No changes between revisions
/Designs/Laboratory_instruments/CLOCKMOT01A/SW/CLOCKMOT.py
7,86 → 7,81
 
 
#uncomment for debbug purposes
#import logging
#logging.basicConfig(level=logging.DEBUG)
import logging
logging.basicConfig(level=logging.DEBUG)
 
import sys
import time
from pymlab import config
import spidev # SPI binding
import pylirc # infrared receiver binding
 
#### Script Arguments ###############################################
 
if len(sys.argv) == 2:
SPEED = eval(sys.argv[1])
 
#### Script Arguments ###############################################
 
if len(sys.argv) < 2:
else:
sys.stderr.write("Invalid number of arguments.\n")
sys.stderr.write("Usage: %s PORT ADDRESS SPEED MOVE_DISTANCE\n" % (sys.argv[0], ))
sys.stderr.write("Usage: %s BASE_SPEED (in steps/s)\n" % (sys.argv[0], ))
sys.exit(1)
 
elif len(sys.argv) == 2:
PORT = eval(sys.argv[1])
SPEED = 5
DISTANCE = 50
 
elif len(sys.argv) == 3:
SPEED = eval(sys.argv[2])
DISTANCE = 100
 
elif len(sys.argv) == 4:
SPEED = eval(sys.argv[2])
DISTANCE = eval(sys.argv[3])
 
else:
PORT = 0
SPEED = 10
DISTANCE = 50
 
 
class axis:
def __init__(self, SPI_CS, Direction, StepsPerUnit):
def __init__(self, SPI_handler, Direction, StepsPerUnit):
' One axis of robot '
self.CS = SPI_CS
self.spi = SPI_handler
self.Dir = Direction
self.SPU = StepsPerUnit
self.Reset()
self.Initialize()
 
def Reset(self):
' Reset Axis and set default parameters for H-bridge '
spi.SPI_write_byte(self.CS, 0xC0) # reset
# spi.SPI_write_byte(self.CS, 0x14) # Stall Treshold setup
# spi.SPI_write_byte(self.CS, 0xFF)
# spi.SPI_write_byte(self.CS, 0x13) # Over Current Treshold setup
# spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0x15) # Full Step speed
spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0x05) # ACC
spi.SPI_write_byte(self.CS, 0x00)
spi.SPI_write_byte(self.CS, 0x10)
spi.SPI_write_byte(self.CS, 0x06) # DEC
spi.SPI_write_byte(self.CS, 0x00)
spi.SPI_write_byte(self.CS, 0x10)
spi.SPI_write_byte(self.CS, 0x0A) # KVAL_RUN
spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0x0B) # KVAL_ACC
spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0x0C) # KVAL_DEC
spi.SPI_write_byte(self.CS, 0xFF)
spi.SPI_write_byte(self.CS, 0x18) # CONFIG
spi.SPI_write_byte(self.CS, 0b00111000)
spi.SPI_write_byte(self.CS, 0b00000000)
'Reset the Axis'
self.spi.xfer([0xC0]) # reset
 
def Initialize(self):
'set default parameters for H-bridge '
# self.spi.xfer( 0x14) # Stall Treshold setup
# self.spi.xfer( 0xFF)
# self.spi.xfer( 0x13) # Over Current Treshold setup
# self.spi.xfer( 0xFF)
self.spi.xfer([0x15]) # Full Step speed
self.spi.xfer([0xFF])
self.spi.xfer([0xFF])
self.spi.xfer([0x05]) # ACC
self.spi.xfer([0x00])
self.spi.xfer([0x10])
self.spi.xfer([0x06]) # DEC
self.spi.xfer([0x00])
self.spi.xfer([0x10])
self.spi.xfer([0x0A]) # KVAL_RUN
self.spi.xfer([0x50])
self.spi.xfer([0x0B]) # KVAL_ACC
self.spi.xfer([0x50])
self.spi.xfer([0x0C]) # KVAL_DEC
self.spi.xfer([0x50])
self.spi.xfer([0x18]) # CONFIG
self.spi.xfer([0b00111000])
self.spi.xfer([0b00000110])
def MaxSpeed(self, speed):
' Setup of maximum speed '
spi.SPI_write_byte(self.CS, 0x07) # Max Speed setup
spi.SPI_write_byte(self.CS, 0x00)
spi.SPI_write_byte(self.CS, speed)
'Setup of maximum speed in steps/s'
speed_value = int(speed / 15.25)
if (speed_value == 0):
speed_value = 1
print hex(speed_value)
 
