/Designs/DART01B/SW/1_01/A.BAT
0,0 → 1,4
call picpgr stop
call picpgr erase pic16f88
call picpgr program DART.hex hex pic16f88
call picpgr run
/Designs/DART01B/SW/1_01/DART.C
0,0 → 1,441
// DART01A verze programu 1.01
// (c)miho 2005
//
// 1.00 Uvodni verze
// 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232 (pro ladici vystupy)
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
// Parametrem je prodleva mezi razenim rychlosti v ms
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu (na ladici seriovy vystup)
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// ALG=1 Test menice PWM a rozjezdoveho PWM
// ========================================
// P1 nastavuje primo stridu hlavniho PWM menice
// P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
// Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// ALG=2 Testovani rozjezdu
// ========================
// P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
// Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN:%3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// ALG=3 Test nabijeciho algoritmu
// ===============================
// P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
// Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
// algoritmus jako pro standardni jizdu
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// ALG=0 Standardni jizda
// ======================
// P1 nastavuje pozadovane napeti na clancich
// P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
// Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
// rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
// Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int8 Delay; // pozadovana honota prodlevy razeni z P2
int1 Run;
 
// Nacti parametr rozjezdu
Delay=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc," RUN:%3ums ",Delay); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(Delay); // prodleva razeni z P2
}
}
}
}
/Designs/DART01B/SW/1_01/DART.H
0,0 → 1,10
// DART01A verze programu 1.00
// (c)miho 2005
 
#include <16F88.h> // standardni definice konstant
#include <16F88_Reg.h> // standardni definice vsech FSR
 
#device adc=8 // AD prevodnik jen na 8 bitu
#define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
#use delay(clock=xclock,restart_wdt)
#fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
/Designs/DART01B/SW/1_01/DART.HEX
0,0 → 1,140
:1000000000308A005F2A0000FF00030E8301A10078
:100010007F08A0000A08A8008A01A00E0408A20018
:100020007708A3007808A4007908A5007A08A6003C
:100030007B08A700831383128C308400801D222844
:100040008C1939288B1E26280B193B28220884007E
:100050002308F7002408F8002508F9002608FA000C
:100060002708FB0028088A00210E8300FF0E7F0E60
:1000700009008A11A5288A11D3280A108A100A11AA
:100080008207023406340E341E343E347E34FE348D
:10009000FF340A108A100A1182070C344D346F3471
:1000A000643465343A342534643400340A108A10D8
:1000B0000A1182070A34503457344D343A34253407
:1000C0003034333475342034523455344E343A3469
:1000D000253430343334753400340A108A100A1150
:1000E00082070A34523455344E343A34253433348A
:1000F00075346D347334203400340A108A100A11B8
:1001000082070A3441344C3447343A34253430348D
:10011000333475342034253430343334753420345A
:10012000253430343334753400340A108A100A11FF
:1001300082072034523455344E343A342534333423
:1001400075346D347334203400342A0893008C11D4
:100150008A112628C508031DB928831606118312A3
:100160000611831694018312940183168C11D128F1
:1001700083124508073C0318BF280830C500C50393
:1001800045083D20F800AA008316061183120611C7
:10019000831694012230831294002A089300831658
:1001A0008C15831200342B082C040319DB282B0830
:1001B0000319AC03AB03AD08031DAD03AF0803196E
:1001C000EE282F08073C031CEE28AD08031DEE287F
:1001D0002E08AD00AF0A2F08C500AA200B118A1106
:1001E00026281A3083169900803083129800243014
:1001F0008316980083128A118A2A1130BF02031CC9
:100200000F293F308400FC3080050310800C800CE7
:10021000000803190F290D296400800B0C298A118D
:10022000A82A8316981816298312112983124208C6
:10023000990000344308F8014202031822294208B9
:10024000F7002E29F7010830C400C20DF70D43084E
:1002500077020318F700F80DC40B25290034BF1FDF
:100260003529C017BF09BF0A3C29401D3C29203051
:10027000401E3030C20011214013C0123F08C2009E
:100280006430C3001A217708BF007808031D66296F
:10029000C01A6629C0197429401B542940185429D2
:1002A00040195429C01B7429401C6029C01B7429A3
:1002B000401B60294018742940196029C01B74290B
:1002C0002030401E3030C20011217429C016C01FDA
:1002D000702978088000F8002D30C2001121C01369
:1002E00030307807C2001121401B7F293F08C2002F
:1002F0000A30C3001A217708BF0040174529C01FE4
:1003000084292D30C200112130303F07C200112155
:100310008A11CF2A83160108C0390138810083125F
:100320008B16C0308B048A11DD2A3E08043C031D65
:100330009D298316861083128614303083169F0001
:1003400083123E0DF700F70DF70DF830F70577082B
:10035000413E9F0064001030F700F70BAD2900000C
:1003600000001F1564001030F700F70BB5290000DE
:10037000000083168610831286101E08F8000034D1
:100380004113C1124008C2006430C3001A2177082B
:10039000C0007808031DEA29C11AEA29C119F82901
:1003A000411BD8294118D8294119D829C11BF8293E
:1003B000411CE429C11BF829411BE4294118F829F3
:1003C0004119E429C11BF8292030411E3030C200F8
:1003D0001121F829C116C11FF42978088000F800FE
:1003E0002D30C2001121C11330307807C200112115
:1003F000411B032A4008C2000A30C3001A217708B3
:10040000C0004117C929C11F082A2D30C20011217F
:1004100030304007C200112100343E308400000813
:100420000319232A0130F800BF30F7006400F70BEE
:10043000162AF80B142A5830F700F70B1D2A000073
:100440006400800B122A0034A9018B1BA9178B139F
:100450003E08C500AA20A91B8B17C0308B040034AE
:100460008B123F08AC003E08AB008B1600348B1299
:10047000AB08031D3E2AAC080319402A0030412A6C
:100480000130F8007818462A3E10472A3E148B1691
:1004900000303E180130F80000348B120130AF00FC
:1004A0003E08AE002E08AD008B16A9018B1BA917C4
:1004B0008B130130C500AA20A91B8B1700348401BF
:1004C0001F30830583161F129F121B0880399B0063
:1004D00007309C00050864001C0883120D1362306D
:1004E00083168F00861183128611831606118312DC
:1004F00006118316861083128610831681138111CC
:100500000E308312031785001F30831603139B00E0
:100510008312F1280130B10031081D3C031CAC2AC4
:100520003218942A0513952A0517831605130130EE
:100530008312B20632189E2A85139F2A85178316C6
:100540008513640009308312BE006C30BF00FD28A3
:10055000BE0BA52AB10A8C2AB00183168617831216
:10056000861F3014831606178312061FB0148316D5
:100570008613831286138316061383120613BE0195
:100580003E084920BE0AF700C200112106303E0293
:10059000031DC02A3008BF001830C0002F291F30AB
:1005A000831692000430831292000C30970095015C
:1005B00083168611831286118A29300B182B64004A
:1005C000BE0195217808B300B30CB30C3F30B305DE
:1005D0000130BE0095217808B400B40E0F30B40588
:1005E000BE013E085620BE0AF700C20011210530A8
:1005F0003E02031DF12A3308C000C101C0210930A9
:10060000BF003F085620BF0AF700C20011210E307C
:100610003F02031D012B3408C000C101C02114306A
:10062000BE000D22330895003408BE002422DF2AC4
:100630003008023C031D692BB6010130BE00952134
:100640007808B500BE013E086D20BE0AF700C20062
:10065000112105303E02031D232B3508C000103048
:10066000C100C0216D30C20011217330C2001121C0
:100670002030C20011210A30BE000D22B608031D31
:10068000472BB60A0730BF00D030BE003022360BF1
:10069000592B3722F8080319592BB60A5230C200D9
:1006A00011213508BE004D220730BF00D030BE00FA
:1006B00030223608023C031D672B3722F808031945
:1006C000672BB60A5330C2001121BE0124226400F8
:1006D0001D2B3008033C031DC02BB7016400BE0175
:1006E00095217808B800BE0195210310780C323EA0
:1006F000B8000430BE0095217808B90038083902E6
:100700000318862B37081D3C0318B70A380839022E
:10071000031C8D2BB708031DB7030A30B90738082F
:1007200039020318972B37081D3C0318B70A3708FE
:10073000183C03189D2B1830B70037089500BE01F0
:100740003E087D20BE0AF700C200112105303E029E
:10075000031DA02B3808C000C101C0212030C200F9
:1007600011213908C000C101C0212030C20011216F
:100770003708C000C101C0210A30BE000D226E2B17
:10078000B008031D472C0130BE0095217808BD003C
:10079000BE013E089520BE0AF700C20011210530B7
:1007A0003E02031DC92B3D08C0001030C100C0210E
:1007B0006D30C20011217330C20011212030C200FF
:1007C00011210A30BE000D22BA013630BF00B03010
:1007D000BE003022B2146400BE0195217808BB002F
:1007E000BE0195210310780C323EBB000430BE00E0
:1007F00095217808BC003B083C020318032C3A08FA
:100800001D3C0318BA0A3B083C02031C0A2CBA0818
:10081000031DBA030A30BC073B083C020318142C22
:100820003A081D3C0318BA0A3A08183C03181A2C57
:100830001830BA003A089500BE013E087D20BE0A75
:10084000F700C200112105303E02031D1D2C3B089C
:10085000C000C101C0212030C20011213C08C000ED
:10086000C101C0212030C20011213A08C000C101DD
:10087000C0210A30BE000D223722F8080319462C89
:10088000B21C462CB2103D08BE004D22EB2B63007B
:04400E003C2FFF3F05
:00000001FF
;PIC16F88
/Designs/DART01B/SW/1_01/DART.LST
0,0 → 1,1288
CCS PCM C Compiler, Version 3.221, 27853 03-IX-05 19:25
 
