/Designs/MRAKOMER4/SW/irmrak4.c
3,14 → 3,13
#define ID "$Id: irmrak3.c 1215 2008-08-08 12:25:25Z kakl $"
#include "irmrak4.h"
 
#define MAXHEAT 10 // Number of cycles for heating
#define MAXOPEN 10 // Number of cycles for dome open
#define MEASURE_DELAY 10000
#define SEND_DELAY 50
 
#define DOME PIN_B4 // Dome controll port
#define SA 0x00 // Slave Address (0 for single slave / 0x5A<<1 default)
#define RAM_Access 0x00 // RAM access command
#define RAM_Tobj1 0x07 // To1 address in the eeprom
#define RAM_Tamb 0x06 // Ta address in the eeprom
#define HEATING PIN_B3 // Heating for defrosting
#define MAXHEAT 10 // Number of cycles for heating
#define MAXOPEN 10 // Number of cycles for dome open
 
#bit CREN = 0x18.4 // USART registers
#bit SPEN = 0x18.7
23,77 → 22,27
int8 heat;
int8 open;
 
inline void toggle_dome(void)
{
if (open>0)
{output_toggle(DOME);}
else
{output_low(DOME);}
}
 
unsigned char PEC_calculation(unsigned char pec[]) // CRC calculation
void delay(int16 cycles)
{
unsigned char crc[6];
unsigned char BitPosition=47;
unsigned char shift;
unsigned char i;
unsigned char j;
unsigned char temp;
int16 i;
for(i=0; i<cycles; i++) {toggle_dome(); delay_us(100);}
 
do
{
crc[5]=0; /* Load CRC value 0x000000000107 */
crc[4]=0;
crc[3]=0;
crc[2]=0;
crc[1]=0x01;
crc[0]=0x07;
BitPosition=47; /* Set maximum bit position at 47 */
shift=0;
restart_wdt();
}
 
//Find first 1 in the transmited message
i=5; /* Set highest index */
j=0;
while((pec[i]&(0x80>>j))==0 && i>0)
{
BitPosition--;
if(j<7)
{
j++;
}
else
{
j=0x00;
i--;
}
}/*End of while */
 
shift=BitPosition-8; /*Get shift value for crc value*/
#include "smb.c"
 
 
//Shift crc value
while(shift)
{
for(i=5; i<0xFF; i--)
{
if((crc[i-1]&0x80) && (i>0))
{
temp=1;
}
else
{
temp=0;
}
crc[i]<<=1;
crc[i]+=temp;
}/*End of for*/
shift--;
}/*End of while*/
 
//Exclusive OR between pec and crc
for(i=0; i<=5; i++)
{
pec[i] ^=crc[i];
}/*End of for*/
} while(BitPosition>8);/*End of do-while*/
 
return pec[0];
}/*End of PEC_calculation*/
 
 
int16 ReadTemp(int8 addr, int8 select) // Read sensor RAM
{
unsigned char arr[6]; // Buffer for the sent bytes
100,19 → 49,19
int8 crc; // Readed CRC
int16 temp; // Readed temperature
 
disable_interrupts(GLOBAL);
i2c_stop();
i2c_start();
i2c_write(addr);
i2c_write(RAM_Access|select); // Select the teperature sensor in device
i2c_start();
i2c_write(addr);
arr[2]=i2c_read(1); // lo
arr[1]=i2c_read(1); // hi
addr<<=1;
 
SMB_STOP_bit(); //If slave send NACK stop comunication
SMB_START_bit(); //Start condition
SMB_TX_byte(addr);
SMB_TX_byte(RAM_Access|select);
SMB_START_bit(); //Repeated Start condition
SMB_TX_byte(addr);
arr[2]=SMB_RX_byte(ACK); //Read low data,master must send ACK
arr[1]=SMB_RX_byte(ACK); //Read high data,master must send ACK
temp=MAKE16(arr[1],arr[2]);
crc=i2c_read(0); //crc
i2c_stop();
enable_interrupts(GLOBAL);
crc=SMB_RX_byte(NACK); //Read PEC byte, master must send NACK
SMB_STOP_bit(); //Stop condition
 
arr[5]=addr;
arr[4]=RAM_Access|select;
123,18 → 72,6
return temp;
}
 
void delay(int16 cycles)
{
int16 i;
if (open>0)
for(i=0; i<cycles; i++) {output_toggle(DOME); delay_us(100);}
else
for(i=0; i<cycles; i++) {output_low(DOME); delay_us(100);}
 
restart_wdt();
}
 
void main()
{
unsigned int16 n, temp, tempa;
176,7 → 113,7
 
do
{
delay(10000);
delay(MEASURE_DELAY);
if (heat>0)
{
output_high(HEATING);
224,8 → 161,8
to=temp*2-27315;
 
