/Designs/Measuring_instruments/AWS01A/SW/PIC16F887/main.c
1,257 → 1,248
/**** Automatic weather station 01A ****/
#define VERSION "0.2"
#define ID "$Id$"
#include "main.h"
#include ".\common\dbloader.h"
#include <string.h>
 
#CASE // Case sensitive compiler
 
#define SEND_DELAY 50 // Time between two characters on RS232
#define RESPONSE_DELAY 100 // Reaction time after receiving a command
#define MEASURE_DELAY 1000 // Delay to a next measurement
 
char VER[4]=VERSION; // Buffer for concatenate of a version string
 
#define ONE_WIRE_PIN PIN_B1 // DS18B20 sensor connection
#include "..\ds1820.c"
 
#define sht_data_pin PIN_D0 // SHT11 sensor connection
#define sht_clk_pin PIN_D1
#include "..\SHT.c"
 
#use i2c(master, sda=PIN_D2, scl=PIN_D3)
#include "..\SHT25.h"
 
#define CSN_SPI PIN_C2 // preassure sensor connection
#include "..\MPL115A1.c"
 
unsigned int16 timer0_overflow_count;
unsigned int16 timer1_overflow_count;
unsigned int16 timer0_overflow_count_last;
unsigned int16 timer0_last;
unsigned int16 anemo_count_max;
 
int1 barometer_present;
 
#int_TIMER1
void TIMER1_isr(void)
{
// 32.768 kHz crystal, 16bit counter => every 2secs interrupt
unsigned int16 anemo_count;
unsigned int16 timer0 = get_timer0();
anemo_count = (((timer0_overflow_count - timer0_overflow_count_last) << 8) + (timer0 - timer0_last));
timer0_overflow_count_last = timer0_overflow_count;
timer0_last = timer0;
if (anemo_count > anemo_count_max) anemo_count_max=anemo_count;
 
timer1_overflow_count++;
}
 
#int_TIMER0 // anemometr pulses counting timer owerflow
void TIMER0_isr(void)
{
timer0_overflow_count++;
}
 
/*#int_default
void default_isr()
{
printf("Unexplained interrupt\r\n");
}
*/
void welcome(void) // Welcome message
{
char REV[50]=ID; // Buffer for concatenate of a version string
 
if (REV[strlen(REV)-1]=='$') REV[strlen(REV)-1]=0;
printf("\r\n\r\n# AWS01A %s (C) 2013 www.mlab.cz \r\n",VER); // Welcome message
printf("#%s\r\n",&REV[4]);
// printf("# ver seq ");
// printf("#temp[mK] hum_temp[mK] hum[%%] ");
// printf("bar_temp[mK] pressure[hPa] Anemo[m/s]check\r\n\r\n");
}
 
void print_slow(char *output, int8 *check)
{
int8 j; // String pointer
j=0;
while(output[j]!=0)
{
delay_us(SEND_DELAY);
putc(output[j]);
*check^=output[j++];
}
}
 
 
void main()
{
unsigned int16 seq=0;
timer0_overflow_count=0;
timer1_overflow_count=0;
timer0_overflow_count_last=0;
timer0_last=0;
 
setup_oscillator(OSC_8MHZ); // pri prouziti bootloaderu neni treba nastavovat
setup_wdt(WDT_2304MS);
restart_wdt(); //---WDT
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2);
setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1|T1_CLK_OUT);
setup_timer_2(T2_DISABLED,0,1);
setup_ccp1(CCP_OFF);
setup_comparator(NC_NC_NC_NC); // This device COMP currently not supported by the PICWizard
setup_spi(SPI_MASTER | SPI_MODE_0 | SPI_CLK_DIV_64);
output_high(CSN_SPI);
int1 repeat;
 
welcome(); // welcome print and device indentification
enable_interrupts(INT_TIMER1); // interrupts used for anemometer readings
enable_interrupts(INT_TIMER0);
enable_interrupts(GLOBAL);
 
restart_wdt(); //---WDT
 
// barometer init
barometer_present = MPL_init(); // get correction coefficients from the sensor
 
sht_init();
 
SHT25_soft_reset();
// anemometer init
set_timer0(0);
set_timer1(0);
timer0_overflow_count=0;
repeat=TRUE;
restart_wdt(); //---WDT
delay_ms(1000);
 
while (TRUE)
{
do
{
delay_ms(RESPONSE_DELAY);
//---WDT
restart_wdt();
} while (!kbhit()&&!repeat);
 
//---WDT
restart_wdt();
 
{ // Retrieve command
char ch='k';
 
if(kbhit()) ch=getc();
 
switch (ch)
{
case 'i':
welcome(); // Information about version, etc...
break; // Only when dome is closed
 
case 's':
repeat=FALSE; // Single measure mode
break;
 
case 'r':
repeat=TRUE; // Repeat mode
break;
 
case 'u':
reset_cpu(); // Update firmware
}
}
 
char output[8]; // Output buffer
int8 check=0; // Checksum is calculated between '$' and '*'
float SHT_temp1=0,SHT_hum1=0;
float SHT_temp2=0,SHT_hum2=0;
int16 local_temp;
float barometer_temperature;
float barometer_pressure;
float anemo;
 
