |
.................... float32 y, res, r, y2; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x <-1 || x > 1) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 0.5) |
.................... { |
.................... y = sqrt((1.0 - y)/2.0); |
.................... n += 2; |
.................... } |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pas[0]*y2 + pas[1]; |
.................... res = res*y2 + pas[2]; |
.................... |
.................... r = qas[0]*y2 + qas[1]; |
.................... r = r*y2 + qas[2]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... if (n & 2) // |x| > 0.5 |
.................... res = PI_DIV_BY_TWO - 2.0*res; |
.................... if (s) |
.................... res = -res; |
.................... if (n & 1) // take arccos |
.................... res = PI_DIV_BY_TWO - res; |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... //Overloaded functions for ASIN_COS() for PCD |
.................... // Overloaded function ASIN_COS() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 ASIN_COS(float48 x, unsigned int8 n) |
.................... { |
.................... float48 y, res, r, y2; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x <-1 || x > 1) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 0.5) |
.................... { |
.................... y = sqrt((1.0 - y)/2.0); |
.................... n += 2; |
.................... } |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pas[0]*y2 + pas[1]; |
.................... res = res*y2 + pas[2]; |
.................... |
.................... r = qas[0]*y2 + qas[1]; |
.................... r = r*y2 + qas[2]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... if (n & 2) // |x| > 0.5 |
.................... res = PI_DIV_BY_TWO - 2.0*res; |
.................... if (s) |
.................... res = -res; |
.................... if (n & 1) // take arccos |
.................... res = PI_DIV_BY_TWO - res; |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... // Overloaded function ASIN_COS() for data type - Float64 |
.................... float64 ASIN_COS(float64 x, unsigned int8 n) |
.................... { |
.................... float64 y, res, r, y2; |
.................... int1 s; |
.................... #ifdef _ERRNO |
.................... if(x <-1 || x > 1) |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... s = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 0.5) |
.................... { |
.................... y = sqrt((1.0 - y)/2.0); |
.................... n += 2; |
.................... } |
.................... |
.................... y2=y*y; |
.................... |
.................... res = pas[0]*y2 + pas[1]; |
.................... res = res*y2 + pas[2]; |
.................... |
.................... r = qas[0]*y2 + qas[1]; |
.................... r = r*y2 + qas[2]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... if (n & 2) // |x| > 0.5 |
.................... res = PI_DIV_BY_TWO - 2.0*res; |
.................... if (s) |
.................... res = -res; |
.................... if (n & 1) // take arccos |
.................... res = PI_DIV_BY_TWO - res; |
.................... |
.................... return(res); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float asin(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the arcsine value of the value x. |
.................... // Date : N/A |
.................... // |
.................... float32 asin(float32 x) |
.................... { |
.................... float32 r; |
.................... |
.................... r = ASIN_COS(x, 0); |
.................... return(r); |
.................... } |
.................... //Overloaded functions for asin() for PCD |
.................... // Overloaded function asin() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 asin(float48 x) |
.................... { |
.................... float48 r; |
.................... |
.................... r = ASIN_COS(x, 0); |
.................... return(r); |
.................... } |
.................... |
.................... // Overloaded function asin() for data type - Float64 |
.................... float64 asin(float64 x) |
.................... { |
.................... float64 r; |
.................... |
.................... r = ASIN_COS(x, 0); |
.................... return(r); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float acos(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the arccosine value of the value x. |
.................... // Date : N/A |
.................... // |
.................... float32 acos(float32 x) |
.................... { |
.................... float32 r; |
.................... |
.................... r = ASIN_COS(x, 1); |
.................... return(r); |
.................... } |
.................... //Overloaded functions for acos() for PCD |
.................... // Overloaded function acos() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 acos(float48 x) |
.................... { |
.................... float48 r; |
.................... |
.................... r = ASIN_COS(x, 1); |
.................... return(r); |
.................... } |
.................... |
.................... // Overloaded function acos() for data type - Float64 |
.................... float64 acos(float64 x) |
.................... { |
.................... float64 r; |
.................... |
.................... r = ASIN_COS(x, 1); |
