/Designs/Measuring_instruments/AWS01B/DOC/src/AWS01A.cs.tex
48,22 → 48,51
 
Měření meteorologických veličin je běžným problémem v technické praxi neboť je jimi značně ovlivněno mnoho procesů nejen zemědělského systému, ale i výzkumných a ekonomických aktivit, je tudíž žádoucí, aby tyto veličiny byly měřeny s vysokou kvalitou a spolehlivostí.
 
Za účelem vývoje speciální meteorologické stanice vybavené autodiaognostikou byly vybrány speciální snímače, které umožňují kromě změření dané veličiny získat ještě nějakou další znalost o stavu zařízení.
 
\subsection{Použité snímače}
 
 
\subsubsection{Anemometr}
 
Anemomentr je v původním provedení založený na použití jazýčkového kontaktu spínaného permanentním magnetem ve dvou polohách na otáčku. Toto provedení ale neumožňuje získat žádnou informaci o směru otáčení lopatek anemometru. Nelze proto detekovat poruchu typu chybějící lopatka na oběžném kole. Na základě nerovnoměrnosti rotačního pohybu. Tato porucha může v extrémním případě vést až k falešnému měření, kdy se bude poslední lopatka na oběžném kole vlivem aerodynamických sil kývat okolo spínací polohy jazýčkového kontaktu. Vzhledem k tomu, že rychlost kývání je v důsledku vzniku vírové struktury za lopatkou úměrná rychlosti větru, tak výstup se senzoru se bude podobat měřené hodnotě.
 
Pro účely autodiagnostiky byl anemometr proto upraven výměnou jazýčkového kontaktu za magnetický snímač MAG01A, který je sice určen pro použití v elektronických kompasech, ale jeho šířka pásma 160 Hz a rozsah měřeného magnetického pole je vyhovující i pro měření otáček anemometru.
 
Výhodou této úpravy je, že pak lze ze snímače získat absolutní polohu oběžného kola a změřit rychlost otáčení v libovolné pozici (není proto třeba počítat impulzy a měřit periodu, nebo četnost) měření tak lze provést v konstantním čase nezávisle na rychlosti otáčení.
 
\subsubsection{smer vetru}
 
\section{Struktura zpracování dat}
 
Pro zpracování dat je zvolen víceúrovňový systém, kdy v první úrovni jsou data pouze vyčítána a provedeno jejich základní zpacování do fyzikálního rozměru.
 
 
\subsubsection{Autodiagnostický systém}
 
Z důvodu komplexnosti měřených veličin byly již v prvním stupni zpracování do systému implementovány vlastní metody specifické pro jednotlivá čidla umožňující detekovat značnou část poruch jednotlivých čidel.
Další stupeň detekce poruch využívá křížových vazeb mezi jednotlivými veličinami. Uvažované vazby jsou shrnuty v tabulce. Tato úroveň zpracování nevyužívá historii dat, využití historie naměřených veličin se předpokládá až v další úrovni.
 
 
 
 
\subsection{Mechanická konstrukce}
 
\section{Výroba a testování}
Meteostanice má klasickou mechanickou konstrukci, kde je na hlavním nosníku připevněno několik výložníků s jednotlivými snímači.
 
\subsubsection{Osazení}
\section{Kalibrace a testování}
 
\subsubsection{Nastavení}
Použitá čidla vlhkosti jsou od výroby kalibrována na chybu v toleranci 2\%. Anemometr lze zkalibrovat buď v aerodynamickém tunelu, nebo
 
\section{Programové vybavení}
\subsubsection{Instalace}
 
Podmíky istalace meteorologické stanice přímo ovlivňují kvalitu z ní získaných dat. CHMU proto vydal směrnici popisující parametry prostředí, ve kterém může být takové měření prováděno se zaručenou kvalitou dat.
 
Větrná korouhev stanice AWS01A musí být směrována podle os magnetometru tak, že kladná část osy X je natočena na geografický sever. Orientace ostatních čidel není kritická.
 
 
 
\begin{thebibliography}{99}
\bibitem{DR2G}{Původní konstrukce}
\href{http:// odkaz na nejakou zajimavou konstrukci}{odkaz na nejakou zajimavou konstrukci}