/Modules/Mechanical/WINDGAUGE02A/CAD/SRC/WINDGAUGE02A_S01.scad
2,7 → 2,10
include <../configuration.scad>
 
use <zavity.scad>
include <polyScrewThread_r1.scad>
 
PI=3.141592;
 
module WINDGAUGE02A_S01(R02_vzdalenost_mezi_uchyty_lopatek,L01_sila_zapusteni_drzaku,L01_hloubka_zapusteni,S01_vyska_zuzene_casti,S01_vyska_na_elektroniku,S01_vyska_zavitu_na_nasroubovani_drzaku,S01_vyska_prechodu,vule_mezi_statorem_rotorem,S01_vyska_zavitu_na_nasroubovani_drzaku)
{
47,9 → 50,9
cylinder (h = S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko, r=(S01_prumer_zavitu+2*S01_sila_materialu)/2, center = true, $fn=100);
translate([0,0,-(S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko)/2])
metric_thread (diameter=S01_prumer_zavitu, pitch=1, length=S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko+0.01, internal=true, n_starts=6);
// metric_thread (diameter=S01_prumer_zavitu, pitch=1, length=S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko+0.01, internal=true, n_starts=6);
screw_thread(S01_prumer_zavitu,4,55,S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko+0.01,PI/2,2);
}
}
58,6 → 61,6
 
 
//WINDGAUGE02A_S01(R02_vzdalenost_mezi_uchyty_lopatek,L01_sila_zapusteni_drzaku,L01_hloubka_zapusteni,S01_vyska_zuzene_casti,S01_vyska_na_elektroniku,S01_vyska_zavitu_na_nasroubovani_drzaku,S01_vyska_prechodu,vule_mezi_statorem_rotorem,S01_vyska_zavitu_na_nasroubovani_drzaku);
WINDGAUGE02A_S01(R02_vzdalenost_mezi_uchyty_lopatek,L01_sila_zapusteni_drzaku,L01_hloubka_zapusteni,S01_vyska_zuzene_casti,S01_vyska_na_elektroniku,S01_vyska_zavitu_na_nasroubovani_drzaku,S01_vyska_prechodu,vule_mezi_statorem_rotorem,S01_vyska_zavitu_na_nasroubovani_drzaku);
/Modules/Mechanical/WINDGAUGE02A/CAD/SRC/WINDGAUGE02A_S02.scad
10,7 → 10,9
{
//translate([0,0,-(S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko)/2-10])
metric_thread (diameter=S01_prumer_zavitu-0.3, pitch=1, length=S01_vyska_komponentu_na_lozisko, internal=false, n_starts=6);
//metric_thread (diameter=S01_prumer_zavitu-0.3, pitch=1, length=S01_vyska_komponentu_na_lozisko, internal=false, n_starts=6);
screw_thread(S01_prumer_zavitu,4,55,S01_vyska_na_elektroniku+S01_vyska_zavitu_na_nasroubovani_drzaku+2*S01_vyska_komponentu_na_lozisko+0.01,PI/2,2);
 
//otvory na ložisko
translate([0,0,lozisko_vyska/2])
/Modules/Mechanical/WINDGAUGE02A/CAD/SRC/polyScrewThread_r1.scad
0,0 → 1,233
/*
* polyScrewThread_r1.scad by aubenc @ Thingiverse
*
* This script contains the library modules that can be used to generate
* threaded rods, screws and nuts.
*
* http://www.thingiverse.com/thing:8796
*
* CC Public Domain
*/
 
module screw_thread(od,st,lf0,lt,rs,cs)
{
or=od/2;
ir=or-st/2*cos(lf0)/sin(lf0);
pf=2*PI*or;
sn=floor(pf/rs);
lfxy=360/sn;
ttn=round(lt/st+1);
zt=st/sn;
 
intersection()
{
if (cs >= -1)
{
thread_shape(cs,lt,or,ir,sn,st);
}
 
full_thread(ttn,st,sn,zt,lfxy,or,ir);
}
}
 
module hex_nut(df,hg,sth,clf,cod,crs)
{
 
difference()
{
hex_head(hg,df);
 
hex_countersink_ends(sth/2,cod,clf,crs,hg);
 
screw_thread(cod,sth,clf,hg,crs,-2);
}
}
 
 
module hex_screw(od,st,lf0,lt,rs,cs,df,hg,ntl,ntd)
{
ntr=od/2-(st/2)*cos(lf0)/sin(lf0);
 