.................... return(r); |
.................... } |
.................... #endif |
.................... |
.................... float32 const pat[4] = {0.17630401, 5.6710795, 22.376096, 19.818457}; |
.................... float32 const qat[4] = {1.0000000, 11.368190, 28.982246, 19.818457}; |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float atan(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : returns the arctangent value of the value x. |
.................... // Date : N/A |
.................... // |
.................... float32 atan(float32 x) |
.................... { |
.................... float32 y, res, r; |
.................... int1 s, flag; |
.................... |
.................... s = 0; |
.................... flag = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 1.0) |
.................... { |
.................... y = 1.0/y; |
.................... flag = 1; |
.................... } |
.................... |
.................... res = pat[0]*y*y + pat[1]; |
.................... res = res*y*y + pat[2]; |
.................... res = res*y*y + pat[3]; |
.................... |
.................... r = qat[0]*y*y + qat[1]; |
.................... r = r*y*y + qat[2]; |
.................... r = r*y*y + qat[3]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... |
.................... if (flag) // for |x| > 1 |
.................... res = PI_DIV_BY_TWO - res; |
.................... if (s) |
.................... res = -res; |
.................... |
.................... return(res); |
.................... } |
.................... //Overloaded functions for atan() for PCD |
.................... // Overloaded function atan() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 atan(float48 x) |
.................... { |
.................... float48 y, res, r; |
.................... int1 s, flag; |
.................... |
.................... s = 0; |
.................... flag = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 1.0) |
.................... { |
.................... y = 1.0/y; |
.................... flag = 1; |
.................... } |
.................... |
.................... res = pat[0]*y*y + pat[1]; |
.................... res = res*y*y + pat[2]; |
.................... res = res*y*y + pat[3]; |
.................... |
.................... r = qat[0]*y*y + qat[1]; |
.................... r = r*y*y + qat[2]; |
.................... r = r*y*y + qat[3]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... |
.................... if (flag) // for |x| > 1 |
.................... res = PI_DIV_BY_TWO - res; |
.................... if (s) |
.................... res = -res; |
.................... |
.................... return(res); |
.................... } |
.................... |
.................... // Overloaded function atan() for data type - Float64 |
.................... float64 atan(float64 x) |
.................... { |
.................... float64 y, res, r; |
.................... int1 s, flag; |
.................... |
.................... s = 0; |
.................... flag = 0; |
.................... y = x; |
.................... |
.................... if (x < 0) |
.................... { |
.................... s = 1; |
.................... y = -y; |
.................... } |
.................... |
.................... if (y > 1.0) |
.................... { |
.................... y = 1.0/y; |
.................... flag = 1; |
.................... } |
.................... |
.................... res = pat[0]*y*y + pat[1]; |
.................... res = res*y*y + pat[2]; |
.................... res = res*y*y + pat[3]; |
.................... |
.................... r = qat[0]*y*y + qat[1]; |
.................... r = r*y*y + qat[2]; |
.................... r = r*y*y + qat[3]; |
.................... |
.................... res = y*res/r; |
.................... |
.................... |
.................... if (flag) // for |x| > 1 |
.................... res = PI_DIV_BY_TWO - res; |
.................... if (s) |
.................... res = -res; |
.................... |
.................... return(res); |
.................... } |
.................... #endif |
.................... |
.................... ///////////////////////////////////////////////////////////////////////////// |
.................... // float atan2(float y, float x) |
.................... ///////////////////////////////////////////////////////////////////////////// |
.................... // Description :computes the principal value of arc tangent of y/x, using the |
.................... // signs of both the arguments to determine the quadrant of the return value |
.................... // Returns : returns the arc tangent of y/x. |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 atan2(float32 y,float32 x) |
.................... { |
.................... float32 z; |
.................... int1 sign; |
.................... unsigned int8 quad; |
.................... sign=0; |
.................... quad=0; //quadrant |
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); |
.................... if(y<0.0) |
.................... { |
.................... sign=1; |
.................... y=-y; |
.................... } |
.................... if(x<0.0) |
.................... { |
.................... x=-x; |
.................... } |
.................... if (x==0.0) |
.................... { |
.................... if(y==0.0) |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... else |