{ // printf
char output[30];
int8 j;
char output[30]; // Output buffer
int8 j; // Counter
sprintf(output,"#%Lu %Ld %Ld %u %u\n\r\0", n, ta, to, heat, open);
232,7 → 169,7
j=0;
while(output[j]!=0)
{
delay(50);
delay(SEND_DELAY);
putc(output[j++]);
output_toggle(DOME);
}
/Designs/MRAKOMER4/SW/irmrak4.h
16,5 → 16,5
 
#use delay(clock=4000000)
#use rs232(baud=2400,parity=N,xmit=PIN_B5,rcv=PIN_B2,bits=8)//,FORCE_SW)
#use i2c(MASTER,SLOW,sda=PIN_B1,scl=PIN_B0,SMBUS)
//#use i2c(MASTER,SLOW,sda=PIN_B1,scl=PIN_B0,SMBUS)
 
/Designs/MRAKOMER4/SW/smb.c
5,6 → 5,7
#define RAM_Tobj1 0x07 // To1 address in the RAM
#define RAM_Tamb 0x06 // Ta address in the RAM
 
 
//*High and Low level of clock
#define HIGHLEV 40 // max. 50us
#define LOWLEV 100 // max. 30ms
34,7 → 35,7
//**********************************************************************************************
void SMB_START_bit(void)
{
disable_interrupts(GLOBAL);
// disable_interrupts(GLOBAL);
mSDA_HIGH(); // Set SDA line
delay_us( TBUF ); // Wait a few microseconds
mSCL_HIGH(); // Set SCL line
45,8 → 46,10
// Condition. After this period, the first clock is generated.
//(Thd:sta=4.0us min)
mSCL_LOW(); // Clear SCL line
enable_interrupts(GLOBAL);
// enable_interrupts(GLOBAL);
delay_us( TBUF ); // Wait a few microseconds
toggle_dome();
}
//*********************************************************************************************
// STOP CONDITION ON SMBus
60,7 → 63,7
//*********************************************************************************************
void SMB_STOP_bit(void)
{
disable_interrupts(GLOBAL);
// disable_interrupts(GLOBAL);
mSDA_HIGH();
mSCL_LOW(); // Clear SCL line
delay_us( TBUF ); // Wait a few microseconds
69,13 → 72,15
mSCL_HIGH(); // Set SCL line
delay_us( TBUF ); // Stop condition setup time(Tsu:sto=4.0us min)
mSDA_HIGH(); // Set SDA line
enable_interrupts(GLOBAL);
// enable_interrupts(GLOBAL);
 
toggle_dome();
}
 
 
void SMB_send_bit(unsigned char bit_out)
{
disable_interrupts(GLOBAL);
// disable_interrupts(GLOBAL);
if(bit_out==0) {mSDA_LOW();}
else {mSDA_HIGH();}
delay_us(3);
84,7 → 89,9
mSCL_LOW(); // Clear SCL line
delay_us( LOWLEV ); // Low Level of Clock Pulse
// mSDA_HIGH(); // Master release SDA line ,
enable_interrupts(GLOBAL);
// enable_interrupts(GLOBAL);
 
toggle_dome();
return;
}
 
92,7 → 99,7
{
unsigned char Ack_bit;
 
disable_interrupts(GLOBAL);
// disable_interrupts(GLOBAL);
mSDA_HIGH(); //_SDA_IO=1; // SDA-input
mSCL_HIGH(); // Set SCL line
delay_us( HIGHLEV ); // High Level of Clock Pulse
100,8 → 107,9
else Ack_bit=0; // /
mSCL_LOW(); // Clear SCL line
delay_us( LOWLEV ); // Low Level of Clock Pulse
enable_interrupts(GLOBAL);
// enable_interrupts(GLOBAL);
 
toggle_dome();
return Ack_bit;
}
 
133,7 → 141,7
Ack_bit=SMB_Receive_bit(); // Get acknowledgment bit
 
return Ack_bit;
}// End of TX_bite()
}
 
//*********************************************************************************************
// RECEIVE DATA ON SMBus
204,7 → 212,7
j=0x00;
i--;
}
}/*End of while */
}
 
shift=BitPosition-8; /*Get shift value for crc value*/
 
224,132 → 232,16
}
crc[i]<<=1;
crc[i]+=temp;
}/*End of for*/
}
shift--;
}/*End of while*/
}
 