union()
{
hex_head(hg,df);
 
translate([0,0,hg])
if ( ntl == 0 )
{
cylinder(h=0.01, r=ntr, center=true);
}
else
{
if ( ntd == -1 )
{
cylinder(h=ntl+0.01, r=ntr, $fn=floor(od*PI/rs), center=false);
}
else if ( ntd == 0 )
{
union()
{
cylinder(h=ntl-st/2,
r=od/2, $fn=floor(od*PI/rs), center=false);
 
translate([0,0,ntl-st/2])
cylinder(h=st/2,
r1=od/2, r2=ntr,
$fn=floor(od*PI/rs), center=false);
}
}
else
{
cylinder(h=ntl, r=ntd/2, $fn=ntd*PI/rs, center=false);
}
}
 
translate([0,0,ntl+hg]) screw_thread(od,st,lf0,lt,rs,cs);
}
}
 
module hex_screw_0(od,st,lf0,lt,rs,cs,df,hg,ntl,ntd)
{
ntr=od/2-(st/2)*cos(lf0)/sin(lf0);
 
union()
{
hex_head_0(hg,df);
 
translate([0,0,hg])
if ( ntl == 0 )
{
cylinder(h=0.01, r=ntr, center=true);
}
else
{
if ( ntd == -1 )
{
cylinder(h=ntl+0.01, r=ntr, $fn=floor(od*PI/rs), center=false);
}
else if ( ntd == 0 )
{
union()
{
cylinder(h=ntl-st/2,
r=od/2, $fn=floor(od*PI/rs), center=false);
 
translate([0,0,ntl-st/2])
cylinder(h=st/2,
r1=od/2, r2=ntr,
$fn=floor(od*PI/rs), center=false);
}
}
else
{
cylinder(h=ntl, r=ntd/2, $fn=ntd*PI/rs, center=false);
}
}
 
translate([0,0,ntl+hg]) screw_thread(od,st,lf0,lt,rs,cs);
}
}
 
module thread_shape(cs,lt,or,ir,sn,st)
{
if ( cs == 0 )
{
cylinder(h=lt, r=or, $fn=sn, center=false);
}
else
{
union()
{
translate([0,0,st/2])
cylinder(h=lt-st+0.005, r=or, $fn=sn, center=false);
 
if ( cs == -1 || cs == 2 )
{
cylinder(h=st/2, r1=ir, r2=or, $fn=sn, center=false);
}
else
{
cylinder(h=st/2, r=or, $fn=sn, center=false);
}
 
translate([0,0,lt-st/2])
if ( cs == 1 || cs == 2 )
{
cylinder(h=st/2, r1=or, r2=ir, $fn=sn, center=false);
}
else
{
cylinder(h=st/2, r=or, $fn=sn, center=false);
}
}
}
}
 
module full_thread(ttn,st,sn,zt,lfxy,or,ir)
{
if(ir >= 0.2)
{
for(i=[0:ttn-1])
{
for(j=[0:sn-1])
assign( pt = [ [0, 0, i*st-st ],
[ir*cos(j*lfxy), ir*sin(j*lfxy), i*st+j*zt-st ],
[ir*cos((j+1)*lfxy), ir*sin((j+1)*lfxy), i*st+(j+1)*zt-st ],
[0,0,i*st],
[or*cos(j*lfxy), or*sin(j*lfxy), i*st+j*zt-st/2 ],
[or*cos((j+1)*lfxy), or*sin((j+1)*lfxy), i*st+(j+1)*zt-st/2 ],
[ir*cos(j*lfxy), ir*sin(j*lfxy), i*st+j*zt ],
[ir*cos((j+1)*lfxy), ir*sin((j+1)*lfxy), i*st+(j+1)*zt ],
[0, 0, i*st+st ] ])
{
polyhedron(points=pt,
triangles=[ [1,0,3],[1,3,6],[6,3,8],[1,6,4],
[0,1,2],[1,4,2],[2,4,5],[5,4,6],[5,6,7],[7,6,8],
[7,8,3],[0,2,3],[3,2,7],[7,2,5] ]);
}
}
}
else
{
echo("Step Degrees too agresive, the thread will not be made!!");
echo("Try to increase de value for the degrees and/or...");
echo(" decrease the pitch value and/or...");
echo(" increase the outer diameter value.");
}
}
 