data = [(speed_value >> i & 0xff) for i in (16,8,0)]
self.spi.xfer([data[0]]) # Max Speed setup
self.spi.xfer([data[1]])
self.spi.xfer([data[2]])
return (speed_value * 15.25)
 
def ReleaseSW(self):
' Go away from Limit Switch '
while self.ReadStatusBit(2) == 1: # is Limit Switch ON ?
spi.SPI_write_byte(self.CS, 0x92 | (~self.Dir & 1)) # release SW
while self.IsBusy():
self.spi.xfer([0x92 | (~self.Dir & 1)]) # release SW
while self.GetStatus()['BUSY']:
pass
self.MoveWait(10) # move 10 units away
93,108 → 88,128
def GoZero(self, speed):
' Go to Zero position '
self.ReleaseSW()
 
spi.SPI_write_byte(self.CS, 0x82 | (self.Dir & 1)) # Go to Zero
spi.SPI_write_byte(self.CS, 0x00)
spi.SPI_write_byte(self.CS, speed)
while self.IsBusy():
self.spi.xfer([0x82 | (self.Dir & 1)]) # Go to Zero
self.spi.xfer([0x00])
self.spi.xfer([speed])
while self.GetStatus()['BUSY']:
pass
time.sleep(0.3)
self.ReleaseSW()
 
def GetStatus(self):
#self.spi.xfer([0b11010000]) # Get status command from datasheet - does not work for uknown rasons
self.spi.xfer([0x39]) # Gotparam command on status register
data = self.spi.readbytes(1)
data = data + self.spi.readbytes(1)
 
status = dict([('SCK_MOD',data[0] & 0x80 == 0x80), #The SCK_MOD bit is an active high flag indicating that the device is working in Step-clock mode. In this case the step-clock signal should be provided through the STCK input pin. The DIR bit indicates the current motor direction
('STEP_LOSS_B',data[0] & 0x40 == 0x40),
('STEP_LOSS_A',data[0] & 0x20 == 0x20),
('OCD',data[0] & 0x10 == 0x10),
('TH_SD',data[0] & 0x08 == 0x08),
('TH_WRN',data[0] & 0x04 == 0x04),
('UVLO',data[0] & 0x02 == 0x02),
('WRONG_CMD',data[0] & 0x01 == 0x01), #The NOTPERF_CMD and WRONG_CMD flags are active high and indicate, respectively, that the command received by SPI cannot be performed or does not exist at all.
('NOTPERF_CMD',data[1] & 0x80 == 0x80),
('MOT_STATUS',data[1] & 0x60),
('DIR',data[1] & 0x10 == 0x10),
('SW_EVN',data[1] & 0x08 == 0x08),
('SW_F',data[1] & 0x04 == 0x04), #The SW_F flag reports the SW input status (low for open and high for closed).
('BUSY',data[1] & 0x02 != 0x02),
('HIZ',data[1] & 0x01 == 0x01)])
return status
 
def Move(self, units):
' Move some distance units from current position '
steps = units * self.SPU # translate units to steps
if steps > 0: # look for direction
spi.SPI_write_byte(self.CS, 0x40 | (~self.Dir & 1))
self.spi.xfer([0x40 | (~self.Dir & 1)])
else:
spi.SPI_write_byte(self.CS, 0x40 | (self.Dir & 1))
self.spi.xfer([0x40 | (self.Dir & 1)])
steps = int(abs(steps))
spi.SPI_write_byte(self.CS, (steps >> 16) & 0xFF)
spi.SPI_write_byte(self.CS, (steps >> 8) & 0xFF)
spi.SPI_write_byte(self.CS, steps & 0xFF)
self.spi.xfer([(steps >> 16) & 0xFF])
self.spi.xfer([(steps >> 8) & 0xFF])
self.spi.xfer([steps & 0xFF])
 
def Run(self, direction, speed):
speed_value = int(speed / 0.015)
print speed_value
 
data = [0b01010000 + direction]
data = data +[(speed_value >> i & 0xff) for i in (16,8,0)]
self.spi.xfer([data[0]]) # Max Speed setup
self.spi.xfer([data[1]])
self.spi.xfer([data[2]])
self.spi.xfer([data[3]])
return (speed_value * 0.015)
 
def MoveWait(self, units):
' Move some distance units from current position and wait for execution '
self.Move(units)
while self.IsBusy():
while self.GetStatus()['BUSY']:
pass
time.sleep(0.8)
 