//Exclusive OR between pec and crc
for(i=0; i<=5; i++)
{
pec[i] ^=crc[i];
}/*End of for*/
}
} while(BitPosition>8);/*End of do-while*/
 
return pec[0];
}/*End of PEC_calculation*/
 
int16 ReadTemp(int8 addr, int8 select) // Read sensor RAM
{
unsigned char arr[6]; // Buffer for the sent bytes
int8 crc; // Readed CRC
int16 temp; // Readed temperature
 
addr<<=1;
 
SMB_STOP_bit(); //If slave send NACK stop comunication
SMB_START_bit(); //Start condition
SMB_TX_byte(addr);
SMB_TX_byte(RAM_Access|select);
SMB_START_bit(); //Repeated Start condition
SMB_TX_byte(addr);
arr[2]=SMB_RX_byte(ACK); //Read low data,master must send ACK
arr[1]=SMB_RX_byte(ACK); //Read high data,master must send ACK
temp=MAKE16(arr[1],arr[2]);
crc=SMB_RX_byte(NACK); //Read PEC byte, master must send NACK
SMB_STOP_bit(); //Stop condition
 
arr[5]=addr;
arr[4]=RAM_Access|select;
arr[3]=addr;
arr[0]=0;
if (crc != PEC_calculation(arr)) temp=0; // Calculate and check CRC
 
return temp;
}
 
void main()
{
unsigned int16 temp, tempa;
signed int16 ta, to;
 
setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DISABLED,0,1);
 
output_low(KLAKSON); // Ticho
output_high(LED); // Blik
delay_ms(50);
output_low(LED);
printf("\n\r\n\rVER: %s\n\r\n\r", VER); // Vypis verzi
 
enable_interrupts(INT_RDA);
enable_interrupts(GLOBAL);
 
flag=false;
 
while (true)
{
float ta1, ta2, to1, to2;
int16 s1, s2, s3, s4, s5, s6;
int8 c;
int8 tlacitko;
 
if (flag)
{
flag=false;
 
output_high(KLAKSON);
delay_ms(400);
output_low(KLAKSON);
delay_ms(100);
output_high(KLAKSON);
delay_ms(700);
output_low(KLAKSON);
}
 
tlacitko=0;
 
tempa=ReadTemp(1, RAM_Tamb); // Read temperatures from sensor
temp=ReadTemp(1, RAM_Tobj1);
to=(signed int16)(temp*2-27315);
ta=(signed int16)(tempa*2-27315);
ta1=(float)ta/100;
to1=(float)to/100;
 
if(!input(TL)) tlacitko=1;
 
tempa=ReadTemp(2, RAM_Tamb); // Read temperatures from sensor
temp=ReadTemp(2, RAM_Tobj1);
to=(signed int16)(temp*2-27315);
ta=(signed int16)(tempa*2-27315);
ta2=(float)ta/100;
to2=(float)to/100;
// printf("T2 %.1g %.1g ",(float)ta/100,(float)to/100);
 
// printf("S1 %Lu ", sonar_ping(SONAR1));
if(!input(TL)) tlacitko=1;
output_high(LED);
s1=sonar_ping(SONAR1);
output_low(LED);
if(!input(TL)) tlacitko=1;
s2=sonar_ping(SONAR2);
if(!input(TL)) tlacitko=1;
s3=sonar_ping(SONAR3);
if(!input(TL)) tlacitko=1;
s4=sonar_ping(SONAR4);
if(!input(TL)) tlacitko=1;
s5=sonar_ping(SONAR5);
if(!input(TL)) tlacitko=1;
s6=sonar_ping(SONAR6);
if(!input(TL)) tlacitko=1;
c=cmps_azimuth();
if(!input(TL)) tlacitko=1;
 
printf("#T1 %.1g %.1g T2 %.1g %.1g ",ta1,to1,ta2,to2);
printf("S1 %Lu S2 %Lu S3 %Lu S4 %Lu S5 %Lu S6 %Lu C %u TL %u\n\r",s1,s2,s3,s4,s5,s6,c,tlacitko);
}
 
}