0,0 → 1,418 |
---------------------------------------------------------------------------------- |
-- Company: www.mlab.cz |
-- Based on code written by MIHO. |
-- |
-- HW Design Name: S3AN01A |
-- Project Name: Atomic Counter |
-- Target Devices: XC3S50AN-4 |
-- Tool versions: ISE 13.3 |
-- Description: Counter up to 640 MHz synchonised by GPS. |
-- Output frequency is displayed on the 7seg. LED display. |
-- You can choice half or full frequency by DIPSW7. |
-- |
-- Dependencies: TTLPECL01A, GPS01A |
-- |
-- Version: $Id: gtime.vhd 3177 2013-07-17 23:48:47Z kakl $ |
-- |
---------------------------------------------------------------------------------- |
|
library IEEE; |
use IEEE.STD_LOGIC_1164.ALL; |
use IEEE.numeric_std.ALL; |
|
library UNISIM; |
use UNISIM.vcomponents.all; |
|
entity AtomicCounter is |
generic ( |
-- Top Value for 100MHz Clock Counter |
MAXCOUNT: integer := 10_000; -- Maximum for the first counter |
MUXCOUNT: integer := 100_000 -- LED Display Multiplex Clock Divider |
); |
port ( |
-- Clock on PCB |
CLK100MHz: in std_logic; |
|
-- Mode Signals (usualy not used) |
M: in std_logic_vector(2 downto 0); |
VS: in std_logic_vector(2 downto 0); |
|
-- Dipswitch Inputs |
DIPSW: in std_logic_vector(7 downto 0); |
|
-- Push Buttons |
PB: in std_logic_vector(3 downto 0); |
|
-- LED Bar Outputs |
LED: out std_logic_vector(7 downto 0); |
|
-- LED Display (8 digit with 7 segments and ddecimal point) |
LD_A_n: out std_logic; |
LD_B_n: out std_logic; |
LD_C_n: out std_logic; |
LD_D_n: out std_logic; |
LD_E_n: out std_logic; |
LD_F_n: out std_logic; |
LD_G_n: out std_logic; |
LD_DP_n: out std_logic; |
LD_0_n: out std_logic; |
LD_1_n: out std_logic; |
LD_2_n: out std_logic; |
LD_3_n: out std_logic; |
LD_4_n: out std_logic; |
LD_5_n: out std_logic; |
LD_6_n: out std_logic; |
LD_7_n: out std_logic; |
|
-- VGA Video Out Port |
VGA_R: out std_logic_vector(1 downto 0); |
VGA_G: out std_logic_vector(1 downto 0); |
VGA_B: out std_logic_vector(1 downto 0); |
VGA_VS: out std_logic; |
VGA_HS: out std_logic; |
|
-- Bank 1 Pins - Inputs for this Test |
B: inout std_logic_vector(24 downto 0); |
|
-- PS/2 Bidirectional Port (open collector, J31 and J32) |
PS2_CLK1: inout std_logic; |
PS2_DATA1: inout std_logic; |
PS2_CLK2: inout std_logic; |
PS2_DATA2: inout std_logic; |
|
-- Diferencial Signals on 4 pin header (J7) |
DIF1P: inout std_logic; |
DIF1N: inout std_logic; |
DIF2P: inout std_logic; |
DIF2N: inout std_logic; |
|
|
-- I2C Signals (on connector J30) |
I2C_SCL: inout std_logic; |
I2C_SDA: inout std_logic; |
|
-- Diferencial Signals on SATA like connectors (not SATA capable, J28 and J29) |
SD1AP: inout std_logic; |
SD1AN: inout std_logic; |
SD1BP: inout std_logic; |
SD1BN: inout std_logic; |
SD2AP: inout std_logic; |
SD2AN: inout std_logic; |
SD2BP: inout std_logic; |
SD2BN: inout std_logic; |
|
-- Analog In Out |
ANA_OUTD: out std_logic; |
ANA_REFD: out std_logic; |
ANA_IND: in std_logic; |
|
-- SPI Memory Interface |
SPI_CS_n: inout std_logic; |
SPI_DO: inout std_logic; |
SPI_DI: inout std_logic; |
SPI_CLK: inout std_logic; |
SPI_WP_n: inout std_logic |
); |
end entity AtomicCounter; |
|
|
architecture AtomicCounter_a of AtomicCounter is |
|
function to_bcd ( bin : std_logic_vector(31 downto 0) ) return std_logic_vector is |
variable i : integer:=0; |
variable mybcd : std_logic_vector(35 downto 0) := (others => '0'); |
variable bint : std_logic_vector(31 downto 0) := bin; |
begin |
for i in 0 to 31 loop -- repeating 16 times. |
mybcd(35 downto 1) := mybcd(34 downto 0); --shifting the bits. |
mybcd(0) := bint(31); |
bint(31 downto 1) := bint(30 downto 0); |
bint(0) :='0'; |
|
|
if(i < 31 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(3 downto 0) := std_logic_vector(unsigned(mybcd(3 downto 0)) + 3); |
end if; |
|
