No changes between revisions
/Modules/Sensors/IMU01A/SW/Python/.ipynb_checkpoints/IMU_test-checkpoint.ipynb
17,11 → 17,11
"P\u0159\u00edklad vyu\u017e\u00edv\u00e1 modulovou stavebnici MLAB a jej\u00ed knihovnu [pymlab](https://github.com/MLAB-project/MLAB-I2c-modules).\n",
"Sn\u00edma\u010d je k po\u010d\u00edta\u010di p\u0159ipojen\u00fd p\u0159es rozhradn\u00ed USB a data jsou vy\u010d\u00edt\u00e1na p\u0159es [I\u00b2C](http://wiki.mlab.cz/doku.php?id=cs:i2c)\n",
"\n",
"Pou\u017eit\u00fd sn\u00edma\u010d [MPL3115A2](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPL3115A2) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n",
"Pou\u017eit\u00fd akcelerometr [MMA8451Q](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA8451Q) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n",
"\n",
"* Tlakov\u00e9 rozli\u0161en\u00ed: 1,5 Pa\n",
"* Relativn\u00ed p\u0159esnost: 0,1 kPa\n",
"* Absolutn\u00ed tlakov\u00e1 p\u0159esnost 0,4 kPa\n",
"* \u00b12g/\u00b14g/\u00b18g dynamically selectable full-scale\n",
"* Output data rates (ODR) from 1.56 Hz to 800 Hz\n",
"* 99 \u03bcg/\u221aHz noise\n",
"\n",
"Zprovozn\u011bn\u00ed demo k\u00f3du\n",
"---------------------\n",
49,13 → 49,12
"i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n",
"i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
"i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
"i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n",
"i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n",
"i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 005\tI2C adapter\r\n"
"i2c-6\ti2c \tDPDDC-B \tI2C adapter\r\n",
"i2c-7\ti2c \ti2c-tiny-usb at bus 001 device 013\tI2C adapter\r\n"
]
}
],
"prompt_number": 1
"prompt_number": 2
},
{
"cell_type": "markdown",
84,7 → 83,7
"cell_type": "code",
"collapsed": false,
"input": [
"port = 8"
"port = 7"
],
"language": "python",
"metadata": {},
113,7 → 112,7
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
"prompt_number": "*"
},
{
"cell_type": "markdown",
145,7 → 144,7
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
"prompt_number": 30
},
{
"cell_type": "markdown",
173,12 → 172,15
]
}
],
"prompt_number": 9
"prompt_number": "*"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\u010cten\u00ed dat z akcelerometru\n",
"-------------------------\n",
"\n",
"Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako acc."
]
},
186,16 → 188,20
"cell_type": "code",
"collapsed": false,
"input": [
"import sys\n",
"import time\n",
"from IPython.display import clear_output\n",
"\n",
"MEASUREMENTS = 1000\n",
"x = np.zeros(MEASUREMENTS)\n",
"y = np.zeros(MEASUREMENTS)\n",
"z = np.zeros(MEASUREMENTS)\n",
"\n",
"list_meas = []\n",
"# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
"\n",
"for n in range(MEASUREMENTS):\n",
" (x[n], y[n], z[n]) = acc.axes()\n",
" print( n, x[n], y[n], z[n])"
" clear_output()\n",
" (x, y, z) = acc.axes()\n",
" list_meas.append([x, y, z])\n",
" print (n, list_meas[n])\n",
" sys.stdout.flush()"
],
"language": "python",
"metadata": {},
204,32 → 210,128
"output_type": "stream",
"stream": "stdout",
"text": [
"(0, -0.81022499999999997, -0.54599999999999993, -0.26715)\n",
"(1, -0.83362499999999995, -0.52162500000000001, -0.26032499999999997)"
"(999, [0.038024999999999996, -0.00975, 0.966225])\n"
]
},
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"np.savez(\"calibration_data_3Dset\", data=list_meas)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Kalibrace akcelerometru\n",
"-----------------------\n",
"\n",
"Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. \n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = np.load('./calibration_data_set.npz')\n",
"x=data['x']\n",
"y=data['y']\n",
"z=data['z']"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from mpl_toolkits.mplot3d.axes3d import Axes3D\n",
"#%pylab qt\n",
"%pylab inline\n",
"fig = plt.figure()\n",
"ax = Axes3D(fig)\n",
"p = ax.scatter(x, y, z)\n",
"#pyplot.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(2, -0.70297500000000002, -0.61327500000000001, -0.39487499999999998)"
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNX6gN+Z7SW9NzoovXdpghV7QeQq/Cx4RVGv1y6I\nBcGG2NCr2HtDxAICKggivYcaIJQkhJBCdpPtOzO/P+Kum0YSCIGQeZ/HJw+PuztndmfOO+ec73yf\noCiKgoqKioqKShNBPN0NUFFRUVFRaUhU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU\n8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amo\nqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNCm0p7sBKiqnElmWcbvd+Hw+dDodGo0GjUaDKIoIgoAgCKe7iSoqKg2MKj6VsxJZlvH7/UiShKIo\nyLKM1+tFUZRysguIUBWiikrTQRWfyllFqPAABEFAFMXgf6EEhBh4bSgBEWq12uB7VSGqqJwdqOJT\nafQoioKiKPh8PmRZBignKUVRqnxfdSILCNHn8+H1ejEajcHXi6KoClFFpZGjik+l0RIqPKfTiSAI\nGI3GKiVUFzEFRBaYFtVoNMHjBUaIXq+33OtVIaqoNB5U8ak0OgIC8vv9wRFegFMpmppGiNUJUavV\nBtcPVSGqqJx+VPGpNBoqCi8gkFMlkcCorzavO54QPR5PpddXJcSKa5AqKiqnBlV8Kmc8iqIgSRKS\nJFUrvJokVTGasyGoSoiBNlYnxIoRphqNRh0dqqjUM6r4VM5YAsLz+/1BcdV1hOfz+XC5XPj9/nIj\nq9M17Rg4VnVCDJxvxfdUXD9UhaiicuKo4lM546hKeHWdBgwIT5ZljEYjOp0OKBtpBfb0BdYHQ0UY\nupevIamrEBVFKRdQU3ENUUVFpXpU8amcMZyM8ARBQJKkcsIzmUzo9XoAvF5vuQjNwPEC63CB/yqu\nHwaiRk+XVGorxMD35ff70Wq1lbLUqEJUUfkHVXwqp52THeEF3u/z+fD7/UHh1XYfX1Ub2wOf6fF4\ngp8dEGJ1U6YNSXVC9Hg8aDQa/H4/Pp+v3NpmYISoClGlqaOKT+W0oShKubRiJyK80BGeRqMhLCzs\npDvy0HW/wN7AwPFCR4hnohADba5K5kBQiKGoQlRpaqjiU2lwAsILrFmdjPAATCZTcJqyIfbxVTdC\nPJOFWNOUqSpElaaEKj6VBqMq4dWlE1UUBa/Xi9vtBsqEp9PpEASh0taA+qCu+/iON2Uaun4YmhHm\ndEaYBtoe+je07aAKUeXsRBWfyimnvoTncrkQBKGc8M5kjifE0ICawOgwEKl5urdcBNoe+je07aAK\nUaVxo4pP5ZQRmParD+GJoojFYkGr1Vabi7M2o7MzgdCN6qGoQlRRaRhU8anUOwHhlZaWIooiBoOh\nzsLzeDy43e4ahXc2UR9CDEyvno62h/4NbXtgTTawpSSAKkSV04UqPpV6o2ItvEAHXNuOrCrhBTae\nN2XqIkRFUYLf3+nelB9oe3V5TEMrawDB37q6PKaqEFXqC1V8KidNVcVfQzeA10RAeC6XC61Wi9Vq\nRaut26XZmKY664uqhOh0OoOb9qvalH8mRJgG2h44bmA7i0ajCQrR6/VWyq9aXR5TVYgqdUUVn8oJ\nUVPx19p+htvtxu12o9VqCQsLq7PwVCpTMUMNnNlbLkIFV1Oli9A9nwFChRg6ulWFqFIdai+jUifq\nIrzqRmGq8BqexrwHMbT9FVGFqHIiqL2NSq2oqvhrXTuRQCket9uNTqerV+GdiqnO0JRnZ2tn2RSE\nWBFViCqq+FSOy8kUfxUEIdhxhgovPDy80lScyplFbYVYcVN+aDDN6RTKyQgxtPyTKsSzE1V8KlVS\nH9XOAxvXbTbbaRee2nnVD6diU37gNQ3Z/oqECtHr9ZZ7fWj5J1WIZweq+FTKUR/FX2VZDq7hiaLY\nIMJrilGdVXG6pmVPZg9iYOr8dEZpnogQA1LU6/WqEBsZqvhUgPop/hoQnsfjQa/XYzKZkCRJndZs\nwtRGiJIkIUkSLpfrjMpSE2h/dUIMZKkJLRAcuG+qKg6sCvHMQRVfE6e+hOdyufB6vej1eiIiIhBF\nEa/XW65TUFEJECrEwMORTqer85RpQ02RVtX+0PMIEGh/xaTpoedbcWO+SsOjiq+JUh/CkyQJt9uN\n1+vFYDAEhXe6ON5U59kcmdnYqbiP73gjxIqVLoBKImnICNOKx6lqZBe4LkPz1oa+vrqN+SqnDlV8\nTYyTLf4KtRdeQ667qR3F2U1VQmxMWy5C/4a2H44vxNCAGlWI9YcqviZCIA2UJEnVRubVRGAdxufz\nnREjvLpwoh1GQN5qh3Pmcbr3IJ7sdVFXIQamewNCVBN7nziq+M5yQmvhOZ1ONBoNJpOpTp8RKjyj\n0YjZbK6V8Bo60rK6Y6mdQtPidAuxPtof+je0/UClJQpQK13UFVV8ZylVFX+t6+jM7/fjdruDwrNY\nLGfsjXSmtkulZhpqRF0XIYYmya6qysXpmAmoSYiBKFNViDWjiu8s42SrnUPZDeRyufD7/SclPHVv\nnUpj4EQ35Qf++v3+077lIvRvaPuh6uLAgbbq9fomKURVfGcJtal2XpOIQoVnMpmwWq2N7kZQ1+NU\n6ouaIkwDWxbqkqWmodsf+je0/YFRbSAyNkBTGSGq4mvkVFcLryoEQah0oUPZjet2u5EkCaPRWG/C\nU6M6VWpDY5sVCAgxIIlAAd2TSdvW0O0PPY8AxxshBs5106ZNdO7cmYiIiIZr8ClAFV8jpS7CCyW0\nk/H5fLhcLmRZrlfhnWlIkoTH4ym3XqNm0jizaIy/RcXZhZNJ23amCbFi+6FMiLNmzWLatGmq+FQa\nltAbB+q2hhcYgYUKz2QyodfrT8mNdrrX+EKjUbVabbk6gmdaJhCVs5czcVN+XZYEQoVos9mIjIys\nt3acLlTxNQLqq9p5YA3Q4XCcUuGdLgKiDaRQC41GDYR/B6jqKTywx7GiBGVZVoWoUon62Md3ujbl\nn2jbS0tLG/1oD1TxndHUl/ACI7zAxR4REdGgwmuogBNFUXA6nbXab1jbTidQLf54Ye0qJ4cakPQP\nZ/oeRFmWz4qk86r4zkDqqxZeQHhAcNN6oBNvCBrqOIERXuCY1WWUqamDrarTcTqdwbIzFTuc+lyj\nyc/PZ//+/URFRdGmTZsT/u5UiTQcDTmNX99CPJHrpLEFIR0PVXxnEPUlPK/Xi9vtBsqEp9PpEASh\n0nRfQ3GqOuPQqhAGgwFBEDAajfU+LRnagWi1/9wyxwtaqMsazYYNG5g06V0kqT2SdIirr27PxIm3\nqQJrBJzu3+hEhQhlkZo+n69OI8SzZZZDFd8ZQH0Ufw0Iz+VyIQhCOeEFOB3BJqdKeIG6f6E5Q0ML\nhTYE1QUthMqwpidwQRB45pnZ6HSTiIpqhyS5+f77hzj//B107NixQc9H5eyhpk35gT2IgYfs2sxe\nhEqzsaOK7zRSH6WBQoUniiIWiwWtVntGXaD1JduKhW7P1CTZVUWHVnwCD3Q4LpeLY8ecJCa2RpYV\nRNGAKLYmPz//NLW+YWnM02eNcVo58LAmCAI6nS44g3G82QtBEHj44YdJTk5Go9GQmZlJixYtarz3\nbr31VubPn098fDzp6elVvubee+/ll19+wWw289FHH9G9e/d6P+eqOPN6jSZAYP0tkAcTqPNitKIo\neDwebDYbHo8Hi8VCWFhYpVFeKI11xCfLMk6nE5vNhqIohIeHY7FYKt14p3v7xPEIPNRotdpgdXqL\nxUJMTAytWydQWPgroOB0ZiHLm0lMTMTpdAavkUCgzdlKYxNIY/8tqtuDqNPpMBgMwevTYrGg0+no\n06cPhYWF7N+/nyFDhhAeHk7v3r1ZtWpVtce45ZZbWLhwYbX/f8GCBezdu5c9e/Ywe/ZsJkyYUK/n\neDzUEV8DEjrCczqdiKJY50oJAeG53e7gCC+QOaImTpcYTvSYgSkZt9uNXq8nPDz8jIkoUxSFkpIS\ndDpdnX/DUARB4Nln7+fxx2eSlfUler2fKVPGcs455wT3d52pVQRUGp+w64oglOXzHDduHOnp6Yii\nyDvvvENxcTE7duygTZs21b530KBBHDhwoNr//+OPPzJu3DgA+vbtS3FxMXl5eSQkJNT3aVRCFV8D\nUN2UZl2EECo8jUZTJ+FV9VlnYmSnoihkZmZSUFBAVFQUcXFx6HS6ehHeiZ5vVe9zOBxMnfoa69Yd\nBPyMHj2U22+/6bjBK3/9tZWdO3dQUOAjIsLK2LEXM3jweQCkpKTw4YcvUVJSEpyqBsoF0sDxqwiE\nTq/6/f7gdNbZ3jGrnBgn0gfYbLbgHr7IyEgGDBhwUm3IyckhLS0t+O/U1FSys7NV8TV2ApUSTqba\neUB4LpcLrVaL1Wqt1CHWltPVCdZW8HPnzmfOnN0oShqCsITbbx/A8OFDan2c441oT+bcK37m7Nmf\nsWZNCklJTyFJLr74YirnnPMngwcPrvTeP/5YziuvLKOw0MqhQybM5qvo2DGZ559/l8jIcLp06QKU\nTXXXtDG4poCFwNqh3++vJMSK+w/PFBrjOhk03nYHOJH22+32es/aUvHeaqjvVBXfKaA2tfAEoeqE\n0aGf4Xa7cbvdaLVawsLCTlh4FY97MjetJEl16jxr8zpFUTh06BDffruJpKQHMBqt+HwlfPbZTPr3\n743ZbD6htlY8Rihut5s5c35g795c2rVL4brrrkSv19fqs7Zs2U9k5H8QBBGt1oIoDmLhwj/YuTMH\nq9XARRcNJjY2FoCvv15GVNTtZGV9iNV6Fz6fBrdbgyhezLp16UHxnQyh0aUejwej0Vgui01gytTh\ncLB//35EUaR169bB/YnqdGnT4kSXHux2e71mbUlJSSErKyv47+zsbFJSUurt84+HKr56pC618Kob\nnYQKT6fT1ZvwTpaioiJefHH2352+hQcfvImePXvU6r3V3Wiho1mbzYZen4TZHAaAwRCOLFtwOp31\nIr5QZFlmypSXWb8+DqNxCMuXr2b79leYOvWhWo3I09JiycnZjtNpxePxUFAwj9WrrRQUdMPrPcbq\n1e/x9NN3EB0d/Xe6Mz06nRGHIx9IRpYVFKUAq9VISUkJc+fO47vvfiU/v5iUlGbcf/8YBg48uWkk\nKC/E4uJipkx5nayscBTFy7nnyjz++F0YDIZy64cV9x+GXsNFRUXs3buXsLAwzj333CYtysY+4oO6\nj66Ki4vrVUxXXHEFs2bNYvTo0axevZrIyMgGmeYEVXz1Ql2EF6Ci+EIDOeprXas2x60tL7zwDunp\nXUhJeRyH4yBPP/0qb7+dSHJyco3Hq0jF9cqwsDBat26N1TqfoqJdREWdw9GjG4mPl4mKigLK1tXe\neOMjVqzYRkSEhXvvHUXfvn1O6NyysrLYtMlGUtLTCIKIovRh7dqJHDlypMbz2bt3L7LsY9euKXi9\nPRBFBVlOp23bV4mL6wbAwYN2tmzZyrBhQ7nssr68++5HREe3ICvrISCN0tJOtGlzmEGD7uPuu6ew\nfDmUlMSi0zmR5e489dQXvP12Aq1bt67xXKojMzOTP//ciCAIDBnSiwULlpGV1ZukpGtQFIUdOz5k\n0aIljBp1NVBzBYGMjAyeeOI9fL72yPJhRoxI5qGH7gr+vrm5uRQXF5OQkEB0dPQJt1vl1HOi0i4p\nKSE8PLzWr7/xxhtZtmwZBQUFpKWl8fTTTwej2P/9739z6aWXsmDBAtq0aYPFYuHDDz+sc5tOFFV8\nJ0Ftir9WR+hUVGBv2qkUXsXj1gW/38+WLQdJTZ2MIAhYrS2x2zuzb9++GkUB/4z4KgpPo9Fgt9vR\narVYLBYeeWQMb745h6ysYlq1imPChJuC38Ubb3zEkiXhJCW9jsuVy9NPv8qbb8bRsmXLOn8HZaMb\nDRD4rQRAPO7UM8D+/ft58MG3sNm6oyj90OkG06pVMoWFv7F9+wHat+/79zWgCZ7zZZddhNNZytSp\nH2AwDAFk7PaF3H//C+zatYutW73YbB5gJB5PBvv2fUKnTnewY8eOExbfvn37mD59LqJ4IaDw559f\nYzC4MJsHlZ2tIGA0diQ7ex2SJAUDYY5XQeDllz8D7iYmpguy7GPRoqcZMOAvevfuzeLFf/Ddd9vQ\naFIQxUPcc88ldOnSuVZtbawjp8ba7pOhrpUZvvzyyxpfM2vWrJNp0gmjiu8EOBnhBQhEepZN8Z1Z\nofoV0Wg0hIcbcTqzsFiaIcsSspxDeHjNm00Dog1MaQa2YOzcuYvp0z/B44lApyvmkUfG0LNnD158\n8YFgNYSioiIOHjxIfHw8q1fvJDFxBlqtibCwVths/dm9e3etxacoCrm5uTz77Cy2bNnNsWPF2O1P\nERd3LQ7HSrp1i2D58pV8881SAG68cQSjRl1T7jOWLl2F1zuSsLAw9HoXGs1lFBdnk5IymN27P6Kg\noBN+vx2rdT1duowPnn92dgEGw80UF3cDYjlyJIV77nmKhx66laNH9yOKbwPtAPD7MygpWYXVem3t\nf6AK/PbbOrTakSQklE1FHzki4vd/jt3+J2Fh7VAUiaNHv+H33/NZvTqDzp3TmDjxpuDoOpSAEPPz\ni4mN7YBGo0FRNGg07bDb7axevZpHHvkCv/8GoqNj6dy5P2+++QmvvPLPGqIaXXpmcaLSPhXBLacL\nVXx14ESLv1b8jMAIT1EUIiIiGlR4JzLiEwSBBx4Yw9SpL2OzdUWSshg2LLLGwIyA3H0+X7ktGE6n\nk+nTP0Gnu5fo6JaUlmbx/POv8P77bQgPD0cURebPX8yHHy4DorBYjqHR+HC5DqPTtfs7rD8Hi6Vn\nlcesyE8/LeCFFz4kI2MvojiWdu2eArZRXPwYPXs66dq1LfHx3Zk5cxWRkdMAeP315/H7fVx++aXB\nbSOiKAAy4eHtEcXP8Ho3YDCYkKQshgzRYzR+wcGDWXTu3CKYNFtRFFat2kRmZj8EoRk6nQW9vjeH\nDs37u63F6PVW3O4iFCUfjSaeFi1yGDhwYJ1+o1AkSUYU/7m1BUFLly5daN68mNWr78fjKcXjcdGu\n3XOEhaWxffti3njjM6ZMuafaz+zSpRVbtiwgIeEqvN58BGE9iYn/4rHHXsPnG0B4+DXY7YfYvHkf\nHTqU/caBAK7q0mGdiVl3mgKq+FTx1Yr6El4gobJerycsLIySkpIGH+Wd6Bpf3759+N//ksjMzCQ8\nvDPdunWr9jsITaOmKAp6vR6z2Rx8fWFhIR5PJNHRZaM1qzWNkpJ48vPzCQ8P5+DBg7z//kri4yej\n14dx7NgO4DUcjtcpKemHouTSvbuLfv36lTuu2+2moKCA2NhYwsLKgmTS09N59tnvMJufQ5Iewe//\nFzk5Nlq1GggMYcyYIQwcOJBHH30Rg+F6DIYkjhw5yp49rXjwwbd46aWvGDduOC6Xn6KiYrze/RQX\nm2jZciiZmU8RGxvF0KG96dBhBC+9tBit9hZ+/72QNWsm8cknL3Do0CEOHvSiKAsQxavw+UqR5c9I\nSmqBwWDgmmuG8PPPb2IwXIJWm0d09D5mznypUoTp3Lk/8Nprn+F2e7jsssE88si91UahDhvWnXXr\n5lNQIAIKPt8vXHDBlbRp0wabzcbGjRt5991CwsObA5CcfBHbty/E7/dXG0j1yCP/5sknXyMj4yd0\nOon//vd6dDoditIWvb4UScrDbG7BsWOLiYiQiI6ODoqt4vqh1+stl4Q9sKbYmKJL1anOxo0qvmoI\nbBY+mVp4UBb+73a7gxUEAvkla1pPOtOw2+1YrVYGDx58XOGFlkKyWCx4PJ5gZ+Zyudi+ffvfWWcK\ncToPYzYn43IdRRSPEhMTA0BeXh4aTWv0+jJ5RUV1oLTUzKuvjufAgQNYLGn06dOn3Ab+ffv2MWPG\nN3i9UWi1Jdx22zD69OnFjh07kOVhmEytEQQ/ogglJQ4UxY8k5WK1WvH7/Rw+nENm5la02liOHTuI\n378LrfY/FBXFMHXqhyQknEt4+CB8vl0MG7aI+PgURoyYSs+eZaPOUaPuwWJ5GIulw9/nYOe335Yg\nyyIxMf/i2LFPKSq6HUFIQKtNIDo6l44dOzJw4EASE99l9erZxMSE88ADk4mOjmbGjP+xY8chWrdO\npFevc3n22bmYzbMwGqOYO/c5zOb3eOCBuyp9/wAdOnTg4Yfh119XIwhw4YWX0bZtW6Bs43FiYiKS\nlI4sS4iiBocjm7Aww3EfwmJiYnjjjacpLS3FZDKh1Wo5cOAAolhC69ZXc+DAbEpLJTSaFdx332vl\nRnNVrR+G3l+hMwMVs9OotQ/rnxOVtsvlOqksRWcSqvgqcKqFFyAw8mroJ8e6jvgkSeKNNz5g8eId\ngMiAAc148MF/YzQag6+pKLzQyhA+n499+/bx2mtfsGjREmS5DTExEcTFHUWSpmOzNUMU87j//quC\nT5MJCQlI0ny8Xht6fQSFhVtJSDDTtm1b2rVrV6mNfr+fWbO+R6e7kbi45vh8Jbz//nu0bt2SqKgo\nBGElgqChefNbycyciEbTicLCIs4/P5HOnTuzbNlK9PpeWK0rKC524fVuRaNJIirqSuz2bcjyHcjy\nJozGVrjdwygs3MnLL08t14ayDjs0k44WSfKRmBiLLO+lX7932LHjdfLyVhIdncnMmdODoeGTJ/8H\nKItc/eOPP5g06SUKCoYRE3MXGRmrePvtR3E6/43RKJGWpkWv/z8++uh2iouLufTSYfTv37/Sd9Kh\nQwc6dOhQ5W/avn17hgxZy7JlMxHFZERxO7feOoQNGzaQnJxcZcBSevo2NmzYidVq4PzzzyM6Oprm\nzZtz5ZXtmTfvW5KSWiPLG5k4cUKNQTkFBQUcPHiQpKQk4uPjkWU5eD0F7onA3sNTUfuwPmjMI76T\nafvZMj2tiu9vKtbCgxMXnsvlwufzVSm8AKfrpqmr+BYsWMwvv7hJTZ0JiKxY8T7Nmv3A2LE3HFd4\nAex2O9Onf0ZGhhav9xZE8WZsNhswl8GDnYwZcwUxMTHlAiuaN2/Ov/89mNmzn2H//v3k5+fQrl0z\nlixZyvDh51dqY2lpKaWlOuLjU/F4vIiikVWrDjN8+I2kpqbQqpWO/fsfRKdLolUrB6NGGejRYySD\nBg36O1T/CKmpI2jR4jI2b57PihVFCEInJMmA11sEuLDbV3Ps2F/IcnMKCjbw66+/ccEFI4JtuOGG\n4bz88sv4/bfi8xViMs1n6NCpJCcns2zZJjZvnklSUjjnnNOKF1+8v1yqpsD3NHbsfWRmxpCb60an\n601UVBJHj/bE4YhHoylFllPZv/8gfv9KRNHEV1+1Z86cacycOZERI4YHg62KiopIT0/HaDTSvXv3\nSlOigiBw113jGDp0ByUlJWRmSjzxxPuIYmtkOZNHHrmRq666DEVRsNvtbN++g1mzVqLXD8fnO8ay\nZe8wdeoEIiMjufPOcQwYsJWjR4/SvPmEKh9MQvnjj2U8+OBMoBWStJ+xY4cTHZ2E2WzkvPN6kpSU\nVGN2moAQA0sPdal9qHJiNPak3BVp8uKrKLyA7E5GeEajEbPZXOPT0clmUWkIdu48hNk8AFEsG82E\nhZ3H9u0/BIWnKEqVwsvMzGTLli3k5ubidKbi8+Uiij3R6yPxeo+h0XQlL29htUluL7poONu27WT7\ndjepqa9QWmrjgQee4oMPIunRo/zGeavVitudy7x5c4EEcnO34nZvwmg0UFLSnJiYrUyaNBK9Xk/H\njteSmJhY7v1xcVb27j1MSko/Bg68hT179nHw4Ge4XIXIsoAg7MTh2ItGMwedzkB09K1MmnQ/5503\nkAMHDuB0Ohk4sB9Go5GFC7/FajVy662TadGiBQBTpz7Izp078Xg8tG17c5XZL7777nv27+9KRMTt\nHD36ELKcxt69BygpcWI0noMobsDnm4rX60RRVpCU9D4GQxdcrjY8+uh9JCV9j6JA+/Zx7NqVjdPZ\nFUUp5txz5/D6689UmqISBIGOHTtis9n4739fwWx+E4MhDa/3CC++eCdpaUk899y75OY6yMs7SseO\n0zl2LJySEj0HDkSzcuVKLr30UgRBoGvXrrW6llwuFw899BIazf8wGs+htHQVL700hfPPfwir1cjy\n5V/x2GM3VDniPN50aV2rj9cHZ/p9ezxOtO1n03RzkxVf4IYJdN6BjruuP6zf7w+WjjEajVgsljrv\n5WtI6nrMZs1iWbJkO4rSB0EQKC3dRkJCGA6HA5PJhF6vL3e+iqLwxx9/8Mgj7yBJQ3C79+FybaFZ\ns1EcObIAWe4KuPH5FtG9+/FHB0uWbCQqagomUwsAnM5RLFu2qpL4bDYbNpsDQdiBw5GO07kKUbwf\nUexHUdHTyLKO3bt306tXryo34I4YMYA9e74jO/swpaU2PJ4NdOnyIrt3P4uiXIUkdUJR0lAULVFR\n+YjiAYqL7bz33pfs3x+DKMYDi7jllr68+eallT5fq9XSuXP1+9oKCgqYO3cxBQUX4PeD1doBu/01\nHI7myPIGIiIiaNPmZYqKficn5zHgRgyGsohar3cnx46l0KXLW4iikZ9+ehyDoQXnnvs4iqKwffuL\nLFjwC9dee021x4ZYDIayEahen4jLlczjj7+Iy3UvcXEjyMt7kJUrd5GcfCFmc0sKCtYze/bnREVF\n0aVLFywWy3F/xwBFRUVIkhWz+RwAnM49iOJ1mExtSUlJIycHVqzYwKhRNe8NhdpXH69LsdWmQOB7\nqAs+n++Ek+KfiTQ58VWslBDIJFDbPI0B/H4/LpcLv99fZ+EFaAziu/LKS9m4cSbbtj2NLAukptq5\n6aYHiIiIqHS+e/fuZdKk11iyZBWiOI1zzjmfqCg9e/dOwOtdS1SUi4KCoURFmbn00sGMG3fjcY8d\nFmYmLy9B0dQvAAAgAElEQVQPk6ksMENR8rBaKy+u5+bmYjJ1Z9Cg0axYMRlBGIUgXIAgWFGUS8jP\nf4I5c/qwcOFW0tLm8/LLjwUFqCgKDoeD0aPPx+v1kpGRwa5d3YiKGopW+zY63X/xen9Dkl5EkhZT\nUPAtitIfUUzgvfd+Yty4uWg0OpzODnzzzdc8/XTldbU9e/aQkZFJWJiZPn16l1vPWrt2LZMnv8bh\nw4m43d+Tnd0OQRiGKE6iY8dNDBnSk0WL9mCzvY8g7OHKKy9g6dJfcTj6o9HE4Xa/R3z8HWi1FhQF\nZHkAXu/S4G8tiudw5EhZPsTS0lJsNhtxcXHB6z0hIQG9vgi7fT0mU0u83lwgC5tNS3z8MLKz36ak\nZC0ez5+UlgK0p7R0Hhs2JPDoo8tJS/uG119/olbZWmJjYzGZ3Dgca7FY+uDz5SNJfnJzj1BaWorZ\nLOP3lw/6UhSFxYuXsHjxJrRaDddeO4g+fXod9zi1SeZd3fph6LTp8e7nE5FHY8Zms9Upa8uZTpMR\nX3WlgeoqglDhmUwmrFbrCT8tng7x1RWdTsejj04gMzMTvV7POeecg8FgqPQ6l8vFgw++jMs1HkE4\nhNu9lvXrn8NotBIensT113ekZ8+eRERE0KJFiyqn+7Zv387y5eswm/VccskI/vvfsUyY8AJHj+4C\niklMXMU117xZ6X2RkZFIUg6gEBaWjNHow+s9iN8fi9f7JUbjTbRr9wCKonDw4Kf8/PNCxowZhdvt\n5uGHp7Jq1QEA+vZtxqOP3o1GM4esrE14vZE4nZ9jMrWlbdvbSE9/GI1mFnp9F2JjI8nPn8jSpS9h\nt5eNMOLicittCVi1ai2zZ69GkjqxffvH+P3TGDGiL48+OpHZsz/j00+XcPSoEUVph6KsAZ5CURRi\nY3sjywe49967ufnmY2RkZBAT04NevXqxfv16Zsz4AIfDRbNmHdi7t+Tv60jAbD6K230YWfYhSaXI\n8iK6dr2GhQsXM2PGVyhKJBERLl588QHatGmD1Wrl//7vEiZNugufLwy9/hivvHI/b775HZs2XYvd\nXoCi3AJIFBUtRFHmYDRejF5/CfHxrTl8+Gs+/XQO9913R43XksFg4I03pnDPPZMpKbEiihkIQiu2\nbu2AIGSj13/KhAkPlnvP0qV/8sEHu4mLuwWn08Mrr3zG5MkmOnbseNxjbdiwgd27dxMbG8vw4cNr\nzE7TlGofnmxJorOBs1581QkvQGAfUU0EKqZLkoTRaDwp4Z1Oanu+AcFLkoTZbKZnz57HPd8jR45Q\nUhJBXFwftFotJSUHgK/xeGzk5Y1n0yYfimIkNTWOc889t9L716xZy+TJXyAIlyPLdn766Vneemsy\nX3wxnT///AuTKZa+fZ8lMzOT4uLicpGDqampjBnTnU8/nUF0tAWj8VPCwwuQJBeKso2oqNGsXLkO\nUdRhNhs4evQoAB999AUrVoQTE/MtAKtWTeOHHxYycmQ3Zsy4D50uEVmegd9vxu8PJz4+ksjIweh0\nEUiSRH6+nt27S2jZcgoOxxEKCr5gxYrVDB16XrBtX331BzEx4/n998kcPdoRRZnAjz+uZf368RQX\nW9Drx6Mo6xHFK/D7t2A0zkaWd9KuXSfs9gc5fPgwnTp1Kne+ffr04ZtvyvKUulwuHn30BXbvfgZR\nNNO+/W5SUtJYs+YKdDoNEyZcR1paGrfc8hzh4a9iMCRw7NhqHnvsFb75ZhZHjx7l889XEx7+HILQ\nAq93I7Nmfc7IkT2ZNu1jFOUpBOEGwIeihOF0vo3R2IKEhHC0Wg0GQ1tyc/fWeD0F6NGjB7///hV5\neXm88MK7rF/fEb8/H1HUAP3YtGk7vXr9M6JbuXIHkZGXY7GUTX86nRewdu3244rvyy+/YebMhfj9\nw9BoljBo0ApmzHiy2u0agiDUufZh4IE19AG6sfQHJ1qSSBVfI6Am4QWoSQSBII5AyHV9Cu9MnOo8\n0RFtREQEslyAz1eMRhOBRvMv/P5iJEkHtGHOnGNs2BCDKG7nl19W8O67M8p1Nh9/vACz+d9ERnZG\nlv1s2bKK8eMfY8iQPowbdx0HDx5k/Pip+P1tkKRsbryxNxMn3hZs2zXXXEanTu04duwYkZGXs3Ll\nSr76agWFhZeza9dyFGU0BoNCYeEPHDoUj8/nY+3a7Wi111GWtxP0+hFs2/YdVmsYvXq9jtmciihG\nUFDwG8OH7yEzcz9//vkO4eH/we/PxGDYSmTkvfh8GSQnW4mPv5b09H/EpygKLpcPRSmloCAXg+ED\nfL4SLJYe5OauwGCIxmhsgVa7F0k6hKIcwe/fjdlsQJKKkOVs4uLiyn3POTk5/PDDXxQXu2jfPolL\nLhnMjBmT2LZtG36/H6t1BF9//Rvt20ej0XhIS0shJycHUeyIwVCW+T4qqh95ea9TWlpKdnY22dlR\nmM390eksKEprsrO/wOHwYTCYkSQDGo0eQdDi9xuJjRUxmf4iMfFCJMmNy7WAbt1al+tMy6YnF3Pg\nwAFatmzJBRdcUO4aMhqNNG/eHLfbT1RUP8zmcxFFkaNHf8Lh2FfufC0WA16vLeT6LMZiqTzjEMDr\n9fLKK59htX6BTheHokisWDGeLVu2VFobPh41TZe63e5y254qrh+eibUPT4bi4uKzZvM6nMXiA4JC\nO95cfFWV0APVFgLCqyqIoz44XVOdVR3zRIQXyKkJEB0dzd13X86sWY8CR5HlvUA3QAccRJaf5eBB\nLWZzL3744b/06DGbe+75ZwO2x+NDo7FQUlLKnj3vcPiwBo1mND/9ZGfdumcoKChEFJ8gJqYjkuTi\nyy/vZ9iw7XTq1Cn4GWlpaaSmpmI2l60NxsbGYbG0Y9++L5Gk1/H7s0lLu5nlyz9i2LDryc4upaTk\nL1JSXkCWu+J2/0JSUjiKosfvL8FoTESSZBTFS0SEmeeff5wHH3yGVasGEhZmZezYC8nLiyM1tSxn\naU7OcqKj/wn0EASB2FiFn356C5erBEWxodF40esj8fkkYDdlKdAiKC3NRq9vg0bzHyIi2lFSUsQD\nD1wfLNPi9XpZsOA3Pv74D8LDe9K585WsW7cTr/d3brhhJN27d0dRFKZNe4vDh/vRrNlAvN4SPv74\nHcaN64IkZeD329Fqwykp2U54eFkKuejoaHy+/QiCm6KiL7Dbl6Eoh9DrOxETk8jRo1/idusoS+T9\nHlde2ZuEhBTmzfu/vyuSFDNt2q+88spHTJlyNyNHXsKUKc8xZ04GPt956HSfc/31G3jmmccqXT8X\nXdSbadNexeW6EUFwExn5BYMHTyz3mquuGsrWrZ+TlZWPoniIitrA8OF3VntNls3KaNBqY//+DTRo\nNEk4HI7jXsu1JTBdKggCer0+OIqsWPswNEr8TJsuVUd8Z7H4AhdoTWIJlU9DCa+qYzcUFSMwf/nl\nV+bPX4tGI3DDDcMYMKB/jedbUFDAgw8+y/r16URGhjNt2v0MGTKY6667km7dOrJy5Uruvns6spwN\nOAEHoEWW26LXx6EoHfjgg5+58cZRxMbGYrPZKCjIYunSa5DlJGTZhkYzlejoTiQkJHD48G4KC/fS\nqlVZ4IhGY0IU2wanLKuiLDuOD0EQMRpHYjC0RFHeIypqENu3P09S0gdERIjY7R9x4MB4RLEter3C\nwoUaZs6cxMaNX5KTk4cse4iKWsFVV00iKiqK999/JSh8m83Giy9+xKFD+QiCSGzsQS69dFywDT/9\ntIDff89GltshCBIOx+3ExY3G6VxHr16xjB17B5MmPYHBUIrFEsagQQPp0mU0nTu3IiUlhZ07M5k2\n7SOMRi2SVEpGRiJ2+3V4PCIbNy6if/9RpKe/z/XX//MAsm9fPikpZdOgen0YgtAevV7P7bcP5r33\n7kGjSUWnO8Qzz9yFKIq0bNmSIUOSWbDgCjye9gjCTej1R/j5568ZP/5CnnvuPeBxBCESq/UKvv76\nWxYt+pgJE25hwoRHWLduBDExd+L1HuKJJ+5Blv18+eXvGI0LMZsjkOXb+fbbi7jjjptJTk7G4/GE\nbK2QKSpajceT+7cgsiqNKlq2bMn06bexeXM6Op2WHj0mHDeQJiwsjM6dm5Oe/h4REdfhdG5Fr0+n\nQ4cJx72mT5YT2W5xvNqHp5ITEZ864jvLCEx1huaWPNXCCz326ZrqlCSJ+fMXMXv2NuLixgE+Xnnl\nc6Kjo2jfvv1xP+OBB6aycWM3zObn2bNnNVdd9QBXXNGPl156gjZt2tCmTRsmTZpJfv4CBOFaFKU5\n8DWi+H94vcswGIowGttSWFiITqfjootuYvfu7kjSnYhiEYryBBaLiaysfBISEhBFDcnJERQV/U5M\nzAjc7sMoymZatbqy0rkFOpk2bdoQHv47hYUG9PoDOBxfEBPTjGPHJhMWloaiuMnJeRVJuhFIRaP5\nhebNv+TYse9ZsWINM2ZMZMOGTYiiwIABj5QrkBmQTEREBJMmjScjIwOAtm0vLBfa/8knCwgPf5zE\nxHNo1eoRMjImcM45n3PZZcMZO/YRjEYjw4YNxel0VooK/vXX5SxZ4iMlZQx2+2EWLXqHvn0vQ6dz\nERnZmeLiLIqK9mE0lk/2nJQUQXHxHmJiOiBJPmR5P1FRgxgwYADDhg2kqKiI1NTUcp3Yq68+ybJl\nl6HR3InRGEdS0iBcriJSU6MxmyWio9ciimVRvH7/UbZu3Yrb7ebPP1cQFvYvQMRgaIndPpi33voS\nlysCj0eDwVBKRIQVUYxi3rwfeeedr3C7/bRv34axY6/i/vtn4vF0QaNxkZDwEF7vJr7//mceeODe\ncr9rUlISSUlJtbm8EQSBmTOn8OSTM9m8+WaaNYvlqaeeDKbDa0hOJro0dMq0PvuhE+1vSkpKav0b\nNAbOavHVdMEERnhlazGuKjdin+r2NbT4Ak+edrudv/7aSXz89URElCWLdjqHs2bN1uOKT5IkNmzY\nRkTEK+zZk4Us90cUR7F+/TEeeuh5PvxwBqIoEhkZR2np/+H3b0SSrMjyfHS6HKKiuhIXNw69/i0S\nExN5+unXyMgoRqd7DJ/Piygew2C4FEn6HyUlIzh8eDPNmuUxadKTTJr0Krm5H6PReHjiiVuCG8QD\nBH5Pm81GWFgY06bdze+/r2DAAB1ZWQYMBid9+lzHk0++SU7OOwjCUwhCJyALSTJx8OBX6PXh2O2F\ntGrVihYtWgRzSTocjkrTVhqNBpPJRLdu3ar8rsp+27JOTxS1REb257rrZMaO/VfwNaIoYrVaK713\ny5YsEhOvQq+3EBaWBEQiSRJJSTKHD2/D4cimqOgIt98+uNz7xo27lLfe+p6cnNXIchEXXpgWDCaq\nLh1ZWFgYzZunIEmxGI3NAHC7SzCZUjCbLfj9OWg0kSiKB0XZyY4dkbz11ipKSi6juPgroqN3EB9/\nGw7HJmJjL8JqnYvD8SMu10D8/neR5QM89dRhIInw8JFs317Mffe9jCDMQKMZAGSRl/c4ERHnI0nl\n19s9Hg+bNm3C6/XStWvXWk23RUdH88Ybz9b4upPhZDawHy+6NHR0eCqnS9WpziZIxVRbAOHh4Q0+\n717bCMv6IDR3KJSNVsLCTOTklARf4/fbMZuPv59RFEXCw8Ow23cgy3FoNGb8/v3ExPyLvXvfpbi4\nmOjoaIYM6c3ixTYcjruRpHyMxv0kJbmA3ej1W7j55gv4888/WbduL0ZjArJciCDEIUk6jMYiTKaj\nmEzvMmDAcB5+eAqRkZHcdNMlTJv2P9xuL8uXr2Ho0EEYjUYURcHtdgfr/QVqG1osFm644SqA4Ki+\nTFg6xo17HFl2IAiH/u5wwvF6d+H3/8hff1mRJAm9Xh/seMoqEZTfFO31evH7/ezZswe32x1cYwx0\nSqNHj2D69MkUFY0AfERELGHYsOm1+r2sVj2FhTZMpkgMBisJCVqOHfuDtLSBiOJmmjXzcdttV5Oa\nmlrufSkpKUybNoEjR45gMplITk6u1XU9YcL1vPDCZByOa5HlLFJSdjB48B3MnKnj3ntvxu8fjKLs\nZOjQZixfvpfY2Nfo0UNmw4atFBa+ikbzK9HR+URGtmDAgBtZv/5zcnOfwuMBvf5W/P6+gJHCwhcw\nmax4PDG0adOFAwf2A2nIsoBO9ylXXPE/oEx4CxYsYOrU17DZrERFdSQ6ejbvv/9cpXRvZwuhQgxs\nFq9NdpqKew9r2n94Iv3c2VSZAUDz1FNPPXW6G3EqCeTzg3/K5TgcjmAQh8lkwu12YzKZGlx8kiQF\nO9hThSzLOJ1OnE4nWq0Wk8mEz+fDZDKRmBjBkiVfc+yYj+LidKKj1zJ+/PWYzeZqP08QBFq2TGD+\n/Gew2faiKN8RGWkiMfEqfL753HbbdWi1Wvr06cq33z5HXt7nSNJiEhLCmTJlPDExOnbtOsiaNSa2\nbw9j584VpKaOoLj4U6AYn+99BGElZvNFtG49hqNHD5KWpqeoqJCJE18FXkOnu43Nm3/Hbt9Kv349\nKS3bWY3BYEAQhHIJtAMEOo+ioiJycw+j1Xo4fHg5UVHdKCnZAryG0SiRkvIIbncGQ4a0JT4+HkmS\nguHuoR2NTqdDFEU+/vh7fv3VyfbtZlau/IvERC0Oh4PHHpvOnDm/4vVKGI1xmM353Hxzn3JbHY5H\nfHwY69b9TlGRi+LiHXTtCpdd1pbw8CMMHhzP6NFX4XA4+OSTBSxevI6jR/No2TIFRVGwWq1ER0cH\nH+bKqk8cxm63V5tKr0OH9rRvH4nFks6gQUYef/w+oqKiaNu2DSNHDqFLFw1jxozguuuuYN68DYSH\nX4PJZCIpKQFBWE+fPkYUpQOLFr3G7t252O1H8PudKEpPvN5L/858kwDk4fMdQhA20arVuL8luBmD\nYQ6ffvo83bt3Jy8vj3Hj/sOsWT9TUHAjbncKNttSioqi+eWXn+nduy0bN27liSfe4ssv51NSUkiX\nLh0adEN5oLxYQyyHhF53Wq0WnU6HTqcLToOGVrcIPIwFgmxCt13AP7Mide1zvvvuOy666KLTMmV8\nKmgSI77Q+nCiKGI2m4MdGTSOnJl1JbT+X8VySIGboV27drzwwm1s3LgFnU5L//73VRk4sHr1Gt58\n81tKSlyMGNGDO+64mR9/TGPixAdYu/YwxcWt2bTpeiZPHh2UTlZWFqWlRvT62L8zivTn7rtfJDZ2\nGLm5vdBoLiIsLIbWrZM4dOhFWrW6GLt9KRbLYSTpOjp0eBSTyYzb3ZMPPphOv34t8fmuIzy8bBrW\nbJ7IwoV3c//9dxIWFoZWq8Xj8ZR70KnI/v37ufrqOzh2rBOC4CAq6hAJCS9SULCH5OS3MZt743Su\nw+k8Um42oCry8/N5662v+O03J/HxV9KpUws0mi58++3HrF69lNzca3A4xgGLMZt3cO21s9iz52ty\nc3OJioqqMeQ9LS2NG27oxcGDB4mLi6Nr10HlOqvi4mLee+83dLoLCQ+PZ8OGdfh8v3PFFeWTeLtc\nLj76aB6ZmWW3eqtWfm655eoqHw4GDRpE3759K3WKrVu3Du4j9Pv9pKSI5OYuJDp6KG73VsLCsrHZ\nOpKZuQpF+Q+KcjN+fwHwEKLoQpYlQAPoATvQC41mHRs3DgUUjMZorrrqYiRJYPfu3Tz33Nts3OhA\nUe4A4pDl5cjyBUA3Skt9TJ78BS6XTGrqU5jNZr77bjZW64+MHl11Wrb65kxIOlGb6dKKtQ9DHwwk\nSarTdKnNZiuXSL6xc1aLT1EUPB5PUHgWi6Wc8AKcrm0Fp+K4oRXe9Xp9tdUhAvh8Pn77bS1HjhSz\nY0cmd999S7kR3549e5g06WNMpv9gMMTxzTcfIQifccMNVwCpREbeidcbj6JkMG/efO66azwajYYF\nCxaSl2fGaHwLRdGSlTUZRXHSqlUfCgoUjMYu7Nmzmk6d0oiPN3DJJcdYtMhOfn5rjhwROHToL1q2\nTKVt20Q8Hh+RkWGI4qHgje3xHCAtLapOaZTuuecJsrPHotWORVF8OJ1PMGZMHG3bNmPp0m84fPhF\nvF4jRmMikye/ykcfzSAmJib44KTVahFFEb/fzzffLMPh6EBYmAZBaMPWrfvo06ctWVlHKCiIw2K5\nHY/HiVbbl9zcofh8JRgM1qDwjreGIwgCixb9ybZtPjSaCIzGHFJSUtDr9cECr7m5uXi9LUlIKCsm\nm5p6Hunp/+Oyy8pPnf/55xr27k2jefNhAOzdu5Tly1dz4YVDy70uLy+P9977gdxcJ5GROm6/fWSl\nNVQoyzs6ffp/ef75d9i16zNiYszk5OSzZ48Nmy0TRemJyQQ+nw4YgkazCUX5AFlOQhR16HQJKMo6\nJKkXsbGTcTqXoSg6bLb2TJ26lEOH/sRm0+Nw2CmTZE8g4u9r1Y/XayY/vx0GgxejMR5Z9mE2D2bl\nynkNJr4AZ+KDck3RpYEKHh6Pp9K1d7zah2fbGt9ZnWxOEMrqwVksFsLDw6sNXDkbxBeY0rTZbCiK\nQkREBBaLpZL0Qo9ZUFDAXXc9S3r6BTgcjzF3rsKzz75W7vWbN2/B7x9OeHgHDIY4YmPHsWTJJg4f\nPszBg0Z0ur7ExvYjJmYMGRle1q9fD8ChQ0UIwuUoShiiGImiXA5oiIjohCCsxO/PorT0GFu3zkGr\n7cTcufkUFvYF7kevd+H12jhyJIvNm2dywQU9uPzyy0hN3URx8UPYbDPRap9lypS76/R97thxCK22\nP1qtFZ0uClnuwfr123j55afo1asIjaYNSUmv0b79pxQUXMvMme9SUlLCPfdMolevkfTpM5Kvv55D\nSUkJNpueli17I4oZyHIhXq9AZuZi2rdPQFFKEUUBrRZ8vmJk2U1+/i6SkyViY2PR6XTBCh4Wi6Vc\nUJXf72fXrl1s2OAnPn448fED2LDhCD17nk+PHhfSp88I9u3bh16vR5JswfN1u20YjZpKv/eRIyVY\nrc2D/7Zam5OX98+6riRJHD16lLfe+o5jx84nLe1hZPka3nrrZzZv3syyZcvYv39/uc9MTEzk1Vef\nZOHC92jZMgmv91+4XA6gBfATLpcDrdaFIHyBRpOK0dgRUfwWk+kQERFu9HoPongLXu8BnE4DLhds\n2rSCnTsjkOUbsVhGIAgJKEoykAb0AtwIApSU+MnL24YkFVNUlM6aNc+yZcuXrFu3MxhdW9W98c03\n33PrrZO4++6ng9doUyEgN61WG3x4C732AokkAnEPDocDp9OJ2+3ml19+YdGiRcFp1tqycOFCzj33\nXNq2bcsLL7xQ6f//8ccfRERE0L17d7p3786zz57aYKSKnNUjPkEQCAsLq9NevoakPo5bcYQXCOyo\nyLp169iwYTvR0Vb69+9LVFQU27Ztw+HojKJ0JjfXjdF4PUuX3lMuE7vZbEJRDgU/x+M5Slyciejo\naByOTMLDy6bFJOkIoihSUlLWqbZsmUJcXDF2ezZerx+jMYOICAMOx27S0rqyd+94NBpo3/56evT4\nD4sXL8du/4nw8AQSEu4lP38mWm0OzZpFcs01d6LRaPj229ksXboUl8vFgAFv1ljwtCJRUWZKSz9B\nUTpQtrdwLq1atcJgMNC8eVuSknoRFVUWsm00diE7exnTp7/G6tXNiY5+A58vj+efn0hqahIajQut\n1sCwYZewZs18bLat9OvXj1GjbmXHjp1s3PhfRLE/gjCXzp1T6d3bwYUXXhT8bbKyslizZg1hYWEM\nHTq0Uv5TozEJvV5HTs5OFi78AElaiMHQgcOHP2bMmDtZuvQHOnTYzLZtP6LRxCEIGYwZ07fSObdo\nEcvmzTuIiiqTn92+nRYtyjZ3b9myhTvueJTiYjelpRFcfXXZiCkiojm//25n2bJXMJl6oyif8/DD\n1zBy5MWVPj839xgQjyC0QK9/Fq/3FmAeUEj//h3RareQnBzD9de/w3PPfYDLtZ+cnAMoSgbFxQUo\nSmugFbm5a9FotuF22/+Wtw0oRhDmUtZNFaIoK/D5IoF9HDmyhoyMzQjCbYSH62jTJoUJE16ke/eW\ndOrUktGjrwlO53733Y/MnLkUu92K329jzZrn+eSTZ6ot1FsTjXlZJLTttdlukZGRwcKFC9m8eTNx\ncXF07tyZTp06MWrUKAYPHlzVIZAkiYkTJ/Lbb7+RkpJC7969ueKKKypFiw8ZMoQff/zx1JxoDZzV\n4qstjVF8ZdN9Htxu93GFB/DTT78wY8ZvaLUX4/dn8cMPLzF79nPo9Xpyc/fidjvRaqPw+w9iMOSV\nu6mHDBnCt98+SWbmGwhCLDrdUu6++xZSU1Pp2zeetWsfwmBoD+ynbdvkYK27W28dw2+/3Udu7lEk\nSSQ+fgsvvzyTRYtWkp9fwtVXX0p6ehzNmo0FIC0tlezsw0hSITpdCmFhBvr0uYw2bexERkYGA1eu\nu+66ar+TgwcP8v33vyLLGoYP70nv3v/kfBQEgQceuJXJk9+jpKQPoJCcbOKuu14EoGfPc/n555+Q\npCEIggGn8zt69TqHefN+x2r9AEHQoNcnY7dfwo4du7j88vP44YefUZQEunWL4uKLb6VHj7JSQR98\n8Cqff/4VmZlb6dZtJNdcc3W532b9+vX861/34vcPRRAOc845H/Hddx8GO+qy6dWN+Hxtyc3djqIM\nRKdr93e2kHFkZz+By+Xi6qsvoHPnvTgcDpKT+5GcnBwMmApMWQ0Y0Jvc3F9Yv342AP37J9K/f29c\nLhfjxz9KaekzWCz9sNunMG/eT9x22y24XCVkZGynfftXMJub4/HkMWPGRIYMOa/S1otBg7ry558/\nIQjD0OkSEISXaNbMjtE4nV9++bbctTRw4EByc3Ox2WxceOFNKMpAoDVQjCT1QJL+Qqe7Co8nEUWZ\nBazHbO6Az6fg821HpxtFXFwvXK4r8XqfITa2JRZLDyTpGOnpeRQWhuHx9GT16r2kpz/PSy9NQRRF\n5sz5lSNHjBgMdyKKYRw5MpO33/6E119/vvob7CylNtIOnS697777uPfee7n44ouZO3cu6enppKen\nB5Cv5wQAACAASURBVKvaVMXatWtp06ZNcKp89OjR/PDDD5XEdzrXSs968dVGLo1JfIHQfbfbjU6n\nq1Z4NpuNt9/+hD17DrNmzTpatfoAq7UVAIcOPc/atWv/3t+VgaJ8gyS1AxYTF9eM7Ozs4EVrtVp5\n881nWLZsGU6ni+7dHwiOtGbOnMzjj79OUVE+er2Fa67pGkwebDabSUiI4tChFciyRNu2nenSpQu9\ne/cGykrkTJr0FkeOrMfns5KTM5/k5GI8nnuw2yXatetEixYOxo+/ospAjIpkZWXx+OPv4vGMxGSK\n5K+/5vHoo14GDhwQfM2NN15PZGQEixat+btY7LU0a1a2b+3yy0eyd+8hPv74UkpK3KSl/T975x0e\nRdX98c/M9t2U3fQOoYQSINSEItKbUhQUlCoooOiLKGBBELALKhZA4VUEAQEFqdKb0glNegqBkARS\nN6TsZtvs/P5YshpBX8Dyvurv+zw8Dywzc+/Mnbnfe84953tCiIoajFYrkpOzhqCgQYiiD6J4Dr2+\nHjk5l0lI0FGrVgiBgfWqRLtptVoeffSRX+zr88+/id3+FlptD2RZ5uzZx1i5ciWDBw8GPAnbPXvW\nZNu29bhcqYjicVQqB6DC5UpGqdQwZ84GBAHat69LmzZtvNF6kiTdsH9z331d6drVE9VbKUWXmZmJ\n1eqDXt+OigobCsW92Gwz2b69mMhIF4GBBvR6j5Wo0YRSXu5HaWnpDcQ3ZMhDXLhwiXnzPsPpVBIa\n2giNZje9e7e/YYLV6/XUrFmT/fsPYDR2pqgoALe7GYLgwO0+hChG4HL5AYkIwnT0+vfRaHZRs6ad\nixeDMBqHIct2lMorqNXV0enc+Pj4UFamJDf3NAZDKEFBnVEo+nDkyEiys7OJiYmhrKwUWb4Xlcoz\n8SoUfbhw4ZP/+E79Ev7KFt+doDKxPiwsjLCwMLp06fKrx+fk5FRJOYmKiuLQoUNVjhEEgf3795OQ\nkEBkZCTvvPPOHVvgd4K/PfHdCv4KxHerhAceX/1TT71MSkoCev1grlxx4XDMoVmzmQiCCPh7gzXi\n41vgcsVisxUSEDAISdp1Q26hwWDgnntuLLAaHR3NvHnTr9fD0xEeHu6dED7+eCFnz9alevV5uFwO\njh2bwZIlK3j0UY+FV1hYSFlZPnv2PEdBQSlGYzNCQkbj47OaefNGU61aNQwGA1u2bMFsvkbLlole\n0rwZ9u49hM3WkfDwtqhUaq5d82H16m+qEJ8gCHTt2onTp1PYtGkvp0+fY9Kkx2nZsiWiKDJkyIMU\nFOjw8+uKj08Yc+Y8TXa2ndLSjRQUfEZISA3q1YNZs5KpqGiALBcTFyexdOncWxrDShQUFKFSNfT2\nyeVqQH5+YZVj4uPrUq9e3PXQ8wq++aYDCkVdXK4DtGs3jrCwR5Blia1bt2AynadBg/rePUK9Xl8l\noCE9PZ09e/agVqvp1q0bfn5++Pr64nYXUlFxEYslBLW6Bm53DhqNkdTUDMxmB0rlHjSauuTmbsfX\nN+Om5agUCgWvvvoSQ4f2Z+7cZRQWniMpqS5du95NdnY2kZGRNwmUsFCvXgf27j2CIFzE4yo9hce7\nHoROF4IkpWAwNMBkknn++drMn7+G7Ow1mEytMJtP4XQW0Lz54/zww0dYLHYgmZiYV1EqfZFl9/X3\n3IOOHZtx6tQZrNYkwIlKdYlatarxT8SdkLbFYvnVFKef41au37RpU7KystDr9WzatIn77rvvF/do\n/wj8P/Hx5yaS3wy/9jL+NDJVpVJ5Q/d/Denp6aSnQ0jIKARBIDz8Ga5cGYnZnIzbbcdgOETDhvcS\nFBREixZhJCdbiIi4i/LyU8TFuYmJicHtdrN9+07OnbtEVFQQPXv2uOnEV7mK/znOnbuMTjcYQRCx\n27Mwm4uYNy+Z4OAg2re/ixde+JBr17pQUHAKuz2EgoKj6HQR+PsP5MCBk7Ro0YJ+/UaQkhKD210b\nlWoqb789mvvv73NDW3DrEXZvv/0BS5Zko1bPIj8/h8cem8KqVR9Rp06d61UMGhAQEEtKyjayspSo\nVJ9Tt24IRUXriIxcjFYbSGnpE/j4DLpurY1n2bIVPPbYiFtqH6B16+Zs3vwRovgqknQVtfprEhOn\n3nCcKIqo1WreeecVBg06Tn5+PmlpbXA4uqJQKAElBkM8Fy+m06BB1dVy5f7NsWPHePjhp3A4eiKK\nBcybt5wNG5bicDjo1q0pX3/dFaczHre7BKOxAWfOFKHTPY+vbzFpaaOQZTUKRSQuVzwDB45h9erP\nbzoJ1q5dm1mzXqaoqIj589ezYEEabreFxo21DBhwb5VFWo0aMUREfE9EREPM5gzc7g1ERPhRUnIW\nu30jNtsJ1Oqz+PndhyDMo1GjfixY0JL3319IWtr7NGkSiFJZl5KSFOrX1xITI5CTU4vU1CNcu+bG\nat1P06Z+3uT+ESOGcvDgy1y6tAJR9CMk5CijRj1Wpf/nzp3jo4++orCwlMaNY3nyySG/GMX4V7b4\n7qSA7u0mr0dGRpKVleX9d1ZW1g1CC76+vt6/9+jRgzFjxmA2m2+poPHvgb898d3KC/rfIr7/pLBQ\nSXhKpfKWCK8SnhdbAjzFSWNiwrDZBIzGhURFhTFo0JOEhIQgCAITJ47m66/Xk5KygerVgxgw4CmU\nSiVz5ixg5cpc1Oq2OBxn2L9/BjNmTPpFK/PnqFMnmuPHv0etjuDChfdwOlsQHNyDDz88RGpqKuXl\nEaSnr8Nu74Us34cklXH58gvodPv59lsjQUE60tND8PN7F0EQsNs78coro36R+O66K4lVqz7k6lUt\nOp0Rm20tgwYlkpGRgcFgYMGCL/n22+84dy4Vf//NKJXVqagIp7y8OzNnfsR7772BVqvF7fYIX5eW\nXsXtboJSqUWtVhES0pny8s9wOgtQq5t5x8/tbkJWVsotPZNKvP32FMrKnmfv3rqoVGqmTHmGu+76\n5cR2QRC8JXVkeTdHjxZgNEYCYLMVYDIZfvHcl16aid3+JhpNTwCys59hzpy5bNqUTFlZWzSa7jgc\nJ0hMfJ+0tNNAHJJ0EqNxBDk5hfj4FBAc/AaCIJKVNZLvv/+e7t1vDHKpxLp132OxtMTPLwiFQsXR\no3uJjt7P4cOnuHq1mJYt69O3bx+GDSvGYllDcvJF/P3rExYWRqdOBhISqrF48Tfk5pbi75/Pq68+\nTbVqHuvs9dcnettxOBxcuXIFhUJBZGQkFouFZ5+dxoED29FoVISGNvUmal+6lEliYiMiIi7ToIGG\nLl3GEhsb671WQUEB06Z9gVI5EpOpOocPb8Ju/5zp08f958H8B+B2UxmaN29OWloaly5dIiIighUr\nVrBs2bIqx+Tl5XnnoMOHDyPL8p9GevAPIL5bgSiKv5r4/Efi58nzlYRns9lQKBS3RXiVqFWrFo0b\n+3DkyDuo1Yk4nd/xwAMtefPNlxAEgdLSUq+LVavVMmTIg1XOLy8vZ/Xqg0REzEWh0CLL7fnhh5dI\nSUn5VT+8LMssWbKcVat2odEoiIy8RlraBhyOloSHJxAfn4DD0Zhdu57D4QggP/8wsvwvIBKwIkmt\ncLtTCA4eyfLlH+J2J3ifi8tlIisrg7i4JNq0SeT991+r8jFGRUXx1lujWblyC6AkIqIOhw6VkJyc\nya5dK0lNzUWjeR27/Qny8lLw9fUHfBCEcnJzw/j009U8+eRD1Kt3nvPn1+N2W4Et+PndjyzLlJWt\np3nzmgQE+PLNN4tQqV7F7S5HqVxNYuJDtzU+/v7+LF36CU6n86Z5pb+GNm2akp6+iaysfEAiMrKE\nZs1udENXwmy+hkJR2/tvSYpjy5avKCsbidH4MDrdRSyWxeTknESW7YiiD2q1FrAjy0UoFCZv6S5Z\n9qegoIB9+/bjdErUqFGN8PBwr4KIIAhcvpzPjh07yM83I8sOIiNjOHr0EnZ7f9Tqluzdu5qcnHye\nfno0rVsncebMGTIzM/Hz8yMx8RHUajVDhgxBkqQbFlk2m43585ewe/cpDAYdo0b1om3bNgCcOnWW\nixdDgT7Y7cEsWrQKWf6Arl3b8eGH+zEYeuB0lnHkyFb69KlqsWZkZOB0xhMU5NkDjIi4nxMnxnjV\nWf5OuNPKDLdDfEqlktmzZ9OtWzckSeLRRx+lXr16zJs3D4DRo0ezcuVKPv74Y5RKJXq9nuXLl99W\nn34r/vbEd6sW338rwqiy7Z8Tno+Pz20TXiUUCgXvvTeVZctWkp6+l/j4mvTv3/eWX3hPkqsSUVR7\n+ygIOs6ePUthYSFxcXHe6M2fYuHCJcyYsRut9hlcLjOCMJOhQ9uyYUMAcXGNARm73YLB4Eu3bnHs\n378GQTgB1EeWBSCZ6Ogo4uLakpLyPYKwEYulPaIYQ1bWK6hUd+F0zmLr1vcZNWo8K1Z8WqX9atWq\n8fjjg1AoFLz77lrCwvqhVutJTd2P09kIg6EORuOLmM1TsFgGotGU4+t7jJYtl5KVtZLy8nIGDepF\neno6NlsY9etbWLZsCE6nD9Wq6Xj11TcwGAzk5r7I/v0tAImRIx++6f7nraAyZeQ/weFwcPz4SfLz\ny4iIMDFiRE9yc3MRBIGoqChSU1MZNWoimZkXqF69FgsWzKJOnToAdO7chmXLZuB2z8TtzketXoiP\nTwRWa3UAFAp/VCo3RqOCjh1b8s0367DbL5ORsRpRTKW83IBCYUKlMqHT7SMzM5IzZ2RE0QdB2MWQ\nIUlER0cjyzIlJSVs376ajIxITKbPEAQd6emP4ecnUrfucABcrgSWLXuA2Nhw7HY7zZo1o1u3bjeQ\n3LVr1zh16jwA8fFxBAcH8/nnK9iyRUV4+CwcDjMzZswiJCSIOnXqcPz4ebKyQvH37wiIqFR6Vq+e\niMWiwGR6CD8/j4WXlVXO4cPH6NWrh7ctvV6PJOV69wZttnx0OuUvjs9f3dX5ZwhU9+jRgx49elT5\nbfTo0d6/P/nkkzz55JM/P+1Pw9+e+G4F/03iA4+KQqWAssFguOUJ8deg0+kYMWLIDb8fPnyYvXuT\nCQkx0adPryq+doCrV6+yZ89BfH1tZGTMJiSkB2Vlpykq2s2sWUWoVNEolYt4992xJCQkVDl3xYpt\n6HST0ek8kZ2FhVnXBY/PkJX1NSpVKC7XRiZOvJdu3Tozd+5CsrPnIstf43aXolQK1K49DJfLjk4n\nMGvWc3zwwQdcvJiJRqPHZNqMKBrQaKazc2ctVq1aRatWrapUHKispAB+qNWelb1SqcfhUCHLVgyG\n3jidy/D3X0a9ekNo1GgxarUBWa7wJvhWVjNISEhg+PCBlJWVERMT452cFy78CIvFglKpvOm+5+8J\nt9vNtGmzWLEiD0nyo0YNNWPHNue++7oCnnIxffsO59q1qSiV3blwYR0PPDCCw4e3o9PpGD9+DKmp\nEzl4sDU6ncDLLz+DJMm8995nOJ01ASc6XTIREVb8/bX07Qs//HCZq1fvplatL7h06RQFBZNp2NDE\nsGFPkpwcTvXqnvyt4uIw9uw5wMiRdcnKyqJXr8FkZdXC5dKRl9cNo/HfaLWdcblWXt9KELDbr3Lh\nQgYjR85GEKqh0cxg+fIPadWqlfeeCwoKmDdvM3Z7AiDy/febGTWqC4cOpRIc/AJKpR6lUk9x8d2c\nPXueOnXqoNeL2O05XL6cd73CwwkiIgQcDtt/fMbx8fG0br2HffveQRSrIwhHGD/+1heKf3f83VRb\n4P+JD/jvEF+lDFZlPa7fi/B+DevXb+Ttt7cA3XC7c9i8eQrz57+BXq/HarXy3nufsHjxNpTKmkRH\nd8bhWIVen0ZoqEBZWWPCwt7G7YaiomNMnTqXNWvmVbm+RqPG7S7/yS9l6HRa3nzzabZt24PVWshd\nd/WmZcuW2O122ra9m7VrnUhSDC7XSbTaYyiVNq5cmUOfPnXp2bMnPXv2ZOPGjTzxxBIEwROtWFh4\nGpfLxYQJB1Cr32XZstk0bdrUO1EZjUb0+jKuXbuC0RjBXXfFsXXrO1itagThMpGR2Tz++BMcOaKk\nqCgVSUqja9ca3o+7oqKC556bzqZN21GrNTzzzGOMHOmxWLZv386UKe9TVlZK585teeONl24r4k2W\nZYqKitBoNDcsOm6GHTt2sGDBURSKjxBFI+fOrWbOnG/p0qUNBoOBffv2UVoaADyAR42qP2VlH3Px\n4kVq1arFypW7aNhwLElJYZSWniYsTE2nTndhNpewbFl/RFFkwoR+PPRQP6xWK/7+nejf/zzx8Y+j\nUvnQoEErMjMHER9/gZSUfMrLPekMOTnZ7NixE0laR0iIkh07DmA2D0Klegy3WwnMRhSXYDAo0elK\nyM//HPAjK+td3O7qaDTfIghqKiq28fjjL3LixC7v+B0+fAqHoxlms0BxcQkaTRj795/EaDRw9eoV\ntNrg6xGrV/D19YTNt2mThNU6HLvdBoQDZ7hy5QLduo3giy++wuHwuDr1+v0kJj5a5Rl7LOdAysrW\nIkn7eeihjrRp04pfwj/N4ispKSE4OPgP6tF/B3974vtfc3X+XDBboVCg1Wp/E+nJskxqaiqlpaVU\nq1aNkJCQmx73ySffYDK9jkoViiiKZGa+w4EDB+jYsSOvvvoBa9aA1foGCsVVMjO3Eh8/jsaNz1O/\nfgRnz+ZTXFzCuXOXkCQFbvcxDhw4UGWlPnbsQMaOfQWzeRiSVISf3zr69ZuDyWRi1KihVVy3ly5d\nwmhsyyOPJJCZmYVKlYhev51hwyIJCkogLi7Oe2ynTp2Ij1/EyZPDKCurhdP5JUbjNDSa0VRUbGbC\nhNfZuXOV93iNRsOgQe1ZsWIHWVkySUki998/hgMHfiAw0Jfhw5cQGBhIs2anKSoqJiSkUZXk2ldf\nfYeNG2W02mQkqYC33x5O7dqxBAUFMWbM68jyRygU1Vm1ahoXLjzBhAljSEpK8OYbZmdnM2vWPHJz\nzXTp0oqhQwciiiLFxcWMGjWBU6cykWU7w4bdx4svPktxcTFHjpzGbnfRsGGNKhqZ+/cfQpIS0Gg8\nOZgKRS/S0lZQXl6O3W4nLe3K9ZJOVgTBD0kyY7NdJSAggCtXrnD1qj/R0Z6K7P7+ERw4sJCOHdsw\nfvyTjB9f1dVUqXsaFORPXt4FjMamWK0WCgtPUlbWAq02nvPnV+BwKNiw4Rh2uxaNpiPPPvsxoaEK\nBKEnPj4GXK5SXK4aWK2L6dKlLePGfcRzz31Ifn4garWAw5GIIHgsZVFMJC/vKt9//z0JCQloNBrK\ny21s376X7OwwZLkabvcRJCmDSZNGMXnyZ1y50hxZNlO3bhF33fUw4JmcFQo7grAXQTCiVDZAFNuS\nk5PDhAnt2LfvMHq9mu7dh1UpKgzw7bebmTv3OEbjh8iymy+/fJs6dXbRqVNVwe+/A+7U1VmrVq0/\nqEf/Hfztie9W8GcQ389rAFYKZnvccr/tup988gXffpuJQhGJQvE1U6cOquKGdLlcrF27ifPnL+Hj\ns4qoqH5oteEIgh8Oh4OysjIOHryIr+8U7HYjWm0iVutJbLYi7HYntWvXxuVazfnz0SiV7RCE9fj4\n3M2LL85mw4aG3qTm9u3bMWeOyKZN32E0+jB48Dyio6OrBNNUwpNgrSQ6Oobo6BhcLgf5+cdp3br1\nDR+mRqNh/vx36dChJ2VlJ5DlCMrLl2Iw9EalakReXsENzyUiIoJx4wZit9u97sjevXtXuXbDhg1v\n+kx3705Gpfr4+j6WAZttEHv2HCI01ITD0RcfnySs1grc7pc4ebIn27eXsW3bLB54oAdRUVH07DmY\n4uKBCEJnDhz4mNzcfF544VmmTXuHH35ogMHwJW53GV98MYKaNb/i4kUXdnsTFAothw8f4pFHJG+K\nSFhYMEplMi7XAUQxGqdzJwZDEQsW7AF0ZGZeoW7dNqSm3oPb3RZB2E7nzm0JCwvj0qVLN9xbaWkJ\n77//IS6XRK9e93gFB36KCROGMXHiRxQUNKawMJWYGDVNmz6AQuGpgLFr1xs4HFH4+Q1FrW6J09ma\nkpLRiOJ8IBF/fzcOx0Iee6wXkyc/z8yZszl3LhNJygREJGkdTucoRDGaior5qNUGxo5dQlzcYj79\n9F0MBjeZmd+h0cwClLhcQezf/yU221Bef/1RcnJy0Omiadq0KRqNBofDwccfL8dmuxtB6ArsQ61u\niCwXY7U6adq0CU2bNrnpWAPs3HkUnW4wWq3HerTZHmbXrt2/SHx/VYvvTue4v1stPvgHEN/tWHx/\nxAv9c8L7vau8nzt3jm+/zSIiYgqiqKKs7CIzZ37A4sWNvG0sWrSCb74pwWR6jsuXs8jLm4pe3wqD\nYQ2xse9QUVGB1VqIwWAmP78Cu12Jy2XGZttNx44DiIuLY8SI1rzwwjRcrlh8fatRu/ZUysomk5+f\n761p6HA4SEpKol27dv/x/qpVq4bReIArV46h14dgNh+hc+e4XzxvzpwF2GyDMZmepaDgGpK0BLN5\nCqJoo0aNcDZs2EGDBjXZvn07fn5+dOnSBZPJ5LXCbuejDwoykZd3HpXKY3UKwnlCQqLw8/NDqUy+\nro/qwm6/gCBYmTv3X7jdRv797+W0bl2X0tJW6HTPACBJTVmwoCMvvPAsx46dRaP5GEEQUSj8cbnu\nZffuAwQHDycqqiGSJFFebuD77w95ia9///4sWPANOTlzcLmMqNXbaNNmOGFhfVEq1ZSVhRIQsJZe\nvR7FbL6ERtOK114bBXjyqSIjj5CdfQidLpTs7ANs2LAQh2MAbrcP8+c/wrJls0lKqqrxGR8fz8KF\n0zl//jwnTojYbB2v5w2C0ehHrVohZGXVQ6Npff3ZSoSFRZKUVJOlSz0u50ceGcDkyc+Tl5fHggUb\ngdno9QmUlLwNfE5FRRegAlH0IzZ2O0plJGfPTmHp0hU0a5aAv78SSToKgErVmNJSFe+++x0Gg53h\nw9vToEG8V7bv+PHjXL4cRFhYX3JzRQQhCat1FDExOlq1Glvl3mRZJiMjg7KyMqKioggKCsLf34DT\nmes9xunMxd9fh9lsJjMzE4PBQK1atf7Uen9/JP6M4Jb/dfztie9W8Ees3m6V8H6rtVlcXIxCEYMo\nelylPj7Vycmx43K5vFXDv/02mcjImURHq7HbD3Px4jEUijWEhXVj4sQ3KSoqIz/fQHHx05hMjXC7\n/YiISOGll56hVauWANx/fx8++2wrWu0UfH3jsVovolAUYTAYKC0trVLz7+rVq+Tk5FCzZk1MJtNN\n77G8vJy6dY2cPr0FkymaDh1iadXqRmWWtLQ0FixYwoYNu3C5XsRqLcftdiLL/litR4iNHUSfPoNZ\ns2YXY8c+jCx3QxTtzJjxb0aMGExpqURsbDA9e3a85SjZV155hkGDnsZm2w/kU716FgMHTkQURT77\n7GvOnRtEebkMHMFTOmcE0BmbbS3fffcNBkMMP0bB/3jv1apFkJd3AJWqJrIsIYqHCA4OwGwuJT39\nByRJRK0uplWrH2sBmkwmNm9ezpo1aygvtxId/TLnzlVHqfQ0EBfXDFk+RL16WmS5Ds2b1/S6SlUq\nFYMH38OhQ8cxm8+Smrobu/0RtNoXAbDba/Lmm3NZs8ZDfFlZWUyfPovMzKu0aBHPpEnjiIuLY9Gi\nveRe5wVZPs7o0Q9x6NBzWK3+CIIJhWImY8aMpl+/vrz22mQAL0mkpaWhUjXBar2GJK2koiIVQXie\nJk2akpr6EWp1JCpV1PVzEsnMPMDgwfUICCjh2jUZtTqJK1e+ICioGnFx47FaC1my5DNefDGKzz9f\nTmpqNnq9G0mqRsOG9dBoLpCXlw7k8vLL42nWrJn3WcqyzBdffM2OHYUoFKEoFJsZP74Pw4bdz8GD\nr5KXdxVZljCZ9nHXXSOYOHEOdnscklRAmzb7GTNmqDe1469Igne6sC8tLf1b1eKD/yc+L36vYrSV\nmokVFRW43W70ev2vWni/lfg8yb3rsFqvoNOFk5u7gzp1wqvsGSoUIm63A6VSh9XqwmSqT716QwkN\nbcPWrW0xmSYTG9sdf/9szObR9O4dw4kT8NRTU2nduhkzZkxhwYIvKSy8SkFBf/z9g4mIMDF58nB8\nfHzQ6XTeiWD27PnMnLkRlysQnS6Pjz9+mpYtW1bp84ULFxg9ejoWS1Nk2UatWgcYPrz3DSHte/bs\noXfvJ7DbI5FlK7L8CrAK8AGWIYrN0WhCMBpDOHNGprS0NWFhryKKbi5dGs78+QU0btyZQ4fOsX//\nTPr27UJ8fJ2b1vCr1LjU6XQkJCQwYsT9zJu3DFmGrl0fRKvVcvz4Kbp27cjRox/gKZUTBDiB1wAF\ngtABSdqGUrmVioq5iGIcgjCHRx7x5Em++uoEHn74ScrLt+N2m0lMNNK//wiee+5rfHwGo9H4UlBw\nAIejat9MJhPDh3uCa7Kzszl9+gckKQGFQoXZnEmDBrEMGnSP9x5+Cr1eT4cOnly33bt34MmZ9EAU\nwygrswKeya1//9EUFg5BqUzk0qVlXL78HIsXz+GRR9py6lQagiDQsOHdhISEsGrVPObO/QKLxcaA\nAeO4554e169ZlRAMBgNm8w7s9iwkSUaWr6LT3Ut0dANKSoaTkzMFWXYhyw5keT2NG7fGz8+PL754\nj8mT3yU9fQ5hYVruuWcBgiBiMIRQVOTLU09N5tKlRNTqR6moWE9FxQbU6mbExtbCaDxOu3a96dGj\nKxaLxatZeuHCBbZtKyA6+l8oFErKyrL45JPPef/95/n889fZv38/AG3bvsHMmYsQxcFERNRFlt3s\n3Tub1q1PeIUE/kn4f4vvL4hbJbLfY5+v0sJzu93odDrUavV/bP+3thsVFcWLL/blvffexGyWqV07\niBde+DFfRhAEBgxox8KFc9BqO1BRsR0fHyv+/sORZQm73YJe3wJBgMDAKFyu1qxbtxSt9t9oNPXY\nsWM2ffsOoaioFpGRWwkOliksnMY99wTQvXvXKmR15swZXnttIy7X8yiVMRQXH2HkyLc5duyra+i/\nNAAAIABJREFUKonAs2YtpKJiOMHBnpD8lJR3Wbt2PQMHVk0Ef/zxl7Hbn0OlGo4kZeNyDQBaA/4I\nQgvcbgtXruTidkuUlhajUAQBMi5XHk5nNGZzLGlpgeTlVSMlJRmNxsaRI1sZNqxrFfI7fz6VDRuO\n43QqCQ9XoVZbmDNnK7K8HEFQMX/+WK5eLSQk5D6+/HIzbvcHQNfrZ/cBvkYQHkKWnQiCk5kzX2bX\nrsPk5++jU6cOjBrlIa3Y2Fi2bFnGqVOn0Gq1NG7cmIsXL5KY2JbS0kwkyU1CQlvc7h9uOtYZGRmc\nO3eOqKhrXL36DaDHZKrgnns63NK7ct99XVi/fjpOZxyC4INC8QoPPOAhrBMnTlBaGovB4JHyUqvr\nc/hwEteuXSM0NPSGgJAGDRowd+6MX23P5XKxevV6ZPkuYAoKhYjLtRA/v10Iwn1ERfngcDgoLe0I\nSPTt25H+/T3VN2rUqMGXX87BYrHw4ovzcbs9BVTLyrJxOC5x+bKIyfQMgiBgMDSjsDCZ2rW3YbFs\nonPn2jz66L/QarVVNEvLy8sRxQjcbnC7nWi1YVy54qk7ZzAYaNu2LSaTCaVSSUFBqbeUkyCIiGJ1\nSktLgaqW07lz59i79wA6nZbu3bsSFBR0S2Px38CdLuwtFssN4uR/dfztiQ/++AoNd0J4P233t8ql\ntWyZxPLlLbDZbOh0uhva7tevN6Gh+zh+/DQmUxFnz/phtV6kpOQqvr4CknQIuAenswirdQ+C0Ba9\n3mMl+Pq+wMmT9YmM/BeZmUXXBYHbs3//l1VIr6Kigu3bt2Oz1cDXty0golRGUVIyj4yMDG8gyZUr\nV9i16yj5+e1RqU4THh6AUlmDgoKcKn32SFIV43Z3wG6XEMVAoDOQgUr1GSDgciWhUGjJzj5MZGQK\nZWXZSFIhLlcuknSS8PCHcbl80OkaY7EsJzCwBhaLiTNnUmnVylOyqKioiNWrTxMU1But1pfc3PNs\n2jQJl+tptNoGANhsE9m6dSp9+46gtLQAne5uLBYbguCDLLcE5iDLIAjraNKkOv369fvF8kn+/v5V\n5Mn0ej06nUxcXFdEUcG1a1fRanU3nLd27TrGjXsNUUzC7T5F//7tmTjxKYxG4y27cDt16sS775bw\nzjsv4HA4GDy4D6NHe0L71Wo1bneZd3KU5Qpk2XXH0cYWi4XBg8ewd+85HI5xKBROAgKMlJW1wGp9\nlStXvkah2M7cuS/RsGFDlErlTS1xg8HAwIGtmTt3BkplBP7+EgMHtmfSpGXYbBUoFApUKhGlUsML\nL4y+QROyUlFm+/YdfPjhYs6ft1KvXgwNG7YkN/d76tYNY9++gyxcuAtJ0hMU5OKZZwZSv34kx45t\nJyrqXux2M3CCmJiqCkfJycmMG/cRTmcfZLmEL7+cwBdfvPM/S36/xaP1V3Tt/hr+EcR3K7gT4nO5\nXFit1jsivN/S7s1QWVX5l9po2/Yu2ra9C0mS+Oqrb9i3byXh4SamTn2PadNmYzZ/idttpm/fBqxd\nW+D9SByOTDQakfz8fchyK7Taalit+7lw4QpZWVlER0ezdu0GXnnlE0pK7DgcLhyODNTqWjidZxFF\nG0ajkdTUVLZt28fmzQcpKzMhScm43T6kpS3Gx+c76tadXKXP69d/i9MpAYeAsOsSYscRRTeyvBtZ\n3oBeX8bzz9fju+8+xOm0UqeOzKVL9yCKCmrWDECtPkNxcR52ezYBAQY0Gh1OpxWn88dIWrPZDESh\n1XoKFvv6hmK3O3C7fyy+a7VeoKyskEWLDmO1alGpvkCrHYkkXQK+JSkpFJ1uHc2a1eXZZ2ff1jsQ\nERFBUlIWyckbEUVfJOky27Zt4dVXXyYoKJj33nuZFi1a8MwzU5Ck9QhCPWS5lK++6sjAgfff9iTb\nr19f+vXre8PvzZo1o25dgdOnxyPLiYjiNzz8cK9fXOm7XC4uX76My+UiNDT0BlfYJ598xuHD4bjd\nHYGDuFw9MJuvERi4m6SkGHr3ttOkyVOEh4f/qjXxzTdrmTp1Np7cvCPMmjWJ2rVrkZd3hLKyEchy\nR3x9j3L//dVRq9WcPHmSsLCwKik9+/bt47nnPkWpnIJOd5GjRydjsVSjY8dG9OlzN2+//S1BQS+g\n1RrJzz/GJ5+s4vnnR2C1LuXMmd2o1TKPPtqViIgIb+4twOzZy1EoxmMyeVz5eXkK1q/fyPDhQ29r\nTP6XUWkx/93wjyC+W7X4btXyqtzDkyQJrVbrLZL6R/Xt94RCoaBfvz707NkdX19fcnNzGT/+EUpK\nrtGqVSvCw8O5eHE0J048jstVG5VqA2+88TwvvTQbl8uGw6FBr79ATExvMjIycDgcTJu2EJ3uMyIj\nIygsfJmysiHodHcDGdxzTzzFxcW89NIibLZ7uHhRi832HT4+Zyko+Broi9XaghkzPiUpKckbNr1r\nVzIBAU9gNs/D5VoD5KHX59G7d1vS0z+ievUQxo1bwsiRz1FYOBCFojGy/DmdO0czb957zJmznBMn\nrJSUXCQzM5+YmBis1lIcjhPExrb0ErvBYMDtTsXptHPy5E4uXMhBp6uPKH6K1ZqHJKlwOj9Fq52I\nJNVHqXwZh2M8Pj4L0GhkJk58nMcff+zXHvmvQhAE2rdvSXx8AXa7nTFjPubYsQYolZ+Qk/MDQ4f+\ni6+/nockqVEqPbmGouiHKNYnLy/vt78Q16FSqVi69GMWLVpCZuZxmjW796YECR4Px+rVO8nM9EUU\n9ajVu+nfv2UVd+jZsxdxudqjVt8HZON09sblsqJS+TJ06Mt06eJxz/5aOs/Vq1eZOnUuSuUyVKoY\nbLaTPPvsaGRZgcXSCUGQEMV1SFI+RmM7HnxwIlANuMykSYNp2bIFGRkZLFu2AVl+DIMhEYMhEbU6\nmtDQz5g8eQxHjhwBaqHVeoI3goObkpOzAl9fX6ZOHYvdbvda1G63G0mSqCwRVlZmRaEweWsfCkIA\n5eVXf4fR+GNwpxZfpdX8d8I/gvhuBbdCQJWE53K50Ol03qKef3S7vwcyMjLYs+cgSqWCtm1bYTQa\nyczMZPr0L6ioaIEsa9i3bylTpjzGJ5+8zbfffkt6ejpxcUPo1asXGzceobi4JVptKCZTIwoKPsLP\nz4/09HQEoRkajcfFVL/+FDIy1tO6tZnExDaMGTOYGTPmYbH0oqAgFIvFF0kSkaTF6HTzgBr4+UF2\n9qesW7eeoUM9MmshIR4NyRo1VlNRcZyKiu/p1q2Azz5733tPmzZtoqSkLgbDGABkuSlbtjTG5XIx\nfHhvNmz4jkuXikhIUOPjo8NoPE2rVk0IDAz0Bj2YTCYSE31Zvfoj0tKMBAY2oX37/jRs2Am3eyvl\n5Wa2b++IUvkUTudxJEmLKFawZ88mwsLC0OludEveCYKDg3E4HBw9ehS1eiWCoESt7oQsdyItLY3A\nQAN5eV+jVj+AzXYCUTyA09n3pmLOdwq9Xs8TT4z6j8dlZGRw6ZKJatU86QzFxeHs3v0DAwZ09R7T\nsGFN1q9fD/RGrR6DJKWi1TaiceO7+eqrc5jN33D//T1/tZ2srCxEsTYqladYsFbbiNxcJQ5HU1Sq\n1xEEHyTpY2T5NMuX76dWreVotVHYbDlMnjwKi2UqUAOz+QfU6ppUpqJJUgm+vnpOnTrFl19u4MyZ\n8ygUtQgLS6SkJJ3AQL3XxftTSTqPW1WF1WpFrVbTq1cb5s6dC/wLSbqGKH5NixZjsFqtiKLoFagQ\nRfF/gjjuhPhcLtfv9n79L+H/ie86KsOUb4Y/gvD+CFRUVLB3714sFgsJCQne0ivnzp1j4sR5OBzd\nkWU7q1a9w5tvPsn69XuR5V5Uq9YMt1vm4sX1bN68k969u5OSkk9KSiTnzwvs2PEuw4Z145NPduJ2\nN6SgYDft2xtJSEjg5MmTSNJZJMmCQmHA5Uqhdu1oVq360eWXn1/I2bNZiGIT3G4FDsdJBOEqKpUC\nrdZJQEAQFks4paU/rv5Hj36ETZuGU1h4BdAQFLSHSZOqSqR5Psgfoxhl2QF4Pm4fHx/69OmIw+Hw\nWuVOp9Pbp58GPdx9dxI5OXlotbFERdVBo9EQFhZPcHAZzZvXYOfO0bjd2ajVidjtK4iNrValrM3v\nBZVKdX2v7TIKRY3roskXMZk68uWXn/Dww6O5evV5RFFgyJDpXLoUyKFDJ2jdutl/vvjvCJvNjkLx\n436cTudPWVnVUNQnnxzN+vUDOHGiDbIMKlVPatRoR0GBhbNnrWzd+hWfffYVs2e/4hXU/jmio6Nx\nu9NwOjNRqapRWnoEu/0KGk1zrNYLqFRNEIR6wCK02mpotZ7Fl0YTyaVLTnx8nsXHZyh+fscoLOzP\n1asyarUfGs2XdOkymLFjZwNDkOUW7Nw5mdq1q6NQFPLww1296UA3Q2U6w7BhA5HlL9mw4TW0Wg1P\nPjmapKQk3G631zp0uVxei7CSDCsJ8a9gSZWWlt507/Wvjn8E8d2pbJkkSVRUVOB0OtFqtX8I4f1e\nFl9FRQVPPz2dlJRwBCEUpXIGb731KM2bN2fp0o0IwiCiojzyYtnZSrZs+Q6LxYVGY8LhcF7XDNVw\n5MhesrIyOH06lNjYkQiCQH7+IY4ePcAnnzzLhQsX8PVNQJIktm3bRlRUFIMHJ7F06TAUiuqI4nne\neeeFKs9JpbIjSbtRKFqhVErI8g/odBJq9XxMpkm43WdQqVbStu0r3nNCQ0PZuHEpO3fuxOVy0a7d\n6BsqQrRp04bw8A/IypoGNEYQlvLQQ32QJMm7Kq/MLfz5M66cdERRvF6JviZpadcwGPSAQGnpJRo0\n8KFmzZq8/PITTJ/eGUnyIThYzYIFc/8QsQNBEHjllReYMqUfdntfVKpTNGqkokOHDqhUKlavXsTK\nlZnUrNkOhUKJ2y1x+vQGWrX6c5VEwsJCkeUjWK1RqNV68vJO0rp11ahPlUrF1q1fs2TJl2zYsIfs\nbCO+vuWcOnUFleoe1OoArlxR8vLL77Fo0QdYLBYCAgKq3Ed4eDgjRtzLBx/0weUKxGbLxs/vPmw2\nNbL8FpI0AElaTvPmJux2CYvlPAZDXcrLz+F0pmGzZeB0zkCv74jJ1J4OHU5Qt259und/ixUrNiMI\nwwgM7ERQEEhSCqdPL8HH5wHeeOM7tmzZz+LFc381uEcURUaMGMyIEYOr/K5QKLzWIVRdZLndblwu\nFw6Hw0ugf5Z1+GdVZvgr4B9BfLeCn+7x/ZzwDAbDH/Yy/l7E9/3333P+fCRRUR7FkNLSJnzwwb9Z\nvLg5FRVOVKofAwgUCj+s1gwaN65JcvIK7PYACgtzyc7eQ05OV6zWcqzWXYSHP4RO54fBEE129lou\nX77MunXfsX//ScrLVURF3Y8gfEW1ahb0+grc7pOMHPkgiYmJVfpWo0Ysfn5qYCMgYDJ1JDbWQqdO\ndVm16glycwvw81Mzd+4SXnstwiuIazKZ6Nev3y/es8FgYP36xcyePZ+srB0kJnbi/vt7I0kSfn5+\nt+WiiY6OQKHYxpEjpwgPj6J2bQWdOnVHqVQyYMADPPhgX8xmszeY5Kf5YT+ftH7LuzJkyEDq1KlF\ncnIywcE9uO+++7wTqKd2mc6rouJyOVAq/3yrITQ0lL5967Fjx07Ky10kJkbQsmXzG45TKBS0bt2K\ns2cL+f77xdjtHXG7tSgUa6hWbTpqdSzJyTOoWzcJQdBQs2YUS5bM9S5wDhw4RHKyRJs2M9mz5zVM\npvdp0OBuLl7MobDwbSIj/02fPq14/vmnOXbsOJMmvUxRkS9lZanIcggWS1NEMQCr9QPU6mQkqTtB\nQSHExsbidsvAj5GKV69+jULxKTpdW2TZzdGjD7Ft2zaUSjWbNx9Er9cwbNh91K5d+7YJ5KeLrJ/i\np2T4Z1iHd5J4///E9xfGrVp8lbk+lYSn1+v/8DDe30p8WVlZFBQUkJubhyD8aBFpteGUlnqSk7t3\nT2TGjOWIogZJsuF0fkObNn2pXbs28+atIjOzMWZzAApFAipVbcrLoygsXMSaNe/QuPFDWK2LsVpT\n2LTpIE5nP2R5JCpVGjpdFnp9Lb76ajuNG/8bcDFv3mvUqBFLhw7tvH3p1asHX3zxFBUVw66nJczj\nqadG0LlzJzZs2IlWOw5RvJudO9fzyCPjWLt20S2H6JtMJl544VnvvorL5cJgMNwwbr82cZw8eZKH\nHhqD09kIScqkefMQJk+eh1qt9hYo9vHxqRJ9+NNVvCRJOJ0eq7lycqkkwso/tzNpJSYm3rB4AI8F\nFB2dTlbWMVQqIw7HRTp1qn2TK/zxqFGjBjVq1PjF/y8oKCA5OZlNm85w6lQOstwHUWyP212O251P\nWdlmBKE6JSUVGI17EcVQ0tLe5amnJrFy5QIA1q49SEDAw/j4RKPRfAo0oKysnPr1a5GTE8/48V2I\ni4tj1KiXyMsrplmzOvTp04FRo17Hz28iFosOSSrH5SrBaByGIDzI2rV7yc9fREJCNTZs+BCrteJ6\nPb4CjEaPvq0giMhyHXbt+o4DB5xoNI/gcl3j4MG3+Pe/J/9ulQoEQfiftQ4rcbtFaP8q+EcQ339C\npeKFy+VCq9V63WN/Bn4L8S1cuJSPPlqHQhGDy5WCQqGmrKwJGk0o+flfcN99ng+5c+cO15OJFyKK\nMmPH9iE+Pp6UlBS02nb06DGCjRu/Ax4iJeUlVKqp13PYNnD8+E4CAwOpWXMkhYXnUasfpKQkB7W6\nHSkpg1EqjUhSXxSKQNRqDVbrA3z//dEqxBcTE8OSJe+yfPk6ysvP06fPWDp27MDx48cxmwPx8xuK\nLEsoFCPIyNhITk7OdUWaX0dl/qQsy16FnJKSkirP81ZW5888Mx2r9RW02l6IooujRweyfv36X7U2\nf+4qrYQkSaxZs4ZTp1KpXj2C+++/7wYS/Okq/uc4ffocBw6k43bLJCZWp3Hjht7jFAoF3bu34cKF\nDCyWa4SH165Si/B/BT/88AP/+tdbWCxxmM2XcDrTkaT3UCrbAhVIUhlW60yMRhGNpg8KhWfBplIN\n5+TJBd7reMZOgSCIREc3Iy3tc+z2PpjN6fj4/EBcXHsmTvwASRqDj08dkpPXc+XKcsCIWm3C17cN\nNlsyxcW1iYjogq9vdXx8Yli//lHi4++iUaM+pKSswGiUSUpqRkrKhzidz2C3n0el2khqai18fKZi\nMHjqM+bmFrJr157bKup8u/gjrcM7dXX+3QSq4R9OfG63m4qKChwOByqVCoVCcVu11X5P3O5LeeHC\nBT76aCN+fp+hUpmwWM5gtf4LH5/Z5OXlERioQ5YTSU1NJTo6mpYtW9C2bWuvvFhxcfF1gvB8YJGR\nQaSnZ+BwVKDRmNFofqBRo/fJy1uBRmNFrw/B7T6MJG3B4VhPUZE/KlUFouiP05mP2VxCWFgILlcO\nAQE+2Gw21qxZQ1GRmUaNGtKkSRNef/2lKveg0+mQJDNFRZ9TUPAusiyhVFZw4MABUlNTiYuLuykB\nVu7hSZL0i/mTK1Z8zbRp71NRYaVTp7v54IPXq6jH/BQ5OVdQqTy5WIKgxOlswdWrdxaWPnXqW3z1\nVTqSdA8KxT527TrMggUfAngnrspcsJ+7Si9dymTTpmxCQjojCCLbtu1Ho0kFJLKysqhduzY1atSg\nbl1PMIjT6eTZZyexePFiJElHrVrVmTFjEu3bt7+jvv9eePnlj5DllzAaE7BYCigtfRy3+31kuTXg\nwGBYw/DhXWjQoC6TJm24rnijwuE4QPXqPxJ5jx7NmD9/BQ5HDyIjm+FwfEBAwAWiooIZO3YcZrMZ\nmy2ekBCPxmto6EAuXlyLyaTAYlmC3e7E6UxHEDKoXt0j1eZwWCksLCUmph9arR8JCQPJzl7Eo482\nZdCgJ8nI+BBR1BEc7JkHZNn1kzuTUCj+O4ncv4d1eKe1+P7f4vuL4ueD/VPCqxRXdrvdv7lE0J32\n7U50QnNyclAo6qBSefKPDIZ4Kir8GDfuYaZPX4bNdj9bt0ps3foB48f3oXr16kRHR7N+/SaWLNlO\nRUUF997bAqPxEhkZy/H11WM0bsXlOo0gzKBu3X+h11dHpcpDo7Gg1YbhdG6ltHQrsvzYdU3S/dSs\nGUtR0Wby8goRBAPBwcfp2/c1HnpoFCdPmpCkeiiVr/HSSwMZMWJYlXuIi4ujfn0fNm+eBaxElv2Q\npJFMnLiLhg07o1TOYcqU/rRo4dk/stlsXLhwAY1GQ2Rk5C8GGx06dIgXXvgEpXIZWm0E27dP5cUX\nX+Pdd1+54ViApk0bsW/fZ2i1z+N256NSradRoxdveSwqUVRUxFdfbUWr/Q5RNCDLgzl8uCdnz56l\nYcOGVfYcb+YqPX8+E5WqFqKoQRRFfHzq8c47b7F9+z4UigQk6QgzZ77EgAEeBZEZM95nyZL92O01\ngcmcP1/AoEHPsHbtv2ne/MY9t5tBkiROnDhDZqYZo1FLixbxt1QgtxJut5t169aRnn6RWrVi6d27\nN7m5BZhMjRBFNVqt4rqm6rfYbAkoFG5q1qzOtGmTcbvdbNiwi4MHu6JQxKDXn+CDD+Z4r92u3V1o\nNBoOHNiDXq/i1Vff4vjx8xw9eok1a/bTsGEobncesiwhCAocjkL0ehXDh9/LvHlbMJs/Q5bzadky\nDJttE7m5NSkv30dsbDBarR+yLGOxWKiokDl79ixWayDR0TtQKHyxWr8lM3MadvvTQGN0umBCQk7S\nocPU/5lIzNu1DgHsdruXCG9l77C0tNQrev53wj+C+CrhKSdjw263V4n4g/+uQsGduDurV6+O230G\nuz0HjSaSkpL9BAYq2bbtELLcj8DANoDAqVNFTJgwn7p178JuP01paShRUVNRKmXWrFlIjRpWMjNX\n43IFEhRUzLvvvs7s2asoK9tAQcFC+vSpSWJiIx5/fAClpf7IcitgKaL4MHr9KGJj/WjUKBy1egP3\n3tuBu+8ewuHDhzlzRo3BMOe6+ktP3n77AYYPH1rlIxNFkS5d2rBnT30UiggE4ThWa1vKy+sSFdWH\nsrKWfPTRbBYtakZaWhpPPTWNoiItslzC8OHdeOqpkTd9lgcPHsbpfACdzlM8U6MZx3ffDfjFZ/n+\n+68ydOhTpKQsARxMmPA4d999922NB3C9uLAeQdBf74sSUfS/QTi6sp8/d5WaTH7Isg2lUoksu8nO\nPsXGjTsRxYO43cFIUioTJnSha9fOGI1GtmzZi90eAExAELoiyxVUVNhYsmT1LRPfvn1HOXYMjMbG\n5OUVk529hwEDOlXJX/slyLLMhAkvs359Dk5nB1SqNezde4yGDeM4dWolAQED0eks6HTJ9O07g+Dg\nKARBQqfbj0qlQpIk5s+fxZkzZygpKaFx4+lV9s8EQaBVq0RatfLsd65atZGdOyE8/BFKS4vZvPlr\nfHwukJzcG622GkFBLsaPf5CePbuTlNSEwsJCIiMjCQgIYOfO77h6NZ24uGacPh1CaupuLl6Uyc7O\nRKM5SFmZE0lKQqv1kL5G04LsbDMxMQ9TXFyE1bqBBx/sTFRUlLfiyv8qfsk6tFgs3nftVvcOr127\ndluuzs2bNzNu3DgkSeKxxx7j+eefv+GYsWPHsmnTJvR6PQsXLqRJk1+ulfhH4R9BfLIsY7Vab0p4\nlfizFVR+K2JiYpg27RGmTx+N1WrEx8fKO+9M4quvtgEqlEolxcXXKCqSiYxshSi2IS3tFJIUR61a\nwQiCA+X/sXfegVFUXRv/zc72zab3SkIIgYQeuiBFBQIiWEEFCwi8dhRFERtgF1HEgoKggoKACEoR\naSJSg0RqIJQE0usmm91sm53vj5CYQAIhiPq9vs9fLJly586d+9xz7jnPUfZl48YX6dbta0wmK+Xl\nx/j448UsXvw2p0+fxmAw0Lx5c7Zt24YoxiIIU4FI4C7c7jFYLEkUFlYQHd2CSZOeqYnGq6ioAMJq\nPh6lMhSz2YEkSRcErYSEhGAw7ESt9sBmc+F2G/DwqCIOvT6E/HwzJpOJl156j+LiO/HzG47LZWbB\ngsdISmpTpwJ8Nfz8fFAq99dY0U5nGmFhVZZxtXVVXacPIDAwkHXrllJaWoper6/zt8tBaGgocXH+\nHD36Omr1rTgc2wgMLKhT3f1iaNcunmPHtpCTUwkocDpT0OkScLkCkWUQxTgUCm/y8/NRqVT4+noC\nBUD1uHWhUDRe99XtdnPgQC5hYcNQKESMRn+yswspKCggIiLikudnZmbyww+70Gq3oNNpcbvvZfXq\nvnz99Zu8885C0tOXIgh2rr22BX5+/qjVKkpL99OvX9WCpHrSrS+Qpz6kpJwmNHQcarUBtdrI5s3H\nKCsLRa3uh8Oxg8DAfAYNuh6A6OjoOrmWyckDav7dqZOVV155n4ICM9HRXYmLe5MjR+bhdK5Bkh5F\nFH0xmd4GWlFcvJPKSgtK5TA++GADrVqt5YYb/v9VZq/+Fs+vFNOQdfjDDz+wfPlyNBoNBoOBqKgo\nWrRocdFIaUmSePjhh9m4cSNhYWF07tyZoUOH1hn/a9eu5cSJE6Snp7N7927+85//sGvXrqv34A3g\nX0F8UPWCLxbiXk18f0d15aaS7pAhg+jTpxcFBQUYjUbUajU33dSbvXu/obRUS2FhIS7XdxQWKsnN\ndWCxGLDbPyE7Oxwfn+6Ul2eiVPqSmnqK8vIKKipW4XTuZvr0t5g+/bkaAigtLUUQYlAqVbhchchy\nAIJQjEazlZEj7+Puu++u4x5LSkpCqZyN1boZtbo1lZUf0bNn53ojNQcPHszSpWvYtWs4VbXdjpKQ\n8C4Oh4Xs7G/o2TMWo9HIyZPZeHldB4BSaUSSupKRkVEv8Q0fPpyvvvqB9PT7kOUwlMqfeO21tzl2\nLJ21a1NxOBSEhWm56abeNe0WBAFfX9/Lfge1oVAoWLjwPZ5//k0OHHiImJhwZsz4CIPB0KjzPTw8\nGDnyOrKyspBlGVG8nW+++RpJ2o8odsDpXIfB4CA6Ohq1Ws2MGZO54YabsFgeQ5afQRCMYBDcAAAg\nAElEQVTMGI0fM2LE+9jt9kZFlQoCuN0SCkXVdyHLzosGdlVPkNUKJkqlD4KgPff8OkTRB71ez6JF\nsykvL0en01FWVsaWLSlYrS769YugY8d2l9mzVTAYNNhsJtRqA1ZrIWfOnMLbewEGgw9eXjeRkTGG\n9PR04uPjL3odvV5PZGQzunbtjJ9f1bHR0TehUh0mNfU6RNEfQUhHEK6nvLw3gqDC7d6GXj+ROXO+\noHfvHn9bLEBT0dD80pB12KdPH7RaLYsXL+bnn39m4cKF5ObmMmLECObPn1/vtfbs2UNsbGyNa3TE\niBGsWrWqDvGtXr2ae+6p2vLo2rWq+kd+fv4F1T+uNv4VxKdQKC45+fydfvumEp/L5UKWZXx9fWuC\nPLp06cKrr4qsXLmJgoJCiopKqay8B7X6FlyuNNzuUHbu/AAfnwXEx2uxWCopLDRRUfEJTucNyLKV\nDz5Yx/Llm5g9+zluvHEw7dq1QxQ/RKHogVrdEafzfXS6AFq0iKdnz54X7AlFRUXxxRdv88wzb1JU\nVELv3h2YOvX5ep9BpVKxaNHHbN++HZPJhEo1nK++Wkpx8Wf07duaxx4bj1KppHnzcI4f/wVf32Qk\nqRKFIoXw8JH19qVOp2PVqi/56aefqKiooFu30RiNRj76aDP+/kPOVWE4wrp1v3L77QMvu98vBl9f\nXz744PUmn6/T6WjR4o8Uhblz32L8+GG43Rq8vUUWL55b44ZMTExkz56fmT17Nnv3fkl4eBgTJrxL\nUlLSBWkW9UWVKhQKevSIYevWbeh0sdjtJYSHVzY4CR06dJQffzyAwwEtW/rQv39XfH1t5OZ+gkYz\nCLt9LaGhDmJiYhAEAS8vL8xmM1Onvs6WLb+i0WiYMuUhOnVq36S+ufXWa/jooxWUlbUnI2M3FRVl\nVFbKCEIBBkMBwcFV6jyNQVSUP3v3HsbXNw4As/kw9957G126dKCkpIRx46Zz8uTtWCyBKBStkaQ0\nfHwqkWXtP97VeTE0NrUrODiYYcOGsXz5cubOnUtwcDBms5mioqIGz8vOzq7jKQgPD2f37t2XPCYr\nK+t/xHc1cDklgv4/WHy1E+zrk1BLSupEUlInZFlm6NAx7NunwWQ6hCiG4unZ/1w9Pj9Gjw5i27Zd\nfP75s0hSCyAdUAPfUVR0hClT5hMY6E/Xrl35+OOpjBs3hZycYjw9WxIZ2Z3evTUkJCTU28bOnTuz\nadMyoIqgLxY4JIoiPXv2rBH+7t+//wWRmq+88iTjxj1HaekqJKmYO+7oVqe8z/nQarXceOONNb+P\nHTuGIETW7OEEBbXi9Ol9l3zff7cLfODAAaSn76e4uJiAgIALrObw8HDefLOqLp7L5cLpdF5wTG13\n1vlRpfHxseh0avLzs/D01NO6da96LfPc3FxWr04nKGgYarWe48d/Q6vdz5IlH/H00zM4duwL2reP\n4a23PqqzP/jCC2+yZYsvev1eJCmXl18eS3R0JN26dbvsby0+Pp7Jkz3JyMjgkUe+Q6Vqjtv9HbI8\nCLN5OeHhJ4mLi7voNRwOB+vWbeHgwTM4ncc5efIoarWB9u096d//djQaDT4+Pmg0Wtq1i2Pv3pO4\n3bloNAIaTTpRUYZL7nkdOHCAzZv3oFKJDB16XaPcxlcbV1J9vfp5jUbjRQOfGnv9+lSU/mr8K4gP\nLq9Cw19de6qxk2vtaNTGKMoIgsDIkYMoKDhEYWELBMEDu30DzZp1RKHQYbcXk5/vRKMRsVoF4Azw\nPBCEJJXjcAxn+/Y9dO3ald69e5OWtp29e/dy5EgaxcWFJCQkUFZWdlEXYWZmJqmpRwEX1157zQWT\nhtvtxmq1Nkji1YiOjmbVqnlkZGTg4eFBZGTkJfurNgwGA5J0vMatV16ej4/PhbUL/4lQq9WEhIQ0\n+fza7qxq1I4qjY5uRlRU5DnZuvotxMLCQhSKaDSaKs9JYGBrTp5cTXJyH7766uMG7719ewpa7dco\nFFoUimis1uHs2bOPbt26NartJpOJb7/dxKlTRYSFeXHbbdfRo0cPKiud+PjMxGpdjtP5PrKcxc03\n96kh3eoUpepv6/jx45SXl/Prr79x9Gg4fn7D8PQ8i0q1iYkThxIeHl4nX/Lmm69h2bIFJCb24tSp\nL5DlVSQlXcPUqRMvOj/s3ZvC1KlLUCpvQZIsbNz4NrNnT/pHkF9T4HA4GkwDOh9hYWGcPXu25vfZ\ns2cvqI94/jFZWVmEhYX9OY29DPxriK8xuJhQ9dXEpYivdjRqdfpFY8n59tuHk509l/nzJ1FSIuHj\n04ODB2Wczk8ICQlFFMMIDtZw6lQ6YAOOASpEUYkkZeDjU1cfs1WrVrzyygekpxsQhEKMxg/4+uvZ\n9YY8Hz9+nNmzN6FQdMFmK2Pv3q+YNOlOvL29m/RMer2e1q1bX/KZ6+vL8PBwunU7ya5d3yOKXqjV\nhQwffuH+4D8FtSfuq4GGEvBlWUaSpAtcpYIgYLPl4XRWqfWXlxfi73/pyhQBAX6cOnUUpTLs3L7l\nUQICGhfF53a7+eyz1eTltcPffyhnzpxi7txVTJp0N926dWTLlgV4er6AJGXjdo+kV69elJSU8OCD\nz7B37360Wi3Tpj2BxSKxZUspEMK+ffvo1asrRmMYRmMYZ89m1MjP1cbYsXcTHLyefft2csstXowY\n8R2+vr44nc4aNZ/6sGTJRvT6sXh7V7lzc3KcbNz4C/fdd2ejnvlqoSkWX/V31NjzkpKSSE9PJyMj\ng9DQUJYuXcrXX39d55ihQ4cyZ84cRowYwa5du/D29v7L3ZzwLyK+xlp8/yTiq677ZbPZGoxGvRSU\nSiVPPfUQDz54L1OmzGDZsn2oVGa8ve9g9+4jeHjsw9e3D3l5XXE6D+N0voxCcSOCkE94eA7Dh8+r\nc72vvlrK0aOx+Pi8hCAIlJV9w4wZ7zNv3kzKy8tJTU0lIyODmJgYdu5Mx2gcjLd3FHa7nbw8Jfv3\nH6B79y5UVlaiUqn+dJWci32k/fr1oHXrPOx2O35+HRsddPJXwmw2s3r1NjIzK9BqYejQJGJjm/9l\n9xcEoV5XaXx8PO3b53LgwBoEwYBWm0OvXlXu6drKNOfnhU2fPpF7751MZeVmIIdWrcwMGzasUW0x\nmUzk5EB4eFVqRlBQItnZBykqKmLmzJeZMOEpdu+OR61W8+KLT9C1a1dGj36IlJQEPDw+x+XKYPLk\nu2nTpjtt2rwKKDh0yMhvv60lNLQTgqDAajWxcuU61OrtdO4cT5s2CeTm5qLVahk6NJmbbrrcMj4S\nCsUfFpIgqHG5GibKvwpXsoXT2POUSiVz5sxhwIABSJLEmDFjaNWqFXPnVlVVGT9+PMnJyaxdu5bY\n2FgMBgMLFixoUpuuFP8a4msM/k7iq43ahKdSqS5bcLk+GAwGIiObERLSncLCOMrL/XE6A5CkncTF\nncTTczMmUyRabSJq9beMGjWQKVMWXFCSJCurEEFIrGmzWp1IVtZKSkpKeO65Oaxfb8dsFlAoFuHv\nb2fIkF5Adb+qKS0tZM2adaxcuQWNRsW4cbfTtWvXK3q2y0FgYOA/2r25du12srObExGRSGVlGcuX\n/8i4cT6Njji9GuNXEARUKhU33XQ9nTvn4HQ68fdPQq/X16tVWpsI27dvzw8/zCclJQWDoRN9+/at\ncUdeajKuOq4Sp9OGSqVFkpxIkrlmH27p0nk1lnFFRQUZGRns2fMbev37CIISlSoWq3UQ5eVnUCiq\nprqWLWNJTf2a7OxdWK3ZpKdvoLT0HrTacNat+xqjcSVBQb1IT09Bqz3LwIHduf/+UTWLpEu1eejQ\nHrzxxme43XfjclkRxe/p2/fhP+9l/MW43EXpoEGDGDRoUJ3/Gz9+fJ3fc+bMueJ2XSn+R3y18HcG\nMlTvudjtdmw2G6IoYjQaGy3WnJeXh8lkIiwsrMEN6MBAL7KzUzAab8TprMBiOYTVWkBCQhgvv1y1\nCvfy8qJz52kN+t27dm3LsmXLcLmuR5Y1FBfPR63O4rrrRpCT0x2XaxguVxscjl+wWD5h/fonGTz4\nA6zWMmR5J2VlPrz55lpE8XFkuZLdu6exaNErtG/ftEi/fwqsViuyLF+RFSnLMqdOlRAWVlWgVafz\nwu0Op7i4+JLEt2vXLl566UOKikro3LkNr7zy1BWnZ5wPQRAuGBfnu0prB9FUE6Kfnx+DBg2qsQgl\nSSIlJYUZM+ZQVFRKy5bNufba62nbNoKOHdvWEIvBYCA5uTWrVy9BoYjF7c6gX7+wmgoZULX/uWLF\ndzz77BsIgjfFxSY8Pffj6dn7nATeMfR6MJlO4+kZiU53lr59g7j22gJycrIpLh5EeHjV2M/I2EpB\nQQClpQGcPHkDkpTCqVMn2bPnaRYseK9R32K/fn1QKkXWrv0ejUbJiBHjiI2NvfLOv0I0xeKz2WyN\nEjL4/4h/DfE1Noz37yI+l8tFWVnZOakqj0YTHsCSJd8yf/4WRDEYjSaX1157sGYvLCMjg9OnT+Pj\n48OQIQN44YWPsVqnYTKlIQilqFSPsWlTOocPryEhoRXjxvW56GZzcvIgjh/P4MMPbyA/vxhZ9qOk\nJBKF4iySZMTt9kQUlQhCDG53CzIyVpObO5NWrVpz22038cwzb6NUPoWHR3X17jJWrFj3pxHfX/0O\nJUli27a9HD1ajiAItGzpwbXXdmmShS4IAt7eWioqCjEaA3G7JdzuInS6iwtRnzlzhieemI0oTsPH\npwUpKYt45pnX+eSTN2uOsVgsuFwuPDw8Ltk2SZIwmUyIooiXlxeCIFBeXs7bb7/PsWOZdOzYisce\n+0+9if7Vll5tnB9V+ssvvzBq1EQcjldwu0M4deoNysr2k5WlRZL206VLR6Bqn7NHj85ERYVSVFSE\nt3f7OlGbaWlp7N69m5de+hCNZjVKZQw63TuYTKNRq28DMujaVcfUqY+xYME35ORUEB8fypgxj+Pj\n48PWrVvZtCm/5np2uxWFwofTpwvQ6UbicAgYDB4cPvwBaWlpJCYmNioK+Npre3PttZev/HM10RTi\n+2+tzAD/IuJrDP7qSVOWZZxOJ3a7HVmW8fDwuGjhy/pw4sQJ5s//FX//N1GpjJSVHeKllz5k6dL3\n2LZtO6+/vhJZbo/bvY2BA4O5//5hzJv3A7LsBQylsnIpSqUXeXnZJCW9yquvTsNut3DdddfVO7EJ\ngsDEiQ9y+PAJfvmlC7m5XVAqY7HbXwDWA82QpCAEYQOyXIBSGUNxsZqICCOhoaEolSJVldKr+8B+\n1YV/XS4XqampWK1WEhMT65QXulIcPXqcw4dVhIdXuXeOHEnBzy+Ndu3qT/O4FG68sStLlmymvDwE\nl6uUbt28L4iMq4bZbObgwYNs374dl6sLnp6JOJ1OjMa72LdvCU6nE5VKxb59B0lNLQZUBARIXHdd\nUoMJ2BaLhe+/305BgQZZttOmjSc9enRg2LBRHD+eiNs9gp07l5Oa+jBfffVpoxeU1VGlhYWFvPfe\nIior70ahGIrbLSOK75Caeif9+z/M7t0/kZDQkhdeeIUvvvgCWYYbbhjIZ5/NqTMeFy5czKxZK7HZ\nWmIy6fH0/BmjMQYvrydQKj9jypQYwsN707t3b5RKJW+8EX/B5N+2bVt8fGaSl/cTGk0IgnASH59g\nSko8keUyJGknNlsMsmy+aEDLfyv+WyszwL+I+Br7gVaLuV5t1C6po1arcblcl016APn5+SgULVCp\nqtybXl6JZGdXYrFYeOedrxHFSUiSJ3q9yI8/vsPzzw/g88/Xo1A8iCyvA4bhcvnjcm3lu+9uRqns\nzJNPrqJly29YtGjOBXt8f9zXhFZbZaU5HA6gE4KQiSy/DLyFLLvQarug0eg4ebKIadPWsWrVPvr2\nTSQ19Q1MJhNudyU63ZeMHDmrib14aVRWVnLzzaM5cKAQp1ODRpPFnDmvXrAP0RAutRjKyyvHwyOm\nZnwZjREUFJxocnvDw8MZP34ARUVF6HTNL6g6X40zZ84wZMidnD2bjyQ5gUQiI+8CPJCkLATBTklJ\nCZIksW+flbCwPigUIgUFp9iz5zB9+nSu97o7dvxOcXFzQkPjcbvdpKb+gtn8IxkZLkRxFkqlgCwP\nYMeO9uTk5Fx2KPq+fUcRxWaIohWFQkSS3EhSGUqlBoXCfU4tZAlLlvwOnEYQdGzZcg9Tp85gxoyp\nNZVFZs36Cr1+GWq1BwUFBykvn4xePwhJykOnUzJy5MgLvqfz5wBfX19ef/0RvvlmHTk5u+jYMR6T\nqZCionXk5S1AlgOx243o9Tp27z5A27Zta2TWasPlcrFz504KC0uJigqjY8eO/7h95KZafA19///f\n8ffU2PiH4q+w+FwuF2azGYvFgkajwdPTs0mEV43w8HDc7qPY7cUAFBfvITTUiCAInDlTxL59xaSm\nlrJ790ny8hSYTCaaN29HSIgDWS4DRgM+QHMcDi9keTReXvM4diyBmTPf59ixY/UqVfTs2Rab7Ut8\nfLTI8mHgSyAbhWIgMBxRvBdZzgHKUKsfx8PjGfT6SWzalME77zzIoEF7ufnmNJYseYeWLavK7Miy\nzMGDB9mxYwdlZWX1Pu+lVt7nv8O5c+fx229elJevx2xeRWHhPdx990Q+/fTPiSbz9zdgseTV/LZY\n8vD1vbiclSRJZGZmkp6eTklJyQV/NxqNREdHN0h6AM8++ypnzpThds9HEPKBKM6ceQCb7TNgGsnJ\nD7J+/T7M5gqUysAaSTJv7xDy8ysavG5BQQWenlWuVYVCgUoVQnm5hbpThYI/ApYuD06nRNu2g9Hr\nNyBJr+F2L0SWx9Ct2xDKyn6hT582bN/+GzbbWAShSg7N6XyEHTt+QxRF3G43ubm5CEIgCoUvkI/B\ncAi324nZfBsKxf3MmTMDi8XCnj17OHTo0EUXs8HBwfTtm0Rqajpr1zrZvv0Mw4e3JzRUS0DA/cTG\n9qdfv7msX3+i3lJVbreb2bMX8O676Sxd6sNrr21nxYrvL7tfrjaaWovvf67OfwGuJvFdTG3lSu4b\nFRXFxImDee+9yciyF97eNqZNexyHw0FhYTZWawZu90BkuRyrdRPBwTcSGOiisrKMvDwXbvd+YBbQ\nBUjA6fwESMJsjmHZsi9JTw/Az6+Q559/gMDAwJr7Pv74BAoKXuGHH+5AqcxBpWqGILTA03MqlZXf\n4ufnid0ehyBYAANhYXr0+lDKyyOIjIzknXfqSoVJksS4cRPZuPEwohiETpfJypULavZ0Tp8+zejR\nj5CWdhh//yA++eQtevXqdcn+OXYsA7u9Dy6XDHgBg5GkH5k27U3uvnsEOt2lc9EuhoSElmRn7yQz\ncxMA4eFuoqLa1Ew0KSkpnDhxguDgYFq1aoW/vz+bNu3i5EktomgEUklOjmvQndkQjh8/hSwbgVxk\neRZwH6L4BF26mOne/WWCglqQk7MMvV6Hy5WD2x2NQiFSVpZHZGTDrt6QEE8OHcpEp2uDJLlwOLLo\n3Lkj4eGLOXVqCrLcH1FcTlJSfJMSj9u0ieb331MZM+YDdu5cism0m8GDh9K3b3eaNQsjJCSEyMgg\nlMo9yPKoc2ftJSIiFJVKhUqlokWLFhgMpZjN66isLEUUW+LnN5CePf3p319NcHAQw4dPwGqNQZIK\n6dUrhLfffrHBvc2XXvoQWZ6En197JMnGTz/9h4CAKFq27FtzTHm5L1arFR8fnzoEcvr0aXbvNhMV\nNRlBUOBy9WD58hcYPPj6Kx5bfzfKysr+5+r8/46/K7ilMWorV3rf5OQb6NWrO2VlZQQGBqJWq8nM\nzEStDkSW9wMbEEVPFAo/9u7dx2uvTWTatA85cmQ/TueTwDigP1COJH1Lbu4X2Gw7iI29h7Cw28nN\n/ZWFC7/j6afHAX+o6r/44iSee+5x0tLSmDjxTc6cycXpXMH11/egefNm7N79O0VFmYSF2QgMjMJu\nNyHL2fVGG65atYqffipEpdqIIGgwmZbw8MPPsWHDMtxuN7fdNoazZ+9Fp7sPk2kno0aNZ8eONZes\nQJ6UlMg33yxHlocAbuBrlMoOQB5ms/mKJyeVSkVyci9KS0vZsWMHzz77BpWVboKCvGnbtgVr1/6O\n05mA272L5OShJCd3oKAgkMjIqhQOqzWMbdt2cOedl0d8bdvGc+zYamA7EA88BuTRvn0ywcFxFBSc\nJDzcSEREBJ06mUhN3Ur1Hl/nzp1YufI7tm7dTXCwLxMmjMXHp6p6RY8e7Skr+5WzZ88gy046dvQl\nMzOTMWNuZ8eO/eTkfESHDvFMnjytSe68Zs2aceedbnbvPk5UVDeSkkbRqlVdUeknnniYtWtvoqBg\nEGBAo9nPa6+trPm7wWDg44+n88ADkygpaY2XVzEjR44kODiII0dm8+mniygouJ/Q0FsRRdi6dRKr\nV6+uiSytXXpHkiQKCkoJCmoLgChqUana4eGxj7y8zfj7d8dkOoCXV2G9Y83pdKJQeCAIinPn65Bl\nNXa7/R9FfP+z+OriX0N8jcGfSXxXorbSFJyvoxcSEoIglKLTXY9Wex0u135crpcoLbWRn19AixZR\nTJhwG++8swS3ux0KRQCy7IUs+1FRMZOoqEHExd0KgJdXC7KytgJVrlqr1Yrb7Uav16NSqejZsyfz\n5k3nuefmcPr0QdLTZQRhB3fe2Y6EhGG88caX5OcHIoqFjB/fv14XXmbmGez27qjVVeHTanVfMjLe\nAKCwsJDc3DK02rHn/nYN0IFDhw5dMBmd/w7vvXc0W7bsZMWKRGTZB1GMQansR2iof52w+CtBVc1B\nB08/PRO3ez4GQweyslZw5MhjaLX7EAR/ZPkEa9cOxN8/nMDAP+6r1XpQWNg4YeXauOaaDqxYUYjb\n/QZV+qrd0OlGo1YfJzv7LEFBIgMG9ASgU6c2xMdXRXUajUZmzfqA2bPX4XDchyge4rvvbmfjxm8x\nGo1otVqGDeuH2WzG5XIxatRDpKWJQBiiuIuvv/6ATp06XVF/xcTEEBMTU5O2cz58fX357rvFzJjx\nPmazSETEeAoLS4mJ+eOYNm3a8OWXc1i48BSxsYMRBIG0tFQWL16O1aoEWlFWlk7r1nHIcgeKiooR\nRfGCwqxbtvyC2WwnO/s/REffjcHQAkFI5ZlnxvD997+Snr6SiAh/HntsPHq9nsrKyjoEEhkZiY9P\nPvn5v+Dp2ZKioh0kJvr84wijqcQXFRV1lVr09+JfQ3x/lcXXFLWVq2FpqtVqbr21L19+ORu7/WO0\nWh/CwlojyzZefvl7VKpk7PZiNJqlwGoUighcrnJcro20aBFFYGAAkmRHFLUUF++id+9QKioqaly1\nGo2mpk8rKir48stfaN9+Oq1bV5CVlYLBcJARI15ArVYzd240x48fx9vbm+Dg4Ho/wtatW6HRzEaS\nxmCzqbHbF5CQ4E91OSlZtiJJmYhiFLJciSSdbBRxiaLIokWfMGLED0yc+DxFRSm0bu1kwYJ5f+pC\n5NixY0ACGk2Hc/0/CFl+AUmyIssSEIss6zh9Og9vbyXl5fHodJ4UFByldevAi167PsiyjJdXIuCN\nJEkoFK1RKETGjh2IQqFAp6urQ1o7Afv99+cCv6LVVi0a8vPvZOPGjQwfPhyoGo+enp58+eWXHD7s\nh0r12TnJsjU89dQrbN787ZV0VaOwZs0uIiMfIiCgBU5nJatXryAyMrSOZmlMTAyJicc5fnwjoujD\n2rVvIwgPoNFkYren4HAkk5d3AoNhK61a3V3jKq3uh61bf+GLL07Qps277Nv3O8eOvUtIiIkpU8bR\nvn17WrZsyS+//Ep5uRWTyURERMQF36ler+fFF8exYMFKsrI20adPOKNG3fePC25pCsrKyv5xBP5n\n4V9DfI3BlRDQlaitXK1agM888yhFRa9x+rQKQXCSlKQjN9eJl9c9eHhEI0kSAQHfUFFxnIqKcYCI\nt7eTFi1epqzsC3JzXwY0xMV5MHTo7YiiWK+rtri4GIcjgMDAqonU3z+Os2fnUlFRga+vL0ajkT17\nDvPbb8UoFAo6dw5izJg76gT13HDDDYwZs5933mmHw6FDENScOOHBtGmv8+KLz/LKK1N4/vlhSFJf\nBGE/N93U5bIqNw8YMIC9e6/B7XajVCpRKBS4XFW6k39GnwcFBSFJJxDFchQKTxSKLKAEt/s0ghCJ\n270Cnc4DWY4mKckPi+UAFRV2EhP96NLl8uvTXXPNNSiVo3A6r0elisPtfo3+/fuiVCovWkhXlmVc\nLhdKpee53xINldrJyyvE6WyLWl1dxLQdhYXFl93Wy4Usy2RnlxMeHnvuvjoUinBKS0vrEJ8oitx2\n2wBOnjyJzWZj3bpSLJZuaDSdsNufxO2ei9ns4KGH7mPXrt95770lhIT48uSTY4iKimLnzjS8vIbg\n4xPH4MEtOHs2lJ49D3HjjclYLBamTp3F6dMtUShC+PrrZTzySB7XXNPj3ELjjxqHQUFBPPPMhKve\nL1eCplp8/9vj+xegKQR0JWorte97JUhLS+Onn/YAMGBAt5qAEB8fHz76aAYZGRns3buPtWv3kpKS\nRlBQX1q3rqpOHRt7I4KwjN9/r0Cp1BMa2o7CwjTMZiePPnotcXFx+Pv7o9frG7SQjEYjslyEw2FF\nrdZTWVmKSlVZY2Vs3vwLO3eqad78SURRZNeuFUREbGXw4Ovr9MGwYYOYO3cVHh5LEMVoZLmcjz/u\nysMPj+O++0bRsWNbDh48SFjYAPr06YMgCJSUlJCamopOp6Nz584XLF4kScJqtSJJEhqNpub9nl+e\np/beT31J2JdCfHw89947gIULhyKKbYA9TJx4L59+ej82G+h03lx77dPExQUTHGygbdvEy7r++YiN\njaVHj9Z8//1IZNlNQkIcb7751SXPUygU3HjjYNaseQinsy8WyxTAxlNPrSMoKIj+/fvXHNu1axJq\n9TQk6VYUimBcrvfp0ePK3JyNgSzLZGT8zsqVt+Lh4UPv3nej0WTj7R19wbFKpeImqOIAACAASURB\nVLImKvimm67ngw+mUl5eiCTdBZSjVq8gJeUghw83Q69/ijNn0hg7dgpLl76Ph4cGh8N07koCCoUF\nX9+q7/fgwYOcPduMZs3uA8BiacPixTPp2bM7LpcLh8NR77g5X6v0n4KmEN//LL7/AjTW1QmNGySy\nLONwOKisrGyS2kp9927K4ExLS+Oll5ahUg0GYMeOJbz88oga8lOr1VRUVPDppzvR6SYgCJ+Tmvoi\nhYXXEhvbC6NxF6NH38UDD7xGZeXNHDpUgSCswN+/DwsW7Gfy5MB6Ky/Uhq+vL7fd1oFvvlmIKAYh\nCDnce2+fGqLZtm0fxcUJaDQ5RESE4+XVjpMnd1xwHbPZjFodiSxXF2L1Qan0oqKiAj8/P9q1a0e7\ndn9YR2lpadx223hstgTc7gI6dfLi00/fQaVS1Qkqqo6idbvduFyuOn1cTYTVFQmq1ferJ7VqAjx/\nlV8fnn12IsnJ/cjJySEu7gGaN29OcvIQNm4sICSkO5Jkx2LZTXh4iwav0VhMn/4669eXIQifIQjF\nnDo1m6VLl3P//fdc8txZs17B0/N1PvnkCeBzlMobsVp3MHr07aSmbicgIACA3r1789xzd/Pqq/2w\n2Zz07NmDN95464rbXo2GxvvcuZ+xd28FlZVPYTKV8PXXk3nttYcvGcj0xBMPsX79Jn777WZUqpvx\n9fVCENrw00/PkZj4MQqFGlGMJidnG8uWLeOmmwaSmvo5Z84UAU58fPZxww1VlltVbuofe+ZqtRdl\nZU4EQUCr1dZ8r7XHTX1apbUJ8e9CU71Y/7P4/kvQGFfmpUoTVautVLuGDAbDFeXhXU7b6sP69btQ\nq28kMLBqJZ6XJ/PTT7vrSDtt27YXWR7E2bOrMJvj0GiuIT9/DVFRn/Lqq9N4//3P0Gjup6KiN4Lg\ngyxH4uV1AH//Mfz445YaObFqN1l9z9urV3datmyOyWTCz68XBoOBH3/8iU2bfmXbttOYTP7k5IRy\n8GAafn6ZJCVdqCeamJiIRnMak2kJKlVfXK6viIoyNBg2//TTr2Iy/Qedri9KpQd79kzi22+/5ZZb\nbqGsrKxRe6y1y/NUo7ZVWJ03aLPZLpjUqt2ktSe188m5U6e2KBSHOHp0Bx4eSgYN6nDFGppWq5Xv\nvjuMy/UiotgTWbZis2WyZs3WRhGfVqvlvvtGsHjxj1RWDj3XDz0RxRYcP368hvgAxo69l/vvH43L\n5aq3LltZWRnr16+nsLCQli1bEhUVRUxMzBUtApct+wmN5g2MxlZIkpvy8hwKCgouOM7hcLB//wFK\nSiqIigpCpVISEhKCn18kXl5V9e+sVu9z79KK2Wzj5MmzuN0FzJp1kMzMIl59dRy//34AUVTTseND\nNe8mMTERvX4WRUVx6HQhFBevYujQDjVkXd+4gT/qS6ampuJyuYiLi8NgMNQhwdpRpX8lLvd+FRUV\n/7UJ7P8q4msMLkZAtdVWdDrdn1ov7WoEuPzyy3Y++WQJu3b9RmlpF0CNl9fziGIRnp7NsNk+5J13\n5vHDD3spL2+LKLrQ65WIYjNUqsMIggK3u6pNmZmZfPjhCvLzLYSFefLgg7deQEiBgYEEBgbidDp5\n+eX3OHAgkKNHIxBFJUrlTnJytuFyeVJcXMaqVTqSk/vj5+dXc763tzffffc5Dz74LJmZM+jYsTUf\nfrigwUk0Pf0UdnsZTudBoBhZjiAzMwu3231FFS3Or1XndDrR6/V1NCer3V3VqR3nr/Krx4VCoaBT\np7Z06tS2SW2pD5WVlRgM/sBJnM7PkOXjgA2DofHFTgMDA3G58pHlUwhCDLKcj8Nxot6IW4VCUS/p\nlZSUcN11w8nPj8PhMCKKcxk58imuuSaDYcP6N7n/NRo1bneV9qlSKSKKZrTauveXJInFi38gPT0A\njSaMt9+eyalTxxFFH0pKpiPLfmi13rjdb9CzZzypqRMoKemJIBRhMOgICPiWdesexNd3MYcP5+Dh\noSUsLKyG+AIDA5kxYywLFqymtNTKddfFcccdw7Db7Rdte0VFBc888zZnzgQiCCr8/H7gzTefxM/P\nr2YhVR1V+le5SpsaO1C90PtvxL+K+Jpak8/lclFZWYkkSeh0OtRq9Z8+OJtKfAMHdmPXrmXk58uA\njCSt4frrR7Bq1RpefHEVBQX9EMWuuFxzcDjikOV0DIYSYmNbcPKkid27QwkPf4pjx5YjSZG43bmo\nVJ/j79+dsrLV3HNPLyorK5k58xtk+RYiI2MpKjrMrFlLeO21R+u1/o4cOcKRI3oiIkaRkXEQnS6W\njIyb8fJ6AEGIpFWreEpK1rF69Truu+/uOue2atWKLVu+q/N/LpcLl8tVJ2jDZrPh6dmM3FwZt7sY\nWXYgij/TqtX9qFSqq/LBXkyAWZKkOuV5/qwVvtVqZdKkF/jxx00YDEamT5/EoEEDGTSoLQcPTkWW\n7wLGAotJS/v5ggCQhuDr68uMGS/w/PN9UCq7Ikn7ePTRcTRv3vjaf598Mp+8vF64XG+hUChxub5i\n+/ZlBAeP5ezZs5d0kUP9VsjEiaN4/PEplJXdDxTi47OWm2+eX+eYrKwsTpxQExXVj6ys/Rw7lgWs\nwNMzDJfrAyyWB2nduiPdu3fBak0kIMDO8uWLUKsjCAt7DqXSk4qKED78cA0Gw2u4XIX8+usTLFs2\np6YPmjdvzowZE2vuWb2ffzGsWrWOjIy2hIVVjeu8vB9YvHgVEyc+gCiKdaJK/8mu0r9LrP+vwr+K\n+BqD2gR0MbWVfwri4+N56aXb2LBhN4IgMGBA1f7eU0/NAiag17dEo/EGTLhcy1AoFtG69RDKypbi\n5WVDELqi04USGdmR3Nx3UamyGDiwC4mJerp374SnpweHDx/GavUlLKxqbyogIJGsrE2UlJTUWz3Z\n4XCgUBhQKlUEBnqQl1dwzmUYicHgh4eHJw5HMCbTsYs+myzLzJw5m3ff/QRJkrn22h58+uksjEYj\nFosFf/8oDh404XYnAWW43XKNNNdfhdoCzLXbXbs0T+0Vfn2u0oaQlZXFxIkvsX27DVHcgM1WzKOP\n3sOKFaH06BGDVuuD3f4SkIks7yIjo4j27a/h2Wef4PHHH7pk28eOvZdevbqTlpZGTMwTtGnTpuZv\nFRUVFBQUoFQqKSsrIzw8vCbJvRq5uSVIUhtABgQEoTXl5cUoFEaczkvnJjY0ufbr14+xYw+xbdvX\nRESE88wzn9Yh84qKClJSUigoyCMszElZWRaC0B6ocst5ez+MUvkJS5bMYeHCdRiNvYiO9iU1VSIr\nS8bpLEAQZMrKNhIQMB2DoUqhpbS0gDVrfuTRRx+8aLsv9s4KC82o1R1rfut0MeTlpdZ7jYZcpbXH\nTm2vQlMXUk21+P6pgTp/Bv5HfOehWs3BYrFcVG3laty3qaus+Ph44uPrql+4XBI6nQdlZVbAG1H0\nJDq6H2FhOfj5rSYhIYKKimt4661XgfbIsgWdzsXjj49iwoTRbN68mQkTnsVq9cFiycZgUNG/f1/8\n/Fpgt5cjCOYGqxzExcVhNK4iP38HERFhlJcvJSJCwGr9imbNJuNwZONwfE/37rde9LnWrFnDe++t\nR6ncgVrtzbZtTzNlyiu8996riKLI/v3bEYRZaDRdgEJcrijmzVvGDTdURYtu3bqVd99deE4O7Q6S\nkxsnTH2lqE2GtVf4tSe1S0WUpqefZPXqE+zYYcTlmoAs/45aPQC7/W62bt1GcvJAVConoMBuf/ic\nvNdY3O5Spk/vy/ffb+C2227kgQfuu6j127Jly5qoyGps3ryZRx55mYoKF+Xlpfj5tUanK2HOnJfq\nlNu5/vqefPvtTOz2fkiSDwrFmzRv3g6V6ixBQf2a1Hdut5uHHnqan38243L1Jy3tR9q02cC4cVXR\nlTk5OQwbNprcXDd2u4UdO9YzaNBkXK5taLU5OBwxVFb+QEiINwaDAbVaidlsA+DWW5NZuPAtzObZ\neHt70ayZBw5HbcUcNwpFw995YwikbdsYNmzYiNPZFoVCRXn5j3Ts2Hgr+lJlnZriKm0K8VVf/78V\n/yriu9SLrL3K0mq1V11t5fy2/ZnuheHDezFz5keUlnajsLAIjeZrmjXrwiuvTCE0NBSFQsGECZNR\nq+/Abh8AuHE43sbTU83UqbNZsWIL5eWjcbv7ABIlJf9h8eLhBAcnYjSqefLJ5AaLrnp5eTFjxn9Y\nsOA7Cgs389BD0SQnL+bbb9ewfv0MlEolkycPolu3i1de37nzN5zOO1Crq4ItlMoJbN/+QE3giodH\nJeXlW5DlU4ALpTIQSbJis9k4cOAAd931JE5nVS7ivn0v8OGHEgMHDvhbPuiGLMOGIkq3bj2Ep2dv\nPDwOUFISiNutxe3ORKk8hbd3AvHx8SQltWDPnpG43SnAV4iiAofDF1m+kYMHKzl5cjPZ2flMn/5c\no9tZUlLCI49Mx+l8jfLyF5DlFZSUaAgMLOSRR8axa9fampJGQ4YM4dSps8yc2R+brZLWrTty++1D\nGDSoW5ODIn777Te2bctCp/sOQVDhco1i5swbGDWqSld14sTnSE93IAiPIMs2srPf49Spedx///V8\n/vlN2GxeaDQyHTsmk5mZSf/+bfnii81UVLRFkiw88EBLRo58ED8/v3MFbCdTVDQWt7sYb+/FDBly\nZeLl/fv3JSenkGXLHkWWBYYM6cTNNw+5oms2tJBqrKu0KfNKeXn5n1q+65+GfxXxNYTayecKhQKt\nVttgvbKrhT+b+Fq1ikGlWkNg4G+ABp2uO926tSIi4o8AiDNnComJeRhRDEeWZcrLk9m2bR1O5zDs\n9g0olQOwWBSoVAHI8kCczlMUFeXQqtUDbNmylz598ut1dQKEhYUxdeof7jaLxcI994xg/Ph7G/0M\nERFBiOL+cx+5C5ttA/7+3jW5kuPG3cWMGauBSUApSuUPJCXdhV6vZ+HC5Tgck9BqbwbAbhf45JPP\nGDhwQBN68+rgYhGlsqxAqVRxyy2DWLBgPg5HIG73LiIicrn55ucBWLJkPnPnzuONN/Zgs/2KKCZj\nt1sQhBQ0midRKHry5ZedmTZtSqPJ/uzZs0AECoUeiEOhiAVyEMUEnE5PCgsL68hYPfrof3jkkQk1\nz1MfKioqsNvteHl51QlUqs8SMZvNiGIYglA1wYtiAIJQlWCv0+nYu/cYMB1RvAmoCjgrLl7JHXc8\ngc3WCX//jhiNQVRUFLBmzc889NDtjB+v4+TJM2g0Slq3HoLT6cRms9G8eTQxMREUF29ApVITFtab\nsrLyBvumMZaTIAiMHn0Hd911K7IsX1F066Xuc7Fo5PNdpUBNrnFj9g3Ly8v/ayM64V9GfPW5AM5X\nW6k9UP7qtl3ufd1uNytXruHHH39DrVZy55396NGjOwCpqWkEBo4lKKg/SqWI1ZrJ77/Pq3N+q1aR\nbN26AX//CUhSBWbzIrKznajVOXh5RZKfvxVBGIQkVSBJO1Cp7sDpXMbRo6BQRJOenl4v8e3fn8q2\nbalotUqSk68lIiKiSc83evQoli27k6NHr6es7ASyrODQIYHFi5dwzz138+STjyJJLj7//G1UKjUD\nB47g0UerggpEUYEsu2pdzYFCoWDDhg3k5eWRkJBA587116Q7H03NsWwKqie0pKQoNm/eR/PmbRkz\nZjCnTi2nV68e3HHHHTWakbIs88AD99O5c0fuvHMCDsdHOBwnUav7oVYPQZZLL/v+ISEhuN1nkGUF\ncBxZPgFocLkOotGU16nQUbvNDWHv3lS2bDmF06lCry9n9OiBdSJ5z0ebNm1QqV7FbF6DStUJp3Mp\nLVuG1OwvGo0elJaK58aSDKjw9fXFbneg0QTj41O1sNNqvbBYqgoeh4aGEhoaSllZGU8//SqHDuUB\nDiIivFAohmMwBKFUiqhU5ezefZR27aoicKvLZOXm5hIeHk58fDylpaVYLBb8/Pwu6g36O6IhG9o3\ntNvtuN3uGq3Sauvw/D3n2q7SplZmKCkp4Y477iAzM5NmzZrxzTff1HudZs2a1UReq1Qq9uzZ0+Tn\nbgoE+b89fKcWqv3j56ut6HS6mpWZzWZDkqQG3XhXC9UT2eVYmj/88CPz5p0gKOhOXC4rpaULePHF\nG4mJiWHlylUsXOgkMvIBBAEKCn6mQ4edzJgxCaj6GLKzs3nxxVkcOVJKbu5JZLkDGk17LJbfiI0N\nJyNjMyaTEkFwIQhJiGI4np4OPDxG4O+/hJkze9G1a1135e7de3jzzZ/QagfjclnQaNbz+uv/wdvb\nG0EQGq1YX50PZTabufbaoRQXP4XBMBJZzgKGs379fBISqqqcS5KEzWZDp9Phcrmw2+0cO3aMYcPG\nYrM9iSBoUKlep1OnOA4elHG52qNQbGDSpNuZMGHMJdtisVjQ6XR/mdsbqibdw4fTOHYsF71eRdeu\nCRfk/9WOKC0oKGD79u288MKbWCxjUSjaoFB8xKhRrZg+feplkfayZd/y/PPvY7frMJky8PFpicFg\nYs6cl+vs8V0KeXl5LFiQQnp6AZs3f4HT6cbfX83kyY/QoUM8kZHhF/SrLMs8+uhTfPXVOtxuNx4e\nWlatmk/HjlUBI4sWfc2TT36Jw/EkUIle/xZLl75CbGws77+/EW/vQWg0nmRnbyMpyULnzm0JCAjA\nYDDw0ksz2bQpmICAMUhSBamp96JWxxEdPYW8vG8oKFhFixYy7733DB07dmT+/MUsXvw7gtAGt/s3\nwsJs5OTIKBRqOnQI5KWXJv7l80RTUL2Y12g0Nf93vqu0ehyVl5czbtw4mjVrhtlsZsaMGcTFxTXa\ncn366afx9/fn6aef5o033qC0tJTXX3/9guOio6PZt2/fFee0NhX/OuKzWCw1ait6vf6CF2q323E6\nnX+5f7sphPvMM7MoKLgVT89oZFkmK2sr/fuf4L77RiBJEpMmvcapU4GAB0bjAd555wnUajWTJ0/j\n+PFcvLx8eOyxEahUCu6//1NUqvdRKg2UlBzE5ZpMq1aBtGzpy6ZNB7Ba9YiiF97eD2I2HyA+fi+r\nVn1ygTtkypR3yc0dird3VQL92bPrueOOCoYMGdAoYq9thVcrvzRv3gmt9mTN5C1JjzBzZjduu+22\nC853OBzY7XaMRiMpKSl8/PEiTKYS1GpPfvrpEIKwEtDhdhcAA9izZ80la+H9HcRXH1wuF5mZmXh4\neDQYTXv27FlmzfqE3Nxi+vRJ4t5776pZxVev7iVJ4v3357Jp024CA3154YXHadGirppMTk4OWVlZ\neHh4IMsy4eHhl5SvOnLkCGlpaURGRpKUlMTx48d5993trF27AaVyPpWVKuz22bRqdZr+/YfQr58X\n11zTraZfMzMzWbRoEZ9++jNG4xpE0RuLZSFt265nxYqqdAZZllm6dDlffPEDKpXIo4/eVSOzdvLk\nSRYvXk9aWiZgQRTD8fVtjkKRzS23dOattxbhcr2GVhuKxVLB3r0folCsRBA8kaRAlMrRREXJeHp+\nxYwZ9/Dcc1/i5zcbpdJAdvYyjh9fS/fu76HTeZCbO4/hwx088sjYP+HNXl3Y7XYEQag3F7M2ZFmm\nsrKSn3/+mc2bN7Njxw4qKyvJyckhISGBX375pQ551of4+Hh+/vlngoKCyMvLo0+fPqSlpV1wXHR0\nNCkpKRe1/q8m/lWuzmrf/sXUVq5GInljcDn3lSSJvLw8ZNlBZWUhen34uTyyEoKCfGusqnfffZ59\n+/bhcrlITByGQqGgb9+RZGUl4HR6I0lnOHhwJiNGJCJJIXh7h2M2m7Faw5FlD/LyPImKknnxxQd4\n883luFw6CgunIMue5OeH8dBDU5k79/UaMjObzaSk7CY3N5OwsC60bDmSxlbqrpaAs1qtdUS+q6oz\neGCx7Eat7obbbUaW9xMZeftFrwWQlJTEK69E8OGHmygq0iEINmw2DWq1FpUqBofDk2XLfmLixPsa\n1e9/J7Kzsxk69E7y8yuRpDLuvPNW3n57xgWWXHh4OHPmvFHn/86PKH3uuRmsWJEDTObw4TRSUkaz\nYcM3hIWF1ZBQtXsQqtxXR48eJSAggOjoaH7//XcsFgsJCQk1LsjPP1/Myy9/iCD0RJY/4J57bmD8\n+HvIy9uPyzUIUfRCkhxoNPeSkzMKT8+ubN/+Pb16Vbnmf/75Z8aNm4rF0gGzWcTheI6AgPfRaody\n/PicmmcRBIERI25jxIgLFz16vZ6SEgmt9npSU/ej1fbG4fBg584iVqx4BUEwERS0k7CwYZw4kYVC\nkU9AwCMUFQkoFFvw8grHzy8Uq7WYXbv2IIr+KJVVC9HKykIEoReSpEAQFHh69uHw4fkXtOGfiOp0\niEtBEAT0ej2DBg3CZDLRtm1bHnzwQcxmM0eOHLkk6QHk5/+x7x8UFER+fn6D97ruuusQRZHx48fz\nwAMPXN5DXSH+VcRXPaFezO3zdxFfY2Gz2fjww684csROWZmNkyffIjT0dpRKF8HBh+nf/3Ggihyz\ns7MJCgoiKioKlUrFp59+Tm7uNTidRpzOYchyBCbTVr777jNUqhAslu8pLAwEjqJSCXh5LWDHjkH8\n/vuPyPL15OVtw+2uwMOjHxUVzdiy5VeSk2+nuNiKh4cBrVbJmTOdMJlakZu7naysX2jXzo/u3cch\nCEJNDbTz4XQ6sVqtCIJwgci3IAjMm/cOo0ePxe1ugcuVyT33DL7AxVr7+NrIzs4GWhIbG4UgvIos\n/4rL1Q34Bj+/QMrLpf9j77zDoyi7Nv6b2b6b3fReCAkkEHrvvYuAiOCLiiIIiA1FBeyiL2IXRVRQ\nQUQFCwKC9N4lVCGUAAmm97a9zXx/hKyhY/fT976uXEDYmeeZeWafM+ec+5z791iWPxz33vs42dnD\ngCeAKr78cgCdOy/3SQldDbVZgbIss2zZKpTKfYhiENAJh+NHNm/ezLBhw3w5ohqafGpqKnfccT+Q\niNudSUSEP2ZzIKIYilZ7hsWL5xAREcFzz72GIGxCFOOQ5Uo++aQ7I0cOpWPHBPbt243bPRxQYLXu\nwWZz8eqr79O4cSbTpo1CEAQefvh5vN65qNWNEYRybLbx2O0bkeUKUlLir+se7d59CJerEyaTEYPB\ngywns23bGgyGsXi9EkZjAtnZ01Eq9+JwZBATUx+1ujGVlaU4ncEYDCWYTMlYreVERoZjNKZTVraL\ngIB2eDylKBQlaDTVOWSr9Qjx8aHXmNH/X9TUbkJ1E/ra37c+ffpQUFBwyTEzZsy44N9XqwPctWsX\nkZGRFBcX06dPHxo0aECXLl1+xyu4Ov5Vhu96ij7/7h7f+vVbOXo0lMjIfoSHi4jiFzRqdJLOndvR\nqtUj+Pv7Y7PZeO65Nzl61I0giCQnC/z3v5MpLa1CqYzE5TqLKPZEEEqBQGy2xjRuXElBwVpkOReF\nQklo6HjASXl5PlVVkXg83yNJPYD2WCyReL198HhEDh9eQlLSWsrLV5Ob+yENG04lMFAiN7c52dm3\n0Llz5yu+KdZWTqgRtb3c+rRv354uXdqyYcNeBEHg6NHjpKamEhkZec0wpUajweMpwGhsw623Psfn\nnz+Nx2MlKqoFnTvfR2Ki9TpW569HWloasjznfJ2ZPzbbINLSTlyX4bsYoqhAln+WIRIEu69etXbe\n0OVyMWbMJGy291GpeuJ0FnLqVDciIl5Dre5CZeXXPP74DN555wUUikAEIe78+f0RhHoUFhYyadID\nHDkyif37x2O1qpDldLTaNxCESk6e3M7q1au54YYbKC8vRa9vjiCo0Otd2GzRuFxPER6u4803371g\n/jabjVWrVlFcXE6rVs1o0aIFR48eJTPzLBCGwRCGLG/Bbk8C9EhSPgqFSGDgUBSK+UyZ0pKPPiog\nPPx+lMoQ/PzsnDixD70+mfz8NKKiDtG//4u0adOGF198n59+epvmzcNRqQTOnJmCUmkgJqaK8eOf\n+A0r+ufh10oSXSm0vWHDhiseVxPijIiIID8//7JkKMDXkCA0NJShQ4eyb9++/xm+vxJX80z+6HGv\nZfjcbjenT+eh1bZHrdagUIhERHQgNHQ/PXv+XDC8dOlKjhyJJSZmDAAnTnzG4sXL6NChGYsWfUJZ\nmRZZPoEsZ6HV5uN2nyY2tj49e9bh229Pk5+fgE7XhezssXg8nfB6C5Gkh4EsoBmgwu3OxuMR0ema\nolD4oVbXBQLOF/67MZslZDmIVavCOHRoFCtXLvKFRGsrJ2i12mt2xJkz50O2bRMRhB243RJbtz5K\ndvZ7DB58IwMGFNChQ+srHpuUlERCwgn27n0PhwO6dWtLWFgcfn6hxMQUM3jwDde7RH8pEhISOHx4\nDTAeWXai020mMfHK4d4rQRAE7r//bmbPvgu7fRyynEZAwA+0afOg7w3d4XCQn5+PwWCgrKwUtbrH\neYNoQpbb43KdRqVqikrVgqysNwkJCcHPz0tp6bdoNEPxePagVp+gQYMGqFQqPvlkNgcOHOC22yZg\ns01BqXShVCbidA4nLe0kN954I02aNOXYsbnodPfj51eMVrufN954hL59+16Q93Y6nYwd+yjHj8ci\ny0kIwrvIcgYORwxerwOF4iv69HmH+PhojhyZgSTlY7H4oVLFc/bsBAIDi+nXrx8REdG89dab2O3+\nGI3FzJz5H2TZg8FgoE+fF/D398ff358FC17zGQ673U5GRgZFRUWYTCZfA/O/O/5MLb7BgwezcOFC\npk6dysKFC7npppsu+UzNy25NB6b169fz3HPP/eKxfgv+2mz9n4zrWfxfW/D5W3E1w+fxeDCbzVit\nVurVi8TpPIUogixLmM1p1K174VvVuXNF6PVNfRuZwdCMzMwiunbtwpNP9sNk2oMo3otW+xVu99fA\nTRw/3p916w7xwQfTufFGDR7PjchyHvHxTyIIaiAc8AcOAG4k6SQKxUH0+mpShFbbCKXyLDbbQvLy\ntgKL0evbYzS+QHFxMtu3b/clzysrK4HqQveLlcIvh/37T+B0DkYQjEiS5ctsQQAAIABJREFUFoXi\nLsrKXCiVbdm48TRW689e28X3UaFQIEkeLBY1bncsfn7JDBiQwqOP9mPcuGH/b4p033//VYKCXker\n7Y5a3YIePUIZMeKXGz6ARx55gOefH0ZS0ue0aFHMHXe8zZo1JykqKmLPnj20bNmDXr3upGHDTjgc\nEpWVX2CzOfB6i4AdVFTMIisrntzc5siyE1EUWbBgFuHhL+N0JqDXj2fevJcJCgryFVS3bduWxo2b\nolKp0esHoFI1RK3eSd261V7i3Lmvkpy8Fru9IYIwhNdfn8zQoUMvIXvt3LmTU6cCCAp6kZCQO6ms\nfILsbBCElcjy95jN7Th9+r+0b1/JRx/dS5MmQSgU/RDF25DlrkRENMBut5OcXA9RLCc7+xDZ2eco\nKqrgzjtHMnz4LZds+DXPp0KhID39HAsXHmbOnAymTVvAwYOHftUa/N3xa7X4pk2bxoYNG0hKSmLz\n5s1MmzYNqCZLDRxYLZ1WUFBAly5daN68Oe3atePGG2+kb9++v+v8r4V/ncd3vSHFP6tuqwaXm9fl\neoUOGNCL3NwvOXTobUCmbdtgevUaeMFxDRrEsn37XgIDWyJJbsrLN6LTuXjssRl4PDLvv/8sixev\nYOvWXSgUvWjR4i70+gCKitSsWbODuXNfJzMzk+HDXyQoKAaPZyC5uTOQpGEoFKcRhBUEBsZQr145\nBQUryc4+gMVyCoNBplWr/WzYsB+9fiL+/vefv4ca3G43brcbs9lMenomGRklBATo6NGjzSU9IC9G\nQkIkkrQbUeyPLAvAXvz8opAkAYVCh9PpvCIbNisri8OHXTRrdjcg4Hbb2LDhfeLjY8jM/ImAABOh\noaGIoohGo7mgf+bFNPu/EvXr12f//q0cP34cg8FA48aNf/Hz6XA4sNvtBAQEkJTUiGHDOhERUd2u\nrLQ0m71705gyZRo22wdYLC+d9/LjEIRxuN0z0Wgs+PmFUFGRBOwDLBQUDOKbb5YyatQd7N+/GbPZ\njFarRZIkX/1YTY5x5sxp3HbbfdhsK/B6i+nSJZ6bb65uMBAVFcXatV9ek0FbzVAM9l27y2VAljU4\nHHZcLgVeb1+Ki+cTFGSkfv16BAQkcsMNd2Oz2TAam1NRUU5qaipffLGKY8eaExX1ELLs4KuvHqNZ\ns4307dsXr9fLoUOHqKyspH79+sTFVRvnY8eO8fbbSzEaexIb2xKdrh9z577Lu+82/l2kyf4o/Jke\nX1BQEBs3brzk91FRUXz//fdATfTi0v6lfyb+dYbvWqjxkv5KwydJEg6HA6fTiUaj8dXAQbWw7MSJ\nd1BWVoYgCAQGBl4yz5tuGkh6+nusXj2K3NwKZFngyJFSAgLGEBPTmLVrX0Svj0evfwSLpZQzZ2Zi\nsw3DbM7gxImPUam8TJkymVatgtm37xUCAjpRUuLB5ZqBIISg01XSv39D3njjDRYsWMSsWbuIifkA\nPz8dZ87MYMCAduzdewyX6xBe73GMxh9ISvoP99//FPv2ncDplOjTZywJCclkZq5h4sSbrlrmMHny\nfaxaNYycnGGAhFZroW7dJ3E6C4mLc1/2zbQmV+VwOBCEavV4i8XK999v4Ny5VWzfvpn+/Sfx008b\nEEWJyMhQOneuQ9++3WqVTXh9a1Jzvt9a0lBUVMTq1avxer307dv3gk4614LJZKJ9+/a/atw333yX\nWbM+AJQ0adKQ+++/B1H8mZyhUCgpKSnD7TagVHbA6z0B3IkgVKDVvogsn2Pw4GZs3vwCgjAZUdQi\nijqczjHs2LGPUaPuQBCES8pbajNKExISWLt2CcePH0ev19OwYUOfxFNN/v1a5TwtWrRAo/mYqqpN\naLVJKBTzUKk0OJ1eFAol8B1JST05fNhM9+4O1GonglBBaGjU+VrXEyxf7mDfvmJcrp4UFpYSERGC\nLHfn5MkMevXy8tJLs9m5044gxGK1fsHIka3p0aM7zz8/j6yszuh0CWRkLKBjx1vxejVYrda/tWDr\nrzV813oh/f+Mf1Wo83rxVxBcasasCQXKsoy/vz96vf6Sh1YQBIKDgwkKCrrsA61SqRg//jbq1q1H\nvXqTcTon4PE8Q3l5AVlZesrK1Nhsd1Ov3hAUij4UFpqpqtqGKB5Eo5nJ66+vZ+XKlcya9QLjxgUR\nETGX4GA/+vXbT9++m2nUaDZKpR6TycSRI+cIDX2UiIhW+PmloFDcSUxMAg8+2IQGDWbRvfs+li79\nkHnzvuTo0VbAUvT6pWzZsg6v101lZRQ5OTmXXIPFYuHgwYMcPHgQtVrNtm3LmTq1B0OHJtGlSzO0\n2uVkZ38LuCgrK7vkPtYU5kZFReHvX0R+/hE+/XQh6ekZOJ2DyM7ux2efPUl5eTNstpsIDx/N9u0u\njh8/hUajQa1WI4oiHk9195cawofb7cblcvkaBf+SfHBOTg49egzh2WdP8vzzWfTsOZRTp6oVKv7I\nfNGGDRuYPXsVSuUPqFSnOHq0BQsXLsbtPn6evFSE2fwj7do1BCrwek8gihHATsCNWh0DnCAoKAR/\n/1AEYTeiWH2f1erdxMdfWQapxttTqVRoNBrCw8MxGo1MnvwizZt3Z9iwsZw7dw6bzYbNZsNut+N0\nOn339+LvYWRkJB9++AJJSV+g002iceOzKJXZ2O2tcDpbkZiopEOHcQiCEoVCwSOPDMdsfpP8/Pcp\nKHgBWS7C4+lMaGgiopiO3a7AbrcCB4iPj+LQoUPs3GknPPwZ8vPbkZFxOzNmrGbkyEmUlXXCz68z\nGk0HlMoxHDz4GSaT429dxP5r9zGHw3GBDNg/DYrnn3/++b96En8mLvdluhhOpxOVSvWnFSzXdJJx\nu90IgoCfnx8ajeY3eZznzp3jhx88nDplRJJCcbtjEYQTCEIyLtdGTKb+1K1bBz8/FdnZy1GpCtHp\nemKzLcLhyCA19QdGjRpBt26dcTgsnDnTCn//puep7kqczo2MGDGALVt2kZERiF5fHTKzWPbQtKmZ\niRPHcPvtN3PLLYMJCQnhhRfewWB4DptNQqkMx+UqJSKiCoNBQ4sWQRd0cCgvL2fmzE/Ytk1k//4q\nDhzYQseOTenZsyuDB/dGrYbS0jrExt5CcbGRAwfW0bp1Mmq12sdGdLlceL1eFAoFjRrFcfToKnbs\nWIJCMQRRHIFS2ROHYxHR0T1RqwOJjQ1CltXodDnExIRRWlqKLMu+vq01z0MN3b/Gk6nt0dT2Di+3\ndi+88CqpqR1QKl9CFPvicGg5fXohlZUCW7YcIysri7i4sF+04UiSxIwZrzN+/GQ++GAhSqVM27YX\nkn2WLl3Grl3NUKt7n59XPSoq3uWll+6nqiodrbaQrl3rkJycRGJiLOvX349KZcLpnIfR+CMazQq6\ndw8iJcWfhIRQ0tJmoVRuQ6WaS1xcPnPmvHFdNV5QXed1883jqar6L1rti+Tl2di1azZ9+nRl2rSZ\nzJmziGPH0mjVqgmiKPrWsfb9DQsL45ZbbgCcrF9fSVjYQgQBJCmYNm1uQZbziY8vp0uXNsTGxtCt\nWxNSUlSsW/ctx465OHu2PlVVFnS6jTid24Bv6N7dn/vuu4fTp0+zezfYbLH89JMDjaYjkrQRtbot\npaXQvHk3SkvPUVV1mvLyxYCBLVu20axZvb+th+R2u697fWrw+eefM2bMmD816vVn4n+hzsvgz/L4\nZFn2qbrXPGC/l+ZfYGAgkpQHBOHnF0tl5XokKROP5zB6fQnwDRkZfZCkHLTaY4ji05jNryPLDYHu\n5ORsZujQu9mxYyXNmzcCPsHhaIdKFURZ2Vfcckt1u7CJE29j796nKCzMQ5ZdGI3rGTly5iXKFmFh\nweTnHycgoBmlpSV4vYex2ZKJiRF9OZQarF27nfLyNsTHV9Obs7K2sWHDToYPr+5yv2vXaWJjJ6JU\nqjEaI8jKyiEjI4OUlBSguu6otjisyWRixIg+fPTRIgShPy6XEq/XBpgxmzOIjIxBo9Fis2WTl5fN\n22+XoVD4ERzsYsSIHj5DdDnJmIuNX43nVvNnTehcEARKSiqBjrWOjiE93Uzfvp2JjQ2nuPgsK1bs\nZNSoG677GZgzZx7z5u1FklYiSTZmzhyFXq9h9OjRvnNER0eiVm9Blr0IggK3ezN6vYqCggIGDepy\nwVg33ngDrVu3JCMjA61WS2VlJSEhIRfkFO+9dwS7du1Co9HQrVu3X2Sojx07hiQ1R6vtgSxLGAzj\nOHduLv/5z72Ul49Bo2nPmjVfk5//DIsXz/Xdy8vp061f/wNq9T1oNNFERU0mP/9tCgvnM3TocPr0\nGezrlxkWFsbq1Ws4e7Yeen1/nE4lbndvBEFB//5VjB07kJYtWyKKIvXq1UMUV5CTE4PVasRme53A\nQH/Cwm4kPX0yXm9nEhJ07Nu3lOTk+6hTZzRlZft5/vn3WLDglb+dYvmvCXP+1fnsPwP/OsN3PQ/B\nn2H4PB4PNpsNSZJ8HkVFRcXvlluMiori1lubkZu7mtOnN+PvX4nHcxY4iMkkkJu7BklKRacz06tX\nQzZtegZZjgbeQRTVqNWjOXSoB6mpqbRp04apUwt5992pVFW5GDCgNRMnVndaSEpKYtGimaxfvxGl\nUsHAgbOJianuAPPRR1/y44/niIwM4L77hvP88zNxOJri9Z4iNraKTp2a07hxFFVVVYSEhPjmXlFh\nQ6//mamq14dRXp4LVK+NUini9TpRKlVIkozX67jEKF0sAdSgQQMGDOjMmjW3I8s3IAhrSEgIJCkp\nEz8/PRkZBwkJKaGoKIK6dYeg0WgpLs5k7dq9jBx5ZR2/mjGvJERb83eAPn06smXLbLzelgiCFlF8\nnfr1u2AyVXe6CA1NJCfnMHa7/bp7tn733RY8nidQKsOw2cbj8biZMuUtdu8+wpw5r6JWqxk+fDjf\nfruew4cH4PXqMJu3kp3djIED76Fz5yZ8+eWCC+YfERFBRETEFccMDg5m8ODB1zW/ixEYGIjXm4ko\nugAlXm8+Ho8Zs7khRuNdAKhUT/Ljj90pKSkhNDT0kraCNfc0KMgPt/un80LEarTaADp1SmbAgO6+\nYv2a71JeXhGS1Aw/v34IwlYcjt243d/z7LOLLhC5jY2NZejQJjz99PNIUhAKRTxWaxllZV/Tr189\nwsPXk5tbSEyMjoSE6vkGBbUmP38hFRUVf1kLrt8bVys+/yfgX2f4rgd/pOG7mKlZO6T5e4/brVsH\n9Holx44dY/9+C/v3J6HTNeX48SUoFJ8QHByNx5PNyZPTGDv2Bt5/PxulUofXK+F06pBlAxMnvsxb\nbz1Mv369iYmJxOv10qhRI7Rarc94h4aGMm7cWF8BerVy+kccPhxPSMgIzpw5Q3b21zz22Ejef381\noaGdKS3N4L33fqJ9+xgMhi+ZNGkg8fHxADRpEs++fbswGqMBqKraTZMmDX3XNWhQKxYvXopG0wyn\ns5g6dcqoV+/qdGhRFPnggzf44ovFHDlykpSUPtxxx+2+/peyLGM2m1m3TkaSqkPPfn4R5OTs9DET\nr3cjqN0ppQayLHPbbf+huLiM994bhNfr5eabBxAUVB+n04FSqcbpNKNUuq/ZU7E2goJMSNI57Pat\neL0RwBwUCiebN0/jo48+4b77xqNWq/nyy4/Zu3cvEyY8Rmnpm1it4wAXO3f2YsmSJdx+++3XPWZN\neU210Ov1zxWqySn9+qWwdu0teL0tUCq3MGbMLXz11XGfRyrLNmTZecG5c3Nzefnl98jKKqJNmwZM\nnjyRSZPu5sCBKVRUZAIugoP3ctddb/j06WrIYQqFghYtGqNUzkOSbkKv7wls5oYb2l9g9KC63+jy\n5buIiHgWjaY1OTlFuFy7MBiW89JLcwkODqagoIDx49/G47GgUhmx2XLQaBx/y9KYX/Mi7XK5/jA5\npb8L/tlX9yvxRxi+i4u2L6fq/nuMW1BQwMmTJ6mqqmLhwvWYzZF4vSXY7XkkJb1FRsZyFIo4BCEa\nt1tCpYrA6TTRo0cPPvzwCZzOr4HWwGpUKhk/vxeYPn0GoaFfkJYGKpWOOnXMzJr1DEaj8RLjDdVK\nE4cP5xEd/RiCIKDVtiUvbz/Ll+8mMnIKguCivDwBrzcRSVKh0TTkm2+2MWFCMM8//xp79x5BrRbw\nek/j729ixIhWtG/fFuB84auBZs0EzOa9NG2aRLt2wy/YJD0eDxaLBaPReIHxUSgUjBp1B6NG/ZxX\n9Xg81K1bF41GQ35+PirVIRSK6jxmSUk6YWEGLBaL7/jaP7/UGCqVSh599CEeffQhoHoOu3ensm3b\nekQxGMjnxhsb+0LgtcOkV8o3P/30Q6Sm3klZmQlZfglRdGAyheB2D+HgwTW+zymVSjp37kxFRSlQ\nU7SvxmbrSUZG5nVdA1Q/X198sZmqKjUqlYNhw9rSoEHSdR8vCAKzZs1g48aN5OTk0Lz5DJo2bUp6\n+kPs3/8IstweQVhJx44pzJ79IevWbcdqdVJWVoZefy9a7d2cOfMlOTnP8cEHr/HNN++yfft2FAoF\nPXuOJigoiP379zNt2huUl1tITIzm5ZenkJycTL9+8axc2RFRVNGxYyuefXbmBYzSPXt+4J13tpOV\n5UdZmQej0U6LFimUlZ2jf//uGI1GBEEgJiaGu+/uzIIFTyGKdRCEMzzxxO2/OI/2Z+DXGL5fW8P3\n/wn/OsP3Z4c6a6sNqNXqq6q6/9Zxjx07xqOPvoPL1ZwzZ1ai0dxFu3a3I8sudu4cg1q9H4MhAoXC\njtu9AlnugcOxm4CAXPbvP4lG0weX6yNk+R1AicfTgPz8TVitx0hNjQeSEIRQiorCePnld5g9+/I5\njWoiiBe324xabUKWJQoKzpCVdQRRPINaXYhO1wiFQoPH40avD6eqys699z7G7t1RqFRvYrf/QGHh\ne2zZspTw8HAfU3PTpp3s2mXl+PGfKCrKJD8/h65dO/nGTk9PZ968NdhsKvz9PUyceNMFOURZlvF4\nPD7RYYPB4LuGqKgoevcuYsuW7wAdwcFuhgzphslkuiBn6HK5KCws5L33FlBQUEGXLs25667bLyDA\nXA8EQaBTp7bUq1d4nhLfgMDAwAtYqTVh0prSitqaaaIo0qRJEzZuXMqECZM5enQHRmMPFAoRj2c7\nSUmXlko0atSE1NQP8XqfA8rR67+ladOp1zVfSZJYsmQzXm9PYmJisdsr+eqr5UyaFP6LNkpRFOnV\nqxdOp9MX0v3447dYsuQrMjNPUlhoIjMzmjVrvsfjmYxanYLN9hVu9w8EBDyAVpvCzp3dqaqqIjIy\nkltvvdV37n379jF8+GO43QkYDC04ezaee+55FJOpPpLUlsaNI2jbVsW0adUiybVV7xct2oC//wRa\ntChkx463qKqykp0tEBi4nOHDL2xPNnz4ENq1a0FJSQkxMcOv2Jrr/yOu1q7sn4J/neG7Hvwehq/G\no7Db7ReoDfyR47766gIE4QHCw1ty5sxhrNYGlJQUExYWRlhYZyorPycgYDQGgxqL5QO83vcIChKZ\nP/8V3n77S0SxK2r1BFyuEOAwgpBBQcFyJMmB19sU6I8kbcHpPMamTU6+/vp7br11kG+jl2WZtWvX\ns3fvj4SHy/z006uoVB2xWI5SUnKMmJhxFBbm4XDUpbJyBRER7dHrW7B//+e0bFnJrl1H0Os/oKLC\nhiTdQlHRJqZPf5PXXnsWjaa6Xio1NZ/ly78hJycMSerK0aOfY7FMQanUcPLkOSorlXTqNJPY2DjK\nyzN4773lvPjiRFQqlS/MXMPWvFzRcZs2zUlJqY/L5bqgYXZNDlGlUmE2m7nttvsoKOiPLHdh585P\nyMjI4qmnHvV1Kqn9cy1jeLHE0MUeXm3ttJoXqfz8fGRZJjIykri4OD77bC7Dh99DQcFQvF43jRrp\nuO++Sw3a/PnvMHDgCAoLP8bjqeTOO8dcd77ObrdTUSESE1NtUHU6f8rKwqioqLiujVKWZV599U0W\nL/4OlUrHmDG3cO+9YxEEAY1Gw113jaKsrIxx497EYGiDIBSh1f4HpzMfmIjdfguSVEn1tiVdEo6r\nqqri6afn4nY/hlY7HIdjK5K0jry8Ujp3nkVQUDKyLJGaOoO0tDSfxl/N/fV4vGg0OgyG5jRvPp60\ntHk0aABPP/0YiYmJOJ3OC8aLi4u7hJj1d8P/PL7L419n+K7X4/u1/TprwlQ2mw1RFC9RG7jWuL/F\n8BUXV2Iw1APAzy+O4uI0XK4I3G4zJtNp7rvvdvLyShDFLtSpE0VAQACJiYlERUXRuPEPrF37I7Kc\niEZjwOnchiwrMRqLqayMQJbHAXUQhK7Ick9CQpqwe3c5nTvn+hpFz5//GXPm/IBSORSPx5/AwLWM\nHt2I/HwlK1feTFDQrej1mygoOERV1U6Skx0sXz4HjSaWs2ehqqoMrzcfSYpAodAgy06KiiL54YcD\ndO3aEUEQyM4+S36+C4ViHkqliMczkIULmxEU9ABwG2bzJuz2QwwfHkdgYAI5OToqKirw8/Pz0brV\navVVnwODwXDV2qzt27dTWlofjeY/WCzbkaRBLFgwiwcfHEdUVJTPM6yRwaptDGVZZteuanHW4GA9\nvXu3u4AQIUkSBw/+SFpaHlqtkm7dmhIREeEzhna7nW++2UxeXnVTg6Cgo9x6ay8CAgJYtuwTTpw4\ngVqtpkmTJqjV6kuK7mNiYjh4cAdZWVmYTKbrJmPU1HXp9R7M5iKMxjBcLhtQitHY8rrO8fDDU/j0\n0w0IQgfgGK+88hVhYSEMG/ZzP8dqNqwKlcqELBcgyxIKhQpByMPlKsFs3oAgrGbkyAGXEICys7OR\npEREMQYQUKt743AsRZLcmEx1ARAEEVGsJl/VoMaD7tOnBd988zVVVY1JT88AZEpKDJw+fc6nV1ij\n5VmjXlFbufzviF9r+P7OBfm/B/51hu968GsNUA3Zo0Zw9UpqA38U2rRJZu3aOZSXV2G15uLxLMNq\n3UBJiYZmzYJZtuwHlEoFd97Zn169uuPxeKiqqmLdui2YzR7i4/dz8uRO3G4DWm0Adesa6dKlCx9/\nfAjwIMsnARlRdNGy5a2IYj4ulwuo/oJ9+OG3BAYuRKWq3kxLSgoJCgokNjaG+fM/wWzuSlRUV/z8\n4vDzK6S0tIiwsJcxGjsiy17Ky2/Dar0FQXgAr/cQEREi0dFdOXx4N7m5PxEZGUlYmIjXa0ShAEly\nU919X4VW+wAAdnsGubm5WCwWRNGBKFb61tLPz+9X12bm5+djsVioW7d6A5UksFp3IIo3oFQa8Xh+\nZMmSbTz88K2oVKoLvMnaYdLvvttIaqqGoKDO5OWVkJHxHRMnDkWr1TJ//kI2bNiDxxNA//5PYLFI\nfPHFHkaP7uarczxw4Ci5udHExbVFFEVyc39k797DdO7cGpPJROfOnS9glcLPpRVOp5O3357Ljh2H\niIwM5umnH7qm4SstLeWTT74nP9+O0SjSu3cK27evxmwOQpYrGDQo5bpUtAsLC1m8eB2wAUFIRJZz\nqKzsw/LlG2ndugUqlYrIyEiCg4Np1MjEjz9mEhiopbh4FKLYhMDAbbRu3ZrY2MO0atWLm2++tPmx\nn58fWq2V2Fg/srP3AgJe7yG6d29GUdFKIiJuwmbLQhQPUa/epUryw4bdiNP5DTNmzCQkpC91685A\nrQ7i44+n0KtXVxQKBXq93ud917zc1LxcXGwQ/67G8Fr4n8f3L4Uoir/I46str6PT6a7pUVwJv9Xj\nu+eeW1m69EEsluFoNH1ISCihYcNUevduzdy5xwgOfhCHw8XMmXPw89PTqlVL1qzZzMaNLkJCbqFl\nyy7Ur7+EhAQdOp0/7do15Z13vsFg8MdiWYIsd0SWVxEVFYDX6yI9/Rs+/vg4gwb1om3btni9EqL4\nc02XIGipqqpiypQZZGRY8Xju5Phxf5o3D+Hll5/i9tsfQa9vfP6zCgICOtGwoZvs7A3ExnakadNp\nbN36FMuXn0Wp7I0grKJfvziMxjSqqj5CpWoPfIJarUUQ/M/n7NpTWfkUeXlqtNpSRo/uSnBw8K+u\nr5IkiUmTnmDp0jUoFCYiIzUsXPgufn5HqKyMRKVqhyyvpE2bzthsTiwWyyVvy7U3xbS0YurVG3ve\nW4skKyufrKwsXnnlXbZudWC3D0IUt5CXN4mHH/6CvLxEcnNzCQoKwm63s3r1Lo4d8+PkyUxSUpqi\nUvlRUXHuika9JownSRKPP/4cq1d7UKme5ezZ4wwffi+rVi0kPDz8sgQaWZaZP38VFRUdiYtLwWwu\nYPXqZTz0UDUr1WAwXPcGWVBQgFIZi9sdcX69Y5CkIE6fzuP113cjSQ6aNdOQmXmSJUs2YLdbiYwM\nZ9Cg+jRq5KZt20nXlK2Ji4tj8OAGrFjxFRpNJC7XfsaOvZNhw4bw