No changes between revisions
/Modules/Sensors/IMU01A/SW/PIC16F887/MMA8451Q.c
0,0 → 1,59
void setAK (void) //nastaveni akcelerometru
{
i2c_start();
I2C_Write(AK_W);
I2C_write(0x2A);
I2C_write(0x01); //nastavi aktivni stav
i2c_stop();
}
 
 
int16 akR (int8 H, int8 L) //vycitani hodnot z akcelerometru
{
unsigned int8 XL=0,XH=0;
signed int16 x;
 
i2c_start();
I2C_Write(AK_W);
I2C_write(H);
i2c_start();
I2C_Write(AK_R);
XH=i2c_read(0);
i2c_stop();
 
i2c_start();
I2C_Write(AK_W);
I2C_write(L);
i2c_start();
I2C_Write(AK_R);
XL=i2c_read(0);
i2c_stop();
x = (((unsigned int16) XH << 8) + XL ); //prevod na 16bit hodnotu
x=x/4;
return x;
}
 
int16 akX (void)
{
int16 X;
X= akR (AK_XH, AK_XL);
return X;
}
 
int16 akY (void)
{
int16 Y;
Y= akR (AK_YH, AK_YL);
return Y;
}
 
int16 akZ (void)
{
int16 Z;
Z= akR (AK_ZH, AK_ZL);
return Z;
}
 
/Modules/Sensors/IMU01A/SW/PIC16F887/MMA8451Q.h
0,0 → 1,14
//Adresa obvodu
#define AK_W 0x38 //adresa akcelerometru zápis
#define AK_R 0x39 //adresa akcelerometru ètení
 
 
#define AK_XH 0x01 //osa X LSB
#define AK_XL 0x02 //osa X MSB
#define AK_YH 0x03 //osa Y LSB
#define AK_YL 0x04 //osa Y MSB
#define AK_ZH 0x05 //osa Z LSB
#define AK_ZL 0x06 //osa Z MSB
 
 
#include "MMA8451Q.c"
/Modules/Sensors/IMU01A/SW/PIC16F887/main.bak
0,0 → 1,56
//Akcelerometr IMU01A
//(c) MLAB Jan Chroust 2013
 
 
#include <main.h>
 
#define PIN_SDA PIN_C4
#define PIN_SCL PIN_C3
#use i2c(master, sda=PIN_SDA, scl=PIN_SCL) //I2C
#use rs232(baud=9600,parity=N,xmit=PIN_C7,rcv=PIN_C6,bits=8) //rcv TXD xmit RXD
#include <math.h>
#include <MMA8451Q.h>
 
 
//Akcelerometr
#define AK_W 0x38 //adresa akcelerometru zápis
#define AK_R 0x39 //adresa akcelerometru ètení
#define AK_XH 0x01 //osa X LSB
#define AK_XL 0x02 //osa X MSB
#define AK_YH 0x03 //osa Y LSB
#define AK_YL 0x04 //osa Y MSB
#define AK_ZH 0x05 //osa Z LSB
#define AK_ZL 0x06 //osa Z MSB
 
signed int16 X, Y, Z; //promenne pro akcelerometr
 
void main()
{
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2);
setup_spi(SPI_SS_DISABLED);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DISABLED,0,1);
setup_ccp1(CCP_OFF);
setup_comparator(NC_NC_NC_NC);
 
setAK(); //nastaveni akcelerometru
 
printf("Akcelerometr IMU01A - MMA8451Q \r\n",);
printf("(c) MLAB JACHO 2013 \r\n",);
while(TRUE)
{
X=akX ();
Y=akY ();
Z=akZ ();
printf("Namerene hodnoty: \r\n",);
printf("Osa X: %Ld \r\n",X);
printf("Osa Y: %Ld \r\n",Y);
printf("Osa Z: %Ld \r\n",Z);
delay_ms (2000);
}
}
 
/Modules/Sensors/IMU01A/SW/PIC16F887/main.c
0,0 → 1,45
//Akcelerometr IMU01A
//(c) MLAB Jan Chroust 2013
 
 
#include <main.h>
 
#define PIN_SDA PIN_C4
#define PIN_SCL PIN_C3
#use i2c(master, sda=PIN_SDA, scl=PIN_SCL) //I2C
#use rs232(baud=9600,parity=N,xmit=PIN_C7,rcv=PIN_C6,bits=8) //rcv TXD xmit RXD
#include <math.h>
#include <MMA8451Q.h>
 
signed int16 X, Y, Z; //promenne pro akcelerometr
 
void main()
{
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2);
setup_spi(SPI_SS_DISABLED);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DISABLED,0,1);
setup_ccp1(CCP_OFF);
setup_comparator(NC_NC_NC_NC);
 
setAK(); //nastaveni akcelerometru
 
printf("Akcelerometr IMU01A - MMA8451Q \r\n",);
printf("(c) MLAB JACHO 2013 \r\n",);
while(TRUE)
{
X=akX ();
Y=akY ();
Z=akZ ();
printf("Namerene hodnoty: \r\n",);
printf("Osa X: %Ld \r\n",X);
printf("Osa Y: %Ld \r\n",Y);
printf("Osa Z: %Ld \r\n",Z);
delay_ms (2000);
}
}
 
