/Designs/Measuring_instruments/AWS02A/SW/PIC16F887/i2c_wind_sensor/main.c
0,0 → 1,157
#define VERSION "0.1"
#define ID "$Id: main.c 2916 2013-04-14 17:42:03Z kaklik $"
 
#include "main.h"
#use i2c(SLAVE,Fast,sda=PIN_C4,scl=PIN_C3,force_hw,address=0xA2) // Motor 2
 
const int8 buf_len=8;
 
int8 buffer[buf_len]; // I2C buffer
 
int8 address=0;
 
#include "..\common\dbloader.h"
 
unsigned int16 timer0_overflow_count;
unsigned int16 anemo=0;
unsigned int16 rain=0;
 
//we are using the rtctimer.c library, in which a counter is incremented
//every time the timer2 interrupt occurs (timer2 overflow). the time math
//needs to know what rate the timer2 interrupt occurs. this definition
//must match the rate the timer2 is configured for.
#define CLOCKS_PER_SECOND 1000
 
#INT_SSP
void ssp_interupt ()
{
BYTE incoming, state;
 
state = i2c_isr_state();
if(state < 0x80) //Master is sending data
{
incoming = i2c_read();
if(state == 1) //First received byte is address
{
address = incoming;
if (incoming == 2)
{
buffer[0]=make8(anemo,0);
buffer[1]=make8(anemo,1);
buffer[2]=make8(rain,0);
buffer[3]=make8(rain,1);
}
}
if(state == 2) //Second received byte is data
buffer[address] = incoming;
}
if(state == 0x80) //Master is requesting data
{
if(address <= buf_len) i2c_write(buffer[address]);
else i2c_write(ID[address - buf_len]);
}
}
 
 
#int_TIMER0 //osetruje preteceni citace od anemometru (RA4)
void TIMER0_isr(void)
{
timer0_overflow_count++;
}
 
#int_TIMER1
void TIMER1_isr(void)
{
// 32.768 kHz krystal pro timer1 oscilátor
anemo = ((timer0_overflow_count * 0xFF) + get_timer0()); // pocet pulzu za 1s
 
timer0_overflow_count=0; //nulovani
set_timer0(0);
set_timer1(0);
output_toggle(PIN_E0);
}
 
#int_TIMER2
void TIMER2_isr(void)
{
 
}
 
#INT_EXT
void EXT_isr() //interrup from rain sensor clip.
{
rain++;
// if (input(PIN_B0)) ext_int_edge( H_TO_L ); osetreni pro pripad, ze by bylo treba cist obe hrany impulzu
// if (!input(PIN_B0)) ext_int_edge( L_TO_H );
}
 
 
void welcome(void) // uvodni zprava
{
printf("\r\n\r\n# Meteorologicka stanice %s (C) 2013 www.mlab.cz \r\n",VERSION);
printf("\r\n %s \r\n",ID);// Welcome message
printf("# ver poradi ");
printf("check\r\n\r\n");
}
 
void main()
{
setup_adc_ports(NO_ANALOGS|VSS_VDD);
// setup_adc(ADC_CLOCK_DIV_2);
setup_adc(ADC_OFF);
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use!
setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1);
// setup_timer_0(RTCC_INTERNAL);setup_wdt(WDT_144MS);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1|T1_CLK_OUT);
// setup_timer_2(T2_DISABLED,0,1);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);
// setup_oscillator(OSC_8MHZ|OSC_INTRC);
 
 
/* Setup timer 2
* On a 4 Mhz clock, this will trigger a timer2 interrupt every 1.0 ms
* For time.h to work properly, Timer2 must overflow every millisecond
* OverflowTime = 4 * (1/OscFrequency) * Prescale * Period * Postscale
* For 4 Mhz: .001 seconds = 4 * (1/4000000 seconds) * 4 * 250 * 1
*/
#if getenv("CLOCK")==4000000)
setup_timer_2(T2_DIV_BY_1,250,4);
#elif getenv("CLOCK")==20000000)
setup_timer_2(T2_DIV_BY_4,250,5);
#else
#error Configure TIMER2 so it interrupts at a rate defined by CLOCKS_PER_SECOND
#endif
 
enable_interrupts(INT_SSP);
enable_interrupts(INT_TIMER2);
enable_interrupts(INT_TIMER1);
enable_interrupts(INT_TIMER0);
enable_interrupts(INT_EXT);
enable_interrupts(GLOBAL);
 
 
set_timer0(0);
set_timer1(0);
timer0_overflow_count=0;
 
buffer[2]=0;
buffer[3]=0;
buffer[4]=0;
buffer[5]=0;
 
welcome();
 
while(true)
{
printf("count: %X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]);
printf("%Lu %Lu \n\r", anemo, rain);
delay_ms(1000);
 
}
}