1lsLOHhwPAEBep555j9ER0df\ncrxCoaBDh1bUr59JWNgjvt8LQgBms9nXOrDGuNW+T7XrOGu6ztSwe2sbxD/bGP7P47s8/nWG7/ck\nt/xSeZ3fa9wroaKiguTkGwgPv/O8bptAbm4q27YdwWS6Db2+Ojdjsw1h587DtG7dip07TxEd/Qhq\ntRGdLgKLJYuePU107dqVxYu/Zs+eLJTKV1CrP0MQ5uHv76Fly2jWrp2GKN7BTz9FsGzZy7z11n0M\nHdqdb76ZgV7/H5zOsxiNB9m0KZvTp0NQqT5CoajC630Bh6OQlJQUWrduzO7dnxMYOAGXKx9R3Mjj\njz9OdnYJu3adoaTkY86cScVk2ohSGYYk2Vm/fjDvvfcS8+YtISvrM1q1akJ6egKnT49DFLshitvo\n378ODz/cnOjoaEJCQn7TmixdupRly04gCIeQJAM//fQKzzzzKl999SF33/06TucmGjSoT7t2jbFa\nV121/q6a2Qkejwu1WocggCC4sVgsbNt2EIXiICoVSNJIsrO7kJl5GFm24XLpsNvtrFmzA7u9CWp1\nNKIYxYED60lMFOjdO+mqhKma0P2aNVswGPYiinq02hbY7ftJTU1We+mkAAAgAElEQVRl4MCBFxTf\nQ7WxtlqtFBV5iY2taQwQQVVVJFarlYSEBADOnDlDaWkpycnJV90s69Spg9FYjt2+A0nqgCynAtnU\nr/8OMTE3IMte5s17hnPn1qBWf44gRFJQ8BYqVRWPPjr5utZKEATGjbuD9u2PUlJSQlxcN+rVqw79\nT5/+yHX1Wo2MjESvL6Ki4gj+/k0pK0slIMBKSEiIr33d5catCWXXePoXq97XhL1rG87aYdI/yiBe\nr/p6bVRVVREVFfWHzOfvgn+d4bseXMsA1WZqajSaqzI1f89xrwWj0YjXW4AsewA1DkcJSqWTwMAA\nMjNLfZ/zeEoxGrXnv7AiLpcVWVYhCCIqlReNRkNGRgazZ3+Ov39nXC4rYWGvY7GsJClpDW3bxnP4\ncEOCgycBYLMl8tZbr7Ny5XxCQr5gx44PCQsL4KGHXmbEiPuRpDFIUgAKRV1keSJFRc8AMHPmEzz4\n4NMcOfIlSqXMM89MoE2bNrRpAzfdJJGfn8/atdVGD0AUdSgUcRiNRpYuXQDA/v2HmDdvM06nhYqK\nFfTuHcWMGa9ctlzkYpw8eZKDBw8SEhLC6dPnmD9/6fnNczgjRw6nsrKS1NTDOBwD0Wr9zs9hBGlp\nS0hOTuaDDyaxYkUasmzHbF7DiBHtr1rXJooi/fs3Y9mylWg0KbhcRdSrZycsLAlRVFGd25JxONwI\ngobi4uOYTHmcOVMHk8lEenoh9esPQaMp5MyZ41itVpKTBZo0aXjFN/vTp09TWFiMyeR3PpJhRRRr\njLPFV45S2zOsKbxXqVQolQ7M5hL0+kC8Xjdnz+7lkUcWo9OZ8Hgq2bv3BCpVLApFFl9/PZ8WLVpc\n9toDAgL4+ONXGTduChYLKJV2unS5kfj46vZqTqeb4mI/BKETKlX1OdzuiezYMeyqa3gxBEGgadOm\nV7z/14LBYOC//53If/87j7w8MzExgTz11APnBY09v7mWs7bQb02YtGZuF3uGf1Wo9H+szn8gfovH\n92uYmr90br9FBDc+Pp5Bg+qxcuUriGI8spzGpEk3ERcXzZEjb5GTU4AsuwgK2sOQIU/h9XoZNKg1\nixZ9jsHQBY+njLCwsyxefIRTpzycPFmJVnsUg8GGw7EWWT7OkCFd8XoF4OeQpij643K5zzfHvovx\n46t/f/r0abKyCvF6nUiSG0E4iSieJCkpFlmWCQwM5NNPZ2O3VyuA176XoigSHh5ORISW3NxFaLXD\nKCpah9e7jXnzqmupQkJC+OSTLYSGjqV3byMej5Xy8vk+evrVsHLlKh54YDqy3Ben8yBudy5hYSsR\nBAUzZz7EmjX7qV+/D6dOFaFUnkKWJyIIGiRpLfXqVXs7TZs2pk6dWMxmM/7+/hiNxmuuUdu2rQgK\n8icrqwCTyY+mTdujVCpJTo4iLW0qMBylch2hoWYyM78jNTULQUhCkp5i5MhRKJVl5ObmsmvXdtzu\nI0RGhjF06I0olcpL2KTbtu1m1ao8lMokCgr2Y7GYqaoajFI5moCAbBIScunatTrXJQgCFouFKVOm\ns2nTToxGIy++OJk77+zJggVfU1ERy6FDKzl48ByS1AtZLkKWf0SjmY4sj8TtXs6YMQ9z6NC2K157\n586dOXJkKyUlJfj7+7Ns2ToWL/6OjAwTbrcDp/M4guDxGXGvN+Oy99Tj8ZCbm+trev17G4j69evz\nySev4nb/3EygJnT5W1C7DKWG8HbxC4fH47mgLVttz/DX5A3/TEmi/08Q5H9DY7aLUPNgXQmyLFNe\nXu5L2l/M1NTr9X9IZ4OaRtW/pQOELMucOHGC0tJS4uLiqFOnDlDNePvhh1SUSgUdOrTH6XSyefMO\nHA43MTGh2O0yJpOOM2d+YsUKmTNnzlBe3gynsxydbg9xcd0JCtrCF1+8Tnl5OcOHT0aSpqJSheJ0\nzuKhh9oxceLYC+YyZcp/Wb06lNzcLTgcA5HlEvz8FrFjx+cIgoDL5aJu3bpUVlayYcNe7HY3bdok\n0bJlc985srKyeOCBZ9i1aw8eTyA6XVNstiMolVbuuONGrNY6xMbei1KpRBRFcnIW8OSTPXxM0yvd\no/r1W2G3L0ahaIrZXIHbPYyIiKlotX0pKFhKePjn3HXXQjweB0uWDKO01IxKFYqfXymrVn3h6zJz\nMbKystiy5SAej0T79sk0atTI9381uWCdTnfJ81NRUcHTT8/kyJGTJCfH07dvJx588F3s9q0Igg5Z\n3oVWO4IBA0by3XcFQL3zigfHmTixMU888YiPcOH1erFarcyYsYSIiLG43V7effcjHA47anUYbvca\nQkLOsm/fZoKCgrDZbDz55H9ZsuQ77HYtQUFvoVCEAPfy7beziY6OJi0tjZEjZ1FRMRVB6IwspwMf\noFA40enmIstOvN5IsrNP+zZruLKX5Xa7WbXqex56aDYeT18EQcLr/Q6FQoPXm4Isx6LRrGbhwun0\n7NmTsrIyMjIykCSJOXMWc/asE0my0b9/E5566mEEQaC0tBSFQnFdZJtfipq0xp+lxHBxLWftOs5f\nwii12Wy+7jXXiwkTJjB9+nQfk/WfiH+dx/dLUFPsXFP7ZTAY/lDByd+jflAQBF+z5tqIjY0lJiYG\nu93O2bNnefbZd3E6u6NUxqJUbuPpp4fSsmULdu6cxblzVZSVdTivXJ2Nx2NDr1/LO+88R1hYGOHh\n4cyfP5233lqI2Wzjppu6c/fdd1wyZmWlDZOpNUFB/Sgv34LFUkjv3t356qvV7NxZgkLhj59fFoGB\n0Wg0A1Gr/Th4cAtjxrhp164NUE1YmDv3ZXr0uBu3ezSlpakolXuRpHOsWvU6ycl7CQwcSFBQIpWV\nWWi1Zdfc+DweDxUV5chyIoLgRJJEIBmPp5jCwqLzzNDTvP/+Ddx116f07TuegQND0Ol0FBYWsnv3\nbsxmM02aNLngvHl5ecyevQ6VqgcKhYoff9zGuHEyjRs3pqioiGXLdlNVpUCtdjFkSGvi4+v4jg0I\nCODdd1/x/Xv+/Pm43c0RhBpZqo7Y7WbS09OAvmi1A5EkB263hk2bdjBmTHURfEhICP7+/ng8HtRq\nP3Q6P7Kz04EolEo9anVbtNr7cTqbUlVVhclk4qGHnmDNGi8Wy1dADiUlk4iMXIXTeTN79+5l/Pjx\nhISEYDbrEAQDgqAEEpFlB16vC0EAj+dLEhIaoFKpfBt1dnY2u3fvQRAEIiOj8HrVhIUZady4+vnc\ntGkfev0UDIYeCIIKu70XwcEvUq+egL9/Cffc8z6NGzfm+PHjTJ06G6czmXPn9uP1GkhJWQB4Wb36\naVJSlrNnTxqHDhUCHvr3b8Kjj078XaMxf4U+55V6lP7RjNJ/uhYf/M/wXRY1D43ZbEaSpN/E1Pyl\n4/4RDnjtEG1aWhpjxz5JSUkoSuWnNG06hvDwO1iy5DtatmxBXFwQJSV7UCj6oVQakGU3KlUAbrfM\nc899itGoZNKkEbRp04YvvmhzwTgnT55kzpzPqKqyMXBgJwYM6EBq6nyMxikYDCk4HF8BsWzc6CIq\n6gkqK9NIS1uMUqnn1ltbIAigVhvYsGGlz/AB51823NhsR4DhgB5B0KDR3Ia//xeoVCvIzgajUeKB\nBwZfs8FzUVER/v7RlJe/hyg+iigew+v9DqtVwm4/jCDsRKVahtm8kRUrnmTAgI60atWPKVNeZPdu\nF7LcEFF8gRdeuJMhQwb5znv48Anc7mYYDAaUSg0BAb3YsWMXKSkpLF++G6+3A9HRUdhsFSxbtpHx\n40Mu8SBqogtJSUnI8ivAWWQ5EUl6nYCAWCAElao+CkUyCgXY7SvweBzMnr0NQQhGqdzFXXd1IT4+\nnsREHWfO7OH06QKs1iMIQh00mhCgGEmyotfrzzNF1yKKRxFFkKRmwA7s9s2oVGcxmarVJEJDQ1Gr\n87HbtwECspwN7EKtLkCpbEVAgJNFixb5XgzT09MZN246FksfLJaTCMIhbr99NApFJTk52+jRoz1G\now4oRqGoDqs5HIU4nRri4gahVBb71nHmzI+RpIcIDW1BRsZBbLZPsVgOYDS2QZY78P77H1BZ2ZT4\n+FkoFBpWr55Jw4brGDToBv5JuFLe8GqM0pr/+yXG8H85vn8ormZgakIaUN3fUKfT/b+tx4HqsG6N\n7JFer2fKlFdxu/+LUtkGhcLGkSN3061bDE5nNWOtX7/uvPrqpxQVvYUkZaLTBWK3b0Cl6kRMzKNY\nrTm88soHvP125AVtms6dO8eoUVNxOMajUoVz4MBcHnywPe3b61iz5k5KSwsICOjD2rWleL27sVoD\nsdsTsFgSsdkqycvLJSQk9DxDtvoLXJPkDw4O5sYbO7Fo0Q4kKRJIxGBQIIrpJCfX4bnnHsBqtWIw\nGHyhtbS0NNatO4THI9GlSwPat2/jW8fS0lJ69nyI3buXkp//DhpNAO3adUSlymL37hD8/L7E4QjB\n6+1ISckcRo9+imPHjrFnjwV//w8RBAUu181Mn34ngwYN9I1ZVVXBkSOH0OubAxYCA91ERQnY7Xaq\nqkQfU06vD6CiIojKykqf4du3bx/vvrsQp9PNqFGD6d+/P/fcM4IPP2yLLItoNPWJjx+K11uFRrMe\nt7sSWVaiUm0gMXEQUVEjUChUWCzFLF68nCeeGM0ddwziwQef5tChdBQKCY/nEFVVuZhMm3n88ft8\n66fT6XE4CjAY6mKxWJDlDDye/SQn6+jduzdOp5PAwEAmT+7Pa68txu3eCpwBsjAYwrj33ht47LHJ\nF8gTzZv3FS7XWEJCOuBy7cDhCODMmRL69+/F8ePLaNmykjFj/sP69Q9QUVGJJCmx2z8iMfFORLEu\nBkN7vvzyOx57LJaCglJCQqpDxn5+fpjNkWRnn8Dp1GKzLUWnM6BS1cXhmEWDBg+iUnXmxIkjDPr5\nneQfi2sxSj0ej69h9/UySiXp0q44/zT8s6/uF0CSJBwOh6+juyiKf4qXVxu/p8d3OdmjsrIyKiu9\nBAV1xmotQZKCkOX65Od/xt13DwEgOjqawYO7s3evErM5HaezFIWigJYtq/Mo1dp+ieTk5BAWFoYs\ny+zZs5fXXnuf3NyuxMb2R6PRUFGhZ/r0UURGdsXp7IQoRgNujMZXyM4ehSi6iYy8AY/HhEKxhIMH\nN9KmTSus1m3cfHMzHA4HXq+XGtHXp556hMTEKN544xMcjh/x8zMSGZnH/ffP9rUSy8zMRBRFnE4n\nH310AJcrluLiAnbsWMWkSVZ69+4BQFBQEDqdhVGjPkMUVZSXZ+Lvv5mEBCM//rgMpTIUo1GH3f49\nPXq0IympPpmZGQhCDIJQ/batUkVjNnsuEPnMz7eiVCYgy40QBIGMjI8YN64LWq0WtdqN1VqOwRCI\n1VrFiRN7WLcug549e1JUVMSwYRNwOp8ANOzaNZ3589W89NKz9OrVk9mzvyMoaATNmjUjKysHhWIx\n4eEWBKGcDh1uoqwsBYWietPz8wslK6t6wzMYDKSlpRMYOAelMgmbbTlW62cMG9aSCRPGYLPZ0Ov1\nPP30Izz77O243Xei1x/H3/8kzz03mSFDhvjEfd1uN/ffP4GmTVN48cU3OXWqLrAFs7mE2bOH07Zt\na/r2/Vkho6LCilodBsiAiMejZevWTRw+fIp69Qq4557OxMTEsGrVJ6xYsZKVKzdw+nR70tPrcerU\nl3Ts2J6AAAVms5mUlHjS0tYQGjqYOnUM5OWtwWIxAUvRaIKBUQhCQ5zODAoLNyGKPxEX9/v2zvyz\nQ52/BbXrB51OJzqdDrgwVFoTJq3pKiSKIkeOHPnVpJavv/6a559/npMnT5KamuprB3cx1q5dy8MP\nP4zX6+Wee+5h6tTr6xP7e+NfafhqP8BXYmp6PJ4/JOx4rXn91jFr1xbWUNWtVivp6emo1Wr0ehmP\nJ43o6BSKi88iy/u4++6xDBjQB6gu4n322QeZN28Jp07lUqdOAseOKXE6i1Aqo/B6XUhSLv7+1Y2h\nt2/fyaxZuyguTsFuF8jIyMNo1FBRsQmbTcJsjsDrzUGhOIrdHk1AQA6CIFNRkY3bvYg6dfxp3348\neXkf0KqVgVatupCSkuK7jhrPb+/e/VRVQWJiPRwOA+DCaPTjzTcXEh0dgM2mxGqNRZI8VFSkUlgY\nzY8/HsPjaYEg6HjttW9o06Yl/v7+xMTEcPPNySxf/hHgj7+/mYYNI9i9+whxcZWcO9cWlcpE/fpG\nnnnmdUpLS2nUqBFK5Rwslr3odI2orFxIq1YNL+jIb7fDgAG9zjNZZVSq9gQFBaFQKLjpprZ8++0m\niosNfPbZh1gsIlu3NuDll2+jQYM6OByPodXehSCAy6XnnXcW0rdvX7p2bcfOnTnExnahoKCAHTtS\nKSrKwN8/jRdemEadOnV4++3V2Gxl6PVBFBYeJy7O6Hv7V6mUSJIFQRAxGG7G6z1KQcFJbrllKiUl\npSQlGXnoobF8+ukLbN26i7CweowaNR2TyXTJsyXLMgMGDGDKlBnI8geIYiSCEIndPpHvvltPt27d\nADh79iwNG0Zw+PB8lMrHcbmyKSn5Dj+/3lRU+HHgwBa+/XYl48ffTUxMDH379mbVqkKCg+9EqYxF\nFHuwa9ejjBzZFpPJxNSp43n22bfJzFyGKLpo0MBEXNyLpKevwOW6FZstH7d7BXa7ldLSQwwY0IjB\ng0f/pu/RPwm1Zc+uxihdtmwZK1asoLi4mG7dutGiRQtatmxJv379rqrPCNCkSROWLVvGhAkTrvgZ\nr9fLAw88wMaNG4mOjqZNmzYMHjyYhg0bXvGYPwr/SsMH1YteEwZUKBSX9NT8o/JtV8NvGfNKtYXZ\n2dk888z7VFXF4PWW06lTS7Zvn4rXG01AQC4PPjiGu+6644KXAX9/fx5//OcH+MCBg7z22hxKSupg\ns51gwIB6vgLm77/fR0DASLzeKrzex3A6dVitemA+SuWTqNUjcTjK8Hhew+U6QG5uOiASF6fCaGyE\nKBZQVXWY0aNvZMCAXrhcLo4ePYrJZCIsLAyTycSXX37Hpk0uzp6NIi9vIBERNtzuluzdu5zMzGIk\n6ScMhoaMHNkNlUpFRkY5e/YsR6t9i/9j77zDq6jyN/6ZmdtLei+EEnoLHQlNmiAqRVAUCyLYRRFF\nWN1FXUSwoYiIgggioggICApLVRABSYDQSSAhCen19jYzvz9CsoCoqOi6P/d9Hp48udzMzL1zzrzn\nfMv7Go1JuFw5ZGcf4ciRI6Sm1hB2796ptGvXCpfLxXff7eXpp99HUcahqnFYre8zceJtiKKVjz/O\nAASSk7XMmTOFF154jZKScrp0acY//vHkRTuB+vXDOXMmnzZt2uDzuSgqOlIXoqtXL5EePUoYO3Yi\neXmVGI03YTROxePpw8GDjyMIN/HvWyDVjQOj0UhEhMjZsxksWbIJj6czgtCRAweyefnld/jkkwWM\nHt2F+fPfw24P0LJlLLfe+m/R6YkTxzB58hM4HA8CxWg0n1JWdgeFhd0pLxfIzFzLzp2TeO21J3j+\n+Wd/dnxKkkRwcBD5+btQ1WgEIQaN5hRRUaG43W4mTXqOHTuO4PPJ6PXVWK2FiGIxFktDQkLCCAS0\nKMokli59mfHja1zia2T+QnC7XVRUZKCqASyWUho1snDDDWOprKyiW7cUlix5lujoaCZMmIHbbSI+\nvguHDy/BZivHau2CKOaTmAg7d35HSkofWrVqzltvTb+sSssvxX/Tjq8WP3fNl1pevfTSS7z44osM\nGjSIadOmkZ6ezqZNm2jcuPHPEl+zZs1+9nr27dtHcnJyXUX0qFGjWLt27f+I74+C3++vE6n9sUrN\n/xbiu5TAL+0tnDfvE5zOYcTGXoOiyGRlzWHWrInExsYSGRmJ0Wj82XN26NCeRx9188wz7xAIxLNu\n3SGioz9n1KjhiKJAIODl9Gkv9erNJz//fny+UlQ1gCDEEAgUoqqgqjJe7yl8vhEEBUUTCOwmOHgH\ndnseLVsmoNNFMHHikyxbthm/34hG4+PBB4fxt789xY4dWSQlTeLUqX2EhralqupTSkqOEgi0wmbL\nR1GqsNmkOgfs8PD6+P0V6HTleDyg1Raj0QRx+vRpCgsL0Wg09O7dm5CQEIKDg3nnnRVoNC9hMLSn\npORFiooCPPvsBkQxn/Hj36V+/c7s3r2UzMxDTJkyDp9PYN++YpYuTSM5+SjDhvVFr9dz4409WbFi\nC/n5RxBFH0OHptQZnRYXFzNmzCRKSh5DVdvidq9AUSYSFvYCoqjF738Jh0ML6DEYXuDBB6fVjYnb\nb+/Ps8++ic93DkmKxGAYgkbTgF27muNyuZg/fzGff74TjSaafftKuP76rnVVeTffPIzQ0GC++GIb\nQUEm7PabOXCgE5WVIjpdd0TRgqJYmDZtNp06tScuLu4nK5fPnTtH27a9OH58A4pyAI3mHFFRZ3no\noU2sX/8l69en4/V2AVKx2T4lMrKSe+65kfff1+PztcHlEpHl78nPd7F06UruumskSUlJFBR8jdfb\nmZiYDthsX6HVunjppeXo9S9hsTTi668XoijvMmfOdB59dCTTpy9Eq22F378HnW4MQUHNiIlJJS3t\nnwQHjyQo6A6OHl3M+PGTWbduSV1O63/4adT6WPbt25e+ffte1WOfO3eOxMR/W2UlJCSwd+/eq3qO\nK8VfkviA83mXH8/h/SeIrxZXurqs7S2EHyfw/PwKgoObnz8u2GyRpKWlM2bM3URHR2O323/2c6qq\nyltvrcBimUJISAp+v50FC/5GSkoLhgzpxowZS3G7GwN+FEXCYJiL17sRWV5PIGBBEGxI0jY0mqmo\nalNMppYEAtEYjRVotVY2bEjntdc2U1WVC/wNURyOJOUzb95dREQEU1xcTGiom+joYE6dyiUQqFH6\n0GorCQq6FkWRKSpagdfrRhRBry+kWbMoKio2odV2RaNRcbm+45VXis/3jHmIilrCp5/OJyoqCp/P\njyhacLu/o7p6O7AJVTUgywdYtuxprrvuYT7//H0kKZUlS94iNtbIuHFLkSQNmZl72Lnze/r1647V\namXs2KG4XC50Ot1F9yMtLQ2frwMWyzDc7ipU9Rm83g54va+SmpqCICRy9OgaFCVAixa9aNfu372M\nUVFRjBjRi02bFiCKdyOKWhSlDEFQ2bp1K2vWnESj+RpRNFFZuYKHH36GLVtW1v19nz596NOnDwCv\nvPIWX3zxPX5/T6ACVT2B359Nbm4evXuPITJSw6efvlcnxn0pPvvsaxo0GMukSQ9w9OhhHI5tvPTS\n80RERLB37wE8niAkac55MYaBnDzZkSFDrmflyomcOVONJCWh0XxCp05TWbduE337dkOr1ZKcnExR\n0dc4HJ9Tr14SqtqE4uJEwsLaAmCx3MvatT1wOg3UqxfG1KkjzvcqJlG//ki0WiN5eXkIQjN0ukRE\nUYPVOpYzZ97FZrOdVzW6WJLtcvqkF6Kqqgqn00lkZCRwZeIXfyZc7eb1/v37U1RU9IPXZ8yYwY1X\nUEn0Z/r+/pLEp9Ppfnb195/a8dWe96cGyS8RxW7Vqh7fffc10dHX8/3331Na+g07djTl2LH5/OMf\nd/zAC+5S5Ofns3XrDo4cySYuLp6ysjIMBiPQhIKCArp168bQocc5d+4Tysv9mExj0enaIAh6AoGF\n+Hy3YbU2AaJxuaJQ1TAqK3ORJD95eTvQajXIcnPcbh2wCBiOqkr4fIlAJ2bPXole35i0tGfo3fs2\nLJYDVFdvQq/3otMNBBKQ5SLCw/Nwu9dQXGzlppuace21Y1i4cCdVVbuRpFKsVj+FhY8TGjoSVVUp\nKnqT995bwoQJ9zNsWG/mzZuG19sKRWmNKEoYjQa83muw2Yr4/POZ+P0TUJQq/P44srI+Izc3nQYN\nOhMWlkxe3rcX3cNLWxRqlWRkuQSDwUBYmJXy8uMoSgkJCQcoKYkjIuIaxo2bdt5x4RBHj2ZdFKLr\n1asXjRvP58SJCchye3S6T3n00fHk5+fj93dHq60p/dfr+5OT88Jl72VxcTHl5QZCQ09RUnKWQEBC\np8vF7T6HTvc1Wm0TCguXcN99T7F588of/L2qqpSVOYmPj0MURaKi+pKf/2+7pbi4CEBLjQZpzTjW\n6YyEhITw1lvTeOyxt7FYQkhKeoWwsJacO7cLqGkbCg01ER9/FyZTLIGAi8OHn0QQclEUGRDIzv4e\nt9vEwYO9KCry4HBsZcaMR+jf/zibNn2K0diT8vIzqOoOtNo7EATw+8+i0wmEhobWXeOF+pm196YW\nF5LhmjVf8tFHuxCEYMLCXEydek/d7v2/BVfbi2/z5s2/6Xri4+PJy8ur+z0vL+8nhSZ+T/wlie/3\n9uT7Lfipa/s1otgPPHA7VVXz2bVrLWVlNjp2vItGjW6kvPwwS5Z8ydNPj60jeL/ff9EuJTs7m0cf\nfRWHoy+FhQJnz64mNLQvgpBJRMReYmN788or89m5s4KIiEFUVW3G691HUFB3Gjdug8s1htzcDJo1\nm8yBA1NRlOUIwoNYrSY8npWkpsZRUNCGzMxsfL4aGxk4jqq2RJbtCMJRDIbROJ3lOBx72LJlIlOn\n3sXIkW+zcOEq9u6NwO8/iigW0K1bDyZPvrdOwSUvL4/Ro6vxer2kpAxm2rS5lJc3BITzuapG2Gx7\nCQoK4qGHxmMyGVm2bC12ez4Wy0QMhki83k8wmy3YbE5Ah053D7JcjseznZ0716PTJQDFqGohW7Zs\noWnTpheFcmrzrn6/n+7du9O69SccOvQwqppCVNQqwsKaUlHRA4dD4ujRM1RVbeKmmwahKF602oub\nr/V6PWvXLuXDD5eSl3eGbt0eYPDgwWzbtg2tdjaK8hCiGIzXu5o2bZpcdiycPHkarbYrd989lkOH\ntrNt2w7s9uNotUMIDa0RczYYbuXEiX/W/Y0sy5SVlWG1WjGZTDRqFE5u7lFiYlrj8dhQ1VzCwpJx\nuVyMGXMXCxZ8Rnn5TOAaNJq1dO3ajKioKEJCQujWrQUlJU2lsCwAACAASURBVK0wGMLIy1tLYqLK\n9OmLqK42Y7OVIwivEBnZEUUp4oEHbuCLLzaTnj4Ruz0Ku301VuuN+HxxnDlTjSxXU1paSmpqG5Yv\nf4Py8s1IkkpCgguP5yn8/lYIwjfMmPFkXe7+0h3e5fRJFUXh+PHjLF6cTnT0NHQ6K6Wle3jzzWXM\nmvXUT861/w+4GpZEP7Zh6NixI5mZmeTk5BAXF8enn37K8uXLf9O5fi3+ksR3JRBF8aLV4B+JSwfO\nhZWnOp3uF4liBwcHM2PGZJYv/4xVq4Jp0KCmqddojKa62oUgCOTk5PDyyx+Ql1dBbGwwf//7/SQn\nJ7N8+Xp8vpGEh3fDbA4iEFiA2/0NZrMGs9lLQUEBy5alodWORhD8hIa2QRB2EhS0BJstEqdzHUFB\nCnv2TEGWBwB7EYSHcTiCaNSoPtdffz0ffPAdBgOoakNgKHAv0BbIRBDs5OefAnoDDyAIa9m58zi3\n367lscfuYs2azWRnnyIpKYzhw++o01Xcty+NxYu/RxCaIMvnEIRM+vbtyNGjC9Bo4hEEBVVdRq9e\ntyIIAjqdjvvuG8t9941lwYIPmDHjBmQ5jLg4P2+88TJjxryA3Z6AIAThdpcjy4mkpx/l2LHHadTI\njc0WjEZTDLzNG29MpEePHnVq/BqNps4yaPnyd1m5ciUFBSUEBV3P3LnfERQ0HaPxLGVlmzh4cBfN\nm5sJDz9FSsoQZFmmsLAQRVGIiYnBbDbz4IMPXHR/+/Tpw5gx+/nggx5IUiixsQrz5i38wTg4d+4c\nR44cIy9PIiIimQ4dBtKwYQvKynSsWpUGeAATXu+OOof1vLw87rnnCfLz7QiCi6efvp/hw29g+fJN\n5OXtR6PxM2xYuzoJv5iYGHbuXMvUqTM4c+YbOnduxbRpcxGEGof1Z54Zz7JlX5CXt4+UlFgyMmQ8\nnhHEx7clMtJGfv5M7rorgebN+xMdHc2NN17H2rVrmTlzEdXVfZGkm7HZ9mM0NqCg4DRlZWUsW7aF\ntm1fJCQkGVEUyMlZSu/eVURFRdGixbCfLJy4tLijdq6Vl5ej0bRAp7OiqhAW1oHs7MV1ItUXNoP/\nmfOGf6T7+ueff86ECRMoKytj8ODBtGvXjq+++oqCggLGjx/Phg0b0Gg0zJ07l+uuuw5Zlrn33nv/\nI4Ut8D/i+1H8p3J8F573Qo3Qy1We/pJjduyYwpo1n+FwtEWvD6Gk5EuGDk3G6/Uybdp83O47SUjo\nRGXlIZ55Zh6LFv0Th8OLRhOM3+9Ho0kmPHwCYWFb6Nx5ImVlc9iwYSeqOoTg4BtQFB8FBUdQ1SCS\nkvKxWnOpqurHgQM7MZun4XCYEYSnkaRpWK0NcbvX07lzZ6zWYCZM+DtQD7AAsUAUkICiVADH0Ghm\no6o5KEoCVVUOsrOz6dixI3feORyoCZW99tp80tJOEhlpxW5XaNjw74SGxqAoMmvXPkd8vB27fQeF\nhT3Q6yWefvpeBg8eVPcdqarKunXr2bfvOIMH92P48P6kpqai1+sZMWIQa9ceo7Q0A1UVMZlaExo6\nEJ8vm6NHP6Nly8+RJD0ez0kmT57AunXN+OSTz8jLK6V9++bccssIoCavfMcdNdJuO3fuxOvdBGzH\naOxMRMQgKipG0LNnR3r3HoLZbGbx4tVkZWkQBC0xMbu4554bfyDaLAgC06Y9zQMPjMFms1GvXr2L\nWiygpr1gwYJd+P1tyc09zLlzs+nQYQAazUkefHA0iuLl88/7Igj1MJkyeeedeQA88siz5ObeQlDQ\nnQQCRcyceScpKS25//6R2O12ZFlGp9NhNBrrCCA+Pp4PP3z7suMwPDycCRPGADXRhTvu+DuJiTVO\nCjpdEDpda0wmU134XavVEhkZS3z8XVRVRePxVKAo8ZSVvYBGU8Dddz+Pw1FKz55DURSZQEBFUYKp\nVy+Ivn371imX/BKnA0EQiImJQVF2oyheRNFAeflBkpKiMBgMF+0SgToNzQu99v4sZPhHClQPGzaM\nYcOG/eD1uLg4NmzYUPf7oEGDGDRo0A/e90fjL0l8V9OT72qj9rwXurlfDY3QJk2a8MQT/Vi8eAFV\nVV6uv74lt9xyEzk5OVRVmYmP7wxAWFgKRUXh5Ofn06dPe3bv/gSzeTyKkkUgsJ5GjW6nquoEMTEq\nJlMoJpMep7MAlysNhyOC+vXvpWPHfqxb90+SkzsSCGxGq41HklQ0GhVFCcNi8ZGYGENa2kG2bcsg\nMbE+mZn7CAQUVPU6oB9QAuiBJwkEVqDTxaLV6nE6czCb+9V9LlVVmTTpefbuTURVJ7F377f4/e8S\nG7ubLl1aY7N9w7ffHsDtTkaSWhET0x+Nxs++fWkXjYNlyz5h5sxNaDQPEAgUsW/fbFatakxiYiJj\nxw7G4djMiRNBHDpUjskUhMXSF7t9DaqajCjW2PpotclUVLgYP34SR47Eoygt+OCDN5k69XX69Utl\n+vTJxMTEUFVVxXPPzaasTEWW30GjmUZERGd6927L0KE3cPToUWbO/IgTJzw0adKZzp0HUVJygm3b\n9jBkSP/L3t/o6Oi6YqWlSz+muLiSa65JoU+fPvzrX+lYLP0JDa1HXFwK6enriI9PZ/jwwcTHx/Pa\na9MZN+44lZWVNG/enLCwMFRV5dixkwQFLQVAo4lBVXtx7NgxmjSpCaVaLBY0Gs0P5lNFRQXHjx9H\nFEVatWp1WYcFrVZLTEwQFRXHCA9vid/vRFWziIzscNH7ZFmhYcMGlJaWUVGhpbw8Da+3Ekn6EJst\nHkXZxI4dkxgy5DPc7nL0+gM0b34bUKNaVBu1udS54qfIsFmzZowa1Zzly59FFEMJDbUxefL9F83B\nHwuT1lzzxYLS8Ochw5+DzWa7SJHp/yuk55577rn/9EX8J/BzYczaNoELZZj+CHi9XgKBAB6PB4PB\ngNlsvmpiuwkJCdxwQy+GDetDu3atkSQJv9/PmjWbMBh6IEkGfD47DsdabrmlDy1aNCcmRiUnZzUR\nEUeIinLhch0gOPgUjz46mogIKydOHEWSLJSW7kCvj+O6664hLCyS7OwiPJ5CdDorFRWH8fsj0GjO\nYjR+TpMmrYmJKWfXLjeKMgynsxF5ed8gig1QVT+qGocotkRV/QjCVmAnsryXQOAbwsPtjBlzc93D\ntLq6mhkzPiAoaDaFhSCKqbhce3A4FE6cyCE/fxUazWuoaj8kaTiVlY/jcuWRmZlBUlIkrVu3JCPj\nMI8/Pgu3+zkslvZYrSlUV1cSHX2W9u3bERERQdu28VitOezduwSj8V4kKRiXawGBwNc4HFn4/YX4\nfMeJiTlNdraK0TifsrIZ+P0jcbvvprhYZcuWNxg58gbeeus9tm+PJyxsHorSD7+/goYN97F8+btU\nVFTw6qvrcTgGoapDqary4HB8T716bVGULDp0qAkNffHFlzzyyAu8995y8vPz6Nq1Az6fj9GjH+bL\nL80cOdKYjRuXYzQ6cTpBVZuj05nRaLSAh549Q2nVqiWnTp3ihRdeZ+vW74iPj6J9+5Q6Uli1agPV\n1Q3QaOphs5Vjt8/GYoHWrRuTmZnJffc9w9tvLyYrK4vU1E5otVoKCwv55z+XsGdPKPv3O9i//190\n7tzisvOoefNEdu/+mPLyQzgcm7nzzk507tzxoveYTAbS079Fq1Wx2bZTWfk9Wm07TKbxeL1+FCUK\nh2MelZXfEBWVyeTJo2jatCkajQadTlf3r1YBKBAI4PV68fl8dbqWl+6M/H4/DRvWo2/fNvTv34xR\nowYTERFx0XVdGCaVJAmNRlOXX659vZYMLyVI+GP6AmtDs7/k+bF9+3YaNGhA06ZNf8cr+8/jfzu+\nn3jPH7njU1W1TqlEq9USEhLyh5T/BgcHM25cfxYufAFBaIYsn+See3rWhZsGDuzPwIH9UVWVBQs+\nZtu2EjyeGGbO/Iynnx7Bffe1ZOPG7Wg054iO7kFiYiKKopCQoKG6Og2NpgmiuA1J+giNRkNUVI0t\nznffVaAovYiMdNGiRXuSk0eTmbkCaIogrEeSqtFoduD3q8AkJCkCs/lbFKWcL77Ywf333w7UClgH\n8PlsqKoGu92NKGrR60V8vs14vRATE0NBgQOv14eqNkQQnkEUs3jyyRksXrwGjSaSQCAYRTFRWuoi\nKkoAFC78+hMSEhgz5i7q1Utg2rTpVFdXExKiIgiDqKxsg822g+joozz22FSmTPkCWT5LIACieD+K\nko/F0o2ion9x6tQpsrLyEYQbkCSJiIhw3O4+hIUdx2QycezYMRSlOdHR9SkuriQoqCfnzs0iPv4I\nHTrUPHzT0tJ48cU1WK2vEhQUzvr1b2AyLaRt2yZkZ8cQFlZj9Ov392LOnFuZO/cFVq/+GuiJz+dE\nFA/SuPFAcnNzGTHiIVyu+5GkGL77bi52u4MxY2rCsW+88Q/uuedpysuTcLnyaN68HcHB9/LqqyvZ\nuXMHWu2r6HRJrFnzEllZD3LbbTeTmZmDz9efevVqRMbz8rawY8duhg79oWB0/fr1eeONJykpKcFi\nsRAeHn7R/9tsNmbMmMvq1eux2yPRajsjywqCcBDwEgj48fmyCAtrRseOb+BwLPhBmO5Cgrpwx3ah\ny0HtzrCWjFRVRa/XExcX94udDi7XL3gp+dUuumt/XphnvJo7w1/rvv7/3ZkB/qLEBz9PbH8U8V0q\nmabT6S4bPvo9cd11fWnZsinFxcXExqaSnJz8g/ccO3aMrVsrSEychChK2GzZzJu3hLlzn2HQoH6U\nlJTw9ttryclx4/fb6dDBT2lpfTZuzEWnC8XnCyMQMJGbq+H0aRFZ1qHRuDAYwjlwIIv4+EQ6dWrL\nxo3H8fkkfL48goKaU1zcD42mBVFRTRHF7pSW3kJVVTMURSEtLY2KigoGDGjLV19NwefrhKqeQK+3\nYjKNwGTy4XCsR1W/Jzi4JcXFmxEEN6pahSh+jMv1ACdOxKKq/yIhIZL8/BdQlLspKTlHdPRXDBgw\nj4KCArZv344oivTt25c+ffpw7bXXcuzYMUaNeoH4+NdJTNQgy3fhcIykcePGhIcXk5e3FFnOQ1XP\nodFocLlsaDQOQkND6d69HV9//SkVFe1xu2UCgflERNh5662ldOjQCJ/vHLGx/WnQwMWpU1sQhDM0\na5bEkSMuNm78nqKi0/j912Iw1AMgOPgutm2bQnr6Ic6dy6K8/BFiYx9Er29IIBCgS5cOCEI63377\nBVFRJgYOvJaYmBjeeeddHI6bCAm5EwCvN4GFCyfWEV9KSgpffPE+kya9TGLiTBIS2iMIIhkZVjye\njgQHdyAQKMPp1LNrV0NMpghOnlxPs2at6saNThdOdXXZj449o9FY5xl5KaZPn8O2bUbc7ubodAsJ\nBArRau8kELgfn28kPp8JrbaQ1NSXCQpqgM3WgczMzCsqka8lKK1WWxfdqS1Gqi1sq/XtvDRM+mvI\nEPhRV4Va7z24mAwvV3zze+Ov4MwAf2Hi+zn8EcRXW7giCEJd4UptXu/3Ru3Eq+kvk4mOjiYuLg5J\nkvD5fD+Y4DabDUlKRBRrJq/VmkR+vr3uGEFBQTzwwA2UlJRgMpmIiIjgzjv/iV7fDkXxotd3wm7P\nRpbjEUU7BkMRHs+3FBfLWCwuKiuXcvZsExQlHrPZT48eIzhxYjPl5T50ugBVVTkoSiGSVEaXLk2Y\nO/cDtm1zAo0AIzffnEBZ2Qk+/XQjknQdgvAZkZG9CA3dTUzMhxQUFON0FmOxTMFgqKCoqAuS1BOj\n0YjH04KiogcZPPgR0tJWkpTkZ9asN/B4PNx22wRstl7Y7ekIwmxGj76eCRPGoSgKkqSnVrRaFLUI\ngha9Xs+KFe9yyy0TcDjCCASeRqcbSHX1BgYOrDEGvuOOUSxduo4jR/oTCEiEhKRgNKZy5kw9wsNL\n6dhRZN++9xHFCJo1O84999zJunV7KC3tRlhYSwoL11FW9hWxsXciCBIeTw4lJbkUFQ1DFO/G5XKT\nkzOViIj6DBnSk/LycmbNepsTJ86i0aiEhj5KXFzceScGEb8/B0WxI8vVyLJStwhzu92EhYXRpEkL\nzOZGCELtA9yDKJYCYLfvxu9vg8ViJCGhF1VVCseOLSM2tjOK4sft/pqUlB4AZGRk8Pe/v0Z+fjGt\nWzdh1qxnfrKP9LvvDmE2P4UglCJJ4SiKD4OhGo/HSuPGIZSUnKJNm1eIiup4fjwXYTb/tLTWpZBl\nuc6NxWKx/CAseKn/ncfjuSpk+HMWQ5fmDGv/5peQ4a8tbvnfju8vjNoB83vE4mvNbWVZrnNOuFBI\n9vdG7QpTVVU0Gg1Wq7XutVpPr0sneE3z7laczp6YTFEUFGynRYv4ugeHJElERUXVNfnWSMKpOJ3l\nCEI9ZNlxXiw5GFARhAiMxp7AesrLDwHdqa5+iIgIM273v8jM/Jj4+Ciqqo5SUjIP6IAgbCEkxEtZ\nWTE7dpSgKHdRXFyNJMXy/feLWLXqNcaOHcWECS/gdhuB3cya9QQDBvRHlmUyMjJ48MEXqKw0oCiR\nhIdr8XgUHI5KFKWcc+eOMHhwBx5+eAgRERE88MCTnD0bgtv9MaraH1G8h48/3k9e3ossWvQ6jRvr\nOXFiNnp9bzyeLbRqZSUpKQlJkujatQe9e48lO3sLpaWnEYRmjB3bDUEQsNvttGlzPY0a9WTfvmL8\nfgvZ2Z8THHycqCg9U6aMoU+fU7hcLuLiuuB0OikqMp2XnVNp0+YWcnM3UVg4Ga22HjrdTlRVR1zc\nY4SEeMnJycNmM1Kv3lGuu+5JJkz4O4cP98BsXowoljJ16kheeuk9/H4jFRWnqK4+hSR1w+f7FI+n\nmN6972T06P488MA96HQ6RoxIZcmS1YhiSwKBUrp2NXDkSDqHDzdGlv2I4m0kJw9CUVQSEpIICrLg\n872LJAmMG9eV8PAwxox5iLVr96AoUVgs7bHbGzJmzETee28WR44cwWg0oigK8+evxO32MmJEX8LC\ngikqCiBJxQQC21HVOEymAzRqZGT+/EnY7Q5eemkV3367H5crn5YtK2nR4vYrngO1uT6DwXDRHLwQ\nF+4Ma3Gp/53X6z2/EPpzkeEf2c7w34a/LPFdyY7uSlRUfgkudU74sQb032vHd+EkunSiCIJQl6C/\n8HpryTAyMpLx43vw/vsvU1Ii0KRJJHffPQK3213Xx3UhjEYjMTEK6emrcTjMqGonVDUCVd2I0WhF\nlquA4whCJQZDCwKBoeh0KZSXH6NBg2swmXYQGdmJpKQY7HYngqASFTUJvd7Hp5++T0FBHPn5xWg0\nDRAELwUF+eTn59OuXTvmzPkHjz32EtXVJp57biGVlXZuvXU47dq1Y/36BRw4cIDp09/l9OnPgDbo\n9Wto0OA2/P5KBg3qUVfIsGvXfjyeVFRVRFVnIsvZCEILsrJmkJOTw8KFr/L66+9y4sQ7tGiRxMSJ\nL9c9tBo0COfYsZO0aDECWfaRl/dh3e7GZDIhCC7sdht2u56goDbAXvLyBJo0KUEUxYtEf4uLixEE\nD5IkotVKSJJKp05NGTq0KaIo0rz53xg//u94PEUYjbGEhh6isvIcZ88O4vHHl5OX9w16/Uw8Hi+C\nEMDhCCCKszAaWyOK3+D3TweaoNMNRa8PEBJyBx999Hfatv2OXr16kZLShtDQYPLy8rFYYpk5cw2q\nOgpRHIyqpgMfcPJkDJWV2cTFnWDq1MHExUXjdDpRVZX77nue/ft1BALLEMXmuFyvoNdLZGZWcvPN\nDwN9cDozKCvLJC7uTbTaIF599VVuvTWZL798k+joZAoLn0Snc9O6dUdeeeVl6tevj8/nIzJyFRUV\ndgTByqlTdqZOnc6bb874yR1R7cJTFMW6HstfgloyvHDMX7pw/L3JsPZ8l6rQ1Ob1fm3EyuVy/UB5\n6P8j/rLEdyW4WuHOH3NO+LFzXm3FmAsJD648gX7pard3756kpl6Dw+Gom8SKotT1GWo0mrrX33pr\nEfn5TZAkJ4LQA3Ch0ewjEMgGfISHR9OggYaCAhs63QPk5e0E+qOqFmy29VgsAYqL3VRW5qLTXYtO\ndwuKYsPhWMzp09nk5BxFVfsjCDKCsJugoCC+/PJLdu8+xpYte4D+iOIQFGUnTz75Pnq9xNChNTu5\n/v37k5KSQr9+t1NVtQ2zOYjk5K6oalHd/ZZlmcpKG7I8EJhHTWuFFZ0ugKoGEEWR4OBgnn9+8mW/\nu44dG7N//2ccP/4NFovEDTc0pUWLFkAN8Y0c2Ynp09eg1zfCZvua8PAIwsKiiY01/uBYUVFR9O4d\nz9ati5CkpsjyUW66qTW33DK07v4+8cSdvPLKVCoqepKd/RZm80KiotpRXb2ZQOAgOt0ZtNruuN3H\nUZQwXK4kKipcBAJdgHAkKQhIxu//Ho8nC4cjhE2bttGzZ08EQSApKYmkpCQ8Hg9paYeRpNnUeFa2\nxe3egM+3hoKCOCTJy9KlZUBb/H4jJ0+uxeeLxGC4GY9Hg6pqUNVBuN1L8PuLCAmZRUTEjdjtr+D1\ndkeWmxEUFIqqTiQt7XVWrHiNw4cPYzZfR9euXetECgDOnj1LWVk0Z8/6qag4A7QlO3sjMTGv88wz\nT152HtQq6fzULu/X4HILx9+TDH9MhaaW/Px+/0Xnv9B09ufm/39L68VvwV+W+P6Iys6fc074Pc55\n6fl/DeH92LF8Pl+dsWWtWe+F5pYOh4PTp0/jdrvZuPEIcXGzych4iECgD/AmcD2RkckkJWUTH7+H\nN998mkmTpnPsmEJkZBylpXciy0XExQXj99enrKwxqhqL2z0HWdbjcm3G46nGYrkFr3chsBxRNCMI\n4bjdEcyd+ynFxQp+fwegEHiDkJDX8PlyWLToK/r0ubbOZ66oqIji4hK83ok4HGY2bJhIp05tiY+f\niizLfPHFRgQhGINBwOOJBp5BFFshikdJSQm+bAFQLRYsWMLbb29AFJvj929hypQ7uemm6y56T/fu\nXbn33kLWrSsjOvoGrNYEqqoOER+vsHbtZrKzy4iLC2bgwO4EBQVx990jad06neLicuLiOpKS8m8R\na0EQGDFiGA0bJrFnzz5efz2Y+PiO5xdRLgyGgcBkvN5OKMpBRLGIQMANJAHFgBtVzUSWQ/B4MsjM\nrMbvD2HjxmwaNlzGuHF31J2ruLgYp9OFz5eNLMciCBpU1YHJNBmDIYGoqDC2bBlFSkp70tM/xOPR\nIss7sVgaYjA0we3ORJa3o6p7iIgwExRU074gSQZU1UkgUFvkUYnJpCMhIeFHi1UkSSIvL5OKimq0\n2oUIQhA+X2cWL57OPffcXud4D/82Zr5QSef3xn+CDAE8Hg+1BtS1TfyX0ye9NEz6nxLl/0/gL0t8\nV4LfQkJX4pxwtc95IS5c/f0S5YrLoTapL4riD/oKa0MxZWVlPP74DEpKwvH5KiktPYnBUI7DYUUQ\n9lLjdtCXiopv6devLx5PJRUVFbz44pM88sg0CgpkDIZq7r57GAUFPtzukRw+XILLVZ/Q0OvRaF6m\nqkpL/fpLKSn5COgPFCMI16LRePF6V1NWZsbvjwe6AJXAfmy2dzGbbWi1TamqqqK8vJyPP97AqlUb\ncLuHIIojURQBRdHi8y0jPDwcp9NJWloO3btP5NtvX0Wv743T+SWiuBqzOZ7Y2P44HA6Cg4Pr7lXt\n95uXl8e8eWuxWD5CownF58vntdfG0KpV87pc1oABA7BYLNx00/WUl68mMzMDu/0oSUkuSkoEsrIS\nkKSmnDxZQG7uah57bDRarZaOHTteemsAKC0txe1206pVK1JSUti8eR/Z2csJDh6BqtrQavMZMOB1\n9u+fR0lJOIJQgNM5Go0mBVEswGC4Dkn6Hr8/G48nF4NhAtHRJhITRRYvnkH//j1ISko6r5CzgjZt\nxnLgwNN4vT3xevcDZahqFElJMYCELMukpa1Bq12NwWDAbl+N2z0Dg+E0Ol0VFstJYmMjqK72cvbs\nXBo1mkZw8DUUFt6NzydSVhaJTvcJjzzyQ23MI0eOsH//USwWA717p2I2l6CqOlRVQVGyMRgikeVw\nbDYbcXFxF7UJGY3G3ywE8VvxS8iwtkfw0sb7H4Pf768rTLowjfJT+qQXkqHf76e6uvoPrSj/T+F/\nxPcT+DUk9EucE67WOS/ET+XxfilkWa5bPRoMhp9ss5gzZwnFxQOJjh6CqsoUFj7BkSOTgesQhC9R\n1QIkKR3woddrqa4uZffu3ZhMZv7xj4frvPFCQ0OZMmUORqOZ1NS2VFZWUliYyM03P8rs2ZtQlGz8\n/qbAIARhIZJ0EEFIJzw8ksLCUmAikAKIwFMoymoUJYQ9e7J56ql8KislTp++htLSQchyJpKUgSR1\nQpKM510naqr7goONhIc3Z9iwN8jO/hfp6RKRka9jMjVi06YdwAIaN67Hxo3pSJLArbf2ZsCAazl4\n8CCyHAposdt3I8suHA43d9wxFUW5EUE4zcKFq/nkk3kEBQUxbtxICgsLUVUVk8nE9OmrOHs2m+rq\nYEAhK+sIw4bl0qhRo8ve60WLlrNq1X4EIYiYGC8zZjzOvHkv8tRTMzh8+F3i4yMZPz6VlStnUVra\nEllujSDEoKqVyLILg6EFUElCQhBdusSyd28oERENyMt7h337cpHlAOPGTWHp0tlUVVXhciXQpctd\nREd35euvV2Gz5Z9fXO1GkizY7V9hNrtxOHoiiuGAA6u1D07nNIzGQkJDNZSXJyBJrxAbqyEz8z5y\ncnoSGRnOrFmP4vX68HiKGTDgeVq3bn3R5929ew+vvbYVrbYvgUAFW7e+zYMP3sLDD78BfIVe3wu/\nfz+RkRUkJCRcRARWq/VP+0D/OTKsba34MTIELiqW+ylZwx8Lkx49epQnnniCbt26/X4f9E+Evyzx\nXW2HBkVR8Hg8eL3eK3ZO+LFz/hriu9phzdpciF6vvyLyPnu2FKu1HQCCIJGQ0B+D4T0qKxdhMo1G\no7Fgt+8DAhQWFuJ2n2DFinBEMQpYycSJ/ejYsQM2u39jIQAAIABJREFUm43u3Zvw2WefERraF1mu\nJj7+LP3738XKlZvZvv01AoFWgICqRqDTNcFkKqR5cwNlZcX4fAFqhrXt/E83fv/1mM19+PrrxXi9\nrZCkALJcAgjI8jIUxYnf/ywaTVO2b9+OIAjUrx/EyZOr8fs74/OVAZ0QxU643dlUVtp5//2PaNdu\nHHp9H9zuEmbP3sK//rULt7sR5eUBioruQacbhixLuFw6YmJuIzLyXmS5kjNnXmbdui+4447RaDSa\nOkcHp9NJbm4W1dXDCA3tjaqqZGcXMXv221RUlHPiRCFms5WHHrqV2267hfT0dFasyCI29hU0GiNF\nRZuZPXsxM2c+zUcfvXVRYVZ2dgU5OS1Q1Swk6TFU1Ybff4hA4CsSEkJISAjh0UfvwGZ7j+PH36e0\n1Isovo7BUEZFRRrTp8/hoYfuwOcrw+/3YbMFo9XeQUiIEVG8hsrKxeTkfMTYsUNJTp7AxIkL8HpP\nYjJFoiiHUZQwrrvuC9LTX6aysg3l5VYaN65Pw4av06zZp8yfP73uWv1+P06ns+5BX4tPPtlGaOgY\nrNb658ech9DQIJ599g7eeONNXK5XqV8/mg8+mIEgCHg8np8lgj8rfgkZAufzrbq6913psycQCDBn\nzhy2bt3KokWL6uTo/r/jv29E/IG4krj3b3FOuBx+KfFdbcK7nKvAlaBFi0Q2b96G0Xg3iuJBVb9j\n8uSH+OCDVWzfvh1ZbogkfUVMjJVz58KoqtKRmjoavT4Ep7Mjr732FDfckEtIiIn+/a/FbDbx/fdb\nMZu1DBhwI3q9nupqO6oahapakKTP0WpbIYrf0KaNyKuvTuStt5by0Udf4vWWIYouVHUvkIokJeJ2\n70Cn64PdvhVRjAb6AnuBxajqFsDIN99k8s03zxMT04GoqHCuucZIv34KGRlGzpypIhBI59y5D1GU\ngfj9SezZ8zU6XRaC0BSv9ygVFZFce+04mjb1k5aWiar6CAkxo9XeitN5GvgIt7sCj8fG5s3fMWrU\nrRc92MxmM/HxwRQVebDZinA68zh3zs7y5Xb8/sbodHbq1ZvESy/NJyYmEofDAaSg0dTsVMPDu5CV\n9Xnd8WoffrIsU79+JIHAIRRFQJIao6o70ekaExOjpWvXpiiKj/T040yZci8PPfQMstwfi6Wa+vWT\nACN5ef+icePGdOuWxldfzSA7243T6UEUOxAcPICIiIYIwgu0bNmY4cNvoKLCybx5DyBJsXi9p2jQ\n4O7zhVImBKESh8PFsWOZeL0HSUiorLvWvXv3MXPmUrxeLdHRWp5//mHq1atp1Pf5ZESxRlavpofS\ngCwrTJjwAI8+ej+BQKBu0SZJ0vnq2T/nLu/X4EIyrA3h1kZjgJ/dGV76XWRmZvL4448zcOBANm/e\n/F+5QPi1+MtqdQI/u5urnUiXywvUkkRNE3CNkLTBYPjNE+2XaIRemsf7LaRXm/xXFKWueOWXfJa2\nbZtz+PBacnI+w+lcy4gRzRk5chjDhw+mbVsrSUnleDwxpKS8jUbTj5ycAIHAEaKjO3Lu3DYyMg5i\nsw0gPb2KtLS1jBt3G9de24VOndoSFhZGRkYGixYdx2h8C6u1G4rSGFmey0031WPRolfJy8sjOFiP\nTncWSdqLVvsNOl0zAoGpaLXDCQS8QAZe71kE4SlU1QREABuBF4G7keUvkOVxeL31cTi+x+WSGDEi\nla5du7Jx4xecPr0OVZ2GJLVEFI/i8/nR6+djNPbE42lGRcU7HDtWTFFRJooSScOGbRkx4nqcThd5\neR+jKNcgijciCD6io8OIjnbToMHFqiV6PWRnnyUyMoaMjN1UV1cTCPRFEIaiqjpE8TB6fT+02v20\nb9+KHTu+w2y+BlHUUFb2LU2alJOcnMDBgwcpLS2loqKCjIwMmjdP5vjxL8nLO0Yg4EIQFDQaK8HB\nB2jatDt2eymHDq1mz54iPB4bgYCNhg1vRavVU1W1ms6doU+f7ixZspw9ew7hdFZSXb2LQMCG17sf\nVf2e+vU74/efJTW1LR06tGXo0Gu5/voUhgzpz9696eh0rQkKakBm5rO4XBX4fMeR5dV4PAHatEnE\nYNDz1FPzMZn+Rnj4bVRUhLBnzwcMGdIPQRCori5h8eLnOXRoJUePLkavP86jj47BarXWRVxqw32/\nNMXw34TaHbEkSZjN5joy1GprBBT0en1dWkJRlLrFrN/vZ8qUKRw/fpwNGzYwf/583n77bW6++ea/\nRCXnhfjrUPyvwI+FOi90TqidZFfznFeyy7xaebzaB0YgEPhNJd5BQUHMmfM8ZWVl6HS6izQT+/Wr\ncVPYt8+PXh9KWJgeo7ERxcWr8HorOHLkfWJjnyEmpisAublz2L9/P6mpqaxb9xX79p3E4SjGaIzH\n4ajAaEwiNLQ91dV6hg3rx9tvL2b58nQqK1UEoYqbb26J1dqBr7/uyPHjDtzuXCASr/cgJpOE338K\nVfWhqiIQhyAMRFVnA+OBO9FotMhyNIWFS3C73URHR/Pgg0N54olXEcVgNBoDktSGkpIjBAJVeL0O\nJMmC1ythsTyD1/sBgcBWTp3SsXx5Cap6mODgSqqqTiGKdpKTY4mKasbZs5k/+B579epGWVk17733\nCqWlR1HVG4HuKEoNUXs83+J2H2fVqmJWrdqDXi9QWnorMTGtiYpy0b17KuPGzcHlao7Xexaf7wQN\nGtyIqu7k7ruHM2BAPnPnfoLdHowsKzidHSkoOElu7lISE28gIWEkERGVlJXdQ1HRSAyGEJo0MfHk\nk9NYu3YtW7d6CQ3dQHFxFYKwAlnegqJcA6wiJKQf0dE1rQKBQICIiAhCQ0NRVZX77y/nww+n4/X6\nadYsmPz8AhwOFZ3udkpKDjN79gdMnfoAitIYsznx/JhqytmzFZSXlxMREUFGxkkEoR8WyygEwUF1\n9T85c+YMYWFheL3eKw7L/7fiwhTETxXq/FjvnyzLNGzYkM2bN5OZmUlZWRm33HIL7du356233vqB\nVur/Z/xlie/XtDPU9qzVDrxfuiu60uuqrby69NhXO6xZq1yh0+muSvJfFMUftTQJCQlBVb9HVWvK\nrJs3N1BYWEAg8BJhYTJNmlxoSGnC4XDwwQefsHJlKVbrjVRXH8Vmm0tQUFccjkJ8vs106hRLy5bN\nmTlzDR5PP6KibicQsLNy5WTGjTPi928jJeVhzpwpoLr6Y1JTY4iOjmfjxj2UlUXj9+8DilDVU4AT\naAqUo9XGEwgYEYRyGjZsCMAtt9zA7t3fsnHjAkJC7kOWo6msfIfw8EwsluYUFq7B74/H5XoeWe6M\nKPZHlrdQWlpKUlIL8vOj0esrCQ29B7e7mv37VzNs2MVVml6vlxUrVvPNN99z4sQO9PpmBAKZQDmB\nQA6K8h5OZxYQg6I0JDz8CXy+UmJjdzF8eAyjRt3MNdfcTknJfahqA9zuCCyWcFq0uAardTTLlj3D\nk08O5ppr9ISEDCcraz+FhekUFLxDfHwkDRrU9AUaDKE0bz6GUaNUUlJSCAkJwev1cvr0WRSlG4Kg\nwePxYTYPxutdRXh4OzyeTPz+zxg9+gU0Gg1Op5MDBw6g1Wpp3749/fv35dpre1FcXMzTTz/PsWOV\nBAUtQZLCcbszOXFi8vmxfZZAwEVu7hdkZX2FqlYzceJLzJo1ifT0kyQkzEGnq5ElKy6+ngMHMmjb\ntu1VdTH5M+LCdoxfM1dVVWX58uWsWbOGN954gy5duhAIBDh+/DhpaWl1bT5/Ffxlie9KcCEJud3u\nulXl7+mc8GNKLn+GPN5vQfv27enR4xC7dr2CJIUREpLN66+/TIMGDZg/fwmrVy8kJGQo5eUnycn5\niFdfrceZM2fo0GEOISGtCAlphc93DIvlE1RVS/v2jXnqqTmcO3cOhwOMxl6IogatNhRJ6kxoqMpt\nt6l89tmTxMSojB7dmoceeva8Hc1Mli37HEEYhqpGAFOAMGAPkiQgy0FI0lwmT76tTsVFFEVeffWf\nJCa+x/btLxASYuGxxybw4YdvUl5eQZs2oZw61ZDKSgWT6V5crqlI0t8wmeLR6w3nm7cX43AcRxBU\nkpJk2rUbw6FDhygtLSM8PIxly9azYoULWe6FzSYB36LVBuP1DgGcSBKYzSMxm1tjtydhs3mxWuMw\nmXqTk7OHjIwMiop8mM03oapevF47TmcZfr8TjcaMw6Hjs89Wcu6clRMnTmC3NwJaYLNNoGFDA1VV\nmYSHt0CW/ShKDvXr9+LAgcMsWrQZVTWiqkXAARSlxlg3EFhLfHwbmjQxU1JSweTJY4iPjyc/P5/R\nox+jujoZRXHRuPEilix5k/z8fMaOnUpurh+XS8bj+Q6rNRmdrpSoqKZIksSIEa15//3xZGer6HQP\n0bp1C8rLDzBr1kLi4iI4efIwOl0MsuxHVTOIj++A2Wz+y+/yfgrFxcU89thjJCcns23bNozGmpyw\nRqOhdevWP6ie/Svgf8T3M5BlmaqqKrRa7RU1oF8NXCiVdjX78Wp1NWtDtH9kMlsURR599B4GDcrC\n7XaTlDS0Lhx67723Y7WuYefOhZw4sZ8mTZ4mJmYQWVmfcujQe/To8ToajQmTKZKpU3uTmpp60XGD\ng50UFR0kJCQWp7MAk6mY+PiW9OnTk1tvHYJer8dkMgE1D5IzZ3LR6e5Fku7F6SwBDiEI09BqmwP/\nJCkpkSZNYtFodLjd7roHhU6n46mnHuGpC9rL7rrrLqDG9HTq1Bl88MEuvN5dSJIXg8GNIAQoL69G\nUbYgSTeh1d5OIJBGSclMVq/+km++8aCqjaio+JLMzDQEYS4hIclAX6qq7sbn+w5BeAVBaI1Gs55A\nYD2q2gZRtKMo9fD7S/D5yjhyJIOzZ7OQJD9+/3o0mmv/r70zj4uyXP//+5mFZVhFEQUsLAmXREFB\nT9bP6hwr1/RY2mLHFssyF1qOeyWtWqZWLtn32zHtdLSyPFIClfh1qRxwyeVY7mKAiuK4AAOz//6w\nmTMzbAPMwMDc79er1yvhAe7neeZ5rvu67+v6fIDTWCxqiovN/PxzOhUVv3PiRH+02qtYLB9y/fX/\npKLi/2jXbiAGQz6BgV9QVBSL2VzC3Xd3QiaT8dFHuQQHz0ahCOXq1R1ER3/I+fNDCAlRoNNpiI19\nEp1uNcOGxdjuy4IFK7h48QHCw8dhsVg4fPg1/vnPdWzbto/Cws5UVLRFLj+DyVSBTneMxMQ2tGlT\nQZcuXejZsycmk5aPP5aIje2Nv78/ZnMqR46sZvHiF3jmmXQuXtyC2XyBW24JYdiwYa026Fml1eRy\neYOzvK+//pqlS5fy9ttv21R4BD4c+Or6AFgb0M1mM6GhoU0aJKx7i/YOCt6wj9dYZDJZteXSSqWS\nhx++nwEDUnj2WRlRUYMBiI+/hd9++5aiokwUCjMdO56id++HHX523779tGnjz9Gjb6HVZhMVpeL2\n24Po168Pfn5+VbIBSZLQ6SzIZAWYzTogFOiITBaPSrWMq1cHcOyYhhMnLKjVOWzdupcPPniVgICA\nWu+Bn58f77zzMu3avU9Gxr+RpG6cPLkIP7+h6PXlSFIBMtk8wA+Z7Eb8/G7m229/ISpqNnv2nKKi\n4lbOn99FQMBZ/P3jCA2NoLLSjMHQk5CQOwkPD+PixccwGr8kIECJVptDZeWPtGkTyH/+kwV0QqHw\no7LSH4XiYyQpl4CAoygUhzh+vILKyikEBNxEZeVyQkJuRqP5nsuXJxAd/f+47rqHgEUsXDiVoqIi\ngoKCiI2NJTs7m+PHw9Bq8wEZISEh3HhjB774YhmVlZXo9XpOnz5NeHgvevfubbs+BQXn8ffvZbve\nktSL33/fy9mzJWi1evz83kWpvIBW+y4WywFksg6kp8+yLbf17duXL7/cQECAHLlcQUnJPq6/PoqY\nmBg++WQ+R48eRaVSkZR0rX3Gue2hpeOOLO/ixYu8+OKLhIeHs3nzZptxs+AaPhv4oPpCEvsG9ICA\nACoqKpo06FnHY12KbIw3n73MmLc38YJ1H7AEnU6Dv38EHTqEUF5uYMCA41x3XQdGjZrhIKB7zebm\nc4KDZ9OnD5w9u5DRo2OYNOkpQkNDazzX4cMHceLERioq5gBtADVK5WTKyzdhsYQSHLwVMHL16qvs\n2pXP/v376d69u61owKpJ6lwiLpPJmDlzGrfcsp1vv/2eoKAILJadxMYGsmmThEIBRmMxUELbtnJA\nxd69p1AqkygtLcNiCaa8fD16vYHAwF8JDi7FbJYTERGCJCkIDdWi0Wjo2dPAlSuhREefAy6TnT2I\ntm1fx2KpRJLeR6dbS1ycheTk7lgs8fzyy2COHAnBzy8eo/FB4N8EBHQgNvYmrr9+GCUlXzB6dC9C\nQkIcxLEPHfoNjeYEoaHPI5P5o9F8Tdu2Fxz2cauTbuvXrwfHjn1BQEBXzOZKYCMpKfdgNBo5cOD/\ngEokqSP+/o/TseMqpk+/x2FC1Lt3b+6//z+sX/935PIIgoMvMG3aRFvP43XXXWfrZdPpdJhMJoeC\nDnvZr5aGfZbXkG0Ii8VCdnY2CxYsID09nXvuucern/nmwqcDnz32zgnWBnTr3l5TYL+P5+/vb3uo\ntVqtTQneVR0/i8VisxaqTmbMWwkPD2fSpGEsW/YKknQTFstxZs9+kBEjBld7/I4du5GkEQQHd/vD\nU/BFTpxY5WCrYrFY+P77HPbsOUJkZCj33TeMZ599jMpKHRkZP1BcXIgkxRMcvBONZit6/cNIUtAf\nL9IhVFQssS1zO3uzWcV/qyppSPz88xUCA+disZg5fnwZgwZ15ttvX8Bs/guSdJSzZ3eQmPhnjh49\nQmDgTVy6pCY0tBt6/S7gVSTpEq+9lsbu3QfIzn4YszkZmSyHmTMn0K9fLCrVTSQmJvLMM/NQKm9B\nkuRIUhB+frcSFraFzZv/hb+/P/Pnv8+uXWeJiIhBozmNxXIKuEqnTidISJBjMi1mzJgejBt3X5Xr\nazAoiYiIQKudB7RDqTxMx451V/6lpU3kzJlX2bLlz0iSmUceGc699w7nz3++g927f+GXXx5GkgYT\nGXmV7t1LSU1Ndfh5SZJ48slHGDLkTjQaDe3btyciIsIh87EXT7fXi3UOhvbPTV2SX82JO7K8q1ev\nMmvWLIxGI9nZ2URERHhgpK0Dnw989s4J1TWg11Rh6e4x2O/j2bdH1CVqa32wrft/zjJjza1NWF+G\nDbubxMRunDlzho4d76nRnRtApfLDYCjBaDQhl8swm68SHOzobrB69VrWrDlJQMA96PWn+OmnN1i2\nLJ25c59jzpw0zGYz+/fvp6ysjI0b/diwIYCKihMoFFHo9buIiSmlW7duNZaI279wrc3DX321BaXy\nb/j5deD06X9y5YqRs2dPoFQmoNcHI5MNQ6vtxJ49GYSFneXKlV+Bc1RU6AHo2PFmOnUqY+zYvzJu\n3FhycnIoKiqiS5eZJCYm2sr2f/vtNyRJh0x2lPLyI8jl4Wi1W7jjji74+/sD8OijY9i+fRZmcyGV\nlZfQ6TaRlHQzr776OjfffDO1ER8fS5s2lcTFjcVsrqS01J8+fXR13sPAwEA++OAtysvLUSgUtrGE\nhoaSk/M1mZlZ/PLLUaKi2jFmzATb/qv9dTUYDISEhBAREVFnf6wr96a2iUpzB8PG2iRZLBZ27NjB\nyy+/zPTp0xk9enSzn5O349OBT6/X2xpBqytc8fSHx5V+vLp88vR6vU1t3fo7lUolQUFBLXKpB+C6\n666zqXVUh3UJ9/bbB7Bx4wKKiw1IUgj+/t/xxBOTbMeZzWbWrt1CVNQylMoQ4BaKis6wb98+BgwY\nYHthJicnA3DjjTdy9Og8jh07SXn5JTp1Osnatctq9Cer6YUbFBSAwXCVo0c/QK8fBAyhtPTfVFb+\nB3//J/5QHAnn4sVvmDPnXj79NIdz50qRyWYTFtaVS5e+Ijx8A/7+/pSWliKXy4mMjCQuLs72Yvyf\n/1nNkiUbsFjiKS1dR3j4Sfz9ZfTqVc7ChQts4+nQoQOffrqQnTt3YrHE8ac/TbJVqtbFvfcOY8+e\nt9my5SUkSUGPHuE89dTLLv0sUO11kySJoUOHMHTokGp/xrryYnUXaOg2Q0sIhq6a4daGVqvllVde\n4dy5c3zzzTe1OtoL/otPBz6z2Vync4J9haW7aGx7gr1PnvXh0el0DmoNpaWlXjm7bSzWJVy4FiA/\n/vgNtm7dRmVlJX/6099tfXdWrhlz/vdjLknKGgUCYmJiWLPmbQ4cOIBCoSA5OdlW0ekqkiTxyCMj\n2LYtnbKyGJTKziiV+URH38WhQ3no9XuwWKKQpOX4+QXSqVMsDz74/zh71kB5eTAGw2kiIpIJDt7C\nxYsXmTr1dc6di0cm8yc8/HuWLJmOTCbjvffWERi4HoWiLQEB+ZSWjmbp0vn079+/yue5bdu2DBs2\nrF7nAVZlIxkqVXtATmCgn8cmU/ZtNn5+fh6RG/OmYGitJWhMlrdr1y5mzpzJpEmTGDduXIud6DYH\nPh34VCqVQ7ZUHd7qjwf/XSKRJIng4OAaH2ij0Whbhmus71dzUVNlatu2bRk9+q/V/oxMJuPeewfw\n1VeLCQkZRmVlPhERR0lMHFft8QBt2rRh4MCBjRpr9+7dWbz4eZ5+eikhIVeIi0tCqZRx+PBZTKZH\n/thDvBGj8QqdO3dGp9MRHLydG254FLlcyZkzPxAS4sfq1es4d+5PxMaOQ5KguPg71qz5mmHDbkcu\nj0ahuLbf5ucXR2DgjbRv377GSVx5eTlff53BmTMakpIS+Mtf7qzz8/fvf29i9+5I4uKuZXnHjn3G\np59+xaRJj9breuzfv5/PPvsWk8nM/fcPon///g7ft7bZAE2+H93UwdAdWZ5Op+Ott97i0KFDrF+/\nvka/wvrw+OOPs2nTJtq3b8/BgwerPWbq1KlkZWWhUqn45JNPbFW1LRGfDnyuYM2gGvswurMfz7oc\nZLU+qq7y0/6Btldtt98vrKysxGKxVCkA8KaZY2MrU59+ejyRkRnk5m4gKiqM8eNnNYlKRb9+/Zg6\n9SQbNnzD5cs90Gp3ERMTiVK5mnPnLmI0+mEyvcrChR/yxhuzGDLkEN9//yJnzugoKzsM9GH16izC\nwyf8YfJbSnl5IKdOFRMXF4ef31nKy38mKOgWysu3o1JdJDo6mvXrN7J5816Cg/157LF76dGjBzqd\njrS0Vzly5Cb8/HqzadP3nDpVxMSJ42s9h/z88wQGptiud3BwEidOfFWv63Dw4EEmTlyAxfIkkqRk\nx47lLF5sYsCAAQ731pvkxmqT/KrJJsj6DNU2kWxslgfXKpmff/55HnnkEebPn++2Z/Wxxx5jypQp\ntr5UZzIzMzl+/DjHjh0jNzeXZ555BrVa7Za/3Rz4dOBz5SFrrDOxO3U1nWXG6rscVJ/9wtrK9psK\n+4y2oZmAXC5nzJhRjBnjgQHWwaOPPkCvXr9w9uw5/PxuIT29AEkKQqPxIySkI3p9BAcORPGvf21g\n5swpdOy4mmXLfqFXrwz8/SM4fvxrCgpWUl7emcLCMozGLzl3bj/btu3ggw9e5rnnXubSpXLatQth\nxYr5bNr0PStX/kZY2KPo9Zd48cXlLF/+IhcvXuT48VA6dnwaSZIwGlNZu/YJHn/8oVqX+W+6KYbN\nm9WYzSlIkpzS0p1061a/7GL9+mxMpvG0a3cPAJcvK/jss2/p37+/LctrKvWgxlCXTVBtbuqSJKHX\n6xuV5RkMBpYsWcKOHTtYs2ZNtW0kjeG2224jPz+/xu9nZGQwfvy1iVK/fv24fPkyxcXFLXZP0acD\nnyt4iz+ep2TG7PcL7cdd0zKPKzPbxuItDfeNRZIkW+EMwG+/5bN06WyMxluBI8TFDSAy8k4OHFhN\neXk5MpmCkJBBBARcK0Pv1Ok2DIb/4fffp6BQdCMm5nbatHmR+fPT+O671Wze/DlXr14lMDAQuVzO\nG2+sIjz8RYKCrgckzpwpIC9vN9df3wlJ+q+urEzmh8VyrQK4tsA3bNg9/PrrcnbsSAPk9OnTloce\nmlrva2CPxcIf4tjlLfregmvB0LqqAtiutTVTdPW8jxw5QlpaGsOHD+e7775rltakoqIim28kQGxs\nLIWFhSLwtVaa0x8PHIs5mkJmrK5lnppmttbl1sa8xFpaw319mTJlAlrtJb74YhexsY/Rrt2fOHPm\n3/TsGUpAQADduiUgSRsxGO5CoQjm0qUckpO7oFSG06bNa7ZrUVKiRKfTERERQVBQkO3+BAT4UVZW\njtFoAiwYjVexWPyIj48nIuJTiov/jUqVQGlpJoMG9a7T+kqpVDJ79lQuXLiAxWKhffv29b4fo0ff\nTXb2m1y8qECSFBiNHzF27BMtIstrCPa9g9d0YY34+/sjl8sxm821ZobOwdBkMvHhhx/yzTffsGLF\nCnr06NGMZ0aV92BLfjZ9OvA1xKGhNty9j+ctWU9tM1uj0WjLRoEGq2e4Y1nT25EkibS0qVy6tJj9\n+7MpKtpMdPQlnn56OkqlkpSUFB5//BSrV0/BYvGja9cIpkx5iscem0dFxXFUqnguXdpMhw6BDrZP\n1vszYcJw5s1bjk43HKNRQ1RUHgMHziYgIID585/jH/9Yz/nzPzJ0aBf+9rcxtuX3unrkanLccIWe\nPXuycuVMPv10IwaDiTFjJjlorbZG7It1agrwNU0mt2/fzrZt2+jSpQvr16/nrrvuIicnp9n7cWNi\nYigoKLD9u7CwkJiYmGYcUeOQLO4qWWyBWE0aa8Ne1LkmnPfxGpv12O/jecL6yBNYG/3tH2ZXKuG8\nKcA3BSaTidLSUk6ePIlCoeCmm26qknmVl5dTWVlJREQEkiTx448/MWfOe2i1EBMTwuLFc+ncuXO1\nv//AgQP8+OMegoMDGDz4L0RGRtq+Z7+Ebf0PGj5ZcQWDwWCT/QsMDGzV97axxTpms5lDhw7x0Ucf\nsWvXLkpKStBqtSQnJ/PAAw/w1FNPeXD0kJ+PSZepAAAbqElEQVSfz/Dhw6ut6szMzGTp0qVkZmai\nVqtJS0tr0cUtPh34rB/U2rC6OlfXjOvufTx7nb7AwMAWvxTkvF9oNBptSzzWczMYDCiVSp94KVon\nNA15KZpMJsrLy926/Gs/WbFOVNwl9WU/oWlqJ5DmwD7Ls+651pezZ88ybdo0unfvzquvXhNGLykp\nYc+ePcjlcpuhsyd48MEH2bZtGyUlJURFRZGenm5LCiZOnAjA5MmTyc7OJigoiFWrVjnsX7c0ROCr\nI/DpdDoMBgPBwcEOP+fOfTx7uyBre0JrxX5WbP815yrSlh707bHPeupyeWhunCcr1v9c7WGzL8RS\nKpV1yo21dNzRkmGxWPjyyy9ZsWIFCxcu5NZbb23V18wbaL1vWDfhvMfn7n08a2D1pj4mT1HTsmZt\nLRXOeqQtCev5Wvstm3ufxhXqauiuTQwBsOnE+kKWZzab0Wq1QMMb7y9cuMALL7xAVFQUOTk5DhNs\ngefw6YwPcMg8qsM6Ww8JCXHrPp599aK/v79XZwGNxfl868oCrEtw9stvzlmHQqHwWtUZ+/NtSfu0\n9cG5odtoNNomg0qlssUpA9UH+6y2MVnepk2bWLhwIa+//jqDBg1qddfJm2ndUzIXcKVq02p1Yn3x\nNgbrA9OS7IIaQ0OqNa0TC2eXCms5uL1yhrdJsDWn/FZTYt0HlCQJg8GATCazFem4q9LXG7GqJl0T\nI2/Y/b18+TIzZsxALpfz/fffO1ToCpoGn8/49Hp9tYHPfnnHunxjfdE2ZC/K2S6oMQazLYGmqNas\nrooUmudFa++n5gvVqa7ubTVHJakncBbRbkgWb7FY2Lp1K+np6cyePZt77723VX9GvBmfD3wGg8FW\npAL/bdKsbh+vpoe4tgo4+xeiL+zj1XdZ09043yOj0eiWKsXaaEnFK+7AXnOyvtXHNVWSerOTiLNV\nUkOyvPLycl566SU0Gg3Lli1zaDMRND0i8NkFvvr249VUAedcrm/tYWrtL0T7Zc2GlnS7m7qqFBsj\nwWb/Qmzt1bjgHmeBmn5vYypJPYW7sjy1Ws3s2bOZOnUqDz30kNcEdF9GBL4/tCjd2Y/nXK4Pjks7\nrW2Zs6U1oTsXZljvf3VVpDWV7Htb8UpZWRkff/wF+/adIioqjKee+msVb8LGYN9j2hRZrfOervM9\n8vSerjuyvMrKSt544w2OHj3KypUriY6Odvs4BQ2jdacgdWA2m9m/fz9lZWW2GWZjHmjrw6LT6QgI\nCCAkJITQ0FCCg4NthRo6nY6rV69SWlqKVqtFp9PZllVbGtYMoKysDJlMRkhISItYyrUuffr7+6NS\nqWz3yRrA9Ho9ZWVllJaW2lRUDAaDrdK0rKwMg8FAUFCQ1/SpffDBGrZvb0tg4CyKiobwyiv/QKPR\nNPr3WiwWKioq0Gq1BAQEoFKpmmTlwtpW4XyPrEHXaDSi1Wq5evUqZWVlVFRU2FphGvssWe+/XC6v\n4nPpKr/88gtDhw4lISGBjRs3ui3oZWdn07VrV+Lj41mwYEGV72/dupWwsDCSkpJISkri9ddfd8vf\nbW207rUZF/j888/Jy8vDbDaTmJhI3759SU1N5frrr3f5AXeWGXNW16jNAaG6vqi6Mg5vwJoBtJbq\nVGsZvv09st+L0ul0tp4tuVyOUqm0HdPc90iv17NnTz6xsVOQJBlt2/aiqGgvJ0+eJCIiosG/137v\n0hsEwz2tGWvfd9nQPkSDwcDChQtRq9V89tlnbs26TSYTkydPZvPmzcTExJCSksKIESPo1q2bw3ED\nBw4kIyPDbX+3NeLTgU8mk/HOO+/YAte+ffvYuXMnr732GqdPnyYiIoKUlBRSU1NJTk6u8vBbl2Lq\naxdUm0msNRB6ky+ePfbLmjWZ4LYGrJMO67lZ92r9/Pxs98pbWioUCgVKpYROd5mAgIg/xnexTveF\nmnBHAGgq6usxWVMwtAZ5pVJJcHBwg+7f4cOHSUtLY9SoUWRnZ7t9MpiXl0eXLl2Ii4sD4IEHHmDj\nxo1VAl9LXD1qarz3E92ESJJEQEAA/fv3p3///sC1D09xcTFqtZrt27ezaNEitFotCQkJpKSkEB4e\nznvvvcfcuXMZOHBgo18Ozg+wcxO3vS+ecztFU7xknfe1vCED8DTO+zzV3WNvcLWXyWRMmDCY5cvf\nB/piNv9Ov36KKi/EunCWG2toAGhuqlthsX+WrNsL1uPMZrNNLrAh6jomk4lly5aRlZXFypUr633d\nXaU6T7zc3FyHYyRJ4ueff6ZXr17ExMSwcOFCunfv7pHxtGRE4KsBSZLo0KEDI0eOZOTIkcC15b1t\n27bx8ssvs3//fgYOHMj777/PTz/9REpKCikpKbRt29YtL4uamrirszLx9Eu2tS1r1kV9nO7rm3F4\nKnv/859vJyamA6dO5RMW1oPU1NR63SdXgnxLpaZnSa/X28QkZDKZrUWjPpWkJ0+eZNq0adx5553k\n5OR49Lq58nlJTk6moKAAlUpFVlYWI0eO5OjRox4bU0ul9Xy6mwBJknj22WcZPnw4mZmZhIaGcuXK\nFfLy8ti5cyf/+Mc/uHjxInFxcbYl0p49ezo8cI39+3W9ZI1Go9vKwH1lWdMe+yDfULPU+rrau0uC\nrWvXrnTt2rVeP+OcydcW5FsL1oIdo9FIUFCQwypLXepAGo2Gdu3aIZPJWLVqFevWrWPZsmX07t3b\n4+N29sQrKCggNjbW4ZiQkBDb/w8ePJhJkyah0WgatdfbGvH5dob6otVqa/XmM5vNnDhxgp07d5Kb\nm8uBAweQyWT06tXLFgxjY2M99nKpzQrIuZ2ipjF4Y7m+p2nqlgxXyvXd4WpfG+6w0mlp2O/luVKR\n69z68sQTT7BlyxYiIyOJjIxkypQp3HLLLXTu3Nnjz4jRaCQhIYGcnByio6NJTU1l7dq1DkurxcXF\ntG/fHkmSyMvLY8yYMeTn53t0XC0REfg8jMViQavVsnfvXtRqNbm5uRQVFREVFWULhL179/boTLsu\naS/7KlL7jCcgIKDVvwy9yUanOkUTcL+8V2O9AVsi9lleQ5dyzWYz69atY82aNdx///2UlZWxa9cu\ndu3axZw5c3j66ac9MHJHsrKySEtLswXhWbNmsXLlSuCab96yZctYsWIFCoUClUrFokWLbHULgv8i\nAl8zYLFYKCwsRK1Wo1ar2bt3L3q9nh49etj2Crt06eKxgoiaZKOs+Pn52RT2W/MLsSX4IDpn741V\nNGmM3FhLxdrz1xgX+PPnz/P8888TGxvL/Pnzq6z6mM1mn7iWrQUR+LwEg8HA/v37bVnh8ePHCQsL\no0+fPqSmptK3b1/Cw8M9IvRs3eS3BjvnpbfWZhDbkjOe2uS9aqv29TURbXA854ZWbFosFjIyMli8\neDFvvfUWd955Z6u/br6ACHxeisVi4eLFi+Tm5qJWq8nLy+PKlSvEx8fblki7d+/eqCylrmXNhohy\nezv259xaMp66JNisajRyubzVnHNduCPLu3TpEn//+98JDAxk0aJFhIWFeWCkguZABL4WhMlk4siR\nI+zcuRO1Ws2vv/6Kv78/SUlJpKamkpKSQlRUVJ0PeUOrNWsT5W7OBm5XcD7nluCG3his98naswaO\nwgkt1dW+LtyV5eXk5PD666/z0ksvMWzYsFZ3nXwdEfhaMBaLhbKyMnbv3m2rIi0uLiY2Nta2V9i7\nd29bVaZOp6OgoID27du7rVqzOidu8B6/NW8qXmlKnKsXgTpd7VtiBm+PO4S0S0tLmTt3LuXl5bz/\n/vu0a9fOAyMVNDci8LUyzGYzp0+ftgXCffv2YTabadu2LQcPHmTgwIEsWbLEo4UcdRVkuKNnzRV8\nsVzfXm6sroIdZ83YpnZAcBfuyvJ+/vln5s6dy3PPPcfYsWO9+pwFjUMEvlZOQUEBzz33HD/99BP3\n3Xcf58+f5/fff69Th9Sd1PWCdbcod0suXmko7spsvcnV3hXckeVVVFTw6quvcvr0aVasWEHHjh09\nMFKBNyECXyvn008/5dixY8ycOdNWgm2vQ6pWq9m9e7eDDmlqaioJCQkezZBq61lrjKyX9eXfVL5x\n3oA7vOPq+v1N7WpfF86muA1VR9qzZw/Tp0/nySef5NFHH/WJz4tABD4HvvzyS+bNm8fhw4fZtWsX\nycnJ1R6XnZ1tayKdMGECM2bMaOKRuh+j0cihQ4ds7RS//fYbwcHB9OnTh759+5KSkkK7du08mhXW\ntAfliii3rxWvQPMp7HjS1d4V3NGLqNfrefvtt9mzZw8rV660OR4IfAMR+Ow4fPgwMpmMiRMn8u67\n71Yb+EwmEwkJCQ6eWM6yQa0Bi8XioEOal5dHSUkJnTt39ogOaU1jqK5M3zkQWgW7fUVeDbxv/7Ku\nlgp3SLA5Z3kN7UU8dOiQbR/v2WefdVuW58qEeOrUqWRlZaFSqfjkk09ISkpyy98W1A/vk6poRlwR\n+HXVE6ulI0kS4eHh3HXXXdx1112Aow7punXrmD17NnK5nMTERI/okNYlym1fqm99qVrbK1pr8PPW\n/UtPm8TaZ3kNFQ83Go188MEHbN68mY8//piEhIR6/47axleXSWxmZibHjx/n2LFj5Obm8swzz6BW\nq902BoHriMBXT1zxxGqtyGQy4uPjiY+P529/+5tN/3Dv3r3s3LmTOXPmOOiQpqSkkJSU5FYdUuvy\nmVV829p4bw2I1Snqe1rsualwh3NEU1KTx6S9rVZdLRXuyvKOHTtGWload999Nz/88IPbq5pdmRBn\nZGQwfvx4APr168fly5cpLi4mKirKrWMR1I3PBb5BgwZx7ty5Kl9/8803GT58eJ0/39Jfnu5EkiRU\nKhW33nort956K+CoQ/rdd9/x1ltvuVWH1NqfVpvjvf2yW3WZRktr3m4tcmPWyUdtlk32ExfrMnZj\nfCDNZjP/+7//y1dffcWyZctITEx092kBrk2IqzumsLBQBL5mwOcC3w8//NCon3fFE8uXkSSJTp06\n0alTJ+6//37AUYf03XffbZAOaX2MUu0zDX9//yqZhrXPramKMRqDfbl+S8jy6ou9mowVs9lsy/Ks\n2XxZWVm9dWMLCgqYMmUKqamp5OTkeHQ/2tXPjXNJhbd93nwFnwt8rlJTzU/fvn05duwY+fn5REdH\n8/nnn7N27domHl3LQqlU0rdvX/r27cvkyZOxWCxoNBpyc3PZuXMny5cvd9AhTUlJoXv37iiVSoxG\nI1u3biU1NbXBRqm1ZRpGo9HBzd45K2xOxRmrjY6vVKmCY9FOSEiI7fq74mpvMpnw9/fHbDbzr3/9\ni1WrVrFkyRL69evn8XG7MiF2PqawsJCYmBiPj01QFVHVaceGDRuYOnUqJSUlhIWFkZSURFZWFmfO\nnOHJJ59k06ZNQPWeWILGUZ0OqU6n48qVK7Rr1441a9YQHR3tcXNY53YKaHxvYX2pr1lqa8C+NcOV\nop3qWipuueUWFAoFfn5+REZG8tprr5GSktIkkwZXTGIzMzNZunQpmZmZqNVq0tLSRHFLMyECn8Dr\nKC0tZc6cOXz++edMmDABlUpFXl4e58+ft1XMOeuQeoKGWgA1lPrIjbUm3NGaYbFYWL9+PWvXruXm\nm29Go9GQl5fHqVOn+OKLLxg6dKi7h12FukxiASZPnkx2djZBQUGsWrWqxl5hgWcRgU/gdZSUlJCe\nns68efNo27at7etms5nff//dlhVadUgTExNtTfZxcXEeXZ70hCi3vdyYL/Ui1jfLqwmNRsMLL7xA\neHg477zzDqGhobbvlZaW2opjBAIrIvC1YDQaDWPHjuX06dPExcXxxRdfEB4eXuW4uLg4QkNDkcvl\nKJVK8vLymmG07sda6r5v3z6bKPfp06ebVIcUGifK7Wm5MW/FbDaj1WqBxmV53333HfPnz2fevHkM\nHjzYJyYMgsYjAl8LZvr06bRr147p06ezYMECLl26xPz586sc17lzZ/bs2UNEREQzjLJp8RYdUldc\nDwwGA3q9XmR5DTjvq1evMmvWLAwGA++//75PfLYF7kMEvhZM165d2bZtG1FRUZw7d47bb7+dw4cP\nVzmuc+fO7N6922HZ0JcwGo38+uuvtqywqXVIwVHFxNn1wNp60ZJ6CxuCNbu1WCyNyvJ27NjByy+/\nzPTp0xk9enSrvmYCzyACXwumTZs2XLp0Cbj2QoiIiLD9254bbriBsLAw5HI5EydO5Mknn2zqoXoV\nzaVDaq9C4ufnh1KpbDah56bEXXuYWq2WefPmcebMGVasWCEavwUNRgQ+L6cmpZk33niD8ePHOwS6\niIgINBpNlWPPnj1Lx44duXDhAoMGDeKDDz7gtttu8+i4Wxr2OqS5ubkcOHDArTqk9nJjNTkK1Cb0\nXJ/GbW/CXXuYeXl5zJw5k0mTJjFu3LgWdQ0E3ocIfC2Yrl27snXrVjp06MDZs2e54447ql3qtCc9\nPZ3g4GBeeOGFJhply8RZhzQ3N7dBOqSNlRvzRi88V3BXlqfT6Zg/fz4HDx5k5cqVDpJfAkFDEYGv\nBTN9+nTatm3LjBkzmD9/PpcvX65S3KLVajGZTISEhFBeXs5dd93FK6+8YnNcELiOvQ6pWq1m7969\nteqQ7t69m/j4eFsjujuyFOfeQqtYd3XtFM0VDN2V5R08eJDnnnuOcePG8fTTT4ssT+A2ROBrwWg0\nGsaMGcPvv//u0M5grzRz8uRJ/vrXvwLXltsefvhhoTTjRux1SNVqNSdOnEClUmEymTh+/DgZGRkk\nJCQ0SeGMfRUpOPYWWh0qPIm7sjyj0cjixYvZvn07H374IfHx8R4YrcCXEYFPIHAj69evZ8qUKaSk\npNCzZ092795dow6pJ3Fup6hPb2FD/541y2uM6syRI0dIS0tj2LBhPP/88x5pO/H1/leBCHwCgdsw\nmUw89NBDTJkyxWbTZP26sw6pv78/SUlJpKamkpKSQlRUlMezQqsod3UO6Y0R5bZqizYmyzOZTKxc\nuZKMjAyWL1/OzTffXO/f4Sqi/1UgAp+gycjOzrZpGU6YMIEZM2ZUOWbq1KlkZWWhUqn45JNPSEpK\naoaRehaLxUJZWRm7d++2Fc40tQ6pdRyNEeV2l7Zofn4+06ZNY8CAAcyZM8fj2bDofxWIwCdoEkwm\nEwkJCWzevNn2gq9NvT43N5dp06b5jHq9t+iQuirKbW3PaIyDhNlsZs2aNfzzn//kvffeIyUlxQNn\nVRXR/yrwDfl3QbOTl5dHly5diIuLA+CBBx5g48aNDoEvIyOD8ePHA9CvXz8uX75McXGxTzQqy2Qy\n4uLiiIuL48EHH6yiQ/r66697XIe0OlNY58KZyspKm1elUqlEoVBgsVjqPYazZ88ybdo0unXrxpYt\nWwgICHDLOViprf/VHqtXY3X89NNPDv2vXbt2Ff2vrQQR+ARNQlFRkUMPVmxsLLm5uXUeU1hY6BOB\nzxlJkggICKB///70798fcNQh3b59O4sWLfK4Dqm9m73BYMBoNNoCntUp3blwprYlUqt90IoVK3jn\nnXe49dZbPbKc+8MPP9T4PesSp7X/tX379tUe17FjRwAiIyMZNWoUeXl5IvC1EkTgEzQJrr7cnFfe\nva0xuzmRJIkOHTowcuRIRo4cCTjqkC5fvtwjOqT2bvAqlarKXp6zKLder3conPnxxx+56aabUKlU\nvPjii0RGRvLDDz8QEhLSqOvRUEaMGMHq1auZMWMGq1evtl1Le5z7X7///nteeeWVZhitwBOIwCdo\nEmJiYigoKLD9u6CggNjY2FqPKSwsJCYmpsnG2BJRKBQkJiaSmJjIxIkTq+iQrlq1qlE6pPZu8DUt\nq9ovkVp/r70o9+rVq/nxxx/RarX06tWL5ORk9uzZQ0pKSrP45M2cOZMxY8bw8ccf29oZAIf+13Pn\nzlXpfxWiD60HUdwiaBKMRiMJCQnk5OQQHR1NampqrcUtarWatLQ0nylu8SQN0SG17uUZDAYCAwMb\nXGl55coVW/XuCy+8wOHDh8nNzUWtVvP8889z3333ueUcBYL6IAKfoMnIysqytTM88cQTzJo1i5Ur\nVwIwceJEACZPnkx2djZBQUGsWrWK5OTk5hxyq6QuHdKgoCAWLVrEmjVrSElJadAyqcViYevWraSn\npzNr1ixGjhwplq0FXoMIfAKBAIvFwtGjR5k2bRo7d+7kjjvu4MKFCzXqkNZGeXk5L730EhqNhmXL\nlhEZGdkEZyAQuI4IfAKBALhW9NGmTRuWLFlCmzZtqtUhDQsLo0+fPqSmptK3b1/Cw8NtmZzFYkGt\nVjN79mymTp3KQw89JLI8gVciAp9AUAd1Kc5s3bqVe++9lxtuuAGA0aNHM3fu3OYYaqO4evUqoaGh\nNX7fYrGg0WjIzc21GfhadUiTkpL4z3/+w/nz51m5cqUoShJ4NSLwCQS14IrizNatW1m0aBEZGRnN\nONLmwapDmp2dTX5+PkuWLBH2QQKvR7QzCAS14IriDFTtP/QV5HI53bt3p3v37s09FIHAZcTUTCCo\nherUZIqKihyOkSSJn3/+mV69ejFkyBB+/fXXph6mQCCoByLjEwhqwZXijOTkZAoKClCpVGRlZTFy\n5EiOHj3aBKMTCAQNQWR8AkEtuKI4ExISgkqlAmDw4MEYDAY0Gk2TjlMgELiOCHwCQS307duXY8eO\nkZ+fj16v5/PPP2fEiBEOxxQXF9v2+PLy8mxWN4L68eWXX9KjRw/kcjl79+6t8bjs7Gy6du1KfHw8\nCxYsaMIRCloLYqlTIKgFhULB0qVLufvuu22KM926dXNQnLG6DSgUClQqFevWrWvmUbdMevbsyYYN\nG2wqPtVhMpmYPHmyQ5XtiBEjqhQbCQS1IdoZBAKBV3HHHXfw7rvvVitXt3PnTtLT08nOzgZg/vz5\nwDXhaYHAVcRSp0AgaDG4UmUrENSFWOoUCARNRk3O6G+++SbDhw+v8+eFBJrAHYjAJxC0Uh5//HE2\nbdpE+/btOXjwYLXHTJ06laysLFQqFZ988glJSUkeHVNtzuiu4EqVrUBQF2KpUyBopTz22GO2vbDq\nyMzM5Pjx4xw7doyPPvqIZ555pglHVzs1lR64UmUrENSFCHwCQSvltttuo02bNjV+PyMjg/HjxwPQ\nr18/Ll++THFxcVMNrwobNmygU6dOqNVqhg4dyuDBg4FrzuhDhw4FHKtsu3fvztixY0VFp6DeiKVO\ngcBHqa5QpLCwkKioqGYZz6hRoxg1alSVr0dHR7Np0ybbvwcPHmwLigJBQxAZn0DgwzgvKYriEYEv\nIAKfQOCjOBeKFBYWCh89gU8gAp9A4KOMGDGCNWvWAKBWqwkPD2+2ZU6BoCkRe3wCQSvlwQcfZNu2\nbZSUlNCpUyfS09MxGAzANam1IUOGkJmZSZcuXQgKCmLVqlXNPGKBoGkQkmUCgUAg8CnEUqdAIBAI\nfAoR+AQCgUDgU4jAJxAIBAKfQgQ+gUAgEPgUIvAJBAKBwKcQgU8gEAgEPsX/B5KYXLk3/yC5AAAA\nAElFTkSuQmCC\n",