/Modules/Sensors/IMU01A/SW/PIC16F887/main.cof
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/Modules/Sensors/IMU01A/SW/PIC16F887/main.err
0,0 → 1,2
Memory usage: ROM=14% RAM=4% - 7%
0 Errors, 0 Warnings.
/Modules/Sensors/IMU01A/SW/PIC16F887/main.esym
0,0 → 1,590
D G "__PCM__" 0 58 ""4.106""
D G "__DEVICE__" 0 58 "887"
D G "__DATE__" 0 58 ""11-5-13""
D G "__TIME__" 0 58 ""10:50:06"" "Akcelerometr IMU01A"
d G "PIN_A0" 2 20 "40"
d G "PIN_A1" 2 21 "41"
d G "PIN_A2" 2 22 "42"
d G "PIN_A3" 2 23 "43"
d G "PIN_A4" 2 24 "44"
d G "PIN_A5" 2 25 "45"
d G "PIN_A6" 2 26 "46"
d G "PIN_A7" 2 27 "47"
d G "PIN_B0" 2 29 "48"
d G "PIN_B1" 2 30 "49"
d G "PIN_B2" 2 31 "50"
d G "PIN_B3" 2 32 "51"
d G "PIN_B4" 2 33 "52"
d G "PIN_B5" 2 34 "53"
d G "PIN_B6" 2 35 "54"
d G "PIN_B7" 2 36 "55"
d G "PIN_C0" 2 38 "56"
d G "PIN_C1" 2 39 "57"
d G "PIN_C2" 2 40 "58"
d G "PIN_C3" 2 41 "59"
d G "PIN_C4" 2 42 "60"
d G "PIN_C5" 2 43 "61"
d G "PIN_C6" 2 44 "62"
d G "PIN_C7" 2 45 "63"
d G "PIN_D0" 2 47 "64"
d G "PIN_D1" 2 48 "65"
d G "PIN_D2" 2 49 "66"
d G "PIN_D3" 2 50 "67"
d G "PIN_D4" 2 51 "68"
d G "PIN_D5" 2 52 "69"
d G "PIN_D6" 2 53 "70"
d G "PIN_D7" 2 54 "71"
d G "PIN_E0" 2 56 "72"
d G "PIN_E1" 2 57 "73"
d G "PIN_E2" 2 58 "74"
d G "PIN_E3" 2 59 "75"
d G "FALSE" 2 62 "0"
d G "TRUE" 2 63 "1"
d G "BYTE" 2 65 "int8"
d G "BOOLEAN" 2 66 "int1"
d G "getc" 2 68 "getch"
d G "fgetc" 2 69 "getch"
d G "getchar" 2 70 "getch"
d G "putc" 2 71 "putchar"
d G "fputc" 2 72 "putchar"
d G "fgets" 2 73 "gets"
d G "fputs" 2 74 "puts"
d G "WDT_FROM_SLEEP" 2 79 "3"
d G "WDT_TIMEOUT" 2 80 "11"
d G "MCLR_FROM_SLEEP" 2 81 "19"
d G "MCLR_FROM_RUN" 2 82 "27"
d G "NORMAL_POWER_UP" 2 83 "25"
d G "BROWNOUT_RESTART" 2 84 "26"
d G "T0_INTERNAL" 2 91 "0"
d G "T0_EXT_L_TO_H" 2 92 "32"
d G "T0_EXT_H_TO_L" 2 93 "48"
d G "T0_DIV_1" 2 95 "8"
d G "T0_DIV_2" 2 96 "0"
d G "T0_DIV_4" 2 97 "1"
d G "T0_DIV_8" 2 98 "2"
d G "T0_DIV_16" 2 99 "3"
d G "T0_DIV_32" 2 100 "4"
d G "T0_DIV_64" 2 101 "5"
d G "T0_DIV_128" 2 102 "6"
d G "T0_DIV_256" 2 103 "7"
d G "T0_8_BIT" 2 106 "0"
d G "RTCC_INTERNAL" 2 108 "0" "The following are provided for compatibility"
d G "RTCC_EXT_L_TO_H" 2 109 "32" "with older compiler versions"
d G "RTCC_EXT_H_TO_L" 2 110 "48"
d G "RTCC_DIV_1" 2 111 "8"
d G "RTCC_DIV_2" 2 112 "0"
d G "RTCC_DIV_4" 2 113 "1"
d G "RTCC_DIV_8" 2 114 "2"
d G "RTCC_DIV_16" 2 115 "3"
d G "RTCC_DIV_32" 2 116 "4"
d G "RTCC_DIV_64" 2 117 "5"
d G "RTCC_DIV_128" 2 118 "6"
d G "RTCC_DIV_256" 2 119 "7"
d G "RTCC_8_BIT" 2 120 "0"
d G "WDT_18MS" 2 132 "8"
d G "WDT_36MS" 2 133 "9"
d G "WDT_72MS" 2 134 "10"
d G "WDT_144MS" 2 135 "11"
d G "WDT_288MS" 2 136 "12"
d G "WDT_576MS" 2 137 "13"
d G "WDT_1152MS" 2 138 "14"
d G "WDT_2304MS" 2 139 "15"
d G "WDT_ON" 2 143 "0x4100"
d G "WDT_OFF" 2 144 "0"
d G "WDT_DIV_16" 2 145 "0x100"
d G "WDT_DIV_8" 2 146 "0x300"
d G "WDT_DIV_4" 2 147 "0x500"
d G "WDT_DIV_2" 2 148 "0x700"
d G "WDT_TIMES_1" 2 149 "0x900" "Default"
d G "WDT_TIMES_2" 2 150 "0xB00"
d G "WDT_TIMES_4" 2 151 "0xD00"
d G "WDT_TIMES_8" 2 152 "0xF00"
d G "WDT_TIMES_16" 2 153 "0x1100"
d G "WDT_TIMES_32" 2 154 "0x1300"
d G "WDT_TIMES_64" 2 155 "0x1500"
d G "WDT_TIMES_128" 2 156 "0x1700"
d G "T1_DISABLED" 2 162 "0"
d G "T1_INTERNAL" 2 163 "5"
d G "T1_EXTERNAL" 2 164 "7"
d G "T1_EXTERNAL_SYNC" 2 165 "3"
d G "T1_CLK_OUT" 2 167 "8"
d G "T1_DIV_BY_1" 2 169 "0"
d G "T1_DIV_BY_2" 2 170 "0x10"
d G "T1_DIV_BY_4" 2 171 "0x20"
d G "T1_DIV_BY_8" 2 172 "0x30"
d G "T1_GATE" 2 174 "0x40"
d G "T1_GATE_INVERTED" 2 175 "0xC0"
d G "T2_DISABLED" 2 180 "0"
d G "T2_DIV_BY_1" 2 181 "4"
d G "T2_DIV_BY_4" 2 182 "5"
d G "T2_DIV_BY_16" 2 183 "6"
d G "CCP_OFF" 2 189 "0"
d G "CCP_CAPTURE_FE" 2 190 "4"
d G "CCP_CAPTURE_RE" 2 191 "5"
d G "CCP_CAPTURE_DIV_4" 2 192 "6"
d G "CCP_CAPTURE_DIV_16" 2 193 "7"
d G "CCP_COMPARE_SET_ON_MATCH" 2 194 "8"
d G "CCP_COMPARE_CLR_ON_MATCH" 2 195 "9"
d G "CCP_COMPARE_INT" 2 196 "0xA"
d G "CCP_COMPARE_RESET_TIMER" 2 197 "0xB"
d G "CCP_PWM" 2 198 "0xC"
d G "CCP_PWM_PLUS_1" 2 199 "0x1c"
d G "CCP_PWM_PLUS_2" 2 200 "0x2c"
d G "CCP_PWM_PLUS_3" 2 201 "0x3c"
d G "CCP_PWM_H_H" 2 206 "0x0c"
d G "CCP_PWM_H_L" 2 207 "0x0d"
d G "CCP_PWM_L_H" 2 208 "0x0e"
d G "CCP_PWM_L_L" 2 209 "0x0f"
d G "CCP_PWM_FULL_BRIDGE" 2 211 "0x40"
d G "CCP_PWM_FULL_BRIDGE_REV" 2 212 "0xC0"
d G "CCP_PWM_HALF_BRIDGE" 2 213 "0x80"
d G "CCP_SHUTDOWN_ON_COMP1" 2 215 "0x100000"
d G "CCP_SHUTDOWN_ON_COMP2" 2 216 "0x200000"
d G "CCP_SHUTDOWN_ON_COMP" 2 217 "0x300000"
d G "CCP_SHUTDOWN_ON_INT0" 2 218 "0x400000"
d G "CCP_SHUTDOWN_ON_COMP1_INT0" 2 219 "0x500000"
d G "CCP_SHUTDOWN_ON_COMP2_INT0" 2 220 "0x600000"
d G "CCP_SHUTDOWN_ON_COMP_INT0" 2 221 "0x700000"
d G "CCP_SHUTDOWN_AC_L" 2 223 "0x000000"
d G "CCP_SHUTDOWN_AC_H" 2 224 "0x040000"
d G "CCP_SHUTDOWN_AC_F" 2 225 "0x080000"
d G "CCP_SHUTDOWN_BD_L" 2 227 "0x000000"
d G "CCP_SHUTDOWN_BD_H" 2 228 "0x010000"
d G "CCP_SHUTDOWN_BD_F" 2 229 "0x020000"
d G "CCP_SHUTDOWN_RESTART" 2 231 "0x80000000"
d G "CCP_PULSE_STEERING_A" 2 233 "0x01000000"
d G "CCP_PULSE_STEERING_B" 2 234 "0x02000000"
d G "CCP_PULSE_STEERING_C" 2 235 "0x04000000"
d G "CCP_PULSE_STEERING_D" 2 236 "0x08000000"
d G "CCP_PULSE_STEERING_SYNC" 2 237 "0x10000000"
d G "SPI_MASTER" 2 245 "0x20"
d G "SPI_SLAVE" 2 246 "0x24"
d G "SPI_L_TO_H" 2 247 "0"
d G "SPI_H_TO_L" 2 248 "0x10"
d G "SPI_CLK_DIV_4" 2 249 "0"
d G "SPI_CLK_DIV_16" 2 250 "1"
d G "SPI_CLK_DIV_64" 2 251 "2"
d G "SPI_CLK_T2" 2 252 "3"
d G "SPI_SS_DISABLED" 2 253 "1"
d G "SPI_SAMPLE_AT_END" 2 255 "0x8000"
d G "SPI_XMIT_L_TO_H" 2 256 "0x4000"
d G "UART_ADDRESS" 2 262 "2"
d G "UART_DATA" 2 263 "4"
d G "UART_AUTODETECT" 2 264 "8"
d G "UART_AUTODETECT_NOWAIT" 2 265 "9"
d G "UART_WAKEUP_ON_RDA" 2 266 "10"
d G "UART_SEND_BREAK" 2 267 "13"
d G "NC_NC_NC_NC" 2 273 "0x00"
d G "NC_NC" 2 274 "0x00"
d G "CP1_A0_A3" 2 277 "0x00090080"
d G "CP1_A1_A3" 2 278 "0x000A0081"
d G "CP1_B3_A3" 2 279 "0x00880082"
d G "CP1_B1_A3" 2 280 "0x00280083"
d G "CP1_A0_VREF" 2 281 "0x00010084"
d G "CP1_A1_VREF" 2 282 "0x00020085"
d G "CP1_B3_VREF" 2 283 "0x00800086"
d G "CP1_B1_VREF" 2 284 "0x00200087"
d G "CP1_OUT_ON_A4" 2 286 "0x00000020"
d G "CP1_INVERT" 2 287 "0x00000010"
d G "CP1_ABSOLUTE_VREF" 2 288 "0x20000000"
d G "CP2_A0_A2" 2 291 "0x00058000"
d G "CP2_A1_A2" 2 292 "0x00068100"
d G "CP2_B3_A2" 2 293 "0x00848200"
d G "CP2_B1_A2" 2 294 "0x00248300"
d G "CP2_A0_VREF" 2 295 "0x00018400"
d G "CP2_A1_VREF" 2 296 "0x00028500"
d G "CP2_B3_VREF" 2 297 "0x00808600"
d G "CP2_B1_VREF" 2 298 "0x00208700"
d G "CP2_OUT_ON_A5" 2 300 "0x00002000"
d G "CP2_INVERT" 2 301 "0x00001000"
d G "CP2_ABSOLUTE_VREF" 2 302 "0x10000000"
d G "CP2_T1_SYNC" 2 305 "0x01000000"
d G "CP2_T1_GATE" 2 306 "0x02000000"
d G "VREF_LOW" 2 315 "0xa0"
d G "VREF_HIGH" 2 316 "0x80"
d G "OSC_31KHZ" 2 322 "1"
d G "OSC_125KHZ" 2 323 "0x11"
d G "OSC_250KHZ" 2 324 "0x21"
d G "OSC_500KHZ" 2 325 "0x31"
d G "OSC_1MHZ" 2 326 "0x41"
d G "OSC_2MHZ" 2 327 "0x51"
d G "OSC_4MHZ" 2 328 "0x61"
d G "OSC_8MHZ" 2 329 "0x71"
d G "OSC_INTRC" 2 330 "1"
d G "OSC_NORMAL" 2 331 "0"
d G "OSC_STATE_STABLE" 2 333 "4"
d G "OSC_31KHZ_STABLE" 2 334 "2"
d G "ADC_OFF" 2 342 "0" "ADC Off"
d G "ADC_CLOCK_DIV_2" 2 343 "0x100"
d G "ADC_CLOCK_DIV_8" 2 344 "0x40"
d G "ADC_CLOCK_DIV_32" 2 345 "0x80"
d G "ADC_CLOCK_INTERNAL" 2 346 "0xc0" "Internal 2-6us"
d G "sAN0" 2 350 "1" "| A0"
d G "sAN1" 2 351 "2" "| A1"
d G "sAN2" 2 352 "4" "| A2"
d G "sAN3" 2 353 "8" "| A3"
d G "sAN4" 2 354 "16" "| A5"
d G "sAN5" 2 355 "32" "| E0"
d G "sAN6" 2 356 "64" "| E1"
d G "sAN7" 2 357 "128" "| E2"
d G "sAN8" 2 358 "0x10000" "| B2"
d G "sAN9" 2 359 "0x20000" "| B3"
d G "sAN10" 2 360 "0x40000" "| B1"
d G "sAN11" 2 361 "0x80000" "| B4"
d G "sAN12" 2 362 "0x100000" "| B0"
d G "sAN13" 2 363 "0x200000" "| B5"
d G "NO_ANALOGS" 2 364 "0" "None"
d G "ALL_ANALOG" 2 365 "0x1F00FF" "A0 A1 A2 A3 A5 E0 E1 E2 B0 B1 B2 B3 B4 B5"
d G "VSS_VDD" 2 368 "0x0000" "| Range 0-Vdd"
d G "VSS_VREF" 2 369 "0x1000" "| Range 0-Vref"
d G "VREF_VREF" 2 370 "0x3000" "| Range Vref-Vref"
d G "VREF_VDD" 2 371 "0x2000" "| Range Vref-Vdd"
d G "ADC_START_AND_READ" 2 375 "7" "This is the default if nothing is specified"
d G "ADC_START_ONLY" 2 376 "1"
d G "ADC_READ_ONLY" 2 377 "6"
d G "L_TO_H" 2 389 "0x40"
d G "H_TO_L" 2 390 "0"
d G "GLOBAL" 2 392 "0x0BC0"
d G "INT_RTCC" 2 393 "0x000B20"
d G "INT_RB" 2 394 "0x01FF0B08"
d G "INT_EXT_L2H" 2 395 "0x50000B10"
d G "INT_EXT_H2L" 2 396 "0x60000B10"
d G "INT_EXT" 2 397 "0x000B10"
d G "INT_AD" 2 398 "0x008C40"
d G "INT_TBE" 2 399 "0x008C10"
d G "INT_RDA" 2 400 "0x008C20"
d G "INT_TIMER1" 2 401 "0x008C01"
d G "INT_TIMER2" 2 402 "0x008C02"
d G "INT_CCP1" 2 403 "0x008C04"
d G "INT_CCP2" 2 404 "0x008D01"