.................... { |
.................... if(sign) |
.................... { |
.................... return (-(PI_DIV_BY_TWO)); |
.................... } |
.................... else |
.................... { |
.................... return (PI_DIV_BY_TWO); |
.................... } |
.................... } |
.................... } |
.................... else |
.................... { |
.................... z=y/x; |
.................... switch(quad) |
.................... { |
.................... case 1: |
.................... { |
.................... return atan(z); |
.................... break; |
.................... } |
.................... case 2: |
.................... { |
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122 |
.................... return (PI-atan(z)); |
.................... break; |
.................... } |
.................... case 3: |
.................... { |
.................... return (atan(z)-PI); |
.................... break; |
.................... } |
.................... case 4: |
.................... { |
.................... return (-atan(z)); |
.................... break; |
.................... } |
.................... } |
.................... } |
.................... } |
.................... |
.................... //Overloaded functions for atan2() for PCD |
.................... // Overloaded function atan2() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 atan2(float48 y,float48 x) |
.................... { |
.................... float48 z; |
.................... int1 sign; |
.................... unsigned int8 quad; |
.................... sign=0; |
.................... quad=0; //quadrant |
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); |
.................... if(y<0.0) |
.................... { |
.................... sign=1; |
.................... y=-y; |
.................... } |
.................... if(x<0.0) |
.................... { |
.................... x=-x; |
.................... } |
.................... if (x==0.0) |
.................... { |
.................... if(y==0.0) |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... else |
.................... { |
.................... if(sign) |
.................... { |
.................... return (-(PI_DIV_BY_TWO)); |
.................... } |
.................... else |
.................... { |
.................... return (PI_DIV_BY_TWO); |
.................... } |
.................... } |
.................... } |
.................... else |
.................... { |
.................... z=y/x; |
.................... switch(quad) |
.................... { |
.................... case 1: |
.................... { |
.................... return atan(z); |
.................... break; |
.................... } |
.................... case 2: |
.................... { |
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122 |
.................... return (PI-atan(z)); |
.................... break; |
.................... } |
.................... case 3: |
.................... { |
.................... return (atan(z)-PI); |
.................... break; |
.................... } |
.................... case 4: |
.................... { |
.................... return (-atan(z)); |
.................... break; |
.................... } |
.................... } |
.................... } |
.................... } |
.................... |
.................... // Overloaded function atan2() for data type - Float64 |
.................... float64 atan2(float64 y,float64 x) |
.................... { |
.................... float64 z; |
.................... int1 sign; |
.................... unsigned int8 quad; |
.................... sign=0; |
.................... quad=0; //quadrant |
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); |
.................... if(y<0.0) |
.................... { |
.................... sign=1; |
.................... y=-y; |
.................... } |
.................... if(x<0.0) |
.................... { |
.................... x=-x; |
.................... } |
.................... if (x==0.0) |
.................... { |
.................... if(y==0.0) |
.................... { |
.................... #ifdef _ERRNO |
.................... { |
.................... errno=EDOM; |
.................... } |
.................... #endif |
.................... } |
.................... else |
.................... { |
.................... if(sign) |
.................... { |
.................... return (-(PI_DIV_BY_TWO)); |
.................... } |
.................... else |
.................... { |
.................... return (PI_DIV_BY_TWO); |
.................... } |
.................... } |
.................... } |
.................... else |
.................... { |
.................... z=y/x; |
.................... switch(quad) |
.................... { |
.................... case 1: |
.................... { |
.................... return atan(z); |
.................... break; |
.................... } |
.................... case 2: |
.................... { |
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122 |
.................... return (PI-atan(z)); |
.................... break; |
.................... } |
.................... case 3: |
.................... { |
.................... return (atan(z)-PI); |
.................... break; |
.................... } |