Filename: D:\MLAB\_Z\DART01A\SW\1_01\DART.LST
 
ROM used: 1096 words (27%)
Largest free fragment is 2048
RAM used: 25 (14%) at main() level
43 (25%) worst case
Stack: 6 worst case (3 in main + 3 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 25F
0003: NOP
0004: MOVWF 7F
0005: SWAPF 03,W
0006: CLRF 03
0007: MOVWF 21
0008: MOVF 7F,W
0009: MOVWF 20
000A: MOVF 0A,W
000B: MOVWF 28
000C: CLRF 0A
000D: SWAPF 20,F
000E: MOVF 04,W
000F: MOVWF 22
0010: MOVF 77,W
0011: MOVWF 23
0012: MOVF 78,W
0013: MOVWF 24
0014: MOVF 79,W
0015: MOVWF 25
0016: MOVF 7A,W
0017: MOVWF 26
0018: MOVF 7B,W
0019: MOVWF 27
001A: BCF 03.7
001B: BCF 03.5
001C: MOVLW 8C
001D: MOVWF 04
001E: BTFSS 00.3
001F: GOTO 022
0020: BTFSC 0C.3
0021: GOTO 039
0022: BTFSS 0B.5
0023: GOTO 026
0024: BTFSC 0B.2
0025: GOTO 03B
0026: MOVF 22,W
0027: MOVWF 04
0028: MOVF 23,W
0029: MOVWF 77
002A: MOVF 24,W
002B: MOVWF 78
002C: MOVF 25,W
002D: MOVWF 79
002E: MOVF 26,W
002F: MOVWF 7A
0030: MOVF 27,W
0031: MOVWF 7B
0032: MOVF 28,W
0033: MOVWF 0A
0034: SWAPF 21,W
0035: MOVWF 03
0036: SWAPF 7F,F
0037: SWAPF 7F,W
0038: RETFIE
0039: BCF 0A.3
003A: GOTO 0A5
003B: BCF 0A.3
003C: GOTO 0D3
.................... // DART01A verze programu 1.01
.................... // (c)miho 2005
.................... //
.................... // 1.00 Uvodni verze
.................... // 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
....................
.................... #include "DART.h"
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include <16F88.h> // standardni definice konstant
.................... //////// Header file for the PIC16F88
.................... #device PIC16F88
.................... #list
.................... #include <16F88_Reg.h> // standardni definice vsech FSR
.................... #list
....................
....................
.................... #device adc=8 // AD prevodnik jen na 8 bitu
.................... #define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
.................... #use delay(clock=xclock,restart_wdt)
*
00FD: MOVLW 11
00FE: SUBWF 3F,F
00FF: BTFSS 03.0
0100: GOTO 10F
0101: MOVLW 3F
0102: MOVWF 04
0103: MOVLW FC
0104: ANDWF 00,F
0105: BCF 03.0
0106: RRF 00,F
0107: RRF 00,F
0108: MOVF 00,W
0109: BTFSC 03.2
010A: GOTO 10F
010B: GOTO 10D
010C: CLRWDT
010D: DECFSZ 00,F
010E: GOTO 10C
010F: BCF 0A.3
0110: GOTO 2A8 (RETURN)
*
020D: MOVLW 3E
020E: MOVWF 04
020F: MOVF 00,W
0210: BTFSC 03.2
0211: GOTO 223
0212: MOVLW 01
0213: MOVWF 78
0214: MOVLW BF
0215: MOVWF 77
0216: CLRWDT
0217: DECFSZ 77,F
0218: GOTO 216
0219: DECFSZ 78,F
021A: GOTO 214
021B: MOVLW 58
021C: MOVWF 77
021D: DECFSZ 77,F
021E: GOTO 21D
021F: NOP
0220: CLRWDT
0221: DECFSZ 00,F
0222: GOTO 212
0223: RETLW 00
.................... #fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
....................
....................
....................
.................... #define BEEP0 PIN_A6 // pipak, prvni vystup
.................... #define BEEP1 PIN_A7 // pipak, druhy vystup
.................... #define PWM PIN_B3 // PWM vystup pro menic
.................... #define REFPOWER PIN_B1 // napajeni zdroje Vref
.................... #define MOTOR PIN_B2 // zapinani motoru
.................... #define SW0 PIN_B7 // konfiguracni prepinac 0
.................... #define SW1 PIN_B6 // konfiguracni prepinac 1
....................
....................
.................... void InitRS232()
.................... // Inicializace HW RS232 (pro ladici vystupy)
.................... {
.................... SPBRG=xclock/9600/16-1; // ryclost 9600Bd
*
00F1: MOVLW 1A
00F2: BSF 03.5
00F3: MOVWF 19
.................... RCSTA=0b10000000; // enable USART
00F4: MOVLW 80
00F5: BCF 03.5
00F6: MOVWF 18
.................... TXSTA=0b00100100; // BRGH=1, TX enable
00F7: MOVLW 24
00F8: BSF 03.5
00F9: MOVWF 18
.................... }
00FA: BCF 03.5
00FB: BCF 0A.3
00FC: GOTO 28A (RETURN)
....................
....................
.................... void Putc(char c)
.................... // Posilani znaku pres HW RS232
.................... {
.................... while(TRMT==0); // cekej na prazdny TX buffer
*
0111: BSF 03.5
0112: BTFSC 18.1
0113: GOTO 116
0114: BCF 03.5
0115: GOTO 111
.................... TXREG=c; // predej data
0116: BCF 03.5
0117: MOVF 42,W
0118: MOVWF 19
.................... }
0119: RETLW 00
....................
....................
.................... // Globalni promenna pro data posilana na SSP
.................... // Nastavuje se funkci MotorPatternSet()
.................... // Vyuziva se v prerusovaci rutine IntSSP()
.................... unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
....................
....................
.................... void MotorPatternSet(unsigned int Gear)
.................... // Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
.................... // Rychlost 0 znamena stop, rychlost 8 je maximum
.................... {
.................... // Tabulka rychlost -> pattern pro SSP
.................... unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
....................
.................... // Vyber patternu
.................... if (Gear==0) // stav 0 znamena stop
*
00AA: MOVF 45,F
00AB: BTFSS 03.2
00AC: GOTO 0B9
.................... {
.................... output_low(MOTOR); // klidovy stav
00AD: BSF 03.5
00AE: BCF 06.2
00AF: BCF 03.5
00B0: BCF 06.2
.................... SSPSTAT = 0;
00B1: BSF 03.5
00B2: CLRF 14
.................... SSPCON1 = 0; // SPI stop
00B3: BCF 03.5
00B4: CLRF 14
.................... disable_interrupts(INT_SSP); // neni preruseni od SSP
00B5: BSF 03.5
00B6: BCF 0C.3
.................... }
.................... else // rizeny vykon
00B7: GOTO 0D1
00B8: BCF 03.5
.................... {
.................... if (Gear>7) // stav 8 a vice znamena plny vykon
00B9: MOVF 45,W
00BA: SUBLW 07
00BB: BTFSC 03.0
00BC: GOTO 0BF
.................... {
.................... Gear=8; // plny plyn
00BD: MOVLW 08
00BE: MOVWF 45
.................... }
....................
.................... MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
00BF: DECF 45,F
00C0: MOVF 45,W
00C1: CALL 03D
00C2: MOVWF 78
00C3: MOVWF 2A
.................... output_low(MOTOR); // klidovy stav
00C4: BSF 03.5
00C5: BCF 06.2
00C6: BCF 03.5
00C7: BCF 06.2
.................... SSPSTAT = 0;
00C8: BSF 03.5
00C9: CLRF 14
.................... SSPCON1 = 0x22; // SPI OSC/64
00CA: MOVLW 22
00CB: BCF 03.5
00CC: MOVWF 14
....................
.................... SSPBUF=MotorPattern; // prvni data pro vyslani
00CD: MOVF 2A,W
00CE: MOVWF 13
.................... enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
00CF: BSF 03.5
00D0: BSF 0C.3
.................... }
.................... }
00D1: BCF 03.5
00D2: RETLW 00
....................
....................
.................... // Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
.................... #INT_SSP
.................... void IntSSP()
.................... {
.................... SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
*
00A5: MOVF 2A,W
00A6: MOVWF 13
.................... }
....................
....................
00A7: BCF 0C.3
00A8: BCF 0A.3
00A9: GOTO 026
.................... void MotorSet(unsigned int Gear)
*
0224: CLRF 29
0225: BTFSC 0B.7
0226: BSF 29.7
0227: BCF 0B.7
.................... // Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
.................... // od SSP jednotky
.................... // 0 stop
.................... // 1-7 pocet 1/8 vykonu
.................... // >7 plny vykon
.................... {
.................... // Nastav PWM pattern
.................... MotorPatternSet(Gear); // nastav PWM pattern pro SSP
0228: MOVF 3E,W
0229: MOVWF 45
022A: CALL 0AA
022B: BTFSC 29.7
022C: BSF 0B.7
....................
.................... // Povol preruseni
.................... enable_interrupts(GLOBAL); // povol preruseni
022D: MOVLW C0
022E: IORWF 0B,F
.................... }
022F: RETLW 00
....................
....................
.................... void InitT0()
.................... // Inicializace casovace T0 (cca 1000x za sekundu)
.................... {
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
*
018A: BSF 03.5
018B: MOVF 01,W
018C: ANDLW C0
018D: IORLW 01
018E: MOVWF 01
.................... enable_interrupts(INT_RTCC); // generuj preruseni od T0
018F: BCF 03.5
0190: BSF 0B.5
.................... enable_interrupts(GLOBAL); // povol preruseni
0191: MOVLW C0
0192: IORWF 0B,F
.................... }
0193: BCF 0A.3
0194: GOTO 2DD (RETURN)
....................
....................
.................... // Globalni promenna pro mereni casu
.................... // Nastavuje se procedurou TimeSet()
.................... // Testuje se funkci TimeIf()
.................... // Modifikuje se pri preruseni od casovace IntTo()
.................... unsigned int16 TimeTime;
....................
....................
.................... void TimerSet(unsigned int16 Time)
.................... // Nastavi casovac na zadany pocet ms
.................... // Test uplynuti casu se dela pomoci TimerIf()
.................... {
.................... // Nastav hodnotu
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
*
0230: BCF 0B.5
.................... TimeTime=Time; // pri nastavovani hodnoty
0231: MOVF 3F,W
0232: MOVWF 2C
0233: MOVF 3E,W
0234: MOVWF 2B
.................... enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
0235: BSF 0B.5
.................... }
0236: RETLW 00
....................
....................
.................... int1 TimerIf()
.................... // Vraci TRUE pokud casovac jiz dobehl
.................... {
.................... int1 Flag; // pomocna promenna
....................
.................... // Otestuj casovac
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
0237: BCF 0B.5
.................... Flag=(TimeTime==0); // behem testu promenne
0238: MOVF 2B,F
0239: BTFSS 03.2
023A: GOTO 23E
023B: MOVF 2C,F
023C: BTFSC 03.2
023D: GOTO 240
023E: MOVLW 00
023F: GOTO 241
0240: MOVLW 01
0241: MOVWF 78
0242: BTFSC 78.0
0243: GOTO 246
0244: BCF 3E.0
0245: GOTO 247
0246: BSF 3E.0
.................... enable_interrupts(INT_RTCC); // ted uz muze
0247: BSF 0B.5
....................
.................... // Navratova hodnota
.................... return Flag; // TRUE znamena dobehl casovac
0248: MOVLW 00
