8,9 → 8,9 |
xmlns:xlink="http://www.w3.org/1999/xlink" |
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" |
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" |
width="170pt" |
height="106pt" |
viewBox="0 0 170 106" |
width="178.83441" |
height="106.87331" |
viewBox="0 0 143.06753 85.498651" |
version="1.1" |
id="svg3209" |
inkscape:version="0.48.1 r9760" |
40,12 → 40,16 |
id="namedview3217" |
showgrid="false" |
inkscape:zoom="2.8070805" |
inkscape:cx="85.718185" |
inkscape:cy="52.447624" |
inkscape:cx="69.479345" |
inkscape:cy="39.801111" |
inkscape:window-x="0" |
inkscape:window-y="24" |
inkscape:window-maximized="1" |
inkscape:current-layer="svg3209" /> |
inkscape:current-layer="svg3209" |
fit-margin-top="0" |
fit-margin-left="0" |
fit-margin-right="0" |
fit-margin-bottom="0" /> |
<defs |
id="defs3211"> |
<image |
53,73 → 57,88 |
width="709" |
height="442" |
xlink:href="" /> |
<clipPath |
clipPathUnits="userSpaceOnUse" |
id="clipPath4229"> |
<path |
inkscape:connector-curvature="0" |
id="path4231" |
d="m 7.6944548,89.613147 143.0675352,0 0,-85.212701 L 7.9800192,4.1144979 z" |
style="fill:none;stroke:#000000;stroke-width:0.01606411;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" /> |
</clipPath> |
</defs> |
<g |
id="surface2688"> |
id="surface2688" |
clip-path="url(#clipPath4229)" |
transform="translate(-7.6944548,-4.1144979)"> |
<use |
xlink:href="#image2692" |
transform="matrix(0.24,0,0,0.24,0,0)" |
id="use3215" /> |
transform="scale(0.24,0.24)" |
id="use3215" |
x="0" |
y="0" |
width="170" |
height="106" /> |
</g> |
<rect |
style="fill:none" |
height="5.3040056" |
width="2.157968" |
y="30.749302" |
x="61.964127" |
y="26.634804" |
x="54.269672" |
id="connector1pin" /> |
<rect |
style="fill:none" |
height="5.3669462" |
width="2.1569686" |
y="57.899738" |
x="61.974129" |
y="53.78524" |
x="54.279675" |
id="connector3pin" /> |
<rect |
style="fill:none" |
height="5.3669462" |
width="2.1569686" |
y="57.899738" |
x="61.974129" |
y="53.78524" |
x="54.279675" |
id="connector5pin" /> |
<rect |
style="fill:none" |
height="5.3669462" |
width="2.1569686" |
y="57.899738" |
x="61.974129" |
y="53.78524" |
x="54.279675" |
id="connector4pin" /> |
<rect |
style="fill:none" |
height="3.6655478" |
width="2.157968" |
y="30.749302" |
x="61.964127" |
y="26.634804" |
x="54.269672" |
id="connector1terminal" /> |
<rect |
style="fill:none" |
height="3.7105057" |
width="2.1569686" |
y="59.556171" |
x="61.974129" |
y="55.441673" |
x="54.279675" |
id="connector3terminal" /> |
<rect |
style="fill:none" |
height="3.7105057" |
width="2.1569686" |
y="59.556171" |
x="61.974129" |
y="55.441673" |
x="54.279675" |
id="connector5terminal" /> |
<rect |
style="fill:none" |
height="3.7105057" |
width="2.1569686" |
y="59.556171" |
x="61.974129" |
y="55.441673" |
x="54.279675" |
id="connector4terminal" /> |
<g |
id="g40" |
transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> |
transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)"> |
<rect |
style="fill:#898989" |
id="rect42" |
130,7 → 149,7 |
</g> |
<g |
id="g44" |
transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> |
transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)"> |
<rect |
style="fill:#dddddd" |
id="rect46" |
141,7 → 160,7 |
</g> |
<g |
id="g48" |
transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> |
transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)"> |
<rect |
style="fill:#c6c6c6" |
id="rect50" |
151,15 → 170,15 |
x="0.001" /> |
</g> |
<rect |
y="31.626476" |
y="27.511978" |
width="45.313328" |
height="31.312511" |
id="rect54" |
x="8.5184603" |
x="0.82400548" |
style="fill:#adadad" /> |
<g |
id="g56" |
transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> |
transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)"> |
<line |
style="fill:#919191;stroke:#4d4d4d;stroke-width:0.1" |
id="line58" |
170,7 → 189,7 |
</g> |
<g |
id="g76" |
transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> |
transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)"> |
<path |
style="fill:#4d4d4d" |
inkscape:connector-curvature="0" |
178,7 → 197,7 |
d="m 30.074,21.386 -2.64,-1.524 v 1.134 H 13.468 c 0.515,-0.416 1.008,-0.965 1.493,-1.505 0.802,-0.894 1.631,-1.819 2.338,-1.819 h 2.277 c 0.141,0.521 0.597,0.913 1.163,0.913 0.677,0 1.226,-0.548 1.226,-1.225 0,-0.677 -0.549,-1.226 -1.226,-1.226 -0.566,0 -1.022,0.392 -1.163,0.914 h -2.277 c -0.985,0 -1.868,0.984 -2.803,2.026 -0.744,0.83 -1.509,1.675 -2.255,1.922 h -1.82 c -0.185,-1.02 -1.073,-1.794 -2.145,-1.794 -1.206,0 -2.184,0.978 -2.184,2.184 0,1.207 0.978,2.184 2.184,2.184 1.072,0 1.96,-0.774 2.145,-1.794 h 5.196 c 0.746,0.247 1.511,1.093 2.254,1.922 0.934,1.043 1.817,2.026 2.802,2.026 h 2.142 v 0.985 h 2.595 v -2.595 h -2.595 v 0.985 h -2.142 c -0.707,0 -1.536,-0.925 -2.337,-1.818 -0.485,-0.541 -0.978,-1.09 -1.493,-1.506 h 10.592 v 1.134 l 2.639,-1.523 z" /> |
</g> |
<g |
transform="matrix(1.000278,0,0,1.000278,43.36261,75.73517)" |
transform="matrix(1.000278,0,0,1.000278,35.668155,71.620672)" |
id="use4089"> |
<rect |
style="fill:none" |
229,7 → 248,7 |
<polygon |
style="fill:#404040" |
id="polygon3602" |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " /> |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " /> |
</g> |
<g |
id="g3604"> |
250,19 → 269,19 |