.................... case 4: |
.................... { |
.................... return (-atan(z)); |
.................... break; |
.................... } |
.................... } |
.................... } |
.................... } |
.................... #endif |
.................... |
.................... //////////////////// Hyperbolic functions //////////////////// |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float cosh(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : Computes the hyperbolic cosine value of x |
.................... // Returns : returns the hyperbolic cosine value of x |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 cosh(float32 x) |
.................... { |
.................... return ((exp(x)+exp(-x))/2); |
.................... } |
.................... //Overloaded functions for cosh() for PCD |
.................... // Overloaded function cosh() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 cosh(float48 x) |
.................... { |
.................... return ((exp(x)+exp(-x))/2); |
.................... } |
.................... |
.................... // Overloaded function cosh() for data type - Float64 |
.................... float64 cosh(float64 x) |
.................... { |
.................... return ((exp(x)+exp(-x))/2); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float sinh(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : Computes the hyperbolic sine value of x |
.................... // Returns : returns the hyperbolic sine value of x |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 sinh(float32 x) |
.................... { |
.................... |
.................... return ((exp(x) - exp(-x))/2); |
.................... } |
.................... //Overloaded functions for sinh() for PCD |
.................... // Overloaded function sinh() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 sinh(float48 x) |
.................... { |
.................... |
.................... return ((exp(x) - exp(-x))/2); |
.................... } |
.................... |
.................... // Overloaded function sinh() for data type - Float48 |
.................... float64 sinh(float64 x) |
.................... { |
.................... |
.................... return ((exp(x) - exp(-x))/2); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float tanh(float x) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : Computes the hyperbolic tangent value of x |
.................... // Returns : returns the hyperbolic tangent value of x |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 tanh(float32 x) |
.................... { |
.................... return(sinh(x)/cosh(x)); |
.................... } |
.................... //Overloaded functions for tanh() for PCD |
.................... // Overloaded function tanh() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 tanh(float48 x) |
.................... { |
.................... return(sinh(x)/cosh(x)); |
.................... } |
.................... |
.................... // Overloaded function tanh() for data type - Float64 |
.................... float64 tanh(float64 x) |
.................... { |
.................... return(sinh(x)/cosh(x)); |
.................... } |
.................... #endif |
.................... |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // float frexp(float x, signed int *exp) |
.................... //////////////////////////////////////////////////////////////////////////// |
.................... // Description : breaks a floating point number into a normalized fraction and an integral |
.................... // power of 2. It stores the integer in the signed int object pointed to by exp. |
.................... // Returns : returns the value x, such that x is a double with magnitude in the interval |
.................... // [1/2,1) or zero, and value equals x times 2 raised to the power *exp.If value is zero, |
.................... // both parts of the result are zero. |
.................... // Date : N/A |
.................... // |
.................... |
.................... #define LOG2 .30102999566398119521 |
.................... float32 frexp(float32 x, signed int8 *exp) |
.................... { |
.................... float32 res; |
.................... int1 sign = 0; |
.................... if(x == 0.0) |
.................... { |
.................... *exp=0; |
.................... return (0.0); |
.................... } |
.................... if(x < 0.0) |
.................... { |
.................... x=-x; |
.................... sign=1; |
.................... } |
.................... if (x > 1.0) |
.................... { |
.................... *exp=(ceil(log10(x)/LOG2)); |
.................... res=x/(pow(2, *exp)); |
.................... if (res == 1) |
.................... { |
.................... *exp=*exp+1; |
.................... res=.5; |
.................... } |
.................... } |
.................... else |
.................... { |
.................... if(x < 0.5) |
.................... { |
.................... *exp=-1; |
.................... res=x*2; |
.................... } |
.................... else |
.................... { |
.................... *exp=0; |
.................... res=x; |
.................... } |
.................... } |
.................... if(sign) |
.................... { |
.................... res=-res; |
.................... } |