0249: BTFSC 3E.0
024A: MOVLW 01
024B: MOVWF 78
.................... }
024C: RETLW 00
....................
....................
.................... // Globalni promenne pro akceleraci
.................... // Nastavuje se metodou MotorStart()
.................... // Pouziva se v obsluze preruseni IntT0()
.................... unsigned int8 MotorTime; // aktualni casovac pro rozjezd
.................... unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
.................... unsigned int8 MotorGear; // rychlostni stupen
....................
....................
.................... void MotorStart(unsigned int8 Delay)
.................... // Provede rizeny rozjezd motoru
.................... // Parametrem je prodleva mezi razenim rychlosti v ms
.................... {
.................... disable_interrupts(INT_RTCC);
024D: BCF 0B.5
.................... MotorGear=1;
024E: MOVLW 01
024F: MOVWF 2F
.................... MotorDelay=Delay;
0250: MOVF 3E,W
0251: MOVWF 2E
.................... MotorTime=MotorDelay;
0252: MOVF 2E,W
0253: MOVWF 2D
.................... enable_interrupts(INT_RTCC);
0254: BSF 0B.5
0255: CLRF 29
0256: BTFSC 0B.7
0257: BSF 29.7
0258: BCF 0B.7
....................
.................... MotorPatternSet(1);
0259: MOVLW 01
025A: MOVWF 45
025B: CALL 0AA
025C: BTFSC 29.7
025D: BSF 0B.7
.................... }
025E: RETLW 00
....................
....................
.................... #INT_TIMER0
.................... void IntT0()
.................... // Preruseni od casovace cca 1000x za sekundu
.................... {
.................... // Odpocitavani casovace
.................... if (TimeTime) TimeTime--;
*
00D3: MOVF 2B,W
00D4: IORWF 2C,W
00D5: BTFSC 03.2
00D6: GOTO 0DB
00D7: MOVF 2B,W
00D8: BTFSC 03.2
00D9: DECF 2C,F
00DA: DECF 2B,F
....................
.................... // Obsluha akcelerace
.................... if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
00DB: MOVF 2D,F
00DC: BTFSS 03.2
00DD: DECF 2D,F
.................... if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
00DE: MOVF 2F,F
00DF: BTFSC 03.2
00E0: GOTO 0EE
00E1: MOVF 2F,W
00E2: SUBLW 07
00E3: BTFSS 03.0
00E4: GOTO 0EE
00E5: MOVF 2D,F
00E6: BTFSS 03.2
00E7: GOTO 0EE
.................... {
.................... MotorTime=MotorDelay; // znovu nastav casovac
00E8: MOVF 2E,W
00E9: MOVWF 2D
.................... MotorGear++; // dalsi rychlost
00EA: INCF 2F,F
.................... MotorPatternSet(MotorGear); // nastav rychlost
00EB: MOVF 2F,W
00EC: MOVWF 45
00ED: CALL 0AA
.................... }
.................... }
....................
....................
.................... // Cteni dat z AD prevodniku, zadava se cislo kanalu
00EE: BCF 0B.2
00EF: BCF 0A.3
00F0: GOTO 026
.................... int8 ReadAD(int8 Ch)
.................... {
.................... // Pokud merim Vref zapnu si jeho napajeni
.................... if (Ch==4) output_high(REFPOWER);
*
0195: MOVF 3E,W
0196: SUBLW 04
0197: BTFSS 03.2
0198: GOTO 19D
0199: BSF 03.5
019A: BCF 06.1
019B: BCF 03.5
019C: BSF 06.1
....................
.................... // Inicializace a cislo kanalu
.................... ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
019D: MOVLW 30
019E: BSF 03.5
019F: MOVWF 1F
.................... ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
01A0: BCF 03.5
01A1: RLF 3E,W
01A2: MOVWF 77
01A3: RLF 77,F
01A4: RLF 77,F
01A5: MOVLW F8
01A6: ANDWF 77,F
01A7: MOVF 77,W
01A8: ADDLW 41
01A9: MOVWF 1F
....................
.................... // Mereni
.................... delay_us(50); // doba na prepnuti kanalu
01AA: CLRWDT
01AB: MOVLW 10
01AC: MOVWF 77
01AD: DECFSZ 77,F
01AE: GOTO 1AD
01AF: NOP
01B0: NOP
.................... ADCON0 |= 4; // start prevodu
01B1: BSF 1F.2
.................... delay_us(50); // doba na prevod
01B2: CLRWDT
01B3: MOVLW 10
01B4: MOVWF 77
01B5: DECFSZ 77,F
01B6: GOTO 1B5
01B7: NOP
01B8: NOP
....................
.................... // Vypnu napajeni Vref (vzdycky)
.................... output_low(REFPOWER);
01B9: BSF 03.5
01BA: BCF 06.1
01BB: BCF 03.5
01BC: BCF 06.1
....................
.................... // Navrat hodnoty
.................... return ADRESH;
01BD: MOVF 1E,W
01BE: MOVWF 78
.................... }
01BF: RETLW 00
....................
....................
.................... void main()
.................... {
*
025F: CLRF 04
0260: MOVLW 1F
0261: ANDWF 03,F
0262: BSF 03.5
0263: BCF 1F.4
0264: BCF 1F.5
0265: MOVF 1B,W
0266: ANDLW 80
0267: MOVWF 1B
0268: MOVLW 07
0269: MOVWF 1C
026A: MOVF 05,W
026B: CLRWDT
026C: MOVF 1C,W
026D: BCF 03.5
026E: BCF 0D.6
.................... unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
.................... unsigned int8 i;
....................
.................... // Hodiny
.................... OSCCON = 0x62; // 4 MHz interni RC oscilator
026F: MOVLW 62
0270: BSF 03.5
0271: MOVWF 0F
....................
.................... // Digitalni vystupy
.................... output_low(PWM); // PWM vystup
0272: BCF 06.3
0273: BCF 03.5
0274: BCF 06.3
.................... output_low(MOTOR); // Proud do motoru
0275: BSF 03.5
0276: BCF 06.2
0277: BCF 03.5
0278: BCF 06.2
.................... output_low(REFPOWER); // Napajeni Vref
0279: BSF 03.5
027A: BCF 06.1
027B: BCF 03.5
027C: BCF 06.1
.................... port_b_pullups(TRUE); // Zbyvajici vyvody portu B
027D: BSF 03.5
027E: BCF 01.7
....................
.................... // Watch Dog
.................... PSA=0; // preddelic prirazen casovaci
027F: BCF 01.3
.................... WDTCON=0x0E; // Watch Dog cca 130ms
0280: MOVLW 0E
0281: BCF 03.5
0282: BSF 03.6
0283: MOVWF 05
....................
.................... // Analogove vstupy
.................... ANSEL = 0x1F; // AN0 az AN4
0284: MOVLW 1F
0285: BSF 03.5
0286: BCF 03.6
0287: MOVWF 1B
....................
.................... // nastaveni RS232
.................... InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
0288: BCF 03.5
0289: GOTO 0F1
....................
.................... // Pipnuti (a cekani)
.................... for (i=1;i<30;i++) // pocet 1/2 period
028A: MOVLW 01
028B: MOVWF 31
028C: MOVF 31,W
028D: SUBLW 1D
028E: BTFSS 03.0
028F: GOTO 2AC
.................... {
.................... int1 beep; // stavova promenna pro pipak
....................
.................... output_bit(BEEP0,beep);
0290: BTFSC 32.0
0291: GOTO 294
0292: BCF 05.6
0293: GOTO 295
0294: BSF 05.6
0295: BSF 03.5
0296: BCF 05.6
.................... beep=~beep;
0297: MOVLW 01
0298: BCF 03.5
0299: XORWF 32,F
.................... output_bit(BEEP1,beep);
029A: BTFSC 32.0
029B: GOTO 29E
029C: BCF 05.7
029D: GOTO 29F
029E: BSF 05.7
029F: BSF 03.5
02A0: BCF 05.7
.................... delay_us(1000);
02A1: CLRWDT
02A2: MOVLW 09
02A3: BCF 03.5
02A4: MOVWF 3E
02A5: MOVLW 6C
02A6: MOVWF 3F
02A7: GOTO 0FD
02A8: DECFSZ 3E,F
02A9: GOTO 2A5
.................... }
02AA: INCF 31,F
02AB: GOTO 28C
....................
.................... // Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
.................... Debug=0;
02AC: CLRF 30
.................... if (~input(SW0)) Debug|=1; // precti bit 0
02AD: BSF 03.5
02AE: BSF 06.7
02AF: BCF 03.5
02B0: BTFSS 06.7
02B1: BSF 30.0
.................... if (~input(SW1)) Debug|=2; // precti bit 1
02B2: BSF 03.5
02B3: BSF 06.6
02B4: BCF 03.5
02B5: BTFSS 06.6
02B6: BSF 30.1
.................... output_low(SW0); // nastav L aby se snizila spotreba
02B7: BSF 03.5
02B8: BCF 06.7
02B9: BCF 03.5
02BA: BCF 06.7
.................... output_low(SW1); // na obou vstupech
02BB: BSF 03.5
02BC: BCF 06.6
02BD: BCF 03.5
02BE: BCF 06.6
....................
.................... // Zobrazeni rezimu (na ladici seriovy vystup)
.................... printf(Putc,"\fMode:%d",Debug);
02BF: CLRF 3E
02C0: MOVF 3E,W
02C1: CALL 049
02C2: INCF 3E,F
02C3: MOVWF 77
02C4: MOVWF 42
02C5: CALL 111
02C6: MOVLW 06
02C7: SUBWF 3E,W
02C8: BTFSS 03.2
02C9: GOTO 2C0
02CA: MOVF 30,W
02CB: MOVWF 3F
02CC: MOVLW 18
02CD: MOVWF 40
02CE: GOTO 12F
....................
.................... // Inicializace PWM
.................... PR2 = 0x1F; // perioda PWM casovace
02CF: MOVLW 1F
02D0: BSF 03.5
02D1: MOVWF 12
.................... T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
02D2: MOVLW 04
02D3: BCF 03.5
02D4: MOVWF 12
.................... CCP1CON = 0x0C; // PWM mode, lsb bity nulove
02D5: MOVLW 0C
02D6: MOVWF 17
.................... CCPR1L = 0; // na zacatku nulova data
02D7: CLRF 15
.................... output_low(PWM); // PWM vystup
02D8: BSF 03.5
02D9: BCF 06.3
02DA: BCF 03.5
02DB: BCF 06.3
....................
.................... // Inicializace casovace
.................... InitT0(); // nastav casovac na cca 1ms
02DC: GOTO 18A
....................
.................... // ALG=1 Test menice PWM a rozjezdoveho PWM
.................... // ========================================
.................... // P1 nastavuje primo stridu hlavniho PWM menice
.................... // P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
.................... // Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
.................... if (Debug==1)
02DD: DECFSZ 30,W
02DE: GOTO 318
.................... {
.................... unsigned int8 Data1; // poteniometr P1 = PWM
.................... unsigned int8 Data2; // poteniometr P2 = Rozjezd
....................
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
02DF: CLRWDT
....................
.................... // mereni vstupu
.................... Data1=ReadAD(0); // nacti parametr pro PWM
02E0: CLRF 3E
02E1: CALL 195
02E2: MOVF 78,W
02E3: MOVWF 33
.................... Data1>>=2; // redukuj rozsah na 0 az 63
02E4: RRF 33,F
02E5: RRF 33,F
02E6: MOVLW 3F
02E7: ANDWF 33,F
.................... Data2=ReadAD(1); // nacti parametr pro rozjezd
02E8: MOVLW 01
02E9: MOVWF 3E
02EA: CALL 195
02EB: MOVF 78,W
02EC: MOVWF 34
.................... Data2>>=4; // redukuj rozsah na 0 az 15
02ED: SWAPF 34,F
02EE: MOVLW 0F
02EF: ANDWF 34,F
....................
.................... // zobrazeni
.................... printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
02F0: CLRF 3E
02F1: MOVF 3E,W
02F2: CALL 056
02F3: INCF 3E,F
02F4: MOVWF 77
02F5: MOVWF 42
02F6: CALL 111
02F7: MOVLW 05
02F8: SUBWF 3E,W
02F9: BTFSS 03.2
02FA: GOTO 2F1
02FB: MOVF 33,W
02FC: MOVWF 40
02FD: CLRF 41
02FE: CALL 1C0
02FF: MOVLW 09