<polygon |
style="fill:#b8af82" |
id="polygon3610" |
points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " /> |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " /> |
<polygon |
style="fill:#80795b" |
id="polygon3612" |
points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " /> |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " /> |
<polygon |
style="fill:#5e5b43" |
id="polygon3614" |
points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " /> |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " /> |
<polygon |
style="fill:#9a916c" |
id="polygon3616" |
points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " /> |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " /> |
</g> |
<g |
id="g3618"> |
269,7 → 288,7 |
<polygon |
style="fill:#404040" |
id="polygon3620" |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " /> |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " /> |
</g> |
<g |
id="g3622"> |
290,19 → 309,19 |
<polygon |
style="fill:#b8af82" |
id="polygon3628" |
points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " /> |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " /> |
<polygon |
style="fill:#80795b" |
id="polygon3630" |
points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " /> |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " /> |
<polygon |
style="fill:#5e5b43" |
id="polygon3632" |
points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " /> |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " /> |
<polygon |
style="fill:#9a916c" |
id="polygon3634" |
points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " /> |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " /> |
</g> |
<g |
id="g3636"> |
309,7 → 328,7 |
<polygon |
style="fill:#404040" |
id="polygon3638" |
points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " /> |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " /> |
</g> |
<g |
id="g3640"> |
330,19 → 349,19 |
<polygon |
style="fill:#b8af82" |
id="polygon3646" |
points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " /> |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " /> |
<polygon |
style="fill:#80795b" |
id="polygon3648" |
points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " /> |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " /> |
<polygon |
style="fill:#5e5b43" |
id="polygon3650" |
points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " /> |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " /> |
<polygon |
style="fill:#9a916c" |
id="polygon3652" |
points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " /> |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " /> |
</g> |
</g> |
<rect |
394,7 → 413,7 |
id="g3668"> |
<polygon |
style="fill:#404040" |
points="1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 " |
points="1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 " |
id="polygon3670" /> |
</g> |
<g |
415,19 → 434,19 |
id="rect3676" /> |
<polygon |
style="fill:#b8af82" |
points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
id="polygon3678" /> |
<polygon |
style="fill:#80795b" |
points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
id="polygon3680" /> |
<polygon |
style="fill:#5e5b43" |
points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
id="polygon3682" /> |
<polygon |
style="fill:#9a916c" |
points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
id="polygon3684" /> |
</g> |
<g |
434,7 → 453,7 |
id="g3686"> |
<polygon |
style="fill:#404040" |
points="8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 " |
points="8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 " |
id="polygon3688" /> |
</g> |
<g |
455,19 → 474,19 |
id="rect3694" /> |
<polygon |
style="fill:#b8af82" |
points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
id="polygon3696" /> |
<polygon |
style="fill:#80795b" |
points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
id="polygon3698" /> |
<polygon |
style="fill:#5e5b43" |
points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
id="polygon3700" /> |
<polygon |
style="fill:#9a916c" |
points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
id="polygon3702" /> |
</g> |
<g |
474,7 → 493,7 |
id="g3704"> |
<polygon |
style="fill:#404040" |
points="15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 " |
points="15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 " |
id="polygon3706" /> |
</g> |
<g |
495,19 → 514,19 |
id="rect3712" /> |
<polygon |
style="fill:#b8af82" |
points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
id="polygon3714" /> |
<polygon |
style="fill:#80795b" |
points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
id="polygon3716" /> |
<polygon |
style="fill:#5e5b43" |
points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
id="polygon3718" /> |
<polygon |
style="fill:#9a916c" |
points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
id="polygon3720" /> |
</g> |
</g> |
514,7 → 533,7 |
</g> |
<g |
id="g3881" |
transform="matrix(1.000139,0,0,1.000139,43.397586,18.268968)"> |
transform="matrix(1.000139,0,0,1.000139,35.703131,14.15447)"> |
<rect |
height="2.7909999" |
width="2.7909999" |
563,7 → 582,7 |
id="g10"> |
<polygon |
id="polygon12" |
points="5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 " |
points="5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 " |