.................... return res; |
.................... } |
.................... |
.................... //Overloaded functions for frexp() for PCD |
.................... // Overloaded function frexp() for data type - Float48 |
.................... #if defined(__PCD__) |
.................... float48 frexp(float48 x, signed int8 *exp) |
.................... { |
.................... float48 res; |
.................... int1 sign = 0; |
.................... if(x == 0.0) |
.................... { |
.................... *exp=0; |
.................... return (0.0); |
.................... } |
.................... if(x < 0.0) |
.................... { |
.................... x=-x; |
.................... sign=1; |
.................... } |
.................... if (x > 1.0) |
.................... { |
.................... *exp=(ceil(log10(x)/LOG2)); |
.................... res=x/(pow(2, *exp)); |
.................... if (res == 1) |
.................... { |
.................... *exp=*exp+1; |
.................... res=.5; |
.................... } |
.................... } |
.................... else |
.................... { |
.................... if(x < 0.5) |
.................... { |
.................... *exp=-1; |
.................... res=x*2; |
.................... } |
.................... else |
.................... { |
.................... *exp=0; |
.................... res=x; |
.................... } |
.................... } |
.................... if(sign) |
.................... { |
.................... res=-res; |
.................... } |
.................... return res; |
.................... } |
.................... |
.................... // Overloaded function frexp() for data type - Float64 |
.................... float64 frexp(float64 x, signed int8 *exp) |
.................... { |
.................... float64 res; |
.................... int1 sign = 0; |
.................... if(x == 0.0) |
.................... { |
.................... *exp=0; |
.................... return (0.0); |
.................... } |
.................... if(x < 0.0) |
.................... { |
.................... x=-x; |
.................... sign=1; |
.................... } |
.................... if (x > 1.0) |
.................... { |
.................... *exp=(ceil(log10(x)/LOG2)); |
.................... res=x/(pow(2, *exp)); |
.................... if (res == 1) |
.................... { |
.................... *exp=*exp+1; |
.................... res=.5; |
.................... } |
.................... } |
.................... else |
.................... { |
.................... if(x < 0.5) |
.................... { |
.................... *exp=-1; |
.................... res=x*2; |
.................... } |
.................... else |
.................... { |
.................... *exp=0; |
.................... res=x; |
.................... } |
.................... } |
.................... if(sign) |
.................... { |
.................... res=-res; |
.................... } |
.................... return res; |
.................... } |
.................... #endif |
.................... |
.................... ////////////////////////////////////////////////////////////////////////////// |
.................... // float ldexp(float x, signed int *exp) |
.................... ////////////////////////////////////////////////////////////////////////////// |
.................... // Description : multiplies a floating point number by an integral power of 2. |
.................... // Returns : returns the value of x times 2 raised to the power exp. |
.................... // Date : N/A |
.................... // |
.................... |
.................... float32 ldexp(float32 value, signed int8 exp) |
.................... { |
.................... return (value * pow(2,exp)); |
.................... } |
.................... //Overloaded functions for ldexp() for PCD |
.................... // Overloaded function ldexp() for data type - Float48 |
.................... |
.................... #if defined(__PCD__) |
.................... float48 ldexp(float48 value, signed int8 exp) |
.................... { |
.................... return (value * pow(2,exp)); |
.................... } |
.................... // Overloaded function ldexp() for data type - Float64 |
.................... float64 ldexp(float64 value, signed int8 exp) |
.................... { |
.................... return (value * pow(2,exp)); |
.................... } |
.................... #endif |
.................... |
.................... #endif |
.................... |
.................... |
.................... |
.................... void main() |
.................... { |
* |
0A28: CLRF 04 |
0A29: BCF 03.7 |
0A2A: MOVLW 1F |
0A2B: ANDWF 03,F |
0A2C: MOVLW 71 |
0A2D: BSF 03.5 |
0A2E: MOVWF 0F |
0A2F: MOVF 0F,W |
0A30: BSF 03.6 |
0A31: BCF 07.3 |
0A32: MOVLW 0C |
0A33: BCF 03.6 |
0A34: MOVWF 19 |
0A35: MOVLW A2 |
0A36: MOVWF 18 |
0A37: MOVLW 90 |
0A38: BCF 03.5 |
0A39: MOVWF 18 |
0A3A: BSF 03.5 |
0A3B: BSF 03.6 |
0A3C: MOVF 09,W |
0A3D: ANDLW C0 |
0A3E: MOVWF 09 |
0A3F: BCF 03.6 |
0A40: BCF 1F.4 |
0A41: BCF 1F.5 |
0A42: MOVLW 00 |
0A43: BSF 03.6 |
0A44: MOVWF 08 |
0A45: BCF 03.5 |
0A46: CLRF 07 |
0A47: CLRF 08 |
0A48: CLRF 09 |
0AB7: CLRF 04 |
0AB8: BCF 03.7 |
0AB9: MOVLW 1F |
0ABA: ANDWF 03,F |
0ABB: MOVLW 71 |
0ABC: BSF 03.5 |
0ABD: MOVWF 0F |
0ABE: MOVF 0F,W |
0ABF: BSF 03.6 |
0AC0: BCF 07.3 |
0AC1: MOVLW 0C |