0300: MOVWF 3F
0301: MOVF 3F,W
0302: CALL 056
0303: INCF 3F,F
0304: MOVWF 77
0305: MOVWF 42
0306: CALL 111
0307: MOVLW 0E
0308: SUBWF 3F,W
0309: BTFSS 03.2
030A: GOTO 301
030B: MOVF 34,W
030C: MOVWF 40
030D: CLRF 41
030E: CALL 1C0
.................... delay_ms(20);
030F: MOVLW 14
0310: MOVWF 3E
0311: CALL 20D
....................
.................... // nastaveni parametru PWM
.................... CCPR1L = Data1;
0312: MOVF 33,W
0313: MOVWF 15
....................
.................... // nastaveni parametru RUN
.................... MotorSet(Data2);
0314: MOVF 34,W
0315: MOVWF 3E
0316: CALL 224
.................... }
0317: GOTO 2DF
.................... }
....................
.................... // ALG=2 Testovani rozjezdu
.................... // ========================
.................... // P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
.................... // Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
.................... if (Debug==2)
0318: MOVF 30,W
0319: SUBLW 02
031A: BTFSS 03.2
031B: GOTO 369
.................... {
.................... int8 Data;
.................... int8 Start;
....................
.................... Start=0; // uvodni stav
031C: CLRF 36
.................... while(1)
.................... {
.................... // Nacti a zobraz parametr
.................... Data=ReadAD(1); // potenciometr P2 = rozjezd
031D: MOVLW 01
031E: MOVWF 3E
031F: CALL 195
0320: MOVF 78,W
0321: MOVWF 35
.................... printf(Putc,"\nRUN:%3ums ",Data); // zobraz
0322: CLRF 3E
0323: MOVF 3E,W
0324: CALL 06D
0325: INCF 3E,F
0326: MOVWF 77
0327: MOVWF 42
0328: CALL 111
0329: MOVLW 05
032A: SUBWF 3E,W
032B: BTFSS 03.2
032C: GOTO 323
032D: MOVF 35,W
032E: MOVWF 40
032F: MOVLW 10
0330: MOVWF 41
0331: CALL 1C0
0332: MOVLW 6D
0333: MOVWF 42
0334: CALL 111
0335: MOVLW 73
0336: MOVWF 42
0337: CALL 111
0338: MOVLW 20
0339: MOVWF 42
033A: CALL 111
.................... delay_ms(10); // prodleva pro terminal
033B: MOVLW 0A
033C: MOVWF 3E
033D: CALL 20D
....................
.................... // Uvodni pauza
.................... if (Start==0) // spousti se 1x na zacatku
033E: MOVF 36,F
033F: BTFSS 03.2
0340: GOTO 347
.................... {
.................... Start++; // dalsi stav je cekani
0341: INCF 36,F
.................... TimerSet(2000); // na dokonceni uvodni prodlevy
0342: MOVLW 07
0343: MOVWF 3F
0344: MOVLW D0
0345: MOVWF 3E
0346: CALL 230
.................... }
....................
.................... // Rozjezd
.................... if ((Start==1) && TimerIf())
0347: DECFSZ 36,W
0348: GOTO 359
0349: CALL 237
034A: MOVF 78,F
034B: BTFSC 03.2
034C: GOTO 359
.................... {
.................... Start++;
034D: INCF 36,F
.................... printf(Putc,"R");
034E: MOVLW 52
034F: MOVWF 42
0350: CALL 111
.................... MotorStart(Data); // rozjezd s nastavenim prodlevy
0351: MOVF 35,W
0352: MOVWF 3E
0353: CALL 24D
....................
.................... TimerSet(2000); // nastav celkovy cas jizdy
0354: MOVLW 07
0355: MOVWF 3F
0356: MOVLW D0
0357: MOVWF 3E
0358: CALL 230
.................... }
....................
.................... // Zastaveni
.................... if ((Start==2) && TimerIf())
0359: MOVF 36,W
035A: SUBLW 02
035B: BTFSS 03.2
035C: GOTO 367
035D: CALL 237
035E: MOVF 78,F
035F: BTFSC 03.2
0360: GOTO 367
.................... {
.................... Start++;
0361: INCF 36,F
.................... printf(Putc,"S");
0362: MOVLW 53
0363: MOVWF 42
0364: CALL 111
.................... MotorSet(0); // pokud dobehl casovac zastav motor
0365: CLRF 3E
0366: CALL 224
.................... }
....................
.................... // watch dog
.................... restart_wdt();
0367: CLRWDT
.................... }
0368: GOTO 31D
.................... }
....................
.................... // ALG=3 Test nabijeciho algoritmu
.................... // ===============================
.................... // P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
.................... // Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
.................... // algoritmus jako pro standardni jizdu
.................... if (Debug==3)
0369: MOVF 30,W
036A: SUBLW 03
036B: BTFSS 03.2
036C: GOTO 3C0
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
036D: CLRF 37
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
036E: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
036F: CLRF 3E
0370: CALL 195
0371: MOVF 78,W
0372: MOVWF 38
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
0373: CLRF 3E
0374: CALL 195
0375: BCF 03.0
0376: RRF 78,W
0377: ADDLW 32
0378: MOVWF 38
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0379: MOVLW 04
037A: MOVWF 3E
037B: CALL 195
037C: MOVF 78,W
037D: MOVWF 39
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
037E: MOVF 38,W
037F: SUBWF 39,W
0380: BTFSC 03.0
0381: GOTO 386
0382: MOVF 37,W
0383: SUBLW 1D
0384: BTFSC 03.0
0385: INCF 37,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0386: MOVF 38,W
0387: SUBWF 39,W
0388: BTFSS 03.0
0389: GOTO 38D
038A: MOVF 37,F
038B: BTFSS 03.2
038C: DECF 37,F
.................... Vref+=10;
038D: MOVLW 0A
038E: ADDWF 39,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
038F: MOVF 38,W
0390: SUBWF 39,W
0391: BTFSC 03.0
0392: GOTO 397
0393: MOVF 37,W
0394: SUBLW 1D
0395: BTFSC 03.0
0396: INCF 37,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0397: MOVF 37,W
0398: SUBLW 18
0399: BTFSC 03.0
039A: GOTO 39D
039B: MOVLW 18
039C: MOVWF 37
.................... CCPR1L = PwmOut; // pouziti vystupu
039D: MOVF 37,W
039E: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
039F: CLRF 3E
03A0: MOVF 3E,W
03A1: CALL 07D
03A2: INCF 3E,F
03A3: MOVWF 77
03A4: MOVWF 42
03A5: CALL 111
03A6: MOVLW 05
03A7: SUBWF 3E,W
03A8: BTFSS 03.2
03A9: GOTO 3A0
03AA: MOVF 38,W
03AB: MOVWF 40
03AC: CLRF 41
03AD: CALL 1C0
03AE: MOVLW 20
03AF: MOVWF 42
03B0: CALL 111
03B1: MOVF 39,W
03B2: MOVWF 40
03B3: CLRF 41
03B4: CALL 1C0
03B5: MOVLW 20
03B6: MOVWF 42
03B7: CALL 111
03B8: MOVF 37,W
03B9: MOVWF 40
03BA: CLRF 41
03BB: CALL 1C0
.................... delay_ms(10);
03BC: MOVLW 0A
03BD: MOVWF 3E
03BE: CALL 20D
.................... }
03BF: GOTO 36E
.................... }
....................
.................... // ALG=0 Standardni jizda
.................... // ======================
.................... // P1 nastavuje pozadovane napeti na clancich
.................... // P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
.................... // Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
.................... // rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
.................... // Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
.................... if (Debug==0)
03C0: MOVF 30,F
03C1: BTFSS 03.2
03C2: GOTO 447
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
.................... int8 Delay; // pozadovana honota prodlevy razeni z P2
.................... int1 Run;
....................
.................... // Nacti parametr rozjezdu
.................... Delay=ReadAD(1); // potenciometr P2 = rozjezd
03C3: MOVLW 01
03C4: MOVWF 3E
03C5: CALL 195
03C6: MOVF 78,W
03C7: MOVWF 3D
.................... printf(Putc," RUN:%3ums ",Delay); // zobraz
03C8: CLRF 3E
03C9: MOVF 3E,W
03CA: CALL 095
03CB: INCF 3E,F
03CC: MOVWF 77
03CD: MOVWF 42
03CE: CALL 111
03CF: MOVLW 05
03D0: SUBWF 3E,W
03D1: BTFSS 03.2
03D2: GOTO 3C9
03D3: MOVF 3D,W
03D4: MOVWF 40
03D5: MOVLW 10
03D6: MOVWF 41
03D7: CALL 1C0
03D8: MOVLW 6D
03D9: MOVWF 42
03DA: CALL 111
03DB: MOVLW 73
03DC: MOVWF 42
03DD: CALL 111
03DE: MOVLW 20
03DF: MOVWF 42
03E0: CALL 111
.................... delay_ms(10); // prodleva pro terminal
03E1: MOVLW 0A
03E2: MOVWF 3E
03E3: CALL 20D
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
03E4: CLRF 3A
.................... TimerSet(14000); // casovani startu
03E5: MOVLW 36
03E6: MOVWF 3F
03E7: MOVLW B0
03E8: MOVWF 3E
03E9: CALL 230
.................... Run=1;
03EA: BSF 32.1
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
03EB: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
03EC: CLRF 3E
03ED: CALL 195
03EE: MOVF 78,W
03EF: MOVWF 3B
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
03F0: CLRF 3E
03F1: CALL 195
03F2: BCF 03.0
03F3: RRF 78,W
03F4: ADDLW 32
03F5: MOVWF 3B
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
03F6: MOVLW 04
03F7: MOVWF 3E
03F8: CALL 195
03F9: MOVF 78,W
03FA: MOVWF 3C
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
03FB: MOVF 3B,W
03FC: SUBWF 3C,W
03FD: BTFSC 03.0
03FE: GOTO 403
03FF: MOVF 3A,W
0400: SUBLW 1D
0401: BTFSC 03.0
0402: INCF 3A,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0403: MOVF 3B,W
0404: SUBWF 3C,W
0405: BTFSS 03.0
0406: GOTO 40A
0407: MOVF 3A,F
0408: BTFSS 03.2
0409: DECF 3A,F
.................... Vref+=10;
040A: MOVLW 0A
040B: ADDWF 3C,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
040C: MOVF 3B,W
040D: SUBWF 3C,W
040E: BTFSC 03.0
040F: GOTO 414
0410: MOVF 3A,W
0411: SUBLW 1D
0412: BTFSC 03.0
0413: INCF 3A,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0414: MOVF 3A,W
0415: SUBLW 18
0416: BTFSC 03.0
0417: GOTO 41A
0418: MOVLW 18
0419: MOVWF 3A
.................... CCPR1L = PwmOut; // pouziti vystupu
041A: MOVF 3A,W
041B: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
041C: CLRF 3E
041D: MOVF 3E,W
041E: CALL 07D
041F: INCF 3E,F
0420: MOVWF 77
0421: MOVWF 42
0422: CALL 111
0423: MOVLW 05
0424: SUBWF 3E,W
0425: BTFSS 03.2
0426: GOTO 41D
0427: MOVF 3B,W
0428: MOVWF 40
0429: CLRF 41
042A: CALL 1C0
042B: MOVLW 20
042C: MOVWF 42
042D: CALL 111
042E: MOVF 3C,W
042F: MOVWF 40
0430: CLRF 41
0431: CALL 1C0
0432: MOVLW 20
0433: MOVWF 42
0434: CALL 111
0435: MOVF 3A,W
0436: MOVWF 40
0437: CLRF 41
0438: CALL 1C0
.................... delay_ms(10);
0439: MOVLW 0A
043A: MOVWF 3E
043B: CALL 20D
....................
.................... // rozjezd
.................... if (TimerIf()&&Run)
043C: CALL 237
043D: MOVF 78,F
043E: BTFSC 03.2
043F: GOTO 446
0440: BTFSS 32.1
0441: GOTO 446
.................... {
.................... Run=0;
0442: BCF 32.1
.................... MotorStart(Delay); // prodleva razeni z P2
0443: MOVF 3D,W
0444: MOVWF 3E
0445: CALL 24D
.................... }
.................... }
0446: GOTO 3EB
.................... }
.................... }
....................
0447: SLEEP
 