style="fill:#404040" /> |
</g> |
<g |
584,19 → 603,19 |
style="fill:#8c8663" /> |
<polygon |
id="polygon20" |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
style="fill:#b8af82" /> |
<polygon |
id="polygon22" |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
style="fill:#80795b" /> |
<polygon |
id="polygon24" |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
style="fill:#5e5b43" /> |
<polygon |
id="polygon26" |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
style="fill:#9a916c" /> |
</g> |
<g |
603,7 → 622,7 |
id="g28"> |
<polygon |
id="polygon30" |
points="12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 " |
points="12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 " |
style="fill:#404040" /> |
</g> |
<g |
624,19 → 643,19 |
style="fill:#8c8663" /> |
<polygon |
id="polygon38" |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
style="fill:#b8af82" /> |
<polygon |
id="polygon40" |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
style="fill:#80795b" /> |
<polygon |
id="polygon42" |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
style="fill:#5e5b43" /> |
<polygon |
id="polygon44" |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
style="fill:#9a916c" /> |
</g> |
<g |
643,7 → 662,7 |
id="g46"> |
<polygon |
id="polygon48" |
points="20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 " |
points="20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 " |
style="fill:#404040" /> |
</g> |
<g |
664,19 → 683,19 |
style="fill:#8c8663" /> |
<polygon |
id="polygon56" |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " |
style="fill:#b8af82" /> |
<polygon |
id="polygon58" |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " |
style="fill:#80795b" /> |
<polygon |
id="polygon60" |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " |
style="fill:#5e5b43" /> |
<polygon |
id="polygon62" |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " |
style="fill:#9a916c" /> |
</g> |
</g> |
729,7 → 748,7 |
id="g3059"> |
<polygon |
style="fill:#404040" |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 " |
id="polygon3061" /> |
</g> |
<g |
750,19 → 769,19 |
id="rect3067" /> |
<polygon |
style="fill:#b8af82" |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
id="polygon3069" /> |
<polygon |
style="fill:#80795b" |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
id="polygon3071" /> |
<polygon |
style="fill:#5e5b43" |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
id="polygon3073" /> |
<polygon |
style="fill:#9a916c" |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
id="polygon3075" /> |
</g> |
<g |
769,7 → 788,7 |
id="g3077"> |
<polygon |
style="fill:#404040" |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 " |
id="polygon3079" /> |
</g> |
<g |
790,19 → 809,19 |
id="rect3085" /> |
<polygon |
style="fill:#b8af82" |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
id="polygon3087" /> |
<polygon |
style="fill:#80795b" |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
id="polygon3089" /> |
<polygon |
style="fill:#5e5b43" |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
id="polygon3091" /> |
<polygon |
style="fill:#9a916c" |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
id="polygon3093" /> |
</g> |
<g |
809,7 → 828,7 |
id="g3095"> |
<polygon |
style="fill:#404040" |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " |
points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 " |
id="polygon3097" /> |
</g> |
<g |
830,19 → 849,19 |
id="rect3103" /> |
<polygon |
style="fill:#b8af82" |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " |
id="polygon3105" /> |
<polygon |
style="fill:#80795b" |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " |
id="polygon3107" /> |
<polygon |
style="fill:#5e5b43" |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " |
id="polygon3109" /> |
<polygon |
style="fill:#9a916c" |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " |
id="polygon3111" /> |
</g> |
</g> |
849,7 → 868,7 |
</g> |
<g |
id="g3957" |
transform="matrix(1.0001389,0,0,1.0001389,68.57072,10.774555)"> |
transform="matrix(1.0001389,0,0,1.0001389,60.876265,6.6600571)"> |
<rect |
height="2.7909999" |
width="2.7909999" |
898,11 → 917,9 |
id="g3897"> |
<polygon |
id="polygon3899" |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3901"> |
<rect |
912,7 → 929,6 |
y="2.45" |
x="2.451" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3905" |
height="1.183" |
920,38 → 936,30 |
y="3.0079999" |
x="3.0090001" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3907" |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3909" |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3911" |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3913" |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3915"> |
<polygon |
id="polygon3917" |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3919"> |
<rect |
961,7 → 969,6 |
y="2.45" |
x="9.6499996" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3923" |
height="1.183" |
969,38 → 976,30 |
y="3.0079999" |
x="10.208" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3925" |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3927" |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3929" |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3931" |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3933"> |