"text": [
"\n",
"(3, -0.83996249999999995, -0.58694999999999997, -0.35489999999999999)"
"<matplotlib.figure.Figure at 0xb5c440c>"
]
},
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import scipy\n",
"from scipy import optimize\n",
"import calibration_utils\n",
"\n",
"sensor_ref = 9.81\n",
"sensor_res = 10\n",
"noise_window = 20\n",
"noise_threshold = 40"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 19
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"measurements = np.array(list_meas)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 20
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"meas_median=scipy.median(scipy.array([scipy.linalg.norm(v) for v in measurements]))\n",
"noise_threshold = meas_median * 0.1\n",
"print noise_threshold\n",
"flt_meas, flt_idx = calibration_utils.filter_meas(measurements, noise_window, noise_threshold)\n",
"print(\"remaining \"+str(len(flt_meas))+\" after filtering\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(4, -0.74246249999999991, -0.70199999999999996, -0.33052499999999996)"
"0.0973014827316\n",
"remaining 703 after filtering"
]
},
{
236,8015 → 338,173
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(5, -0.51285000000000003, -0.83947499999999997, -0.30614999999999998)"
"\n"
]
},
}
],
"prompt_number": 21
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)\n",
" cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)\n",
" print(\"initial guess : avg \"+str(np0.mean())+\" std \"+str(np0.std()))\n",
"\n",
" def err_func(p, meas, y):\n",
" cp, np = calibration_utils.scale_measurements(meas, p)\n",
" err = y*scipy.ones(len(meas)) - np\n",
" return err"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(6, -0.058987499999999998, -0.95647499999999996, -0.14235)"
"initial guess : avg 9.55977014083 std 0.17596103611\n"
]
},
}
],
"prompt_number": 22
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" p1, cov, info, msg, success = optimize.leastsq(err_func, p0[:], args=(flt_meas, sensor_ref), full_output=1)\n",
" if not success in [1, 2, 3, 4]:\n",
" print(\"Optimization error: \", msg)\n",
" print(\"Please try to provide a clean logfile.\")\n",
" sys.exit(1)\n",
"\n",
" cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)\n",
" print(\"optimized guess : avg \"+str(np1.mean())+\" std \"+str(np1.std()))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(7, 0.25447500000000001, -0.84142499999999998, 0.011699999999999999)"
"optimized guess : avg 9.80797237599 std 0.141020849641\n"
]
},
}
],
"prompt_number": 23
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#%pylab qt\n",
"%pylab inline\n",
"calibration_utils.plot_results(True, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(8, 0.70199999999999996, -0.64203749999999993, -0.071175000000000002)"
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEVCAYAAADzUNLBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FFXXwH+bTW+kEHoJRUoglISWQkiQJhGQKkEERBGk\nBJUXg/gJARQQX0BUmiiIqBQFQUAhKImRjoD4olQJUgNJSCG97P3+mJ3NZrObxoYAzu955tmdmTvn\nnntn5p659aiEEAIFBQUFBYVSsKhqBRQUFBQUHg0Ug6GgoKCgUCYUg6GgoKCgUCYUg6GgoKCgUCYU\ng6GgoKCgUCYUg6GgoKCgUCYsq1oBBQVzYGFhQevWrVGr1ahUKjIzM3F2dmblypX4+vpWtXoKCo8F\nKmUehsLjgIWFBYmJibi5uemOLV68mK1bt3Lo0KEq1ExB4fFBaZJSeGzQ//bJz8/nn3/+wd3dHYDb\nt2/zzDPP4O/vT+PGjQkJCSEhIYFly5bx/PPPA5CXl4ezszPr1q0D4ODBg3Tu3LlYPCtXrqRdu3Z0\n6tSJoKAgzp49C8CNGzcYNGgQHTp0oG3btixYsACAK1eu0KRJE8LDw+ncuTNPPPEEW7ZsAeDcuXME\nBATQoUMHfH19WblypU6XKVOm0KpVK9q0acO4ceNIT08HwNPTk+HDh+Pl5cX27dtN6qOgYHaEgsJj\ngEqlEt7e3qJt27aiTp06onHjxmLq1KkiISFBCCHEsmXLxKJFi3Th+/btKxYvXiz++ecfUbNmTSGE\nENHR0aJ27dpixIgRQgghpk+fLt5///0i8eTn5wsbGxsRHx8vhBBiw4YNYs2aNUIIIUJCQsTOnTuF\nEEJkZWWJkJAQsWXLFhEXFydUKpXYvXu3EEKIrVu3ioYNGwohhBg7dqxYuHChEEKI+Ph4ERYWJjQa\njZg1a5YYMmSIyM/PFxqNRowdO1ZMmDBBCCGEp6eneOedd0rVR0HB3CgGQ+GxQKVSiaSkJCGEEKdO\nnRK1atUSmzZtKhImNjZWLF68WEyYMEE0aNBAzJ07VwghhK+vrzh+/LiYMWOG+PDDD0WdOnWEEEI0\nb95cXL58uVhcI0eOFI0aNRKTJ08W33//vSgoKBDp6enCwsJCtGvXTrc98cQT4q233hJxcXHC2tpa\nd/3ly5eFk5OTEEKIXbt2CTc3NzFo0CCxYsUKcefOHSGEEJ06dRI//fST7ppTp07pjIynp6f45Zdf\nStRHQaEyUJqkFB472rVrx9KlS3nppZf4559/AIiIiGD27NnUrFmT8ePH06tXL10T1qBBg9i9ezdR\nUVEMHTqUBg0asGnTJuzs7GjUqFEx+Rs2bGDXrl00bdqU9957j0GDBqHRaAA4fPgwp06d4tSpUxw6\ndIg333wTAGtra931KpVKF3doaCgXL15k2LBhnDp1Cm9vby5fvoxGoynSxFZQUEBeXp5u39HRsUR9\nFBQqA8VgKDyWDB8+HD8/P1599VUAoqKiePXVV3nuuefw8PBg37595OfnAzBw4EC+/vprNBoNtWrV\nolevXrzxxhsMHTq0mNzExEQaNGiAm5sbU6dOZd68efzxxx84OTnRpUsXFi9eDEBqaipdu3bl+++/\nL1HPESNGsHnzZp599lmWL1+Os7Mz165do3fv3qxatYr8/Hw0Gg3Lly+nV69eZdZHQaFSqOIajoKC\nWbCwsNA1ScmcP39e2NjYiKioKLFt2zbxxBNPiM6dO4t+/fqJadOm6foqhJCan6ZNmyaEEOLAgQPC\nwsJCnDt3zmhcq1evFl5eXsLX11d07txZ/Pzzz0IIIa5cuSKefvpp4e3tLZo3by7mzJkjhBAiLi5O\n1wRluH/27FkREBAg2rZtK3x8fERERIQQQuoDmTRpkmjVqpVo3ry5GDVqlEhNTRVCSE1SJ06cKFUf\nBQVzowyrVVBQUFAoE1XSJHX06FFCQkKKHV+6dCmtW7cmJCSEkJAQLly4UAXaKSgoKCgY44HP9F60\naBFffvllkU47mZMnT7Jhwwbat2//oNVSUFBQUCiFB17DaNq0Kdu2bcNYS9iJEyeYP38+Xbt2ZeHC\nhQ9aNQUFBQWFEnjgBmPQoEFYWhqv2ISFhbF69Wr279/PgQMH2L179wPWTkFBQUHBFA/V4oNTp07F\n2dkZkMannzp1itDQ0CJhmjZtyt9//10V6ikoKCg8sjRp0oRLly7dl4yHZh5Gamoq3t7eZGRkIIRg\n//79dOjQoVi4v//+GyHNUP/Xb7Nnz65yHR6WTckLJS+UvCh5M8eHdpXVMFQqFQAbN24kPT2dcePG\nsXDhQkJCQrCxsaFHjx706dOnqtRTUFBQUDCgSgyGp6enbsnpsLAw3fGwsLAi+woKCgoKDw8PTZOU\nQvkJDg6uahUeGpS8KETJi0KUvDAvj9xMb/2F2xQUFBQUyoY5yk6lhqGgoKCgUCYeqqVBdu7cSadO\nnfD39+fTTz+tAs0eH2J376Z3rVp0VKlK3IJVKp5WqRikUjGsdm1iyzn3JXb3bgY3aUI/KytCtPI6\nqVQ8pVLhp93kOHqrVPSwsaGPnR0DrKwY4ejIRB+fcsepoKBQNTzwJin9pUH0fS3n5eXh5eXFb7/9\nhr29PQEBAezatYsaNWoUVVhpkiqV2N27eWfYMHIyM0sM5wE0B97VOzbe0ZHnNm0iyGD+i6l4Phg5\nEveUFBKBTCBLK/MKoAYcATvgKqAB3LVbbaQRF/nAPy4ujPvyS4JCQ/n5Z6heHdq2LVeS75vY3bt5\n98UXuXf7Nnl6upVGdaR0yzmtf538X/510IZzL+EaY9eZOiYfdwFSAButTEHR0SzGrjOM1wHp6zFd\n73rDuI3paiiPUs4b08GYjg5AHpBrRK6xPJDTbm/wq19SOFA0f8pyf40hy1HrHZP119fTEFNpLS1/\n9fU2dVx+DhyAbGtr+r75JhMjI4uEN0fZ+cBHSclLg8h+lGXOnj1L06ZNqVatGgCBgYHExsYyZMiQ\nB63iI8nZhLP8mfAn7nbufPPeHGwyM7Ep5ZoWwDsGx1anp/Pqf+fj0qE+ni6eONs4F7vu7l04eBC+\nf/tDNCkpuAF/IxmGaoAbcB3pJVYDt5GMhSNSAVvTIN63UlJYPOFtAq6E0qMHNG8O586VPw8qRGYm\nsdHRvDNsGBaZmVgBzkiGz7qUS5sBiUiFtT1S+lP1/mcj5UcWUBcpT9qWcA3a/Sy966z1wrgbCesM\nxAENgbvaY3Z6Osqy9K+Tr5WPeQBp2n07iqdDXw9T+SLHaRiPsfj0j2UDOdq0ZWtlewDJSAWhk/a4\nMKGDnTZMEtAAiNf+XjfIBw+9YyWlozRkOW56x+Q8lv+XlD/G7m1J+etB4X011OOOXno8gVXyydxc\nxs2dywooZjTulwduMAYNGsSVK1eKHU9LS9MZCwAnJydSU1MfoGaPLlv+3MKz3z4LQFDDIBxunaF4\nMV8cUzf/4vXfefbbZ7G0sOTQ2EM42TgBcOECfPMNrF4N165BN3KoAfyF9NJaIxmIv5BeCg3Sy26j\n3WyRvmANGxvfBZ66cQV5xRgXlzImvKKkpcH778OPP8KJE0Q5OWGjNRZW2jRYlUGMbChdtdcU6P23\n18qQN6E9V9I1GFwj6yCHwSBsAZLhqa6NL0dPBnr/DePA4JhA+qp1N6KTvh4l5YsV0r02jMdYfPrH\nLLTHnQzisdWeK6Cw9iPHY5g+O20YNZIBlfNa//nWP1bW+2sMWY7+x5isk6YEufr3Vz9+KxP/ZfTv\nqz4uFNZy7NEzFlrWCMHwhQuZOGYMzJ0L1hUxj8V5aJYGqVatGvfu3dPt37t3D1dXV6NhI/WsZnBw\n8L9+6Nznv3/Oh30+ZHKnyahUKv5vY29OX4oq9TpTVWefJl3ZNfFHBm8ZzPLjy5kROAOAl1+Wzi9Z\nIhmP05/akB0nvawFSM0HGqT9DKSX3Eb7K5AKFFO2oEY12LEeBgwAg1ZI8zNkCOzbp9u1vHcPBwq/\nYjWUrXNPNpT6X4/yf1tApSczA8mIlnQNeuHlX/0whmGzkAoMB+1/Bz0ZMtZGrjOMN6MEnfT1KClf\nBNIzYBiPsfj0j8kFvpxf8nFH7X6WwTl9feR9Oe1ZSAZDzmt99I+V9f4aQ5aj0TsmP9+iBLkavbD6\n8eunxzBtUPS+6pMOuo9CWxNxpuTkECm7GK5Vy0So8vHQGIwWLVpw8eJFkpOTcXBwIDY2lunTpxsN\nG2nmatajzPnE8xy5foQvB32pmz3fKzycYwcOlNqHcQ54i6J9GC87OjJyyhRUKhVj24/lo2Mf6QzG\n5csQEwONG0thY9uGM2/Az+QVFFAd6WXK125tgOMUtkFbIbVJm6ozOjZuRP/+0kf/kiXlz4dycfUq\nbNokGQ61mvzu3cmIjtadll/q0pANZYZ231bvv6CwjwKkr8CMUq4xhRzGMKwtksGQjbMpnY3FoX/M\nXqtvaTqVli8lpcWUDmiP6+eXnd5/W4rmozFkvey0suS81kf/WFnvrzFkOfqGwdAYmNJRDlue+E2F\ndUNqqoLifRsyLm5uRO7ZA/XrQ61azFGpTIQsO1U2rFZ/aZA1a9ZgZWXFkiVL6N27N/7+/rz44ovU\nrl27qtR7ZDhz5wxdG3bFza6wVTUoNJT/27IF25o1dZ2rxrZ/gINAP2AQMKxWLUbqdXi3qN6C84nn\nAcjIgIQEaNiQIvEM/L//I1krT4VUg0hEepgbIn0JpWrPa5Cq1+MM0vCyoyPPzp0LSPIvXzZP3pgk\nKQlCQkAtNRT0mjaNHHt7UoB72i0HqV2/pE1u8/fS7qfr/U/VypFlpmnPlXRNml54/evkMIZh05EK\nLy8DnVP0tntGrjMWb64JnfT1KClfUkzEYyo++ZicF6l68aQhfWnLulvrnUsxCCfvy3p5Gfzqb/Kx\nst5fU5uc3/J7lGNED8Ptnl5Yw3tlKm0l6ZpE0WdtAkV5SaUiaMoU6NjRbLULKMMoqdOnT5ORkYGF\nhQUzZ85k5syZ9OjRw2wKlBdllFRR3ol9h/TcdBb2ML//kHxNPg0/aMjAFgPhXm2i583kzzPFv1Lk\nEUa5t2+Ti1RlT6aw+SkVqdahRjIqNkhf2jYqFY6NG/PismU6I1VQAM7OEB8PTk5mTxJoNGBjA1lZ\noLfMfuzu3bz93HNYp6aSCtRBag64a0oOUhNbc6CWNj37gNZII8CikdIrd+gmAT5IRrpaCdfIfQmp\n2nDyyLPWWnka7bVyWHugJZKRlkc5JWhlq5C+0FO0YeTr5OYjOd492nMNkL5c9XXaR+Goriygvjbd\nhvki9zU0QRrUIMejf14/nbIO9bTxOgAHkAxXrlYOSB3MtSkcPJGlp0+uVoaVVq8b2nQmUzgaT44r\nF+ioPbavhHSUhiynQKubPBIwAeneyKPmjOWPG9I7kYDUD5Kl/a+fv/ppk+NrinRf7xrI86bwnqq1\nMu2BHGtrnqqkUVKlGgw/Pz+WL1/OrFmzeOutt3jjjTf49ddf7yvS+0ExGEV5bttz9Grci9HtRleK\n/M9//5wXdrwAwJMX/uCnr7wrJR59mjaFPXukX7OTnAyNGkFKitHTsbt3s++jj7hz/Tqp8fHUql0b\np7p16TllitGhxhEjRnB882YcNBqsgUwXFxo3boyHkxMFtrb0nDIFgH0ffcS5s2fJvnmTuwUFWAmh\nGyhgeE3tLl24deRIER3SraywUanIz8kpolftLl3YsWoV6tu3dc0xzpaWpNvaYunoSP69e1jm5FCg\nVmNjbU39hg116ZH1Umdn879r10i8fh3H3FzsgWRra+rWr0+jevW4npaGjUqFh5NTkf9y+uR8id29\nmy/efpuMK1ewBhwbNeLZuXOLnJfj088bY9ecOX6c3YsXY5mVRa4Q5Fla4mJtjYOVFTmurri7uBTJ\nr583bCD36lXS8/Ol0VcWFthqNFSzsUE4OhI0ebKkw8cfY5ufT0JBAdVr1qRRvXrF0lEaKyIjif34\nY7KzskjLzkatVmMvBAVqNXkWFjip1ThYWRlNv5zWzNxcLC0sqN+woe7emsrfM8eP6/TOtrQkaPJk\nJkZGGs3PktLwQAxGSEgIP/74IwMGDGDv3r2EhIQQrdfe+6BRDEZROq7pyId9PsSvvl+lyNcIDdvO\nbmPuN9tomPcUO995vvSL7hMfH1izBnx9K0H4pUvQuzcoPlUU/mU8kKVBVCoVo0aNom/fvmzZsgUr\nq4oOSFOoDG6n36aWo/naKA2xUFkwxGsIuck1cahxp9Li0adaNai0EdVJSeDuXknCFRQeb0o1GJs3\nb2bMmDGEh4fj4eHBpk2bKhyZRqNhwoQJ+Pv7ExISUsyhx9KlS2ndujUhISGEhIRw4cKFCsf1b0AI\nQUJmAh4OHpUWh0YD330H50/UxM79wRgMZ2dpqkSloBgMBYUKU+qw2pycHBo2bMiFCxfYsGEDrq6u\nuLm5lXaZUbZv305ubi6HDh3i6NGjTJs2je3bt+vOnzx5kg0bNtC+ffsKyf+3kZGXgQoVDlbGRmqb\nh6lTITYWHF1qoLE/X2nx6OPsrNQwFBQeRkqtYYwYMYI7d+4wc+ZMevbsyWuvvVbhyA4ePKjzote5\nc2d+++23IudPnDjB/Pnz6dq1KwsXmn/Uz+NGQoZUu1CZYXy1KY4elWZ2b1xTg8SsB9ckpdQwFBQe\nPkqtYVhYWNC1a1feffddwsLC7msV2bS0NJydCxetUKvVaDQaLCwkuxUWFsakSZNwcnJi4MCB7N69\nm1Ajvf7KTG+JhMwEPOwrrzkqNxd+/12a96OmJrfTb1daXPooNQwFhfsnJiaGmJgYs8os1WDk5eUR\nERFBUFAQ0dHR5ObmlnaJSZydnYss/6FvLACmTp2qMyihoaGcOnWqVIPxb0auYVQWX34JeXnSvJ/8\nezW4k/HgahhJSZUkPCkJWrWqJOEKCg8Phh/Tc+bMuW+ZpTZJrVu3jiZNmhAREUFCQgLr16+vcGQB\nAQH88MMPABw5coQ2bdrozqWmpuLt7U1GRgZCCPbv30+HDh0qHNe/gcquYaSnw4QJ0oToGg6SwXgQ\nQ5ors4aRczMJ4abUMBQUKkKpBuPWrVu0atWKo0ePUrNmTa5fv17hyAYOHIitrS0BAQFMmzaNpUuX\n6pYGqVatGgsXLiQkJISgoCBat26t6+9QME5CRuUajLQ0kMc32FnZYWlhSXpueqXFJ1NZfRhXL+Vi\ns2ML3/xcsUEbCgr/dkptklq5cqVuwseff/6Jp6cnQUFBFYpMpVKxcuXKIseaNWum+x8WFkZYWFiF\nZP8bqewhtWlpRZv73e3dScpK0i13XllUVg0j5fcrNAAO3PVimPnFKyg89pRqMPTnXeTm5jJ06NBK\nVUih7CRkJtDcvXmlyU9LK1yZFqC6fXUSMxPxdPGstDhBqmGYWLnjvshIyOR32nIuvZ75hSso/Aso\n12q1eXl5XK70pUQVykpld3qnpUlf+zLudu4kZVZWb3QhvjN6kHHD/BYjIyETja09tx/MYC8FhceO\nUmsYtWrV0o3zz8vL49VXX610pcpLxIgRRG/caHRd+LL4un1UuZNxp1L7MJKSinq/q+NUh2tp14qF\ni929m6gPP8QyJ4d8Gxvq+Plx8/Bh3X6v8PBiC7ClX7mCjRA4NGrE8HnzChdNEwL7Qz9jY3UFIdph\nzikmWUmZWDnbExcH9+6VvhqunK6EGzdIiY+ndu3aONapUyQ9FcUwz4zJLEuYyoj3YZRtbj3uV9eq\nSKv87ty6cAHLnBwcbGxwadas6PtTyZS6+KA50Wg0TJw4kT/++AMbGxs+/fRTmjRpoju/c+dO5s2b\nh6WlJWPHjuWll14qrrDBAloRI0awb+NGo24hwcBgIC0J3X/27DIZDX1DZOiUXvYkZwc42tjg7uVV\n5hsny7XXyrRCWiLZ1sICe09PXvrwwzLJqb24NsfHHaeec+U0sbRuDV99BW3bSvsLDywkKTOJ93u9\nrwuzIjKSne+8Q2pBAXlIyy67I/lpyDOQJy9n3RTQ95E02dWVYRs2SGm+exfc3enlfIQNFzpTs2Zh\nuBWRkXw5fz55eYaSCynpA2HTiO9pd3wNYz12MmNuAhHng+hYpyNfDPxCt7y5ZWoqgqLuQgv09rOQ\nls829bwZ6mLo1bBAq58V0vOTQ6FrziykZcqrIz1XGqR8NHQgJLs7tUfy6+yC9PykI/m01l/qOlNP\n35LujSn045L9bFdDWmVX9uEgyzZcvrysFFDo0lb+1ZddHgooXLpcXkbcWD4YW2rdVftf/37o32s5\njJ32mBvwp8H1hnGZCzmP9H2ZW2nTaIN0//O0ulia+DB+IKvVHj58mHXr1pGfn49Go+HWrVvs3bu3\nQpFt27aNXbt2sXbtWo4ePcqCBQt0S4Pk5eXh5eXFb7/9hr29PQEBAezatYsaBv46VSoVW7YIXFzA\n0RGm+qtMuoUs5hwdyXnPeWtb5uzJwt0d9Eb2FiFixAj2b9xYYnockG6UNVoj4uLCuC+/JKh3b3j6\naRgzBoYPB+DI9SN0rNORmSOf58jGjTpH965IBUM8hS9xda3cdJWKNsOH897XXxeLOysvC5f3XMic\nmYnaovijKfuouFtK+0uRNNSqxeRPP9UZK1dXuHgRqleXwkb9HcXE3RNZ3nc53Ty7sWvbRj4a8RKq\nAo2ugJB9eDtqf28iFYxywSlXaeVCPQ/oDZxo48U7B36i9j9J4O3N9NY/0ntpH2TXKysiI9lcyjhy\nY/f7JcBH+4HwUcAm+uV/x2t1NlOj7yp+V63jbMJZvm/9NREDn6FWQQEp2rxI0eoo+5KoSEFoaDDk\ngkqN5EtBjkMuwMtS6OoX+hkU+njQL/gq6uuhpLiyke6XKX8P9xOHA5LfDk+kQri8+WxKblkNmJzO\nFCQ/KKb8fZT0IVRRY1lW9POpGpJjpbt6+t7THneg0FmZ/oexEGBhcf8Go9QmqVdeeYWIiAi+/fZb\nvL29adCgQYUjK2lpkLNnz9K0aVOqVZM87wYGBhIbG8uQIUOKyRl9vCVOma3Jz1PTqYREGHWODvTN\nzWb4F1NIzEzg5RZv069zK/74A/z9JVcJtWtDrLYGYAoPJOc5+u5Nx6ek8FnE26R8D/337oWaNWH4\ncK6lXsPvMz/WP7OeM99swRmp0MhGcqhjWLAkajeE4OjGjTy9caP0RadSMWjWLK4GZvPewfdoWb2l\nSWPxzrBh5GRmli8N8fGMHz4cNm2iTUAoublFR0l1b9SdtrXaMmDTAFztXKm3Mh6nAulhheIOcWTH\nPNlIhbBs2D0pel9eBs79+Rd1ltRh6TE3XgXaNEjht9+QDMa1a+ydNw+97hSjGLvfnwID3nmH5/Id\nuHdGg3OIPdWrw7ZbS1j05BLG3ujH6y/3w6VA+qLUIBUIttrf6kgFwRFM+6s2hp1euvX1qw0cQrr/\nchzyF618vqS4NHrX1EEqxPTDq5HSkaOVdz/ox6XW/maYSbZ+HFZIz4sb5c9nU5QlL/V1yEPya24q\n7/TzwnC97vLEVVHkfAKp9mWhp68Fkktkww/j9XPeY9KcSJo2lTxmmoNSDUb16tUJCwtj7969REZG\n0rdv3wpHVtLSIGlpaTpjAeDk5ESqibGVqlNX8fVshJ2lHYlIN8sYppyj2wMzxzdl6Z7/sWrnYVbN\nbUW9evDmm9rz9hBEyZnTAnjH4NhqYNifp+ny5wtcqBFIs/PSYn2fnPgEb+v6jN4+miEF0lf3Va0e\n7kg33dD5Oxgp0IVg9Jw5/NgNJr0xiSW9Cxt29u6FGTOkfofW2R+Sn5lZqi/kf5AM09MU1pImp6fz\nwYSPGOB2jmda9UelekIX3tLCkq3DtnI7/TZHrh9h5QcjySRd93LZU1hzOIJUoNnppU2NVOswLNQ/\nAfoWwKGc52kXtYHMVs1p5pHMqDchbs4XvJ7/HtYaTalVfFP327qggGrvvsFUWzcc6g7HsdpdErNv\nMbbrUzAbqqcUNgHZGJH5F5RqrAyRm1aMyXIpHrxCcdkbCS/7gDZMhzmoLNkWSF/HFclnU1TkvlU0\nfRV9RsqLvl9we6QPEvm/sQ/jzmRjEejINWsNVmoruHX/OpRqMNRqNWfOnCErK4tz585x7VrxTs+y\nUtLSINWqVSty7t69e7i6uhqVk7Gv0Fw+tdqCDBPVLFOVrzw7O6Z2mUpcYjy5ze/w3wHSjOZvNmSx\nfY8dLmcP8/5rJWeOqXPWKgtqiATCxM/8fLQN+atWknjgI/74KpX8dZ/hL17EDslQ2Go3Ux5GjBml\n9UDoSRs+7vtxkeOzZsHIkeDlBV+Oucg1Sv8KNFpLAqxy/mb0H3vp2/d/EDcbMjNhwwb4+WfYtIma\nTZow4I8cvk7ML6K7LZLxk18eOX7ZYGgw/QXmCPgt2MD23g1p0boLnRdPJNf6P1hlS2Yvg9LbhE3d\n70zg5vp91BndU+rpbroHfgrm2FE1nX6QCgi5T0oguTaVf7OQDGB5sdVer48syzAOw/MloX9NhpHw\nGso59LGMcQntZi7Z+nEIpK96c665XJ77JqezpLwzvFcVjauiyPkEko62FN4PUx9KDYDtP1ykQBSQ\nV5BHY7fGJkKWnVINxuLFi/nrr7+YMmUKzz33HGPHjq1wZAEBAezcuZOhQ4cWWxqkRYsWXLx4keTk\nZBwcHIiNjWX69OmlymwzfDhHTPQ15CE5R9e3vi8Cvd94AwDP6jWJU8dhbw8Lh53kiw2+8FpLOHuW\nTEouoAw7M2WqtW9Dwq6jnPa2hGHDsHxlIisBJkzActp03JEyXe4wFxivXYDpm+OBtdQ3snMntG5N\nQTsfJp3IYeTVPVi0bMHnd+KoZuJafUzVkoYnXIJOnfD4YT00NlgKpmlTySXe+fPUFoJ4vVNZ2l/5\n5TGsBVtg+qUrcHSEW7fY+fNUVMk1aAFYhfaGAQOgf3+y6tRBk51dYnqM3e+XgCxbW+oMC4TRQK9e\nuKoP8FbDdnTsCPwA+bVdyY1L1nVu5+n9Fmh/y9uBKTDeWa3f3CXHYXi+pLj0r7FG8v2t/5zInbrm\nQD8uK6QC1Vyy9eOQfWHfxHwdxeW5b3I6S8o7w3tV0bgqipxPcnyyn3L5vzFy7eyo7WSq/aVilGow\nnJyc6NyI0eAUAAAgAElEQVS5MyqVim3btmFlZUVeXl6FPO8NHDiQffv2ERAQAEjrVG3cuJH09HTG\njRvHkiVL6N27NxqNhhdffJHatUtP7Htff00EGB1Wm4n0QvXFuHN0D3sPjt44CkCdVbNg1Cjo0AHU\nauwmTSIJ0zfjHPAWRb/Ox6jVjJ07F7calqSmQv5Xmxk/3B4/h+a81GsGzJtHtRo1QAgKKF6gGmLK\nKGXfuwebN0s7x46hPnaMUQD9xkHz5tT+3/+IT0wsRbrpm1/LzQ3WrYN9+6TaxcyZ0omoKDh8GDp3\nhk6dcBw+nIyoKN11BUjVZPnlsUYaxaNGyke1djNmxJ+cNg0cHXGzc+N8dVepl06PoRERrCul07vY\n/UZ6qYZERICtLeTng1pNWtQP1HSQhl/tCtuFqk06q0aOJS0zEzskw6f/m4ppo26KPG1e6KdCllXN\nIA7D8yXFpX+NPHDCxsT5+0VfllwzNJds/ThA6nBOx/QHRUXklvW+Gd7zksLcb1wVRb9mnoX0fKmQ\nnvnSPozNSakGo1+/fly7do0WLVpw4cIF7O3tyc/PZ9GiRTz/fPn8O5e2NMjTTz/N008/XS6ZIBkN\njIwkKg1nG+fCtZHi4mD+fGnYlBBM/fVXPtizh9spKRhbn1du/++HZP1zHByI2LxZN8LIzQ0SE+Hw\nzaNMGTxVuqh6dTLUasjPxxVoTGEHqDHDZMwojQaCwsLg888lo3HnDvznP9LJqVOhVSsco6KKFOSm\nMGWQnDp2lNq2vLygoACGDpVWImzXDnr21IXrFR7OsQMHyMmUvqXlfoBkpJfHg8IHPQOpc9wJaShg\nP6RCPR1oHRamM+L2VvZk5BY3pfL5r+bPR2iH1eZROGDA2BBWrK0ZoD+8UC19A6Zmp9LMXXruQpuF\nQjNw3OLIsvBwrl2+jBrpRbQ0+C0P8nX5Ro4lGcjONzhfUlz61/xD4agYYeT8/aIvS/6vouxDcssT\nRxqS4cvAPKOMynPfDO+1sbwry7nyPiPlQT//DfdL+zA2J6UajEaNGrF//36qV69OcnIyL730Ep98\n8glPPfVUuQ3Gw4aDtYNUOAkBV65Aw4bSCZWKoI0bYfdu9n30EersbApsbek5ZUqZJ8i4usLVOylc\nS7tG6xqtdce9hg7lyMaNupejKdIQy0woZpgMjdI9lYqBs2YVPgja/D+4I5Ff24czo5VUIzMsyE1h\nzCC97OjIyClTCg+o1VIzlBGCQkP5vy1bdMN3DR9iuUCzQBo+XMfKCnX9+ri7uODh5GQ0Tx2sHUjI\nSDAa38TISLO8BGm5aTjbFO2iDAoNrZJJZgoKjxKlGoz4+Hiqawfiu7q6Eh8fj7u7O2p1ZbbYPRgc\nrBykGsaFC+DhIS1ipMf9FCIuLvDDpV341/fH0qIwm/Wb0BKRvrhVgJu1NU2aNcOpbt1yGSaAb30X\noD/a2bAgN4WhQTKch1EWgkJDCYqPLz1gGbG3sicjz0xjAE2QllPcYCgoKJROqQbD19eX4cOH4+fn\nx+HDh2nfvj2bN2+mpv4U3DKQlZXFyJEjSUhIwMnJifXr1+sMkczUqVM5ePAgTk5OqFQqtm/fXmQY\nrrlxsHaQCqejR8HPz6yyXVzg4K2fGNal+DySijahmeLuXam1SB9zF+QPCgcrBzLzKrNyLzVJKQZD\nQaH8lDpKbsWKFYSFhZGdnc3zzz/Pxx9/TLt27fi6nAXeypUradu2LbGxsYwaNYp33jEcnwMnT54k\nKiqK6Oho9u/fX6nGAqTCKSM3A06fLl7i3icuLhCfeZ2GLg3NKtcYSUmFfisedXRGvBJJy0mjmk1Z\nxpEpKCjoY9Jg7Ny5E4DVq1cTHx+Pi4sL169f55NPPqF58+bY25dvrqf+LO8+ffrw008/FTmv0Wi4\nePEi48aNIzAwkHXr1pU3LeXG0dpRKpxOnza9RkgFcXGBOznXKm2dJ30SEh4fg2Gq09ucKE1SCgoV\nw2ST1N270moqt27d0q1WW1Y+++wzPvjggyLHatasqasxGJvFnZmZSXh4OK+//jr5+fmEhITQoUMH\nvL29yxV3edB1ev/xR+EKe2aimosgueA69Z3rm1WuIRkZ8NdfZle/ynggTVI5SpOUgkJFMGkwunTp\nwoULFyrkAe/FF1/kxRdfLHJs8ODBupnc9+7dw8Wl6AIJ9vb2hIeHY2srzVvs3r07p0+fNmowIvVG\nyhg6Oi8PdpZ22GXmIrKyUJVhzkd5sKmWjEWOVaV7p7twQVr/ytGxUqN5YLjYupCcnVxp8jVCQ3pu\numIwFB57YmJiiImJMatMkwZj/PjxJmsW0dHR5Y4oICCAH374gY4dO/Ljjz8Wc/N6/vx5wsLCOHny\nJAUFBRw4cIAxY8YYlRVppvHFKpUK71xX8uu6YmVOxwtAgeN17DMqvznq2jW4j/UgHzpqONQwOazW\nHGTkZmBnaWd00UYFhccJw4/pOaVMfC0LJg2GuS3TK6+8wujRo+natSs2Nja6TvOlS5fStGlT+vXr\nx6hRo/Dz88PKyooxY8bQsmVLs+pgjFY51ciq6WZyPaeKIuxuY51by8xSi3P1KtSv3FavB4qHgwcJ\nmQlohAYLlblXLlKaoxQU7geTBmPw4MFs3bqV2rVrF6tp3Lx5s9wR2dnZsWXLlmLHX3vtNd3/119/\nnddff73csu+Hpll2pFZ3MvtKkxrbu5BV+T3Rj1sNw1ptjaO1I8lZybjbu5d+QTlJyU7BxdbUerEK\nCgolYdJgbN26FYBVq1axbt06srULv5W3A/xhp9E9NYnudpj7I73A+i4i88EYjEocF1Al1HSoyZ2M\nO5ViMJKzknG1M74KsoKCQsmUOnFv+vTpfPLJJ7pO6sfNYNRNFdxqoKa9meXmqu+Sf6/yDcY//zxe\nTVIg9WPcybhDSw/zN0kmZyfjaqsYDAWFilCqwWjdunWFRyE9Cngk53DQLpOKu4UyTo5FMrlp5ZsN\nX140GjhzRvK9/TghG4zKYMCmAbqFBxUUFMpHqb2KAwYMoEuXLrzwwgu88MIL9+UPA+C7777jueee\nM3puzZo1dOzYET8/P3bv3n1f8ZQVt8QMPkuIMvvY/5S8W2QnVm6nd1ycNEHQ3fwtN1VKDYca3Eo3\ng3swE1xIulBpshUUHmdKrWEsW7aMiIgInfvU+2mSmjp1KlFRUbRvX7wBKD4+no8++ogTJ06QlZVF\nYGAgPXv2xNq6MleZB6eENOwbNeN84nna1y6qV8SIEUb9bMg4IHmKs6b4wn3xmTcgrR7Z2ZIrhooQ\nMWIEf33zDQ5CkKFS4TV0qLQOlZZ//pHmYDxutK/VntirscWOr4iM5Mv588nLM73AtiWFbmKzra3p\nq7fMc75GWpw6bmqc+ZVWUPgXUKrBqF27Ns8++6xZIgsICGDgwIGsXr262Lljx44REBCAlZUVVlZW\nNG3alD/++IMOHTqUKrekgr2kAoQ7d1BZWPBE4w5EX4kuYjAiRozgyMaNJl2KFnNvGh/P+OHDYdMm\ngkJDuZZ2jWqquiQlQd26ZddXJhvoAkwHorTpOL1xIy/cuMG6X34BHr8RUjLdPLsxN3YuQgjdB8qK\nyEi2zJmDFaZd2toBnug5ksnNZdzcuaxAWho96u8o3O3c8XTxrNwEKCg8ppRqMGxtbenTpw/t2rVD\npVKhUqmYP39+idcYWxrk888/Z9iwYSbnd9y7d09XiwHjy4cYo6SCvbQChP/9D7y9eSMwgie/eJID\nVw+gtlCjERoyN39X4lBbo+5N09MZPHsiW1T9yC3IxTarEePHw65dZdNXn+rA88BeivqreCE2ll92\n7abb06FcvPh41jCecHsCFSr6b+pPHcc6CAQ3lnxBaXPm7SnqdQxgjRCELlnIsXZXWH96PXOD51aS\n1goKjz9l8rgH5WuKMrY0SGk4Ozvrlg4ByYC4uhofzRI5frzkbtPSktjNm6luNJTpAmT4smVMHD4c\nIiOhTRva1GzDuUnniPgpgobVGtKgWgN2812JHTymMs5VY0U953rsHbmXVq9bceMaqFTg7Ax16kDD\nc9+Uac6HA1LN4l2D4+uATv0+4mrNUG7fltx6P26oVCr+2+u/rPt9HT61fQC4p9lQqic2Uy1/Thpo\nWV0acdWnaR/zKaqg8BBTGUuDqIQQ5vCIWGZiYmJYvXo1GzduLHL89u3b9OzZk+PHj5OdnU2XLl04\nffp0sT4MlUqFkMeROjsz/M8/TcZlC3xu5PgYlYrP5WS/9RYYWWq9n5WVZJRM0JbiNQyAt3v3Zt6e\nPYC0KGB+Pvz9t7R6emIi/LeLJSqNKVfzhWQAvkCkkXOzunbj5a9jOHMGnnwSKuBe/ZHj2erVyUxK\nKjGMPbDZyPHh7u5sSkystNnjCgqPAiqVivst7kutYZgbuVlLRn9pkPDwcLp27YpGo2H+/PmmO7yv\nXtX9zSihYDeVNdlubnDypOR5qKFxfxWyK1VTlMW9qZeX9CuvnN6oEWRaqCTH16XgBZw2cU7Y21Kv\nHtSr/KWqHhq6TZ7MljlzSqxl5AETKFqrfEmlImjyZADFWCgo3CcPvIZxvxhaSblPwBjF+jCQChAf\nfb/YJVCWUVJOlM+9aUn66tOMQofz+p5BZjZpQp9ly/6V/qdXREby1fz55JYySsoVqbaRY23NU/qD\nHBQU/sWYo4bxyBsMKH2U1MNWgJRllBRIHd8Cyed3dQ8PPH18yu3vW0FBQQEUg6GgoKCgUEbMUXYq\njboKCgoKCmXigRuMkpYGmTp1Kh06dCAkJITu3buTlpb2gLV7tDD3kLlHGSUvClHyohAlL8zLAzUY\nU6dOZebMmSarRSdPniQqKoro6Gj279+v8wGuYBzlZShEyYtClLwoRMkL8/JADUZAQAArV640ajA0\nGg0XL15k3LhxBAYGsm7dOiMSFBQUFBSqikoxGJ999hne3t5FthMnTjBs2DCT12RmZhIeHs5XX33F\nnj17WLFiBf/73/8qQz0FBQUFhYogHjDR0dFi+PDhxY4XFBSIe/fu6fbfeOMNsWHDhmLhmjRpIpBG\nmyqbsimbsilbGbcmTZrcd/n90IySOn/+PIGBgWg0GvLy8jhw4AC+vr7Fwl26dAkhxAPZVCoV3t7e\ntGvXTreNGzcOIQTt2rUjNTW1zLJSUlIICQl5YLrfz3bjxg38/f3NJm/NmjWsWLECIQSrVq1i4cKF\nVZ5GZXs8tu+//57w8HCEEOzatYtZs2aVW0ZoaCiff/55laelsrdLly7ddzn9UC0NMmrUKPz8/LCy\nsmLMmDG0bGl+F53lJSYmBje34q5WT506VS45ycnJHD9+3FxqVSp16tTh4MGDZpN34MABvLWOx8eP\nH282uQoK/fr10y2Qevz4ce7evVtuGYZlkkIJCAWTqFQqkZiYaPJcUlKSWLdunQgMDBQ+Pj6ie/fu\nIj4+XvTs2VP4+PgIHx8f8fbbbwshhAgODhZqtVq0b99eFBQUFJF1/vx50aNHD+Hn5ycaNmwoBgwY\nILKzs3XxRERECF9fX9GiRQuxbds2IYQQ69atEz169BC9evUSXl5eokePHuLmzZtCCCG6desmBg0a\nJLy8vMTHH38srl27Jp5++mnh7e0tWrduLd5//30hhBD79+8X1atXFzdu3BAFBQUiODhYzJs3T8TF\nxQkHBwchhBCzZ88WI0eOFP7+/sLT01M8++yz4rPPPhNBQUGifv36YuPGjUIIIeLj48WAAQOEn5+f\naNSokQgODhZ37twR27ZtE25ubqJu3bpi+fLlYvbs2WLy5MlCCCHOnDkjgoODRZs2bUTbtm3FF198\nIYSQmi39/f3F888/L9q3by+8vLxEdHS0uW6rQiURHR0tunTpIgYPHixatGghfHx8xM6dO0XPnj1F\ngwYNxGuvvSY0Go0IDw8XnTt3Fl5eXqJly5bi4MGDQggh7ty5I0JDQ0XLli1FYGCgGDx4sIiMjBRC\nCGFjYyMiIyNFQECAaNSokfjggw+EENJ78PTTT4ujR4+KmjVrCg8PD/HWW2/pjsvo79+4cUP06NFD\ntGrVSvTp00d06NBBrF+/XgghxF9//SV69eolfH19Rbt27cTatWsfZBY+9CgGowRUKpXw9vYW7dq1\n020JCQm6c7LBcHNz0/W/zJ07V0yYMEEIIURGRoYYPny4SEtLE1euXBGOjo5G45k+fbr46quvhBBC\n5OXliTZt2ugMg0qlEvPmzRNCCPHHH38IFxcXkZCQINatWyccHBzE+fPnhRBCzJgxQwwZMkQIIRmn\nl156SSc/KChILF26VAghRGpqqmjbtq3YtGmTEEKIt956S/Tt21fMmTNHPPXUU0IIIeLi4nS6zp49\nWzRq1EikpaWJrKws4ebmJv7zn/8IIYTYsWOHaNasmRBCiGXLlolFixbp4uzbt69YvHixEEKIMWPG\n6P5HRkaKKVOmiPz8fNG4cWPx3XffCSGEuHnzpqhXr544fPiwiI6OFpaWluL06dNCCCEWL14sunXr\nVvYbp1AlyPft999/F0II8dRTTwl/f3+Rl5cnEhMThbW1tTh48KAYNmyY7poFCxaIfv36CSGEGD58\nuJgxY4YQQohbt26JOnXqiDlz5gghpPdg+fLlQgghTpw4IWxtbUV2dnYRQyA/W0IIowZDjueZZ54R\ns2bNEkIIcfnyZeHk5CTWr18v8vLyhJeXlzh58qQQQoiUlBTRsmVLceTIkcrJsEeQh6YPozQ0Gg0T\nJkzA39+fkJAQ/v777wcSb0xMDKdOndJt1asX977Rpk0bHB0dAXjqqafYunUroaGhrF69moULF+Lk\n5IQQwmQc7733Hu7u7rz//vtMmDCBmzdvkp6eTl5eHkIIfvjhBzp37syVK1do2rQpXbt2ZcGCBXh4\nePDEE08A4OjoyLZt2/Dz8yMpKYmuXbsCkJGRwaFDh5g0aRIg+R0ZM2YMP/74IwBz5swhMTGRlStX\n8uWXXxrVr2fPnjg5OWFra0udOnXo00fyKdG4cWNdE0B4eDhdunRhyZIlvPLKK5w5c4aMjAydDDn9\nQtueeuHCBXJycnjmmWcAybPj4MGD2bNnDyqVioYNG9JGu8xv+/btdfHcuXOH+vXrc+HCBS5dukRg\nYCBBQUFMnDhRF0dV+IZ/0CxYsAB/f386duzI+vXrH5q8aNSoEW3btgWgSZMmdO/eHUtLS9zd3XF2\ndsbFxYV58+axcuVKpk+fztatW3XPyY8//sjLL78MQK1atRgyZEgR2QMGDACk5yEnJ4fMzEw0Gg2n\nT58mMDCQtWvXcvfuXS5dusS7777LoUOHiuTFP//8Q8eOHdm5cycNtK4qGzVqRM+ePQG4cOECly9f\nZuzYsbRv357g4GBycnL4/fffKz3f7oejR48SEhICUK7nICsri8GDBxMUFERoaCiJiYmlxvXIGIzt\n27eTm5vLoUOHWLhwIdOmTatqlXTIxgKgQ4cOxMXF8fLLL3PlyhU6derE4cOHS7x++PDhrFmzBk9P\nT15//XV8fHwQQvDVV18BsHfvXvbs2cOkSZO4fPkyo0aNYubMmahUKnbs2EF8fDxffPEFzs7O7N27\nl8uXL2OrdSSu0Wh0hbRMQUGBzi92SkoK8fHxqNVqLly4YFQ/w2XmrYw44IiIiGD27NnUrFmT8ePH\n06tXryJxym3E8q9GU3yN94KCAvK1S9Xb2dkVuVYIQV5eHuPHj8fBwQEhBK+//jrz588nNjYWIYQu\nLz766CMOHTrE3r17efPNN8nNzS0x/x81YmJiOHz4MIcOHSImJobLly8zbdq0hyIvbGxsiuxbWhbt\nJv3pp58IDQ3FwsKCZ555hgkTJuieE0tLyyLPhYVF0eJJfibkZ0gIwZ9//kl+fj4HDhygW7duHDly\nhGnTpjF06FD8/Px0eZGQkEBcXByHDh3CwcGBRYsW6fJC1lGj0eDi4lLkA/HgwYOMHj3ajDlkXhYt\nWsS4cePIyckBKNc7sXLlStq2bUtsbCyjRo3iHSN+gQx5ZAzGwYMHdV+2nTt35rfffqtijYwzY8YM\n5s2bx4ABA/jggw9o1aoVFy9exNLSkoIC446ToqKimDVrFkOHDgWkL4aCggKGDh2KSqXiiy++QKPR\noNFoSElJ0X05JCQksH37do4fP46trS39+/fH2dkZOzs7rly5Akiubrt06cLy5csBSE1NZcOGDfTq\n1QuAsWPHMnr0aNauXctzzz1X4eVYoqKiePXVV3nuuefw8PBg3759uvRaWlrqXk65cGjevDnW1tZ8\n9913ANy8eZNt27bRs2dPk7Wx6dOn88orr1C7dm1AWhkgKCgIkGp2P/30E8ePH9f5hnd2dtb5hn+c\niIqKwtvbm2eeeYZ+/frRv39/Tpw48dDnhRCCnTt30q9fP8aPH4+vry/fffed7iMhNDSUzz77DICk\npCS2b99eame0lZUV+fn5CCF0ck6cOEFgYCBnzpyhR48eREVF8c033+Dm5oaVlRV9+vRBCMEff/zB\n9evX+fnnnwHpmbS1tdV9qF27do22bduWe4DLg6Rp06Zs27ZN986U553QL1P79OnDTz/9VGp8D3yU\nVEVJS0srslSIWq1Go9EU+woxJyU9rPpfzPrhXnvtNUaPHo23tzc2Nja0a9eOsLAw1Go1Pj4+eHl5\ncfDgwSLuZ+fPn8/AgQOpWbMmDRo0YPDgwVy6dAkHBwdAGmU0Y8YM3N3dcXV11fk+r1GjBnv37mXf\nvn04Ojrq/Kir1WoyMzN18r/66ismTZrEunXryM3NZeTIkYwePZrly5dz48YNtm3bhlqtpnfv3owf\nP56FCxeaTJ+pfJg1axb/+c9/mD9/PjVq1GDIkCG6YXxPPfUUk7VOjGR5lpaWbN++nfDwcCIjI8nP\nz2f27Nl069aNmJiYYnGmpKTg4eFBr169WLBgQbFak+wDPi0trUK+4R8lEhISuHbtGrt27eLy5cv0\n69fvockLw/umv29hYcGyZct4/vnnad++Pa6urgwYMIDFixcD0ojJl156iTZt2uDu7k7Dhg2xt7cv\nUW6zZs3QaDS0aNGC+Ph4rK2tycrKonfv3nTr1o3JkyeTn5+Pv78/ycnJACxfvpz27dszePBgmjdv\nrmtCs7KyYseOHUydOpVFixaRl5fHvHnz8PPzq5zMMgODBg3SfRwC5XoO9MvUMj8bld9NUjJHjhwR\nwcHBQgghLl68KAICAkTXrl3FK6+8IjQajS7c66+/LrZs2aLbr1ev3gPXtSpQqVSibdu2Yt26dUKI\nwnSvW7dO+Pj4iMmTJ4vvv/9eTJw4UXfNwIEDxYkTJ6pC3UojKChIdOvWTQQHBwsXFxfRqVMnYWVl\npTu/ffv2Ks2LnJwc8fzzzws/Pz8RFBSk6/iV+frrr0X79u2Fn5+fWLJkyX3FNWPGDN0gAiGEaNOm\njW5UmxBVnxcVZcWKFeLw4cNCCCGys7NFp06dxJ49e0q85t133xUzZ84UQghx7do10bRpU+Hh4aE7\n/6jmRXmIi4sTXbp0EUIULRdLSvtvv/0mBg0aJI4dOyaEkDr4W7duXWpcVdokVZb2N5mAgAB++OEH\nAI4cOaLrEH2cuX37NkIIZs2axZgxYwCpw++XX35BpVKRkJBAUFAQnTp14tdffyUnJ4fU1FTOnj1L\n69atq1Z5M/PLL78QExNDdHQ07dq144svvqBPnz788ssvgNRhWpV5sWbNGuzt7Tl06BBr1qxh7Nix\nunNJSUnMnDmT/fv3c/DgQXbs2HFfzRyBgYHs0fqNv3nzJpmZmTz55JMPTV5UFC8vL6ZMmYKPjw++\nvr6EhobSu3fvEq/JyMjQfSW7urqSn5+ve0fg0c2LilKetOuXqXLYUjGrqSsnW7duFRcvXtRZx7p1\n6+rO7dixQ0yaNEm3r9FoxIQJE4S/v7/w9/fXDSd9nAkPDxe1a9cWwcHBuu306dOiW7duws/PT7z4\n4ou6WtiaNWtEx44dha+vr25I7uNKcHCwOH/+vLhw4cJDkxcTJ07UDREWQoiaNWuK1NRUIYQQR48e\nFQMGDNCdi4iI0M0jqChvvPGGLo1RUVEPVV48SJKTk8UzzzwjAgMDRefOncXGjRv/dXkRFxcn/Pz8\nhBCiXGnPzMwUQ4cOFYGBgeLJJ58Ut2/fLjWuKve4d+XKFcLCwjh8+DB169blxo0bAOzfv59169ax\nYcOGqlRPQaFMrFmzhqNHj/Lpp59y5MgRAgICuH79OrVr1yY5OZlOnTpx8OBBHB0d6datG4MGDeLN\nN9+sarUVFMrFQ9Xprd+Bfe/ePVxcXIqFadq06QObg6Hw76NJkyYVWnNn7NixnD17lq5duxIQEECz\nZs10S8q4urqydOlSBg8ejLu7Oz4+Pkbn8yjPtkJlUtFnW5+HymDI7W/dunXjxx9/5MknnywW5u+/\n/yaaaLPE9zmfM4YxiqzHRFawCL5vWRVdU+jYsWN0796dJUuW8Ntvv3Hs2DHdnIT8/Hx+++03XTty\nt27diIiIKCbj77//LnGCZ3mIjIwkMjJSkaXI0mGO9bIeCoMhJ2Tx4sWMGzeO3NxcvLy8is30lKlo\nwdByeUu2DtuKl4cXADGRMays+QtbvimA6Lkmryv2Dk+eDNp5DQD4+xNz7RrBdc9DSAgsWFA0/KhR\n8MUXRY/5+sKJE0WPubpCcjIxQLD1RijrJKv69eHaNaOnYoBgn/9Bx46werV0cOhQ+OYb6NoVfv0V\nunSBK1cgPr7EaGJatiT47PqiB52cJNn79xcee+MNSE2FzEywtYU//5TC7d1bVC+0sho0gIAASEkB\n7Qz0YnTvDg4OsHMnWFmBvz9oO/di2rQhOGZpibpXNs2bN+fZZ59l/vz52NnZsWbNGjZu3Eh6ejrj\nxo1DrVbj6+uLWq1mwoQJNG7cuEr1VVCoCFVuMDw9PTl06BAATzzxRKW6VBRCoKKolbXAAivrfOKT\n4PffpbLr9m1ITIRLl6Syz4ggGDwYFi0CtRoaNoTISGkDyRjk5EC/fnDxIvj4wIQJ0nV//w1JSTBu\nHEwsu9sAACAASURBVBw4IBWEsbGQnw+9e0NUFHz7LXz8MVy9Cj/9BLVqQefOktHp1k0yJJ07g42N\nVAgHBsKSJfDKK5LSTk7g4SHFtWMHLFwo6RUWJhW6HToUpmXPHileIWDtWujZE2rUkAzic89Jug0Y\nIMn65hspg+rXh0OHJDk9e4KlJXz1FTz5JNy5A+3amb4JsbFS3ixdCq+9BnfvwsCBIM8m37kT7Owk\no1CvHjg7w+nTEBws5fW2bVK+WltLNyo5GTZtkoxtFeLm5sa+ffuKHGvSpInu/9tvv83bb7/9oNVS\nUDAvldNvX3ncj8rNPmomziWc0+1HR0eL4SveEc1fmWk0fFKSEC4uRk5MmCDEihVFDplzNVVFVtXJ\nqspXwpxxP6z5q8iqOlnmeL6qfJRUeZHXFaoIT3z0BLtH7KaZezPdsbAV8zn11z3OfbygWPiUFPD0\nlH6LMH48tG8v1RoUHivu5/l6UHF/+y1ERxdtFZVZvBhq1oSRIytBQYVHGnM824/MWlLmQBhpklJh\ngeTBsDgqFRhZI09qvqnEJUkUHj6Cg4M5f/68yfO5ubmMGjUKf39/unXrxunTp4uc/+677+jYsSOd\nOnVi1apV96XLmjWwYkXhfkqK1GL49tvwn/+AMlpXobL4V5V6AoGFyiDJQoXKwphVkGyCUYOs0UjW\nROFfQ2lrapU00xukVQz27dvHwYMHWbx4scl1e65dg7w8CA01/uwdOyZ1cwH8/LM0VqF7d2jaFOTF\nRrULFQPSuINbt6T/BQXSZjx9IE8+z8kpPh7DHKSmSl16JVEeR48FBdJ4isrkwIHiefbPP3D9evnk\n6C33VIRjx0yOV+HECRMfrFXIv8pgaITGyEuv1DAUitK/f3969epF27Zti9UGUlNTGTJkCN27d6d7\n9+6cOXMGgL/++os+ffoQExPD1KlT+fPPP2nVqhXz588H4O7du+zYsYOsrCwyMjKYOHEiIM29GD16\ntG6Bu5s34bvv4IcfICOjeGGlv1J+jx7QqFFhQS9z6ZL07KpU8PTTUKeOdDwoCLSLFHP0qDQ+QR8f\nH8m4rFghjWe4cEEay2CMkydNfEyVwMCB0KyZ6fNXrkjjN/QHB968Cf/9b9Fwp05Jce/cCeVZ3ePk\nyXKpC0gDCQ0H7nl5FR3XsWqVZORNkZ8v3aesrMJjQsD27dLYFXlMCsDlyxAXB59/Lt0DU4MGq4p/\nVR+G5weexIyJwdPFU3dsxMf/5dTFW5xdtrhY+MxMqF5d+i3CCy9IT5LBV6TCo49KpcLPz083Z6JN\nmzYcPnyYYcOGsWrVKtauXUujRo2YMGECFy9eZOzYsfz666+6md4jR47khRde4OrVq1y4cAFfX19S\nUlLw9/fnzJkzuLi44Ovri6urK2vXrsXKyoq4uDhq1aol+RmJrOocUHjYELPNU0Sbow+jyofVPkg0\nQlOsDwNhASqlhqFQSLdu3VCr1djb29O6dWsuX76sO3fmzBmio6PZvHkzgG7JbHmmd3h4OLa2tjRr\n1ox69ephZ2fH1atXOXv2LBs2bKBfv350796dFO1ICnd3d+rVq1cYeeRsPU2CsbcPJjNT6rdo0UL6\nTikPLVvC2bPSR4+9vTQaOSdHerbffhuysyXZ8sAOlUqquezbB0OGSB3sMnJZo19J1y9/VCppBLjc\nBCZz8aJUs/DwgIQE6ZroaKkpTb7+11+lGhDAxIlSbaRHD2lK08yZxeP54Qdwc5OmEOmf8/SUmoz+\n7/+k9MmjtWWdk5NBfwGJixdh/nzpi75uXbhxQ5LXvbukI0g1vq++kvJy7lxpBHdKitQMqD9x2lDH\nbdukdJw9K9VK7t0DR0dJRr9+Uo0OYPRoaYT8J58Uv39adzEVIiYmxuzTFP5VBkMgjDRJqUBVgT4M\nxWA8tsjOuTIzMzl79qzODS5AixYtGDlyJGFhYdy4cYOvv/4aKJzp3b9/fxYsWEBeXp5upnd2djZq\ntZqEhAQsLCzIzc0t5oGwkMgie9nZaOVLU3dKo04dqRlHRn5+tW4lihX227YVHQUohGQs9K+VycmR\nCraSKOtcU8Nk67f8rVghFdw9ehQemzZNml4kT3WKj5f6eUCaBnXokFTgyx9477wjzVPds0fSW58X\nX4Tnn5em9qxZIxkLKEzvuXPF9f32WymeuXOlQr/YyEktN29KekBhf40sV9Zt9mxp08eYsbhfgoOD\nCQ4O1u3PmTPnvmX+q0o9IYx1eleghqF0ej/WpKWl0bNnT4KCgpg9e7ZuTSiVSsVbb73Fli1bCAkJ\noX///rRs2RKQZnovW7aMyZMnc/r0ad1M76ysLJo1a8aoUaMIDw/H1dWV5ORknREqbbkG+flbs6bw\n2BNPSPMxjeHlVXLa8vOLGoLyLF1VNv86ZTtX3tdnyRJ4//3Cff0+lKtX4a+/il+TkCDVEtauLRrv\n2rUwfXpxHWRDe/ascf3k+Erq8NY/FxEB69cX3sOHrQO7Ijx0NQyf/2fvuuOjqLr2M7ubHtIDBKSF\nEAhCCiAJCYSEjoD0jkiVJk3EgtIsfFbAglIliIq+0gRe8Q0lCNI7UkNAei9pJNmUPd8fN7M7uzvb\nd5MNzJPf/nZn5t4zdyZ37pnTmzRRV4cKDQ1Vl2y0B8RUUhxklksYkkrqqUbz5s3x9ddfa+1L4/UT\ngLqsrBCGIr0HDhwIAJg/fz7mz5+v1++WUBwA0KMHM4Yag1jp9cBA4NdfmUpIaAjWXfhKSjSGbEMl\nnF1dmaSg2zc7myUBMAb+eWnenGXQGTpU/5jYuHQhdtwcJiPmcSSmQhNjMKbOY476X7dNSgoL2TLW\nvyK9ezoVwygolb+FD6c9IaqSIuMqKUnCePZgjyRt1mLYMOMMY/Nm8f0jR7LMLDz4VGXnzum3NZWw\n1NubZWzRXeDMeUPm+xw+zHTz1jIMsXtg7b9FjGGYoiW2uBMxCc3Sfk+ThOFUr8knT55EXl4eOnbs\niLZt2+LgwYN2pW+NSkqSMJ49fPXVVxb3MRa4d/fuXSQnJ6s//v7+WGpAad29O5MQDCUo5fX2uhDG\nL1y+rJXnUQ+mFktDC5u1C5610oKlNM1pyz/P/OMr9nwbkzBycoyfyxCjMXTMFJztvdSpJAwvLy9M\nnz4dI0eOxMWLF9G5c2ekp6dr1cmwBeJeUoYlDP6fRaTzj5MkDAk6EAbupaenY+DAgThaGv1WpUoV\ntdS8f/9+zJw5E6ONWLD/+YfNucJC5sHDw9VVe9rNm8feeGfN0n5/qVPH+FjFpm6zZiwv5Ny52gZo\nISyRMCw9Zg6E4zb38TMkJVnz+BJpnBDMPZ/wnE+DhOFUDCM8PBxhYWEAWObawMBA3L59G9V5t4NS\nCPPD63oCGIN4pLfhwD1AY/iWy4V9JAnjaYG9XA/5wD2AzeObN28iOztbXW8aYBLupEmT8PPPP5tU\ne3EcszEIGYZu2A+fAmTWLMuS9epO3XffZTRcXdk8NxQNbmi/EI4yelvbR7efLsMwJP2ISSUqlelF\n394Mw9neS52KYaxcuRKnTp3CokWLcOvWLWRnZyMkJESvnbUFRcQjvQ1LGIABw7fkVvvUwF6uh9HR\n0diyZQt69OiBAwcO4P79+3jy5IkWw9i8eTMaNWqk5aZrDBzH4hM8PZmxuUoV8XZ372rcZs2ly+Pc\nOSA0VDtewRaVlCMZhrUwZsMwNF5DqiVLGQaRaZWUszEFY3AqhjFy5EgMHz4ciaURPCtXrrSbOgoQ\nTz5ozIYBGHiAJJWUBB0YK9HK46effsKUKVOM0rFGejbluaQL4dRt0ED7mEHPQFjPMMQWZ2tUSsb6\nGDsmXELMUUkZs2GYkrLEGEZ5qaSe+sA9hUKB1atXO4y+oeSDgIUShqSSkqADYyVaeRw5ckSdM8oQ\n7FWO0xhMLa62MAxjbeypktJzdjQi2YippIw9vsbGZotKqqyTMDkicM+pGIajIaaSIknCkGAHmCrR\nev/+fXV8UXnDFMMwtMBZK2HY4iUkhDVGb9225rjV6towhH2tkRJ0I70rMp4phiGukrLChiFJGBJ0\nYKpEa3BwMI5Zky7VATA2dQ3GHsH6BY/vJ1TnmPv4mMskzD2mq5Iyx4YhZHiWqqSE53wajN7P1Kpn\ni5eUFiSjt4QKDHMlDF3YKmEIF9uy8pLSdYm31YbhCJWUszEFY3imVj0xlZSx1CCAgQdIUklJqMCw\nlmFY61Yr9obtLF5SlsBWhmGob0UqMPFMMQyxSG8iDiSppCTYCFMlWg8fPozExES0atUKAwYMQKG5\naV0dAHM9inRhq4RhK8Ow1oYhhK7R29JIb2tUUvay4TgDnqlVz1A9DM4alZQkYUgQwFiJViLCq6++\nipSUFOzZswdt27bFv//+W25jdZSHEODYSGdjY7Onl5Sxc1gThyHZMCooDCUflCQMCbbCUKQ3AKSn\npyMwMBDz589HUlISMjMzUb9+/XIba3lJGMbGYM7CaA+3WnO9pMTgKJVURfKeeqZWPYPJByUJQ4KN\n4CO9AWhFegPAgwcPsG/fPkycOBHbt2/Hjh07HJaR2Rw4kmFY2s9adY1Y2nZD7azxkhKDo1RS5jI7\nZ4BTudWqVCqMHz8ep06dgpubG5YvX67lmmgzfRGVFElutRLsAGOR3oGBgQgLC1NLFZ06dcKRI0eQ\nnJysR8faPGmWwBkkDKFdQytPm5G+BrNHmxibNV5Shtxqy1rCsMXu8dRHem/cuBGFhYXYt28fDh48\niGnTpmGjSGJ83qtVL4usCYippDhLA/f4WVP6ZPH1keVy4xNfiOJiQKFz5wsKAHd38/obomEKtuhv\nxc4PWHcd1oxdt39+PsufZO49dzSMRXqHhoYiNzcXly5dQt26dbFnzx6MGjVKlI4zRHobgjleUmKL\nn9g+cxmGEMKFXJemuQxDN725JXCUW62jVFJPfaT33r171Xrg2NhYdW1lXcjlQEgIKzbfpAmr2xsQ\nwCY0n0RNDGIqqRy6hwuy9QCAzj91xtKuS1HDtwYAYFbaLIyI/ACVQ/RfbX7f7Y/ih0CfPmzb35+V\nkKxUiaWlzs5mxebz81k1tHv3GIn8fGDqVODrr1lR+YcPWfuXXwa++Qbw9QWCgliq6cqVWZvHjxlj\nCgwE8vJYPeExY1ipSYUCePKEPQBKJbsvxcUa90g3N3Y8L4/1qV+fnbuggLV3d9cITMXF4jWbCwrY\nvZbJgPBwVtZz9GjAwwP45BM2roAAVsVs2jTgzTfZPpWKpdouKdHUelYo2LUuWsRqJOfmsnF4e7Nj\n9+4BwcFsvDdusPspl7N7KZOx+/fyy5qxzZ8PREUBbdoY/r+XBUxFeq9YsQKDBg0CESEhIQGdO3cu\nt7HevWv4mHAhtSbSWwz29ByyNArd2jgMQ5HetqikrHGrdTbPKqsYhkqlsmtSQB666aDlcrnouZov\niQdKXKB4chNRS6Lwv8oeaOJ7CTk5QDPvs3irsxw9P92M9efW44uOX6j7EfQjvQuJ6Zm5uRw8C4Ho\nm9HwcvHC3UfXISMgfweQM2ISPJLjUFClFrzcSzDp42r4ZnYokjvkAe3nQJH2KSpXBviXxnbtWD3h\nSpUALy9W4ezSJVZ0np80mzaxBd/NjS2Q/v6spCUAJCQAV66whbpSJfabR7t2mkX922/ZQrp9u6Zf\nlSpAUZHmLdzNTSMQ+fuzhXvWLPZ27urK6jTzD4irqzjDzctj7YqLGWN49Ijtz88HJk0C4uLYNp8x\n9dNP2XdkpIaRK5Xsw0sWEyZo6HfowMaVn8/GERTEGKlCwc7p4sKYU0EB8Ndfmn5+fsDOncDrr7P+\nLi76Y7cFlsxzU5HeycnJdi8IZgpDhgA//qi//6OPDPcpKxuGNekyhNK+bj9jC7k9bRhlrZJyNoO4\nVQyjXbt22Llzp73HAh8fH+QISloZemCrHasCd4U7XLNVGJqxHlfdRuPXrE44jhjMVL6B5y9cRJtl\nLaFQAakn1mJE4hRMiWNZQjt35lCtGltUvbyAh8emYFQrL5zLmYi/l5XgXqvauOeuQqNtmuLAPt8v\nBL4XDKDeH4hZOBpni84AT+6iw7AzAIDgmyEIqeICzvMRuPzH+OvqX4iuGo3AInfkXfaGvLESBUVP\nENr7HmQB9RDhGYgnhU+gIhWieufg4QPAW+EP32AlQpU5yC3MRR2/UNxJVaJq7UeICKkLeDyAUlWE\nBp1voEZQBNwUbqiX+BD1gkPhFfgIHMfhSUEWcgtzcS3rGhoENYC3qzfkMjl6jvNBljILhSWFcJW7\nQiFTwEtVDD93P7jJ3XDh4QXczruPAI8APMp/hMKSQgR4BMDXzRfPufvBXeGOxwWPUZB1G9XP1URA\nsBJVQ4Cqfr6Qy+SQc3KMnAzcy32Aq1c4PFe7EF4uXpBxMihLlNh4fiOaV2+OVk/qgkrkkHlmQVYQ\nhGp1CDnKHHAcBze5G9zkbqihcMPt3NsoVhVDWayEj7sfguSuCGvmipoN76IAmQCATE6GkAgvZNz8\nGRG1tbPDmgNjel5HzfOygiUqTh7GGMZLLzFGbgqPH2t+FxZqpEshzGEYKhV7TnlwnGbbEoYhRHQ0\n+zYVh2GODUOs1K01KqmnXsIgB11FQkICNm/ejL59++LAgQOIjIwUbbdh8QYAwIEzqYj8T2eEX16K\n6tWBixeBbW/vQoedC6H8kB/jNQCvA3gddz2B9/ooEfOCG4qKgMICFV703oeXvhivpl3ZLQCVo2OQ\nP/INcFu3YnTRBjxexN68lUqmHnlj51aceViAaQ2m4XHBY4T6h0LOyXGj+g34ufvB29Ubh28dxrbL\n2xBXPQ5uCjcktmUp27MKspDxKAP5xfloENQAfu5+KFYV42rmVeTUykG1StWQX5QPAPB29QbHcWhT\nJx/H7xxHVJUoeLp44sz9MwjxDkGL51rA08UT3i5/IyI4HAEeASgqYU9UoGcgLjy4gKreVSHjZFDI\nFLiZcxNVvKogtzAXLnIXuCvc4SZ3Q7YyG8oSJQI8AsBxHKp6V8WDvAdIf5iO8MBwVPWuCiJCbmEu\nVKTCn8o/8fKAlgjwCICHwgOPC9gKUVBcAA4cMgsy0bq2O1zlrvB198W9J/cQ6BGIx/mPkVw7GR4u\nHriedR0xIckoKC5AsaoYHDiUUAm8XLzAcRwKSwrRvHpzyDgZ7uTegYvMBcoSJVoO8MPtnNtQyBTw\ncPFAYUkh6sfWR+3qHlbNOWN6XkvmeWFhIUaNGoWMjAy4uLjgq6++QlRUlPr4ggULsGLFCgQHBwMA\nlixZgvDwcKvGbC7E1IumIHwbT0/XP37jhvG+REx9aWwMly9rpFJjKqKpUwHdarmvvMK+dRmEUml8\nXIb2ffml6fbCBd8RuaSeegmjZcuW9h4HAKBnz57Ytm0bEhISALB6GMbAEUElYxID/49KqfIc6j7W\n/q/ti/DGlIRcHFoOLP3BHfgBQO3aGl3PuHHstWj1arXOxANAZvcu2LxwC1b7sWa8ysXVlTCw8UC8\n1vw1g2MbHjMcX3T4Ah4u1i1kluCV6Fccfg4hpidMt6rf8Jjhdh6JY2HJPDdWohUAjh07htWrVyMm\nJsYRQxWFNVpjYZ8zZ0y3P3QIaN5ce9/Uqcb7CN8Djb1979ihvX3rFsALg0I1LcDUlWKLa2EhcPq0\n/n5LnGV4JmFKJXXtmv65iEzbaxzlJeUIWMUwPvjgA3uPAwDAcRy+++47s9vLwEGl84+/Wi0UEe90\nwzlZJJvx69cjnuPQZMtYYPkSTcMuXZi1tEEDJqdWqqQ/HnBQkf5/UzRiXARlwSwkOA6WzHNTJVqP\nHj2KefPm4c6dO+jSpQvefvtth4xZCGsWG1NMRlfqiI1lThWvv645X2qqcRql4SkAgJ9/BqpWBXQy\nqQAQZ1i8SmzrVu39v/7KHE10sW4dcPy4/n5j92b6dODECc32woXsW6kEunc33C8pCdAN4Bcyss8/\nZ/ZKXaxfb5jmqFFA796Gj5c1nMpLylLISD/kjpOpUCyXAx98qLV/cdfFaFP7LSxdG4CwoEygenWT\nvp0yTgYSCeoTDQCU8EzDVInWgQMHYsKECahUqRJ69uyJ//73v+jSpUu5jllsoTLEMEaMYE4affvq\nH/Pysn4M48ZZ31eI7ds1zh9CiDELgKmvDUHILAAmRfHIzzfcTyzby5EjGib766+G+xpCZqblfRyJ\nis0wwIH0ZEtisRUiuCavA/IBUMu8QjYcZ0TCcLYQTAnlClMlWidPnqxmHl26dMHx48dFGYY9A/dM\nSRjt2unvM8QwXnuNMQxnhIuLtnHc2fDee9b39bBBSfHUB+5ZCo6IVVgVQqYCDKiLLA3QlnEyUcOn\naF0NCc80jAXuZWVlITIyEmfPnoWnpyd27tyJkSNHitIpi8A9HmLvPIaej+hooHFj4J9/HDceaxf+\nsmYWH3/MNNk9ejj+XGJM3Vw4InCvQq96MoKeDYOgKs0PpQ9LU0DZasOQ8Oygfv36+PLLLxEfH4+3\n3npLHbi3bNky+Pr64uOPP0ZycjISExPRqFEjtb3DkTAlYRjzHuLRr59mv67+vn17cbohIeaNTxfm\nenXpLtTm5nH8z3+0t3nm2KmTuG0BAFq31t/31luaaxe6EBuDSBYYLYhlQBo61Do1liNRwSUMfYbB\nccSKIonAKglDsmFIMAOmAvcGDhyIgQMHlvWwjMIchhEVpVlodZ8dQy9ftmprOY4Z0w8cED8uDI1R\nqYDx44ELF9j2Z58xo7UYGjfW3pbLWX+FggW83r+vfTw/n8We8OjVC+BzRvKqIkGcsShGjQKWL2cm\nU0MgArp1Y8G9wmKeoaG2qaQcgQq96skI+iopTsUSCorAYgmD40RVUipINgwJzg9rJAxhn02bmDMh\nz/fKKt+mSgWEhRk+3qiR5rfuNeiqp3STFwphqmSsbo6r9u01WQ74mBNT92TpUvYt4oQJoVaSP789\nikQ5EhWbYYATYRiGjd7WSBhiKilJwpCgC1MV93i8+uqreOedd8p4dOIwZ0GKitJENItJGHwAnikM\nG6b5vWGD6fa6zI7P2QawlCcAkyx0YcyeYayGhjn2HGvclDmOSSm1ahkfjzMyBzFU6FVPzK0WnApk\nwL4gFPfMAQdOVCWlIpXEMCRowVjFPR5LlizB6dOny0w6tUbCMAZzVVKm0K2bdf148N7wn3yif2x4\naWyomD3EGoYhliJEF7/8AgwaZHi8v/8u7npsiGHwbrzOWEHBCYdkPgzaMOxl9DbmVisZvSUIYKzi\nHgDs27cPhw4dwpgxYxyWWkcXtjIM3eP2Yhi2LoR8kkkxOjVqMNuHmLHa0ip7hlKE6KJ/f+MBfZac\nEwBeeMH48fKEUzEMIkL16tWRnJyM5ORkzJgxw2h7Mbda5iVlH7daninoPuCSW60EXRiruHf79m28\n//77+Oabb8qMWZiD8pIwjJVANacPL2EYepZjY8WPWVOW1dzx2coEzWFYzgCn8pK6dOkSmjZtik2b\nNpnVnqUG0SmIxBEM8UFrJAxAPy26FLgnQRfGAvfWrl2LBw8e4MUXX8SdO3eQl5eHiIgIDB06VI9O\nWQbu2cowyktlYophGEJ5MgxTNhJHMIynPnDv6NGjuHnzJtq0aQMPDw8sWLDAaEZPTiViYeDsJ2EA\nguA9rapdkoQhQRvGAvcmTpyIiRMnAgBWrVqF8+fPizILoPwD94zBXhKGNTAmYdhDaDNH6rG3hGHK\n6G3r/X2qKu6tWLECC/msXqX49ttvMWPGDPTu3Rt79+7FkCFDcEiYyEUHYskHwZHdAvcATfCeHBof\nO8mGIUEXpiruCeHMRm9LF0VHadiM0S0vCcMYbC0VLKmkTGDkyJF66RHy8/OhKJ0NCQkJuHXrlmhf\n/i0s88YlNC9WobbwoCMkDEg2jKcV9hLbTQXu8XiFL+jgBDDFMBxl9LYVPMOw+OXPCoYhVg9cDLZK\nGM7oESUGp1JJvf/++wgICMD06dNx8uRJ1KxZU7QdzzCuH0hF4eZftI7ZMzUIIO4pJdkwnh44Qmx3\nFjirW601EFtcxYLdLKEhrMUhGb3Ng1MxjLfffhtDhgzBH3/8AYVCgZSUFKPtmVut+UZvm2wYWnQk\nCUOC88Pe6iJnkTDMeYZNLcB8WhBTNCuyDcMRcCqG4evri82bN5vdngXu6SzmRlRSttgwtOhINgwJ\nOjBVonXdunX45JNPwHEcBg8ejEmTJjl8TBWNYZg7XmsZhhByuX69cFOQGIaTMQxLwUE8cM+QSkqy\nYUhwFIyVaC0pKcE777yDo0ePwsvLCw0bNsSQIUO06mVUBJSlhKG7OOtKB7bSFF5LeamkLA2cdAZU\n6FXPUHpzeyUfBMQTEEo2DAm6MBbpLZfLcf78eVSqVAn3799HSUkJXF1dHT4me0sYulOeT8BXFrBH\n3iVDDMNcmpKEUcEZBieardZ+yQcB8QSEkg1Dgi6MRXoDgEwmw/r16xETE4Pk5GR4enqW11DNhikv\nqfKCteMw5gFmaxyGKanHGmnCGRlGxVZJEUEk05N9JQyRBISSDUOCLkyVaAWAXr16oWfPnhg2bBh+\n+OEHDBOmcC1FWUZ6WwpbIr3tORZ7qKSsYYYVTcJ46iO9LYWYDcNY4J7dJAzJhiFBB8YivbOzs9Gt\nWzds27YNrq6u8PLygtzAqleWkd5isGRRLMs3YGPqJDGYGpszqKRMnV+K9LYzDJdolWwYEsoWpiK9\nhwwZgsTERLi4uCAqKgpD+KIODoQ1b/WOYhi2LsjmuMBaQt9clZShMejCmlxSptKrO+MSU6EZBssl\npT3LHBGHIdkwJJiCqUjv0aNH66UIKUsEBQH16gH791tP4+FD7e2y9JKyVMIQg3DBF449PBwwUO/K\noXEYhsZjbF95o0KvemK5pIhTgfT0VAySDUPCswThAte+PfD885b1DwnR3tZdVDkOSEgA3N2tG58l\nSEoCqlZlvw0tzgIfAy3wz7zYG31uLqsDXh4qKb6uh3A8QkgMQwcbNmzA4MGD1dsHDhxAXFwc0iPx\nwQAAIABJREFUWrZsiffff99kf45I34YBcRsG/88W/hPMMQgZSg2iK2HY07gk0So/WtbCVInWNWvW\nqOf2uHHjHF4XQ3hP2rdnC/tnn2mOJyQY719YCMTEaNPi34ibNmXSSvv2wPz5gIGUb6LYtm2X3r43\n3jDcPjSUfY8frzkP/wzz44qLY0xL6HgmfM6nTGHfRMCPP7LfPHPx8mK5qTIz9celC2P/Mr7C37vv\nAt26Gac1dy67vx4emn2BgfrtGjZ0jrktRLkxjMmTJ2PGjBlaD864ceOwZs0a/P333zh48CBOnDhh\nlIZYxT2WfFCcYXCc5QxDNDWIiNHbWRdAiVbZwFiJ1vz8fMycORO7du3C33//jaysLLULrqOwa9cu\nzJ4NrF4NpKYCEyYAfn5M/VKnDvCf/4j3i4sDIiK03375+ztmDFsQjxwB0tM15VC9vYEmTTSSxoQJ\nwKhRwJtvssp3778P9O7NGMzffzNaX37JzrFiBdCzJ+v31VcaJjVsGPDyy8Dp0xqvKD7u47nntMf1\nyitAfr72dfTpA7Rpw37Pnw9Ur84kpm7d2GfSJOCjjzTtQ0J2afVv2ZJ9v/wyMHo00K4d0LmzwdsN\nvgrDhx8CTZowWnl5muP8WNauBWbNYtc+bBjw3nuafn//rWlPxPo4w9wWotxsGAkJCejZsyeWLFkC\ngHmSKJVK1KlTBwDQsWNHbN++HdHR0fqd164FfH3hsvdvqIiw+uRqnLp7CvWD6mPjvc9RdGs4Dhxg\nYmJxMXDpEitkb1URd3BYcXwFfN184a5wR7GqGLuu7MLs1rNtuXwJTxkMBe75+PjA3d0d+/fvh3vp\nilpcXAwP4eulgxAaqnlD53H6NFt4FQae/Pr1gbNnxY8lJIhLJi4uQGlQu1F07QrwTmCTJrEPD/7Z\nHDWKfXfsyD4Ae4aFqFqVtTfmUPbKK+zD48YNzW+x+mzNmgFiPHz4cA1jNAY3N+P2jvr19ffVqwd8\n8AH77eFhWupzBjicYYjVvUhJSUG/fv20uCf/cPGoVKkSLl++LEqTCwpiP5Lasc9jAK41gGwALdcD\nLYEWBRraqFH6SQY4wW5cuYK5pjh4058xUwVA+AbTOg3JVwBcEfQ1h5a5kGhZRYtsiFmwFXzgXo8e\nPbQC93x8fMBxHIKDgwEAX3/9NZ48eYJ27dqVyziFkoMECRaDyhFpaWk0YMAAIiLKysqihg0bqo8t\nXLiQPv/8c70+devWJQDSR/o45FO3bl2r5nJxcTFNnTqVWrZsSW+99RY1aNCACgoK1MdLSkpo2rRp\n1L17d8rPzxelIc1t6ePIj7VzWwin8ZLy8fGBq6srLl++DCJCamoqEhMT9dplZGSAiKSPmZ9Dhw5h\n7Nix5T6OivLJyMiwav7ygXt79uxBnz59EBISog7cA4AxY8ZAqVRiw4YNatWUNLdt/2zatAmTJk0C\nEWHLli2YNWuWxTS6dOmClJSUcr8WR3+sndtClGscBsdxWgFwixcvxuDBg1FSUoKOHTvihRdeKMfR\nPR04c+YMbggVuBIcAmOBe82aNcP333+PxMREtCm1fk6ePBk9evQo51FXfHTr1g3dunUDABw+fBiP\nHj2ymIbuOiTBCEiC3ZCTk0N9+vSh6OhoatKkCY0ePZpUKhUREW3atIliY2MpJiaGEhISaP/+/URE\nNHv2bOrduzclJiZSeHg49e3bl7Kzs4mIaPPmzRQfH0/NmjWjmjVr0syZM4mIqfIiIyMpPj6eoqOj\nSalU0qRJkyg2NpYaNmxIERERtHfvXrp+/TrVqFGDfH19acSIEUbHoYuPPvqImjdvTpGRkVS3bl3a\nsGEDERENGzaM+vXrR0REp0+fpsqVK9O5c+eIiOjDDz+kJk2aUHR0NPXo0YNu3bpFRETr1q2jJk2a\nULNmzSg2NpZ2797tiNsvoZyRlpZGcXFx1Lt3b2rQoAE1adKENm/eTO3bt6eaNWvS1KlTSaVSic5V\nIqJ79+5Rly5dKCIiglq2bEm9e/emOXPmEBGRm5sbzZkzhxISEqhOnTq0cOFCIiJauXIlde3alQ4e\nPEhVqlSh4OBgevfdd9X7eQi3b968Se3ataPnn3+eOnXqRM2aNaNVq1YREdHZs2epQ4cO1LRpU4qO\njqbvv/++LG+h00NiGHbEDz/8QJ06dSIiprMePXo0Xbp0idLT06lx48b06NEjImILbUhICD158oRm\nz55N1apVo7t375JKpaJBgwbRG2+8QUREycnJlJGRQURskisUCnr48CGlpaWRXC6na9euERHR/v37\n1Ys4EdH//d//Ubdu3YiIKCUlRf2gGBuHEFeuXKG2bduqdfBr1qyhxo0bExHRkydPqH79+pSSkkKN\nGjWiNWvWEBHRqlWraMCAAVRcXExEREuWLKEXX3yRiJhu/uDBg0RElJqaSh988IF9brgEp0JaWhop\nFAo6ceIEERF17tyZ4uPjqaioiB48eECurq60d+9eg3N1wIAB9PbbbxMR0e3bt6latWo0d+5cIiLi\nOI4WLVpERERHjx4ld3d3Kigo0GIEc+bMoYkTJxIRiTIM/jw9evSgWbNmERHR5cuXqVKlSrRq1Soq\nKiqihg0b0rFjx4iIKDMzkyIiIujAgQOOuWEVEBWGYZSUlNCYMWOoRYsWlJSUpF5IzcGBAwcoKSmJ\niIguXrxICQkJ1KpVKxo3bpxaAli6dCk1a9aM4uLiaMuWLXo0CgsLaciQIdSqVStq3rw5bdq0SY/W\n5cuXqUaNGhQeHk7Vq1enyMhI2rJlCy1atIiCgoIoOjpa/fH09KTo6GiqWbMmDRkyRE2rcePGFBAQ\nQCqVinJzc2nUqFFUrVo1CgwMJJlMRteuXaO0tDSqXbu21vj27dtHfn5+NGLECGrcuDH5+vpSq1at\nKDk5Wf3gDBo0iBQKBXl6elJoaChFR0fTc889R6dOnVLTiYmJoaSkJIqLi6OEhAQaM2YM+fj4kLu7\nu/p+HT9+nORyOQUFBanvV9++fal27drq62vcuDEFBgZSixYtKCQkhPz8/Khfv35Uv359SkhIsOje\np6SkUFJSEiUlJVFsbCy5u7vTkSNHrPo/lpSU0PDhw9V9z58/b/WcsAfKe14TmTe3zaGXlpZG9erV\nU9/fkJAQGjNmjJqWQqGg/v370/nz5+nbb7+lDh06kKenJ/n4+NCWLVvI19eXLl++rKY3adIkmjt3\nLt29e5cA0O7du+nixYsUHx9PAGjEiBH0/fffU9euXWnp0qUUEhJCVapUoS1btogyDB8fH0pKSiK5\nXE59+/ZVjyswMJDatGlDp0+fJnd3d6pRowZ5eHiQp6cnVa1alRYvXqx3z+bNm0ctWrSgZs2aUUpK\nitX3v6LN7QrDMNatW0fDhw8nIvagdO/e3ax+n3zyCTVu3JhatGhBRETdunWjv/76i4iIxo4dSxs2\nbKDbt29T48aNqbCwkLKysqhx48akVCq16KxcuZKmTp1KRESPHj2iGjVq0EsvvaRH6+rVq1S7dm16\n4403qGrVqlSzZk1asGAB9e/fX01r48aN1L9/fyopKaFhw4ZRaGiomlZqaioFBgbSL7/8QnXq1KHg\n4GDauHEjnT17ljiOo4sXL1JaWho1atRIi56XlxdVqVKFfv75Z4qKiqLo6GgiIkpKSqJmzZrR7du3\nKSQkhPr27at1jVevXqWSkhIiIsrPz6eYmBg6evQoPffcc7RgwQJq0aIFffrpp1S7dm31NX733Xek\nUCgoJiaGHjx4QI0bN6aePXtqPVipqanUvn17IiLKzc2liRMnUmRkpFodNmbMGLPvvRATJkygZcuW\nid57c2ht3bpV/Ya7bds26tWrl9W07IHyntdE5s9tU/TS0tKoZs2aNHLkSCIi6tmzJ9WvX19NKygo\nSM1IPvnkEwoNDaUlS5ZQq1at1C8YQoY5ZcoUmjVrFvXo0YMA0IEDB9TXyXEcDRs2jCZOnEjt27en\nxo0b03vvvUdjxoyhxo0b0/Lly6lLly5qWt988w35+PgQEZGPjw9lZGSoafXr14+Sk5Np4cKFVLly\nZa1rbNCgAWVlZWndr7S0NLW0kpubS7NmzbLLHKoIc9tpvKRMYe/everAqNjYWBw5csSsfmFhYVi/\nfj2ICABw7NgxtfdV586dsX37dhw+fBgJCQlwcXGBj48PwsLCcOrUKS06ffv2VacrUalUcHFx0aO1\ncOFCDB06FJ06dcJnn32GTp06wcvLC9WqVUNqaiouXLgAAHBzc0NqaioKCgrw+PFj3L9/H4cPH0bL\nli2xbNkytGvXDhs2bMDjx4/Ro0cPdO/eHUePHgUR4cyZM3rXOGfOHHTs2BERERF4/vnn1dXdACAm\nJgb37t3D4cOH0apVK2zfvh23b99GWFgYFi9ejOjoaCiVSgDAyZMnkZeXh0GDBkGpVCIuLg5Xr15F\nRkYGSkpK0LlzZ6xfvx7vvPMOevXqhYiICHz00UcICwtDREQEli1bhpycHADA7NmzkZGRge7duyMo\nKAgJCQl4+PAh1qxZg3PnzqFDhw5m33seR44cwdmzZzFq1CgcPXrUqv+jh4cHsrKyQETIysqCq6ur\n1bTsgfKe14B5c9tcej4+PlrBuO7u7ur7S0TIzc1F5cqVERERgTZt2mBTaRRdWFgY4uLisGLFCgDA\nw4cPsXHjRqSmpmLcuHFq+sJxtWvXDmfOnEFmZiYSEhLU3mdhYWHIzc3F6dOnoVQqUVxcjDVr1qid\nadzd3TFnzhwcO3YMoaGh2LFjByIjI3H+/HkAQHBwMFxcXJCVlYV///0Xa9eu1brG1NRUNG7cGD16\n9EC3bt3w0ksv2TyHKsrcrjAMQzewTy6XQ2Us33ApevXqBYUgrJV/wAAWHJiVlYXs7Gz4+vrq7RfC\ny8sL3t7eyMnJQd++ffHhhx9qnb9SpUoICQmBUqnEb7/9hhdeeAE5OTmIiopCYGAgli5digEDBiA6\nOhozZ87E5s2bMX78ePz555+oVasWHj58iIiICPj6+mL48OFQKBSIiorCb7/9hlatWuH06dMIDAzE\nhQsXtLw6UlJS0Lp1a1y5cgVHjhzBq6++Cjc3N1y5cgUA0LRpUzx8+BAffPAB6tSpox7Hrl27sGjR\nImzevFkddezl5YXp06dj9+7dqFWrFhITE/HgwQNER0cjMzMTCoUCW7duxYsvvog6depg0aJF+O23\n35CdnY3k5GR07doVcXFxaNSoEW7cuIFatWph3bp1+OKLLzB06FDcu3cP/fr1w8qVK+Hv72/2vecx\nb948zJ4926b/Y0JCAgoKCtCgQQOMGTNG7ZJpDS17oLznNWDe3DaXHsdxkMvlGDZsGPbs2YOoqCj1\n2GQyGSZPnozr169j4sSJSE1NRfv27XHlyhVUqlQJI0eOxPnz5xEZGYk+ffrAzc0Nfn5+6NChg/oa\neVocx8Hb2xv5+fkoLi6Gr68v2rZti02bNuHcuXOIiIhA69at0aBBAyQmJqJhw4YICwvD//73P2za\ntAnr16/H3bt3MWLECERFRcHDwwO5ubmYMmUKMjIyEBUVhY4dOyImJga1atXSusb79+/j6NGjWLt2\nLRYvXoxBgwbZPIcqytwuV4Zx8OBBJCcnAwCOHz+O5557DsnJyUhOTsZ/dJLd+Pj4qN9eAfYmJLMi\nRaSwT3Z2Nvz8/PRo5+TkwN/fX6/v9evX0aZNGwwdOhQDBw7UoxUUFIQZM2agf//+OHz4MNauXQul\nUgl/f3/06dMHx48fx4kTJ9QcPiUlBa+99hquXLkCb29vXLhwAcuWLUNBQQH8/f0xbdo0DBo0CHv2\n7MHHH3+MxMREtGvXDq1bt1a/EaxcuRInTpyAj48PFAoFiAj5+fm4du0aAMDb2xvDhw/HzJkzkZOT\nox5HUlIS1qxZgwRBPoLw8HAMHjwYlStXxuHDhxEdHQ2VSoVx48YhOzsbRUVFGDBgAAYMGICcnBz4\n+fnh+vXr8PHxQUBAAObMmYMzZ87g9OnTGDx4MLp16waFQoHx48ejQYMGcHV1xeHDhzFgwACL731m\nZibS09PRunVrm/6Pn376KRISEnDhwgWcOHECQ4cORVFRkcW0hHM3IyMDLVu2RGJiIsaPH6/1kAJA\nUVERXn75ZSQmJiI2NhabN29WH3OGeQ2Yntvm0EtKSlLPy5SUFFy7dg27du1CQUEBAODevXsICAjA\noEGD8PXXX6Nr166YPHkyrl27hpycHBw6dAhvvvkmTp06hT///BO3bt3CzZs3kZycDD8/P0yePBn3\n798HAJSUlABgL0Rz585FTk4O4uLicOvWLURERCAoKAirVq3Cv//+i3379uGbb77BgQMHADBJ7vnS\n1L2pqanYsWMH4uLi4Ofnh0aNGqFr1644efIkzp49i5CQEL17FhQUhA4dOkChUCA8PBzu7u5aC25F\nn9vGUG4M49NPP8Xo0aPV6pCjR4/i9ddfR1paGtLS0tCvXz+t9gkJCfjjjz8AsKy2kZGRVp03JiYG\nf/31FwBg69atSExMRPPmzbFnzx4olUpkZWXh3LlzaNSokVa/u3fvokOHDvj000/VpTWtpbV69Wr8\n3//9HwDA1dUVHMehWbNmVtH666+/sGvXLqSlpSE6Oho//PADOnXqZBWtlStXYtq0aQCAW7duIScn\nBx06dLCKVsuWLfHnn3+qaeXl5aFt27ZW0QKA3bt3o23btjb/H/l0HQDg7++P4uJii2npzt3XX38d\n8+bNw+7du0FE+P3337XO+dNPPyE4OBi7d+/Gn3/+iddee019rLznNeC4ue3h4QG5XG723G7bti0m\nTpyIJk2aoGnTpnjjjTdw6tQpaW6X4dw2CbMsHQ7AunXr6OLFixQXF0dEzCDTpk0bSkxMpJEjR1JO\nTo5We5VKRWPHjqX4+HiKj4+nCxcumH2uf//9V20cTE9Pp9atW1OLFi1o5MiRaq+BZcuW0QsvvEBN\nmzal9evX69GYNGkShYSEqD0akpKS6OTJk1bRysvLo379+lFiYiK1aNGCNm3aZPW4hEhKSqILFy5Y\nTauoqEjtLdOqVSvav3+/TeN688031W1SU1NtovXZZ5/Rl19+qd62ltbjx4+pR48e1LJlS4qNjaU1\na9ZYTEt37lavXl197Pfff6cJEyZonTM3N1c9nx88eEChoaHqY+U9r4mkuS3NbeP3XgiOSEd+LkNc\nuXIFAwcOxP79+5GSkoKoqCjExMRg3rx5ePz4MT4TJvCXIMGJIJy71atXx82bNwEAO3fuxMqVK7F6\n9Wq9Pjk5OejevTteffVVDBgwoKyHLEGCzXCaEq09e/ZUG2J69OiBScLcxwKEhYXh0qVLZTk0Cc8Q\n6tata3HOHaHOmbft6OL69evo1asXJkyYYJBZSHNbgiNhzdzWhdN4SXXq1AmHDx8GAOzYsQPNmjUT\nbXfp0iW7JeOaPXu2REuipfWxZsEW0xMLIWYjkOa2RKusadnjZaTcJQzePXTx4sWYMGECXFxcEBIS\ngqVLl5bzyCRIMA5+7n7xxRcYPXo0CgsL0bBhQ/Tp0wcA8Morr+DDDz/EF198gaysLLz//vvqeIet\nW7cazForQYKzolwZRu3atbFv3z4AQFRUFP4W1iiUIMGJIZy79erVEy2luWrVKgDAwoUL9YqISZBQ\nEeE0KqnyQJIdK7RJtJ4OWpbAklgMsT6OhLPeX4lW+dGyB8rVS8oacBxn8GGUIMFWmDu/Pv30U/z4\n44/w9vbGvn378NJLL+GNN95AYmIixo0bh44dO+rVu9DtY+25HY2iIuDSJaBBA/vSzcsDMjOBatUM\ntzl7FmjY0Dx6KhVw9SpQp459xieGY8eA6GhAGEt56xbbrlrVfDqPHwNisXHnzwOBgUBpBV+9Y/Xr\nsxrs9oA95tczLWFIkGAtzMnlZKqPs2LJEiAiAjh5EvjmG/E2x48Dll5Gv35A9eqGj58/Dzz/PGNY\nPK5cAd59V7vdwYOMWfzxBxAaav759++3aLgAgKZNgf/9T3tfo0ZATIxm+//+DyiN4RRFcTEQEACU\nBrwDYPdu6VJ2nz/8ULP/3Dl2Hz77jB3TPXd5Q2IYEiRYAWO5nLy9vUVz8+j2cUYUFwN81ogPPwQm\nTgReew345RdNm7lzgSZNAJ0US9i2TXxRLioC3n8fKHWCBMDO8frr2u3Gj2ffwlRaa9YA8+Zpt4uL\nA3bsAEpToGlh715AJ9AeADB4MBAfD2Rn6x978gQYOJCdp2dPtu/33wHes7+wkDGuu3fZdm4ucOcO\nsGEDMH8+MGMGEBWlT5cHX/CyNJsJACZtjRnDfmdlMQbi78+kq4gI4M032bH8fMN0ywPOPXslSKgg\nMCcWwxzMmTNH/TspKclmHfbt28C1a0BsLPD554BCAUyZApw+zd72ddUkrq5ASAj7zfPARYvYhw8f\n4Yd4/bp23w4dmHrlwQPt/VeuALNna6tdjhwBFixgCy4ALFsGpKWx33XrAm+9xZgVj7w8pprhmURx\nMeDtrTnm6cl+DxzIxhUcDJw4wa6F44Cff9ZcU0kJUylxHDtnnz7Ao0fA7t1M3UQEfPUVsHOn5vx1\n6gCRkUzq8vEBHj5kizof1lCaiBoAcPkyu4bt24G2bTWLPs8IX3gBGDpU+x4FBDB1nT2xa9cuUWcM\nW1DuDOPgwYN4++23kZaWhoyMDAwbNgwymQyNGjXCokWLpFq7EioE+FiM1q1bY+vWrVq5gSyBkGHY\nA6NGMdUNETB9uoZhNG7MJAhddQ8RWzTFIFyYDUFMTcU/wsJjuo+1cF27eZMt1kKGER3NFtXS/IE4\ndgx47z3228uLbQvVRPfvM4b4yy/6DEyhYCqftm2BrVsZswA01y1kFMJx8wv6w4f618jj9Gl2bwHg\nzz+ZVMMzCp7OkSPsI4QhZmHL8qf7wjF37lzriZWiXFVSliZxkyDB2SCMxZg9ezbi4+NRXFysFYtx\nXedVvDxegni7gNB4a0zvDugvVroLrxj4RfH0aY36h99njGGYwsWLjCaPO3fEx6Yr9dy4waQC3fHN\nm8fUamIQJHLVghlZ5/Hkieb3558Do0dr+hnqX5HeictVwuCNgC+//DIAfcNhamqqnqeJBAnOAkti\nMcT6lAV4BlG5MvsWLk6GjNZubuLMxBSDEdLk37KF57CEYWzcqL9P2MeSRVbsmgsLze8vhKWG/hs3\nTDOMioRyZRi9evVSF/oBzDMc2htEzDXv33+ZrrFWLWacS0xkD86FC0CbNjqd0tOZ32F2NtC9O7OQ\nVanCLHRvvskUmNnZQEoK+37nHUAuZ30LC5l1sEsX9iqzbh3wyitsVu/Zw5SlmzcDY8eyfTt3MlcN\nvuDJjz8CP/wAfPIJaz9xImv3++9A+/bAoUNAUhLzTywqYha69HTm2hEcDNSuzRTbv/wCJCSwNj4+\n7An/6Scmy7/0EpP/L15kszw6mil7i4uZf+CdO+y6w8OZ5S88nN28yEhm9WzdmrnRbNjAFN6//87c\nWf74gymnZTLm6uLjw87n7g40b86Oh4Uxenfvsmu5dYspou/eBTp3ZjQzMth97dKFuZG8+ipTDEvQ\nA88weJWHUsmmBGB68dM9LjTamtsHME8lZQ6s6UMkzjCM0TJ0jEhz74ydTxe2MAxnkz7K3YYhhLmG\nQ2sNg1/s+wJpV9Lg4eKBvKI8EBFu31PixLfTgYxOBvvpTYKPPwZWrhRvvHQp0Lcv8Ntvmn0bNmh8\nBk+dYk9tcrLGyjd8uD6dlSuZhW/3brbdrJm24nPbNvY9ebKGafGoVs2wIjo8nDEQXfTvD/z6K/s9\ndap4XyHefJMxmX/+0ezz82Mr00svAaWlN/HVV8wNhMe33zJGqfsyMGoUsHw5++3uru2DaAgpKex7\n+XKmWA4IMN1HB9YaBi2xvalUKowfPx6nTp2Cm5sbli9fjrp161p8TmsgVovpiy/YtyGGYWiRMmfB\nM/cN3NaF0FoJg78Ga5mPUOUkBrF7JDEMB8Fcw2HS3CTNxlxgF3aZRb9p6Z84DNPYpfdPG1r6MYDf\nAGC8ZvtY6bfArRBpADDLMI3DOtvGSj3/DgBTNNsGeAUAQIRXAAB+BYCxRjqK4B+dbd5wtwkASpmO\nrpB4wwCt5QAwmP02g1foIfAUkijJ4m7WGAaFAXiAxvbGB+39/vvvWqrUjRs3orCwEPv27cPBgwcx\nbdo0bBTTudgZL73EhFVdiNkUzIG1EobYsbJcCG2VMIT3y9Q9MCZhOHn4jVlwCoZhKombLqxZGAAg\nYlEE1vdbj4jgCPW+Ad99gKMnCpG++AMUFTG3QiKmqXn8mPlE814Uaowfz6SFCRPET6QrB/MoLtbs\nl8s17YSzWNiXiKmwXFzYq6LYbDdGw9A4DI1V+LukhI2xuJi5lQjbC8/Fty8q0rQzdk6erqHVw9g1\nAuzps6KEqT1hqe1t79696NSJSbCxsbE4ousi4yCIMQtAc/vKWsKwp0rKWobDX4OpeyAGaxkGv08y\netsB5hgO7QUVqSDjtBcbjmRQKFTgOMYsAKh/u7oa+CerVBqbhBgMzQDdoC2+naEngeOYIcUYXWM0\nzJmJhs7NX5/YmMXouriYPpeQrqGxGbtGoNyZBWC57S07O1tdOhMA5HK51bW77QExmwJgmiE4kw1D\nt78xesLbrMswTJ1HCCLT98jeNgxnQ7kzjLKEGMMAZIBM/D8pfKnXJlT+b7kSnAembG8+Pj7IEfhq\nGmMW9g7cE4Oht2vdhc1ShiLWR7jPngzDEsnAUhuGMYZhi0qqrG0YT2XgXllCRSp9H3iSATDMMAxK\nGBLDkFAKU7a3hIQEbN68GX379sWBAwcQGRlpkJa9A/fEYGgR4hdDQ4uxrQxD2L+svKR0+9miklKp\nLGcYQqmkrCUMRwTuPVMMg4j0JQzijEoYEsOQYAjmFFD66KOP0LNnT2zbtg0JCQkAgJWGPOzKCIam\nLr8YGlrYzFFJifXlF1Fh/7K0YVgjYYjFj5ijkjLmJSUZvSsYDKmkOE78PykxDAmGYGlnUmZyAAAg\nAElEQVTQ3nfffVdWQzMJUzYMQ4uitRIG388Yw7DF3GZJP3MkjLJWSVUko/czteqpSAUO2v8djmQA\nJ0kYEmxDYWEhhg4divj4eLRu3RonhfkoAKxZswZNmjRBfHw8FixYUE6jZDC0WOpKGLoLmbVGb3MY\nhjlv3/ZUSTnKhiHWR4rDqKAgiKmkJIYhwXYsW7YMnp6e2LdvH9LT0zFw4EAcPXoUAPDw4UPMmDED\nx48fh6+vL5KTk5GUlIQYYba8MoQhCUN3MbSX0VtswbS3DcMQw9H1LLc1cM8RXlIVSVXldAyjSZMm\n8C1NgxEaGooVK1bYjbaoSkpiGBLsgLNnz6pjLcLDw3Hz5k21O+2lS5cQFRWl9p6Ki4vD7t27nY5h\nWKOf14Uxo7fYGCyBMZWUsbHZMzWIpSopjrOPqs9Z4FSrXkFpOoi0tDSkpaXZlVkARrykJIYhwUZE\nR0djy5YtAIADBw7g/v37eFKaR6JevXo4c+YM7t27h7y8POzYsQN5eXnlNlZzJQxd2KqSMre9NTCX\nYVgTh2GJ0duYl5Qt3mfOAqeSME6ePIm8vDx07NgRxcXFmDdvHmJjY+1GX9xLyjDDEAuABiAxDAl6\nGDFiBM6dO4dWrVohISEB4eHhCCjNbeXv748FCxagd+/eCAwMRJMmTRAUFCRKp7ziMFJTTdfwtlUl\nJdbOVAysOfQB48zMXm61jjJ6GxuDFIdhBF5eXpg+fTpGjhyJixcvonPnzkhPT9cLcrL2obJUJQVo\nREqtSa1SOZ81SoJVsNdDdejQIbRp0wbz58/HkSNHcOjQIbiVRukXFxfjyJEj2LNnD5RKJVq3bo23\n3npLlE5ZxmEIF6qOHVkyYGOwVsIwFZthLsMwpt6xVMKwRiWlG4ch1s6a5IOOksCe+jiM8PBwhIWF\nAWBifGBgIG7fvo3qOpXjrX2oRFODwDjD4NVSWpOaSJIwnhLY66GqX78++vfvj3nz5sHDwwPLli3D\nmjVrkJubi9GjR0Mul6Np06aQy+UYO3YsQkNDTdLct4/NvZYttfcXF7PUXWI1rc2BobfrrVu1t60x\neovBlIRhLoQMwxJ1mj29pKxRSZm6VmM0nU1d5VQMY+XKlTh16hQWLVqEW7duITs7GyF8gWE7QMyt\n1pSEIZoeRFJJSdBBQEAAtvEp50shTGE+c+ZMzJw50yKaCQls8apTB1i9mpX7BIC5c1l5VX5e3r/P\nEmWGh7M+9esD339vmK5Qwli1ipUhMQfTpgHt2plux9ew5uEIhqHLIMxlGAsX6u8zBUPZai9eNNxW\nCFskDGdjGE616o0cORLZ2dlITEzEgAEDsHLlSrsmaBNzqyUzGIbeP01iGBJ0YCoOY8OGDXjhhRfQ\nvHlzLF682Gy6QUHA5cuasiiZmYxZAMB//8tKmFSuzJgExzGpRLcmtS74WtlEwKJFwH/+I95uwwbt\n7fR08VIqurh6VfM7NBTQNUPeuKHZZ2xB/OwzYMYMzTbHaUq16DIIY+VThMyBD7LnH19DITHChV8o\n1TgivXlZOAXYC04lYSgUCqxevdph9EVtGCqJYUiwHcbiMABWM+P48ePw8vJCw4YNMXDgQLX7uBC8\ng8Xt22z7/n32/c47bLHy9NS07dpVfCzFxcD8+abHTMSqS1oC3QXsv/9lhQ8BTUqN1q01x//9V59G\no0aa38YWS10p6dYtJhEBwJkz2sfy89l160KpBP7+W3+/JRKGMMeWsfGuW8fqhQlhTuCeMabgbBKG\nUzEMR8NSt1pAYhgSzIOxOAwAcHFxQWZmJmQyGYhIfx6W4sABoFIlTU1sId57z7yx3LzJ1EemsGiR\nefSE+N//tLe7dmXnE5oZ790zTkOY/X3yZCAwUFwqOn9efx/vjcxLXDxefRU4fVq//fz5TF1nCTp0\n0N5+7TX2rVTqHxNCrHxPQYFm/YiNFWcA69YZpvnZZ0Dv3sbHW5awimGUZy5/W2DIrZYMZKsFJIbx\nrMDWOc3HYfTo0UMrDoNnGNOmTUPTpk3h5eWF3r17a9XHECI+tZSRzLF6KA7FW/nQG1v1Zfr7zIU6\nDaOFxR7F8BX0x2GIV4iYHwxCt36aJTgKoN9ZAHMM5cQ2joMAAOfRS1nFMNq1a4edphSlTghr3Gol\nhvFswNY5bSwO49q1a/jmm29w9epVeHp6YsiQIVi7dq14Rck5s1G1KnDnDgAklX7KBvPmsfPqqlUA\nZpeoVavMhiKhFP7+AGZb19cRcRhWrXrkbJYYMyHGMIg4iWFIsHlO83EYe/bsQZ8+fRASEqKOwygo\nKIBcLoebmxtkMhkqV66MzMxMA5Tm4M6dOWCvykmiLTIzxfX1ANCmjeVjDw8HduxgdpLmzcXb1KwJ\nvPuu9r7SqrR6sNax0cvLuna6RSHtiaZN9ff99hv7HwDAgAHm0TEVFGkIxrzdTCEpKQlz5sxRf+wB\nq1a9lrqO4RUEBrPVGhH5JIbxbMDWOV2/fn18+eWXiI+Px1tvvaWOw1i2bBnCw8PxyiuvID4+Hq1a\ntUJWVhaGDRtmkuZLL2lvT5rEvn199YPd+vdnRuGffjJ/zC+8AAwaxLykeEaja1oRMgndcwqrBwth\nj6yyxhAervn9n/8AgwdrtuPiDPc7d057m49j6dpV2xDPY+1aoFRI1EKfPoC3N/ttykencmX2LUaf\nx5YtwIsvst+//qrZP2cOICgN7xSwatX74IMP7D0OAEyPPHbsWMTHxyM5ORmXLl2yK33JrVaCIdg6\np/k4jH379mHHjh2oW7cuBg4ciNGjRwMApk6disOHD2PPnj1YuXIlFAZei4ULREEBkJYGHDrEPGm+\n/NKwR839++zNvmpVtoB+8w0wYYLxMe/cyRhMVJRmn5D+xx9ru8TqTnlHJTu4elWbCehCUE4dfftq\nBzB27264re54Cws1+8WupVs37e1FizSxF3I5M6abkm54w31goP4x/t526aK5t/36GR6vM8CpvKQ2\nbtyIwsJC7Nu3DwcPHsS0adOwceNGvXa9ezP/9Lt3mQsf75ttCoZsGIVcNgCgoLgA7gp39SFlsRLt\nVevh238V4EosvPbBA+Cff3Bt9AfgrgNvvskmZe/eGm+G4mLmildSonkrk8uZl0VJCTB9OvDFF0w/\nWVTE9s+aBXz0EeNFHh5M5PX1ZW8yJSWsjYsL8OgRa/POOywIqaSETTaOY7Q4jp1LLmfHXFzYePLz\nWYBWcLDmbYaPGC4qYm+LRICrq/59Uyo146xWjT0oP//MvHn4QC4/P/YwffMNuyfBwUBODuDjw9oH\nBbHtSpWA4cOBr79mD1ulSkB2NjuvQsHO4+LCvnNy2H7+emQywN0d+PRTdu3vvccW2Bo1NG9y5YXC\nwkKMGjUKGRkZcHFxwVdffYWo0pX47t27GCDQXZw4cQKffPIJXn31VT06c+cC/JRv1AgwlvXml1/Y\n/3jwYPa/4fHjj+zbFMMw9c7z/PPs7Zv3TBJjGLGxwMGDxukAbGH/7Tf2+5NPAAOZUQAw9ZcuevfW\neBN9+CG7ttIChlooKtLeFtpdjCUVFFucdYN2ZTKgNBEFADbnTcHfn310klUAYJ5w/L0TO7/EMExg\n7969atfE2NhYHDlyRLRdrbZ/QpmvQKXKLjj77n58/3o6mta4h6LHuYgKuI5r00ah2rgp+DfzXzQM\nbqjuJ+ZWe0f1Dy7LUvHr6V8x7fsBGNP9fTQMbgj/JypMWtkPpx8CWVx3yOs8hyeBNeFZ+Bgr/aZj\n7OB4BAYBD/LvAk+q4MABxggAoG5dtvjl57MP70vv68sW+5wcoFMn4MkT9pYTFARcv655oAICGGMQ\nQ2gokJvLXBf//JNN2gcP2DGFgh3nXfkKCtikc3dnv/lxBAezbxcX1kehYIs2z2x0oVQyV0iVijGA\nvDxtHXqdOozBZWayB2z9es2xypUZTY4DHj7ULGzPP69pExzM+hUUsG9vb3aPqlRh/QoKNEzx+nVN\nvw8/BH74Abh2jS0UjtRlm4KxOIwqVaogLS0NALB//37MnDlTLXnoIjIS2LwZaNGi1OBpBP37s+/l\ny8VtF6bMMqYWJL4//wZvi4QhtDu88YZxhiEG4blcXNj3n3/qtxs8mL18eXmx58sQDcB0fQ7dZ8FQ\nTMT337P/mW6gI49Hj9iLlC6E5xTe2x07gLZtJYZhEkK/dQCQy+Wi7o5/Kd6Ff7A/Hrvfx9H8U5jv\nPgPfX4/Cv6iDNwvfw5XlM/DrgRnIdQVmVOkD//bd0LS4MhrdBaKiOAQFsgCokhLgxp2eGPvcXCjX\nD8CNU8C9VfPwyLUYDe4Ug3fr9kvbCKRpzi8LvoixP34Ole9lLDm6BJ+3/xwcx+HEQR/UCVWhakgJ\nSqgE/z7+F77uvsjNcsWO7XL06lMIZYkSOcoc1PKrhUqulfCk6AnknBweLh44fEyJYhSgYUOghFTI\nLHgMT4UXvp7vjdgWRWjeoDp8Qxh3uJN7ByGVQsCBwx87clHvOX/Uq18Md4UbHuQ9QH5xPh7kPUD9\nwPqQy+Rwk7tBLpMjW5kNIoKr3BVymRx5RXmQcTIoZApkFmQivygfCpkCKmJPR6BnILxdveEic0EJ\nlSBbmQ25ygsrUgpRIzQXEc+rUDeEKXrlMvaEFRSW4H878tEqqRAeCg/IZXIUlRRh55WdiKkagzsX\nq0Gh8kaloBw8uCdHXCyHJ0VPIONkaglPIVOgRFUCFalQQqXfqhL8+LMKyR2ewM1TCXeFO5QlSqz/\nzQ03705CreoGlOplAFNxGAAzrE+aNAk///yzwTgMwHBAniEYcu6yhmEY62MuwzC10BnL1WROH55h\niElIoaEsqG/qVJaB19xxidEytyrg8OGMQRliGIZgqL6HNY4LZQWnYhg+Pj7IyclRbxvyje92iykX\nr9/LwFaX0xj78CMMHw6sWgz8OG4vJv76D4b8w7deC3y6FoXVquKfW8Duzp/AL7o2iguK4XduP1xq\nqFCDlTFAVsfWqNy5JyrXr4+VJUfRtrA6uhyaAtU8jepHJgMm/vE11p1bi1ZurRDoEYiz989CIVNA\nUacItyDH3btylKhKsPz4crSq2QqV3CohuWsEnhS5wk3uhjtP7uBq1lV4u3rD29UbuYW5UMgUcK3i\nCjeZAgdu3oeMk8HXzRc+boVoM/Q0bufcxqF8H3he98SN7BsoKC5AeGA4PBQeyA3JQLrMC49vBUNZ\nrISbwg0+rj64lnUND/MfwlXuChWpkK3MRqBHIPKK8uCh8ACB4CJzgVwmR35xPh7mPYRCpkCARwDu\nPbmHG9k3EB4YDhknQ7GqWM1ELj66iIbtG8Lf3R9Z4PDX1X8gl8m1PI1c6+XjyC05PF088Sj/Efzc\n/fC/jP+BAwd3//O4mnUVYbIwKIOU+O/FYsg4GbxdvaEsUarPJ+fkkMvkkEHGvjkZotvJcbuwAA+z\nHkLGyUAgJHapBS//HACWMwx7uR6aisMAgM2bN6NRo0aoV6+ezeezByxd2HXfuK3Jx2RpPzEYYxgA\n0LCh5Soec8ZkjKFZkqJd7JySSsoKJCQkYPPmzejbty8OHDiAyMhI0Xa8i9jBf/5Ew5Rf4Omp8S44\nFR6Dha3rY8pfFwAAqv37MPrUR/j+9n9Bc4DEre8AW8Gsg7m5LKPb1q1AeDh8BRlEh6MTMgsycf3C\nFHCctrqDoMKMVjPwWvPXjF7PZx0+g5+7GYrOZwTfd7fBR9BBsFe2WmNxGDx++uknTJkyxSgde9bD\nsFUlpYuyMnqbAv8sGluky5phWOMDY4ph2OpX89TXw+jZsye2bduGhFJr1ko+U5gByMBBpXOjC9zd\nsKhVBKbsPAvIZJABWBG3BcmnfsT7a9ZjxNvj8Zz/E8YoeGW+IfqcTP1WLYSo8VwEErN4dmCsHgaP\nI0eOoEWLFkbp2LMehqMZhqEFzV4lWQ31NyVhmEPD3GPCa7GFYZhiYI6QMJ76ehgcx+G7774zu72M\nANK5qxxXGmuh8x8cEjkEYcVDMKglgDCYBVsZhoRnB6bqYdy/f1802WB5wtkkDHNjJ3kJw14Mw9zy\nNsYSAUoqqQoAGbFks9o7VSzdhwgsLZQnMQwJ5sJUPYzg4GAcO3asrIdlFJbaMMQYhqOSPujSFY6F\nZxiWSgzCfbzbubH2psYkhCNUUs7IMCr0qicj6KmkwBlmGJYWyuPASQxDglkwVQ/j8OHDSExMRKtW\nrTBgwAAU8lFjDkR5eUk5Gtbq9nUZhqFjhuBIo7c5XlrOgAq96slI34bBcWRUwrBksvFeOHp0JIYh\nQQfCOIxly5ZhxIgR6mNEhFdffRUpKSnYs2cP2rZti3/FCkXYGfa2YYgtsuWxqNkjyYI1zM/eEoap\n80sMw86QE0AWSBjWMAxJwpBgDgzFYQBAeno6AgMDMX/+fCQlJSEzMxP169cvz+ECsI8Nw54qKXNV\nTOa8zZuSnsxlGPYyeotBUkmVMZhKSlfEUMHQZdmTYejVBpfwTIOPwwCgFYcBAA8ePMC+ffswceJE\nbN++HTt27FBHfjsS1izmxuIlytLo7Yi3eUMMw1BqEF3YYvQuDy8pR8CpjN5EhOeeew7hpekoW7Ro\ngXnz5hlsb8iGwTlYwhBLYijh2YaxOIzAwECEhYWppYpOnTrhyJEjSE5O1qNTlnEYlsIWhmHrWOwt\nYei9Zz6FRu+nPg7j0qVLaNq0KTZt2mRWe0uN3pYyDD59g25JTUklJUEXxuIwQkNDkZubi0uXLqFu\n3brYs2cPRo0aJUrHnnEY9kZFMnqLLe5CCcHcmBJTNHk4o1vtUx+HcfToUdy8eRNt2rSBh4cHFixY\noJY2xMAROZRhAMxTikBaKiiJYUjQhak4jBUrVmDQoEEgIiQkJKBz584OH5O9JQxbUoPYuvgZW+zN\nhbNJGKbSpUgqKQFWrFiBhQsXau379ttvMWPGDPTu3Rt79+7FkCFDcOjQIYM0ZFYYvS029JWqpYQM\nQmIYEnRhKg4jOTkZB83JA25H2FMNBGjqRxg6biuM2TCE2/Y2evv5aVK4WzImIayRMEwxQYlhCDBy\n5EiMHDlSa19+fr66sExCQgJu3bol2pcX2zNvXELzIhVqCw/aMQ4DELdjSAzj6YEj9LwVGcJFUbfa\n3J492tsyGSu+ZOSdzm5o2pSl/zf2DAuLJQnBe3OJvdFfvszKC5hT2c6Y0dsaCUPIZCqKhOFUq977\n77+vljpOnjyJmmKVVAB1jdppo15Gc1ddxap9VVISw3i6Ya+6x6YC9xYsWIBGjRohOTkZycnJSE9P\nt3HkjsWjR9rV9gDNghkdzRhF587Ad98Bd+6YT5evySLE2LGG2/MFkN58UxOZrbuQxsWxAmDCYklC\nTJvGvomAJUvY71KPZ9Spw4p42aqSci+tu/bRR4CYeUpI//PP2X3w9NTsE/7mIawZ4yxwKhvG22+/\njSFDhuCPP/6AQqFASkqK0faONnoDEsOQYB6MFVACgGPHjmH16tWIiYkpszEJF7hXXmFFr0zV/E5O\nBnr1Ei/eNHcu0LMnOy5EcDAwbhyQkcHSdvTsCdy4wYpnXb/OikFVrcre5IOCWJ9ffmH1sKdNY4Wy\nFi8Gfv9dU0Rs+nTGmKZOZVU1AY2k8OiRdlW+V15hHyHGjmUlawHgs89Yka2aNYGhQxmDq1xZu6jT\n+PGscFFcHHDgAMArP6ZOZVUPHzzQLp+qi/BwxnhmzGDbZ8+y8ro8evQAJk8Gtm8HEhM1tJs2Zb+n\nTWP9eTgq5cr/t3fuQVHXXx9/rwoKyi11upg1DAqEYl5AbgtySbDh4RK/ZEASVpdRyEEGe9CymZis\nwbCmSH9OKk2AWTzOLyVzvCGxYGp4obAhYNci0B4RewIXkkBgz/PHutuuIC7fBZaV85r5zsDuft7f\ns989y+Hz+X7OOcYiIhqrpg2MSCTS9l1oPl8C5b/+C67N/yyuJu3+N77/pQ6Kj3b3GzttmtpZNA3c\nDWFa9jTc/O+bmGb5z6Co/4nC2oVrEeUaNchIxhzR9a+hsGHDBixfvhzR99Y2nnjiCSgUCm0/DDc3\nN8ybNw83b95EeHg4Xn/99WE794NISlJ3JNT8nJKi/uOtwby++YyxDId/mfW/yeoZhv4FoOHeJTXA\nReYZBnM/gyXuAUB8fDz27t2LsrIynD17FseOHRtxm3x91f8cNTWpe6B7e6tnA1OmPHi9n2EGY0wt\nSQ0V0QBLUsNZSwp48JLUYC02mfHHwxoopaena2cb4eHh+PHHHxEeHt5PZzgT99avVx+6XL2q7icx\n0Jo582jxyCfuDZUJROjr93d75O9hEHGmN6PPYIl7SqUSCxYsQG1tLaytrVFWVtZvh6CGkU7cG2Mt\nOZgR5JFP3BsqIlX/xD0SqQZokqHGmDwMPR1ekmLu42GJe++99x6CgoIwefJkvPDCC9pChQxjTph1\nwBhwlxQeXHyQ8zCYkeJhiXvx8fGIj48fbbMYZlgx6V+94uJiJCQkaH+vrKyEt7c3xGIxtm3b9tDx\nD7zpPcgMQzdgGLK+Z2jAGM61QtYynZZQHpaHoWHdunV44403RtyesXp9Wct0WsOByQJGeno6tm7d\nqrcDKTU1FUVFRTh79iwuXLiA6urqQTVENEB7I5EKNMA9DM1pdJekDPkwNLWkdOGA8ehqCWWwBkoa\n9u7di5qamlHZMDFWry9rmU5rODDZkpSfnx9eeukl7L2Xetne3o7u7m44OjoCAMLCwlBaWoqFCxf2\nH7x3L2BtjcmXKtEHwpmmM2juaMbMqTNx/vZ/cON/Q3DunHo20denTtppaRFm5wTRBBy/ehyPT30c\nBILdZDtU36zmJSlGjwc1UNLsjDp//jwuXryI9evXo76+3pSmMoxgRjxgDFRksKCgALGxsXrRU/fL\nBQA2NjZoaGgYUFOk6VY2ezYQsxL4TQXgceD/ACz9EFgKiHv+0cZT9w4ZINJ5GI2NePthEXzJl5Aq\nASg1D/QBXocR1AigUWesIVqGwlqCtMiILajGosnDiI6O1svDsLW1RXNzM7Zt24bi4mIcPHjQZDYy\njNGQCZHJZBQXF0dEREqlktzc3LTP5ebm0gcffNBvjJOTEwHgg48ROZycnAT5cm9vL2VkZJBYLKYt\nW7aQq6srdXV1ERHRzp07acmSJRQYGEiurq70zDPPUGFhIfs2H6N6CPVtXcbMLilbW1tYWlqioaEB\njo6OKCkpGXBP+i+//DL6xjHMQxgsDyMtLQ1paWkAgMLCQtTX1yMxMbGfBvs2M9YxacAQiUR6NwD3\n7NmDhIQE9PX1ISwsDJ6enia0jmEM52F5GLpwlQDGXDG74oMMwzCMaTCbrT4qlQopKSnw9fVFUFAQ\nfv31V4PHXrhwAUFBQQDU036xWIyAgAC8+uqr2m29eXl58PT0hI+Pz4CF4Xp6erB69WoEBATAy8sL\nR48eFazV19eHtWvXQiwWw9/fHz///LNgLQ23bt3C7NmzoVAojNJavHixtmeDVCo1Smv79u3w9fWF\np6cnCgsLBWsVFhZqbfL29oaVlRWqqqoEaalUKu21DwgIgFwuN/raG4Op/Rpg32bfHoJvG30XZJQ4\ndOgQrVmzhoiIKisrKSoqyqBxOTk55O7uTj4+PkREFBERQRUVFURElJKSQsXFxdTc3Ezu7u509+5d\nUiqV5O7uTt3d3Xo6+fn5lJGRQUREra2tNHv2bIqMjBSk9fXXX5NUKiUiovLycoqMjBSsRUR09+5d\nio6OJhcXF6qvrxf8Hv/++29atGiR3mNCtWQyGUVERBAR0V9//UVvvfWWUe9Rw4YNGygvL0+w1okT\nJyg2NpaIiE6fPk0xMTHDYpdQTO3XROzbQ9Uaz75tNjOMc+fOafe5e3l54fLlywaNmzNnDg4fPqyN\nrD/88AMC7nUwefHFF1FaWopLly7Bz88PFhYWsLW1xZw5c/DTTz/p6axcuVKbfa5SqWBhYSFYKyoq\nSpt/0tjYCAcHB1RVVQnSAoDMzEykpqbiyXsdY4TadeXKFXR2diIsLAwhISGorKwUrFVSUgJ3d3dE\nR0cjIiICkZGRRr1HALh8+TJqa2uRnJwsWMvKygpKpRJEBKVSCUtLS6PtMgZT+zXAvj1UrfHs22YT\nMO7P05g4cSJUgzXZvUdMTIy2TzgAvcxyGxsbKJVKtLe3w06njKfmcV2mTp2KadOmoaOjAytXrsS7\n776rd/6haGnsl0gkSE9PR0JCgmC7CgoKMHPmTISGhmrfnzHvMTMzE6dOndJuQNBlKFp//PEHqqqq\n8NVXX2HPnj1YtWqVYLs0ZGdnIysrS/s+hWj5+fmhq6sLrq6uWL9+PTZu3Gi0XcZgar8G2LeHqjWe\nfdtsAoatrS06Ojq0v6tUKkwQ0Hldd0x7ezvs7e37aXd0dMBhgB6V169fR3BwMBITExEfH2+UFqD+\nQsjlciQnJ6Orq0uQVn5+Pk6fPo2goCBUV1cjKSkJf+g0Th6KlrOzs/aLNHfuXEyfPh0tOinyQ9Ga\nMWMGQkNDMWnSJDg7O2PKlCl6TjnU63X79m0oFAosu9evU+i137FjB/z8/CCXy1FdXY3ExET09PQI\ntstYxoJfA+zb7NuG+bbZBAw/Pz8cP34cgLpI4YIFCwTpLFq0CBUVFQCAEydOICAgAEuXLsV3332H\n7u5uKJVK1NXVYf78+XrjWlpaEBoaih07dkAikRil9fnnn2P79u0A1NPIiRMnwsPDQ5BWRUUFysvL\nIZPJsHDhQuzfvx8rVqwQpJWfn4/XXnsNAHDjxg10dHQgNDRUkJZYLMbJkye1Wp2dnQgJCRGkBQBn\nzpxBSEiI0Z+jJvsaABwcHNDb2ytYazgwtV8D7NtD1RrXvm3QnY4xgEqlopSUFPL19SVfX1+Sy+UG\nj/3tt9+0NwcVCgUtW7aMfHx8SCqVkkqlIiKivLw88vT0pCVLltDhw4f7aWzcuJGefPJJCgwM1B5X\nrlwRpNXZ2UmxsbEUEBBAPj4+9M033wi2S5fAwECSy+WCtXp6euiVV14hf39/8hUkPwEAAAStSURB\nVPf3p++//94ouzZv3qx9TUlJiVFa77//Pn388cfa34VqtbW1UXR0NInFYvLy8qKioqJhufZCMbVf\nE7Fvs28b7tuch8EwDMMYhNksSTEMwzCmhQMGwzAMYxAcMBiGYRiD4IDBMAzDGAQHDIZhGMYgOGAw\nDMMwBsEBw4wJDAyEXC4f9fNKJBJUVVWN+nmZ8QH79diFA4YZc38DqtE8L8OMFOzXY5cx06L1UUOh\nUGDNmjWwsLCASqXCl19+iaeeegrr1q3D77//jubmZkRGRuKdd96BRCKBpaUlmpqa0N3djbi4OBw9\nehTXrl3DkSNHcO3aNXz44Yfo6upCS0sLUlNTkZKSoj2XUqmEVCpFa2srAGDnzp16qf7l5eXIycnB\n5MmT0dDQgLi4OGzduhUSiQTx8fEICwvDyZMncfDgQeTn52POnDnw8/ODQqFASEgIlEolLl68CBcX\nF+zfvx+Auh9AW1sbiAh5eXlwcnLCrl27UFRUBJFIhLi4OKSlpUEikaC1tRV//vknjh07Bnt7+9H9\nIJhhhf16nPu1wTnhzJDYvXs3bdq0iXp6eqisrIxqamqosbGRPv30UyJS1+efMWMGERFJJBLKzs4m\nInXN+i1bthARUVZWFuXm5lJ5eTn5+PhQb28v3blzh5ycnOjWrVsUGBhI9fX1tHnzZvrkk0+ISF1W\nQCwW69kik8nIzc2N+vr66M6dO2RnZ6c976lTp4hIXUtf05dh0qRJdP36derp6SEbGxuqq6sjIiJH\nR0e6ffs2SSQS2rdvHxERHT9+nGJiYqi2tpbEYjGpVCrq7e2l4OBgksvlJJFIKDc3d8SuMzO6sF+P\nb7/mGcYIIZVKkZOTgxUrVsDOzg7Z2dlwcHDApUuXIJPJYGtri+7ubu3rFy9eDACwt7fHc889B0Bd\nQExT6XPZsmWYOHEirK2tMX/+fDQ0NGjH1tTUQCaT4eDBgwCAtra2fva4u7tjwoQJsLa2hpWVVb/n\nSad09PTp0/H0008DUJeFdnV1BQDY2dnp2QMA3t7eyMzMRE1NDZqamhAcHAxAXYHz6tWrANT9rplH\nA/br8e3XfA9jhDhy5Aj8/f1RWlqKl19+GTk5OSgsLIS9vT0OHDiATZs2obOzc8CxNEB5L01jnc7O\nTtTV1WHu3Lna51xdXZGRkQGZTIYDBw4gKSmp3/iB1menTJmCGzduAFA3phnstfdTWVkJQF1p8/nn\nn4eLiwvmzZsHmUwGmUyG1atXayuv8trwowP79fj2a55hjBAeHh5ISkqCpaUlVCoVPvroI1haWmLV\nqlWoqqrCs88+Cw8PD61j6zrfQD+3t7dj+fLlaGtrQ1ZWFh577DHt82+++SakUin27duH9vZ2vP32\n23q23H8TUfNzcnIy1q5diy+++ALOzs7axx9mCwB8++23KCgogIWFBT777DPMmjULISEhEIvF6Orq\ngre3N2bNmtVvHGPesF+Pb7/marVmQHl5OQ4dOoRdu3aZ2hSGGTbYr80PXpIyA0y1zZBhRhL2a/OD\nZxgMwzCMQfAMg2EYhjEIDhgMwzCMQXDAYBiGYQyCAwbDMAxjEBwwGIZhGIPggMEwDMMYxP8D50Ez\nctAxpREAAAAASUVORK5CYII=\n",
"text": [
"\n",
"(9, 0.90284999999999993, -0.16965, -0.047774999999999998)"
"<matplotlib.figure.Figure at 0x7f7113c306d0>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(10, 1.0125374999999999, 0.084824999999999998, -0.14624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(11, 0.92917499999999997, 0.244725, -0.1028625)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(12, 0.80291249999999992, 0.59670000000000001, -0.44264999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(13, 0.57329999999999992, 0.77171249999999991, -0.4914)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(14, 0.35197499999999998, 0.84532499999999999, -0.48067499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(15, 0.10237499999999999, 0.92527499999999996, -0.40121249999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(16, -0.086774999999999991, 0.90479999999999994, -0.312975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(17, -0.47872499999999996, 0.81461249999999996, -0.27689999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(18, -0.77999999999999992, 0.53722499999999995, -0.31004999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(19, -0.90674999999999994, 0.085800000000000001, -0.17354999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(20, -0.98377499999999996, -0.36854999999999999, -0.24862499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(21, -0.83460000000000001, -0.638625, -0.2457)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(22, -0.55379999999999996, -0.81363750000000001, -0.2145)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(23, -0.35148750000000001, -0.818025, -0.69712499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(24, -0.33344999999999997, -0.30419999999999997, -0.96914999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(25, -0.39097499999999996, 0.075075000000000003, -0.82289999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(26, -0.80145, 0.252525, -0.74002499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(27, -0.53576250000000003, 0.69029999999999991, -0.54794999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(28, -0.16574999999999998, 0.9204, -0.48701249999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(29, 0.2588625, 0.83752499999999996, -0.40462499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(30, 0.65617499999999995, 0.61522500000000002, -0.34709999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(31, 0.69419999999999993, 0.18817499999999998, -0.61181249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(32, 0.75562499999999999, -0.10237499999999999, -0.81509999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(33, 0.43972499999999998, -0.27397499999999997, -0.88432499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(34, 0.56940000000000002, -0.41827500000000001, -0.56940000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(35, 0.43290000000000001, -0.70492499999999991, -0.59572499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(36, 0.084824999999999998, -0.73904999999999998, -0.76439999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(37, -0.27299999999999996, -0.54599999999999993, -0.82192500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(38, -0.47969999999999996, -0.46507499999999996, -0.70784999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(39, -0.53527499999999995, -0.33832499999999999, -0.79657499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(40, -0.67079999999999995, -0.071175000000000002, -0.71954999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(41, -0.76049999999999995, 0.21742499999999998, -0.70687499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(42, -0.64934999999999998, 0.35392499999999999, -0.80047499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(43, -0.57427499999999998, 0.357825, -0.83947499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(44, -0.43338749999999998, 0.17257499999999998, -1.0208249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(45, -0.063375000000000001, 0.110175, -1.1456249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(46, 0.43290000000000001, 0.1794, -0.88139999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(47, 0.45581249999999995, 0.14722499999999999, -0.96524999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(48, 0.56745000000000001, 0.14527499999999999, -0.75074999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(49, 0.73904999999999998, 0.034124999999999996, -0.61814999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(50, 0.84483749999999991, -0.012674999999999999, -0.41144999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(51, 0.92771249999999994, -0.10627499999999999, -0.15989999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(52, 0.96232499999999999, -0.11943749999999999, 0.067275000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(53, 0.92917499999999997, -0.207675, 0.47774999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(54, 0.77317499999999995, -0.2535, 0.68835000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(55, 0.57524999999999993, -0.23887499999999998, 0.83265)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(56, 0.268125, -0.37829999999999997, 0.83362499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(57, 0.02145, -0.66592499999999999, 0.66592499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(58, -0.48067499999999996, -0.699075, 0.27689999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(59, -0.79169999999999996, -0.62497499999999995, -0.0014624999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(60, -0.70004999999999995, -0.64349999999999996, -0.27592499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(61, -0.69322499999999998, -0.61522500000000002, -0.39779999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(62, -0.67518749999999994, -0.62790000000000001, -0.548925)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(63, -0.45434999999999998, -0.66494999999999993, -0.71954999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(64, 0.39633750000000001, -0.50407499999999994, -0.50895000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(65, 0.85409999999999997, -0.47092499999999998, 0.20865)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(66, 0.62887499999999996, -0.065324999999999994, 0.58304999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(67, 0.47969999999999996, 0.20085, 1.0110749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(68, -0.10237499999999999, 0.73319999999999996, 0.50309999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(69, -0.43679999999999997, 0.84776249999999997, 0.0195)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(70, -0.54648750000000001, 0.79803749999999996, -0.5884125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(71, -0.21839999999999998, 0.43874999999999997, -0.98572499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(72, -0.11505, 0.114075, -1.067625)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(73, -0.099937499999999999, 0.085800000000000001, -1.0832249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(74, 0.11505, 0.58109999999999995, -0.79998749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(75, 0.28664999999999996, 0.818025, -0.19305)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(76, 0.52844999999999998, 0.82094999999999996, -0.0277875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(77, 0.6157125, 0.8034, 0.25545000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(78, 0.59572499999999995, 0.42217499999999997, 0.6552)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(79, 0.56062499999999993, 0.27982499999999999, 0.81217499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(80, 0.62107499999999993, 0.016574999999999999, 0.69224999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(81, 0.67957499999999993, -0.21937499999999999, 0.50700000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(82, 0.69224999999999992, -0.47189999999999999, 0.16087499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(83, 0.70784999999999998, -0.64154999999999995, 0.20572499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(84, 0.55769999999999997, -0.84824999999999995, 0.33929999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(85, 0.071175000000000002, -0.94282499999999991, 0.33247499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(86, -0.084824999999999998, -0.94672499999999993, 0.30809999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(87, -0.1184625, -0.97792499999999993, -0.011699999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(88, -0.18914999999999998, -0.92624999999999991, -0.52406249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(89, 0.02145, -0.70882499999999993, -0.76244999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(90, 0.1993875, -0.38414999999999999, -0.95647499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(91, 0.30419999999999997, -0.051674999999999999, -1.026675)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(92, 0.50212499999999993, -0.039, -0.92137499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(93, 0.57573750000000001, -0.19305, -0.77999999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(94, 0.52844999999999998, -0.62058749999999996, -0.38756249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(95, 0.41388749999999996, -0.86580000000000001, 0.19109999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(96, 0.48067499999999996, -0.624, 0.74197499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(97, 0.445575, -0.12772500000000001, 0.83655000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(98, 0.44264999999999999, 0.2145, 0.63082499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(99, 0.89456249999999993, 0.19694999999999999, -0.097499999999999989)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(100, 0.85604999999999998, -0.039974999999999997, -0.72344999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(101, 0.54794999999999994, -0.149175, -0.87749999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(102, 0.31784999999999997, -0.3276, -0.79267500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(103, 0.2598375, -0.64252500000000001, -0.72734999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(104, 0.29493749999999996, -0.78487499999999999, -0.49627499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(105, 0.25447500000000001, -0.88139999999999996, -0.27787499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(106, 0.41876249999999998, -0.85458749999999994, -0.13747499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(107, 0.62497499999999995, -0.70784999999999998, -0.11309999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(108, 0.75172499999999998, -0.53039999999999998, -0.37732499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(109, 0.77171249999999991, -0.25837499999999997, -0.72344999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(110, 0.61522500000000002, -0.046799999999999994, -0.85312499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(111, 0.36269999999999997, -0.049724999999999998, -0.995475)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(112, 0.49627499999999997, -0.25496249999999998, -0.73514999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(113, 0.79413749999999994, -0.35197499999999998, -0.10188749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(114, 0.89407499999999995, -0.19548749999999998, 0.5655)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(115, 0.46166249999999998, -0.141375, 1.0544624999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(116, -0.13747499999999999, 0.00097499999999999996, 0.80827499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(117, -0.81119999999999992, -0.11699999999999999, 0.28664999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(118, -0.91698749999999996, -0.31492500000000001, -0.04095)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(119, -0.89017499999999994, -0.43874999999999997, -0.52064999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(120, -0.61522500000000002, -0.42119999999999996, -0.83655000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(121, -0.40413749999999998, 0.0077999999999999996, -1.0705499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(122, -0.64496249999999999, 0.268125, -0.63472499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(123, -0.72539999999999993, 0.236925, -0.52747500000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(124, -0.97109999999999996, 0.016574999999999999, -0.0068249999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(125, -0.98085, -0.13747499999999999, 0.342225)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(126, -0.78389999999999993, -0.162825, 0.77999999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(127, -0.41096250000000001, 0.24862499999999998, 0.84824999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(128, -0.30907499999999999, 0.77317499999999995, 0.076049999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(129, -0.64154999999999995, 0.72052499999999997, -0.50895000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(130, -0.39584999999999998, 0.22522499999999998, -1.0578749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(131, -0.192075, -0.23497499999999999, -0.96817500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(132, 0.27982499999999999, -0.48945, -0.81119999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(133, 0.46799999999999997, -0.70687499999999992, -0.54307499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(134, 0.53771249999999993, -0.77122499999999994, -0.050699999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(135, 0.54794999999999994, -0.75659999999999994, 0.48359999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(136, 0.30809999999999998, -0.52844999999999998, 0.77317499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(137, -0.0068249999999999995, -0.083849999999999994, 0.94867499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(138, -0.39487499999999998, 0.10725, 0.73709999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(139, -0.58694999999999997, -0.24667499999999998, 0.6157125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(140, -0.75172499999999998, -0.48847499999999999, 0.34027499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(141, -0.70589999999999997, -0.76829999999999998, -0.19499999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(142, -0.17354999999999998, -0.82874999999999999, -0.44947499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(143, 0.6157125, -0.58889999999999998, -0.24033749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(144, 0.97792499999999993, 0.096525, 0.34027499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(145, 0.61424999999999996, 0.70882499999999993, 0.45239999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(146, 0.4099875, 0.818025, -0.52259999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(147, 0.36172499999999996, 0.59816249999999993, -0.92917499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(148, 0.055574999999999999, 0.36269999999999997, -1.0135125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(149, 0.10871249999999999, -0.26324999999999998, -1.0447124999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(150, -0.3943875, -0.199875, -0.78292499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(151, -0.64154999999999995, -0.45337499999999997, -0.728325)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(152, -0.75221249999999995, -0.39877499999999999, -0.35099999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(153, -0.88529999999999998, -0.268125, -0.12675)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(154, -0.91113749999999993, -0.37439999999999996, 0.41535)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(155, -0.29786249999999997, -0.51674999999999993, 0.65812499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(156, 0.46994999999999998, -0.73271249999999999, 0.37927499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(157, 0.68640000000000001, -0.78779999999999994, 0.0058499999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(158, 0.60839999999999994, -0.818025, -0.133575)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(159, 0.39682499999999998, -0.85019999999999996, -0.17354999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(160, 0.24862499999999998, -0.91747499999999993, -0.20865)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(161, 0.21059999999999998, -0.88529999999999998, -0.39389999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(162, 0.029249999999999998, -0.97792499999999993, 0.