/Designs/Measuring_instruments/RMDS01C/SW/PIC16F887/main.c
1,100 → 1,122
// Atomic counter with I2C and RS232 output
 
// Usage conditions:
// 1. The first I2C or RS232 readout can be performed minimally 20 s after power up.
// 2. The I2C internal address 0 has to be read first.
// 3. An I2C readout can be performed at 15-th, 35-th and 55-th second of UTC.
//
// Counter gives 32 bit value:
// I2C register address 0 = LSB
// I2C register address 3 = MSB
 
#define ID "$Id: main.c 2916 2013-04-14 17:42:03Z kaklik $"
#include "main.h"
#use i2c(SLAVE, Fast, sda=PIN_C4, scl=PIN_C3, force_hw, address=0xA2)
 
//#include <string.h>
#include <string.h>
 
#define LED PIN_E1
#define CE PIN_E2
 
#define SEL0 PIN_E0 // external counter division ratio
#define SEL1 PIN_E1 // external counter division ratio
#define MR PIN_E2 // external counter master reset
#define CLKI PIN_C0 // internal counter input
#define BEEP PIN_C3 // buzzer
 
unsigned int32 count;
unsigned int32 count; // count per second
 
const int8 buf_len=8;
int8 buffer[buf_len]; // I2C buffer
#define BUF_LEN 4
int8 buffer[BUF_LEN]; // I2C buffer
int8 address=0;
 
unsigned int16 of=0; // count of overflow
 
const char cmd[40]={0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x80, 0x84, 0x1E, 0x00, 0xE0, 0xC8, 0x10, 0x00, 0x40, 0x42, 0x0F, 0x00, 0xA0, 0x86, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF7, 0x00, 0x00, 0x00, 0x12, 0x03};
 
 
// 1x 100 us per 10 s UTC synchronised
const char cmd[40]={0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x80, 0x96, 0x98, 0x00, 0xE0, 0xC8, 0x10, 0x00, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x73, 0x00, 0x00, 0x00, 0xC6, 0x51};
#INT_SSP
void ssp_interupt ()
{
BYTE incoming, state;
int8 incoming, state;
 
state = i2c_isr_state();
if(state < 0x80) //Master is sending data
{
incoming = i2c_read();
if(state == 1) //First received byte is address
 
if(state < 0x80) //Master is sending data
{
incoming = i2c_read(); // Read byte
 
if(state == 1) //Second received byte is address of register
{
address = incoming;
if (incoming == 2)
{
/* buffer[0]=make8(anemo,0);
buffer[1]=make8(anemo,1);
buffer[2]=make8(rain,0);
buffer[3]=make8(rain,1);
*/ }
address = incoming;
}
if(state == 2) //Second received byte is data
buffer[address] = incoming;
}
if(state == 0x80) //Master is requesting data
{
if(address <= buf_len) i2c_write(buffer[address]);
else i2c_write(ID[address - buf_len]);
//i2c_read(); // Dummy read of I2C device address
if(address == 0) // Change buffer atomically at reading of the first byte
{
buffer[0]=make8(count,0);
buffer[1]=make8(count,1);
buffer[2]=make8(count,2);
buffer[3]=make8(count,3);
}
if(address <= BUF_LEN) i2c_write(buffer[address]); // Prepare one byte to SSP buffer
else
{
i2c_write(0x00); // There is nothing to prepare, so zero
}
}
 
if(state == 0x81) //Master is requesting data
{
i2c_write(buffer[1]); // Prepare next byte to SSP buffer
}
if(state == 0x82) //Master is requesting data
{
i2c_write(buffer[2]); // Prepare next byte to SSP buffer
}
if(state == 0x83) //Master is requesting data
{
i2c_write(buffer[3]); // Prepare next byte to SSP buffer
}
 
if(state > 0x83) //Master is requesting data
{
i2c_write(0x00); // There is nothing to prepare, so zero
}
}
 
 
 