<polygon |
id="polygon3935" |
points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3937"> |
<rect |
1010,7 → 1009,6 |
y="2.45" |
x="16.849001" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3941" |
height="1.183" |
1018,34 → 1016,28 |
y="3.0079999" |
x="17.407" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3943" |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3945" |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3947" |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3949" |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
</g> |
</g> |
<g |
id="g4209" |
transform="matrix(0,-1.0001389,1.0001389,0,78.620656,55.811367)"> |
transform="matrix(0,-1.0001389,1.0001389,0,70.926201,51.696869)"> |
<rect |
height="2.7909999" |
width="2.7909999" |
1094,11 → 1086,9 |
id="g4149"> |
<polygon |
id="polygon4151" |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g4153"> |
<rect |
1108,7 → 1098,6 |
y="2.45" |
x="2.451" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect4157" |
height="1.183" |
1116,38 → 1105,30 |
y="3.0079999" |
x="3.0090001" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon4159" |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon4161" |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon4163" |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon4165" |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g4167"> |
<polygon |
id="polygon4169" |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g4171"> |
<rect |
1157,7 → 1138,6 |
y="2.45" |
x="9.6499996" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect4175" |
height="1.183" |
1165,38 → 1145,30 |
y="3.0079999" |
x="10.208" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon4177" |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon4179" |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon4181" |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon4183" |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g4185"> |
<polygon |
id="polygon4187" |
points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g4189"> |
<rect |
1206,7 → 1178,6 |
y="2.45" |
x="16.849001" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect4193" |
height="1.183" |
1214,33 → 1185,27 |
y="3.0079999" |
x="17.407" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon4195" |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon4197" |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon4199" |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon4201" |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
</g> |
</g> |
<g |
transform="matrix(1.0001389,0,0,1.0001389,103.05495,10.917051)" |
transform="matrix(1.0001389,0,0,1.0001389,95.360495,6.8025531)" |
id="g4245"> |
<rect |
style="fill:none" |
1290,11 → 1255,9 |
id="g4261"> |
<polygon |
style="fill:#404040" |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 " |
id="polygon4263" /> |
|
</g> |
|
<g |
id="g4265"> |
<rect |
1304,7 → 1267,6 |
width="2.2969999" |
height="2.299" |
id="rect4267" /> |
|
<rect |
style="fill:#8c8663" |
x="3.0090001" |
1312,38 → 1274,30 |
width="1.182" |
height="1.183" |
id="rect4269" /> |
|
<polygon |
style="fill:#b8af82" |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
points="4.748,2.45 2.451,2.45 3.009,3.008 4.19,3.008 " |
id="polygon4271" /> |
|
<polygon |
style="fill:#80795b" |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
points="4.748,4.749 4.19,4.19 4.19,3.008 4.748,2.45 " |
id="polygon4273" /> |
|
<polygon |
style="fill:#5e5b43" |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
points="2.451,4.749 3.009,4.19 4.19,4.19 4.748,4.749 " |
id="polygon4275" /> |
|
<polygon |
style="fill:#9a916c" |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
points="2.451,4.749 2.451,2.45 3.009,3.008 3.009,4.19 " |
id="polygon4277" /> |
|
</g> |
|
<g |
id="g4279"> |
<polygon |
style="fill:#404040" |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 " |
id="polygon4281" /> |
|
</g> |
|
<g |
id="g4283"> |
<rect |
1353,7 → 1307,6 |
width="2.2969999" |
height="2.299" |
id="rect4285" /> |
|
<rect |
style="fill:#8c8663" |
x="10.208" |
1361,38 → 1314,30 |
width="1.182" |
height="1.183" |
id="rect4287" /> |
|
<polygon |
style="fill:#b8af82" |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
points="11.947,2.45 9.65,2.45 10.208,3.008 11.389,3.008 " |
id="polygon4289" /> |
|
<polygon |
style="fill:#80795b" |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
points="11.947,4.749 11.389,4.19 11.389,3.008 11.947,2.45 " |
id="polygon4291" /> |
|
<polygon |
style="fill:#5e5b43" |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
points="9.65,4.749 10.208,4.19 11.389,4.19 11.947,4.749 " |
id="polygon4293" /> |
|
<polygon |
style="fill:#9a916c" |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
points="9.65,4.749 9.65,2.45 10.208,3.008 10.208,4.19 " |
id="polygon4295" /> |
|
</g> |
|
<g |
id="g4297"> |
<polygon |
style="fill:#404040" |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " |
points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 " |
id="polygon4299" /> |
|
</g> |
|
<g |
id="g4301"> |
<rect |
1402,7 → 1347,6 |
width="2.2969999" |
height="2.299" |
id="rect4303" /> |
|
<rect |
style="fill:#8c8663" |
x="17.407" |