d G "INT_SSP" 2 405 "0x008C08"
d G "INT_BUSCOL" 2 406 "0x008D08"
d G "INT_EEPROM" 2 407 "0x008D10"
d G "INT_TIMER0" 2 408 "0x000B20"
d G "INT_OSC_FAIL" 2 409 "0x008D80"
d G "INT_COMP" 2 410 "0x008D20"
d G "INT_COMP2" 2 411 "0x008D40"
d G "INT_ULPWU" 2 412 "0x008D04"
d G "INT_RB0" 2 413 "0x0010B08"
d G "INT_RB1" 2 414 "0x0020B08"
d G "INT_RB2" 2 415 "0x0040B08"
d G "INT_RB3" 2 416 "0x0080B08"
d G "INT_RB4" 2 417 "0x0100B08"
d G "INT_RB5" 2 418 "0x0200B08"
d G "INT_RB6" 2 419 "0x0400B08"
d G "INT_RB7" 2 420 "0x0800B08"
D G "PIN_SDA" 0 7 "PIN_C4"
D G "PIN_SCL" 0 8 "PIN_C3"
D G "MATH_H" 3 21 ""
D G "PI" 3 26 "3.1415926535897932"
D G "SQRT2" 3 29 "1.4142135623730950"
C L "CEIL_FLOOR" 3 2 3 "FUNCTION"
F G "CEIL_FLOOR" 3 36 "float(float x,int8 n)"
V L "x" 3 36 "float"
V L "n" 3 36 "int8"
V L "y" 3 38 "float"
V L "res" 3 38 "float"
V L "l" 3 39 "int16"
V L "s" 3 40 "int1"
C L "floor" 3 2 5 "FUNCTION"
F G "floor" 3 192 "float(float x)"
V L "x" 3 192 "float"
C L "ceil" 3 2 5 "FUNCTION"
F G "ceil" 3 218 "float(float x)"
V L "x" 3 218 "float"
D G "fabs" 3 244 "abs"
C L "fmod" 3 2 6 "FUNCTION"
F G "fmod" 3 256 "float(float x,float y)"
V L "x" 3 256 "float"
V L "y" 3 256 "float"
V L "i" 3 258 "float"
D G "LN2" 3 319 "0.6931471805599453"
V G "pe" 3 321 "float[6]"
F G "exp" 3 325 "float(float x)"
V L "x" 3 325 "float"
V L "y" 3 327 "float"
V L "res" 3 327 "float"
V L "r" 3 327 "float"
V L "n" 3 331 "sint8"
V L "s" 3 332 "int1"
C L "exp" 3 2 1 "FUNCTION"
V G "pl" 3 496 "float[4]"
V G "ql" 3 497 "float[4]"
C L "log" 3 2 3 "FUNCTION"
F G "log" 3 505 "float(float x)"
V L "x" 3 505 "float"
V L "y" 3 507 "float"
V L "res" 3 507 "float"
V L "r" 3 507 "float"
V L "y2" 3 507 "float"
V L "n" 3 511 "sint8"
C L "log" 3 2 1 "FUNCTION"
D G "LN10" 3 729 "2.3025850929940456"
C L "log10" 3 2 3 "FUNCTION"
F G "log10" 3 737 "float(float x)"
V L "x" 3 737 "float"
V L "r" 3 739 "float"
C L "modf" 3 2 8 "FUNCTION"
F G "modf" 3 778 "float(float value,*float iptr)"
V L "value" 3 778 "float"
V L "iptr" 3 778 "*float"
C L "pwr" 3 2 6 "FUNCTION"
F G "pwr" 3 806 "float(float x,float y)"
V L "x" 3 806 "float"
V L "y" 3 806 "float"
C L "pow" 3 2 7 "FUNCTION"
F G "pow" 3 869 "float(float x,float y)"
V L "x" 3 869 "float"
V L "y" 3 869 "float"
C L "sqrt" 3 2 5 "FUNCTION"
F G "sqrt" 3 930 "float(float x)"
V L "x" 3 930 "float"
V L "y" 3 932 "float"
V L "res" 3 932 "float"
V L "p" 3 936 "*int8"
D G "PI_DIV_BY_TWO" 3 1125 "1.5707963267948966"
C L "cos" 3 2 3 "FUNCTION"
F G "cos" 3 1136 "float(float x)"
V L "x" 3 1136 "float"
V L "y" 3 1138 "float"
V L "t" 3 1138 "float"
V L "t2" 3 1138 "float"
V L "quad" 3 1139 "int8"
V L "i" 3 1139 "int8"
V L "frac" 3 1140 "float"
V L "p" 3 1141 "float[6]" "by the series definition for cosine"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 2 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "cos" 3 2 1 "FUNCTION"
C L "sin" 3 2 5 "FUNCTION"
F G "sin" 3 1278 "float(float x)"
V L "x" 3 1278 "float"
C L "tan" 3 2 5 "FUNCTION"
F G "tan" 3 1304 "float(float x)"
V L "x" 3 1304 "float"
V L "c" 3 1306 "float"
V L "s" 3 1306 "float"
V G "pas" 3 1344 "float[3]"
V G "qas" 3 1345 "float[3]"
F G "ASIN_COS" 3 1347 "float(float x,int8 n)"
V L "x" 3 1347 "float"
V L "n" 3 1347 "int8"
V L "y" 3 1349 "float"
V L "res" 3 1349 "float"
V L "r" 3 1349 "float"
V L "y2" 3 1349 "float"
V L "s" 3 1350 "int1"
C L "ASIN_COS" 3 2 1 "FUNCTION"
C L "ASIN_COS" 3 2 1 "FUNCTION"
C L "asin" 3 2 5 "FUNCTION"
F G "asin" 3 1493 "float(float x)"
V L "x" 3 1493 "float"
V L "r" 3 1495 "float"
C L "acos" 3 2 5 "FUNCTION"
F G "acos" 3 1527 "float(float x)"
V L "x" 3 1527 "float"
V L "r" 3 1529 "float"
V G "pat" 3 1555 "float[4]"
V G "qat" 3 1556 "float[4]"
C L "atan" 3 2 3 "FUNCTION"
F G "atan" 3 1564 "float(float x)"
V L "x" 3 1564 "float"
V L "y" 3 1566 "float"
V L "res" 3 1566 "float"
V L "r" 3 1566 "float"
V L "s" 3 1567 "int1"
V L "flag" 3 1567 "int1"
C L "atan" 3 2 1 "FUNCTION"
C L "atan2" 3 2 7 "FUNCTION"
F G "atan2" 3 1697 "float(float y,float x)"
V L "y" 3 1697 "float"
V L "x" 3 1697 "float"
V L "z" 3 1699 "float"
V L "sign" 3 1700 "int1"
V L "quad" 3 1701 "int8"
C L "atan2" 3 2 1 "FUNCTION"
C L "atan2" 3 2 1 "FUNCTION"
C L "cosh" 3 2 7 "FUNCTION"
F G "cosh" 3 1919 "float(float x)"
V L "x" 3 1919 "float"
C L "sinh" 3 2 6 "FUNCTION"
F G "sinh" 3 1946 "float(float x)"
V L "x" 3 1946 "float"
C L "tanh" 3 2 6 "FUNCTION"
F G "tanh" 3 1976 "float(float x)"
V L "x" 3 1976 "float"
D G "LOG2" 3 2006 ".30102999566398119521"
F G "frexp" 3 2007 "float(float x,*sint8 exp)"
V L "x" 3 2007 "float"
V L "exp" 3 2007 "*sint8"
V L "res" 3 2009 "float"
V L "sign" 3 2010 "int1"
C L "ldexp" 3 2 6 "FUNCTION"
F G "ldexp" 3 2152 "float(float value,sint8 exp)"
V L "value" 3 2152 "float"
V L "exp" 3 2152 "sint8"
D G "AK_W" 4 2 "0x38" "adresa akcelerometru zápis"
D G "AK_R" 4 3 "0x39" "adresa akcelerometru ètení"
D G "AK_XH" 4 6 "0x01" "osa X LSB"
D G "AK_XL" 4 7 "0x02" "osa X MSB"
D G "AK_YH" 4 8 "0x03" "osa Y LSB"
D G "AK_YL" 4 9 "0x04" "osa Y MSB"
D G "AK_ZH" 4 10 "0x05" "osa Z LSB"
D G "AK_ZL" 4 11 "0x06" "osa Z MSB"
F G "setAK" 5 1 "void()" "nastaveni akcelerometru"
C L "setAK" 5 6 1 "FUNCTION"
F G "akR" 5 12 "int16(int8 H,int8 l)"
V L "H" 5 12 "int8"
V L "l" 5 12 "int8" "vycitani hodnot z akcelerometru"
V L "XL" 5 14 "int8"
V L "XH" 5 14 "int8"
V L "x" 5 15 "sint16"
C L "akR" 5 6 1 "FUNCTION"
F G "akX" 5 39 "int16()"
V L "x" 5 41 "int16"
F G "akY" 5 46 "int16()"
V L "y" 5 48 "int16"
F G "akZ" 5 53 "int16()"
V L "z" 5 55 "int16"
V G "x" 0 14 "sint16"
V G "y" 0 14 "sint16"
V G "z" 0 14 "sint16" "promenne pro akcelerometr"
F G "MAIN" 0 16 "void()"
C L "MAIN" 0 27 1 "FUNCTION"
F B "reset_cpu" 0 0
F B "abs" 1 0
F B "sleep_ulpwu" 1 0
F B "sleep" 0 0
F B "delay_cycles" 1 0
F B "read_bank" 2 0
F B "write_bank" 3 0
F B "shift_left" 2 2
F B "shift_right" 2 2
F B "rotate_left" 2 0
F B "rotate_right" 2 0
F B "_mul" 2 0
F B "memset" 3 0
F B "isamoung" 2 0
F B "isamong" 2 0
F B "bit_set" 2 0
F B "bit_clear" 2 0
F B "bit_test" 2 0
F B "toupper" 1 0
F B "tolower" 1 0
F B "swap" 1 0
F B "printf" 1 255
F B "fprintf" 1 255
F B "sprintf" 1 255
F B "make8" 2 0
F B "make16" 2 0
F B "make32" 1 255
F B "label_address" 1 1
F B "goto_address" 1 0
F B "_va_arg" 1 0
F B "offsetofbit" 2 2
F B "enable_interrupts" 1 0
F B "disable_interrupts" 1 0
F B "interrupt_active" 1 0
F B "clear_interrupt" 1 0
F B "jump_to_isr" 1 0
F B "ext_int_edge" 1 2
F B "read_eeprom" 1 0
F B "write_eeprom" 2 0
F B "read_program_eeprom" 1 0
F B "write_program_eeprom" 2 0
F B "write_program_memory" 4 0
F B "write_program_memory8" 4 0
F B "read_program_memory" 4 0
F B "read_program_memory8" 4 0
F B "erase_program_eeprom" 1 0
F B "strcpy" 2 0
F B "memcpy" 3 0
F B "strstr100" 2 0
F B "output_high" 1 0
F B "output_low" 1 0
F B "input" 1 0
F B "input_state" 1 0
F B "output_float" 1 0
F B "output_drive" 1 0
F B "output_bit" 1 1
F B "output_toggle" 1 0
F B "output_a" 1 0
F B "output_b" 1 0
F B "output_c" 1 0
F B "output_d" 1 0
F B "output_e" 1 0
F B "input_a" 0 0
F B "input_b" 0 0
F B "input_c" 0 0
F B "input_d" 0 0
F B "input_e" 0 0
F B "set_tris_a" 1 0
F B "set_tris_b" 1 0
F B "set_tris_c" 1 0
F B "set_tris_d" 1 0
F B "set_tris_e" 1 0
F B "get_tris_a" 0 0
F B "get_tris_b" 0 0
F B "get_tris_c" 0 0
F B "get_tris_d" 0 0
F B "get_tris_e" 0 0
F B "input_change_a" 0 0
F B "input_change_b" 0 0
F B "input_change_c" 0 0
F B "input_change_d" 0 0
F B "input_change_e" 0 0
F B "port_b_pullups" 1 0
F B "setup_counters" 2 0
F B "setup_wdt" 1 0
F B "restart_cause" 0 0
F B "restart_wdt" 0 0
F B "get_rtcc" 0 0
F B "set_rtcc" 1 0
F B "get_timer0" 0 0
F B "set_timer0" 1 0
F B "setup_comparator" 1 0
F B "setup_port_a" 1 0
F B "setup_adc_ports" 1 0
F B "setup_adc" 1 0
F B "set_adc_channel" 1 0
F B "read_adc" 0 1
F B "adc_done" 0 0
F B "setup_timer_0" 1 0
F B "setup_vref" 1 0
F B "setup_timer_1" 1 0
F B "get_timer1" 0 0
F B "set_timer1" 1 0
F B "setup_timer_2" 3 0
F B "get_timer2" 0 0
F B "set_timer2" 1 0
F B "setup_ccp1" 1 2
F B "set_pwm1_duty" 1 0
F B "setup_ccp2" 1 0
F B "set_pwm2_duty" 1 0
F B "setup_oscillator" 1 2
F B "setup_spi" 1 0
F B "spi_read" 0 1
F B "spi_write" 1 0
F B "spi_data_is_in" 0 0
F B "setup_spi2" 1 0
F B "spi_read2" 0 1
F B "spi_write2" 1 0
F B "spi_data_is_in2" 0 0
F B "brownout_enable" 1 0
F B "delay_ms" 1 0
F B "delay_us" 1 0
F B "i2c_read" 0 2
F B "i2c_write" 1 2
F B "i2c_start" 0 2
F B "i2c_stop" 0 1
F B "i2c_isr_state" 0 1
F B "putchar" 1 2
F B "puts" 1 2
F B "getch" 0 1
F B "gets" 1 3
F B "kbhit" 0 1
/Modules/Sensors/IMU01A/SW/PIC16F887/main.h
0,0 → 1,19
#include <16F887.h>
#device adc=8
 
