/Designs/Measuring_instruments/RMDS02D/CAD/src/terarium_pad.scad
3,7 → 3,7
thickness = 10; // thickness of the pad bellow aquarium. hairs lenght is 12mm.
rim_height = 7; // height of upper rim for fixing the aquarium in position.
 
mount_hole = 3.6;
mount_hole = 3.7;
clear = 0.175;
 
 
24,7 → 24,7
}
cylinder (h = thickness + rim_height, r= mount_hole, $fn=20); // hole for screw head
translate ([0, 0, -thickness]) // hole for the screw
cylinder (h = thickness + rim_height, r= mount_hole/2, $fn=10);
cylinder (h = thickness + rim_height, r= mount_hole/2, $fn=20);
rotate([0,0,-45]) // hole for top part mounting nut
33,42 → 33,67
 
rotate([90,0,-45]) // hole for top part mounting screw.
translate ([ 0, 1.8, 0])
cylinder (h = thickness + rim_height, r= mount_hole/2, $fn=10);
cylinder (h = thickness + rim_height, r= mount_hole/2, $fn=20);
 
}
 
 
/*
 
translate ([0, 0, 3*thickness]) // separate two parts
 
rotate([180,0,0]) // hole for top part mounting nut
//translate ([0, 0, thickness]) // separate two parts
 
/*rotate([180,0,0]) // hole for top part mounting nut
 
 
//Top part
 
difference () {
union () {
 
rotate([0,0,-45])
translate ([0, -3, rim_height/3])
cube([x_size, y_size ,thickness + rim_height/4 ], center = true);
wall_thickness = 3;
 
rotate([90,0,-45])
translate ([0, 0, rim_height/3])
minkowski() {
cube([0.5,3,10]);
cylinder(r=1.5,h=1,$fn=50);
rotate([0,0,45])
translate ([-wall_thickness, 0, 0])
 
difference () {
translate ([wall_thickness/2, 0, thickness/2 + 1.5*wall_thickness])
cube([x_size - wall_thickness, y_size , wall_thickness ], center = true);
 
rotate([0,0,-45])
translate ([sqrt(pow(x_size,2) + pow(x_size,2))/4, sqrt(pow(x_size,2) + pow(x_size,2))/4 , rim_height])
cube([sqrt(pow(x_size,2) + pow(x_size,2))/2, sqrt(pow(x_size,2) + pow(x_size,2))/2, 2*rim_height], center = true);
};
 
rotate([0,0,45])
translate ([-8.3, 0, 0])
 
difference () {
translate ([8.3/2, 0, thickness/2 + wall_thickness/2])
cube([x_size - 8.3, y_size , wall_thickness ], center = true);
 
rotate([0,0,-45])
translate ([sqrt(pow(x_size,2) + pow(x_size,2))/4, sqrt(pow(x_size,2) + pow(x_size,2))/4 , rim_height])
cube([sqrt(pow(x_size,2) + pow(x_size,2))/2, sqrt(pow(x_size,2) + pow(x_size,2))/2, rim_height], center = true);
};
 
rotate([0,0,-45])
 
difference () {
 
translate ([0, -y_size/2 - wall_thickness/2 , 1.25 * wall_thickness])
cube([y_size, wall_thickness , thickness + 1.5*wall_thickness ], center = true);
rotate([90,0,0])
translate ([-0.5/2, 0, rim_height/3])
minkowski() {
cube([0.5,3.1,10]);
cylinder(r=1.5,h=1,$fn=50);
}
}
 
wall_thickness = 2;
 
union(){ // copy of bottom part
rotate([0,0,45])
cube([x_size, y_size ,thickness], center = true);
translate ([sqrt(pow(x_size,2) + pow(x_size,2))/4 -wall_thickness, sqrt(pow(x_size,2) + pow(x_size,2))/4 -wall_thickness, thickness/2 + rim_height/2])
cube([sqrt(pow(x_size,2) + pow(x_size,2))/2, sqrt(pow(x_size,2) + pow(x_size,2))/2, rim_height], center = true);
 
};
}