if(i < 31 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(7 downto 4) := std_logic_vector(unsigned(mybcd(7 downto 4)) + 3); |
end if; |
|
if(i < 31 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(11 downto 8) := std_logic_vector(unsigned(mybcd(11 downto 8)) + 3); |
end if; |
|
if(i < 31 and mybcd(15 downto 12) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(15 downto 12) := std_logic_vector(unsigned(mybcd(15 downto 12)) + 3); |
end if; |
|
if(i < 31 and mybcd(19 downto 16) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(19 downto 16) := std_logic_vector(unsigned(mybcd(19 downto 16)) + 3); |
end if; |
|
if(i < 31 and mybcd(23 downto 20) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(23 downto 20) := std_logic_vector(unsigned(mybcd(23 downto 20)) + 3); |
end if; |
|
if(i < 31 and mybcd(27 downto 24) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(27 downto 24) := std_logic_vector(unsigned(mybcd(27 downto 24)) + 3); |
end if; |
|
if(i < 31 and mybcd(31 downto 28) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(31 downto 28) := std_logic_vector(unsigned(mybcd(31 downto 28)) + 3); |
end if; |
|
if(i < 31 and mybcd(35 downto 32) > "0100") then --add 3 if BCD digit is greater than 4. |
mybcd(35 downto 32) := std_logic_vector(unsigned(mybcd(35 downto 32)) + 3); |
end if; |
|
end loop; |
|
return mybcd; |
end to_bcd; |
|
|
-- Counters |
-- ---------------- |
|
signal Counter: unsigned(31 downto 0) := X"00000000"; -- Main Counter 1 Hz, max. 9.999 kHz (binary) |
|
|
-- LED Display |
-- ----------- |
|
signal Number: std_logic_vector(35 downto 0) := X"000000000"; -- LED Display Input |
signal Freq: std_logic_vector(31 downto 0) := X"00000000"; -- Measured Frequency |
signal MuxCounter: unsigned(31 downto 0) := (others => '0'); -- LED Multiplex - Multiplex Clock Divider |
signal Enable: std_logic; |
signal Digits: std_logic_vector(7 downto 0) := X"01"; -- LED Multiplex - Digit Counter - LED Digit Output |
signal Segments: std_logic_vector(0 to 7); -- LED Segment Output |
signal Code: std_logic_vector(3 downto 0); -- BCD to 7 Segment Decoder Output |
|
|
signal LO_CLOCK: std_logic; -- Frequency divided by 2 |
signal EXT_CLOCK: std_logic; -- Input Frequency |
|
signal Decko: std_logic; -- D flip-flop |
signal State: unsigned(2 downto 0) := (others => '0'); -- Inner states of automata |
|
begin |
|
-- Input divider by 2 |
process (EXT_CLOCK) |
begin |
if rising_edge(EXT_CLOCK) then |
LO_CLOCK <= not LO_CLOCK; |
end if; |
end process; |
|
|
-- Counter |
process (LO_CLOCK) |
begin |
|
if rising_edge(LO_CLOCK) then |
|
if (State = 3) or (State = 0) then |
if DIPSW(7) = '0' then -- Half/Full frequency |
Counter <= Counter + 1; |
else |
Counter <= Counter + 2; |
end if; |
end if; |
if (State = 1) then |
Freq(31 downto 0) <= std_logic_vector(Counter); |
end if; |
if (State = 2) then |
Counter <= (others => '0'); |
end if; |
end if; |
|
end process; |
|
|
-- Sampling 1PPS signal |
process (LO_CLOCK) |
begin |
if rising_edge(LO_CLOCK) then |
Decko <= B(22); |
end if; |
end process; |
|
-- Automata for controlling the Counter |
process (LO_CLOCK) |
begin |
if rising_edge(LO_CLOCK) then |
if (Decko = '1') then |
if (State < 3) then |
State <= State + 1; |
end if; |
else |
State <= (others => '0'); |
end if; |
end if; |
end process; |
|
-- Coding to BCD for LED Display |
|
process (Decko) |
begin |
if falling_edge(Decko) then |
Number(35 downto 0) <= to_bcd(Freq(31 downto 0)); |
end if; |
end process; |
|
-- Number(35 downto 0) <= NumberPom(35 downto 0); |
|
LED(7) <= Decko; -- Disply 1PPS pulse on LEDbar |
LED(6 downto 4) <= (others => '0'); |
LED(3 downto 0) <= Number(35 downto 32); -- Disply 100-th of MHz on LEDbar |
|
-- LED Display (multiplexed) |
-- ========================= |
|
-- Connect LED Display Output Ports (negative outputs) |