1410,34 → 1354,28 |
width="1.182" |
height="1.183" |
id="rect4305" /> |
|
<polygon |
style="fill:#b8af82" |
points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " |
points="19.146,2.45 16.849,2.45 17.407,3.008 18.588,3.008 " |
id="polygon4307" /> |
|
<polygon |
style="fill:#80795b" |
points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " |
points="19.146,4.749 18.588,4.19 18.588,3.008 19.146,2.45 " |
id="polygon4309" /> |
|
<polygon |
style="fill:#5e5b43" |
points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " |
points="16.849,4.749 17.407,4.19 18.588,4.19 19.146,4.749 " |
id="polygon4311" /> |
|
<polygon |
style="fill:#9a916c" |
points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " |
points="16.849,4.749 16.849,2.45 17.407,3.008 17.407,4.19 " |
id="polygon4313" /> |
|
</g> |
|
</g> |
</g> |
<g |
id="g4491" |
transform="matrix(0,-1.0001389,1.0001389,0,119.80224,44.801534)"> |
transform="matrix(0,-1.0001389,1.0001389,0,112.10779,40.687036)"> |
<rect |
height="2.7909999" |
width="2.7909999" |
1472,11 → 1410,9 |
id="g4449"> |
<polygon |
id="polygon4451" |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g4453"> |
<rect |
1486,7 → 1422,6 |
y="2.45" |
x="2.451" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect4457" |
height="1.183" |
1494,38 → 1429,30 |
y="3.0079999" |
x="3.0090001" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon4459" |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon4461" |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon4463" |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon4465" |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g4467"> |
<polygon |
id="polygon4469" |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g4471"> |
<rect |
1535,7 → 1462,6 |
y="2.45" |
x="9.6499996" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect4475" |
height="1.183" |
1543,34 → 1469,28 |
y="3.0079999" |
x="10.208" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon4477" |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon4479" |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon4481" |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon4483" |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " |
style="fill:#9a916c" /> |
|
</g> |
|
</g> |
</g> |
<g |
id="g3376" |
transform="matrix(1.0001389,0,0,1.0001389,68.517272,68.604263)"> |
transform="matrix(1.0001389,0,0,1.0001389,60.822817,64.489765)"> |
<g |
id="breadboard-07" |
transform="translate(-5.2541901e-8,7.171834)"> |
1577,12 → 1497,10 |
<g |
id="g20"> |
<polygon |
points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 " |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " |
id="polygon22-3" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g24"> |
<rect |
1592,7 → 1510,6 |
height="2.299" |
id="rect26" |
style="fill:#8d8c8c" /> |
|
<rect |
x="3.0090001" |
y="3.0079999" |
1600,38 → 1517,30 |
height="1.183" |
id="rect28" |
style="fill:#8c8663" /> |
|
<polygon |
points="4.748,2.45 2.451,2.45 3.009,3.008 4.19,3.008 " |
points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " |
id="polygon30-4" |
style="fill:#b8af82" /> |
|
<polygon |
points="4.748,4.749 4.19,4.19 4.19,3.008 4.748,2.45 " |
points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " |
id="polygon32" |
style="fill:#80795b" /> |
|
<polygon |
points="2.451,4.749 3.009,4.19 4.19,4.19 4.748,4.749 " |
points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " |
id="polygon34" |
style="fill:#5e5b43" /> |
|
<polygon |
points="2.451,4.749 2.451,2.45 3.009,3.008 3.009,4.19 " |
points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " |
id="polygon36" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g38"> |
<polygon |
points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 " |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " |
id="polygon40-8" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g42"> |
<rect |
1641,7 → 1550,6 |
height="2.299" |
id="rect44" |
style="fill:#8d8c8c" /> |
|
<rect |
x="10.208" |
y="3.0079999" |
1649,38 → 1557,30 |
height="1.183" |
id="rect46-4" |
style="fill:#8c8663" /> |
|
<polygon |
points="11.947,2.45 9.65,2.45 10.208,3.008 11.389,3.008 " |
points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " |
id="polygon48-2" |
style="fill:#b8af82" /> |
|
<polygon |
points="11.947,4.749 11.389,4.19 11.389,3.008 11.947,2.45 " |
points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " |
id="polygon50" |
style="fill:#80795b" /> |
|
<polygon |
points="9.65,4.749 10.208,4.19 11.389,4.19 11.947,4.749 " |
points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " |
id="polygon52" |
style="fill:#5e5b43" /> |
|
<polygon |
points="9.65,4.749 9.65,2.45 10.208,3.008 10.208,4.19 " |
points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " |
id="polygon54" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g56-7"> |
<polygon |
points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 " |
points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " |
id="polygon58-5" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g60"> |
<rect |
1690,7 → 1590,6 |
height="2.299" |
id="rect62" |
style="fill:#8d8c8c" /> |
|
<rect |
x="17.407" |
y="3.0079999" |
1698,38 → 1597,30 |
height="1.183" |
id="rect64" |
style="fill:#8c8663" /> |
|
<polygon |