0AC2: BCF 03.6 |
0AC3: MOVWF 19 |
0AC4: MOVLW A2 |
0AC5: MOVWF 18 |
0AC6: MOVLW 90 |
0AC7: BCF 03.5 |
0AC8: MOVWF 18 |
0AC9: BSF 03.5 |
0ACA: BSF 03.6 |
0ACB: MOVF 09,W |
0ACC: ANDLW C0 |
0ACD: MOVWF 09 |
0ACE: BCF 03.6 |
0ACF: BCF 1F.4 |
0AD0: BCF 1F.5 |
0AD1: MOVLW 00 |
0AD2: BSF 03.6 |
0AD3: MOVWF 08 |
0AD4: BCF 03.5 |
0AD5: CLRF 07 |
0AD6: CLRF 08 |
0AD7: CLRF 09 |
* |
0A4C: CLRF 2E |
0A4D: CLRF 2D |
0AE1: CLRF 34 |
0AE2: CLRF 33 |
.................... float temp1, temp2, humidity; |
.................... int16 i=0; |
.................... |
.................... setup_adc_ports(NO_ANALOGS|VSS_VDD); |
0A4E: BSF 03.5 |
0A4F: BSF 03.6 |
0A50: MOVF 09,W |
0A51: ANDLW C0 |
0A52: MOVWF 09 |
0A53: BCF 03.6 |
0A54: BCF 1F.4 |
0A55: BCF 1F.5 |
0A56: MOVLW 00 |
0A57: BSF 03.6 |
0A58: MOVWF 08 |
0AE3: BSF 03.5 |
0AE4: BSF 03.6 |
0AE5: MOVF 09,W |
0AE6: ANDLW C0 |
0AE7: MOVWF 09 |
0AE8: BCF 03.6 |
0AE9: BCF 1F.4 |
0AEA: BCF 1F.5 |
0AEB: MOVLW 00 |
0AEC: BSF 03.6 |
0AED: MOVWF 08 |
.................... setup_adc(ADC_CLOCK_DIV_2); |
0A59: BCF 03.5 |
0A5A: BCF 03.6 |
0A5B: BCF 1F.6 |
0A5C: BCF 1F.7 |
0A5D: BSF 03.5 |
0A5E: BSF 1F.7 |
0A5F: BCF 03.5 |
0A60: BSF 1F.0 |
0AEE: BCF 03.5 |
0AEF: BCF 03.6 |
0AF0: BCF 1F.6 |
0AF1: BCF 1F.7 |
0AF2: BSF 03.5 |
0AF3: BSF 1F.7 |
0AF4: BCF 03.5 |
0AF5: BSF 1F.0 |
.................... setup_spi(SPI_SS_DISABLED); |
0A61: BCF 14.5 |
0A62: BCF 20.5 |
0A63: MOVF 20,W |
0A64: BSF 03.5 |
0A65: MOVWF 07 |
0A66: BCF 03.5 |
0A67: BSF 20.4 |
0A68: MOVF 20,W |
0A69: BSF 03.5 |
0A6A: MOVWF 07 |
0A6B: BCF 03.5 |
0A6C: BCF 20.3 |
0A6D: MOVF 20,W |
0A6E: BSF 03.5 |
0A6F: MOVWF 07 |
0A70: MOVLW 01 |
0A71: BCF 03.5 |
0A72: MOVWF 14 |
0A73: MOVLW 00 |
0A74: BSF 03.5 |
0A75: MOVWF 14 |
0AF6: BCF 14.5 |
0AF7: BCF 20.5 |
0AF8: MOVF 20,W |
0AF9: BSF 03.5 |
0AFA: MOVWF 07 |
0AFB: BCF 03.5 |
0AFC: BSF 20.4 |
0AFD: MOVF 20,W |
0AFE: BSF 03.5 |
0AFF: MOVWF 07 |
0B00: BCF 03.5 |
0B01: BCF 20.3 |
0B02: MOVF 20,W |
0B03: BSF 03.5 |
0B04: MOVWF 07 |
0B05: MOVLW 01 |
0B06: BCF 03.5 |
0B07: MOVWF 14 |
0B08: MOVLW 00 |
0B09: BSF 03.5 |
0B0A: MOVWF 14 |
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); |
0A76: MOVF 01,W |
0A77: ANDLW C7 |
0A78: IORLW 08 |
0A79: MOVWF 01 |
0B0B: MOVF 01,W |
0B0C: ANDLW C7 |
0B0D: IORLW 08 |
0B0E: MOVWF 01 |
.................... setup_timer_1(T1_DISABLED); |
0A7A: BCF 03.5 |
0A7B: CLRF 10 |
0B0F: BCF 03.5 |
0B10: CLRF 10 |
.................... setup_timer_2(T2_DISABLED,0,1); |
0A7C: MOVLW 00 |
0A7D: MOVWF 78 |
0A7E: MOVWF 12 |
0A7F: MOVLW 00 |
0A80: BSF 03.5 |
0A81: MOVWF 12 |
0B11: MOVLW 00 |
0B12: MOVWF 78 |
0B13: MOVWF 12 |
0B14: MOVLW 00 |
0B15: BSF 03.5 |
0B16: MOVWF 12 |
.................... setup_ccp1(CCP_OFF); |
0A82: BCF 03.5 |
0A83: BSF 20.2 |
0A84: MOVF 20,W |
0A85: BSF 03.5 |
0A86: MOVWF 07 |
0A87: BCF 03.5 |
0A88: CLRF 17 |
0A89: BSF 03.5 |
0A8A: CLRF 1B |
0A8B: CLRF 1C |
0A8C: MOVLW 01 |
0A8D: MOVWF 1D |
0B17: BCF 03.5 |
0B18: BSF 20.2 |
0B19: MOVF 20,W |
0B1A: BSF 03.5 |
0B1B: MOVWF 07 |
0B1C: BCF 03.5 |
0B1D: CLRF 17 |
0B1E: BSF 03.5 |
0B1F: CLRF 1B |
0B20: CLRF 1C |
0B21: MOVLW 01 |
0B22: MOVWF 1D |
.................... setup_comparator(NC_NC_NC_NC); // This device COMP currently not supported by the PICWizard |
0A8E: BCF 03.5 |
0A8F: BSF 03.6 |
0A90: CLRF 07 |
0A91: CLRF 08 |
0A92: CLRF 09 |
0B23: BCF 03.5 |
0B24: BSF 03.6 |
0B25: CLRF 07 |
0B26: CLRF 08 |
0B27: CLRF 09 |
.................... setup_oscillator(OSC_8MHZ); |
0A93: MOVLW 71 |
0A94: BSF 03.5 |
0A95: BCF 03.6 |
0A96: MOVWF 0F |
0A97: MOVF 0F,W |
0B28: MOVLW 71 |
0B29: BSF 03.5 |
0B2A: BCF 03.6 |
0B2B: MOVWF 0F |
0B2C: MOVF 0F,W |
.................... |
.................... |
.................... printf("GeoMet01A\r\n",); |
0A98: MOVLW 0C |
0A99: BCF 03.5 |
0A9A: BSF 03.6 |
0A9B: MOVWF 0D |
0A9C: MOVLW 00 |
0A9D: MOVWF 0F |
0A9E: BCF 0A.3 |
0A9F: BCF 03.6 |
0AA0: CALL 030 |
0AA1: BSF 0A.3 |
.................... printf("GeoMet01A\r\n"); |
0B2D: MOVLW 0C |
0B2E: BCF 03.5 |
0B2F: BSF 03.6 |
0B30: MOVWF 0D |
0B31: MOVLW 00 |
0B32: MOVWF 0F |
0B33: BCF 0A.3 |
0B34: BCF 03.6 |
0B35: CALL 030 |
0B36: BSF 0A.3 |
.................... printf("(c) Kaklik 2013\r\n"); |
0AA2: MOVLW 12 |
0AA3: BSF 03.6 |
0AA4: MOVWF 0D |
0AA5: MOVLW 00 |
0AA6: MOVWF 0F |
0AA7: BCF 0A.3 |
0AA8: BCF 03.6 |
0AA9: CALL 030 |
0AAA: BSF 0A.3 |
0B37: MOVLW 12 |
0B38: BSF 03.6 |
0B39: MOVWF 0D |
0B3A: MOVLW 00 |
0B3B: MOVWF 0F |
0B3C: BCF 0A.3 |
0B3D: BCF 03.6 |
0B3E: CALL 030 |
0B3F: BSF 0A.3 |
.................... printf("www.mlab.cz\r\n"); |
0AAB: MOVLW 1B |
0AAC: BSF 03.6 |
0AAD: MOVWF 0D |
0AAE: MOVLW 00 |
0AAF: MOVWF 0F |
0AB0: BCF 0A.3 |
0AB1: BCF 03.6 |
0AB2: CALL 030 |
0AB3: BSF 0A.3 |
0B40: MOVLW 1B |
0B41: BSF 03.6 |
0B42: MOVWF 0D |
0B43: MOVLW 00 |
0B44: MOVWF 0F |
0B45: BCF 0A.3 |
0B46: BCF 03.6 |
0B47: CALL 030 |
0B48: BSF 0A.3 |
.................... |
.................... // Init the HMC5883L. Set Mode register for |
.................... // continuous measurements. |
.................... hmc5883l_write_reg(HMC5883L_CFG_A_REG, 0x18); // no average, maximal update range |
0B49: CLRF 35 |
0B4A: MOVLW 18 |
0B4B: MOVWF 36 |
0B4C: BCF 0A.3 |
0B4D: CALL 0C2 |
0B4E: BSF 0A.3 |
.................... hmc5883l_write_reg(HMC5883L_CFG_B_REG, 0x00); // minimal range |
0B4F: MOVLW 01 |
0B50: MOVWF 35 |
0B51: CLRF 36 |
0B52: BCF 0A.3 |
0B53: CALL 0C2 |
0B54: BSF 0A.3 |
.................... hmc5883l_write_reg(HMC5883L_MODE_REG, 0x00); |