Configuration Fuses:
Word 1: 2F3C WDT NOPUT MCLR NOBROWNOUT NOLVP NOCPD NOWRT NODEBUG CCPB3 NOPROTECT INTRC_IO
Word 2: 3FFF FCMEN IESO
/Designs/DART01B/SW/1_01/LIB/16f88.h
0,0 → 1,216
//////// Header file for the PIC16F88
#device PIC16F88
#nolist
//////// Program memory: 4096x14 Data RAM: 368 Stack: 8
//////// I/O: 16 Analog Pins: 7
//////// Data EEPROM: 256
//////// C Scratch area: 77 ID Location: 2000
// Fuses:
// Oscilator: LP - oscilator LP
// XT - oscilator XT
// HS - oscilator HS
// EC_IO - externi vstup, RA6/CLKO je IO port
// INTRC - RC oscilator, RA6/CLKO je CLKO, RA7/CLKI je IO port port,
// INTRC_IO - RC oscilator, RA6 i RA7 je IO port
// RC - ext RC, RA6/CLKO je CLKO
// RC_IO - ext RC, RA6 je IO port
// Watch: NOWDT - neni watchog
// WDT - je watchdog
// PUT: NOPUT - neni power up timer
// PUT - je power up timer
// MCLR: MCLR - RA5/MCLR je MCLR
// NOMCLR - RA5/MCLR je IO port
// BOR: BROWNOUT - BOR povolen
// NOBROWNOUT - BOR zakazan
// LVP: LVP - RB3/PGM je PGM
// NOLVP - RB3/PGM je IO port
// CPD: CPD - je ochrana EEPROM
// NOCPD - neni ochrana EEPROM
// WRT WRT - zakaz zapisu do pameti programu
// NOWRT - povolen zapis do pameti programu
// DEBUG: DEBUG - RB6 a RB7 jsou ICD port
// NODEBUG - RB6 a RB7 jsou IO port
// CCPMX: CCPB0 - CCP/PWM na RB0
// CCPB3 - CCP/PWM na RB3
// CP: PROTECT - pamet programu je chranena
// NOPROTECT - pamet programu neni chranena
//
 