#FUSES NOWDT //No Watch Dog Timer
#FUSES INTRC //Internal RC Osc
#FUSES NOPUT //No Power Up Timer
#FUSES MCLR //Master Clear pin enabled
#FUSES NOPROTECT //Code not protected from reading
#FUSES NOCPD //No EE protection
#FUSES NOBROWNOUT //No brownout reset
#FUSES IESO //Internal External Switch Over mode enabled
#FUSES FCMEN //Fail-safe clock monitor enabled
#FUSES NOLVP //No low voltage prgming, B3(PIC16) or B5(PIC18) used for I/O
#FUSES NODEBUG //No Debug mode for ICD
#FUSES NOWRT //Program memory not write protected
#FUSES BORV40 //Brownout reset at 4.0V
 
#use delay(clock=8000000)
 
/Modules/Sensors/IMU01A/SW/PIC16F887/main.hex
0,0 → 1,148
:1000000003308A00972B0000C135E332EC32F2371F
:10001000ED327439A024CD2AB01841102D10CD2610
:10002000411CB41AB128A0060A00A83129104D2697
:1000300041212025C121C8272019B0183310A0065E
:100040000A00CE30ED32F232EE3220346F32EE372B
:10005000F43C3A100D050001CF396110581DA01273
:100060004C32A0060A00CF396110591DA0124C3243
:10007000A0060A00CF3961105A1DA0124C32A0060A
:100080000A000830F80000008711A011200883162C
:10009000870000008312AF0D0712031C552820169D
:1000A00020088316870059288312201220088316FF
:1000B000870000008312A015200883168700831292
:1000C000871D6028F80B432800008711A011200825
:1000D00083168700000083122016200883168700ED
:1000E000000000008312A0152008831687008312E9
:1000F000871D7828F8010000071A78148711A011CD
:100100002008831687008312071220122008831606
:10011000870083120800201620088316870000003D
:100120008312A0152008831687000000831207128F
:100130002012200883168700000083128711A01167
:1001400020088316870038308312AF0041202A3000
:10015000AF0041200130AF0041202012200883165B
:10016000870000008312A0152008831687008312E1
:10017000871DB8280000BC28000020162008831620
:100180008700000083128A110A12FF2BA013200897
:1001900083168700831287130830F800CF280000E9
:1001A000F817E028F813B00C03188717031C8713FF
:1001B0007817E0287813F80BD328DE28000087177B
:1001C0003F308400840BE2280000F81BD228781B03
:1001D000DA280800831603178C170C14000000009F
:1001E00083120C087F3903192E290313A700031764
:1001F0000D080313A80003170F080313A90027080D
:10020000B000C620280803178D0003132908031720
:100210008F0083168C170C140000000083120C0D45
:100220000E0D7F3903192E290313A70003170D089C
:100230000313A80003170F080313A9002708B00031
:10024000C620280803178D000313290803178F0001
:100250008D0A03198F0A0313EA28031703130800F2
:100260000830B0007708B1002016200883168700F8
:1002700000008312A0152008831687008312871DB3
:100280003F29071A0314071E0310F80D0000A011E0
:1002900020088316870083128711B00B342920169B
:1002A0002008831687000000831207123108031903
:1002B0005E29201220088316870083120000A015F3
:1002C0002008831687008312871D64290000871188
:1002D000A011200883168700000083120712201245
:1002E00020088316870083120800AB01AC0120169A
:1002F00020088316870000008312A01520088316AB
:10030000870000008312071220122008831687003E
:10031000000083128711A01120088316870038304F
:100320008312AF0041202908AF0041202016200889
:100330008316870000008312A0152008831687000B
:1003400000008312871DA22907122012200883169D
:100350008700000083128711A011200883168700F0
:1003600039308312AF004120F70130217808AC000A
:10037000201220088316870000008312A015200891
:10038000831687008312871DC3290000C729000038
:1003900020162008831687000000831220162008EC
:1003A0008316870000008312A0152008831687009B
:1003B0000000831207122012200883168700000015
:1003C00083128711A011200883168700383083120A
:1003D000AF0041202A08AF004120201620088316D4
:1003E000870000008312A0152008831687000000F4
:1003F0008312871DF929071220122008831687000F
:10040000000083128711A01120088316870039305D
:100410008312AF004120F70130217808AB00201291
:1004200020088316870000008312A0152008831679
:1004300087008312871D1A2A00001E2A000020163A
:1004400020088316870000008312B0012C08AF003B
:10045000B000AF012B082F07F8003008FA0003188E
:10046000FA0A7808AD007A08AE002E08B0002D0810
:10047000AF00B2010430B100300832068039B40058
:10048000B01F472AAF09B009AF0A0319B00AB21F5B
:100490004E2AB109B209B10A0319B20AF801F901E9
:1004A000F701FA013208031D582A31080319722A8C
:1004B0001030B3000310AF0DB00DF70DFA0D320878
:1004C0007A02031D652A31087702031C6E2A31085F
:1004D000F702031CFA033208FA020314F80DF90DAF
:1004E000B30B5A2AB41F792AF809F909F80A031933
:1004F000F90A7908AE007808AD002D08F8002E083A
:10050000F90008000130A9000230AA00752179081D
:10051000A8007808A7002708F8002808F9008A1121
:100520000A120E2C0330A9000430AA0075217908A4
:10053000A8007808A7002708F8002808F9008A1101
:100540000A12132C0530A9000630AA00752179087B
:10055000A8007808A7002708F8002808F9008A11E1
:100560000A12182C831603178C170C1400000000B5
:100570000318E12A83120C087F390313A80003171C
:100580000D080313A90003170F080313AA00280876
:10059000B000C620290803178D0003132A0803178B
:1005A0008F0083168C170C140000000083120313B5
:1005B000A70BDB2ADE2A83160317E12A002B8316FA
:1005C000031783120C0D0E0D7F390313A8000317B8
:1005D0000D080313A90003170F080313AA00280826
:1005E000B000C620290803178D0003132A0803173B
:1005F0008F008D0A03198F0A03100313A70BB22A69
:100600000800AF010408AE002F10831B2F14A81F91
:10061000112BAE172E1EAE0AA709A809A70A0319A7
:10062000A80A280EF038AA00AA07E23EAB00323E24
:10063000AD0028080F39AB07AB07AD07E93EAC00AA
:10064000AC07AC07270E0F39AC07AD07AC0DAD0DED
:10065000AD09AD0D27080F39AD07AA0D0730A90068
:100660000A30AD07AC03031C312BAC07AB03031CF2
:10067000352BAB07AA03031C392BAA07A903031CBC
:100680003D2B29308400831307302E052E1384035D
:100690002E05031D522B2E1A840A2E1A522B20309F
:1006A000F7006F2B84072D30040203192E17000862
:1006B000F700031D632B2E1B632B2E1A7D2BAE1907
:1006C000632B20306E2BAE1F6B2B2D30F700840375
:1006D0002E13AE136F2BAE152E123030F707A80174
:1006E0000408A7002810831B28147708B000C62030
:1006F00027088400831328188317840A2E1F532B7E
:10070000080028308400831300080319942B02305A
:10071000F800F701F70B8A2BF80B892B9730F700BD
:10072000F70B902B800B872B8A110A12762C8401F1
:1007300083131F308305713083168F000F088312D7
:10074000A0132008831687008312871783160317C8
:100750000908C039890003131F129F1200300317C4
:1007600088008312870188018901FF300313A000EC
:10077000831603170908C039890003131F129F123B
:10078000003003178800831203131F139F1383166F
:100790009F1383121F149412A0122008831687003F
:1007A000831220162008831687008312A0112008C8
:1007B0008316870001308312940000308316940062
:1007C0000108C73908388100831290010030F80011
:1007D00092000030831692008312201520088316A1
:1007E00087008312970183169B019C0101309D00B5
:1007F0008312031787018801890103138B280430B2
:1008000003178D0000308F000313EA201530031703
:100810008D0000308F000313EA20822A7908A2009D
:100820007808A100922A7908A4007808A300A22AD7
:100830007908A6007808A500213003178D00003044
:100840008F000313EA202C3003178D0000308F0037
:10085000031007300313A700B222103084002208CF
:10086000A8002108A70001232030B000C6200D30C9
:10087000B000C6200A30B000C620333003178D0008
:1008800000308F00031007300313A700B22210308E
:1008900084002408A8002308A70001232030B0000A
:1008A000C6200D30B000C6200A30B000C6203A3055
:1008B00003178D0000308F00031007300313A700CB
:1008C000B222103084002608A8002508A7000123C2
:1008D0002030B000C6200D30B000C6200A30B00075
:1008E000C6200830A700FA30A800812BA70B732C74
:0408F0000D2C630068
:04400E00F52CFF3F4F
:00000001FF
;PIC16F887
;CRC=01BF CREATED="11-5-13 10:50"
/Modules/Sensors/IMU01A/SW/PIC16F887/main.lst
0,0 → 1,3085
CCS PCM C Compiler, Version 4.106, 47914 11-5-13 10:50
 
Filename: D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main.lst
 
ROM used: 1146 words (14%)
Largest free fragment is 2048
RAM used: 13 (4%) at main() level
26 (7%) worst case
Stack: 3 locations
 