{ // printf
local_temp = (int16)ds1820_read();
sht_rd(SHT_temp1,SHT_hum1);
//SHT_temp1 = (SHT_temp1 + 273.15)*100;
SHT_temp2 = SHT25_get_temp();
SHT_hum2 = SHT25_get_hum();
//SHT_temp2 = (SHT_temp2 + 273.15)*100;
if (barometer_present == TRUE)
{
barometer_temperature = MPL_get_temperature();
barometer_pressure = MPL_get_pressure() * 10.0; // conversion to hectopascals
}
else
{
barometer_temperature = 0;
barometer_pressure = 0;
}
delay_us(SEND_DELAY);
putc('$');
delay_us(SEND_DELAY);
sprintf(output,"AWS%s \0",VER);
print_slow(output, &check);
sprintf(output,"%Lu \0", seq);
print_slow(output, &check);
sprintf(output,"%Ld \0", local_temp);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_temp1);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_hum1);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_temp2);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_hum2);
print_slow(output, &check);
sprintf(output,"%3.1f \0", barometer_temperature);
print_slow(output, &check);
sprintf(output,"%5.1f \0", barometer_pressure);
print_slow(output, &check);
 
// optimization: (timer1_overflow_count << 16)/32768.0 = timer1_overflow_count << 1, so we can use int16 (and not int32)
anemo = ((float)((timer0_overflow_count << 8) + get_timer0()))/((float)(timer1_overflow_count << 1) + (float)(get_timer1())/32768.0); // pulses per second calculation
anemo = anemo / 10.5; // frequency divided by anemomether constant.
 
set_timer0(0);
set_timer1(0);
timer0_overflow_count=0;
timer1_overflow_count=0;
timer0_overflow_count_last=0;
timer0_last=0;
sprintf(output,"%3.1f \0", anemo);
print_slow(output, &check);
if (anemo_count_max > 0)
{
// anemo_max comptutation; >>1 is division by two, which comes from the 2secs interval from timer1
anemo = (float)(anemo_count_max >> 1) / 10.5; // frequency divided by anemomether constant.
anemo_count_max = 0;
}
 
sprintf(output,"%3.1f \0", anemo);
print_slow(output, &check);
sprintf(output,"*%X\r\n\0", check);
print_slow(output, &check);
 
delay_us(SEND_DELAY);
}
 
//---WDT
restart_wdt();
seq++; // Increment the number of measurement
delay_ms(MEASURE_DELAY);
}
}
 
/**** Automatic weather station 01A ****/
#define VERSION "0.1"
#define ID "$Id$"
#include "main.h"
#include ".\common\dbloader.h"
#include <string.h>
 
#CASE // Case sensitive compiler
 
#define SEND_DELAY 50 // Time between two characters on RS232
#define RESPONSE_DELAY 100 // Reaction time after receiving a command
#define MEASURE_DELAY 1000 // Delay to a next measurement
 
char VER[4]=VERSION; // Buffer for concatenate of a version string
 
#define ONE_WIRE_PIN PIN_B1 // DS18B20 sensor connection
#include "..\ds1820.c"
 
#define sht_data_pin PIN_D0 // SHT11 sensor connection
#define sht_clk_pin PIN_D1
#include "..\SHT.c"
 
#use i2c(master, sda=PIN_D2, scl=PIN_D3)
#include "..\SHT25.h"
 
#define CSN_SPI PIN_C2 // preassure sensor connection
#include "..\MPL115A1.c"
 
unsigned int16 timer0_overflow_count;
unsigned int16 timer1_overflow_count;
float anemo_max;
 
int1 barometer_present;
 
float anemo_compute()
{
float anemo;
anemo = ((timer0_overflow_count * 0xFF) + get_timer0())/(((timer1_overflow_count * 0xFFFF) + get_timer1())/32768.0); // pulses per second calculation
anemo = anemo / 10.5; // frequency divided by anemomether constant.
return anemo;
}
 
#int_TIMER1
void TIMER1_isr(void)
{
float anemo;
anemo = anemo_compute();
if (anemo > anemo_max) anemo_max=anemo;
 
timer1_overflow_count++;
}
 
#int_TIMER0 // anemometr pulses counting timer owerflow
void TIMER0_isr(void)
{
timer0_overflow_count++;
}
 