////////////////////////////////////////////////////////////////// I/O
// Discrete I/O Functions: SET_TRIS_x(), OUTPUT_x(), INPUT_x(),
// PORT_B_PULLUPS(), INPUT(),
// OUTPUT_LOW(), OUTPUT_HIGH(),
// OUTPUT_FLOAT(), OUTPUT_BIT()
// Constants used to identify pins in the above are:
 
 
 
#define PIN_A0 40
#define PIN_A1 41
#define PIN_A2 42
#define PIN_A3 43
#define PIN_A4 44
#define PIN_A5 45
#define PIN_A6 46
#define PIN_A7 47
 
#define PIN_B0 48
#define PIN_B1 49
#define PIN_B2 50
#define PIN_B3 51
#define PIN_B4 52
#define PIN_B5 53
#define PIN_B6 54
#define PIN_B7 55
 
////////////////////////////////////////////////////////////////// Useful defines
#define FALSE 0
#define TRUE 1
 
#define BYTE int
#define BOOLEAN short int
 
#define getc getch
#define fgetc getch
#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts
 
////////////////////////////////////////////////////////////////// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART_CAUSE()
// Constants returned from RESTART_CAUSE() are:
#define WDT_FROM_SLEEP 0
#define WDT_TIMEOUT 8
#define MCLR_FROM_SLEEP 16
#define NORMAL_POWER_UP 24
 
 
////////////////////////////////////////////////////////////////// Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER0(),
// SET_TIMER0() or SET_RTCC(),
// GET_TIMER0() or GET_RTCC()
// Constants used for SETUP_TIMER0() are:
#define RTCC_INTERNAL 0
#define RTCC_EXT_L_TO_H 32
#define RTCC_EXT_H_TO_L 48
 