*
0000: MOVLW 03
0001: MOVWF 0A
0002: GOTO 397
0003: NOP
.................... //Akcelerometr IMU01A
.................... //(c) MLAB Jan Chroust 2013
....................
....................
.................... #include <main.h>
.................... #include <16F887.h>
.................... //////// Standard Header file for the PIC16F887 device ////////////////
.................... #device PIC16F887
.................... #list
....................
.................... #device adc=8
....................
.................... #FUSES NOWDT //No Watch Dog Timer
.................... #FUSES INTRC //Internal RC Osc
.................... #FUSES NOPUT //No Power Up Timer
.................... #FUSES MCLR //Master Clear pin enabled
.................... #FUSES NOPROTECT //Code not protected from reading
.................... #FUSES NOCPD //No EE protection
.................... #FUSES NOBROWNOUT //No brownout reset
.................... #FUSES IESO //Internal External Switch Over mode enabled
.................... #FUSES FCMEN //Fail-safe clock monitor enabled
.................... #FUSES NOLVP //No low voltage prgming, B3(PIC16) or B5(PIC18) used for I/O
.................... #FUSES NODEBUG //No Debug mode for ICD
.................... #FUSES NOWRT //Program memory not write protected
.................... #FUSES BORV40 //Brownout reset at 4.0V
....................
.................... #use delay(clock=8000000)
*
0381: MOVLW 28
0382: MOVWF 04
0383: BCF 03.7
0384: MOVF 00,W
0385: BTFSC 03.2
0386: GOTO 394
0387: MOVLW 02
0388: MOVWF 78
0389: CLRF 77
038A: DECFSZ 77,F
038B: GOTO 38A
038C: DECFSZ 78,F
038D: GOTO 389
038E: MOVLW 97
038F: MOVWF 77
0390: DECFSZ 77,F
0391: GOTO 390
0392: DECFSZ 00,F
0393: GOTO 387
0394: BCF 0A.3
0395: BCF 0A.4
0396: GOTO 476 (RETURN)
....................
....................
....................
.................... #define PIN_SDA PIN_C4
.................... #define PIN_SCL PIN_C3
.................... #use i2c(master, sda=PIN_SDA, scl=PIN_SCL) //I2C
*
0041: MOVLW 08
0042: MOVWF 78
0043: NOP
0044: BCF 07.3
0045: BCF 20.3
0046: MOVF 20,W
0047: BSF 03.5
0048: MOVWF 07
0049: NOP
004A: BCF 03.5
004B: RLF 2F,F
004C: BCF 07.4
004D: BTFSS 03.0
004E: GOTO 055
004F: BSF 20.4
0050: MOVF 20,W
0051: BSF 03.5
0052: MOVWF 07
0053: GOTO 059
0054: BCF 03.5
0055: BCF 20.4
0056: MOVF 20,W
0057: BSF 03.5
0058: MOVWF 07
0059: NOP
005A: BCF 03.5
005B: BSF 20.3
005C: MOVF 20,W
005D: BSF 03.5
005E: MOVWF 07
005F: BCF 03.5
0060: BTFSS 07.3
0061: GOTO 060
0062: DECFSZ 78,F
0063: GOTO 043
0064: NOP
0065: BCF 07.3
0066: BCF 20.3
0067: MOVF 20,W
0068: BSF 03.5
0069: MOVWF 07
006A: NOP
006B: BCF 03.5
006C: BSF 20.4
006D: MOVF 20,W
006E: BSF 03.5
006F: MOVWF 07
0070: NOP
0071: NOP
0072: BCF 03.5
0073: BSF 20.3
0074: MOVF 20,W
0075: BSF 03.5
0076: MOVWF 07
0077: BCF 03.5
0078: BTFSS 07.3
0079: GOTO 078
007A: CLRF 78
007B: NOP
007C: BTFSC 07.4
007D: BSF 78.0
007E: BCF 07.3
007F: BCF 20.3
0080: MOVF 20,W
0081: BSF 03.5
0082: MOVWF 07
0083: BCF 03.5
0084: BCF 07.4
0085: BCF 20.4
0086: MOVF 20,W
0087: BSF 03.5
0088: MOVWF 07
0089: BCF 03.5
008A: RETURN
*
0130: MOVLW 08
0131: MOVWF 30
0132: MOVF 77,W
0133: MOVWF 31
0134: BSF 20.4
0135: MOVF 20,W
0136: BSF 03.5
0137: MOVWF 07
0138: NOP
0139: BCF 03.5
013A: BSF 20.3
013B: MOVF 20,W
013C: BSF 03.5
013D: MOVWF 07
013E: BCF 03.5
013F: BTFSS 07.3
0140: GOTO 13F
0141: BTFSC 07.4
0142: BSF 03.0
0143: BTFSS 07.4
0144: BCF 03.0
0145: RLF 78,F
0146: NOP
0147: BCF 20.3
0148: MOVF 20,W
0149: BSF 03.5
014A: MOVWF 07
014B: BCF 03.5
014C: BCF 07.3
014D: DECFSZ 30,F
014E: GOTO 134
014F: BSF 20.4
0150: MOVF 20,W
0151: BSF 03.5
0152: MOVWF 07
0153: NOP
0154: BCF 03.5
0155: BCF 07.4
0156: MOVF 31,W
0157: BTFSC 03.2
0158: GOTO 15E
0159: BCF 20.4
015A: MOVF 20,W
015B: BSF 03.5
015C: MOVWF 07
015D: BCF 03.5
015E: NOP
015F: BSF 20.3
0160: MOVF 20,W
0161: BSF 03.5
0162: MOVWF 07
0163: BCF 03.5
0164: BTFSS 07.3
0165: GOTO 164
0166: NOP
0167: BCF 07.3
0168: BCF 20.3
0169: MOVF 20,W
016A: BSF 03.5
016B: MOVWF 07
016C: NOP
016D: BCF 03.5
016E: BCF 07.4
016F: BCF 20.4
0170: MOVF 20,W
0171: BSF 03.5
0172: MOVWF 07
0173: BCF 03.5
0174: RETURN
.................... #use rs232(baud=9600,parity=N,xmit=PIN_C7,rcv=PIN_C6,bits=8) //rcv TXD xmit RXD
*
00C6: BCF 20.7
00C7: MOVF 20,W
00C8: BSF 03.5
00C9: MOVWF 07
00CA: BCF 03.5
00CB: BCF 07.7
00CC: MOVLW 08
00CD: MOVWF 78
00CE: GOTO 0CF
00CF: NOP
00D0: BSF 78.7
00D1: GOTO 0E0
00D2: BCF 78.7
00D3: RRF 30,F
00D4: BTFSC 03.0
00D5: BSF 07.7
00D6: BTFSS 03.0
00D7: BCF 07.7
00D8: BSF 78.6
00D9: GOTO 0E0
00DA: BCF 78.6
00DB: DECFSZ 78,F
00DC: GOTO 0D3
00DD: GOTO 0DE
00DE: NOP
00DF: BSF 07.7
00E0: MOVLW 3F
00E1: MOVWF 04
00E2: DECFSZ 04,F
00E3: GOTO 0E2
00E4: NOP
00E5: BTFSC 78.7
00E6: GOTO 0D2
00E7: BTFSC 78.6
00E8: GOTO 0DA
00E9: RETURN
.................... #include <math.h>
.................... ////////////////////////////////////////////////////////////////////////////
.................... //// (C) Copyright 1996,2008 Custom Computer Services ////
.................... //// This source code may only be used by licensed users of the CCS C ////
.................... //// compiler. This source code may only be distributed to other ////
.................... //// licensed users of the CCS C compiler. No other use, reproduction ////
.................... //// or distribution is permitted without written permission. ////
.................... //// Derivative programs created using this software in object code ////
.................... //// form are not restricted in any way. ////
.................... ////////////////////////////////////////////////////////////////////////////
.................... //// ////
.................... //// History: ////
.................... //// * 9/20/2001 : Improvments are made to sin/cos code. ////
.................... //// The code now is small, much faster, ////
.................... //// and more accurate. ////
.................... //// * 2/21/2007 : Compiler handles & operator differently and does
.................... //// not return generic (int8 *) so type cast is done ////
.................... //// ////
.................... ////////////////////////////////////////////////////////////////////////////
....................
.................... #ifndef MATH_H
.................... #define MATH_H
....................
.................... #ifdef PI
.................... #undef PI
.................... #endif
.................... #define PI 3.1415926535897932
....................
....................
.................... #define SQRT2 1.4142135623730950
....................
.................... //float const ps[4] = {5.9304945, 21.125224, 8.9403076, 0.29730279};
.................... //float const qs[4] = {1.0000000, 15.035723, 17.764134, 2.4934718};
....................
.................... ///////////////////////////// Round Functions //////////////////////////////
....................
.................... float32 CEIL_FLOOR(float32 x, unsigned int8 n)
.................... {
.................... float32 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float32)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float32)l);
.................... res = 32768.0*(float32)l;
.................... res += (float32)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float32)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
....................
.................... // Overloaded Functions to take care for new Data types in PCD
.................... // Overloaded function CEIL_FLOOR() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 CEIL_FLOOR(float48 x, unsigned int8 n)
.................... {
.................... float48 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float48)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float48)l);
.................... res = 32768.0*(float32)l;
.................... res += (float48)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float48)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
....................
....................
.................... // Overloaded function CEIL_FLOOR() for data type - Float64
.................... float64 CEIL_FLOOR(float64 x, unsigned int8 n)
.................... {
.................... float64 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float64)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float64)l);
.................... res = 32768.0*(float64)l;
.................... res += (float64)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float64)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float floor(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : rounds down the number x.
.................... // Date : N/A
.................... //
.................... float32 floor(float32 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
.................... // Following 2 functions are overloaded functions of floor() for PCD
.................... // Overloaded function floor() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 floor(float48 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
....................
.................... // Overloaded function floor() for data type - Float64
.................... float64 floor(float64 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
.................... #endif
....................
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float ceil(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : rounds up the number x.
.................... // Date : N/A
.................... //
.................... float32 ceil(float32 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
.................... // Following 2 functions are overloaded functions of ceil() for PCD
.................... // Overloaded function ceil() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 ceil(float48 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
....................
.................... // Overloaded function ceil() for data type - Float64
.................... float64 ceil(float64 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fabs(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the absolute value of floating point number x
.................... // Returns : returns the absolute value of x
.................... // Date : N/A
.................... //
.................... #define fabs abs
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fmod(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the floating point remainder of x/y
.................... // Returns : returns the value of x= i*y, for some integer i such that, if y
.................... // is non zero, the result has the same isgn of x na dmagnitude less than the
.................... // magnitude of y. If y is zero then a domain error occurs.
.................... // Date : N/A
.................... //
....................
.................... float fmod(float32 x,float32 y)
.................... {
.................... float32 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... //Overloaded function for fmod() for PCD
.................... // Overloaded function fmod() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 fmod(float48 x,float48 y)
.................... {
.................... float48 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... // Overloaded function fmod() for data type - Float64
.................... float64 fmod(float64 x,float64 y)
.................... {
.................... float64 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... #endif
.................... //////////////////// Exponential and logarithmic functions ////////////////////
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float exp(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (e^x)
.................... // Date : N/A
.................... //
.................... #define LN2 0.6931471805599453
....................
.................... float const pe[6] = {0.000207455774, 0.00127100575, 0.00965065093,
.................... 0.0554965651, 0.240227138, 0.693147172};
....................
....................
.................... float32 exp(float32 x)
.................... {
.................... float32 y, res, r;
.................... #if defined(__PCD__)
.................... int8 data1;
.................... #endif
.................... signed int8 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 88.722838)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&res)) = n + 0x7F;
.................... #endif
....................
.................... #if defined(__PCD__) // Takes care of IEEE format for PCD
.................... data1 = n+0x7F;
.................... if(bit_test(data1,0))
.................... bit_set(*(((unsigned int8 *)(&res)+2)),7);
.................... rotate_right(&data1,1);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&res)+3)) = data1;
.................... #endif
....................
.................... y = y/LN2 - (float32)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
....................
.................... //Overloaded function for exp() for PCD
.................... // Overloaded function exp() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 exp(float48 x)
.................... {
.................... float48 y, res, r;
.................... int8 data1;
.................... signed int8 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 88.722838)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
....................
.................... data1 = n+0x7F;
.................... if(bit_test(data1,0))
.................... bit_set(*(((unsigned int8 *)(&res)+4)),7);
.................... rotate_right(&data1,1);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&res)+5)) = data1;
....................
.................... y = y/LN2 - (float48)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
.................... // Overloaded function exp() for data type - Float64
.................... float64 exp(float64 x)
.................... {
.................... float64 y, res, r;
.................... unsigned int16 data1, data2;
.................... unsigned int16 *p;
.................... signed int16 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 709.7827128)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
....................
.................... #if !defined(__PCD__)
.................... *((unsigned int16 *)(&res)) = n + 0x7F;
.................... #endif
.................... p= (((unsigned int16 *)(&res))+3);
.................... data1 = *p;
.................... data2 = *p;
.................... data1 = n + 0x3FF;
.................... data1 = data1 <<4;
.................... if(bit_test(data2,15))
.................... bit_set(data1,15);
.................... data2 = data2 & 0x000F;
.................... data1 ^= data2;
....................
.................... *(((unsigned int16 *)(&res)+3)) = data1;
....................
....................
.................... y = y/LN2 - (float64)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
.................... #ENDIF
....................
....................
.................... /************************************************************/
....................
.................... float32 const pl[4] = {0.45145214, -9.0558803, 26.940971, -19.860189};
.................... float32 const ql[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the natural log of x
.................... // Date : N/A
.................... //
.................... float32 log(float32 x)
.................... {
.................... float32 y, res, r, y2;
.................... #if defined(__PCD__)
.................... unsigned int8 data1,data2;
.................... #endif
.................... signed int8 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
....................
.................... #if defined(__PCD__) // Takes care of IEEE format
.................... data2 = *(((unsigned int8 *)(&y))+3);
.................... *(((unsigned int8 *)(&y))+3) = 0x3F;
.................... data1 = *(((unsigned int8 *)(&y))+2);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&y))+2) = data1;
.................... if(bit_test(data2,7))
.................... bit_set(*(((unsigned int8 *)(&y))+3),7);
.................... #endif
....................
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl[0]*y2 + pl[1];
.................... res = res*y2 + pl[2];
.................... res = res*y2 + pl[3];
....................
.................... r = ql[0]*y2 + ql[1];
.................... r = r*y2 + ql[2];
.................... r = r*y2 + ql[3];
....................
.................... res = y*res/r;
.................... #if !defined(__PCD__)
.................... n = *((unsigned int8 *)(&x)) - 0x7E;
.................... #endif
.................... #if defined(__PCD__)
.................... data1 = *(((unsigned int8 *)(&x)+3));
.................... rotate_left(&data1,1);
.................... data2 = *(((unsigned int8 *)(&x)+2));
.................... if(bit_test (data2,7))
.................... bit_set(data1,0);
.................... n = data1 - 0x7E;
.................... #endif
....................
.................... if (n<0)
.................... r = -(float32)-n;
.................... else
.................... r = (float32)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
....................
.................... //Overloaded function for log() for PCD
.................... // Overloaded function log() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 log(float48 x)
.................... {
.................... float48 y, res, r, y2;
.................... unsigned int8 data1,data2;
.................... signed int8 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
....................
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
.................... data2 = *(((unsigned int8 *)(&y))+5);
.................... *(((unsigned int8 *)(&y))+5) = 0x3F;
.................... data1 = *(((unsigned int8 *)(&y))+4);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&y))+4) = data1;
....................
.................... if(bit_test(data2,7))
.................... bit_set(*(((unsigned int8 *)(&y))+4),7);
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl[0]*y2 + pl[1];
.................... res = res*y2 + pl[2];
.................... res = res*y2 + pl[3];