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(163, -0.049724999999999998, -0.97841249999999991, 0.27007500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(164, -0.11309999999999999, -0.96232499999999999, 0.416325)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(165, 0.34173749999999997, -0.86385000000000001, -0.29152499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(166, 0.37829999999999997, -0.74490000000000001, -0.29542499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(167, 0.62692499999999995, -0.45727499999999999, -0.61278749999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(168, 0.5864625, 0.3276, -0.81607499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(169, 0.01755, 0.85409999999999997, -0.59084999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(170, 0.00975, 0.97207499999999991, -0.070199999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(171, 0.023399999999999997, 0.995475, 0.03705)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(172, 0.11748749999999999, 0.87944999999999995, 0.15746250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(173, -0.004875, 0.94184999999999997, 0.16184999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(174, -0.045824999999999998, 0.99157499999999998, 0.32077499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(175, -0.012674999999999999, 1.0247249999999999, -0.11115)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(176, -0.11651249999999999, 1.0880999999999998, 0.20085)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(177, -0.30712499999999998, 0.81899999999999995, -0.49334999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(178, 0.035587500000000001, 0.94574999999999998, -0.15356249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(179, -0.1399125, 1.0569, -0.18427499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(180, 0.11115, 0.81997500000000001, -0.65812499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(181, 0.52308749999999993, 0.28470000000000001, -0.77415)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(182, 0.74490000000000001, 0.066299999999999998, -0.70102500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(183, 0.79949999999999999, -0.32955000000000001, -0.61814999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(184, 0.65715000000000001, -0.33929999999999999, -0.59084999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(185, 0.156, -0.73124999999999996, -0.24033749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(186, -0.080437499999999995, -0.92478749999999998, 0.14624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(187, -0.89115, -0.31492500000000001, 0.070199999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(188, -0.97694999999999999, 0.44069999999999998, 0.236925)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(189, -0.71467499999999995, 0.80145, 0.1482)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(190, -0.60060000000000002, 0.78097499999999997, 0.21742499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(191, -0.268125, 1.0208249999999999, 0.07897499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(192, -0.68201250000000002, 0.44167499999999998, 0.19305)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(193, -0.87896249999999998, 0.14624999999999999, 0.092624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(194, -1.1163749999999999, -0.36659999999999998, -0.46604999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(195, -0.21742499999999998, -0.50797499999999995, -0.79559999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(196, 0.43436249999999998, -0.31395000000000001, -0.75269999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(197, 0.63569999999999993, 0.070199999999999999, -0.57329999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(198, 0.79949999999999999, 0.22424999999999998, -0.39584999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(199, 0.92624999999999991, 0.2223, -0.38999999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(200, 0.94964999999999999, 0.27884999999999999, -0.11992499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(201, 0.98231249999999992, -0.25545000000000001, 0.40754999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(202, 0.59767499999999996, -0.57622499999999999, 0.46312499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(203, 0.076049999999999993, -0.88919999999999999, 0.51772499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(204, -0.34514999999999996, -0.65032499999999993, 0.55769999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(205, -0.71272499999999994, -0.42607499999999998, 0.54307499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(206, -0.60254999999999992, -0.39633750000000001, 0.69614999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(207, -0.71565000000000001, 0.004875, 0.63569999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(208, -0.69371249999999995, 0.2442375, 0.64057500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(209, -0.54210000000000003, 0.966225, 0.10237499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(210, -0.48457499999999998, 0.98767499999999997, -0.27982499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(211, -0.24862499999999998, 0.98085, -0.3339375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(212, -0.34320000000000001, 0.786825, -0.63277499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(213, -0.1326, 0.74977499999999997, -0.81704999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(214, 0.16769999999999999, 0.77805000000000002, -0.64544999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(215, 0.11505, 0.96671249999999997, -0.39731249999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(216, 0.067762500000000003, 0.905775, -0.16672499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(217, 0.75172499999999998, 0.40462499999999996, -0.268125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(218, 1.022775, -0.093599999999999989, 0.21839999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(219, 1.0949249999999999, -0.31346249999999998, 0.08287499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(220, 0.81753749999999992, -0.70053749999999992, -0.0024375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(221, 0.44264999999999999, -0.4758, -0.93794999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(222, 0.20474999999999999, -0.19597499999999998, -0.98182499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(223, 0.74538749999999998, -0.32272499999999998, 0.14332499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(224, 0.38805000000000001, -0.43582499999999996, 0.91552499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(225, -0.38024999999999998, -0.10237499999999999, 0.68835000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(226, -0.58938749999999995, -0.20572499999999999, 0.67567499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(227, -0.86580000000000001, -0.26910000000000001, 0.51187499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(228, -0.69809999999999994, -0.16672499999999998, 0.64642499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(229, -0.74392499999999995, -0.1633125, 0.64447500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(230, -0.73758749999999995, -0.14429999999999998, 0.48847499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(231, -0.83167499999999994, -0.25739999999999996, 0.31589999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(232, -0.92332499999999995, -0.56745000000000001, 0.09018749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(233, -0.84629999999999994, -0.57524999999999993, 0.046799999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(234, -0.61717499999999992, -0.52162500000000001, -0.65812499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(235, -0.31638749999999999, -0.52552500000000002, -0.90382499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(236, -0.17647499999999999, -0.44703749999999998, -0.907725)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(237, -0.20279999999999998, -0.40754999999999997, -0.9179624999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(238, -0.0019499999999999999, -0.31784999999999997, -0.95647499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(239, 0.19597499999999998, -0.357825, -0.91552499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(240, 0.68347499999999994, -0.29688749999999997, -0.38805000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(241, 0.9579375, -0.23594999999999999, 0.28470000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(242, 0.73758749999999995, -0.30712499999999998, 0.70882499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(243, 0.40852499999999997, -0.33734999999999998, 0.92917499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(244, 0.0112125, -0.29542499999999999, 0.91601250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(245, -0.20572499999999999, -0.28762499999999996, 0.88237499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(246, -0.21011249999999998, -0.29152499999999998, 0.93014999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(247, 0.1272375, -0.50992499999999996, 0.58694999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(248, 0.56940000000000002, -0.85751250000000001, -0.096525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(249, 0.35294999999999999, -0.80388749999999998, -0.49822499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(250, -0.18719999999999998, -0.81217499999999998, -0.429975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(251, -0.38951249999999998, -0.82387499999999991, -0.2223)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(252, -0.74295, -0.59377499999999994, 0.117975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(253, -0.75513750000000002, -0.28275, 0.74392499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(254, -0.371475, -0.16087499999999999, 0.85702499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(255, -0.082387500000000002, -0.81607499999999999, 0.31053749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(256, -0.1184625, -0.77415, -0.82582499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(257, -0.14624999999999999, -0.084824999999999998, -1.10565)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(258, -0.098474999999999993, 0.21937499999999999, -1.0461749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(259, -0.14429999999999998, 0.40462499999999996, -0.95452499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(260, -0.27689999999999998, 0.48262499999999997, -0.93112499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(261, -0.39194999999999997, -0.055574999999999999, -1.2002249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(262, -0.45239999999999997, -0.48067499999999996, -0.68445)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(263, -0.400725, -0.72929999999999995, -0.51772499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(264, -0.24862499999999998, -0.95257499999999995, -0.14235)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(265, -0.075562499999999991, -0.91552499999999992, 0.46166249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(266, 0.083849999999999994, -0.63569999999999993, 0.76829999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(267, 0.36269999999999997, -0.1330875, 0.87359999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(268, 0.39633750000000001, 0.10968749999999999, 0.91162499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(269, -0.022425, 0.114075, 0.92527499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(270, -0.28859999999999997, -0.17647499999999999, 0.91162499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(271, -0.29542499999999999, -0.61327500000000001, 0.65617499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(272, -0.16184999999999999, -0.90382499999999999, 0.43338749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(273, -0.011699999999999999, -0.93209999999999993, 0.33344999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(274, 0.12918749999999998, -0.62887499999999996, 0.85019999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(275, 0.2145, 0.26129999999999998, 0.88724999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(276, -0.0077999999999999996, 0.73417499999999991, 0.58889999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(277, -0.41827500000000001, 0.87067499999999998, 0.31979999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(278, -0.7137, 0.6030375, 0.156975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(279, -0.92186249999999992, 0.077512499999999998, -0.2608125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(280, -0.89602499999999996, -0.36757499999999999, -0.67274999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(281, -0.42217499999999997, -0.63667499999999999, -0.73612499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(282, -0.078, -0.78292499999999998, -0.61376249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(283, -0.024374999999999997, -0.84239999999999993, -0.44752500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(284, 0.1486875, -0.88919999999999999, -0.21937499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(285, -0.25447500000000001, -0.78292499999999998, 0.60644999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(286, -0.33149999999999996, -0.0068249999999999995, 0.86872499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(287, -0.70979999999999999, -0.095549999999999996, 0.49237499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(288, -0.92819999999999991, -0.18914999999999998, 0.18914999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(289, -0.95013749999999997, -0.26032499999999997, 0.022912499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(290, -0.92332499999999995, -0.27689999999999998, -0.19012499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(291, -0.88383749999999994, -0.192075, -0.71857499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(292, -0.51577499999999998, -0.29249999999999998, -1.0042499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(293, 0.34320000000000001, -0.13064999999999999, -0.57914999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(294, 0.88432499999999992, -0.43777499999999997, -0.12869999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(295, 0.87311249999999996, -0.3276, 0.18768749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(296, 0.62887499999999996, -0.1794, 1.0490999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(297, -0.15307499999999999, 0.20426249999999999, 0.78974999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(298, -0.80437499999999995, 0.12869999999999998, 0.31784999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(299, -0.907725, 0.034612499999999997, 0.16965)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(300, -1.014, -0.30419999999999997, 0.098474999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(301, -0.9764624999999999, -0.4017, -0.49432499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(302, -0.53722499999999995, -0.52259999999999995, -0.93112499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(303, 0.022912499999999999, -0.23204999999999998, -1.0237499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(304, -0.252525, 0.117975, -0.82972499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(305, -0.57427499999999998, 0.20865, -0.57427499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(306, -0.91844999999999999, 0.00097499999999999996, -0.31979999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(307, -0.94233749999999994, -0.37927499999999997, 0.28664999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(308, -0.36659999999999998, -0.41924999999999996, 0.88871249999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(309, 0.46702499999999997, 0.084824999999999998, 0.69419999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(310, 0.85312499999999991, 0.37439999999999996, 0.38024999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(311, 0.80291249999999992, 0.42314999999999997, -0.48457499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(312, 0.73173749999999993, 0.089700000000000002, -0.89017499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(313, 0.36611250000000001, -0.79462499999999991, -0.68932499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(314, -0.133575, -0.669825, -0.7137)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(315, -0.4675125, -0.58499999999999996, -0.35489999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(316, -0.96378749999999991, -0.33734999999999998, 0.58597500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(317, -0.34612499999999996, 0.015599999999999999, 0.91893749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(318, 0.30224999999999996, 0.59670000000000001, 0.46994999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(319, 0.79949999999999999, 0.48262499999999997, -0.077024999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(320, 0.97743749999999996, 0.30127499999999996, -0.29932500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(321, 0.92673749999999999, 0.24959999999999999, -0.67469999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(322, 0.74099999999999999, 0.1633125, -0.85507499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(323, 0.24033749999999998, 0.30419999999999997, -1.02765)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(324, -0.075075000000000003, 0.014624999999999999, -0.9993749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(325, -0.51090000000000002, -0.01755, -0.88919999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(326, -0.79559999999999997, -0.083849999999999994, -0.31687499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(327, -0.94233749999999994, -0.49529999999999996, 0.3276)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(328, -0.44655, -0.49334999999999996, 0.73417499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(329, 0.40365000000000001, -0.50797499999999995, 0.42899999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(330, 0.88237499999999991, -0.52357500000000001, 0.011699999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(331, 0.89992499999999997, -0.30907499999999999, -0.47189999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(332, 0.84337499999999999, -0.357825, -0.52552500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(333, 0.44264999999999999, -0.50017499999999993, -0.53234999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(334, 0.067762500000000003, -0.87847500000000001, -0.28957499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(335, -0.16916249999999999, -0.9286875, -0.39292499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(336, -0.15892499999999998, -0.94379999999999997, -0.355875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(337, 0.47969999999999996, -0.62790000000000001, 0.51285000000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(338, 0.67226249999999999, -0.12967499999999998, 0.83216249999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(339, 0.28859999999999997, 0.90674999999999994, 0.33149999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(340, -0.40852499999999997, 0.87359999999999993, -0.047774999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(341, -0.69809999999999994, 0.77171249999999991, -0.070199999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(342, -0.69468750000000001, 0.68786249999999993, -0.099449999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(343, -0.76439999999999997, 0.62887499999999996, -0.100425)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(344, -0.83752499999999996, 0.59084999999999999, -0.093599999999999989)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(345, -0.79657499999999992, 0.47872499999999996, -0.025349999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(346, -0.98962499999999998, 0.3641625, 0.085800000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(347, -1.0130250000000001, 0.34514999999999996, -0.047774999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(348, -0.99157499999999998, -0.50212499999999993, -0.28762499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(349, -0.44167499999999998, -0.70492499999999991, -0.76439999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(350, 0.0024375, -0.33539999999999998, -0.94769999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(351, 0.061912499999999995, -0.20231249999999998, -1.0725)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(352, -0.11992499999999999, -0.056549999999999996, -0.96914999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(353, -0.3349125, -0.355875, -0.81217499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(354, -0.70882499999999993, -0.61619999999999997, -0.39487499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(355, -0.89992499999999997, -0.40706249999999999, 0.052649999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(356, -0.96037499999999998, 0.042900000000000001, 0.44069999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(357, -0.75367499999999998, 0.63082499999999997, 0.48652499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(358, -0.097499999999999989, 0.93599999999999994, 0.088724999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(359, 0.2457, 0.89797499999999997, 0.35197499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(360, 0.44752500000000001, 0.61034999999999995, 0.59182499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(361, 0.57135000000000002, 0.170625, 0.81899999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(362, 0.62497499999999995, -0.27884999999999999, 0.58109999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(363, 0.62692499999999995, -0.62497499999999995, 0.24911249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(364, 0.73514999999999997, -0.74587499999999995, -0.15209999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(365, 0.56452499999999994, -0.68054999999999999, -0.58597500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(366, 0.56842499999999996, -0.56891249999999993, -0.68542499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(367, 0.37245, -0.37342500000000001, -1.2743249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(368, 0.121875, -0.15015000000000001, -1.0105875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(369, 0.013649999999999999, 0.34514999999999996, -0.83947499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(370, 0.53820000000000001, 0.59670000000000001, -0.44849999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(371, 0.70589999999999997, 0.51187499999999997, 0.055574999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(372, 0.6552, 0.3651375, 0.89992499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(373, 0.1638, -0.125775, 1.0880999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(374, -0.42509999999999998, -0.52601249999999999, 0.77902499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(375, -0.68347499999999994, -0.76439999999999997, -0.091162499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(376, -0.43582499999999996, -0.29347499999999999, -1.0062)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(377, -0.15209999999999999, 0.21157499999999999, -0.97694999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(378, -0.342225, 0.50895000000000001, -0.83460000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(379, -0.52406249999999999, 0.67274999999999996, -0.56842499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(380, -0.53381250000000002, 0.8555625, -0.11309999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(381, -0.64008749999999992, 0.69224999999999992, 0.42509999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(382, -0.476775, 0.757575, 0.40365000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(383, -0.39584999999999998, 0.68493749999999998, -0.36269999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(384, -0.76732499999999992, 0.22619999999999998, -0.89358749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(385, -0.32857500000000001, -0.33637499999999998, -0.93989999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(386, 0.21937499999999999, -0.74879999999999991, -0.36757499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(387, 0.69517499999999999, -0.57914999999999994, 0.16672499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(388, 0.69614999999999994, -0.71662499999999996, 0.50992499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(389, 0.35148750000000001, -0.49627499999999997, 0.79267500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(390, -0.33247499999999997, -0.53527499999999995, 0.64934999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(391, -0.73271249999999999, -0.18525, 0.74782499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(392, -0.35099999999999998, 0.18914999999999998, 0.90674999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(393, -0.215475, 0.70297500000000002, 0.68152499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(394, -0.252525, 0.82972499999999993, 0.27007500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(395, -0.33539999999999998, 0.98621249999999994, -0.57427499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(396, 0.027299999999999998, 0.68201250000000002, -0.73124999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(397, 0.53039999999999998, 0.65812499999999996, -0.47384999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(398, 0.91649999999999998, 0.52552500000000002, 0.1638)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(399, -0.0063374999999999994, 0.66689999999999994, 0.57817499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(400, -0.70833749999999995, 0.027299999999999998, 0.56257499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(401, -0.63521249999999996, -0.34320000000000001, 0.83167499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(402, -0.23984999999999998, -0.30127499999999996, 0.93599999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(403, 0.35392499999999999, -0.035099999999999999, 0.76732499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(404, 0.81899999999999995, -0.055574999999999999, 0.33344999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(405, 0.85409999999999997, -0.74977499999999997, 0.31004999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(406, 0.23497499999999999, -0.99059999999999993, -0.054599999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(407, -0.33686250000000001, -0.83557499999999996, -0.28762499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(408, -0.71808749999999999, -0.46994999999999998, -0.20474999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(409, -0.40706249999999999, -0.164775, 0.93599999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(410, 0.52162500000000001, 0.073124999999999996, 0.62985000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(411, 0.85166249999999999, 0.26519999999999999, 0.13747499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(412, 0.91113749999999993, 0.36074999999999996, -0.30907499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(413, 0.69029999999999991, 0.26129999999999998, -0.77122499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(414, 0.38902500000000001, 0.091649999999999995, -0.98182499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(415, 0.13942499999999999, -0.10335, -1.077375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(416, 0.14429999999999998, -0.54697499999999999, -0.79998749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(417, -0.37927499999999997, -0.90089999999999992, 0.053624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(418, -0.44264999999999999, -0.77366249999999992, 0.35489999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(419, -0.41827500000000001, -0.64154999999999995, 0.580125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(420, -0.23497499999999999, -0.28664999999999996, 0.90479999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(421, -0.26129999999999998, -0.058012499999999995, 0.9701249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(422, -0.33344999999999997, 0.03705, 0.847275)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(423, -0.59475, 0.090674999999999992, 0.46215000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(424, -0.94038749999999993, -0.34320000000000001, -0.40949999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(425, -0.580125, -0.35880000000000001, -0.93307499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(426, 0.0014624999999999998, 0.012187499999999999, -0.9179624999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(427, 0.67079999999999995, 0.27689999999999998, -0.66202499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(428, 1.0110749999999999, 0.064349999999999991, -0.18086249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(429, 1.0159499999999999, -0.0297375, 0.59670000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(430, 0.56452499999999994, 0.20865, 0.74879999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(431, 0.21839999999999998, 0.37732499999999997, 0.80242499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(432, 0.21742499999999998, 0.39194999999999997, 0.67713749999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(433, 0.17501249999999999, 0.519675, 0.85019999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(434, 0.12967499999999998, 0.490425, 0.89163749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(435, -0.51869999999999994, -0.74782499999999996, -0.050699999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(436, -0.67177500000000001, -0.5572125, -0.43290000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(437, -0.88334999999999997, -0.199875, -0.30907499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(438, -0.847275, -0.24862499999999998, 0.63179999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(439, -0.3943875, 0.054599999999999996, 0.91649999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(440, 0.48067499999999996, 0.24959999999999999, 0.72637499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(441, 0.82874999999999999, 0.41193749999999996, 0.28275)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(442, 0.84922500000000001, -0.49237499999999995, -0.77317499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(443, -0.066299999999999998, -0.70589999999999997, -0.88773749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(444, -0.42119999999999996, -0.40559999999999996, -0.82631250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(445, -0.33149999999999996, -0.44752500000000001, -0.62497499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(446, -0.8619, -0.34709999999999996, 0.46994999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(447, -0.43972499999999998, -0.046799999999999994, 0.93794999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(448, 0.4173, 0.44996249999999999, 0.59377499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(449, 0.51674999999999993, 0.59377499999999994, 0.416325)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(450, 0.57135000000000002, 0.77902499999999997, 0.19889999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(451, 0.27105000000000001, 0.83167499999999994, 0.58548749999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(452, -0.8536125, -0.24959999999999999, 0.18719999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(453, -0.80681249999999993, -0.61132500000000001, -0.74587499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(454, -0.192075, -0.39194999999999997, -0.91454999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(455, -0.2379, -0.312, -1.0218)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(456, -0.053624999999999999, -0.090674999999999992, -1.0919999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(457, 0.59865000000000002, 0.19597499999999998, -0.44069999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(458, 0.9325874999999999, 0.37732499999999997, 0.51869999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(459, 0.55477500000000002, 0.023399999999999997, 0.966225)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(460, -0.25447500000000001, -0.60254999999999992, 0.70736250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(461, -0.42802499999999999, -1.0120499999999999, 0.1252875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(462, -0.61229999999999996, -0.85507499999999992, -0.192075)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(463, -0.69761249999999997, -0.31395000000000001, -0.80827499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(464, -0.60011249999999994, -0.43874999999999997, -0.42948749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(465, -0.89602499999999996, 0.12041249999999999, 0.67713749999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(466, -0.0029249999999999996, 0.71272499999999994, 0.63179999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(467, 0.66689999999999994, 0.31979999999999997, 0.58743749999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(468, 1.0725, -0.39194999999999997, -0.21157499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(469, 0.46507499999999996, -0.71077499999999993, -0.79852499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(470, 0.064349999999999991, -0.71760000000000002, -0.79462499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(471, -0.022912499999999999, -0.62692499999999995, -0.757575)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(472, -0.818025, -0.41924999999999996, 0.30809999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(473, -0.69566249999999996, 0.11212499999999999, 0.83947499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(474, -0.059475, 0.52357500000000001, 0.83947499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(475, 0.83849999999999991, 0.41778749999999998, 0.26227499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(476, 0.67518749999999994, 0.57086249999999994, -0.13942499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(477, 0.76439999999999997, 0.53137499999999993, -0.010725)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(478, 0.82094999999999996, 0.64739999999999998, -0.071175000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(479, 0.73709999999999998, 0.15453749999999999, -0.77610000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(480, 0.19499999999999998, -0.58792499999999992, -0.75854999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(481, -0.43095, -0.59670000000000001, -0.49237499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(482, -0.85994999999999999, -0.33442499999999997, -0.29347499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(483, -0.89115, -0.42314999999999997, -0.091649999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(484, -0.90236249999999996, -0.48847499999999999, 0.64837499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(485, -0.054112500000000001, 0.074099999999999999, 0.87067499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(486, 0.61327500000000001, 0.46068749999999997, 0.27007500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(487, 0.43095, 0.97499999999999998, -0.078)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(488, -0.46215000000000001, 0.72929999999999995, 0.018525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(489, -1.0334999999999999, -0.41339999999999999, -0.19305)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(490, -0.63374999999999992, -0.76829999999999998, -0.64252500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(491, -0.066299999999999998, -0.61181249999999998, -0.85848749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(492, 0.371475, -0.281775, -0.86969999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(493, 0.42217499999999997, -0.66251249999999995, -0.59182499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(494, 0.62790000000000001, -0.6907875, 0.17257499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(495, 0.78487499999999999, -0.56891249999999993, 0.41339999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(496, 0.39877499999999999, -0.61717499999999992, 0.70297500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(497, -0.18329999999999999, -0.164775, 1.005225)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(498, 0.29542499999999999, 0.81022499999999997, 0.17354999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(499, 0.54989999999999994, 0.757575, -0.64349999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(500, 0.46312499999999995, 0.70979999999999999, -0.62497499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(501, 0.76391249999999999, 0.18525, -0.39292499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(502, 0.87554999999999994, -0.490425, -0.61327500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(503, 0.039487499999999995, -0.84434999999999993, -0.39487499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(504, -0.54063749999999999, -0.76634999999999998, -0.058499999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(505, -0.89212499999999995, -0.33734999999999998, 0.121875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(506, -1.03545, -0.13162499999999999, 0.14722499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(507, -0.96524999999999994, -0.23594999999999999, 0.155025)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(508, -0.87847500000000001, -0.371475, 0.17452499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(509, -0.91747499999999993, -0.385125, 0.18232499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(510, -0.75074999999999992, -0.81217499999999998, -0.31395000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(511, 0.058499999999999996, -0.85117500000000001, -0.41827500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(512, 0.728325, -0.61229999999999996, -0.28275)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(513, 0.96963749999999993, -0.0029249999999999996, -0.063375000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(514, 0.905775, -0.0706875, 0.68542499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(515, 0.474825, -0.39389999999999997, 0.84629999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(516, -0.10237499999999999, -0.66592499999999999, 0.58987499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(517, -0.46897499999999998, -0.66397499999999998, 0.29152499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(518, -0.73368749999999994, -0.63569999999999993, 0.19597499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(519, -0.71418749999999998, -0.64349999999999996, -0.013649999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(520, -0.69419999999999993, -0.60742499999999999, -0.53625)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(521, -0.026324999999999998, -0.85409999999999997, -0.56159999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(522, 0.23204999999999998, -0.78584999999999994, -0.40657499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(523, 0.53966249999999993, -0.61522500000000002, -0.476775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(524, 0.669825, -0.31979999999999997, -0.62009999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(525, 0.85604999999999998, -0.13455, -0.32077499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(526, 0.94282499999999991, -0.024374999999999997, 0.18427499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(527, 0.83849999999999991, -0.11602499999999999, 0.72149999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(528, -0.017062499999999998, -0.52747500000000003, 0.81119999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(529, -0.35392499999999999, -0.70297500000000002, 0.36074999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(530, -0.61961250000000001, -0.77024999999999999, -0.1794)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(531, -0.4914, -0.58304999999999996, -0.786825)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(532, -0.24667499999999998, -0.077024999999999996, -1.1339249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(533, -0.51187499999999997, 0.17354999999999998, -0.66494999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(534, -0.907725, 0.0068249999999999995, -0.25155)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(535, -0.88822499999999993, -0.42412499999999997, 0.51479999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(536, -0.38317499999999999, -0.215475, 0.95062499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(537, 0.31882499999999997, -0.083849999999999994, 0.75854999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(538, 0.81948749999999992, -0.22034999999999999, 0.27641250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(539, 0.79657499999999992, -0.62107499999999993, -0.37927499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(540, 0.53039999999999998, -0.53332499999999994, -0.72929999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(541, 0.31882499999999997, -0.48262499999999997, -0.92917499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(542, 0.21742499999999998, -0.51382499999999998, -0.98669999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(543, -0.15112499999999998, -0.56940000000000002, -0.81217499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(544, -0.68737499999999996, -0.2964, -0.1867125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(545, -1.0866374999999999, -0.30127499999999996, 0.355875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(546, -0.76781250000000001, -0.35977499999999996, 0.53039999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(547, -0.58889999999999998, -0.41437499999999999, 0.78974999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(548, -0.12918749999999998, -0.55379999999999996, 0.8555625)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(549, -0.1482, -0.25447500000000001, 0.8034)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(550, -0.476775, 0.110175, 0.93014999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(551, -0.080924999999999997, 0.62692499999999995, 0.72734999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(552, 