#define RTCC_DIV_1 8
#define RTCC_DIV_2 0
#define RTCC_DIV_4 1
#define RTCC_DIV_8 2
#define RTCC_DIV_16 3
#define RTCC_DIV_32 4
#define RTCC_DIV_64 5
#define RTCC_DIV_128 6
#define RTCC_DIV_256 7
 
 
#define RTCC_8_BIT 0
 
// Constants used for SETUP_COUNTERS() are the above
// constants for the 1st param and the following for
// the 2nd param:
 
////////////////////////////////////////////////////////////////// WDT
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT()
//
#define WDT_18MS 8
#define WDT_36MS 9
#define WDT_72MS 10
#define WDT_144MS 11
#define WDT_288MS 12
#define WDT_576MS 13
#define WDT_1152MS 14
#define WDT_2304MS 15
 
////////////////////////////////////////////////////////////////// Timer 1
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1, SET_TIMER1
// Constants used for SETUP_TIMER_1() are:
// (or (via |) together constants from each group)
#define T1_DISABLED 0
#define T1_INTERNAL 0x85
#define T1_EXTERNAL 0x87
#define T1_EXTERNAL_SYNC 0x83
 
#define T1_CLK_OUT 8
 
#define T1_DIV_BY_1 0
#define T1_DIV_BY_2 0x10
#define T1_DIV_BY_4 0x20
#define T1_DIV_BY_8 0x30
 
////////////////////////////////////////////////////////////////// Timer 2
// Timer 2 Functions: SETUP_TIMER_2, GET_TIMER2, SET_TIMER2
// Constants used for SETUP_TIMER_2() are:
#define T2_DISABLED 0
#define T2_DIV_BY_1 4
#define T2_DIV_BY_4 5
#define T2_DIV_BY_16 6
 
////////////////////////////////////////////////////////////////// CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY
// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH
// Constants used for SETUP_CCPx() are:
#define CCP_OFF 0
#define CCP_CAPTURE_FE 4
#define CCP_CAPTURE_RE 5
#define CCP_CAPTURE_DIV_4 6
#define CCP_CAPTURE_DIV_16 7
#define CCP_COMPARE_SET_ON_MATCH 8
#define CCP_COMPARE_CLR_ON_MATCH 9
#define CCP_COMPARE_INT 0xA
#define CCP_COMPARE_RESET_TIMER 0xB
#define CCP_PWM 0xC
#define CCP_PWM_PLUS_1 0x1c
#define CCP_PWM_PLUS_2 0x2c
#define CCP_PWM_PLUS_3 0x3c
long CCP_1;
#byte CCP_1 = 0x15
#byte CCP_1_LOW= 0x15
#byte CCP_1_HIGH= 0x16
////////////////////////////////////////////////////////////////// COMP
// Comparator Variables: C1OUT, C2OUT
// Constants used in setup_comparators() are:
#define A0_A3_A1_A2 4
#define A0_A2_A1_A2 3
#define NC_NC_A1_A2 5
#define NC_NC_NC_NC 7
#define A0_VR_A1_VR 2
#define A3_VR_A2_VR 10
#define A0_A2_A1_A2_OUT_ON_A3_A4 6
#define A3_A2_A1_A2 9
 
//#bit C1OUT = 0x1f.6
//#bit C2OUT = 0x1f.7
 
////////////////////////////////////////////////////////////////// VREF
// Constants used in setup_vref() are:
#define VREF_LOW 0xa0
#define VREF_HIGH 0x80
#define VREF_A2 0x40
 
////////////////////////////////////////////////////////////////// INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),
// EXT_INT_EDGE()
//
// Constants used in EXT_INT_EDGE() are:
#define L_TO_H 0x40
#define H_TO_L 0
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:
#define GLOBAL 0x0BC0
#define INT_RTCC 0x0B20
#define INT_RB 0x0B08
#define INT_EXT 0x0B10
#define INT_TBE 0x8C10
#define INT_RDA 0x8C20
#define INT_TIMER1 0x8C01
#define INT_TIMER2 0x8C02
#define INT_CCP1 0x8C04
#define INT_SSP 0x8C08
#define INT_COMP 0x8D40
#define INT_EEPROM 0x8D10
#define INT_TIMER0 0x0B20
#list
/Designs/DART01B/SW/1_01/LIB/16f88_reg.h
0,0 → 1,314
#nolist
//
// Komplete definition of all Special Feature Registers for CCS C compiler
//
// PIC16F87
// PIC16F88
//
// (c)miho 2005
//
// History:
//
// 1.00 First Version, not verified yet
 
 
// SFR Registers in Memory Bank 0
//
#byte INDF = 0x00
#byte TMR0 = 0x01
#byte PCL = 0x02
#byte STATUS = 0x03
#bit IRP = STATUS.7
#bit RP1 = STATUS.6
#bit RP0 = STATUS.5
#bit TO = STATUS.4
#bit PD = STATUS.3
#bit Z = STATUS.2
#bit DC = STATUS.1
#bit C = STATUS.0
#byte FSR = 0x04
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PCLATH = 0x0A
#byte INTCON = 0x0B
#bit GIE = INTCON.7
#bit PEIE = INTCON.6
#bit TMR0IE = INTCON.5
#bit INT0IE = INTCON.4
#bit RBIE = INTCON.3
#bit TMR0IF = INTCON.2
#bit INT0IF = INTCON.1
#bit RBIF = INTCON.0
#byte PIR1 = 0x0C
#bit ADIF = PIR1.6
#bit RCIF = PIR1.5
#bit TXIF = PIR1.4
#bit SSPIF = PIR1.3
#bit CCP1IF = PIR1.2
#bit TMR2IF = PIR1.1
#bit TMR1IF = PIR1.0
#byte PIR2 = 0x0D
#bit OSFIF = PIR2.7
#bit CMIF = PIR2.6
#bit EEIF = PIR2.4
#byte TMR1L = 0x0E
#byte TMR1H = 0x0F
#byte T1CON = 0x10
#bit T1RUN = T1CON.6
#bit T1CKPS1 = T1CON.5
#bit T1CKPS0 = T1CON.4
#bit T1OSCEN = T1CON.3
#bit T1SYNC = T1CON.2
#bit TMR1CS = T1CON.1
#bit TMR1ON = T1CON.0
#byte TMR2 = 0x11
#byte T2CON = 0x12
#bit TOUTPS3 = T2CON.6
#bit TOUTPS2 = T2CON.5
#bit TOUTPS1 = T2CON.4
#bit TOUTPS0 = T2CON.3
#bit TMR2ON = T2CON.2
#bit T2CKPS1 = T2CON.1
#bit T2CKPS0 = T2CON.0
#byte SSPBUF = 0x13
#byte SSPCON1 = 0x14
#bit WCOL = SSPCON1.7
#bit SSPOV = SSPCON1.6
#bit SSPEN = SSPCON1.5
#bit CKP = SSPCON1.4
#bit SSPM3 = SSPCON1.3
#bit SSPM2 = SSPCON1.2
#bit SSPM1 = SSPCON1.1
#bit SSPM0 = SSPCON1.0
#byte CCPR1L = 0x15
#byte CCPR1H = 0x16
#byte CCP1CON = 0x17
#bit CCP1X = CCP1CON.5
#bit CCP1Y = CCP1CON.4
#bit CCP1M3 = CCP1CON.3
#bit CCP1M2 = CCP1CON.2
#bit CCP1M1 = CCP1CON.1
#bit CCP1M0 = CCP1CON.0
#byte RCSTA = 0x18
#bit SPEN = RCSTA.7
#bit RX9 = RCSTA.6
#bit SREN = RCSTA.5
#bit CREN = RCSTA.4
#bit ADDEN = RCSTA.3
#bit FERR = RCSTA.2
#bit OERR = RCSTA.1
#bit RX9D = RCSTA.0
#byte TXREG = 0x19
#byte RCREG = 0x1A
#byte ADRESH = 0x1E // F88 only
#byte ADCON0 = 0x1F // F88 only
#bit ADCS1 = ADCON0.7
#bit ADCS0 = ADCON0.6
#bit CHS2 = ADCON0.5
#bit CHS1 = ADCON0.4
#bit CHS0 = ADCON0.3
#bit GO = ADCON0.2
#bit ADON = ADCON0.0
 