def Float(self):
def Float(self, hard = False):
' switch H-bridge to High impedance state '
spi.SPI_write_byte(self.CS, 0xA0)
 
def ReadStatusBit(self, bit):
' Report given status bit '
spi.SPI_write_byte(self.CS, 0x39) # Read from address 0x19 (STATUS)
spi.SPI_write_byte(self.CS, 0x00)
data0 = spi.SPI_read_byte() # 1st byte
spi.SPI_write_byte(self.CS, 0x00)
data1 = spi.SPI_read_byte() # 2nd byte
#print hex(data0), hex(data1)
if bit > 7: # extract requested bit
OutputBit = (data0 >> (bit - 8)) & 1
if (hard == False):
self.spi.xfer([0xA0])
else:
OutputBit = (data1 >> bit) & 1
return OutputBit
self.spi.xfer([0xA8])
 
def IsBusy(self):
""" Return True if tehre are motion """
if self.ReadStatusBit(1) == 1:
return False
else:
return True
 
# End Class axis --------------------------------------------------
 
print "Clock motor control script started. \r\n"
print "Requested speed is: %f steps/s" % SPEED
 
pylirc.init("pylirc", "/home/odroid/conf")
 
cfg = config.Config(
i2c = {
"port": 1,
},
try:
print "Configuring SPI.."
spi = spidev.SpiDev() # create a spi object
spi.open(0, 0) # open spi port 0, device (CS) 0
spi.mode = 0b01
spi.lsbfirst = False
spi.bits_per_word = 8
spi.cshigh = False
spi.max_speed_hz = 100000
#spi.SPI_config(spi.I2CSPI_MSB_FIRST| spi.I2CSPI_MODE_CLK_IDLE_HIGH_DATA_EDGE_TRAILING| spi.I2CSPI_CLK_461kHz)
time.sleep(1)
 
bus = [
{
"name":"spi",
"type":"i2cspi",
"address": 0x2e,
},
],
)
print "Configuring stepper motor.."
X = axis(spi, 0, 1) # set Number of Steps per axis Unit and set Direction of Rotation
maximum_speed = X.MaxSpeed(200.0)
X.GetStatus()
 
print "Motor speed limit is: %f steps/s" % maximum_speed
 
cfg.initialize()
print "Waiting for IR command.."
while True: # set maximal motor speed
key = pylirc.nextcode() ## preccessing the IR remote control commands.
 
print "Stepper motor control test started. \r\n"
print "Max motor speed: %d " % SPEED
print "Distance to run: %d " % DISTANCE
if key == ['start']:
real_speed = X.Run(1, SPEED)
print "Motor running at: %f steps/s" % real_speed
 
spi = cfg.get_device("spi")
if key == ['faster']:
real_speed = X.Run(1, SPEED * 1.2) # runnig the motor at 120% of the base motor speed
print "Motor running at: %f steps/s" % real_speed
 
spi.route()
if key == ['slower']:
real_speed = X.Run(1, SPEED * 0.8)
print "Motor running at: %f steps/s" % real_speed
 
try:
print "SPI configuration.."
spi.SPI_config(spi.I2CSPI_MSB_FIRST| spi.I2CSPI_MODE_CLK_IDLE_HIGH_DATA_EDGE_TRAILING| spi.I2CSPI_CLK_461kHz)
time.sleep(1)
if key == ['stop']:
X.Float(hard=False) # release power
print "Stopping the motor."
 
print "Axis inicialization"
X = axis(spi.I2CSPI_SS0, 0, 641) # set Number of Steps per axis Unit and set Direction of Rotation
X.MaxSpeed(SPEED) # set maximal motor speed
except KeyboardInterrupt:
print "stop"
X.Float(hard=False) # release power
sys.exit(0)
 
print "Axis is running"
 
for i in range(5):
print i
X.MoveWait(DISTANCE) # move forward and wait for motor stop
print "Changing direction of rotation.."
X.MoveWait(-DISTANCE) # move backward and wait for motor stop
print "Changing direction of rotation.."
 
X.Float() # release power
 
 
finally:
print "stop"
except Exception, e:
X.Float(hard=False) # release power
print >> sys.stderr, "Exception: %s" % str(e)
sys.exit(1)
/Designs/Laboratory_instruments/CLOCKMOT01A/SW/start.sh
0,0 → 1,3
#!/bin/bash
cd /home/odroid/repos/CLOCKMOT01A/
./CLOCKMOT.py 52.36 &
Property changes:
Added: svn:executable
+*
\ No newline at end of property