0.31979999999999997, 0.81899999999999995, -0.077024999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(553, 0.75659999999999994, 0.431925, 0.54746249999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(554, 0.59377499999999994, -0.10139999999999999, 0.66007499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(555, 0.61473749999999994, -0.4602, 0.24667499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(556, 0.58207500000000001, -0.81997500000000001, -0.62302499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(557, 0.28567500000000001, -0.65958749999999999, -0.84434999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(558, 0.2227875, 0.0092624999999999999, -0.94574999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(559, 0.51382499999999998, 0.15794999999999998, -0.71467499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(560, 0.89115, -0.40852499999999997, 0.20669999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(561, 0.056549999999999996, -0.87944999999999995, 0.52064999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(562, -0.4446, -0.71272499999999994, 0.34709999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(563, -0.72734999999999994, -0.74490000000000001, -0.40559999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(564, -0.54502499999999998, -0.28762499999999996, -0.93892500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(565, -0.25155, -0.07897499999999999, -0.87847500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(566, -0.34076249999999997, 0.26032499999999997, -0.98377499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(567, -0.76927499999999993, 0.29249999999999998, -0.53527499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(568, -0.84532499999999999, -0.50017499999999993, 0.14429999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(569, -0.62351250000000003, -0.35538749999999997, 0.87944999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(570, 0.24082499999999998, 0.2145, 0.66884999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(571, 0.69419999999999993, 0.164775, 0.59475)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(572, 0.91357499999999991, -0.42412499999999997, -0.45629999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(573, 0.371475, -0.39877499999999999, -0.86677499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(574, 0.22424999999999998, -0.20474999999999999, -0.97207499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(575, 0.27933749999999996, 0.040462499999999998, -0.9516)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(576, 0.44069999999999998, 0.2457, -1.0071749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(577, -0.055574999999999999, 0.34466249999999998, -0.91991249999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(578, -0.63667499999999999, 0.038024999999999996, -0.65325)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(579, -0.8701875, -0.21742499999999998, -0.37001249999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(580, -0.95842499999999997, -0.44362499999999999, 0.21254999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(581, -0.54112499999999997, -0.548925, 0.71662499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(582, -0.12772500000000001, -0.23399999999999999, 1.0062)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(583, 0.0024375, -0.0307125, 0.99352499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(584, -0.20865, 0.031199999999999999, 0.95842499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(585, -0.27592499999999998, 0.26129999999999998, 0.83460000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(586, -0.17647499999999999, 0.25155, 0.93307499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(587, -0.15794999999999998, 0.192075, 0.96037499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(588, -0.1555125, 0.19597499999999998, 0.94087499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(589, -0.17257499999999998, 0.114075, 0.95842499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(590, -0.2223, -0.23351249999999998, 0.79364999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(591, -0.54697499999999999, -0.36952499999999999, 0.49822499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(592, -0.62595000000000001, -0.788775, -0.125775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(593, -0.39389999999999997, -0.64642499999999992, -0.85702499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(594, -0.24082499999999998, -0.28664999999999996, -0.91064999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(595, -0.41583749999999997, -0.0195, -0.81509999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(596, -0.79657499999999992, -0.48359999999999997, -0.25739999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(597, -0.56159999999999999, -0.76927499999999993, 0.6907875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(598, -0.164775, -0.25593749999999998, 0.73612499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(599, 0.4602, -0.23204999999999998, 0.73027500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(600, 0.79949999999999999, -0.54648750000000001, 0.2535)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(601, 0.81022499999999997, -0.35294999999999999, -0.72637499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(602, 0.59084999999999999, 0.17354999999999998, -0.51674999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(603, 0.95452499999999996, -0.178425, 0.30907499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(604, 0.28518749999999998, -0.728325, 0.461175)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(605, -0.61619999999999997, -0.79949999999999999, 0.049724999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(606, -0.82289999999999996, -0.55477500000000002, -0.070199999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(607, -0.50895000000000001, -0.91454999999999997, -0.100425)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(608, -0.30517499999999997, -0.9701249999999999, -0.26715)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(609, -0.58109999999999995, -0.68445, -0.207675)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(610, -0.55769999999999997, -0.82972499999999993, 0.30809999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(611, 0.26861249999999998, -0.20865, 0.27494999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(612, 0.75269999999999992, -0.77024999999999999, -0.00097499999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(613, 0.070199999999999999, -0.79364999999999997, -0.71174999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(614, -0.42509999999999998, -0.16818749999999999, -0.91064999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(615, -0.82582499999999992, -0.12967499999999998, -0.073124999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(616, -0.51821249999999996, 0.50017499999999993, 0.51090000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(617, 0.62351250000000003, 0.34027499999999999, 0.31589999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(618, 0.88529999999999998, -0.757575, 0.075075000000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(619, -0.091649999999999995, -0.936975, -0.47872499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(620, -0.48945, -0.19305, -0.84239999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(621, -0.876525, 0.18914999999999998, 0.38122499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(622, 0.37488749999999998, 0.63374999999999992, 0.11992499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(623, 1.0237499999999999, -0.38024999999999998, 0.18037499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(624, 0.2383875, -0.99449999999999994, -0.15356249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(625, -0.83655000000000002, -0.61229999999999996, -0.14235)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(626, -0.79559999999999997, 0.19305, 0.72539999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(627, 0.13016249999999999, 0.80827499999999997, 0.012674999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(628, 0.847275, 0.036562499999999998, 0.24082499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(629, 0.52259999999999995, -0.94477499999999992, -0.0307125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(630, -0.70589999999999997, -0.39389999999999997, -0.85263749999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(631, -0.70004999999999995, -0.4528875, 0.26422499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(632, -0.63472499999999998, 0.51285000000000003, 0.58987499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(633, 0.50895000000000001, 0.81217499999999998, -0.10725)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(634, 0.95647499999999996, -0.474825, 0.59279999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(635, -0.23887499999999998, -1.0208249999999999, 0.141375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(636, -0.78097499999999997, -0.40559999999999996, -0.60449999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(637, -1.022775, -0.12869999999999998, 0.46556249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(638, -0.56842499999999996, 0.58889999999999998, 0.32077499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(639, 0.52259999999999995, 0.71954999999999991, -0.07897499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(640, 0.89115, -0.2145, 0.201825)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(641, 0.6010875, -0.98572499999999996, 0.096525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(642, -0.215475, -0.99742500000000001, -0.229125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(643, -0.57914999999999994, -0.40949999999999998, -0.78487499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(644, -0.68445, -0.25642500000000001, -0.039)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(645, -0.8097375, 0.43777499999999997, 0.56745000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(646, 0.75952500000000001, 0.37342500000000001, 0.40365000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(647, 0.77463749999999998, -0.90187499999999998, 0.27202499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(648, -0.079949999999999993, -0.91357499999999991, -0.54210000000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(649, -0.63959999999999995, -0.50651250000000003, -0.78584999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(650, -0.667875, -0.24764999999999998, 0.33539999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(651, -0.69517499999999999, 0.33344999999999997, 0.52113750000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(652, 0.40657499999999996, 0.33929999999999999, 0.44069999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(653, 0.92478749999999998, -0.8536125, 0.052649999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(654, 0.15015000000000001, -0.96134999999999993, -0.57037499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(655, -0.77073749999999996, -0.24959999999999999, -1.0032749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(656, -0.52893749999999995, -0.46604999999999996, -0.047774999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(657, -0.66884999999999994, -0.3046875, 0.905775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(658, 0.47433749999999997, 0.54794999999999994, 0.25642500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(659, 0.85117500000000001, -0.28567500000000001, 0.231075)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(660, 0.45873749999999996, -0.96329999999999993, -0.54502499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(661, -0.45922499999999999, -0.638625, -0.79706250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(662, -0.27299999999999996, -0.37196249999999997, -0.9764624999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(663, -0.86677499999999996, 0.32955000000000001, 0.041924999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(664, -0.36757499999999999, 0.84142499999999998, 0.24277499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(665, 0.476775, 0.43582499999999996, 0.67079999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(666, 0.5425875, -0.65032499999999993, 0.31979999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(667, 0.2442375, -1.0997999999999999, -0.32467499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(668, -0.68981249999999994, -0.32174999999999998, -0.29542499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(669, -0.77902499999999997, -0.083849999999999994, -0.26617499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(670, -0.91942499999999994, 0.342225, 0.72539999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(671, 0.13649999999999998, 0.86969999999999992, 0.29347499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(672, 0.41437499999999999, 0.92527499999999996, -0.51869999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(673, 0.28567500000000001, 0.98377499999999996, -0.42509999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(674, -0.26763749999999997, 0.30858749999999996, -0.83118749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(675, -0.69176249999999995, -0.53137499999999993, -0.63569999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(676, 0.1642875, -0.91064999999999996, -0.077024999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(677, 0.49432499999999996, -0.88724999999999998, 0.062399999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(678, 0.55818749999999995, -0.76537499999999992, 0.43874999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(679, 0.58987499999999993, -0.79267500000000002, 0.18037499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(680, 0.62497499999999995, -0.68883749999999999, -0.37732499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(681, 0.68835000000000002, -0.68152499999999994, -0.31492500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(682, 0.80924999999999991, -0.41144999999999998, -0.25447500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(683, 0.88529999999999998, -0.35977499999999996, -0.11895)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(684, 0.92576249999999993, -0.13747499999999999, 0.48798749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(685, 0.56793749999999998, 0.10529999999999999, 0.95647499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(686, 0.28226249999999997, 0.16038749999999999, 0.91357499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(687, 0.19889999999999999, 0.192075, 0.936975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(688, 0.057525, 0.20328749999999998, 0.876525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(689, -0.51772499999999999, 0.074099999999999999, 0.74490000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(690, -0.70589999999999997, -0.058499999999999996, 0.64593749999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(691, -0.82241249999999999, -0.22717499999999999, 0.20669999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(692, -0.77268749999999997, -0.60644999999999993, -0.59182499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(693, -0.37245, -0.41242499999999999, -0.94964999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(694, -0.48262499999999997, -0.050699999999999995, -0.88237499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(695, -0.50017499999999993, -0.13552500000000001, -0.72052499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(696, -0.83655000000000002, -0.4914, 0.061912499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(697, -0.86774999999999991, -0.3705, 0.66884999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(698, -0.36757499999999999, 0.41144999999999998, 0.84873749999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(699, 0.36562499999999998, 0.59767499999999996, 0.57914999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(700, 0.67567499999999991, 0.281775, 0.4528875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(701, 0.88432499999999992, -0.20085, 0.18037499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(702, 0.85799999999999998, -0.56696249999999992, -0.43777499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(703, 0.51869999999999994, -0.48603749999999996, -0.89115)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(704, 0.23399999999999999, -0.094574999999999992, -1.0237499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(705, 0.29054999999999997, 0.0038999999999999998, -1.0042499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(706, 0.44655, 0.07897499999999999, -0.85312499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(707, 0.76829999999999998, -0.032174999999999995, -0.42217499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(708, 0.90674999999999994, -0.283725, -0.054599999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(709, 0.91649999999999998, -0.35977499999999996, -0.024374999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(710, 0.84191249999999995, -0.57914999999999994, -0.18719999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(711, 0.30907499999999999, -1.0247249999999999, 0.072149999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(712, -0.33247499999999997, -1.0101, -0.15209999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(713, -0.46361249999999998, -1.1075999999999999, -0.23302499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(714, -0.45483750000000001, -0.60449999999999993, -0.92771249999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(715, -0.03705, -0.43095, -0.83655000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(716, -0.40559999999999996, -0.37586249999999999, -0.67957499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(717, -0.91649999999999998, -0.28762499999999996, 0.044850000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(718, -0.83655000000000002, 0.11895, 0.76634999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(719, -0.014137499999999999, 0.70297500000000002, 0.5655)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(720, 0.58402500000000002, 0.59133749999999996, 0.58694999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(721, 0.87847500000000001, 0.056549999999999996, 0.162825)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(722, 0.85604999999999998, -0.56842499999999996, -0.57427499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(723, 0.23497499999999999, -0.67469999999999997, -0.78389999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(724, 0.17647499999999999, -0.48945, -0.85848749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(725, -0.19109999999999999, -0.43582499999999996, -0.89017499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(726, -0.58597500000000002, -0.36854999999999999, -0.46994999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(727, -0.96817500000000001, -0.33052499999999996, 0.077024999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(728, -0.83849999999999991, -0.56062499999999993, 0.252525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(729, -0.71565000000000001, -0.60791249999999997, 0.58499999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(730, -0.21937499999999999, -0.62692499999999995, 0.80924999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(731, -0.49529999999999996, -0.26519999999999999, 0.95939999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(732, -0.10725, 0.20279999999999998, 0.87164999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(733, 0.44898749999999998, 0.56745000000000001, 0.44167499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(734, 0.62546249999999992, 0.44849999999999995, 0.29152499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(735, 0.89602499999999996, -0.54015000000000002, -0.37634999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(736, 0.30956249999999996, -0.53917499999999996, -0.936975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(737, 0.10335, -0.064349999999999991, -0.89699999999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(738, 0.69224999999999992, -0.25934999999999997, -0.33247499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(739, 0.75513750000000002, -0.65081250000000002, 0.27787499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(740, 0.20962499999999998, -1.0437375, 0.0038999999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(741, -0.223275, -0.87847500000000001, -0.14332499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(742, -0.55623749999999994, -0.84044999999999992, -0.16574999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(743, -0.70784999999999998, -0.70394999999999996, -0.23399999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(744, -0.77999999999999992, -0.69127499999999997, -0.64057500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(745, -0.55769999999999997, -0.49724999999999997, -0.63472499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(746, -0.53137499999999993, -0.46604999999999996, -0.86092499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(747, -0.47872499999999996, -0.49578749999999999, -0.78779999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(748, -0.49237499999999995, -0.39389999999999997, -0.82289999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(749, -0.48701249999999996, -0.36123749999999999, -0.99742500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(750, -0.064349999999999991, -0.16136249999999999, -1.0295999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(751, 0.40462499999999996, -0.27592499999999998, -0.77561249999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(752, 0.86336249999999992, -0.35880000000000001, 0.025349999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(753, 0.68542499999999995, -0.49822499999999997, 0.53332499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(754, 0.28762499999999996, -0.40949999999999998, 1.0071749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(755, -0.15404999999999999, -0.45922499999999999, 0.83460000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(756, -0.22863749999999999, -0.65032499999999993, 0.78487499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(757, 0.046799999999999994, -0.82777499999999993, 0.20669999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(758, 0.036074999999999996, -1.0588499999999998, 0.061425)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(759, -0.070199999999999999, -0.97158749999999994, -0.075075000000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(760, -0.19597499999999998, -0.667875, -0.68542499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(761, -0.33101249999999999, -0.64252500000000001, -0.54210000000000003)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(762, -0.48749999999999999, -0.83557499999999996, -0.20085)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(763, -0.52747500000000003, -0.81168750000000001, -0.063375000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(764, -0.74879999999999991, -0.50407499999999994, -0.624)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(765, -0.60254999999999992, 0.054599999999999996, -0.98767499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(766, 0.068737499999999993, 0.29493749999999996, -1.0295999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(767, 0.1701375, 0.2452125, -1.0807875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(768, 0.66592499999999999, -0.42119999999999996, -0.19305)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(769, 0.57329999999999992, -0.75074999999999992, 0.40754999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(770, 0.8931, -0.100425, -0.67567499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(771, 0.18914999999999998, 0.45434999999999998, -0.99449999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(772, -0.62643749999999998, -0.11992499999999999, -0.56940000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(773, -0.76781250000000001, -0.52357500000000001, -0.21157499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(774, -0.74002499999999993, -0.60693750000000002, 0.1408875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(775, -0.41339999999999999, -0.56745000000000001, 0.57329999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(776, -0.16672499999999998, -0.66056249999999994, 0.69809999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(777, 0.037537500000000001, -0.61619999999999997, 0.78779999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(778, 0.099937499999999999, -0.53234999999999999, 0.8034)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(779, 0.034124999999999996, -0.50017499999999993, 0.81119999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(780, 0.12479999999999999, -0.37342500000000001, 0.75952500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(781, 0.1326, -0.50505, 0.82192500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(782, 0.16965, -0.41437499999999999, 0.94769999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(783, 0.50553749999999997, 0.03705, 0.42802499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(784, 0.95647499999999996, 0.46507499999999996, -0.092624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(785, 0.90674999999999994, 0.24959999999999999, -0.252525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(786, 0.80047499999999994, -0.14722499999999999, -0.82582499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(787, 0.30127499999999996, -0.56159999999999999, -0.85799999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(788, -0.110175, -0.66104999999999992, -0.77415)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(789, -0.49919999999999998, -0.54404999999999992, -0.72052499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(790, -0.67859999999999998, -0.2145, -0.86580000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(791, -0.67859999999999998, -0.18525, -0.83655000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(792, -0.63326249999999995, -0.20279999999999998, -0.7722)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(793, -0.50212499999999993, -0.33344999999999997, -0.87457499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(794, -0.72393750000000001, -0.10725, -0.66104999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(795, -1.09005, -0.0307125, 0.53917499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(796, -0.30419999999999997, 0.342225, 0.90382499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(797, 0.57476249999999995, 0.31784999999999997, 0.357825)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(798, 0.73709999999999998, -0.031199999999999999, 0.64837499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(799, 0.46263749999999998, -0.60352499999999998, 0.45142499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(800, 0.1482, -0.99449999999999994, 0.18427499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(801, -0.26958749999999998, -0.67859999999999998, -0.86385000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(802, -0.14673749999999999, -0.50212499999999993, -0.87359999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(803, -0.53137499999999993, -0.2145, -0.82387499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(804, -0.86580000000000001, 0.093599999999999989, -0.72052499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(805, -0.33929999999999999, 0.38999999999999996, -1.022775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(806, 0.15892499999999998, 0.42314999999999997, -0.7722)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(807, 0.72442499999999999, 0.33832499999999999, -0.312)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(808, 0.97304999999999997, -0.33929999999999999, -0.37634999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(809, 0.19109999999999999, -0.78584999999999994, -0.59670000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(810, -0.040462499999999998, -0.86774999999999991, -0.41144999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(811, -0.268125, -0.936975, -0.4173)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(812, -0.38999999999999996, -0.82094999999999996, 0.018525)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(813, -0.57622499999999999, -0.44947499999999996, 0.96134999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(814, 0.079949999999999993, 0.268125, 0.79657499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(815, 0.550875, 0.66007499999999997, 0.52601249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(816, 0.35489999999999999, 0.81412499999999999, 0.41437499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(817, 0.0038999999999999998, 0.84824999999999995, 0.66592499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(818, 0.047774999999999998, 0.45922499999999999, 0.69273750000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(819, -0.34904999999999997, -0.46604999999999996, 0.38122499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(820, -0.66007499999999997, -0.57135000000000002, -0.73953749999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(821, -0.29347499999999999, -0.46507499999999996, -0.98377499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(822, -0.45922499999999999, -0.42704999999999999, -0.78389999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(823, -0.33929999999999999, -0.54307499999999997, -0.65812499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(824, -0.0316875, -0.35392499999999999, -0.89797499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(825, 0.36123749999999999, -0.13747499999999999, -0.83069999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(826, 0.86774999999999991, 0.12675, -0.045824999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(827, 0.82728749999999995, 0.14332499999999998, 0.59572499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(828, 0.67957499999999993, 0.033149999999999999, 0.72149999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(829, 0.60352499999999998, -0.081412499999999999, 0.68640000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(830, 0.60839999999999994, 0.16769999999999999, 0.86872499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(831, 0.45629999999999998, 0.28421249999999998, 0.81119999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(832, 0.461175, 0.20231249999999998, 0.8034)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(833, 0.40754999999999997, 0.39974999999999999, 0.83069999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(834, 0.41778749999999998, 0.096525, 0.81314999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(835, 0.62009999999999998, -0.229125, 0.86872499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(836, 0.19012499999999999, -0.638625, 0.37927499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(837, -0.387075, -0.85702499999999993, -0.70053749999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(838, -0.26422499999999999, -0.74490000000000001, -0.85312499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(839, 0.11115, -0.43679999999999997, -1.0003499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(840, -0.4977375, -0.065324999999999994, -0.65422499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(841, -0.96817500000000001, -0.054599999999999996, 0.74490000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(842, -0.35685, 0.19109999999999999, 0.96524999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(843, 0.33442499999999997, 0.27299999999999996, 0.68737499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(844, 0.7366125, 0.114075, 0.39389999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(845, 0.86238749999999997, -0.1482, 0.0068249999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(846, 0.79657499999999992, -0.64739999999999998, -0.49724999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(847, 0.244725, -0.81168750000000001, -0.5655)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(848, 0.186225, -0.84873749999999992, -0.44947499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(849, 0.15404999999999999, -0.92624999999999991, -0.53722499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(850, 0.00975, -0.82777499999999993, -0.42509999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(851, -0.33052499999999996, -0.79072500000000001, -0.076049999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(852, -0.64301249999999999, -0.56159999999999999, 0.56257499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(853, -0.61619999999999997, -0.48945, 0.39487499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(854, -0.55379999999999996, -0.77902499999999997, -0.58304999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(855, -0.17549999999999999, -0.76439999999999997, -0.73319999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(856, 0.15258749999999999, -0.76049999999999995, -0.49822499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(857, 0.59962499999999996, -0.61132500000000001, -0.055574999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(858, 0.81412499999999999, -0.36172499999999996, 0.51869999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(859, 0.57037499999999997, 0.066299999999999998, 0.88237499999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(860, 0.044362499999999999, 0.025837499999999999, 1.0198499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(861, -0.2013375, 0.29249999999999998, 1.0476375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(862, -0.48798749999999996, -0.29152499999999998, 0.47092499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(863, -0.75367499999999998, -0.56745000000000001, 0.059475)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(864, -0.788775, -0.66884999999999994, 0.13552500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(865, -0.89456249999999993, -0.50407499999999994, 0.050699999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(866, -1.026675, -0.24862499999999998, 0.33637499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(867, -0.65715000000000001, -0.24277499999999999, 0.79169999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(868, -0.77512499999999995, -0.00975, 0.55964999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(869, -0.8619, -0.11699999999999999, 0.5655)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(870, -0.69566249999999996, -0.033149999999999999, 0.71662499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(871, -0.63521249999999996, -0.081412499999999999, 0.72539999999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(872, -0.54210000000000003, -0.14235, 0.79169999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(873, -0.55184999999999995, -0.28567500000000001, 0.81997500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(874, -0.55672500000000003, -0.57329999999999992, 0.54404999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(875, -0.72734999999999994, -0.41242499999999999, 0.31979999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(876, -0.83362499999999995, -0.72734999999999994, 0.42509999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(877, -0.67859999999999998, -0.22424999999999998, 0.79852499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(878, -0.43679999999999997, 0.52649999999999997, 0.53039999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(879, -0.16916249999999999, 1.0023, -0.015599999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(880, -0.86433749999999998, 0.59182499999999993, 0.054599999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(881, -0.94867499999999993, -0.20962499999999998, -0.27689999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(882, -0.53478749999999997, -0.76049999999999995, -0.54015000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(883, -0.22034999999999999, -0.54015000000000002, -0.82777499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(884, -0.30322499999999997, -0.50017499999999993, -0.786825)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(885, -0.58548749999999994, -0.70492499999999991, -0.0068249999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(886, -0.22619999999999998, -0.66494999999999993, 0.86872499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(887, 0.24764999999999998, 0.13016249999999999, 0.8555625)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(888, 0.47628749999999997, 0.48701249999999996, 0.60254999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(889, 0.46215000000000001, 0.80632499999999996, 0.33734999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(890, 0.080437499999999995, 1.0115624999999999, 0.26715)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(891, -0.21742499999999998, 0.935025, 0.10139999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(892, -0.45337499999999997, 0.82484999999999997, 0.297375)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(893, -0.92332499999999995, 0.058499999999999996, 0.16574999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(894, -0.75854999999999995, -0.74879999999999991, -0.33637499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(895, -0.36903749999999996, -0.85507499999999992, -0.43679999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(896, -0.30809999999999998, -0.90382499999999999, -0.34612499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(897, -0.43338749999999998, -0.93014999999999992, -0.15892499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(898, -0.41535, -0.82582499999999992, -0.069224999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(899, -0.43338749999999998, -0.91649999999999998, 0.039974999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(900, -0.461175, -0.77512499999999995, 0.34320000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(901, -0.48945, -0.75952500000000001, 0.39389999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(902, -0.3797625, -0.77122499999999994, 0.55379999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(903, 0.080437499999999995, -0.50309999999999999, 0.77268749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(904, 0.56745000000000001, 0.62790000000000001, 0.164775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(905, 0.45922499999999999, 0.53820000000000001, -1.0208249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(906, 0.41144999999999998, 0.43095, -0.70979999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(907, 0.79559999999999997, 0.46604999999999996, 0.21157499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(908, 0.50895000000000001, 0.014624999999999999, 0.99839999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(909, -0.1993875, -0.56062499999999993, 0.71565000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(910, -0.5572125, -0.67177500000000001, 0.45337499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(911, -0.45727499999999999, -0.92819999999999991, 0.16769999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(912, -0.095549999999999996, -0.87262499999999998, -0.2145)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(913, 0.13064999999999999, -0.84337499999999999, -0.37098749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(914, 0.35636249999999997, -0.85117500000000001, -0.30712499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(915, 0.41827500000000001, -0.83849999999999991, -0.28567500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(916, 0.60547499999999999, -0.58402500000000002, -0.461175)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(917, 0.78731249999999997, -0.36708749999999996, -0.52649999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(918, 0.69127499999999997, -0.098474999999999993, -0.86969999999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(919, 0.25155, -0.19792499999999999, -1.0373999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(920, -0.053624999999999999, -0.52552500000000002, -0.83216249999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(921, -0.34904999999999997, -0.76829999999999998, -0.46994999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(922, -0.2227875, -0.73856250000000001, -0.580125)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(923, -0.35685, -0.78584999999999994, -0.281775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(924, -0.609375, -0.77024999999999999, 0.12675)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(925, -0.61522500000000002, -0.297375, 0.96524999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(926, -0.058012499999999995, 0.33442499999999997, 0.77463749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(927, 0.31151249999999997, 0.77805000000000002, 0.46897499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(928, 0.19012499999999999, 