....................
.................... r = ql[0]*y2 + ql[1];
.................... r = r*y2 + ql[2];
.................... r = r*y2 + ql[3];
....................
.................... res = y*res/r;
....................
.................... data1 = *(((unsigned int8 *)(&x)+5));
.................... rotate_left(&data1,1);
.................... data2 = *(((unsigned int8 *)(&x)+4));
.................... if(bit_test (data2,7))
.................... bit_set(data1,0);
....................
.................... n = data1 - 0x7E;
....................
.................... if (n<0)
.................... r = -(float48)-n;
.................... else
.................... r = (float48)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function log() for data type - Float48
.................... #if defined(__PCD__)
.................... float32 const pl_64[4] = {0.45145214, -9.0558803, 26.940971, -19.860189};
.................... float32 const ql_64[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943};
.................... #endif
.................... float64 log(float64 x)
.................... {
.................... float64 y, res, r, y2;
.................... unsigned int16 data1,data2;
.................... unsigned int16 *p;
.................... signed int16 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
.................... p= (((unsigned int16 *)(&y))+3);
.................... data1 = *p;
.................... data2 = *p;
.................... data1 = 0x3FE;
.................... data1 = data1 <<4;
.................... if(bit_test (data2,15))
.................... bit_set(data1,15);
.................... data2 = data2 & 0x000F;
.................... data1 ^=data2;
....................
.................... *p = data1;
....................
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl_64[0]*y2 + pl_64[1];
.................... res = res*y2 + pl_64[2];
.................... res = res*y2 + pl_64[3];
....................
.................... r = ql_64[0]*y2 + ql_64[1];
.................... r = r*y2 + ql_64[2];
.................... r = r*y2 + ql_64[3];
....................
.................... res = y*res/r;
....................
.................... p= (((unsigned int16 *)(&x))+3);
.................... data1 = *p;
.................... bit_clear(data1,15);
.................... data1 = data1 >>4;
.................... n = data1 - 0x3FE;
....................
....................
.................... if (n<0)
.................... r = -(float64)-n;
.................... else
.................... r = (float64)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
.................... #endif
....................
....................
.................... #define LN10 2.3025850929940456
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log10(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the log base 10 of x
.................... // Date : N/A
.................... //
.................... float32 log10(float32 x)
.................... {
.................... float32 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
....................
.................... //Overloaded functions for log10() for PCD
.................... // Overloaded function log10() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 log10(float48 x)
.................... {
.................... float48 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
....................
.................... // Overloaded function log10() for data type - Float64
.................... float64 log10(float64 x)
.................... {
.................... float64 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
.................... #endif
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float modf(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description :breaks the argument value int integral and fractional parts,
.................... // ach of which have the same sign as the argument. It stores the integral part
.................... // as a float in the object pointed to by the iptr
.................... // Returns : returns the signed fractional part of value.
.................... // Date : N/A
.................... //
....................
.................... float32 modf(float32 value,float32 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... //Overloaded functions for modf() for PCD
.................... // Overloaded function modf() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 modf(float48 value,float48 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... // Overloaded function modf() for data type - Float64
.................... float64 modf(float64 value,float64 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pwr(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... // Note : 0 is returned when the function will generate an imaginary number
.................... //
.................... float32 pwr(float32 x,float32 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... //Overloaded functions for pwr() for PCD
.................... // Overloaded function pwr() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 pwr(float48 x,float48 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... // Overloaded function pwr() for data type - Float64
.................... float64 pwr(float64 x,float64 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... #endif
....................
.................... //////////////////// Power functions ////////////////////
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pow(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... // Note : 0 is returned when the function will generate an imaginary number
.................... //
.................... float32 pow(float32 x,float32 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... //Overloaded functions for pow() for PCD
.................... // Overloaded function for pow() data type - Float48
.................... #if defined(__PCD__)
.................... float48 pow(float48 x,float48 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
....................
.................... // Overloaded function pow() for data type - Float64
.................... float64 pow(float64 x,float64 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sqrt(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the square root of x
.................... // Date : N/A
.................... //
.................... float32 sqrt(float32 x)
.................... {
.................... float32 y, res;
.................... #if defined(__PCD__)
.................... unsigned int16 data1,data2;
.................... #endif
.................... BYTE *p;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
....................
.................... #if !defined(__PCD__)
.................... p=&y;
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1);
.................... #endif
....................
.................... #if defined(__PCD__)
.................... p = (((unsigned int8 *)(&y))+3);
.................... data1 = *(((unsigned int8 *)(&y))+3);
.................... data2 = *(((unsigned int8 *)(&y))+2);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1 = ((data1+127) >>1);
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+3) = data1;
.................... *(((unsigned int8 *)(&y))+2) = data2;
....................
.................... #endif
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
....................
.................... #if !defined(__PCD__)
.................... (*p)--;
.................... #endif
....................
.................... #if defined(__PCD__)
.................... data1 = *(((unsigned int8 *)(&y))+3);
.................... data2 = *(((unsigned int8 *)(&y))+2);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1--;
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+3) = data1;
.................... *(((unsigned int8 *)(&y))+2) = data2;
....................
.................... #endif
.................... } while(res != y);
....................
.................... return(res);
.................... }
.................... //Overloaded functions for sqrt() for PCD
.................... // Overloaded function sqrt() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sqrt(float48 x)
.................... {
.................... float48 y, res;
.................... unsigned int16 data1,data2;
.................... BYTE *p;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
....................
.................... #if !defined(__PCD__)
.................... p=&y;
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1);
.................... #endif
....................
.................... #if defined(__PCD__)
.................... p = (((unsigned int8 *)(&y))+5);
.................... data1 = *(((unsigned int8 *)(&y))+5);
.................... data2 = *(((unsigned int8 *)(&y))+4);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1 = ((data1+127) >>1);
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+5) = data1;
.................... *(((unsigned int8 *)(&y))+4) = data2;
....................
.................... #endif
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
....................
.................... #if !defined(__PCD__)
.................... (*p)--;
.................... #endif
....................
.................... data1 = *(((unsigned int8 *)(&y))+5);
.................... data2 = *(((unsigned int8 *)(&y))+4);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1--;
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+5) = data1;
.................... *(((unsigned int8 *)(&y))+4) = data2;
....................
.................... } while(res != y);
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function sqrt() for data type - Float64
.................... float64 sqrt(float64 x)
.................... {
.................... float64 y, res;
.................... unsigned int16 *p;
.................... unsigned int16 temp1,temp2;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
.................... p= (((unsigned int16 *)(&y))+3);
.................... temp1 = *p;
.................... temp2 = *p;
.................... bit_clear(temp1,15);
.................... temp1 = (temp1>>4)+1023;
.................... temp1 = temp1 >> 1;
.................... temp1 = (temp1<<4) & 0xFFF0;
.................... if(bit_test(temp2,15))
.................... bit_set(temp1,15);
.................... temp2 = temp2 & 0x000F;
.................... temp1 ^= temp2;
....................
.................... (*p) = temp1;
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
.................... temp1 = *p;
.................... temp2 = *p;
.................... bit_clear(temp1,15);
.................... temp1 = (temp1>>4);
.................... temp1--;
.................... temp1 = (temp1<<4) & 0xFFF0;
.................... if(bit_test(temp2,15))
.................... bit_set(temp1,15);
.................... temp2 = temp2 & 0x000F;
.................... temp1 ^= temp2;
.................... (*p) = temp1;
....................
.................... } while(res != y);
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... ////////////////////////////// Trig Functions //////////////////////////////
.................... #ifdef PI_DIV_BY_TWO
.................... #undef PI_DIV_BY_TWO
.................... #endif
.................... #define PI_DIV_BY_TWO 1.5707963267948966
.................... #ifdef TWOBYPI
.................... #undef TWOBYPI
.................... #define TWOBYPI 0.6366197723675813
.................... #endif
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float cos(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the cosine value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 cos(float32 x)
.................... {
.................... float32 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float32 frac;
.................... float32 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 1.0;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
....................
.................... //Overloaded functions for cos() for PCD
.................... // Overloaded function cos() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 cos(float48 x)
.................... {
.................... float48 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float48 frac;
.................... float48 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 0.999999999781;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
.................... // Overloaded function cos() for data type - Float48
.................... float64 cos(float64 x)
.................... {
.................... float64 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float64 frac;
.................... float64 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 0.999999999781;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sin(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the sine value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 sin(float32 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
....................
.................... //Overloaded functions for sin() for PCD
.................... // Overloaded function sin() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sin(float48 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
....................
.................... // Overloaded function sin() for data type - Float48
.................... float64 sin(float64 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float tan(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the tangent value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 tan(float32 x)
.................... {
.................... float32 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
.................... //Overloaded functions for tan() for PCD
.................... // Overloaded function tan() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 tan(float48 x)
.................... {
.................... float48 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
....................
.................... // Overloaded function tan() for data type - Float48
.................... float64 tan(float64 x)
.................... {
.................... float64 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
.................... #endif
....................
.................... float32 const pas[3] = {0.49559947, -4.6145309, 5.6036290};
.................... float32 const qas[3] = {1.0000000, -5.5484666, 5.6036290};
....................
.................... float32 ASIN_COS(float32 x, unsigned int8 n)
.................... {
.................... float32 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
....................
.................... //Overloaded functions for ASIN_COS() for PCD
.................... // Overloaded function ASIN_COS() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 ASIN_COS(float48 x, unsigned int8 n)
.................... {
.................... float48 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function ASIN_COS() for data type - Float64
.................... float64 ASIN_COS(float64 x, unsigned int8 n)
.................... {
.................... float64 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float asin(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arcsine value of the value x.
.................... // Date : N/A
.................... //
.................... float32 asin(float32 x)
.................... {
.................... float32 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
.................... //Overloaded functions for asin() for PCD
.................... // Overloaded function asin() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 asin(float48 x)
.................... {
.................... float48 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
....................
.................... // Overloaded function asin() for data type - Float64
.................... float64 asin(float64 x)
.................... {
.................... float64 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float acos(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arccosine value of the value x.
.................... // Date : N/A
.................... //
.................... float32 acos(float32 x)
.................... {
.................... float32 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
.................... //Overloaded functions for acos() for PCD
.................... // Overloaded function acos() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 acos(float48 x)
.................... {
.................... float48 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
....................
.................... // Overloaded function acos() for data type - Float64
.................... float64 acos(float64 x)
.................... {
.................... float64 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
.................... #endif
....................
.................... float32 const pat[4] = {0.17630401, 5.6710795, 22.376096, 19.818457};
.................... float32 const qat[4] = {1.0000000, 11.368190, 28.982246, 19.818457};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float atan(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arctangent value of the value x.
.................... // Date : N/A
.................... //
.................... float32 atan(float32 x)
.................... {
.................... float32 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
.................... //Overloaded functions for atan() for PCD
.................... // Overloaded function atan() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 atan(float48 x)
.................... {
.................... float48 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function atan() for data type - Float64
.................... float64 atan(float64 x)
.................... {
.................... float64 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... /////////////////////////////////////////////////////////////////////////////
.................... // float atan2(float y, float x)
.................... /////////////////////////////////////////////////////////////////////////////
