1,5 → 1,5 |
/**** Automatic weather station 01A ****/ |
#define VERSION "0.2" |
#define VERSION "0.1" |
#define ID "$Id$" |
#include "main.h" |
#include ".\common\dbloader.h" |
28,22 → 28,24 |
|
unsigned int16 timer0_overflow_count; |
unsigned int16 timer1_overflow_count; |
unsigned int16 timer0_overflow_count_last; |
unsigned int16 timer0_last; |
unsigned int16 anemo_count_max; |
float anemo_max; |
|
int1 barometer_present; |
|
float anemo_compute() |
{ |
float anemo; |
anemo = ((timer0_overflow_count * 0xFF) + get_timer0())/(((timer1_overflow_count * 0xFFFF) + get_timer1())/32768.0); // pulses per second calculation |
anemo = anemo / 10.5; // frequency divided by anemomether constant. |
return anemo; |
} |
|
#int_TIMER1 |
void TIMER1_isr(void) |
{ |
// 32.768 kHz crystal, 16bit counter => every 2secs interrupt |
unsigned int16 anemo_count; |
unsigned int16 timer0 = get_timer0(); |
anemo_count = (((timer0_overflow_count - timer0_overflow_count_last) << 8) + (timer0 - timer0_last)); |
timer0_overflow_count_last = timer0_overflow_count; |
timer0_last = timer0; |
if (anemo_count > anemo_count_max) anemo_count_max=anemo_count; |
float anemo; |
anemo = anemo_compute(); |
if (anemo > anemo_max) anemo_max=anemo; |
|
timer1_overflow_count++; |
} |
88,10 → 90,6 |
void main() |
{ |
unsigned int16 seq=0; |
timer0_overflow_count=0; |
timer1_overflow_count=0; |
timer0_overflow_count_last=0; |
timer0_last=0; |
|
setup_oscillator(OSC_8MHZ); // pri prouziti bootloaderu neni treba nastavovat |
setup_wdt(WDT_2304MS); |
106,6 → 104,7 |
setup_spi(SPI_MASTER | SPI_MODE_0 | SPI_CLK_DIV_64); |
output_high(CSN_SPI); |
int1 repeat; |
float anemo; |
|
welcome(); // welcome print and device indentification |
|
126,6 → 125,7 |
set_timer0(0); |
set_timer1(0); |
timer0_overflow_count=0; |
anemo=0; |
repeat=TRUE; |
|
restart_wdt(); //---WDT |
171,22 → 171,23 |
int8 check=0; // Checksum is calculated between '$' and '*' |
float SHT_temp1=0,SHT_hum1=0; |
float SHT_temp2=0,SHT_hum2=0; |
int16 local_temp; |
float barometer_temperature; |
float barometer_pressure; |
float local_temp; |
float barometer_temperature, barometer_pressure; |
float anemo; |
|
|
{ // printf |
local_temp = (int16)ds1820_read(); |
|
local_temp = ds1820_read()+27315; |
sht_rd(SHT_temp1,SHT_hum1); |
//SHT_temp1 = (SHT_temp1 + 273.15)*100; |
SHT_temp1 = (SHT_temp1 + 273.15)*100; |
|
SHT_temp2 = SHT25_get_temp(); |
SHT_hum2 = SHT25_get_hum(); |
//SHT_temp2 = (SHT_temp2 + 273.15)*100; |
SHT_temp2 = (SHT_temp2 + 273.15)*100; |
if (barometer_present == TRUE) |
{ |
barometer_temperature = MPL_get_temperature(); |
barometer_temperature = (MPL_get_temperature() + 273.15)*100; |
barometer_pressure = MPL_get_pressure() * 10.0; // conversion to hectopascals |
} |
else |
198,50 → 199,40 |
delay_us(SEND_DELAY); |
putc('$'); |
delay_us(SEND_DELAY); |
|
sprintf(output,"AWS%s \0",VER); |
print_slow(output, &check); |
sprintf(output,"%Lu \0", seq); |
print_slow(output, &check); |
sprintf(output,"%Ld \0", local_temp); |
sprintf(output,"%5.0f \0", local_temp ); |
print_slow(output, &check); |
sprintf(output,"%3.1f \0", SHT_temp1); |
sprintf(output,"%5.0f \0", SHT_temp1); |
print_slow(output, &check); |
sprintf(output,"%3.1f \0", SHT_hum1); |
print_slow(output, &check); |
sprintf(output,"%3.1f \0", SHT_temp2); |
sprintf(output,"%5.0f \0", SHT_temp2); |
print_slow(output, &check); |
sprintf(output,"%3.1f \0", SHT_hum2); |
print_slow(output, &check); |
sprintf(output,"%3.1f \0", barometer_temperature); |
sprintf(output,"%5.0f \0", barometer_temperature); |
print_slow(output, &check); |
sprintf(output,"%5.1f \0", barometer_pressure); |
print_slow(output, &check); |
|
// optimization: (timer1_overflow_count << 16)/32768.0 = timer1_overflow_count << 1, so we can use int16 (and not int32) |
anemo = ((float)((timer0_overflow_count << 8) + get_timer0()))/((float)(timer1_overflow_count << 1) + (float)(get_timer1())/32768.0); // pulses per second calculation |
anemo = anemo / 10.5; // frequency divided by anemomether constant. |
//anemo = ((timer0_overflow_count * 0xFF) + get_timer0())/(((timer1_overflow_count * 0xFFFF) + get_timer1())/32768.0); // pulses per second calculation |
//anemo = anemo / 10.5; // frequency divided by anemomether constant. |
sprintf(output,"%3.1f \0", anemo_compute()); |
|
timer0_overflow_count=0; |
timer1_overflow_count=0; |
set_timer0(0); |
set_timer1(0); |
timer0_overflow_count=0; |
timer1_overflow_count=0; |
timer0_overflow_count_last=0; |
timer0_last=0; |
|
sprintf(output,"%3.1f \0", anemo); |
print_slow(output, &check); |
//sprintf(output,"%3.1f \0", anemo_max); |
//print_slow(output, &check); |
|
if (anemo_count_max > 0) |
{ |
// anemo_max comptutation; >>1 is division by two, which comes from the 2secs interval from timer1 |
anemo = (float)(anemo_count_max >> 1) / 10.5; // frequency divided by anemomether constant. |
anemo_count_max = 0; |
} |
//anemo_max = 0; |
|
sprintf(output,"%3.1f \0", anemo); |
print_slow(output, &check); |
|
sprintf(output,"*%X\r\n\0", check); |
print_slow(output, &check); |
|