module hex_head(hg,df)
{
rd0=df/2/sin(60);
x0=0; x1=df/2; x2=x1+hg/2;
y0=0; y1=hg/2; y2=hg;
 
intersection()
{
cylinder(h=hg, r=rd0, $fn=6, center=false);
 
rotate_extrude(convexity=10, $fn=6*round(df*PI/6/0.5))
polygon([ [x0,y0],[x1,y0],[x2,y1],[x1,y2],[x0,y2] ]);
}
}
 
module hex_head_0(hg,df)
{
cylinder(h=hg, r=df/2/sin(60), $fn=6, center=false);
}
 
module hex_countersink_ends(chg,cod,clf,crs,hg)
{
translate([0,0,-0.1])
cylinder(h=chg+0.01,
r1=cod/2,
r2=cod/2-(chg+0.1)*cos(clf)/sin(clf),
$fn=floor(cod*PI/crs), center=false);
 
translate([0,0,hg-chg+0.1])
cylinder(h=chg+0.01,
r1=cod/2-(chg+0.1)*cos(clf)/sin(clf),
r2=cod/2,
$fn=floor(cod*PI/crs), center=false);
}
 
/Modules/Mechanical/WINDGAUGE02A/CAD/SRC/polytests.scad
0,0 → 1,95
/*
* polyTests.scad by aubenc @ Thingiverse
*
* This script contains few examples to show how to use the modules
* included in the library script: polyScrewThead.scad
*
* http://www.thingiverse.com/thing:8796
*
* CC Public Domain
*/
include <polyScrewThread.scad>
 
PI=3.141592;
 
/* Example 01.
* Just a 100mm long threaded rod.
*
* screw_thread(15, // Outer diameter of the thread
* 4, // Step, traveling length per turn, also, tooth height, whatever...
* 55, // Degrees for the shape of the tooth
* (XY plane = 0, Z = 90, btw, 0 and 90 will/should not work...)
* 100, // Length (Z) of the tread
* PI/2, // Resolution, one face each "PI/2" mm of the perimeter,
* 0); // Countersink style:
* -2 - Not even flat ends
* -1 - Bottom (countersink'd and top flat)
* 0 - None (top and bottom flat)
* 1 - Top (bottom flat)
* 2 - Both (countersink'd)
*/
// screw_thread(15,4,55,100,PI/2,2);
 
 
/* Example 02.
* A nut for the previous example.
*
* hexa_nut(24, // Distance between flats
* 8, // Height
* 4, // Step height (the half will be used to countersink the ends)
* 55, // Degrees (same as used for the screw_thread example)
* 15, // Outer diameter of the thread to match
* 0.5) // Resolution, you may want to set this to small values
* (quite high res) to minimize overhang issues
*
*/
// hex_nut(24,8,4,55,15,0.5);
 
 
/* Example 03.
* A screw, threaded all the way, with hex head.
*
* hex_screw(15, // Outer diameter of the thread
* 4, // Thread step
* 55, // Step shape degrees
* 30, // Length of the threaded section of the screw
* 1.5, // Resolution (face at each 2mm of the perimeter)
* 2, // Countersink in both ends
* 24, // Distance between flats for the hex head
* 8, // Height of the hex head (can be zero)
* 0, // Length of the non threaded section of the screw
* 0) // Diameter for the non threaded section of the screw
* -1 - Same as inner diameter of the thread
* 0 - Same as outer diameter of the thread
* value - The given value
*
*/
// hex_screw(15,4,55,30,1.5,2,24,8,0,0);
 
 
/* Example 04.
* A screw with a non threaded section and with hex head.
*
* Same module and parameters than for Example 03 but for the length of the non
* threaded section wich is set to 50mm here.
*
*/
// hex_screw(15,4,55,30,1.5,2,24,8,50,0);
 
 
/* Example 05.
*
* A rod whith a middle section without thread and, a portion of it, hex shaped.
* One end is threaded in the opposite direction than the other.
*
* So... yes, OpenSCAD mirror feature will change the thread direction.
*
*/
/*
translate([0,0,32.5+5+7.5])
union()
{
hex_screw(15,4,55,32.5,1.5,2,15,5,7.5,0);
mirror([0,0,1]) hex_screw(15,4,55,32.5,1.5,2,15,5,7.5,0);
}
*/