24,11 → 24,12 |
entity gtime is |
generic ( |
-- Top Value for 100MHz Clock Counter |
MAXCOUNT: integer := 10_000; -- Maximum for the first counter |
--!!!KAKL MAXCOUNT: integer := 30_000_000; |
MAXCOUNT: integer := 10_000; |
MUXCOUNT: integer := 100_000 -- LED Display Multiplex Clock Divider |
); |
port ( |
-- Clock on PCB |
-- Main Clock |
CLK100MHz: in std_logic; |
|
-- Mode Signals (usualy not used) |
73,8 → 74,8 |
B: inout std_logic_vector(24 downto 0); |
|
-- PS/2 Bidirectional Port (open collector, J31 and J32) |
PS2_CLK1: inout std_logic; |
PS2_DATA1: inout std_logic; |
-- PS2_CLK1: inout std_logic; |
-- PS2_DATA1: inout std_logic; |
PS2_CLK2: inout std_logic; |
PS2_DATA2: inout std_logic; |
|
116,18 → 117,59 |
|
architecture gtime_a of gtime is |
|
function to_bcd ( bin : std_logic_vector(15 downto 0) ) return std_logic_vector is |
variable i : integer:=0; |
variable mybcd : std_logic_vector(19 downto 0) := (others => '0'); |
variable bint : std_logic_vector(15 downto 0) := bin; |
begin |
for i in 0 to 15 loop -- repeating 16 times. |
mybcd(19 downto 1) := mybcd(18 downto 0); --shifting the bits. |
mybcd(0) := bint(15); |
bint(15 downto 1) := bint(14 downto 0); |
bint(0) :='0'; |
|
-- Counter |
|
if(i < 15 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(3 downto 0) := std_logic_vector(unsigned(mybcd(3 downto 0)) + 3); |
end if; |
|
if(i < 15 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(7 downto 4) := std_logic_vector(unsigned(mybcd(7 downto 4)) + 3); |
end if; |
|
if(i < 15 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(11 downto 8) := std_logic_vector(unsigned(mybcd(11 downto 8)) + 3); |
end if; |
|
if(i < 15 and mybcd(15 downto 12) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(15 downto 12) := std_logic_vector(unsigned(mybcd(15 downto 12)) + 3); |
end if; |
|
if(i < 15 and mybcd(19 downto 16) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(19 downto 16) := std_logic_vector(unsigned(mybcd(19 downto 16)) + 3); |
end if; |
|
end loop; |
|
return mybcd; |
end to_bcd; |
|
|
-- LED Demo Signals |
-- ---------------- |
|
signal Counter: unsigned(31 downto 0) := X"00000000"; -- Main Counter 2 Hz (binary) |
signal Counter: unsigned(13 downto 0) := "00000000000000"; -- Main Counter 1 Hz, max. 9.999 kHz (binary) |
signal CounterMaxcount: unsigned(14 downto 0) := "000000000000000"; -- Main Counter 10 kHz, max. 327.67 MHz (binary) |
signal Bar: unsigned(7 downto 0) := X"00"; -- Register for Bar output (binary) |
|
|
-- LED Display |
-- ----------- |
|
signal Number: std_logic_vector(31 downto 0) := X"00000000"; -- LED Display Input |
signal NumberPom: std_logic_vector(35 downto 0) := X"000000000"; -- LED Display Input |
signal Number: std_logic_vector(35 downto 0) := X"000000000"; -- LED Display Input |
signal Freq: std_logic_vector(31 downto 0) := X"00000000"; -- Measured Frequency |
signal HalfFreq: std_logic_vector(31 downto 0); |
signal MuxCounter: unsigned(31 downto 0) := (others => '0'); -- LED Multiplex - Multiplex Clock Divider |
signal Enable: std_logic; |
signal Digits: std_logic_vector(7 downto 0) := X"01"; -- LED Multiplex - Digit Counter - LED Digit Output |
135,29 → 177,43 |
signal Code: std_logic_vector(3 downto 0); -- BCD to 7 Segment Decoder Output |
|
|
-- signal LO_CLOCK: std_logic; -- Frequency divided by 2 |
signal EXT_CLOCK: std_logic; -- Input Frequency |
signal LO_CLOCK: std_logic; |
signal EXT_CLOCK: std_logic; |
|
signal Decko: std_logic; -- D flip-flop |
signal State: unsigned(2 downto 0) := (others => '0'); -- Inner states of automata |
signal Decko: std_logic; |
signal State: unsigned(2 downto 0) := (others => '0'); |
|
signal SCLK: std_logic; |
signal SCLK2: std_logic; |
|
|
begin |
|
-- Counter |
process (EXT_CLOCK) |
begin |
|
if rising_edge(EXT_CLOCK) then |
LO_CLOCK <= not LO_CLOCK; |
end if; |
end process; |
|
if (State = 2) or (State = 0) then |