0B55: MOVLW 02 |
0B56: MOVWF 35 |
0B57: CLRF 36 |
0B58: BCF 0A.3 |
0B59: CALL 0C2 |
0B5A: BSF 0A.3 |
.................... |
.................... lcd_init(); |
0AB4: BCF 0A.3 |
0AB5: CALL 145 |
0AB6: BSF 0A.3 |
0B5B: BCF 0A.3 |
0B5C: CALL 1C8 |
0B5D: BSF 0A.3 |
.................... lcd_putc("(c) Kaklik 2013"); |
0AB7: MOVLW 22 |
0AB8: BSF 03.6 |
0AB9: MOVWF 0D |
0ABA: MOVLW 00 |
0ABB: MOVWF 0F |
0ABC: BCF 0A.3 |
0ABD: BCF 03.6 |
0ABE: CALL 1BC |
0ABF: BSF 0A.3 |
0B5E: MOVLW 22 |
0B5F: BSF 03.6 |
0B60: MOVWF 0D |
0B61: MOVLW 00 |
0B62: MOVWF 0F |
0B63: BCF 0A.3 |
0B64: BCF 03.6 |
0B65: CALL 23F |
0B66: BSF 0A.3 |
.................... lcd_gotoxy(3,2); |
0AC0: MOVLW 03 |
0AC1: MOVWF 3D |
0AC2: MOVLW 02 |
0AC3: MOVWF 3E |
0AC4: BCF 0A.3 |
0AC5: CALL 17D |
0AC6: BSF 0A.3 |
0B67: MOVLW 03 |
0B68: MOVWF 43 |
0B69: MOVLW 02 |
0B6A: MOVWF 44 |
0B6B: BCF 0A.3 |
0B6C: CALL 200 |
0B6D: BSF 0A.3 |
.................... lcd_putc("www.mlab.cz"); |
0AC7: MOVLW 2A |
0AC8: BSF 03.6 |
0AC9: MOVWF 0D |
0ACA: MOVLW 00 |
0ACB: MOVWF 0F |
0ACC: BCF 0A.3 |
0ACD: BCF 03.6 |
0ACE: CALL 1BC |
0ACF: BSF 0A.3 |
0B6E: MOVLW 2A |
0B6F: BSF 03.6 |
0B70: MOVWF 0D |
0B71: MOVLW 00 |
0B72: MOVWF 0F |
0B73: BCF 0A.3 |
0B74: BCF 03.6 |
0B75: CALL 23F |
0B76: BSF 0A.3 |
.................... Delay_ms(2000); |
0AD0: MOVLW 08 |
0AD1: MOVWF 2F |
0AD2: MOVLW FA |
0AD3: MOVWF 3D |
0AD4: BCF 0A.3 |
0AD5: CALL 078 |
0AD6: BSF 0A.3 |
0AD7: DECFSZ 2F,F |
0AD8: GOTO 2D2 |
0B77: MOVLW 08 |
0B78: MOVWF 35 |
0B79: MOVLW FA |
0B7A: MOVWF 43 |
0B7B: BCF 0A.3 |
0B7C: CALL 0FB |
0B7D: BSF 0A.3 |
0B7E: DECFSZ 35,F |
0B7F: GOTO 379 |
.................... lcd_init(); |
0AD9: BCF 0A.3 |
0ADA: CALL 145 |
0ADB: BSF 0A.3 |
0B80: BCF 0A.3 |
0B81: CALL 1C8 |
0B82: BSF 0A.3 |
.................... |
.................... while (TRUE) |
.................... { |
.................... lcd_gotoxy(1,1); |
0ADC: MOVLW 01 |
0ADD: MOVWF 3D |
0ADE: MOVWF 3E |
0ADF: BCF 0A.3 |
0AE0: CALL 17D |
0AE1: BSF 0A.3 |
0B83: MOVLW 01 |
0B84: MOVWF 43 |
0B85: MOVWF 44 |
0B86: BCF 0A.3 |
0B87: CALL 200 |
0B88: BSF 0A.3 |
.................... temp1 = SHT25_get_temp(); |
0AE2: BCF 0A.3 |
0AE3: GOTO 52E |
0AE4: BSF 0A.3 |
0AE5: MOVF 7A,W |
0AE6: MOVWF 24 |
0AE7: MOVF 79,W |
0AE8: MOVWF 23 |
0AE9: MOVF 78,W |
0AEA: MOVWF 22 |
0AEB: MOVF 77,W |
0AEC: MOVWF 21 |
0B89: BCF 0A.3 |
0B8A: GOTO 567 |
0B8B: BSF 0A.3 |
0B8C: MOVF 7A,W |
0B8D: MOVWF 2A |
0B8E: MOVF 79,W |
0B8F: MOVWF 29 |
0B90: MOVF 78,W |
0B91: MOVWF 28 |
0B92: MOVF 77,W |
0B93: MOVWF 27 |
.................... humidity = SHT25_get_hum(); |
0AED: BCF 0A.3 |
0AEE: GOTO 5FD |
0AEF: BSF 0A.3 |
0AF0: MOVF 7A,W |
0AF1: MOVWF 2C |
0AF2: MOVF 79,W |
0AF3: MOVWF 2B |
0AF4: MOVF 78,W |
0AF5: MOVWF 2A |
0AF6: MOVF 77,W |
0AF7: MOVWF 29 |
.................... temp2= LTS01_get_temp(); |
0AF8: BCF 0A.3 |
0AF9: GOTO 6B3 |
0AFA: BSF 0A.3 |
0AFB: MOVF 7A,W |
0AFC: MOVWF 28 |
0AFD: MOVF 79,W |
0AFE: MOVWF 27 |
0AFF: MOVF 78,W |
0B00: MOVWF 26 |
0B01: MOVF 77,W |
0B02: MOVWF 25 |
.................... |
.................... printf(lcd_putc,"%f C %f \%% \r\n",temp1, humidity); |
0B03: MOVLW 89 |
0B04: MOVWF 04 |
0B05: MOVF 24,W |
0B06: MOVWF 32 |
0B07: MOVF 23,W |
0B08: MOVWF 31 |
0B09: MOVF 22,W |
0B0A: MOVWF 30 |
0B0B: MOVF 21,W |
0B0C: MOVWF 2F |
0B0D: MOVLW 02 |
0B0E: MOVWF 33 |
0B0F: CALL 000 |
0B10: MOVLW 20 |
0B11: MOVWF 3C |
0B12: BCF 0A.3 |
0B13: CALL 18F |
0B14: BSF 0A.3 |
0B15: MOVLW 43 |
0B16: MOVWF 3C |
0B17: BCF 0A.3 |
0B18: CALL 18F |
0B19: BSF 0A.3 |
0B1A: MOVLW 20 |
0B1B: MOVWF 3C |
0B1C: BCF 0A.3 |
0B1D: CALL 18F |
0B1E: BSF 0A.3 |
0B1F: MOVLW 89 |
0B20: MOVWF 04 |
0B21: MOVF 2C,W |
0B22: MOVWF 32 |
0B23: MOVF 2B,W |
0B24: MOVWF 31 |
0B25: MOVF 2A,W |
0B26: MOVWF 30 |
0B27: MOVF 29,W |
0B28: MOVWF 2F |
0B29: MOVLW 02 |
0B2A: MOVWF 33 |
0B2B: CALL 000 |
0B2C: MOVLW 20 |
0B2D: MOVWF 3C |
0B2E: BCF 0A.3 |
0B2F: CALL 18F |
0B30: BSF 0A.3 |
0B31: MOVLW 25 |
0B32: MOVWF 3C |
0B33: BCF 0A.3 |
0B34: CALL 18F |
0B35: BSF 0A.3 |
0B36: MOVLW 20 |
0B37: MOVWF 3C |
0B38: BCF 0A.3 |
0B39: CALL 18F |
0B3A: BSF 0A.3 |
0B3B: MOVLW 0D |
0B3C: MOVWF 3C |
0B3D: BCF 0A.3 |
0B3E: CALL 18F |
0B3F: BSF 0A.3 |
0B40: MOVLW 0A |
0B41: MOVWF 3C |
0B42: BCF 0A.3 |
0B43: CALL 18F |
0B44: BSF 0A.3 |
.................... lcd_gotoxy(1,2); |
0B45: MOVLW 01 |
0B46: MOVWF 3D |
0B47: MOVLW 02 |
0B48: MOVWF 3E |
0B49: BCF 0A.3 |
0B4A: CALL 17D |
0B4B: BSF 0A.3 |
.................... printf(lcd_putc," %f C",temp2); |
0B4C: MOVLW 20 |
0B4D: MOVWF 3C |
0B4E: BCF 0A.3 |
0B4F: CALL 18F |
0B50: BSF 0A.3 |
0B51: MOVLW 89 |
0B52: MOVWF 04 |
0B53: MOVF 28,W |
0B54: MOVWF 32 |
0B55: MOVF 27,W |
0B56: MOVWF 31 |
0B57: MOVF 26,W |
0B58: MOVWF 30 |
0B59: MOVF 25,W |
0B5A: MOVWF 2F |
0B5B: MOVLW 02 |
0B5C: MOVWF 33 |
0B5D: CALL 000 |
0B5E: MOVLW 20 |
0B5F: MOVWF 3C |
0B60: BCF 0A.3 |
0B61: CALL 18F |
0B62: BSF 0A.3 |
0B63: MOVLW 43 |
0B64: MOVWF 3C |
0B65: BCF 0A.3 |
0B66: CALL 18F |
0B67: BSF 0A.3 |
.................... printf("%ld %f %f %f \r\n",i, temp1, humidity, temp2); |
0B68: MOVLW 10 |
0B69: MOVWF 04 |
0B6A: MOVF 2E,W |
0B6B: MOVWF 30 |
0B6C: MOVF 2D,W |
0B6D: MOVWF 2F |
0B6E: GOTO 0DA |
0B6F: MOVLW 20 |
0B70: BTFSS 0C.4 |
0B71: GOTO 370 |
0B72: MOVWF 19 |
0B73: MOVLW 89 |
0B74: MOVWF 04 |
0B75: MOVF 24,W |
0B76: MOVWF 32 |
0B77: MOVF 23,W |
0B78: MOVWF 31 |
0B79: MOVF 22,W |
0B7A: MOVWF 30 |
0B7B: MOVF 21,W |
0B7C: MOVWF 2F |
0B7D: MOVLW 02 |
0B7E: MOVWF 33 |
0B7F: CALL 152 |
0B80: MOVLW 20 |