 
// SFR Registers in Memory Bank 1
//
#byte INDF_1 = 0x80 // miror
#byte OPTION = 0x81
#bit RBPU = OPTION.7
#bit INTEDG = OPTION.6
#bit T0CS = OPTION.5
#bit T0SE = OPTION.4
#bit PSA = OPTION.3
#bit PS2 = OPTION.2
#bit PS1 = OPTION.1
#bit PS0 = OPTION.0
#byte PCL = 0x82
#byte STATUS_1 = 0x83 // mirror
#bit IRP_1 = STATUS_1.7
#bit RP1_1 = STATUS_1.6
#bit RP0_1 = STATUS_1.5
#bit TO_1 = STATUS_1.4
#bit PD_1 = STATUS_1.3
#bit Z_1 = STATUS_1.2
#bit DC_1 = STATUS_1.1
#bit C_1 = STATUS_1.0
#byte FSR = 0x84
#byte TRISA = 0x85
#byte TRISB = 0x86
#byte PCLATH_1 = 0x8A // mirror
#byte INTCON_1 = 0x8B // mirror
#bit GIE_1 = INTCON_1.7
#bit PEIE_1 = INTCON_1.6
#bit TMR0IE_1 = INTCON_1.5
#bit INT0IE_1 = INTCON_1.4
#bit RBIE_1 = INTCON_1.3
#bit TMR0IF_1 = INTCON_1.2
#bit INT0IF_1 = INTCON_1.1
#bit RBIF_1 = INTCON_1.0
#byte PIE1 = 0x8C
#bit ADIE = PIE1.6
#bit RCIE = PIE1.5
#bit TXIE = PIE1.4
#bit SSPIE = PIE1.3
#bit CCP1IE = PIE1.2
#bit TMR2IE = PIE1.1
#bit TMR1IE = PIE1.0
#byte PIE2 = 0x8D
#bit OSFIE = PIE2.7
#bit CMIE = PIE2.6
#bit EEIE = PIE2.4
#byte PCON = 0x8E
#bit POR = PCON.1
#bit BOR = PCON.0
#byte OSCCON = 0x8F
#bit IRCF2 = OSCCON.6
#bit IRCF1 = OSCCON.5
#bit IRCF0 = OSCCON.4
#bit OSTS = OSCCON.3
#bit IOFS = OSCCON.2
#bit SCS1 = OSCCON.1
#bit SCS0 = OSCCON.0
#byte OSCTUNE = 0x90
#bit TUN5 = OSCTUNE.5
#bit TUN4 = OSCTUNE.4
#bit TUN3 = OSCTUNE.3
#bit TUN2 = OSCTUNE.2
#bit TUN1 = OSCTUNE.1
#bit TUN0 = OSCTUNE.0
#byte PR2 = 0x92
#byte SSPADD = 0x93
#byte SSPSTAT = 0x94
#bit SMP = SSPSTAT.7
#bit CKE = SSPSTAT.6
#bit DA = SSPSTAT.5
#bit P = SSPSTAT.4
#bit S = SSPSTAT.3
#bit RW = SSPSTAT.2
#bit UA = SSPSTAT.1
#bit BF = SSPSTAT.0
#byte TXSTA = 0x98
#bit CSRC = TXSTA.7
#bit TX9 = TXSTA.6
#bit TXEN = TXSTA.5
#bit SYNC = TXSTA.4
#bit BRGH = TXSTA.2
#bit TRMT = TXSTA.1
#bit TX9D = TXSTA.0
#byte SPBRG = 0x99
#byte ANSEL = 0x9B // F88 only
#bit ANS6 = ANSEL.6
#bit ANS5 = ANSEL.5
#bit ANS4 = ANSEL.4
#bit ANS3 = ANSEL.3
#bit ANS2 = ANSEL.2
#bit ANS1 = ANSEL.1
#bit ANS0 = ANSEL.0
#byte CMCON = 0x9C
#bit C2OUT = CMCON.7
#bit C1OUT = CMCON.6
#bit C2INV = CMCON.5
#bit C1INV = CMCON.4
#bit CIS = CMCON.3
#bit CM2 = CMCON.2
#bit CM1 = CMCON.1
#bit CM0 = CMCON.0
#byte CVRCON = 0x9D
#bit CVREN = CVRCON.7
#bit CVROE = CVRCON.6
#bit CVRR = CVRCON.5
#bit CVR3 = CVRCON.3
#bit CVR2 = CVRCON.2
#bit CVR1 = CVRCON.1
#bit CVR0 = CVRCON.0
#byte ADRESL = 0x9E // F88 only
#byte ADCON1 = 0x9F // F88 only
#bit ADFM = ADCON1.7
#bit ADCS2 = ADCON1.6
#bit VCFG1 = ADCON1.5
#bit VCFG0 = ADCON1.4
 
 
// SFR Registers in Memory Bank 2
//
#byte INDF_2 = 0x100 // mirror
#byte TMR0_2 = 0x101 // mirror
#byte PCL_2 = 0x102 // mirror
#byte STATUS_2 = 0x103 // mirror
#bit IRP_2 = STATUS_2.7
#bit RP1_2 = STATUS_2.6
#bit RP0_2 = STATUS_2.5
#bit TO_2 = STATUS_2.4
#bit PD_2 = STATUS_2.3
#bit Z_2 = STATUS_2.2
#bit DC_2 = STATUS_2.1
#bit C_2 = STATUS_2.0
#byte FSR_2 = 0x104 // mirror
#byte WDTCON = 0x105
#bit WDTPS3 = WDTCON.4
#bit WDTPS2 = WDTCON.3
#bit WDTPS1 = WDTCON.2
#bit WDTPS0 = WDTCON.1
#bit SWDTEN = WDTCON.0
#byte PORTB_2 = 0x106 // mirror
#byte PCLATH_2 = 0x10A // mirror
#byte INTCON_2 = 0x10B // mirror
#bit GIE_2 = INTCON_2.7
#bit PEIE_2 = INTCON_2.6
#bit TMR0IE_2 = INTCON_2.5
#bit INT0IE_2 = INTCON_2.4
#bit RBIE_2 = INTCON_2.3
#bit TMR0IF_2 = INTCON_2.2
#bit INT0IF_2 = INTCON_2.1
#bit RBIF_2 = INTCON_2.0
#byte EEDATA = 0x10C
#byte EEADR = 0x10D
#byte EEDATH = 0x10E
#byte EEADRH = 0x10F
 
 
// SFR Registers in Memory Bank 3
//
#byte INDF_3 = 0x180 // mirror
#byte OPTION_3 = 0x181 // mirror
#bit RBPU_3 = OPTION_3.7
#bit INTEDG_3 = OPTION_3.6
#bit T0CS_3 = OPTION_3.5
#bit T0SE_3 = OPTION_3.4
#bit PSA_3 = OPTION_3.3
#bit PS2_3 = OPTION_3.2
#bit PS1_3 = OPTION_3.1
#bit PS0_3 = OPTION_3.0
#byte PCL_3 = 0x182 // mirror
#byte STATUS_3 = 0x183 // mirror
#bit IRP_3 = STATUS_3.7
#bit RP1_3 = STATUS_3.6
#bit RP0_3 = STATUS_3.5
#bit TO_3 = STATUS_3.4
#bit PD_3 = STATUS_3.3
#bit Z_3 = STATUS_3.2
#bit DC_3 = STATUS_3.1
#bit C_3 = STATUS_3.0
#byte FSR_3 = 0x184 // mirror
#byte TRISB_3 = 0x186 // mirror
#byte PLATH_3 = 0x18A // mirror
#byte INTCON_3 = 0x18B // mirror
#bit GIE_3 = INTCON_3.7
#bit PEIE_3 = INTCON_3.6
#bit TMR0IE_3 = INTCON_3.5
#bit INT0IE_3 = INTCON_3.4
#bit RBIE_3 = INTCON_3.3
#bit TMR0IF_3 = INTCON_3.2
#bit INT0IF_3 = INTCON_3.1
#bit RBIF_3 = INTCON_3.0
#byte EECON1 = 0x18C
#bit EEPGD = EECON1.7
#bit FREE = EECON1.4
#bit WRERR = EECON1.3
#bit WREN = EECON1.2
#bit WR = EECON1.1
#bit RD = EECON1.0
#byte EECON2 = 0x18D
 
 
#list