LD_A_n <= not (Segments(0) and Enable); |
LD_B_n <= not (Segments(1) and Enable); |
LD_C_n <= not (Segments(2) and Enable); |
LD_D_n <= not (Segments(3) and Enable); |
LD_E_n <= not (Segments(4) and Enable); |
LD_F_n <= not (Segments(5) and Enable); |
LD_G_n <= not (Segments(6) and Enable); |
LD_DP_n <= not (Segments(7) and Enable); |
|
LD_0_n <= not Digits(0); |
LD_1_n <= not Digits(1); |
LD_2_n <= not Digits(2); |
LD_3_n <= not Digits(3); |
LD_4_n <= not Digits(4); |
LD_5_n <= not Digits(5); |
LD_6_n <= not Digits(6); |
LD_7_n <= not Digits(7); |
|
-- Time Multiplex |
process (CLK100MHz) |
begin |
if rising_edge(CLK100MHz) then |
if MuxCounter < MUXCOUNT-1 then |
MuxCounter <= MuxCounter + 1; |
else |
MuxCounter <= (others => '0'); |
Digits(7 downto 0) <= Digits(6 downto 0) & Digits(7); -- Rotate Left |
Enable <= '0'; |
end if; |
if MuxCounter > (MUXCOUNT-4) then |
Enable <= '1'; |
end if; |
end if; |
end process; |
|
-- HEX to 7 Segmet Decoder |
-- -- A |
-- | | F B |
-- -- G |
-- | | E C |
-- -- D H |
-- ABCDEFGH |
Segments <= "11111100" when Code="0000" else -- Digit 0 |
"01100000" when Code="0001" else -- Digit 1 |
"11011010" when Code="0010" else -- Digit 2 |
"11110010" when Code="0011" else -- Digit 3 |
"01100110" when Code="0100" else -- Digit 4 |
"10110110" when Code="0101" else -- Digit 5 |
"10111110" when Code="0110" else -- Digit 6 |
"11100000" when Code="0111" else -- Digit 7 |
"11111110" when Code="1000" else -- Digit 8 |
"11110110" when Code="1001" else -- Digit 9 |
"11101110" when Code="1010" else -- Digit A |
"00111110" when Code="1011" else -- Digit b |
"10011100" when Code="1100" else -- Digit C |
"01111010" when Code="1101" else -- Digit d |
"10011110" when Code="1110" else -- Digit E |
"10001110" when Code="1111" else -- Digit F |
"00000000"; |
|
Code <= Number( 3 downto 0) when Digits="00000001" else |
Number( 7 downto 4) when Digits="00000010" else |
Number(11 downto 8) when Digits="00000100" else |
Number(15 downto 12) when Digits="00001000" else |
Number(19 downto 16) when Digits="00010000" else |
Number(23 downto 20) when Digits="00100000" else |
Number(27 downto 24) when Digits="01000000" else |
Number(31 downto 28) when Digits="10000000" else |
"0000"; |
|
|
|
-- Diferencial In/Outs |
-- ======================== |
DIFbuffer1 : IBUFGDS |
generic map ( |
DIFF_TERM => FALSE, -- Differential Termination |
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, |
-- "0"-"16" |
IOSTANDARD => "LVPECL_33") |
port map ( |
I => SD1AP, -- Diff_p buffer input (connect directly to top-level port) |
IB => SD1AN, -- Diff_n buffer input (connect directly to top-level port) |
O => EXT_CLOCK -- Buffer output - Counter INPUT |
); |
|
OBUFDS_inst : OBUFDS |
generic map ( |
IOSTANDARD => "LVDS_33") |
port map ( |
O => SD2AP, -- Diff_p output (connect directly to top-level port) |
OB => SD2AN, -- Diff_n output (connect directly to top-level port) |
I => EXT_CLOCK -- Buffer input are connected directly to IBUFGDS |
); |
|
-- Output Signal on SATA Connector |
-- SD1AP <= 'Z'; -- Counter INPUT |
-- SD1AN <= 'Z'; |
SD1BP <= 'Z'; |
SD1BN <= 'Z'; |
|
-- Input Here via SATA Cable |
-- SD2AP <= 'Z'; -- Counter OUTPUT |
-- SD2AN <= 'Z'; |
SD2BP <= 'Z'; |
SD2BN <= 'Z'; |
|
|
-- Unused Signals |
-- ============== |
|
-- Differential inputs onn header |
DIF1N <= 'Z'; |
DIF1P <= 'Z'; |
DIF2N <= 'Z'; |
DIF2P <= 'Z'; |
|
-- I2C Signals (on connector J30) |
I2C_SCL <= 'Z'; |
I2C_SDA <= 'Z'; |
|
-- SPI Memory Interface |
SPI_CS_n <= 'Z'; |
SPI_DO <= 'Z'; |
SPI_DI <= 'Z'; |
SPI_CLK <= 'Z'; |
SPI_WP_n <= 'Z'; |
|
-- A/D |
ANA_OUTD <= 'Z'; |
ANA_REFD <= 'Z'; |
|
-- VGA |
VGA_R <= "ZZ"; |
VGA_G <= "ZZ"; |
VGA_B <= "ZZ"; |
VGA_VS <= 'Z'; |
VGA_HS <= 'Z'; |
|
-- PS2 |
PS2_DATA2 <= 'Z'; |
PS2_CLK2 <='Z'; |
|
end architecture AtomicCounter_a; |