0B81: BTFSS 0C.4 |
0B82: GOTO 381 |
0B83: MOVWF 19 |
0B84: MOVLW 89 |
0B85: MOVWF 04 |
0B86: MOVF 2C,W |
0B87: MOVWF 32 |
0B88: MOVF 2B,W |
0B89: MOVWF 31 |
0B8A: MOVF 2A,W |
0B8B: MOVWF 30 |
0B8C: MOVF 29,W |
0B8D: MOVWF 2F |
0B8E: MOVLW 02 |
0B8F: MOVWF 33 |
0B90: CALL 152 |
0B91: MOVLW 20 |
0B92: BTFSS 0C.4 |
0B93: GOTO 392 |
0B94: MOVWF 19 |
0B95: MOVLW 89 |
0B96: MOVWF 04 |
0B97: MOVF 28,W |
0B94: BCF 0A.3 |
0B95: GOTO 636 |
0B96: BSF 0A.3 |
0B97: MOVF 7A,W |
0B98: MOVWF 32 |
0B99: MOVF 27,W |
0B99: MOVF 79,W |
0B9A: MOVWF 31 |
0B9B: MOVF 26,W |
0B9B: MOVF 78,W |
0B9C: MOVWF 30 |
0B9D: MOVF 25,W |
0B9D: MOVF 77,W |
0B9E: MOVWF 2F |
0B9F: MOVLW 02 |
0BA0: MOVWF 33 |
0BA1: CALL 152 |
0BA2: MOVLW 20 |
0BA3: BTFSS 0C.4 |
0BA4: GOTO 3A3 |
0BA5: MOVWF 19 |
0BA6: MOVLW 0D |
0BA7: BTFSS 0C.4 |
0BA8: GOTO 3A7 |
0BA9: MOVWF 19 |
0BAA: MOVLW 0A |
0BAB: BTFSS 0C.4 |
0BAC: GOTO 3AB |
0BAD: MOVWF 19 |
.................... temp2= LTS01_get_temp(); |
0B9F: BCF 0A.3 |
0BA0: GOTO 6EC |
0BA1: BSF 0A.3 |
0BA2: MOVF 7A,W |
0BA3: MOVWF 2E |
0BA4: MOVF 79,W |
0BA5: MOVWF 2D |
0BA6: MOVF 78,W |
0BA7: MOVWF 2C |
0BA8: MOVF 77,W |
0BA9: MOVWF 2B |
.................... hmc5883l_read_data(); |
0BAA: GOTO 000 |
.................... |
.................... printf(lcd_putc,"%f C %f \%%",temp1, humidity); |
0BAB: MOVLW 89 |
0BAC: MOVWF 04 |
0BAD: MOVF 2A,W |
0BAE: MOVWF 38 |
0BAF: MOVF 29,W |
0BB0: MOVWF 37 |
0BB1: MOVF 28,W |
0BB2: MOVWF 36 |
0BB3: MOVF 27,W |
0BB4: MOVWF 35 |
0BB5: MOVLW 02 |
0BB6: MOVWF 39 |
0BB7: CALL 091 |
0BB8: MOVLW 20 |
0BB9: MOVWF 42 |
0BBA: BCF 0A.3 |
0BBB: CALL 212 |
0BBC: BSF 0A.3 |
0BBD: MOVLW 43 |
0BBE: MOVWF 42 |
0BBF: BCF 0A.3 |
0BC0: CALL 212 |
0BC1: BSF 0A.3 |
0BC2: MOVLW 20 |
0BC3: MOVWF 42 |
0BC4: BCF 0A.3 |
0BC5: CALL 212 |
0BC6: BSF 0A.3 |
0BC7: MOVLW 89 |
0BC8: MOVWF 04 |
0BC9: MOVF 32,W |
0BCA: MOVWF 38 |
0BCB: MOVF 31,W |
0BCC: MOVWF 37 |
0BCD: MOVF 30,W |
0BCE: MOVWF 36 |
0BCF: MOVF 2F,W |
0BD0: MOVWF 35 |
0BD1: MOVLW 02 |
0BD2: MOVWF 39 |
0BD3: CALL 091 |
0BD4: MOVLW 20 |
0BD5: MOVWF 42 |
0BD6: BCF 0A.3 |
0BD7: CALL 212 |
0BD8: BSF 0A.3 |
0BD9: MOVLW 25 |
0BDA: MOVWF 42 |
0BDB: BCF 0A.3 |
0BDC: CALL 212 |
0BDD: BSF 0A.3 |
.................... lcd_gotoxy(1,2); |
0BDE: MOVLW 01 |
0BDF: MOVWF 43 |
0BE0: MOVLW 02 |
0BE1: MOVWF 44 |
0BE2: BCF 0A.3 |
0BE3: CALL 200 |
0BE4: BSF 0A.3 |
.................... printf(lcd_putc," %f C",temp2); |
0BE5: MOVLW 20 |
0BE6: MOVWF 42 |
0BE7: BCF 0A.3 |
0BE8: CALL 212 |
0BE9: BSF 0A.3 |
0BEA: MOVLW 89 |
0BEB: MOVWF 04 |
0BEC: MOVF 2E,W |
0BED: MOVWF 38 |
0BEE: MOVF 2D,W |
0BEF: MOVWF 37 |
0BF0: MOVF 2C,W |
0BF1: MOVWF 36 |
0BF2: MOVF 2B,W |
0BF3: MOVWF 35 |
0BF4: MOVLW 02 |
0BF5: MOVWF 39 |
0BF6: CALL 091 |
0BF7: MOVLW 20 |
0BF8: MOVWF 42 |
0BF9: BCF 0A.3 |
0BFA: CALL 212 |
0BFB: BSF 0A.3 |
0BFC: MOVLW 43 |
0BFD: MOVWF 42 |
0BFE: BCF 0A.3 |
0BFF: CALL 212 |
0C00: BSF 0A.3 |
.................... printf("%ld %f %f %f ",i, temp1, humidity, temp2); |
0C01: MOVLW 10 |
0C02: MOVWF 04 |
0C03: MOVF 34,W |
0C04: MOVWF 36 |
0C05: MOVF 33,W |
0C06: MOVWF 35 |
0C07: CALL 16B |
0C08: MOVLW 20 |
0C09: BTFSS 0C.4 |
0C0A: GOTO 409 |
0C0B: MOVWF 19 |
0C0C: MOVLW 89 |
0C0D: MOVWF 04 |
0C0E: MOVF 2A,W |
0C0F: MOVWF 38 |
0C10: MOVF 29,W |
0C11: MOVWF 37 |
0C12: MOVF 28,W |
0C13: MOVWF 36 |
0C14: MOVF 27,W |
0C15: MOVWF 35 |
0C16: MOVLW 02 |
0C17: MOVWF 39 |
0C18: CALL 1E1 |
0C19: MOVLW 20 |
0C1A: BTFSS 0C.4 |
0C1B: GOTO 41A |
0C1C: MOVWF 19 |
0C1D: MOVLW 89 |
0C1E: MOVWF 04 |
0C1F: MOVF 32,W |
0C20: MOVWF 38 |
0C21: MOVF 31,W |
0C22: MOVWF 37 |
0C23: MOVF 30,W |
0C24: MOVWF 36 |
0C25: MOVF 2F,W |
0C26: MOVWF 35 |
0C27: MOVLW 02 |
0C28: MOVWF 39 |
0C29: CALL 1E1 |
0C2A: MOVLW 20 |
0C2B: BTFSS 0C.4 |
0C2C: GOTO 42B |
0C2D: MOVWF 19 |
0C2E: MOVLW 89 |
0C2F: MOVWF 04 |
0C30: MOVF 2E,W |
0C31: MOVWF 38 |
0C32: MOVF 2D,W |
0C33: MOVWF 37 |
0C34: MOVF 2C,W |
0C35: MOVWF 36 |
0C36: MOVF 2B,W |
0C37: MOVWF 35 |
0C38: MOVLW 02 |
0C39: MOVWF 39 |
0C3A: CALL 1E1 |
0C3B: MOVLW 20 |
0C3C: BTFSS 0C.4 |
0C3D: GOTO 43C |
0C3E: MOVWF 19 |
.................... printf("%Ld %Ld %Ld \n\r", compass.x, compass.y, compass.z); |
0C3F: MOVLW 10 |
0C40: MOVWF 04 |
0C41: MOVF 22,W |
0C42: MOVWF 36 |
0C43: MOVF 21,W |
0C44: MOVWF 35 |
0C45: CALL 16B |
0C46: MOVLW 20 |
0C47: BTFSS 0C.4 |
0C48: GOTO 447 |
0C49: MOVWF 19 |
0C4A: MOVLW 10 |
0C4B: MOVWF 04 |
0C4C: MOVF 24,W |
0C4D: MOVWF 36 |
0C4E: MOVF 23,W |
0C4F: MOVWF 35 |
0C50: CALL 16B |
0C51: MOVLW 20 |
0C52: BTFSS 0C.4 |
0C53: GOTO 452 |
0C54: MOVWF 19 |
0C55: MOVLW 10 |
0C56: MOVWF 04 |
0C57: MOVF 26,W |
0C58: MOVWF 36 |
0C59: MOVF 25,W |
0C5A: MOVWF 35 |
0C5B: CALL 16B |
0C5C: MOVLW 20 |
0C5D: BTFSS 0C.4 |
0C5E: GOTO 45D |
0C5F: MOVWF 19 |
0C60: MOVLW 0A |
0C61: BTFSS 0C.4 |
0C62: GOTO 461 |
0C63: MOVWF 19 |
0C64: MOVLW 0D |
0C65: BTFSS 0C.4 |
0C66: GOTO 465 |
0C67: MOVWF 19 |
.................... i++; |
0BAE: INCF 2D,F |
0BAF: BTFSC 03.2 |
0BB0: INCF 2E,F |
0C68: INCF 33,F |
0C69: BTFSC 03.2 |
0C6A: INCF 34,F |
.................... Delay_ms(100); |
0BB1: MOVLW 64 |
0BB2: MOVWF 3D |
0BB3: BCF 0A.3 |
0BB4: CALL 078 |
0BB5: BSF 0A.3 |
0C6B: MOVLW 64 |
0C6C: MOVWF 43 |
0C6D: BCF 0A.3 |
0C6E: CALL 0FB |
0C6F: BSF 0A.3 |
.................... } |
0BB6: GOTO 2DC |
0C70: GOTO 383 |
.................... |
.................... } |
0BB7: SLEEP |
0C71: SLEEP |
|
Configuration Fuses: |
Word 1: 2CF5 INTRC NOWDT NOPUT MCLR NOPROTECT NOCPD NOBROWNOUT IESO FCMEN NOLVP NODEBUG |