|
-- Counter |
process (LO_CLOCK) |
begin |
|
if rising_edge(LO_CLOCK) then |
|
if (State = 3) or (State = 0) then |
if Counter < MAXCOUNT-1 then |
Counter <= Counter + 1; |
else |
Counter <= (others => '0'); |
CounterMaxcount <= CounterMaxcount + 1; |
end if; |
end if; |
if (State = 1) then |
Freq(31 downto 0) <= std_logic_vector(Counter); |
Freq(15 downto 0) <= std_logic_vector("00"&Counter); |
Freq(31 downto 16) <= std_logic_vector("0"&CounterMaxcount); |
end if; |
if (State = 2) then |
CounterMaxcount <= (others => '0'); |
Counter <= (others => '0'); |
end if; |
end if; |
166,19 → 222,19 |
|
|
-- Sampling 1PPS signal |
process (EXT_CLOCK) |
process (LO_CLOCK) |
begin |
if rising_edge(EXT_CLOCK) then |
if rising_edge(LO_CLOCK) then |
Decko <= B(22); |
end if; |
end process; |
|
-- Automata for controlling the Counter |
process (EXT_CLOCK) |
-- Automata for controling the Counter |
process (LO_CLOCK) |
begin |
if rising_edge(EXT_CLOCK) then |
if rising_edge(LO_CLOCK) then |
if (Decko = '1') then |
if (State < 2) then |
if (State < 3) then |
State <= State + 1; |
end if; |
else |
191,33 → 247,18 |
|
process (Decko) |
begin |
if Decko = '0' then |
LED(6) <= '1'; |
else |
LED(6) <= '0'; |
if falling_edge(Decko) then |
NumberPom(15 downto 0) <= to_bcd(Freq(15 downto 0))(15 downto 0); |
NumberPom(35 downto 16) <= to_bcd(Freq(31 downto 16))(19 downto 0); |
end if; |
end process; |
|
SCLK <= B(0); |
-- SCLK2 <= ((not Decko) OR SCLK); |
Number(35 downto 0) <= NumberPom(35 downto 0); |
|
process (Decko,SCLK) |
begin |
if (Decko = '0') then |
Number(31 downto 0) <= Freq(31 downto 0); |
else |
if rising_edge(SCLK) then |
Number(30 downto 0) <= Number(31 downto 1); |
end if; |
end if; |
end process; |
LED(7) <= Decko; -- Disply 1PPS pulse on LEDbar |
LED(6 downto 4) <= (others => '0'); |
LED(3 downto 0) <= Number(35 downto 32); -- Disply 100-th of MHz on LEDbar |
|
B(1) <= Number(0); |
B(2) <= Decko; |
|
LED(7) <= Decko; -- Display 1PPS pulse on LEDbar |
LED(5 downto 0) <= (others => '0'); |
|
-- LED Display (multiplexed) |
-- ========================= |
|
293,37 → 334,38 |
"0000"; |
|
|
|
-- Diferencial In/Outs |
-- ======================== |
DIFbuffer1 : IBUFGDS |
generic map ( |
DIFF_TERM => FALSE, -- Differential Termination |
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, |
IBUF_DELAY_VALUE => "16", -- Specify the amount of added input delay for buffer, |
-- "0"-"16" |
IOSTANDARD => "LVPECL_33") |
IOSTANDARD => "DEFAULT") |
port map ( |
I => SD1AP, -- Diff_p buffer input (connect directly to top-level port) |
IB => SD1AN, -- Diff_n buffer input (connect directly to top-level port) |
O => EXT_CLOCK -- Buffer output - Counter INPUT |
O => EXT_CLOCK -- Buffer output |
); |
|
OBUFDS_inst : OBUFDS |
generic map ( |
IOSTANDARD => "LVDS_33") |
IOSTANDARD => "DEFAULT") |
port map ( |
O => SD2AP, -- Diff_p output (connect directly to top-level port) |
OB => SD2AN, -- Diff_n output (connect directly to top-level port) |
I => EXT_CLOCK -- Buffer input are connected directly to IBUFGDS |
I => EXT_CLOCK -- Buffer input |
); |
|
-- Output Signal on SATA Connector |
-- SD1AP <= 'Z'; -- Counter INPUT |
-- SD1AP <= 'Z'; |
-- SD1AN <= 'Z'; |
SD1BP <= 'Z'; |
SD1BN <= 'Z'; |
|
-- Input Here via SATA Cable |
-- SD2AP <= 'Z'; -- Counter OUTPUT |
-- SD2AP <= 'Z'; |
-- SD2AN <= 'Z'; |
SD2BP <= 'Z'; |
SD2BN <= 'Z'; |
332,12 → 374,6 |
-- Unused Signals |
-- ============== |
|
-- Differential inputs onn header |
DIF1N <= 'Z'; |
DIF1P <= 'Z'; |
DIF2N <= 'Z'; |
DIF2P <= 'Z'; |
|
-- I2C Signals (on connector J30) |
I2C_SCL <= 'Z'; |
I2C_SDA <= 'Z'; |
349,11 → 385,9 |
SPI_CLK <= 'Z'; |
SPI_WP_n <= 'Z'; |
|
-- A/D |
ANA_OUTD <= 'Z'; |
ANA_REFD <= 'Z'; |
|
-- VGA |
VGA_R <= "ZZ"; |
VGA_G <= "ZZ"; |
VGA_B <= "ZZ"; |
360,8 → 394,4 |
VGA_VS <= 'Z'; |
VGA_HS <= 'Z'; |
|
-- PS2 |
PS2_DATA2 <= 'Z'; |
PS2_CLK2 <='Z'; |
|
end architecture gtime_a; |