/*#int_EXT // Interrupt from 1PPS
#int_EXT // Interrupt from 1PPS (RB0)
void EXT_isr(void)
{
unsigned int16 countH;
unsigned int8 countL;
char countS[10], a[4], b[4], c[4]; // strings for printing results
int16 of2;
of2=of; // read overflow counter
countH=get_timer1(); // read internal counter
countL=0;
countH=get_timer1(); // read internal counter
output_low(SEL0);
output_low(SEL1);
countL=input(CLKI); // read bit 0 of external counter
output_high(SEL0);
output_low(SEL1);
// output_low(SEL1);
countL|=input(CLKI)<<1; // read bit 1 of external counter
output_low(SEL0);
output_high(SEL1);
countL|=input(CLKI)<<2; // read bit 2 of external counter
output_high(SEL0);
output_high(SEL1);
// output_high(SEL1);
countL|=input(CLKI)<<3; // read bit 3 of external counter
 
output_low(MR); // External counter Master Reset
output_high(MR);
set_timer1(0); // Internal counter reset
of=0; // Overflow counter reset
count=((unsigned int32)of<<20)+((unsigned int32)countH<<4)+(unsigned int32)countL; // concatenate
count=((unsigned int32)of2<<20)+((unsigned int32)countH<<4)+(unsigned int32)countL; // concatenate
 
sprintf(countS,"%09Lu", count); // engeneering values conversion
strncpy(a, countS, 3); a[3]='\0';
strncpy(b, &countS[3], 3); b[3]='\0';
strncpy(c, &countS[6], 3); c[3]='\0';
printf("%s\r\n", countS); // output to RS232
 
output_toggle(BEEP); // cvak...
 
of=0; // reset overflow counter
printf("%010Lu\r\n", count);
}
 
#int_TIMER1 // Interrupf from overflow
104,72 → 126,45
}
 
 
/*#int_TIMER2 // every 10 ms
void TIMER2_isr(void)
{
output_low(CE);
count=get_timer1();
set_timer1(0);
output_high(CE);
}*/
 
void main()
{
/* setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_OFF);
// setup_spi(SPI_SS_DISABLED);
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use!
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
// setup_wdt(WDT_144MS);
setup_wdt(WDT_2304MS);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1);
setup_timer_2(T2_DIV_BY_16,196,16);
setup_ccp1(CCP_OFF);
setup_timer_2(T2_DISABLED,0,1);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);
 
*/
restart_wdt();
delay_ms(1000);
restart_wdt();
// setup GPS
{
int n;
for (n=0;n<40;n++) putc(cmd[n]);
}
 
setup_adc_ports(NO_ANALOGS|VSS_VDD);
// setup_adc(ADC_CLOCK_DIV_2);
setup_adc(ADC_OFF);
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use!
setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1);
// setup_timer_0(RTCC_INTERNAL);setup_wdt(WDT_144MS);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1|T1_CLK_OUT);
// setup_timer_2(T2_DISABLED,0,1);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);
// setup_oscillator(OSC_8MHZ|OSC_INTRC);
 
// ext_int_edge( L_TO_H ); // set 1PPS active edge
// enable_interrupts(INT_TIMER1);
// enable_interrupts(INT_EXT);
ext_int_edge( L_TO_H ); // set 1PPS active edge
enable_interrupts(INT_TIMER1);
enable_interrupts(INT_EXT);
enable_interrupts(INT_SSP);
// enable_interrupts(INT_TIMER2);
enable_interrupts(GLOBAL);
 
 
/* delay_ms(1000);
int n;
for (n=0;n<40;n++) putc(cmd[n]); // setup GPS
 
*/
 
printf("cvak...\r\n");
buffer[0]=0x0; // Clear I2C output buffer
buffer[1]=0x0;
buffer[2]=0x0;
buffer[3]=0x0;
 
buffer[2]=0;
buffer[3]=0;
buffer[4]=0;
buffer[5]=0;
printf("\r\ncvak...\r\n");
 
while(true)
{
// output_high(LED);
delay_ms(1000);
// output_low(LED);
// delay_ms(999);
printf("%X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]);
 
restart_wdt();
delay_ms(1000);
// printf("%X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]);
}
}