/*#int_default
void default_isr()
{
printf("Unexplained interrupt\r\n");
}
*/
void welcome(void) // Welcome message
{
char REV[50]=ID; // Buffer for concatenate of a version string
 
if (REV[strlen(REV)-1]=='$') REV[strlen(REV)-1]=0;
printf("\r\n\r\n# AWS01A %s (C) 2013 www.mlab.cz \r\n",VER); // Welcome message
printf("#%s\r\n",&REV[4]);
// printf("# ver seq ");
// printf("#temp[mK] hum_temp[mK] hum[%%] ");
// printf("bar_temp[mK] pressure[hPa] Anemo[m/s]check\r\n\r\n");
}
 
void print_slow(char *output, int8 *check)
{
int8 j; // String pointer
j=0;
while(output[j]!=0)
{
delay_us(SEND_DELAY);
putc(output[j]);
*check^=output[j++];
}
}
 
 
void main()
{
unsigned int16 seq=0;
 
setup_oscillator(OSC_8MHZ); // pri prouziti bootloaderu neni treba nastavovat
setup_wdt(WDT_2304MS);
restart_wdt(); //---WDT
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2);
setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1|T1_CLK_OUT);
setup_timer_2(T2_DISABLED,0,1);
setup_ccp1(CCP_OFF);
setup_comparator(NC_NC_NC_NC); // This device COMP currently not supported by the PICWizard
setup_spi(SPI_MASTER | SPI_MODE_0 | SPI_CLK_DIV_64);
output_high(CSN_SPI);
int1 repeat;
float anemo;
 
welcome(); // welcome print and device indentification
enable_interrupts(INT_TIMER1); // interrupts used for anemometer readings
enable_interrupts(INT_TIMER0);
enable_interrupts(GLOBAL);
 
restart_wdt(); //---WDT
 
// barometer init
barometer_present = MPL_init(); // get correction coefficients from the sensor
 
sht_init();
 
SHT25_soft_reset();
// anemometer init
set_timer0(0);
set_timer1(0);
timer0_overflow_count=0;
anemo=0;
repeat=TRUE;
restart_wdt(); //---WDT
delay_ms(1000);
 
while (TRUE)
{
do
{
delay_ms(RESPONSE_DELAY);
//---WDT
restart_wdt();
} while (!kbhit()&&!repeat);
 
//---WDT
restart_wdt();
 
{ // Retrieve command
char ch='k';
 
if(kbhit()) ch=getc();
 
switch (ch)
{
case 'i':
welcome(); // Information about version, etc...
break; // Only when dome is closed
 
case 's':
repeat=FALSE; // Single measure mode
break;
 
case 'r':
repeat=TRUE; // Repeat mode
break;
 
case 'u':
reset_cpu(); // Update firmware
}
}
 
char output[8]; // Output buffer
int8 check=0; // Checksum is calculated between '$' and '*'
float SHT_temp1=0,SHT_hum1=0;
float SHT_temp2=0,SHT_hum2=0;
float local_temp;
float barometer_temperature, barometer_pressure;
float anemo;
 
 
{ // printf
 
local_temp = ds1820_read()+27315;
sht_rd(SHT_temp1,SHT_hum1);
SHT_temp1 = (SHT_temp1 + 273.15)*100;
SHT_temp2 = SHT25_get_temp();
SHT_hum2 = SHT25_get_hum();
SHT_temp2 = (SHT_temp2 + 273.15)*100;
if (barometer_present == TRUE)
{
barometer_temperature = (MPL_get_temperature() + 273.15)*100;
barometer_pressure = MPL_get_pressure() * 10.0; // conversion to hectopascals
}
else
{
barometer_temperature = 0;
barometer_pressure = 0;
}
 
delay_us(SEND_DELAY);
putc('$');
delay_us(SEND_DELAY);
sprintf(output,"AWS%s \0",VER);
print_slow(output, &check);
sprintf(output,"%Lu \0", seq);
print_slow(output, &check);
sprintf(output,"%5.0f \0", local_temp );
print_slow(output, &check);
sprintf(output,"%5.0f \0", SHT_temp1);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_hum1);
print_slow(output, &check);
sprintf(output,"%5.0f \0", SHT_temp2);
print_slow(output, &check);
sprintf(output,"%3.1f \0", SHT_hum2);
print_slow(output, &check);
sprintf(output,"%5.0f \0", barometer_temperature);
print_slow(output, &check);
sprintf(output,"%5.1f \0", barometer_pressure);
print_slow(output, &check);
//anemo = ((timer0_overflow_count * 0xFF) + get_timer0())/(((timer1_overflow_count * 0xFFFF) + get_timer1())/32768.0); // pulses per second calculation
//anemo = anemo / 10.5; // frequency divided by anemomether constant.
sprintf(output,"%3.1f \0", anemo_compute());
 
timer0_overflow_count=0;
timer1_overflow_count=0;
set_timer0(0);
set_timer1(0);
print_slow(output, &check);
//sprintf(output,"%3.1f \0", anemo_max);
//print_slow(output, &check);
 
//anemo_max = 0;
 
sprintf(output,"*%X\r\n\0", check);
print_slow(output, &check);
 
delay_us(SEND_DELAY);
}
 
//---WDT
restart_wdt();
seq++; // Increment the number of measurement
delay_ms(MEASURE_DELAY);
}
}