points="19.146,2.45 16.849,2.45 17.407,3.008 18.588,3.008 " |
points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " |
id="polygon66" |
style="fill:#b8af82" /> |
|
<polygon |
points="19.146,4.749 18.588,4.19 18.588,3.008 19.146,2.45 " |
points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " |
id="polygon68" |
style="fill:#80795b" /> |
|
<polygon |
points="16.849,4.749 17.407,4.19 18.588,4.19 19.146,4.749 " |
points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " |
id="polygon70" |
style="fill:#5e5b43" /> |
|
<polygon |
points="16.849,4.749 16.849,2.45 17.407,3.008 17.407,4.19 " |
points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " |
id="polygon72" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g74"> |
<polygon |
points="21.597,5.637 23.16,7.199 27.232,7.199 28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 " |
points="28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 " |
id="polygon76" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g78"> |
<rect |
1739,7 → 1630,6 |
height="2.299" |
id="rect80" |
style="fill:#8d8c8c" /> |
|
<rect |
x="24.606001" |
y="3.0079999" |
1747,38 → 1637,30 |
height="1.183" |
id="rect82" |
style="fill:#8c8663" /> |
|
<polygon |
points="26.345,2.45 24.048,2.45 24.606,3.008 25.787,3.008 " |
points="25.787,3.008 26.345,2.45 24.048,2.45 24.606,3.008 " |
id="polygon84" |
style="fill:#b8af82" /> |
|
<polygon |
points="26.345,4.749 25.787,4.19 25.787,3.008 26.345,2.45 " |
points="26.345,2.45 26.345,4.749 25.787,4.19 25.787,3.008 " |
id="polygon86" |
style="fill:#80795b" /> |
|
<polygon |
points="24.048,4.749 24.606,4.19 25.787,4.19 26.345,4.749 " |
points="26.345,4.749 24.048,4.749 24.606,4.19 25.787,4.19 " |
id="polygon88" |
style="fill:#5e5b43" /> |
|
<polygon |
points="24.048,4.749 24.048,2.45 24.606,3.008 24.606,4.19 " |
points="24.606,4.19 24.048,4.749 24.048,2.45 24.606,3.008 " |
id="polygon90" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g92"> |
<polygon |
points="28.796,5.637 30.359,7.199 34.431,7.199 35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 " |
points="35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 " |
id="polygon94" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g96"> |
<rect |
1788,7 → 1670,6 |
height="2.299" |
id="rect98" |
style="fill:#8d8c8c" /> |
|
<rect |
x="31.805" |
y="3.0079999" |
1796,38 → 1677,30 |
height="1.183" |
id="rect100" |
style="fill:#8c8663" /> |
|
<polygon |
points="33.544,2.45 31.247,2.45 31.805,3.008 32.986,3.008 " |
points="32.986,3.008 33.544,2.45 31.247,2.45 31.805,3.008 " |
id="polygon102" |
style="fill:#b8af82" /> |
|
<polygon |
points="33.544,4.749 32.986,4.19 32.986,3.008 33.544,2.45 " |
points="33.544,2.45 33.544,4.749 32.986,4.19 32.986,3.008 " |
id="polygon104" |
style="fill:#80795b" /> |
|
<polygon |
points="31.247,4.749 31.805,4.19 32.986,4.19 33.544,4.749 " |
points="33.544,4.749 31.247,4.749 31.805,4.19 32.986,4.19 " |
id="polygon106" |
style="fill:#5e5b43" /> |
|
<polygon |
points="31.247,4.749 31.247,2.45 31.805,3.008 31.805,4.19 " |
points="31.805,4.19 31.247,4.749 31.247,2.45 31.805,3.008 " |
id="polygon108" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g110"> |
<polygon |
points="35.995,5.637 37.558,7.199 41.63,7.199 43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 " |
points="43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 " |
id="polygon112" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g114"> |
<rect |
1837,7 → 1710,6 |
height="2.299" |
id="rect116" |
style="fill:#8d8c8c" /> |
|
<rect |
x="39.004002" |
y="3.0079999" |
1845,38 → 1717,30 |
height="1.183" |
id="rect118" |
style="fill:#8c8663" /> |
|
<polygon |
points="40.743,2.45 38.446,2.45 39.004,3.008 40.185,3.008 " |
points="40.185,3.008 40.743,2.45 38.446,2.45 39.004,3.008 " |
id="polygon120" |
style="fill:#b8af82" /> |
|
<polygon |
points="40.743,4.749 40.185,4.19 40.185,3.008 40.743,2.45 " |
points="40.743,2.45 40.743,4.749 40.185,4.19 40.185,3.008 " |
id="polygon122" |
style="fill:#80795b" /> |
|
<polygon |
points="38.446,4.749 39.004,4.19 40.185,4.19 40.743,4.749 " |
points="40.743,4.749 38.446,4.749 39.004,4.19 40.185,4.19 " |
id="polygon124" |
style="fill:#5e5b43" /> |
|
<polygon |
points="38.446,4.749 38.446,2.45 39.004,3.008 39.004,4.19 " |
points="39.004,4.19 38.446,4.749 38.446,2.45 39.004,3.008 " |
id="polygon126" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g128"> |
<polygon |
points="43.194,5.637 44.757,7.199 48.829,7.199 50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 " |
points="50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 " |
id="polygon130" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g132"> |
<rect |
1886,7 → 1750,6 |
height="2.299" |
id="rect134" |
style="fill:#8d8c8c" /> |
|
<rect |
x="46.202999" |
y="3.0079999" |
1894,38 → 1757,30 |
height="1.183" |
id="rect136" |
style="fill:#8c8663" /> |
|
<polygon |
points="47.942,2.45 45.645,2.45 46.203,3.008 47.384,3.008 " |
points="47.384,3.008 47.942,2.45 45.645,2.45 46.203,3.008 " |
id="polygon138" |
style="fill:#b8af82" /> |
|
<polygon |
points="47.942,4.749 47.384,4.19 47.384,3.008 47.942,2.45 " |
points="47.942,2.45 47.942,4.749 47.384,4.19 47.384,3.008 " |
id="polygon140" |
style="fill:#80795b" /> |
|
<polygon |
points="45.645,4.749 46.203,4.19 47.384,4.19 47.942,4.749 " |