.................... // Description :computes the principal value of arc tangent of y/x, using the
.................... // signs of both the arguments to determine the quadrant of the return value
.................... // Returns : returns the arc tangent of y/x.
.................... // Date : N/A
.................... //
....................
.................... float32 atan2(float32 y,float32 x)
.................... {
.................... float32 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
....................
.................... //Overloaded functions for atan2() for PCD
.................... // Overloaded function atan2() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 atan2(float48 y,float48 x)
.................... {
.................... float48 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
....................
.................... // Overloaded function atan2() for data type - Float64
.................... float64 atan2(float64 y,float64 x)
.................... {
.................... float64 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
.................... #endif
....................
.................... //////////////////// Hyperbolic functions ////////////////////
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float cosh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic cosine value of x
.................... // Returns : returns the hyperbolic cosine value of x
.................... // Date : N/A
.................... //
....................
.................... float32 cosh(float32 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
.................... //Overloaded functions for cosh() for PCD
.................... // Overloaded function cosh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 cosh(float48 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
....................
.................... // Overloaded function cosh() for data type - Float64
.................... float64 cosh(float64 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sinh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic sine value of x
.................... // Returns : returns the hyperbolic sine value of x
.................... // Date : N/A
.................... //
....................
.................... float32 sinh(float32 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
.................... //Overloaded functions for sinh() for PCD
.................... // Overloaded function sinh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sinh(float48 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
....................
.................... // Overloaded function sinh() for data type - Float48
.................... float64 sinh(float64 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float tanh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic tangent value of x
.................... // Returns : returns the hyperbolic tangent value of x
.................... // Date : N/A
.................... //
....................
.................... float32 tanh(float32 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
.................... //Overloaded functions for tanh() for PCD
.................... // Overloaded function tanh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 tanh(float48 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
....................
.................... // Overloaded function tanh() for data type - Float64
.................... float64 tanh(float64 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float frexp(float x, signed int *exp)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : breaks a floating point number into a normalized fraction and an integral
.................... // power of 2. It stores the integer in the signed int object pointed to by exp.
.................... // Returns : returns the value x, such that x is a double with magnitude in the interval
.................... // [1/2,1) or zero, and value equals x times 2 raised to the power *exp.If value is zero,
.................... // both parts of the result are zero.
.................... // Date : N/A
.................... //
....................
.................... #define LOG2 .30102999566398119521
.................... float32 frexp(float32 x, signed int8 *exp)
.................... {
.................... float32 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
....................
.................... //Overloaded functions for frexp() for PCD
.................... // Overloaded function frexp() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 frexp(float48 x, signed int8 *exp)
.................... {
.................... float48 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
....................
.................... // Overloaded function frexp() for data type - Float64
.................... float64 frexp(float64 x, signed int8 *exp)
.................... {
.................... float64 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
.................... #endif
....................
.................... //////////////////////////////////////////////////////////////////////////////
.................... // float ldexp(float x, signed int *exp)
.................... //////////////////////////////////////////////////////////////////////////////
.................... // Description : multiplies a floating point number by an integral power of 2.
.................... // Returns : returns the value of x times 2 raised to the power exp.
.................... // Date : N/A
.................... //
....................
.................... float32 ldexp(float32 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... //Overloaded functions for ldexp() for PCD
.................... // Overloaded function ldexp() for data type - Float48
....................
.................... #if defined(__PCD__)
.................... float48 ldexp(float48 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... // Overloaded function ldexp() for data type - Float64
.................... float64 ldexp(float64 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... #endif
....................
.................... #endif
....................
.................... #include <MMA8451Q.h>
.................... //Adresa obvodu
.................... #define AK_W 0x38 //adresa akcelerometru zápis
.................... #define AK_R 0x39 //adresa akcelerometru ètení
....................
....................
.................... #define AK_XH 0x01 //osa X LSB
.................... #define AK_XL 0x02 //osa X MSB
.................... #define AK_YH 0x03 //osa Y LSB
.................... #define AK_YL 0x04 //osa Y MSB
.................... #define AK_ZH 0x05 //osa Z LSB
.................... #define AK_ZL 0x06 //osa Z MSB
....................
....................
.................... #include "MMA8451Q.c"
.................... void setAK (void) //nastaveni akcelerometru
.................... {
.................... i2c_start();
*
008B: BSF 20.4
008C: MOVF 20,W
008D: BSF 03.5
008E: MOVWF 07
008F: NOP
0090: BCF 03.5
0091: BSF 20.3
0092: MOVF 20,W
0093: BSF 03.5
0094: MOVWF 07
0095: NOP
0096: BCF 03.5
0097: BCF 07.4
0098: BCF 20.4
0099: MOVF 20,W
009A: BSF 03.5
009B: MOVWF 07
009C: NOP
009D: BCF 03.5
009E: BCF 07.3
009F: BCF 20.3
00A0: MOVF 20,W
00A1: BSF 03.5
00A2: MOVWF 07
.................... I2C_Write(AK_W);
00A3: MOVLW 38
00A4: BCF 03.5
00A5: MOVWF 2F
00A6: CALL 041
.................... I2C_write(0x2A);
00A7: MOVLW 2A
00A8: MOVWF 2F
00A9: CALL 041
.................... I2C_write(0x01); //nastavi aktivni stav
00AA: MOVLW 01
00AB: MOVWF 2F
00AC: CALL 041
....................
.................... i2c_stop();
00AD: BCF 20.4
00AE: MOVF 20,W
00AF: BSF 03.5
00B0: MOVWF 07
00B1: NOP
00B2: BCF 03.5
00B3: BSF 20.3
00B4: MOVF 20,W
00B5: BSF 03.5
00B6: MOVWF 07
00B7: BCF 03.5
00B8: BTFSS 07.3
00B9: GOTO 0B8
00BA: NOP
00BB: GOTO 0BC
00BC: NOP
00BD: BSF 20.4
00BE: MOVF 20,W
00BF: BSF 03.5
00C0: MOVWF 07
00C1: NOP
.................... }
00C2: BCF 03.5
00C3: BCF 0A.3
00C4: BCF 0A.4
00C5: GOTO 3FF (RETURN)
....................
....................
.................... int16 akR (int8 H, int8 L) //vycitani hodnot z akcelerometru
.................... {
*
0175: CLRF 2B
0176: CLRF 2C
.................... unsigned int8 XL=0,XH=0;
.................... signed int16 x;
....................
.................... i2c_start();
0177: BSF 20.4
0178: MOVF 20,W
0179: BSF 03.5
017A: MOVWF 07
017B: NOP
017C: BCF 03.5
017D: BSF 20.3
017E: MOVF 20,W
017F: BSF 03.5
0180: MOVWF 07
0181: NOP
0182: BCF 03.5
0183: BCF 07.4
0184: BCF 20.4
0185: MOVF 20,W
0186: BSF 03.5
0187: MOVWF 07
0188: NOP
0189: BCF 03.5
018A: BCF 07.3
018B: BCF 20.3
018C: MOVF 20,W
018D: BSF 03.5
018E: MOVWF 07
.................... I2C_Write(AK_W);
018F: MOVLW 38
0190: BCF 03.5
0191: MOVWF 2F
0192: CALL 041
.................... I2C_write(H);
0193: MOVF 29,W
0194: MOVWF 2F
0195: CALL 041
.................... i2c_start();
0196: BSF 20.4
0197: MOVF 20,W
0198: BSF 03.5
0199: MOVWF 07
019A: NOP
019B: BCF 03.5
019C: BSF 20.3
019D: MOVF 20,W
019E: BSF 03.5
019F: MOVWF 07
01A0: NOP
01A1: BCF 03.5
01A2: BTFSS 07.3
01A3: GOTO 1A2
01A4: BCF 07.4
01A5: BCF 20.4
01A6: MOVF 20,W
01A7: BSF 03.5
01A8: MOVWF 07
01A9: NOP
01AA: BCF 03.5
01AB: BCF 07.3
01AC: BCF 20.3
01AD: MOVF 20,W
01AE: BSF 03.5
01AF: MOVWF 07
.................... I2C_Write(AK_R);
01B0: MOVLW 39
01B1: BCF 03.5
01B2: MOVWF 2F
01B3: CALL 041
.................... XH=i2c_read(0);
01B4: CLRF 77
01B5: CALL 130
01B6: MOVF 78,W
01B7: MOVWF 2C
.................... i2c_stop();
01B8: BCF 20.4
01B9: MOVF 20,W
01BA: BSF 03.5
01BB: MOVWF 07
01BC: NOP
01BD: BCF 03.5
01BE: BSF 20.3
01BF: MOVF 20,W
01C0: BSF 03.5
01C1: MOVWF 07
01C2: BCF 03.5
01C3: BTFSS 07.3
01C4: GOTO 1C3
01C5: NOP
01C6: GOTO 1C7
01C7: NOP
01C8: BSF 20.4
01C9: MOVF 20,W
01CA: BSF 03.5
01CB: MOVWF 07
01CC: NOP
....................
.................... i2c_start();
01CD: BCF 03.5
01CE: BSF 20.4
01CF: MOVF 20,W
01D0: BSF 03.5
01D1: MOVWF 07
01D2: NOP
01D3: BCF 03.5
01D4: BSF 20.3
01D5: MOVF 20,W
01D6: BSF 03.5
01D7: MOVWF 07
01D8: NOP
01D9: BCF 03.5
01DA: BCF 07.4
01DB: BCF 20.4
01DC: MOVF 20,W
01DD: BSF 03.5
01DE: MOVWF 07
01DF: NOP
01E0: BCF 03.5
01E1: BCF 07.3
01E2: BCF 20.3
01E3: MOVF 20,W
01E4: BSF 03.5
01E5: MOVWF 07
.................... I2C_Write(AK_W);
01E6: MOVLW 38
01E7: BCF 03.5
01E8: MOVWF 2F
01E9: CALL 041
.................... I2C_write(L);
01EA: MOVF 2A,W
01EB: MOVWF 2F
01EC: CALL 041
.................... i2c_start();
01ED: BSF 20.4
01EE: MOVF 20,W
01EF: BSF 03.5
01F0: MOVWF 07
01F1: NOP
01F2: BCF 03.5
01F3: BSF 20.3
01F4: MOVF 20,W
01F5: BSF 03.5
01F6: MOVWF 07
01F7: NOP
01F8: BCF 03.5
01F9: BTFSS 07.3
01FA: GOTO 1F9
01FB: BCF 07.4
01FC: BCF 20.4
01FD: MOVF 20,W
01FE: BSF 03.5
01FF: MOVWF 07
0200: NOP
0201: BCF 03.5
0202: BCF 07.3
0203: BCF 20.3
0204: MOVF 20,W
0205: BSF 03.5
0206: MOVWF 07
.................... I2C_Write(AK_R);
0207: MOVLW 39
0208: BCF 03.5
0209: MOVWF 2F
020A: CALL 041
.................... XL=i2c_read(0);
020B: CLRF 77
020C: CALL 130
020D: MOVF 78,W
020E: MOVWF 2B
.................... i2c_stop();
020F: BCF 20.4
0210: MOVF 20,W
0211: BSF 03.5
0212: MOVWF 07
0213: NOP
0214: BCF 03.5
0215: BSF 20.3
0216: MOVF 20,W
0217: BSF 03.5
0218: MOVWF 07
0219: BCF 03.5
021A: BTFSS 07.3
021B: GOTO 21A
021C: NOP
021D: GOTO 21E
021E: NOP
021F: BSF 20.4
0220: MOVF 20,W
0221: BSF 03.5
0222: MOVWF 07
0223: NOP
....................
.................... x = (((unsigned int16) XH << 8) + XL ); //prevod na 16bit hodnotu
0224: BCF 03.5
0225: CLRF 30
0226: MOVF 2C,W
0227: MOVWF 2F
0228: MOVWF 30
0229: CLRF 2F
022A: MOVF 2B,W
022B: ADDWF 2F,W
022C: MOVWF 78
022D: MOVF 30,W
022E: MOVWF 7A
022F: BTFSC 03.0
0230: INCF 7A,F
0231: MOVF 78,W
0232: MOVWF 2D
0233: MOVF 7A,W
0234: MOVWF 2E
.................... x=x/4;
0235: MOVF 2E,W
0236: MOVWF 30
0237: MOVF 2D,W
0238: MOVWF 2F
0239: CLRF 32
023A: MOVLW 04
023B: MOVWF 31
*
0279: MOVF 79,W
027A: MOVWF 2E
027B: MOVF 78,W
027C: MOVWF 2D
....................
.................... return x;
027D: MOVF 2D,W
027E: MOVWF 78
027F: MOVF 2E,W
0280: MOVWF 79
.................... }
0281: RETURN
....................
.................... int16 akX (void)
.................... {
.................... int16 X;
.................... X= akR (AK_XH, AK_XL);
0282: MOVLW 01
0283: MOVWF 29
0284: MOVLW 02
0285: MOVWF 2A
0286: CALL 175
0287: MOVF 79,W
0288: MOVWF 28
0289: MOVF 78,W
028A: MOVWF 27
.................... return X;
028B: MOVF 27,W
028C: MOVWF 78
028D: MOVF 28,W
028E: MOVWF 79
.................... }
028F: BCF 0A.3
0290: BCF 0A.4
0291: GOTO 40E (RETURN)
....................
.................... int16 akY (void)
.................... {
.................... int16 Y;
.................... Y= akR (AK_YH, AK_YL);
0292: MOVLW 03
0293: MOVWF 29
0294: MOVLW 04
0295: MOVWF 2A
0296: CALL 175
0297: MOVF 79,W
0298: MOVWF 28
0299: MOVF 78,W
029A: MOVWF 27
.................... return Y;
029B: MOVF 27,W
029C: MOVWF 78
029D: MOVF 28,W
029E: MOVWF 79
.................... }
029F: BCF 0A.3
02A0: BCF 0A.4
02A1: GOTO 413 (RETURN)
....................
.................... int16 akZ (void)
.................... {
.................... int16 Z;
.................... Z= akR (AK_ZH, AK_ZL);
02A2: MOVLW 05
02A3: MOVWF 29
02A4: MOVLW 06
02A5: MOVWF 2A
02A6: CALL 175
02A7: MOVF 79,W
02A8: MOVWF 28
02A9: MOVF 78,W
02AA: MOVWF 27
.................... return Z;
02AB: MOVF 27,W
02AC: MOVWF 78
02AD: MOVF 28,W
02AE: MOVWF 79
.................... }
02AF: BCF 0A.3
02B0: BCF 0A.4
02B1: GOTO 418 (RETURN)
....................
....................
....................
....................
....................
.................... signed int16 X, Y, Z; //promenne pro akcelerometr
....................
.................... void main()
.................... {
*
0397: CLRF 04
0398: BCF 03.7
0399: MOVLW 1F
039A: ANDWF 03,F
039B: MOVLW 71
039C: BSF 03.5
039D: MOVWF 0F
039E: MOVF 0F,W
039F: BCF 03.5
03A0: BCF 20.7
03A1: MOVF 20,W
03A2: BSF 03.5
03A3: MOVWF 07
03A4: BCF 03.5
03A5: BSF 07.7
03A6: BSF 03.5
03A7: BSF 03.6
03A8: MOVF 09,W
03A9: ANDLW C0
03AA: MOVWF 09
03AB: BCF 03.6
03AC: BCF 1F.4
03AD: BCF 1F.5
03AE: MOVLW 00
03AF: BSF 03.6
03B0: MOVWF 08
03B1: BCF 03.5
03B2: CLRF 07
03B3: CLRF 08
03B4: CLRF 09
.................... setup_adc_ports(NO_ANALOGS|VSS_VDD);
*
03B8: BSF 03.5
03B9: BSF 03.6
03BA: MOVF 09,W
03BB: ANDLW C0
03BC: MOVWF 09
03BD: BCF 03.6
03BE: BCF 1F.4
03BF: BCF 1F.5
03C0: MOVLW 00
03C1: BSF 03.6
03C2: MOVWF 08
.................... setup_adc(ADC_CLOCK_DIV_2);
03C3: BCF 03.5
03C4: BCF 03.6
03C5: BCF 1F.6
03C6: BCF 1F.7
03C7: BSF 03.5
03C8: BCF 1F.7
03C9: BCF 03.5
03CA: BSF 1F.0
.................... setup_spi(SPI_SS_DISABLED);
03CB: BCF 14.5
03CC: BCF 20.5
03CD: MOVF 20,W
03CE: BSF 03.5
03CF: MOVWF 07
03D0: BCF 03.5
03D1: BSF 20.4
03D2: MOVF 20,W
03D3: BSF 03.5
03D4: MOVWF 07
03D5: BCF 03.5
03D6: BCF 20.3
03D7: MOVF 20,W
03D8: BSF 03.5
03D9: MOVWF 07
03DA: MOVLW 01
03DB: BCF 03.5
03DC: MOVWF 14
03DD: MOVLW 00
03DE: BSF 03.5
03DF: MOVWF 14
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
03E0: MOVF 01,W
03E1: ANDLW C7
03E2: IORLW 08
03E3: MOVWF 01
.................... setup_timer_1(T1_DISABLED);
03E4: BCF 03.5
03E5: CLRF 10
.................... setup_timer_2(T2_DISABLED,0,1);
03E6: MOVLW 00
03E7: MOVWF 78
03E8: MOVWF 12
03E9: MOVLW 00
03EA: BSF 03.5
03EB: MOVWF 12
.................... setup_ccp1(CCP_OFF);
03EC: BCF 03.5
03ED: BSF 20.2
03EE: MOVF 20,W
03EF: BSF 03.5
03F0: MOVWF 07
03F1: BCF 03.5
03F2: CLRF 17
03F3: BSF 03.5
03F4: CLRF 1B
03F5: CLRF 1C
03F6: MOVLW 01
03F7: MOVWF 1D
.................... setup_comparator(NC_NC_NC_NC);
03F8: BCF 03.5
03F9: BSF 03.6
03FA: CLRF 07
03FB: CLRF 08
03FC: CLRF 09
....................
.................... setAK(); //nastaveni akcelerometru
03FD: BCF 03.6
03FE: GOTO 08B
....................
.................... printf("Akcelerometr IMU01A - MMA8451Q \r\n",);
03FF: MOVLW 04
0400: BSF 03.6
0401: MOVWF 0D
0402: MOVLW 00
0403: MOVWF 0F
0404: BCF 03.6
0405: CALL 0EA
.................... printf("(c) MLAB JACHO 2013 \r\n",);
0406: MOVLW 15
0407: BSF 03.6
0408: MOVWF 0D
0409: MOVLW 00
040A: MOVWF 0F
040B: BCF 03.6
040C: CALL 0EA
....................
.................... while(TRUE)
.................... {
.................... X=akX ();
040D: GOTO 282
040E: MOVF 79,W
040F: MOVWF 22
0410: MOVF 78,W
0411: MOVWF 21
.................... Y=akY ();
0412: GOTO 292
0413: MOVF 79,W
0414: MOVWF 24
0415: MOVF 78,W
0416: MOVWF 23
.................... Z=akZ ();
0417: GOTO 2A2
0418: MOVF 79,W
0419: MOVWF 26
041A: MOVF 78,W
041B: MOVWF 25
.................... printf("Namerene hodnoty: \r\n",);
041C: MOVLW 21
041D: BSF 03.6
041E: MOVWF 0D
041F: MOVLW 00
0420: MOVWF 0F
0421: BCF 03.6
0422: CALL 0EA
.................... printf("Osa X: %Ld \r\n",X);
0423: MOVLW 2C
0424: BSF 03.6
0425: MOVWF 0D
0426: MOVLW 00
0427: MOVWF 0F
0428: BCF 03.0
0429: MOVLW 07
042A: BCF 03.6
042B: MOVWF 27
042C: CALL 2B2
042D: MOVLW 10
042E: MOVWF 04
042F: MOVF 22,W
0430: MOVWF 28
0431: MOVF 21,W
0432: MOVWF 27
0433: CALL 301
0434: MOVLW 20
0435: MOVWF 30
0436: CALL 0C6
0437: MOVLW 0D
0438: MOVWF 30
0439: CALL 0C6
043A: MOVLW 0A
043B: MOVWF 30
043C: CALL 0C6
.................... printf("Osa Y: %Ld \r\n",Y);
043D: MOVLW 33
043E: BSF 03.6
043F: MOVWF 0D
0440: MOVLW 00
0441: MOVWF 0F
0442: BCF 03.0
0443: MOVLW 07
0444: BCF 03.6
0445: MOVWF 27
0446: CALL 2B2
0447: MOVLW 10
0448: MOVWF 04
0449: MOVF 24,W
044A: MOVWF 28
044B: MOVF 23,W
044C: MOVWF 27
044D: CALL 301
044E: MOVLW 20
044F: MOVWF 30
0450: CALL 0C6
0451: MOVLW 0D
0452: MOVWF 30
0453: CALL 0C6
0454: MOVLW 0A
0455: MOVWF 30
0456: CALL 0C6
.................... printf("Osa Z: %Ld \r\n",Z);
0457: MOVLW 3A
0458: BSF 03.6
0459: MOVWF 0D
045A: MOVLW 00
045B: MOVWF 0F
045C: BCF 03.0
045D: MOVLW 07
045E: BCF 03.6
045F: MOVWF 27
0460: CALL 2B2
0461: MOVLW 10
0462: MOVWF 04
0463: MOVF 26,W
0464: MOVWF 28
0465: MOVF 25,W
0466: MOVWF 27
0467: CALL 301
0468: MOVLW 20
0469: MOVWF 30
046A: CALL 0C6
046B: MOVLW 0D
046C: MOVWF 30
046D: CALL 0C6
046E: MOVLW 0A
046F: MOVWF 30
0470: CALL 0C6
.................... delay_ms (2000);
0471: MOVLW 08
0472: MOVWF 27
0473: MOVLW FA
0474: MOVWF 28
0475: GOTO 381
0476: DECFSZ 27,F
0477: GOTO 473
....................
.................... }
0478: GOTO 40D
.................... }
....................
0479: SLEEP
 
