118,38 → 118,54 |
|
architecture AtomicCounter_a of AtomicCounter is |
|
function to_bcd ( bin : std_logic_vector(15 downto 0) ) return std_logic_vector is |
function to_bcd ( bin : std_logic_vector(31 downto 0) ) return std_logic_vector is |
variable i : integer:=0; |
variable mybcd : std_logic_vector(19 downto 0) := (others => '0'); |
variable bint : std_logic_vector(15 downto 0) := bin; |
variable mybcd : std_logic_vector(35 downto 0) := (others => '0'); |
variable bint : std_logic_vector(31 downto 0) := bin; |
begin |
for i in 0 to 15 loop -- repeating 16 times. |
mybcd(19 downto 1) := mybcd(18 downto 0); --shifting the bits. |
mybcd(0) := bint(15); |
bint(15 downto 1) := bint(14 downto 0); |
for i in 0 to 31 loop -- repeating 16 times. |
mybcd(35 downto 1) := mybcd(34 downto 0); --shifting the bits. |
mybcd(0) := bint(31); |
bint(31 downto 1) := bint(30 downto 0); |
bint(0) :='0'; |
|
|
if(i < 15 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4. |
if(i < 31 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(3 downto 0) := std_logic_vector(unsigned(mybcd(3 downto 0)) + 3); |
end if; |
|
if(i < 15 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4. |
if(i < 31 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(7 downto 4) := std_logic_vector(unsigned(mybcd(7 downto 4)) + 3); |
end if; |
|
if(i < 15 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4. |
if(i < 31 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(11 downto 8) := std_logic_vector(unsigned(mybcd(11 downto 8)) + 3); |
end if; |
|
if(i < 15 and mybcd(15 downto 12) > "0100") then --add 3 if BCD digit is greater than 4. |
if(i < 31 and mybcd(15 downto 12) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(15 downto 12) := std_logic_vector(unsigned(mybcd(15 downto 12)) + 3); |
end if; |
|
if(i < 15 and mybcd(19 downto 16) > "0100") then --add 3 if BCD digit is greater than 4. |
if(i < 31 and mybcd(19 downto 16) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(19 downto 16) := std_logic_vector(unsigned(mybcd(19 downto 16)) + 3); |
end if; |
|
if(i < 31 and mybcd(23 downto 20) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(23 downto 20) := std_logic_vector(unsigned(mybcd(23 downto 20)) + 3); |
end if; |
|
if(i < 31 and mybcd(27 downto 24) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(27 downto 24) := std_logic_vector(unsigned(mybcd(27 downto 24)) + 3); |
end if; |
|
if(i < 31 and mybcd(31 downto 28) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(31 downto 28) := std_logic_vector(unsigned(mybcd(31 downto 28)) + 3); |
end if; |
|
if(i < 31 and mybcd(35 downto 32) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(35 downto 32) := std_logic_vector(unsigned(mybcd(35 downto 32)) + 3); |
end if; |
|
end loop; |
|
return mybcd; |
159,14 → 175,12 |
-- Counters |
-- ---------------- |
|
signal Counter: unsigned(13 downto 0) := "00000000000000"; -- Main Counter 1 Hz, max. 9.999 kHz (binary) |
signal CounterMaxcount: unsigned(15 downto 0) := "0000000000000000"; -- Main Counter 10 kHz, max. 655.35 MHz (binary) |
signal Counter: unsigned(31 downto 0) := X"00000000"; -- Main Counter 1 Hz, max. 9.999 kHz (binary) |
|
|
-- LED Display |
-- ----------- |
|
signal NumberPom: std_logic_vector(35 downto 0) := X"000000000"; -- Variable for bin/BCD conversion |
signal Number: std_logic_vector(35 downto 0) := X"000000000"; -- LED Display Input |
signal Freq: std_logic_vector(31 downto 0) := X"00000000"; -- Measured Frequency |
signal MuxCounter: unsigned(31 downto 0) := (others => '0'); -- LED Multiplex - Multiplex Clock Divider |
200,19 → 214,16 |
if rising_edge(LO_CLOCK) then |
|
if (State = 3) or (State = 0) then |
if Counter < MAXCOUNT-1 then |
if DIPSW(7) = '0' then -- Half/Full frequency |
Counter <= Counter + 1; |
else |
Counter <= (others => '0'); |
CounterMaxcount <= CounterMaxcount + 1; |
Counter <= Counter + 2; |
end if; |
end if; |
if (State = 1) then |
Freq(15 downto 0) <= std_logic_vector("00"&Counter); |
Freq(31 downto 16) <= std_logic_vector(CounterMaxcount); |
Freq(31 downto 0) <= std_logic_vector(Counter); |
end if; |
if (State = 2) then |
CounterMaxcount <= (others => '0'); |
Counter <= (others => '0'); |
end if; |
end if; |
247,17 → 258,11 |
process (Decko) |
begin |
if falling_edge(Decko) then |
if DIPSW(7) = '0' then |
NumberPom(15 downto 0) <= to_bcd(Freq(15 downto 0))(15 downto 0); -- Half frequency |
NumberPom(35 downto 16) <= to_bcd(Freq(31 downto 16))(19 downto 0); |
else |
NumberPom(15 downto 0) <= to_bcd(Freq(14 downto 1)&"0")(15 downto 0); -- Full frequency |
NumberPom(35 downto 16) <= to_bcd(Freq(30 downto 15))(19 downto 0); |
Number(35 downto 0) <= to_bcd(Freq(31 downto 0)); |
end if; |
end if; |
end process; |
|
Number(35 downto 0) <= NumberPom(35 downto 0); |
-- Number(35 downto 0) <= NumberPom(35 downto 0); |
|
LED(7) <= Decko; -- Disply 1PPS pulse on LEDbar |
LED(6 downto 4) <= (others => '0'); |