points="47.942,4.749 45.645,4.749 46.203,4.19 47.384,4.19 " |
id="polygon142" |
style="fill:#5e5b43" /> |
|
<polygon |
points="45.645,4.749 45.645,2.45 46.203,3.008 46.203,4.19 " |
points="46.203,4.19 45.645,4.749 45.645,2.45 46.203,3.008 " |
id="polygon144" |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g146"> |
<polygon |
points="50.393,5.637 51.956,7.199 56.028,7.199 57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 " |
points="57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 " |
id="polygon148" |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g150"> |
<rect |
1935,7 → 1790,6 |
height="2.299" |
id="rect152" |
style="fill:#8d8c8c" /> |
|
<rect |
x="53.402" |
y="3.0079999" |
1943,29 → 1797,23 |
height="1.183" |
id="rect154" |
style="fill:#8c8663" /> |
|
<polygon |
points="55.141,2.45 52.844,2.45 53.402,3.008 54.583,3.008 " |
points="54.583,3.008 55.141,2.45 52.844,2.45 53.402,3.008 " |
id="polygon156" |
style="fill:#b8af82" /> |
|
<polygon |
points="55.141,4.749 54.583,4.19 54.583,3.008 55.141,2.45 " |
points="55.141,2.45 55.141,4.749 54.583,4.19 54.583,3.008 " |
id="polygon158" |
style="fill:#80795b" /> |
|
<polygon |
points="52.844,4.749 53.402,4.19 54.583,4.19 55.141,4.749 " |
points="55.141,4.749 52.844,4.749 53.402,4.19 54.583,4.19 " |
id="polygon160" |
style="fill:#5e5b43" /> |
|
<polygon |
points="52.844,4.749 52.844,2.45 53.402,3.008 53.402,4.19 " |
points="53.402,4.19 52.844,4.749 52.844,2.45 53.402,3.008 " |
id="polygon162" |
style="fill:#9a916c" /> |
|
</g> |
|
</g> |
<g |
id="g3342"> |
2201,11 → 2049,9 |
id="g3179"> |
<polygon |
id="polygon3181" |
points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " |
points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3183"> |
<rect |
2215,7 → 2061,6 |
y="2.45" |
x="2.451" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3187" |
height="1.183" |
2223,38 → 2068,30 |
y="3.0079999" |
x="3.0090001" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3189" |
points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " |
points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3191" |
points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " |
points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3193" |
points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " |
points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3195" |
points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " |
points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3197"> |
<polygon |
id="polygon3199" |
points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " |
points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3201"> |
<rect |
2264,7 → 2101,6 |
y="2.45" |
x="9.6499996" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3205" |
height="1.183" |
2272,38 → 2108,30 |
y="3.0079999" |
x="10.208" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3207" |
points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " |
points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3209" |
points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " |
points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3211" |
points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " |
points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3213" |
points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " |
points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3215"> |
<polygon |
id="polygon3217" |
points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " |
points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3219"> |
<rect |
2313,7 → 2141,6 |
y="2.45" |
x="16.849001" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3223" |
height="1.183" |
2321,38 → 2148,30 |
y="3.0079999" |
x="17.407" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3225" |
points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " |
points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3227" |
points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " |
points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3229" |
points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " |
points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3231" |
points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " |
points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3233"> |
<polygon |
id="polygon3235" |
points="28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 " |
points="23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 28.796,5.637 28.796,1.564 27.232,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3237"> |
<rect |
2362,7 → 2181,6 |
y="2.45" |
x="24.048" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3241" |
height="1.183" |
2370,38 → 2188,30 |
y="3.0079999" |
x="24.606001" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3243" |
points="25.787,3.008 26.345,2.45 24.048,2.45 24.606,3.008 " |
points="24.606,3.008 25.787,3.008 26.345,2.45 24.048,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3245" |
points="26.345,2.45 26.345,4.749 25.787,4.19 25.787,3.008 " |
points="25.787,3.008 26.345,2.45 26.345,4.749 25.787,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3247" |
points="26.345,4.749 24.048,4.749 24.606,4.19 25.787,4.19 " |
points="25.787,4.19 26.345,4.749 24.048,4.749 24.606,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3249" |