Configuration Fuses:
Word 1: 2CF5 INTRC NOWDT NOPUT MCLR NOPROTECT NOCPD NOBROWNOUT IESO FCMEN NOLVP NODEBUG
Word 2: 3FFF NOWRT BORV40
/Modules/Sensors/IMU01A/SW/PIC16F887/main.pjt
0,0 → 1,24
[PROJECT]
Target=D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main.hex
Development_Mode=
Processor_Text=PIC16F887
ToolSuite=CCS
Processor=0x887F
[D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main]
Type=4
Path=
FileList=
BuildTool=
OptionString=
AdditionalOptionString=
[mru-list]
1=D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main.c
[Windows]
0=0000 %S 0 0 796 451 3 0
[Units]
Link=0
Count=1
1=D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main
[Opened Files]
1=main.c
2=
/Modules/Sensors/IMU01A/SW/PIC16F887/main.sta
0,0 → 1,68
 
ROM used: 1146 (14%)
1146 (14%) including unused fragments
 
0 Average locations per line
4 Average locations per statement
 
RAM used: 13 (4%) at main() level
26 (7%) worst case
 
Stack used: 3 worst case (out of 8 total available)
 
Lines Stmts % Files
----- ----- --- -----
46 21 7 main.c
20 0 0 main.h
423 0 0 C:\Program Files (x86)\PICC\devices\16F887.h
2172 260 84 C:\Program Files (x86)\PICC\drivers\math.h
16 0 0 MMA8451Q.h
60 28 9 MMA8451Q.c
----- -----
2737 309 Total
 
Page ROM % RAM Vol Diff Functions:
---- --- --- --- --- ---- ----------
0 22 2 1 @delay_ms1
0 69 6 3 @I2C_READ_1
0 74 6 1 @I2C_WRITE_1
0 36 3 1 @PUTCHAR_1_
0 59 5 0 80 1.2 setAK
0 269 23 8 558 4.7 akR
Inline 6 272 5.5 @DIVS1616
0 16 1 2 68 2.4 akX
0 16 1 2 68 2.4 akY
0 16 1 2 68 2.4 akZ
0 227 20 1 584 3.3 MAIN
0 17 1 0 343 8.6 @const232
0 70 6 3 367 7.0 @PSTRINGC7_69
0 12 1 0 264 6.8 @const234
0 11 1 0 153 4.7 @const235
0 7 1 0 315 6.5 @const236
0 79 7 4 288 6.0 @PSTRINGCN7_69
0 128 11 9 209 5.2 @PRINTF_LD_69
0 7 1 0 346 7.5 @const241
0 7 1 0 318 6.5 @const242
 
Program metrics:
Functions 16
Statements 309
Comments 351
Volume (V) 7495
Difficilty (D) 80.2
Effort to implement (E) 600964
Time to implement (T) 9 hours, 16 minutes
Est Delivered Bugs (B) 2
Cyclomatic Complexity 25
Maintainability (MI) 132
 
Segment Used Free
----------- ---- ----
00000-00003 4 0
00004-007FF 1142 902
00800-00FFF 0 2048
01000-017FF 0 2048
01800-01FFF 0 2048
 
 
 
/Modules/Sensors/IMU01A/SW/PIC16F887/main.sym
0,0 → 1,119
004-005 @READ_PROGRAM_MEMORY8.P1
004 @WRITE_PROGRAM_MEMORY8.P2
015 CCP_1_LOW
015 CCP_1
016 CCP_1_HIGH
01B CCP_2_LOW
01B CCP_2
01C CCP_2_HIGH
020 @TRIS_C
021-022 x
023-024 y
025-026 z
027-028 akX.x
027 @PSTRINGCN7_69.P1
027-028 @PRINTF_LD_69.P2
027-028 akZ.z
027-028 akY.y
027 MAIN.@SCRATCH1
027 @PSTRINGC7_69.@SCRATCH1
028 @delay_ms1.P1
028 @PSTRINGC7_69.@SCRATCH2
028 @PSTRINGCN7_69.@SCRATCH1
029 akR.H
029 @PSTRINGC7_69.@SCRATCH3
029 @PSTRINGCN7_69.@SCRATCH2
029 @PRINTF_LD_69.@SCRATCH1
02A akR.l
02A @PSTRINGCN7_69.@SCRATCH3
02A @PRINTF_LD_69.@SCRATCH2
02B akR.XL
02B @PRINTF_LD_69.@SCRATCH3
02C akR.XH
02C @PRINTF_LD_69.@SCRATCH4
02D-02E akR.x
02D @PRINTF_LD_69.@SCRATCH5
02E @PRINTF_LD_69.@SCRATCH6
02F-030 @DIVS1616.P1
02F @I2C_READ_1.P2
02F @I2C_WRITE_1.P3
02F akR.@SCRATCH1
02F @PRINTF_LD_69.@SCRATCH7
030 @PUTCHAR_1_.P1
030 @I2C_READ_1.@SCRATCH1
030 akR.@SCRATCH2
031-032 @DIVS1616.P1
031 @I2C_READ_1.@SCRATCH2
033 @DIVS1616.@SCRATCH1
034 @DIVS1616.@SCRATCH2
077 @SCRATCH
078 @SCRATCH
078 _RETURN_
079 @SCRATCH
07A @SCRATCH
107.6 C1OUT
108.6 C2OUT
10D-10E @WRITE_PROGRAM_MEMORY8.P1
10D-10E @READ_PROGRAM_MEMORY8.P2
 
ROM Allocation:
0381 @delay_ms1
0130 @I2C_READ_1
0041 @I2C_WRITE_1
00C6 @PUTCHAR_1_
0800 @ADDFF
008B setAK
0175 akR
023C @DIVS1616
0282 akX
0292 akY
02A2 akZ
0397 MAIN
0004 @const232
00EA @PSTRINGC7_69
0015 @const234
0021 @const235
002C @const236
02B2 @PSTRINGCN7_69
0301 @PRINTF_LD_69
0033 @const241
003A @const242
0397 @cinit
 
 
User Memory space:
 
User Memory space:
 
Project Directory:
D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\
 
Project Files:
main.c
main.h
C:\Program Files (x86)\PICC\devices\16F887.h
C:\Program Files (x86)\PICC\drivers\math.h
MMA8451Q.h
MMA8451Q.c
 
Units:
D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main (main)
 
Compiler Settings:
Processor: PIC16F887
Pointer Size: 16
ADC Range: 0-255
Opt Level: 9
Short,Int,Long: UNSIGNED: 1,8,16
Float,Double: 32,32
 
Output Files:
Errors: main.err
Ext Symbols: main.esym
INHX8: main.hex
Symbols: main.sym
List: main.lst
Debug/COFF: main.cof
Project: main.PJT
Call Tree: main.tre
Statistics: main.sta
/Modules/Sensors/IMU01A/SW/PIC16F887/main.tre
0,0 → 1,74
ÀÄmain
ÀÄMAIN 0/227 Ram=1
ÃÄ??0??
ÃÄsetAK 0/59 Ram=0
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÀÄ@I2C_WRITE_1 0/74 Ram=1
ÃÄ@PSTRINGC7_69 0/70 Ram=3
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PSTRINGC7_69 0/70 Ram=3
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄakX 0/16 Ram=2
³ ÀÄakR 0/269 Ram=8
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÀÄ@DIVS1616 (Inline) Ram=6
ÃÄakY 0/16 Ram=2
³ ÀÄakR 0/269 Ram=8
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÀÄ@DIVS1616 (Inline) Ram=6
ÃÄakZ 0/16 Ram=2
³ ÀÄakR 0/269 Ram=8
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_WRITE_1 0/74 Ram=1
³ ÃÄ@I2C_READ_1 0/69 Ram=3
³ ÀÄ@DIVS1616 (Inline) Ram=6
ÃÄ@PSTRINGC7_69 0/70 Ram=3
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PSTRINGCN7_69 0/79 Ram=4
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PRINTF_LD_69 0/128 Ram=9
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PSTRINGCN7_69 0/79 Ram=4
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PRINTF_LD_69 0/128 Ram=9
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PSTRINGCN7_69 0/79 Ram=4
³ ÃÄ@PUTCHAR_1_ 0/36 Ram=1
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PRINTF_LD_69 0/128 Ram=9
³ ÀÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÃÄ@PUTCHAR_1_ 0/36 Ram=1
ÀÄ@delay_ms1 0/22 Ram=1