points="24.606,4.19 24.048,4.749 24.048,2.45 24.606,3.008 " |
points="24.606,3.008 24.606,4.19 24.048,4.749 24.048,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3251"> |
<polygon |
id="polygon3253" |
points="35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 " |
points="30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 35.995,5.637 35.995,1.564 34.431,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3255"> |
<rect |
2411,7 → 2221,6 |
y="2.45" |
x="31.247" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3259" |
height="1.183" |
2419,38 → 2228,30 |
y="3.0079999" |
x="31.805" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3261" |
points="32.986,3.008 33.544,2.45 31.247,2.45 31.805,3.008 " |
points="31.805,3.008 32.986,3.008 33.544,2.45 31.247,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3263" |
points="33.544,2.45 33.544,4.749 32.986,4.19 32.986,3.008 " |
points="32.986,3.008 33.544,2.45 33.544,4.749 32.986,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3265" |
points="33.544,4.749 31.247,4.749 31.805,4.19 32.986,4.19 " |
points="32.986,4.19 33.544,4.749 31.247,4.749 31.805,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3267" |
points="31.805,4.19 31.247,4.749 31.247,2.45 31.805,3.008 " |
points="31.805,3.008 31.805,4.19 31.247,4.749 31.247,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3269"> |
<polygon |
id="polygon3271" |
points="43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 " |
points="37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 43.194,5.637 43.194,1.564 41.63,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3273"> |
<rect |
2460,7 → 2261,6 |
y="2.45" |
x="38.445999" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3277" |
height="1.183" |
2468,38 → 2268,30 |
y="3.0079999" |
x="39.004002" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3279" |
points="40.185,3.008 40.743,2.45 38.446,2.45 39.004,3.008 " |
points="39.004,3.008 40.185,3.008 40.743,2.45 38.446,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3281" |
points="40.743,2.45 40.743,4.749 40.185,4.19 40.185,3.008 " |
points="40.185,3.008 40.743,2.45 40.743,4.749 40.185,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3283" |
points="40.743,4.749 38.446,4.749 39.004,4.19 40.185,4.19 " |
points="40.185,4.19 40.743,4.749 38.446,4.749 39.004,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3285" |
points="39.004,4.19 38.446,4.749 38.446,2.45 39.004,3.008 " |
points="39.004,3.008 39.004,4.19 38.446,4.749 38.446,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3287"> |
<polygon |
id="polygon3289" |
points="50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 " |
points="44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 50.393,5.637 50.393,1.564 48.829,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3291"> |
<rect |
2509,7 → 2301,6 |
y="2.45" |
x="45.645" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3295" |
height="1.183" |
2517,38 → 2308,30 |
y="3.0079999" |
x="46.202999" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3297" |
points="47.384,3.008 47.942,2.45 45.645,2.45 46.203,3.008 " |
points="46.203,3.008 47.384,3.008 47.942,2.45 45.645,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3299" |
points="47.942,2.45 47.942,4.749 47.384,4.19 47.384,3.008 " |
points="47.384,3.008 47.942,2.45 47.942,4.749 47.384,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3301" |
points="47.942,4.749 45.645,4.749 46.203,4.19 47.384,4.19 " |
points="47.384,4.19 47.942,4.749 45.645,4.749 46.203,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3303" |
points="46.203,4.19 45.645,4.749 45.645,2.45 46.203,3.008 " |
points="46.203,3.008 46.203,4.19 45.645,4.749 45.645,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
<g |
id="g3305"> |
<polygon |
id="polygon3307" |
points="57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 " |
points="51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 57.592,5.637 57.592,1.564 56.028,0 " |
style="fill:#404040" /> |
|
</g> |
|
<g |
id="g3309"> |
<rect |
2558,7 → 2341,6 |
y="2.45" |
x="52.844002" |
style="fill:#8d8c8c" /> |
|
<rect |
id="rect3313" |
height="1.183" |
2566,29 → 2348,37 |
y="3.0079999" |
x="53.402" |
style="fill:#8c8663" /> |
|
<polygon |
id="polygon3315" |
points="54.583,3.008 55.141,2.45 52.844,2.45 53.402,3.008 " |
points="53.402,3.008 54.583,3.008 55.141,2.45 52.844,2.45 " |
style="fill:#b8af82" /> |
|
<polygon |
id="polygon3317" |
points="55.141,2.45 55.141,4.749 54.583,4.19 54.583,3.008 " |
points="54.583,3.008 55.141,2.45 55.141,4.749 54.583,4.19 " |
style="fill:#80795b" /> |
|
<polygon |
id="polygon3319" |
points="55.141,4.749 52.844,4.749 53.402,4.19 54.583,4.19 " |
points="54.583,4.19 55.141,4.749 52.844,4.749 53.402,4.19 " |
style="fill:#5e5b43" /> |
|
<polygon |
id="polygon3321" |
points="53.402,4.19 52.844,4.749 52.844,2.45 53.402,3.008 " |
points="53.402,3.008 53.402,4.19 52.844,4.749 52.844,2.45 " |
style="fill:#9a916c" /> |
|
</g> |
|
</g> |
</g> |
<rect |
style="fill:none;stroke:none" |
id="rect3450" |
width="143.0668" |
height="79.79821" |
x="0.00037084927" |
y="-0.14220953" /> |
<rect |
style="fill:none;stroke:none" |
id="rect4220" |
width="142.49681" |
height="85.213089" |
x="0.28536621" |
y="0.14278397" /> |
</svg> |