0.94087499999999991, 0.32955000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(929, -0.11212499999999999, 0.76927499999999993, 0.31882499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(930, -0.79657499999999992, -0.67664999999999997, -0.0316875)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(931, -0.30907499999999999, -0.72101249999999995, -0.81899999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(932, 0.281775, -0.024374999999999997, -0.98036249999999991)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(933, -0.40511249999999999, 0.28762499999999996, -0.85799999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(934, -0.67811250000000001, -0.64788749999999995, 0.33686250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(935, -0.0068249999999999995, -0.1716, 0.98231249999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(936, 0.58889999999999998, 0.43777499999999997, 0.47287499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(937, 0.49627499999999997, 0.81704999999999994, 0.21352499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(938, 0.11895, 1.0656749999999999, 0.069224999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(939, 0.12479999999999999, 0.9204, 0.548925)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(940, 0.22522499999999998, 0.61717499999999992, 0.55136249999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(941, -0.19305, 0.64106249999999998, 0.50066250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(942, -0.68835000000000002, 0.53527499999999995, -0.081900000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(943, -0.85312499999999991, 0.010725, -1.2470250000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(944, 0.1993875, 0.40608749999999999, -0.818025)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(945, 0.1794, 0.73027500000000001, -1.055925)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(946, -0.69371249999999995, 0.31004999999999999, 0.114075)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(947, -0.97792499999999993, -0.0068249999999999995, 0.83655000000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(948, -0.22424999999999998, -0.357825, 0.87262499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(949, 0.62643749999999998, -0.4446, 0.24277499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(950, 0.85897499999999993, -0.44752500000000001, 0.092624999999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(951, 0.91649999999999998, -0.30712499999999998, -0.4602)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(952, 0.88286249999999999, -0.29152499999999998, -0.33149999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(953, 0.96524999999999994, -0.34612499999999996, -0.62009999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(954, 0.61912499999999993, -0.40413749999999998, -0.788775)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(955, 0.50700000000000001, -0.199875, -0.91259999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(956, 0.56988749999999999, -0.31492500000000001, -0.94672499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(957, 0.04095, -0.77707499999999996, -0.490425)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(958, -0.51285000000000003, -0.76732499999999992, 0.49383749999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(959, -0.34076249999999997, -0.53186250000000002, 0.81168750000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(960, -0.015599999999999999, -0.40413749999999998, 0.85507499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(961, 0.063375000000000001, -0.54015000000000002, 0.76342500000000002)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(962, 0.6552, -0.48457499999999998, 0.42802499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(963, 1.0105875, -0.033149999999999999, 0.66689999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(964, 0.41291249999999996, -0.48749999999999999, 0.64642499999999992)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(965, -0.72052499999999997, -0.61424999999999996, 0.11115)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(966, -0.53527499999999995, -0.48652499999999999, -0.93599999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(967, -0.12089999999999999, 0.30712499999999998, -0.93892500000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(968, -0.82874999999999999, -0.26227499999999998, -0.43290000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(969, -0.66592499999999999, -0.45142499999999997, 0.87067499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(970, 0.223275, 0.23497499999999999, 0.52844999999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(971, 0.51285000000000003, 0.60060000000000002, 0.45044999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(972, 0.57817499999999999, 0.82972499999999993, -0.156975)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(973, 0.72344999999999993, 0.19548749999999998, -0.65227499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(974, 0.55964999999999998, -0.8931, -0.48993749999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(975, -0.1716, -0.89894999999999992, -0.34514999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(976, -0.2374125, -0.82484999999999997, -0.58109999999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(977, 0.1106625, -0.8097375, -0.62692499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(978, 0.55184999999999995, -0.68932499999999997, 0.080924999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(979, 0.57524999999999993, -0.13552500000000001, 1.005225)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(980, -0.229125, 0.19792499999999999, 0.91942499999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(981, -0.59962499999999996, -0.17745, 0.17745)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(982, -0.64837499999999992, -0.57719999999999994, -0.82289999999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(983, -0.014624999999999999, 0.034124999999999996, -1.1124749999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(984, -0.52844999999999998, 0.07897499999999999, -0.57427499999999998)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(985, -0.61473749999999994, -0.72052499999999997, 0.37927499999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(986, -0.38317499999999999, -0.096525, 0.99352499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(987, 0.2457, 0.55672500000000003, 0.59670000000000001)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(988, 0.3495375, 0.90041249999999995, 0.26422499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(989, 0.069224999999999995, 1.0203374999999999, 0.22132499999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(990, -0.4080375, 0.86628749999999999, 0.114075)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(991, -0.85117500000000001, 0.43338749999999998, 0.024374999999999997)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(992, -0.85507499999999992, -0.64544999999999997, -0.50017499999999993)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(993, -0.29152499999999998, -0.45922499999999999, -0.99449999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(994, -0.18427499999999999, 0.48359999999999997, -0.89212499999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(995, -0.19597499999999998, 0.47921249999999999, -0.93599999999999994)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(996, -0.36367499999999997, 0.67079999999999995, -0.66251249999999995)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(997, -0.28079999999999999, 0.86872499999999997, 0.03705)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(998, -0.40365000000000001, 0.81119999999999992, 0.33296249999999999)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(999, -0.51528750000000001, 0.53039999999999998, 0.71662499999999996)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n"
]
}
],
"prompt_number": 72
"prompt_number": 26
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\u010cten\u00ed dat z gyroskopu\n",
"---------------------\n",
"\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"np.savez(\"calibration_data_set\", x=x, y=y, z=z)"
"cfg = config.Config(\n",
" i2c = {\n",
" \"port\": port,\n",
" },\n",
"\n",
"\tbus = [\n",
"\t\t{\n",
" \"type\": \"i2chub\",\n",
" \"address\": 0x72,\n",
" \n",
" \"children\": [\n",
" {\"name\": \"gyro\", \"type\": \"imu01_gyro\", \"channel\": 0, }\n",
" ],\n",
"\t\t},\n",
"\t],\n",
")\n",
"\n",
"cfg.initialize()\n",
"#acc = cfg.get_device(\"acc\")\n",
"gyro = cfg.get_device(\"gyro\")\n",
"sys.stdout.write(\" MLAB accelerometer sensor IMU01A module example \\r\\n\")\n",
"time.sleep(0.5)\n",
"gyro.route()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 73
"prompt_number": "*"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = np.load('./calibration_data_set.npz')\n",
"x=data['x']\n",
"y=data['y']\n",
"z=data['z']"
"import sys\n",
"import time\n",
"from IPython.display import clear_output\n",
"\n",
"MEASUREMENTS = 100\n",
"list_meas = []\n",
"# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
"\n",
"for n in range(MEASUREMENTS):\n",
" clear_output()\n",
" (x, y, z) = gyro.axes()\n",
" list_meas.append([x, y, z])\n",
" print (n, list_meas[n])\n",
" sys.stdout.flush()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
"prompt_number": "*"
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from mpl_toolkits.mplot3d.axes3d import Axes3D\n",
"#%pylab qt\n",
"%pylab inline\n",
"fig = plt.figure()\n",
"ax = Axes3D(fig)\n",
"p = ax.scatter(x, y, z)\n",
"#pyplot.show()\n"
"measurements = np.array(list_meas)\n",
"\n",
"%pylab qt\n",
"plt.subplot(1, 1, 1)\n",
"plt.plot(measurements[:, 0])\n",
"plt.plot(measurements[:, 1])\n",
"plt.plot(measurements[:, 2])\n",
"plt.xlabel('sample number')\n",
"plt.ylabel('ADC')\n",
"plt.title('Raw sensors')"
],
"language": "python",
"metadata": {},
8258,62 → 518,52
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNX6gN+Z7SW9NzoovXdpghV7QeQq/Cx4RVGv1y6I\nBcGG2NCr2HtDxAICKggivYcaIJQkhJBCdpPtOzO/P+Kum0YSCIGQeZ/HJw+PuztndmfOO+ec73yf\noCiKgoqKioqKShNBPN0NUFFRUVFRaUhU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU\n8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amo\nqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNCm0p7sBKiqnElmWcbvd+Hw+dDodGo0GjUaDKIoIgoAgCKe7iSoqKg2MKj6VsxJZlvH7/UiShKIo\nyLKM1+tFUZRysguIUBWiikrTQRWfyllFqPAABEFAFMXgf6EEhBh4bSgBEWq12uB7VSGqqJwdqOJT\nafQoioKiKPh8PmRZBignKUVRqnxfdSILCNHn8+H1ejEajcHXi6KoClFFpZGjik+l0RIqPKfTiSAI\nGI3GKiVUFzEFRBaYFtVoNMHjBUaIXq+33OtVIaqoNB5U8ak0OgIC8vv9wRFegFMpmppGiNUJUavV\nBtcPVSGqqJx+VPGpNBoqCi8gkFMlkcCorzavO54QPR5PpddXJcSKa5AqKiqnBlV8Kmc8iqIgSRKS\nJFUrvJokVTGasyGoSoiBNlYnxIoRphqNRh0dqqjUM6r4VM5YAsLz+/1BcdV1hOfz+XC5XPj9/nIj\nq9M17Rg4VnVCDJxvxfdUXD9UhaiicuKo4lM546hKeHWdBgwIT5ZljEYjOp0OKBtpBfb0BdYHQ0UY\nupevIamrEBVFKRdQU3ENUUVFpXpU8amcMZyM8ARBQJKkcsIzmUzo9XoAvF5vuQjNwPEC63CB/yqu\nHwaiRk+XVGorxMD35ff70Wq1lbLUqEJUUfkHVXwqp52THeEF3u/z+fD7/UHh1XYfX1Ub2wOf6fF4\ngp8dEGJ1U6YNSXVC9Hg8aDQa/H4/Pp+v3NpmYISoClGlqaOKT+W0oShKubRiJyK80BGeRqMhLCzs\npDvy0HW/wN7AwPFCR4hnohADba5K5kBQiKGoQlRpaqjiU2lwAsILrFmdjPAATCZTcJqyIfbxVTdC\nPJOFWNOUqSpElaaEKj6VBqMq4dWlE1UUBa/Xi9vtBsqEp9PpEASh0taA+qCu+/iON2Uaun4YmhHm\ndEaYBtoe+je07aAKUeXsRBWfyimnvoTncrkQBKGc8M5kjifE0ICawOgwEKl5urdcBNoe+je07aAK\nUaVxo4pP5ZQRmParD+GJoojFYkGr1Vabi7M2o7MzgdCN6qGoQlRRaRhU8anUOwHhlZaWIooiBoOh\nzsLzeDy43e4ahXc2UR9CDEyvno62h/4NbXtgTTawpSSAKkSV04UqPpV6o2ItvEAHXNuOrCrhBTae\nN2XqIkRFUYLf3+nelB9oe3V5TEMrawDB37q6PKaqEFXqC1V8KidNVcVfQzeA10RAeC6XC61Wi9Vq\nRaut26XZmKY664uqhOh0OoOb9qvalH8mRJgG2h44bmA7i0ajCQrR6/VWyq9aXR5TVYgqdUUVn8oJ\nUVPx19p+htvtxu12o9VqCQsLq7PwVCpTMUMNnNlbLkIFV1Oli9A9nwFChRg6ulWFqFIdai+jUifq\nIrzqRmGq8BqexrwHMbT9FVGFqHIiqL2NSq2oqvhrXTuRQCket9uNTqerV+GdiqnO0JRnZ2tn2RSE\nWBFViCqq+FSOy8kUfxUEIdhxhgovPDy80lScyplFbYVYcVN+aDDN6RTKyQgxtPyTKsSzE1V8KlVS\nH9XOAxvXbTbbaRee2nnVD6diU37gNQ3Z/oqECtHr9ZZ7fWj5J1WIZweq+FTKUR/FX2VZDq7hiaLY\nIMJrilGdVXG6pmVPZg9iYOr8dEZpnogQA1LU6/WqEBsZqvhUgPop/hoQnsfjQa/XYzKZkCRJndZs\nwtRGiJIkIUkSLpfrjMpSE2h/dUIMZKkJLRAcuG+qKg6sCvHMQRVfE6e+hOdyufB6vej1eiIiIhBF\nEa/XW65TUFEJECrEwMORTqer85RpQ02RVtX+0PMIEGh/xaTpoedbcWO+SsOjiq+JUh/CkyQJt9uN\n1+vFYDAEhXe6ON5U59kcmdnYqbiP73gjxIqVLoBKImnICNOKx6lqZBe4LkPz1oa+vrqN+SqnDlV8\nTYyTLf4KtRdeQ667qR3F2U1VQmxMWy5C/4a2H44vxNCAGlWI9YcqviZCIA2UJEnVRubVRGAdxufz\nnREjvLpwoh1GQN5qh3Pmcbr3IJ7sdVFXIQamewNCVBN7nziq+M5yQmvhOZ1ONBoNJpOpTp8RKjyj\n0YjZbK6V8Bo60rK6Y6mdQtPidAuxPtof+je0/UClJQpQK13UFVV8ZylVFX+t6+jM7/fjdruDwrNY\nLGfsjXSmtkulZhpqRF0XIYYmya6qysXpmAmoSYiBKFNViDWjiu8s42SrnUPZDeRyufD7/SclPHVv\nnUpj4EQ35Qf++v3+077lIvRvaPuh6uLAgbbq9fomKURVfGcJtal2XpOIQoVnMpmwWq2N7kZQ1+NU\n6ouaIkwDWxbqkqWmodsf+je0/YFRbSAyNkBTGSGq4mvkVFcLryoEQah0oUPZjet2u5EkCaPRWG/C\nU6M6VWpDY5sVCAgxIIlAAd2TSdvW0O0PPY8AxxshBs5106ZNdO7cmYiIiIZr8ClAFV8jpS7CCyW0\nk/H5fLhcLmRZrlfhnWlIkoTH4ym3XqNm0jizaIy/RcXZhZNJ23amCbFi+6FMiLNmzWLatGmq+FQa\nltAbB+q2hhcYgYUKz2QyodfrT8mNdrrX+EKjUbVabbk6gmdaJhCVs5czcVN+XZYEQoVos9mIjIys\nt3acLlTxNQLqq9p5YA3Q4XCcUuGdLgKiDaRQC41GDYR/B6jqKTywx7GiBGVZVoWoUon62Md3ujbl\nn2jbS0tLG/1oD1TxndHUl/ACI7zAxR4REdGgwmuogBNFUXA6nbXab1jbTidQLf54Ye0qJ4cakPQP\nZ/oeRFmWz4qk86r4zkDqqxZeQHhAcNN6oBNvCBrqOIERXuCY1WWUqamDrarTcTqdwbIzFTuc+lyj\nyc/PZ//+/URFRdGmTZsT/u5UiTQcDTmNX99CPJHrpLEFIR0PVXxnEPUlPK/Xi9vtBsqEp9PpEASh\n0nRfQ3GqOuPQqhAGgwFBEDAajfU+LRnagWi1/9wyxwtaqMsazYYNG5g06V0kqT2SdIirr27PxIm3\nqQJrBJzu3+hEhQhlkZo+n69OI8SzZZZDFd8ZQH0Ufw0Iz+VyIQhCOeEFOB3BJqdKeIG6f6E5Q0ML\nhTYE1QUthMqwpidwQRB45pnZ6HSTiIpqhyS5+f77hzj//B107NixQc9H5eyhpk35gT2IgYfs2sxe\nhEqzsaOK7zRSH6WBQoUniiIWiwWtVntGXaD1JduKhW7P1CTZVUWHVnwCD3Q4LpeLY8ecJCa2RpYV\nRNGAKLYmPz//NLW+YWnM02eNcVo58LAmCAI6nS44g3G82QtBEHj44YdJTk5Go9GQmZlJixYtarz3\nbr31VubPn098fDzp6elVvubee+/ll19+wWw289FHH9G9e/d6P+eqOPN6jSZAYP0tkAcTqPNitKIo\neDwebDYbHo8Hi8VCWFhYpVFeKI11xCfLMk6nE5vNhqIohIeHY7FYKt14p3v7xPEIPNRotdpgdXqL\nxUJMTAytWydQWPgroOB0ZiHLm0lMTMTpdAavkUCgzdlKYxNIY/8tqtuDqNPpMBgMwevTYrGg0+no\n06cPhYWF7N+/nyFDhhAeHk7v3r1ZtWpVtce45ZZbWLhwYbX/f8GCBezdu5c9e/Ywe/ZsJkyYUK/n\neDzUEV8DEjrCczqdiKJY50oJAeG53e7gCC+QOaImTpcYTvSYgSkZt9uNXq8nPDz8jIkoUxSFkpIS\ndDpdnX/DUARB4Nln7+fxx2eSlfUler2fKVPGcs455wT3d52pVQRUGp+w64oglOXzHDduHOnp6Yii\nyDvvvENxcTE7duygTZs21b530KBBHDhwoNr//+OPPzJu3DgA+vbtS3FxMXl5eSQkJNT3aVRCFV8D\nUN2UZl2EECo8jUZTJ+FV9VlnYmSnoihkZmZSUFBAVFQUcXFx6HS6ehHeiZ5vVe9zOBxMnfoa69Yd\nBPyMHj2U22+/6bjBK3/9tZWdO3dQUOAjIsLK2LEXM3jweQCkpKTw4YcvUVJSEpyqBsoF0sDxqwiE\nTq/6/f7gdNbZ3jGrnBgn0gfYbLbgHr7IyEgGDBhwUm3IyckhLS0t+O/U1FSys7NV8TV2ApUSTqba\neUB4LpcLrVaL1Wqt1CHWltPVCdZW8HPnzmfOnN0oShqCsITbbx/A8OFDan2c441oT+bcK37m7Nmf\nsWZNCklJTyFJLr74YirnnPMngwcPrvTeP/5YziuvLKOw0MqhQybM5qvo2DGZ559/l8jIcLp06QKU\nTXXXtDG4poCFwNqh3++vJMSK+w/PFBrjOhk03nYHOJH22+32es/aUvHeaqjvVBXfKaA2tfAEoeqE\n0aGf4Xa7cbvdaLVawsLCTlh4FY97MjetJEl16jxr8zpFUTh06BDffruJpKQHMBqt+HwlfPbZTPr3\n743ZbD6htlY8Rihut5s5c35g795c2rVL4brrrkSv19fqs7Zs2U9k5H8QBBGt1oIoDmLhwj/YuTMH\nq9XARRcNJjY2FoCvv15GVNTtZGV9iNV6Fz6fBrdbgyhezLp16UHxnQyh0aUejwej0Vgui01gytTh\ncLB//35EUaR169bB/YnqdGnT4kSXHux2e71mbUlJSSErKyv47+zsbFJSUurt84+HKr56pC618Kob\nnYQKT6fT1ZvwTpaioiJefHH2352+hQcfvImePXvU6r3V3Wiho1mbzYZen4TZHAaAwRCOLFtwOp31\nIr5QZFlmypSXWb8+DqNxCMuXr2b79leYOvWhWo3I09JiycnZjtNpxePxUFAwj9WrrRQUdMPrPcbq\n1e/x9NN3EB0d/Xe6Mz06nRGHIx9IRpYVFKUAq9VISUkJc+fO47vvfiU/v5iUlGbcf/8YBg48uWkk\nKC/E4uJipkx5nayscBTFy7nnyjz++F0YDIZy64cV9x+GXsNFRUXs3buXsLAwzj333CYtysY+4oO6\nj66Ki4vrVUxXXHEFs2bNYvTo0axevZrIyMgGmeYEVXz1Ql2EF6Ci+EIDOeprXas2x60tL7zwDunp\nXUhJeRyH4yBPP/0qb7+dSHJyco3Hq0jF9cqwsDBat26N1TqfoqJdREWdw9GjG4mPl4mKigLK1tXe\neOMjVqzYRkSEhXvvHUXfvn1O6NyysrLYtMlGUtLTCIKIovRh7dqJHDlypMbz2bt3L7LsY9euKXi9\nPRBFBVlOp23bV4mL6wbAwYN2tmzZyrBhQ7nssr68++5HREe3ICvrISCN0tJOtGlzmEGD7uPuu6ew\nfDmUlMSi0zmR5e489dQXvP12Aq1bt67xXKojMzOTP//ciCAIDBnSiwULlpGV1ZukpGtQFIUdOz5k\n0aIljBp1NVBzBYGMjAyeeOI9fL72yPJhRoxI5qGH7gr+vrm5uRQXF5OQkEB0dPQJt1vl1HOi0i4p\nKSE8PLzWr7/xxhtZtmwZBQUFpKWl8fTTTwej2P/9739z6aWXsmDBAtq0aYPFYuHDDz+sc5tOFFV8\nJ0Ftir9WR+hUVGBv2qkUXsXj1gW/38+WLQdJTZ2MIAhYrS2x2zuzb9++GkUB/4z4KgpPo9Fgt9vR\narVYLBYeeWQMb745h6ysYlq1imPChJuC38Ubb3zEkiXhJCW9jsuVy9NPv8qbb8bRsmXLOn8HZaMb\nDRD4rQRAPO7UM8D+/ft58MG3sNm6oyj90OkG06pVMoWFv7F9+wHat+/79zWgCZ7zZZddhNNZytSp\nH2AwDAFk7PaF3H//C+zatYutW73YbB5gJB5PBvv2fUKnTnewY8eOExbfvn37mD59LqJ4IaDw559f\nYzC4MJsHlZ2tIGA0diQ7ex2SJAUDYY5XQeDllz8D7iYmpguy7GPRoqcZMOAvevfuzeLFf/Ddd9vQ\naFIQxUPcc88ldOnSuVZtbawjp8ba7pOhrpUZvvzyyxpfM2vWrJNp0gmjiu8EOBnhBQhEepZN8Z1Z\nofoV0Wg0hIcbcTqzsFiaIcsSspxDeHjNm00Dog1MaQa2YOzcuYvp0z/B44lApyvmkUfG0LNnD158\n8YFgNYSioiIOHjxIfHw8q1fvJDFxBlqtibCwVths/dm9e3etxacoCrm5uTz77Cy2bNnNsWPF2O1P\nERd3LQ7HSrp1i2D58pV8881SAG68cQSjRl1T7jOWLl2F1zuSsLAw9HoXGs1lFBdnk5IymN27P6Kg\noBN+vx2rdT1duowPnn92dgEGw80UF3cDYjlyJIV77nmKhx66laNH9yOKbwPtAPD7MygpWYXVem3t\nf6AK/PbbOrTakSQklE1FHzki4vd/jt3+J2Fh7VAUiaNHv+H33/NZvTqDzp3TmDjxpuDoOpSAEPPz\ni4mN7YBGo0FRNGg07bDb7axevZpHHvkCv/8GoqNj6dy5P2+++QmvvPLPGqIaXXpmcaLSPhXBLacL\nVXx14ESLv1b8jMAIT1EUIiIiGlR4JzLiEwSBBx4Yw9SpL2OzdUWSshg2LLLGwIyA3H0+X7ktGE6n\nk+nTP0Gnu5fo6JaUlmbx/POv8P77bQgPD0cURebPX8yHHy4DorBYjqHR+HC5DqPTtfs7rD8Hi6Vn\nlcesyE8/LeCFFz4kI2MvojiWdu2eArZRXPwYPXs66dq1LfHx3Zk5cxWRkdMAeP315/H7fVx++aXB\nbSOiKAAy4eHtEcXP8Ho3YDCYkKQshgzRYzR+wcGDWXTu3CKYNFtRFFat2kRmZj8EoRk6nQW9vjeH\nDs37u63F6PVW3O4iFCUfjSaeFi1yGDhwYJ1+o1AkSUYU/7m1BUFLly5daN68mNWr78fjKcXjcdGu\n3XOEhaWxffti3njjM6ZMuafaz+zSpRVbtiwgIeEqvN58BGE9iYn/4rHHXsPnG0B4+DXY7YfYvHkf\nHTqU/caBAK7q0mGdiVl3mgKq+FTx1Yr6El4gobJerycsLIySkpIGH+Wd6Bpf3759+N//ksjMzCQ8\nvDPdunWr9jsITaOmKAp6vR6z2Rx8fWFhIR5PJNHRZaM1qzWNkpJ48vPzCQ8P5+DBg7z//kri4yej\n14dx7NgO4DUcjtcpKemHouTSvbuLfv36lTuu2+2moKCA2NhYwsLKgmTS09N59tnvMJufQ5Iewe//\nFzk5Nlq1GggMYcyYIQwcOJBHH30Rg+F6DIYkjhw5yp49rXjwwbd46aWvGDduOC6Xn6KiYrze/RQX\nm2jZciiZmU8RGxvF0KG96dBhBC+9tBit9hZ+/72QNWsm8cknL3Do0CEOHvSiKAsQxavw+UqR5c9I\nSmqBwWDgmmuG8PPPb2IwXIJWm0d09D5mznypUoTp3Lk/8Nprn+F2e7jsssE88si91UahDhvWnXXr\n5lNQIAIKPt8vXHDBlbRp0wabzcbGjRt5991CwsObA5CcfBHbty/E7/dXG0j1yCP/5sknXyMj4yd0\nOon//vd6dDoditIWvb4UScrDbG7BsWOLiYiQiI6ODoqt4vqh1+stl4Q9sKbYmKJL1anOxo0qvmoI\nbBY+mVp4UBb+73a7gxUEAvkla1pPOtOw2+1YrVYGDx58XOGFlkKyWCx4PJ5gZ+Zyudi+ffvfWWcK\ncToPYzYn43IdRRSPEhMTA0BeXh4aTWv0+jJ5RUV1oLTUzKuvjufAgQNYLGn06dOn3Ab+ffv2MWPG\nN3i9UWi1Jdx22zD69OnFjh07kOVhmEytEQQ/ogglJQ4UxY8k5WK1WvH7/Rw+nENm5la02liOHTuI\n378LrfY/FBXFMHXqhyQknEt4+CB8vl0MG7aI+PgURoyYSs+eZaPOUaPuwWJ5GIulw9/nYOe335Yg\nyyIxMf/i2LFPKSq6HUFIQKtNIDo6l44dOzJw4EASE99l9erZxMSE88ADk4mOjmbGjP+xY8chWrdO\npFevc3n22bmYzbMwGqOYO/c5zOb3eOCBuyp9/wAdOnTg4Yfh119XIwhw4YWX0bZtW6Bs43FiYiKS\nlI4sS4iiBocjm7Aww3EfwmJiYnjjjacpLS3FZDKh1Wo5cOAAolhC69ZXc+DAbEpLJTSaFdx332vl\nRnNVrR+G3l+hMwMVs9OotQ/rnxOVtsvlOqksRWcSqvgqcKqFFyAw8mroJ8e6jvgkSeKNNz5g8eId\ngMiAAc148MF/YzQag6+pKLzQyhA+n499+/bx2mtfsGjREmS5DTExEcTFHUWSpmOzNUMU87j//quC\nT5MJCQlI0ny8Xht6fQSFhVtJSDDTtm1b2rVrV6mNfr+fWbO+R6e7kbi45vh8Jbz//nu0bt2SqKgo\nBGElgqChefNbycyciEbTicLCIs4/P5HOnTuzbNlK9PpeWK0rKC524fVuRaNJIirqSuz2bcjyHcjy\nJozGVrjdwygs3MnLL08t14ayDjs0k44WSfKRmBiLLO+lX7932LHjdfLyVhIdncnMmdODoeGTJ/8H\nKItc/eOPP5g06SUKCoYRE3MXGRmrePvtR3E6/43RKJGWpkWv/z8++uh2iouLufTSYfTv37/Sd9Kh\nQwc6dOhQ5W/avn17hgxZy7JlMxHFZERxO7feOoQNGzaQnJxcZcBSevo2NmzYidVq4PzzzyM6Oprm\nzZtz5ZXtmTfvW5KSWiPLG5k4cUKNQTkFBQUcPHiQpKQk4uPjkWU5eD0F7onA3sNTUfuwPmjMI76T\nafvZMj2tiu9vKtbCgxMXnsvlwufzVSm8AKfrpqmr+BYsWMwvv7hJTZ0JiKxY8T7Nmv3A2LE3HFd4\nAex2O9Onf0ZGhhav9xZE8WZsNhswl8GDnYwZcwUxMTHlAiuaN2/Ov/89mNmzn2H//v3k5+fQrl0z\nlixZyvDh51dqY2lpKaWlOuLjU/F4vIiikVWrDjN8+I2kpqbQqpWO/fsfRKdLolUrB6NGGejRYySD\nBg36O1T/CKmpI2jR4jI2b57PihVFCEInJMmA11sEuLDbV3Ps2F/IcnMKCjbw66+/ccEFI4JtuOGG\n4bz88sv4/bfi8xViMs1n6NCpJCcns2zZJjZvnklSUjjnnNOKF1+8v1yqpsD3NHbsfWRmxpCb60an\n601UVBJHj/bE4YhHoylFllPZv/8gfv9KRNHEV1+1Z86cacycOZERI4YHg62KiopIT0/HaDTSvXv3\nSlOigiBw113jGDp0ByUlJWRmSjzxxPuIYmtkOZNHHrmRq666DEVRsNvtbN++g1mzVqLXD8fnO8ay\nZe8wdeoEIiMjufPOcQwYsJWjR4/SvPmEKh9MQvnjj2U8+OBMoBWStJ+xY4cTHZ2E2WzkvPN6kpSU\nVGN2moAQA0sPdal9qHJiNPak3BVp8uKrKLyA7E5GeEajEbPZXOPT0clmUWkIdu48hNk8AFEsG82E\nhZ3H9u0/BIWnKEqVwsvMzGTLli3k5ubidKbi8+Uiij3R6yPxeo+h0XQlL29htUluL7poONu27WT7\ndjepqa9QWmrjgQee4oMPIunRo/zGeavVitudy7x5c4EEcnO34nZvwmg0UFLSnJiYrUyaNBK9Xk/H\njteSmJhY7v1xcVb27j1MSko/Bg68hT179nHw4Ge4XIXIsoAg7MTh2ItGMwedzkB09K1MmnQ/5503\nkAMHDuB0Ohk4sB9Go5GFC7/FajVy662TadGiBQBTpz7Izp078Xg8tG17c5XZL7777nv27+9KRMTt\nHD36ELKcxt69BygpcWI0noMobsDnm4rX60RRVpCU9D4GQxdcrjY8+uh9JCV9j6JA+/Zx7NqVjdPZ\nFUUp5txz5/D6689UmqISBIGOHTtis9n4739fwWx+E4MhDa/3CC++eCdpaUk899y75OY6yMs7SseO\n0zl2LJySEj0HDkSzcuVKLr30UgRBoGvXrrW6llwuFw899BIazf8wGs+htHQVL700hfPPfwir1cjy\n5V/x2GM3VDniPN50aV2rj9cHZ/p9ezxOtO1n03RzkxVf4IYJdN6BjruuP6zf7w+WjjEajVgsljrv\n5WtI6nrMZs1iWbJkO4rSB0EQKC3dRkJCGA6HA5PJhF6vL3e+iqLwxx9/8Mgj7yBJQ3C79+FybaFZ\ns1EcObIAWe4KuPH5FtG9+/FHB0uWbCQqagomUwsAnM5RLFu2qpL4bDYbNpsDQdiBw5GO07kKUbwf\nUexHUdHTyLKO3bt306tXryo34I4YMYA9e74jO/swpaU2PJ4NdOnyIrt3P4uiXIUkdUJR0lAULVFR\n+YjiAYqL7bz33pfs3x+DKMYDi7jllr68+eallT5fq9XSuXP1+9oKCgqYO3cxBQUX4PeD1doBu/01\nHI7myPIGIiIiaNPmZYqKficn5zHgRgyGsohar3cnx46l0KXLW4iikZ9+ehyDoQXnnvs4iqKwffuL\nLFjwC9dee021x4ZYDIayEahen4jLlczjj7+Iy3UvcXEjyMt7kJUrd5GcfCFmc0sKCtYze/bnREVF\n0aVLFywWy3F/xwBFRUVIkhWz+RwAnM49iOJ1mExtSUlJIycHVqzYwKhRNe8NhdpXH69LsdWmQOB7\nqAs+n++Ek+KfiTQ58VWslBDIJFDbPI0B/H4/LpcLv99fZ+EFaAziu/LKS9m4cSbbtj2NLAukptq5\n6aYHiIiIqHS+e/fuZdKk11iyZBWiOI1zzjmfqCg9e/dOwOtdS1SUi4KCoURFmbn00sGMG3fjcY8d\nFmYmLy9B0dQvAAAgAElEQVQPk6ksMENR8rBaKy+u5+bmYjJ1Z9Cg0axYMRlBGIUgXIAgWFGUS8jP\nf4I5c/qwcOFW0tLm8/LLjwUFqCgKDoeD0aPPx+v1kpGRwa5d3YiKGopW+zY63X/xen9Dkl5EkhZT\nUPAtitIfUUzgvfd+Yty4uWg0OpzODnzzzdc8/XTldbU9e/aQkZFJWJiZPn16l1vPWrt2LZMnv8bh\nw4m43d+Tnd0OQRiGKE6iY8dNDBnSk0WL9mCzvY8g7OHKKy9g6dJfcTj6o9HE4Xa/R3z8HWi1FhQF\nZHkAXu/S4G8tiudw5EhZPsTS0lJsNhtxcXHB6z0hIQG9vgi7fT0mU0u83lwgC5tNS3z8MLKz36ak\nZC0ez5+UlgK0p7R0Hhs2JPDoo8tJS/uG119/olbZWmJjYzGZ3Dgca7FY+uDz5SNJfnJzj1BaWorZ\nLOP3lw/6UhSFxYuXsHjxJrRaDddeO4g+fXod9zi1SeZd3fph6LTp8e7nE5FHY8Zms9Upa8uZTpMR\nX3WlgeoqglDhmUwmrFbrCT8tng7x1RWdTsejj04gMzMTvV7POeecg8FgqPQ6l8vFgw++jMs1HkE4\nhNu9lvXrn8NotBIensT113ekZ8+eRERE0KJFiyqn+7Zv387y5eswm/VccskI/vvfsUyY8AJHj+4C\niklMXMU117xZ6X2RkZFIUg6gEBaWjNHow+s9iN8fi9f7JUbjTbRr9wCKonDw4Kf8/PNCxowZhdvt\n5uGHp7Jq1QEA+vZtxqOP3o1GM4esrE14vZE4nZ9jMrWlbdvbSE9/GI1mFnp9F2JjI8nPn8jSpS9h\nt5eNMOLicittCVi1ai2zZ69GkjqxffvH+P3TGDGiL48+OpHZsz/j00+XcPSoEUVph6KsAZ5CURRi\nY3sjywe49967ufnmY2RkZBAT04NevXqxfv16Zsz4AIfDRbNmHdi7t+Tv60jAbD6K230YWfYhSaXI\n8iK6dr2GhQsXM2PGVyhKJBERLl588QHatGmD1Wrl//7vEiZNugufLwy9/hivvHI/b775HZs2XYvd\nXoCi3AJIFBUtRFHmYDRejF5/CfHxrTl8+Gs+/XQO9913R43XksFg4I03pnDPPZMpKbEiihkIQiu2\nbu2AIGSj13/KhAkPlnvP0qV/8sEHu4mLuwWn08Mrr3zG5MkmOnbseNxjbdiwgd27dxMbG8vw4cNr\nzE7TlGofnmxJorOBs1581QkvQGAfUU0EKqZLkoTRaDwp4Z1Oanu+AcFLkoTZbKZnz57HPd8jR45Q\nUhJBXFwftFotJSUHgK/xeGzk5Y1n0yYfimIkNTWOc889t9L716xZy+TJXyAIlyPLdn766Vneemsy\nX3wxnT///AuTKZa+fZ8lMzOT4uLicpGDqampjBnTnU8/nUF0tAWj8VPCwwuQJBeKso2oqNGsXLkO\nUdRhNhs4evQoAB999AUrVoQTE/MtAKtWTeOHHxYycmQ3Zsy4D50uEVmegd9vxu8PJz4+ksjIweh0\nEUiSRH6+nt27S2jZcgoOxxEKCr5gxYrVDB16XrBtX331BzEx4/n998kcPdoRRZnAjz+uZf368RQX\nW9Drx6Mo6xHFK/D7t2A0zkaWd9KuXSfs9gc5fPgwnTp1Kne+ffr04ZtvyvKUulwuHn30BXbvfgZR\nNNO+/W5SUtJYs+YKdDoNEyZcR1paGrfc8hzh4a9iMCRw7NhqHnvsFb75ZhZHjx7l889XEx7+HILQ\nAq93I7Nmfc7IkT2ZNu1jFOUpBOEGwIeihOF0vo3R2IKEhHC0Wg0GQ1tyc/fWeD0F6NGjB7///hV5\neXm88MK7rF/fEb8/H1HUAP3YtGk7vXr9M6JbuXIHkZGXY7GUTX86nRewdu3244rvyy+/YebMhfj9\nw9BoljBo0ApmzHiy2u0agiDUufZh4IE19AG6sfQHJ1qSSBVfI6Am4QWoSQSBII5AyHV9Cu9MnOo8\n0RFtREQEslyAz1eMRhOBRvMv/P5iJEkHtGHOnGNs2BCDKG7nl19W8O67M8p1Nh9/vACz+d9ERnZG\nlv1s2bKK8eMfY8iQPowbdx0HDx5k/Pip+P1tkKRsbryxNxMn3hZs2zXXXEanTu04duwYkZGXs3Ll\nSr76agWFhZeza9dyFGU0BoNCYeEPHDoUj8/nY+3a7Wi111GWtxP0+hFs2/YdVmsYvXq9jtmciihG\nUFDwG8OH7yEzcz9//vkO4eH/we/PxGDYSmTkvfh8GSQnW4mPv5b09H/EpygKLpcPRSmloCAXg+ED\nfL4SLJYe5OauwGCIxmhsgVa7F0k6hKIcwe/fjdlsQJKKkOVs4uLiyn3POTk5/PDDXxQXu2jfPolL\nLhnMjBmT2LZtG36/H6t1BF9//Rvt20ej0XhIS0shJycHUeyIwVCW+T4qqh95ea9TWlpKdnY22dlR\nmM390eksKEprsrO/wOHwYTCYkSQDGo0eQdDi9xuJjRUxmf4iMfFCJMmNy7WAbt1al+tMy6YnF3Pg\nwAFatmzJBRdcUO4aMhqNNG/eHLfbT1RUP8zmcxFFkaNHf8Lh2FfufC0WA16vLeT6LMZiqTzjEMDr\n9fLKK59htX6BTheHokisWDGeLVu2VFobPh41TZe63e5y254qrh+eibUPT4bi4uKzZvM6nMXiA4JC\nO95cfFWV0APVFgLCqyqIoz44XVOdVR3zRIQXyKkJEB0dzd13X86sWY8CR5HlvUA3QAccRJaf5eBB\nLWZzL3744b/06DGbe+75ZwO2x+NDo7FQUlLKnj3vcPiwBo1mND/9ZGfdumcoKChEFJ8gJqYjkuTi\nyy/vZ9iw7XTq1Cn4GWlpaaSmpmI2l60NxsbGYbG0Y9++L5Gk1/H7s0lLu5nlyz9i2LDryc4upaTk\nL1JSXkCWu+J2/0JSUjiKosfvL8FoTESSZBTFS0SEmeeff5wHH3yGVasGEhZmZezYC8nLiyM1tSxn\naU7OcqKj/wn0EASB2FiFn356C5erBEWxodF40esj8fkkYDdlKdAiKC3NRq9vg0bzHyIi2lFSUsQD\nD1wfLNPi9XpZsOA3Pv74D8LDe9K585WsW7cTr/d3brhhJN27d0dRFKZNe4vDh/vRrNlAvN4SPv74\nHcaN64IkZeD329Fqwykp2U54eFkKuejoaHy+/QiCm6KiL7Dbl6Eoh9DrOxETk8jRo1/idusoS+T9\nHlde2ZuEhBTmzfu/vyuSFDNt2q+88spHTJlyNyNHXsKUKc8xZ04GPt956HSfc/31G3jmmccqXT8X\nXdSbadNexeW6EUFwExn5BYMHTyz3mquuGsrWrZ+TlZWPoniIitrA8OF3VntNls3KaNBqY//+DTRo\nNEk4HI7jXsu1JTBdKggCer0+OIqsWPswNEr8TJsuVUd8Z7H4AhdoTWIJlU9DCa+qYzcUFSMwf/nl\nV+bPX4tGI3DDDcMYMKB/jedbUFDAgw8+y/r16URGhjNt2v0MGTKY6667km7dOrJy5Uruvns6spwN\nOAEHoEWW26LXx6EoHfjgg5+58cZRxMbGYrPZKCjIYunSa5DlJGTZhkYzlejoTiQkJHD48G4KC/fS\nqlVZ4IhGY0IU2wanLKuiLDuOD0EQMRpHYjC0RFHeIypqENu3P09S0gdERIjY7R9x4MB4RLEter3C\nwoUaZs6cxMaNX5KTk4cse4iKWsFVV00iKiqK999/JSh8m83Giy9+xKFD+QiCSGzsQS69dFywDT/9\ntIDff89GltshCBIOx+3ExY3G6VxHr16xjB17B5MmPYHBUIrFEsagQQPp0mU0nTu3IiUlhZ07M5k2\n7SOMRi2SVEpGRiJ2+3V4PCIbNy6if/9RpKe/z/XX//MAsm9fPikpZdOgen0YgtAevV7P7bcP5r33\n7kGjSUWnO8Qzz9yFKIq0bNmSIUOSWbDgCjye9gjCTej1R/j5568ZP/5CnnvuPeBxBCESq/UKvv76\nWxYt+pgJE25hwoRHWLduBDExd+L1HuKJJ+5Blv18+eXvGI0LMZsjkOXb+fbbi7jjjptJTk7G4/GE\nbK2QKSpajceT+7cgsiqNKlq2bMn06bexeXM6Op2WHj0mHDeQJiwsjM6dm5Oe/h4REdfhdG5Fr0+n\nQ4cJx72mT5YT2W5xvNqHp5ITEZ864jvLCEx1huaWPNXCCz326ZrqlCSJ+fMXMXv2NuLixgE+Xnnl\nc6Kjo2jfvv1xP+OBB6aycWM3zObn2bNnNVdd9QBXXNGPl156gjZt2tCmTRsmTZpJfv4CBOFaFKU5\n8DWi+H94vcswGIowGttSWFiITqfjootuYvfu7kjSnYhiEYryBBaLiaysfBISEhBFDcnJERQV/U5M\nzAjc7sMoymZatbqy0rkFOpk2bdoQHv47hYUG9PoDOBxfEBPTjGPHJhMWloaiuMnJeRVJuhFIRaP5\nhebNv+TYse9ZsWINM2ZMZMOGTYiiwIABj5QrkBmQTEREBJMmjScjIwOAtm0vLBfa/8knCwgPf5zE\nxHNo1eoRMjImcM45n3PZZcMZO/YRjEYjw4YNxel0VooK/vXX5SxZ4iMlZQx2+2EWLXqHvn0vQ6dz\nERnZmeLiLIqK9mE0lk/2nJQUQXHxHmJiOiBJPmR5P1FRgxgwYADDhg2kqKiI1NTUcp3Yq68+ybJl\nl6HR3InRGEdS0iBcriJSU6MxmyWio9ciimVRvH7/UbZu3Yrb7ebPP1cQFvYvQMRgaIndPpi33voS\nlysCj0eDwVBKRIQVUYxi3rwfeeedr3C7/bRv34axY6/i/vtn4vF0QaNxkZDwEF7vJr7//mceeODe\ncr9rUlISSUlJtbm8EQSBmTOn8OSTM9m8+WaaNYvlqaeeDKbDa0hOJro0dMq0PvuhE+1vSkpKav0b\nNAbOavHVdMEERnhlazGuKjdin+r2NbT4Ak+edrudv/7aSXz89URElCWLdjqHs2bN1uOKT5IkNmzY\nRkTEK+zZk4Us90cUR7F+/TEeeuh5PvxwBqIoEhkZR2np/+H3b0SSrMjyfHS6HKKiuhIXNw69/i0S\nExN5+unXyMgoRqd7DJ/Piygew2C4FEn6HyUlIzh8eDPNmuUxadKTTJr0Krm5H6PReHjiiVuCG8QD\nBH5Pm81GWFgY06bdze+/r2DAAB1ZWQYMBid9+lzHk0++SU7OOwjCUwhCJyALSTJx8OBX6PXh2O2F\ntGrVihYtWgRzSTocjkrTVhqNBpPJRLdu3ar8rsp+27JOTxS1REb257rrZMaO/VfwNaIoYrVaK713\ny5YsEhOvQq+3EBaWBEQiSRJJSTKHD2/D4cimqOgIt98+uNz7xo27lLfe+p6cnNXIchEXXpgWDCaq\nLh1ZWFgYzZunIEmxGI3NAHC7SzCZUjCbLfj9OWg0kSiKB0XZyY4dkbz11ipKSi6juPgroqN3EB9/\nGw7HJmJjL8JqnYvD8SMu10D8/neR5QM89dRhIInw8JFs317Mffe9jCDMQKMZAGSRl/c4ERHnI0nl\n19s9Hg+bNm3C6/XStWvXWk23RUdH88Ybz9b4upPhZDawHy+6NHR0eCqnS9WpziZIxVRbAOHh4Q0+\n717bCMv6IDR3KJSNVsLCTOTklARf4/fbMZuPv59RFEXCw8Ow23cgy3FoNGb8/v3ExPyLvXvfpbi4\nmOjoaIYM6c3ixTYcjruRpHyMxv0kJbmA3ej1W7j55gv4888/WbduL0ZjArJciCDEIUk6jMYiTKaj\nmEzvMmDAcB5+eAqRkZHcdNMlTJv2P9xuL8uXr2Ho0EEYjUYURcHtdgfr/QVqG1osFm644SqA4Ki+\nTFg6xo17HFl2IAiH/u5wwvF6d+H3/8hff1mRJAm9Xh/seMoqEZTfFO31evH7/ezZswe32x1cYwx0\nSqNHj2D69MkUFY0AfERELGHYsOm1+r2sVj2FhTZMpkgMBisJCVqOHfuDtLSBiOJmmjXzcdttV5Oa\nmlrufSkpKUybNoEjR45gMplITk6u1XU9YcL1vPDCZByOa5HlLFJSdjB48B3MnKnj3ntvxu8fjKLs\nZOjQZixfvpfY2Nfo0UNmw4atFBa+ikbzK9HR+URGtmDAgBtZv/5zcnOfwuMBvf5W/P6+gJHCwhcw\nmax4PDG0adOFAwf2A2nIsoBO9ylXXPE/oEx4CxYsYOrU17DZrERFdSQ6ejbvv/9cpXRvZwuhQgxs\nFq9NdpqKew9r2n94Iv3c2VSZAUDz1FNPPXW6G3EqCeTzg3/K5TgcjmAQh8lkwu12YzKZGlx8kiQF\nO9hThSzLOJ1OnE4nWq0Wk8mEz+fDZDKRmBjBkiVfc+yYj+LidKKj1zJ+/PWYzeZqP08QBFq2TGD+\n/Gew2faiKN8RGWkiMfEqfL753HbbdWi1Wvr06cq33z5HXt7nSNJiEhLCmTJlPDExOnbtOsiaNSa2\nbw9j584VpKaOoLj4U6AYn+99BGElZvNFtG49hqNHD5KWpqeoqJCJE18FXkOnu43Nm3/Hbt9Kv349\nKS3bWY3BYEAQhHIJtAMEOo+ioiJycw+j1Xo4fHg5UVHdKCnZAryG0SiRkvIIbncGQ4a0JT4+HkmS\nguHuoR2NTqdDFEU+/vh7fv3VyfbtZlau/IvERC0Oh4PHHpvOnDm/4vVKGI1xmM353Hxzn3JbHY5H\nfHwY69b9TlGRi+LiHXTtCpdd1pbw8CMMHhzP6NFX4XA4+OSTBSxevI6jR/No2TIFRVGwWq1ER0cH\nH+bKqk8cxm63V5tKr0OH9rRvH4nFks6gQUYef/w+oqKiaNu2DSNHDqFLFw1jxozguuuuYN68DYSH\nX4PJZCIpKQFBWE+fPkYUpQOLFr3G7t252O1H8PudKEpPvN5L/858kwDk4fMdQhA20arVuL8luBmD\nYQ6ffvo83bt3Jy8vj3Hj/sOsWT9TUHAjbncKNttSioqi+eWXn+nduy0bN27liSfe4ssv51NSUkiX\nLh0adEN5oLxYQyyHhF53Wq0WnU6HTqcLToOGVrcIPIwFgmxCt13AP7Mide1zvvvuOy666KLTMmV8\nKmgSI77Q+nCiKGI2m4MdGTSOnJl1JbT+X8VySIGboV27drzwwm1s3LgFnU5L//73VRk4sHr1Gt58\n81tKSlyMGNGDO+64mR9/TGPixAdYu/YwxcWt2bTpeiZPHh2UTlZWFqWlRvT62L8zivTn7rtfJDZ2\nGLm5vdBoLiIsLIbWrZM4dOhFWrW6GLt9KRbLYSTpOjp0eBSTyYzb3ZMPPphOv34t8fmuIzy8bBrW\nbJ7IwoV3c//9dxIWFoZWq8Xj8ZR70KnI/v37ufrqOzh2rBOC4CAq6hAJCS9SULCH5OS3MZt743Su\nw+k8Um42oCry8/N5662v+O03J/HxV9KpUws0mi58++3HrF69lNzca3A4xgGLMZt3cO21s9iz52ty\nc3OJioqqMeQ9LS2NG27oxcGDB4mLi6Nr10HlOqvi4mLee+83dLoLCQ+PZ8OGdfh8v3PFFeWTeLtc\nLj76aB6ZmWW3eqtWfm655eoqHw4GDRpE3759K3WKrVu3Du4j9Pv9pKSI5OYuJDp6KG73VsLCsrHZ\nOpKZuQpF+Q+KcjN+fwHwEKLoQpYlQAPoATvQC41mHRs3DgUUjMZorrrqYiRJYPfu3Tz33Nts3OhA\nUe4A4pDl5cjyBUA3Skt9TJ78BS6XTGrqU5jNZr77bjZW64+MHl11Wrb65kxIOlGb6dKKtQ9DHwwk\nSarTdKnNZiuXSL6xc1aLT1EUPB5PUHgWi6Wc8AKcrm0Fp+K4oRXe9Xp9tdUhAvh8Pn77bS1HjhSz\nY0cmd999S7kR3549e5g06WNMpv9gMMTxzTcfIQifccMNVwCpREbeidcbj6JkMG/efO66azwajYYF\nCxaSl2fGaHwLRdGSlTUZRXHSqlUfCgoUjMYu7Nmzmk6d0oiPN3DJJcdYtMhOfn5rjhwROHToL1q2\nTKVt20Q8Hh+RkWGI4qHgje3xHCAtLapOaZTuuecJsrPHotWORVF8OJ1PMGZMHG3bNmPp0m84fPhF\nvF4jRmMikye/ykcfzSAmJib44KTVahFFEb/fzzffLMPh6EBYmAZBaMPWrfvo06ctWVlHKCiIw2K5\nHY/HiVbbl9zcofh8JRgM1qDwjreGIwgCixb9ybZtPjSaCIzGHFJSUtDr9cECr7m5uXi9LUlIKCsm\nm5p6Hunp/+Oyy8pPnf/55xr27k2jefNhAOzdu5Tly1dz4YVDy70uLy+P9977gdxcJ5GROm6/fWSl\nNVQoyzs6ffp/ef75d9i16zNiYszk5OSzZ48Nmy0TRemJyQQ+nw4YgkazCUX5AFlOQhR16HQJKMo6\nJKkXsbGTcTqXoSg6bLb2TJ26lEOH/sRm0+Nw2CmTZE8g4u9r1Y/XayY/vx0GgxejMR5Z9mE2D2bl\nynkNJr4AZ+KDck3RpYEKHh6Pp9K1d7zah2fbGt9ZnWxOEMrqwVksFsLDw6sNXDkbxBeY0rTZbCiK\nQkREBBaLpZL0Qo9ZUFDAXXc9S3r6BTgcjzF3rsKzz75W7vWbN2/B7x9OeHgHDIY4YmPHsWTJJg4f\nPszBg0Z0ur7ExvYjJmYMGRle1q9fD8ChQ0UIwuUoShiiGImiXA5oiIjohCCsxO/PorT0GFu3zkGr\n7cTcufkUFvYF7kevd+H12jhyJIvNm2dywQU9uPzyy0hN3URx8UPYbDPRap9lypS76/R97thxCK22\nP1qtFZ0uClnuwfr123j55afo1asIjaYNSUmv0b79pxQUXMvMme9SUlLCPfdMolevkfTpM5Kvv55D\nSUkJNpueli17I4oZyHIhXq9AZuZi2rdPQFFKEUUBrRZ8vmJk2U1+/i6SkyViY2PR6XTBCh4Wi6Vc\nUJXf72fXrl1s2OAnPn448fED2LDhCD17nk+PHhfSp88I9u3bh16vR5JswfN1u20YjZpKv/eRIyVY\nrc2D/7Zam5OX98+6riRJHD16lLfe+o5jx84nLe1hZPka3nrrZzZv3syyZcvYv39/uc9MTEzk1Vef\nZOHC92jZMgmv91+4XA6gBfATLpcDrdaFIHyBRpOK0dgRUfwWk+kQERFu9HoPongLXu8BnE4DLhds\n2rSCnTsjkOUbsVhGIAgJKEoykAb0AtwIApSU+MnL24YkFVNUlM6aNc+yZcuXrFu3MxhdW9W98c03\n33PrrZO4++6ng9doUyEgN61WG3x4C732AokkAnEPDocDp9OJ2+3ml19+YdGiRcFp1tqycOFCzj33\nXNq2bcsLL7xQ6f//8ccfRERE0L17d7p3786zz57aYKSKnNUjPkEQCAsLq9NevoakPo5bcYQXCOyo\nyLp169iwYTvR0Vb69+9LVFQU27Ztw+HojKJ0JjfXjdF4PUuX3lMuE7vZbEJRDgU/x+M5Slyciejo\naByOTMLDy6bFJOkIoihSUlLWqbZsmUJcXDF2ezZerx+jMYOICAMOx27S0rqyd+94NBpo3/56evT4\nD4sXL8du/4nw8AQSEu4lP38mWm0OzZpFcs01d6LRaPj229ksXboUl8vFgAFv1ljwtCJRUWZKSz9B\nUTpQtrdwLq1atcJgMNC8eVuSknoRFVUWsm00diE7exnTp7/G6tXNiY5+A58vj+efn0hqahIajQut\n1sCwYZewZs18bLat9OvXj1GjbmXHjp1s3PhfRLE/gjCXzp1T6d3bwYUXXhT8bbKyslizZg1hYWEM\nHTq0Uv5TozEJvV5HTs5OFi78AElaiMHQgcOHP2bMmDtZuvQHOnTYzLZtP6LRxCEIGYwZ07fSObdo\nEcvmzTuIiiqTn92+nRYtyjZ3b9myhTvueJTiYjelpRFcfXXZiCkiojm//25n2bJXMJl6oyif8/DD\n1zBy5MWVPj839xgQjyC0QK9/Fq/3FmAeUEj//h3RareQnBzD9de/w3PPfYDLtZ+cnAMoSgbFxQUo\nSmugFbm5a9FotuF22/+Wtw0oRhDmUtZNFaIoK/D5IoF9HDmyhoyMzQjCbYSH62jTJoUJE16ke/eW\ndOrUktGjrwlO53733Y/MnLkUu92K329jzZrn+eSTZ6ot1FsTjXlZJLTttdlukZGRwcKFC9m8eTNx\ncXF07tyZTp06MWrUKAYPHlzVIZAkiYkTJ/Lbb7+RkpJC7969ueKKKypFiw8ZMoQff/zx1JxoDZzV\n4qstjVF8ZdN9Htxu93GFB/DTT78wY8ZvaLUX4/dn8cMPLzF79nPo9Xpyc/fidjvRaqPw+w9iMOSV\nu6mHDBnCt98+SWbmGwhCLDrdUu6++xZSU1Pp2zeetWsfwmBoD+ynbdvkYK27W28dw2+/3Udu7lEk\nSSQ+fgsvvzyTRYtWkp9fwtVXX0p6ehzNmo0FIC0tlezsw0hSITpdCmFhBvr0uYw2bexERkYGA1eu\nu+66ar+TgwcP8v33vyLLGoYP70nv3v/kfBQEgQceuJXJk9+jpKQPoJCcbOKuu14EoGfPc/n555+Q\npCEIggGn8zt69TqHefN+x2r9AEHQoNcnY7dfwo4du7j88vP44YefUZQEunWL4uKLb6VHj7JSQR98\n8Cqff/4VmZlb6dZtJNdcc3W532b9+vX861/34vcPRRAOc845H/Hddx8GO+qy6dWN+Hxtyc3djqIM\nRKdr93e2kHFkZz+By+Xi6qsvoHPnvTgcDpKT+5GcnBwMmApMWQ0Y0Jvc3F9Yv342AP37J9K/f29c\nLhfjxz9KaekzWCz9sNunMG/eT9x22y24XCVkZGynfftXMJub4/HkMWPGRIYMOa/S1otBg7ry558/\nIQjD0OkSEISXaNbMjtE4nV9++bbctTRw4EByc3Ox2WxceOFNKMpAoDVQjCT1QJL+Qqe7Co8nEUWZ\nBazHbO6Az6fg821HpxtFXFwvXK4r8XqfITa2JRZLDyTpGOnpeRQWhuHx9GT16r2kpz/PSy9NQRRF\n5sz5lSNHjBgMdyKKYRw5MpO33/6E119/vvob7CylNtIOnS697777uPfee7n44ouZO3cu6enppKen\nB5Cv5wQAACAASURBVKvaVMXatWtp06ZNcKp89OjR/PDDD5XEdzrXSs968dVGLo1JfIHQfbfbjU6n\nq1Z4NpuNt9/+hD17DrNmzTpatfoAq7UVAIcOPc/atWv/3t+VgaJ8gyS1AxYTF9eM7Ozs4EVrtVp5\n881nWLZsGU6ni+7dHwiOtGbOnMzjj79OUVE+er2Fa67pGkwebDabSUiI4tChFciyRNu2nenSpQu9\ne/cGykrkTJr0FkeOrMfns5KTM5/k5GI8nnuw2yXatetEixYOxo+/ospAjIpkZWXx+OPv4vGMxGSK\n5K+/5vHoo14GDhwQfM2NN15PZGQEixat+btY7LU0a1a2b+3yy0eyd+8hPv74UkpK3KSl/T975x0e\nRdX98c/M9t2U3fQOoYQSINSEItKbUhQUlCoooOiLKGBBELALKhZA4VUEAQEFqdKb0glNegqBkARS\nN6TsZtvs/P5YshpBX8Dyvurv+zw8Dywzc+/Mnbnfe84953tCiIoajFYrkpOzhqCgQYiiD6J4Dr2+\nHjk5l0lI0FGrVgiBgfWqRLtptVoeffSRX+zr88+/id3+FlptD2RZ5uzZx1i5ciWDBw8GPAnbPXvW\nZNu29bhcqYjicVQqB6DC5UpGqdQwZ84GBAHat69LmzZtvNF6kiTdsH9z331d6drVE9VbKUWXmZmJ\n1eqDXt+OigobCsW92Gwz2b69mMhIF4GBBvR6j5Wo0YRSXu5HaWnpDcQ3ZMhDXLhwiXnzPsPpVBIa\n2giNZje9e7e/YYLV6/XUrFmT/fsPYDR2pqgoALe7GYLgwO0+hChG4HL5AYkIwnT0+vfRaHZRs6ad\nixeDMBqHIct2lMorqNXV0enc+Pj4UFamJDf3NAZDKEFBnVEo+nDkyEiys7OJiYmhrKwUWb4Xlcoz\n8SoUfbhw4ZP/+E79Ev7KFt+doDKxPiwsjLCwMLp06fKrx+fk5FRJOYmKiuLQoUNVjhEEgf3795OQ\nkEBkZCTvvPPOHVvgd4K/PfHdCv4KxHerhAceX/1TT71MSkoCev1grlxx4XDMoVmzmQiCCPh7gzXi\n41vgcsVisxUSEDAISdp1Q26hwWDgnntuLLAaHR3NvHnTr9fD0xEeHu6dED7+eCFnz9alevV5uFwO\njh2bwZIlK3j0UY+FV1hYSFlZPnv2PEdBQSlGYzNCQkbj47OaefNGU61aNQwGA1u2bMFsvkbLlole\n0rwZ9u49hM3WkfDwtqhUaq5d82H16m+qEJ8gCHTt2onTp1PYtGkvp0+fY9Kkx2nZsiWiKDJkyIMU\nFOjw8+uKj08Yc+Y8TXa2ndLSjRQUfEZISA3q1YNZs5KpqGiALBcTFyexdOncWxrDShQUFKFSNfT2\nyeVqQH5+YZVj4uPrUq9e3PXQ8wq++aYDCkVdXK4DtGs3jrCwR5Blia1bt2AynadBg/rePUK9Xl8l\noCE9PZ09e/agVqvp1q0bfn5++Pr64nYXUlFxEYslBLW6Bm53DhqNkdTUDMxmB0rlHjSauuTmbsfX\nN+Om5agUCgWvvvoSQ4f2Z+7cZRQWniMpqS5du95NdnY2kZGRNwmUsFCvXgf27j2CIFzE4yo9hce7\nHoROF4IkpWAwNMBkknn++drMn7+G7Ow1mEytMJtP4XQW0Lz54/zww0dYLHYgmZiYV1EqfZFl9/X3\n3IOOHZtx6tQZrNYkwIlKdYlatarxT8SdkLbFYvnVFKef41au37RpU7KystDr9WzatIn77rvvF/do\n/wj8P/Hx5yaS3wy/9jL+NDJVpVJ5Q/d/Denp6aSnQ0jIKARBIDz8Ga5cGYnZnIzbbcdgOETDhvcS\nFBREixZhJCdbiIi4i/LyU8TFuYmJicHtdrN9+07OnbtEVFQQPXv2uOnEV7mK/znOnbuMTjcYQRCx\n27Mwm4uYNy+Z4OAg2re/ixde+JBr17pQUHAKuz2EgoKj6HQR+PsP5MCBk7Ro0YJ+/UaQkhKD210b\nlWoqb789mvvv73NDW3DrEXZvv/0BS5Zko1bPIj8/h8cem8KqVR9Rp06d61UMGhAQEEtKyjayspSo\nVJ9Tt24IRUXriIxcjFYbSGnpE/j4DLpurY1n2bIVPPbYiFtqH6B16+Zs3vwRovgqknQVtfprEhOn\n3nCcKIqo1WreeecVBg06Tn5+PmlpbXA4uqJQKAElBkM8Fy+m06BB1dVy5f7NsWPHePjhp3A4eiKK\nBcybt5wNG5bicDjo1q0pX3/dFaczHre7BKOxAWfOFKHTPY+vbzFpaaOQZTUKRSQuVzwDB45h9erP\nbzoJ1q5dm1mzXqaoqIj589ezYEEabreFxo21DBhwb5VFWo0aMUREfE9EREPM5gzc7g1ERPhRUnIW\nu30jNtsJ1Oqz+PndhyDMo1GjfixY0JL3319IWtr7NGkSiFJZl5KSFOrX1xITI5CTU4vU1CNcu+bG\nat1P06Z+3uT+ESOGcvDgy1y6tAJR9CMk5CijRj1Wpf/nzp3jo4++orCwlMaNY3nyySG/GMX4V7b4\n7qSA7u0mr0dGRpKVleX9d1ZW1g1CC76+vt6/9+jRgzFjxmA2m2+poPHvgb898d3KC/rfIr7/pLBQ\nSXhKpfKWCK8SnhdbAjzFSWNiwrDZBIzGhURFhTFo0JOEhIQgCAITJ47m66/Xk5KygerVgxgw4CmU\nSiVz5ixg5cpc1Oq2OBxn2L9/BjNmTPpFK/PnqFMnmuPHv0etjuDChfdwOlsQHNyDDz88RGpqKuXl\nEaSnr8Nu74Us34cklXH58gvodPv59lsjQUE60tND8PN7F0EQsNs78coro36R+O66K4lVqz7k6lUt\nOp0Rm20tgwYlkpGRgcFgYMGCL/n22+84dy4Vf//NKJXVqagIp7y8OzNnfsR7772BVqvF7fYIX5eW\nXsXtboJSqUWtVhES0pny8s9wOgtQq5t5x8/tbkJWVsotPZNKvP32FMrKnmfv3rqoVGqmTHmGu+76\n5cR2QRC8JXVkeTdHjxZgNEYCYLMVYDIZfvHcl16aid3+JhpNTwCys59hzpy5bNqUTFlZWzSa7jgc\nJ0hMfJ+0tNNAHJJ0EqNxBDk5hfj4FBAc/AaCIJKVNZLvv/+e7t1vDHKpxLp132OxtMTPLwiFQsXR\no3uJjt7P4cOnuHq1mJYt69O3bx+GDSvGYllDcvJF/P3rExYWRqdOBhISqrF48Tfk5pbi75/Pq68+\nTbVqHuvs9dcnettxOBxcuXIFhUJBZGQkFouFZ5+dxoED29FoVISGNvUmal+6lEliYiMiIi7ToIGG\nLl3GEhsb671WQUEB06Z9gVI5EpOpOocPb8Ju/5zp08f958H8B+B2UxmaN29OWloaly5dIiIighUr\nVrBs2bIqx+Tl5XnnoMOHDyPL8p9GevAPIL5bgSiKv5r4/Efi58nzlYRns9lQKBS3RXiVqFWrFo0b\n+3DkyDuo1Yk4nd/xwAMtefPNlxAEgdLSUq+LVavVMmTIg1XOLy8vZ/Xqg0REzEWh0CLL7fnhh5dI\nSUn5VT+8LMssWbKcVat2odEoiIy8RlraBhyOloSHJxAfn4DD0Zhdu57D4QggP/8wsvwvIBKwIkmt\ncLtTCA4eyfLlH+J2J3ifi8tlIisrg7i4JNq0SeT991+r8jFGRUXx1lujWblyC6AkIqIOhw6VkJyc\nya5dK0lNzUWjeR27/Qny8lLw9fUHfBCEcnJzw/j009U8+eRD1Kt3nvPn1+N2W4Et+PndjyzLlJWt\np3nzmgQE+PLNN4tQqV7F7S5HqVxNYuJDtzU+/v7+LF36CU6n86Z5pb+GNm2akp6+iaysfEAiMrKE\nZs1udENXwmy+hkJR2/tvSYpjy5avKCsbidH4MDrdRSyWxeTknESW7YiiD2q1FrAjy0UoFCZv6S5Z\n9qegoIB9+/bjdErUqFGN8PBwr4KIIAhcvpzPjh07yM83I8sOIiNjOHr0EnZ7f9Tqluzdu5qcnHye\nfno0rVsncebMGTIzM/Hz8yMx8RHUajVDhgxBkqQbFlk2m43585ewe/cpDAYdo0b1om3bNgCcOnWW\nixdDgT7Y7cEsWrQKWf6Arl3b8eGH+zEYeuB0lnHkyFb69KlqsWZkZOB0xhMU5NkDjIi4nxMnxnjV\nWf5OuNPKDLdDfEqlktmzZ9OtWzckSeLRRx+lXr16zJs3D4DRo0ezcuVKPv74Y5RKJXq9nuXLl99W\nn34r/vbEd6sW338rwqiy7Z8Tno+Pz20TXiUUCgXvvTeVZctWkp6+l/j4mvTv3/eWX3hPkqsSUVR7\n+ygIOs6ePUthYSFxcXHe6M2fYuHCJcyYsRut9hlcLjOCMJOhQ9uyYUMAcXGNARm73YLB4Eu3bnHs\n378GQTgB1EeWBSCZ6Ogo4uLakpLyPYKwEYulPaIYQ1bWK6hUd+F0zmLr1vcZNWo8K1Z8WqX9atWq\n8fjjg1AoFLz77lrCwvqhVutJTd2P09kIg6EORuOLmM1TsFgGotGU4+t7jJYtl5KVtZLy8nIGDepF\neno6NlsY9etbWLZsCE6nD9Wq6Xj11TcwGAzk5r7I/v0tAImRIx++6f7nraAyZeQ/weFwcPz4SfLz\ny4iIMDFiRE9yc3MRBIGoqChSU1MZNWoimZkXqF69FgsWzKJOnToAdO7chmXLZuB2z8TtzketXoiP\nTwRWa3UAFAp/VCo3RqOCjh1b8s0367DbL5ORsRpRTKW83IBCYUKlMqHT7SMzM5IzZ2RE0QdB2MWQ\nIUlER0cjyzIlJSVs376ajIxITKbPEAQd6emP4ecnUrfucABcrgSWLXuA2Nhw7HY7zZo1o1u3bjeQ\n3LVr1zh16jwA8fFxBAcH8/nnK9iyRUV4+CwcDjMzZswiJCSIOnXqcPz4ebKyQvH37wiIqFR6Vq+e\niMWiwGR6CD8/j4WXlVXO4cPH6NWrh7ctvV6PJOV69wZttnx0OuUvjs9f3dX5ZwhU9+jRgx49elT5\nbfTo0d6/P/nkkzz55JM/P+1Pw9+e+G4F/03iA4+KQqWAssFguOUJ8deg0+kYMWLIDb8fPnyYvXuT\nCQkx0adPryq+doCrV6+yZ89BfH1tZGTMJiSkB2Vlpykq2s2sWUWoVNEolYt4992xJCQkVDl3xYpt\n6HST0ek8kZ2FhVnXBY/PkJX1NSpVKC7XRiZOvJdu3Tozd+5CsrPnIstf43aXolQK1K49DJfLjk4n\nMGvWc3zwwQdcvJiJRqPHZNqMKBrQaKazc2ctVq1aRatWrapUHKispAB+qNWelb1SqcfhUCHLVgyG\n3jidy/D3X0a9ekNo1GgxarUBWa7wJvhWVjNISEhg+PCBlJWVERMT452cFy78CIvFglKpvOm+5+8J\nt9vNtGmzWLEiD0nyo0YNNWPHNue++7oCnnIxffsO59q1qSiV3blwYR0PPDCCw4e3o9PpGD9+DKmp\nEzl4sDU6ncDLLz+DJMm8995nOJ01ASc6XTIREVb8/bX07Qs//HCZq1fvplatL7h06RQFBZNp2NDE\nsGFPkpwcTvXqnvyt4uIw9uw5wMiRdcnKyqJXr8FkZdXC5dKRl9cNo/HfaLWdcblWXt9KELDbr3Lh\nQgYjR85GEKqh0cxg+fIPadWqlfeeCwoKmDdvM3Z7AiDy/febGTWqC4cOpRIc/AJKpR6lUk9x8d2c\nPXueOnXqoNeL2O05XL6cd73CwwkiIgQcDtt/fMbx8fG0br2HffveQRSrIwhHGD/+1heKf3f83VRb\n4P+JD/jvEF+lDFZlPa7fi/B+DevXb+Ttt7cA3XC7c9i8eQrz57+BXq/HarXy3nufsHjxNpTKmkRH\nd8bhWIVen0ZoqEBZWWPCwt7G7YaiomNMnTqXNWvmVbm+RqPG7S7/yS9l6HRa3nzzabZt24PVWshd\nd/WmZcuW2O122ra9m7VrnUhSDC7XSbTaYyiVNq5cmUOfPnXp2bMnPXv2ZOPGjTzxxBIEwROtWFh4\nGpfLxYQJB1Cr32XZstk0bdrUO1EZjUb0+jKuXbuC0RjBXXfFsXXrO1itagThMpGR2Tz++BMcOaKk\nqCgVSUqja9ca3o+7oqKC556bzqZN21GrNTzzzGOMHOmxWLZv386UKe9TVlZK585teeONl24r4k2W\nZYqKitBoNDcsOm6GHTt2sGDBURSKjxBFI+fOrWbOnG/p0qUNBoOBffv2UVoaADyAR42qP2VlH3Px\n4kVq1arFypW7aNhwLElJYZSWniYsTE2nTndhNpewbFl/RFFkwoR+PPRQP6xWK/7+nejf/zzx8Y+j\nUvnQoEErMjMHER9/gZSUfMrLPekMOTnZ7NixE0laR0iIkh07DmA2D0Klegy3WwnMRhSXYDAo0elK\nyM//HPAjK+td3O7qaDTfIghqKiq28fjjL3LixC7v+B0+fAqHoxlms0BxcQkaTRj795/EaDRw9eoV\ntNrg6xGrV/D19YTNt2mThNU6HLvdBoQDZ7hy5QLduo3giy++wuHwuDr1+v0kJj5a5Rl7LOdAysrW\nIkn7eeihjrRp04pfwj/N4ispKSE4OPgP6tF/B3974vtfc3X+XDBboVCg1Wp/E+nJskxqaiqlpaVU\nq1aNkJCQmx73ySffYDK9jkoViiiKZGa+w4EDB+jYsSOvvvoBa9aA1foGCsVVMjO3Eh8/jsaNz1O/\nfgRnz+ZTXFzCuXOXkCQFbvcxDhw4UGWlPnbsQMaOfQWzeRiSVISf3zr69ZuDyWRi1KihVVy3ly5d\nwmhsyyOPJJCZmYVKlYhev51hwyIJCkogLi7Oe2ynTp2Ij1/EyZPDKCurhdP5JUbjNDSa0VRUbGbC\nhNfZuXOV93iNRsOgQe1ZsWIHWVkySUki998/hgMHfiAw0Jfhw5cQGBhIs2anKSoqJiSkUZXk2ldf\nfYeNG2W02mQkqYC33x5O7dqxBAUFMWbM68jyRygU1Vm1ahoXLjzBhAljSEpK8OYbZmdnM2vWPHJz\nzXTp0oqhQwciiiLFxcWMGjWBU6cykWU7w4bdx4svPktxcTFHjpzGbnfRsGGNKhqZ+/cfQpIS0Gg8\nOZgKRS/S0lZQXl6O3W4nLe3K9ZJOVgTBD0kyY7NdJSAggCtXrnD1qj/R0Z6K7P7+ERw4sJCOHdsw\nfvyTjB9f1dVUqXsaFORPXt4FjMamWK0WCgtPUlbWAq02nvPnV+BwKNiw4Rh2uxaNpiPPPvsxoaEK\nBKEnPj4GXK5SXK4aWK2L6dKlLePGfcRzz31Ifn4garWAw5GIIHgsZVFMJC/vKt9//z0JCQloNBrK\ny21s376X7OwwZLkabvcRJCmDSZNGMXnyZ1y50hxZNlO3bhF33fUw4JmcFQo7grAXQTCiVDZAFNuS\nk5PDhAnt2LfvMHq9mu7dh1UpKgzw7bebmTv3OEbjh8iymy+/fJs6dXbRqVNVwe+/A+7U1VmrVq0/\nqEf/Hfztie9W8GcQ389rAFYKZnvccr/tup988gXffpuJQhGJQvE1U6cOquKGdLlcrF27ifPnL+Hj\ns4qoqH5oteEIgh8Oh4OysjIOHryIr+8U7HYjWm0iVutJbLYi7HYntWvXxuVazfnz0SiV7RCE9fj4\n3M2LL85mw4aG3qTm9u3bMWeOyKZN32E0+jB48Dyio6OrBNNUwpNgrSQ6Oobo6BhcLgf5+cdp3br1\nDR+mRqNh/vx36dChJ2VlJ5DlCMrLl2Iw9EalakReXsENzyUiIoJx4wZit9u97sjevXtXuXbDhg1v\n+kx3705Gpfr4+j6WAZttEHv2HCI01ITD0RcfnySs1grc7pc4ebIn27eXsW3bLB54oAdRUVH07DmY\n4uKBCEJnDhz4mNzcfF544VmmTXuHH35ogMHwJW53GV98MYKaNb/i4kUXdnsTFAothw8f4pFHJG+K\nSFhYMEplMi7XAUQxGqdzJwZDEQsW7AF0ZGZeoW7dNqSm3oPb3RZB2E7nzm0JCwvj0qVLN9xbaWkJ\n77//IS6XRK9e93gFB36KCROGMXHiRxQUNKawMJWYGDVNmz6AQuGpgLFr1xs4HFH4+Q1FrW6J09ma\nkpLRiOJ8IBF/fzcOx0Iee6wXkyc/z8yZszl3LhNJygREJGkdTucoRDGaior5qNUGxo5dQlzcYj79\n9F0MBjeZmd+h0cwClLhcQezf/yU221Bef/1RcnJy0Omiadq0KRqNBofDwccfL8dmuxtB6ArsQ61u\niCwXY7U6adq0CU2bNrnpWAPs3HkUnW4wWq3HerTZHmbXrt2/SHx/VYvvTue4v1stPvgHEN/tWHx/\nxAv9c8L7vau8nzt3jm+/zSIiYgqiqKKs7CIzZ37A4sWNvG0sWrSCb74pwWR6jsuXs8jLm4pe3wqD\nYQ2xse9QUVGB1VqIwWAmP78Cu12Jy2XGZttNx44DiIuLY8SI1rzwwjRcrlh8fatRu/ZUysomk5+f\n761p6HA4SEpKol27dv/x/qpVq4bReIArV46h14dgNh+hc+e4XzxvzpwF2GyDMZmepaDgGpK0BLN5\nCqJoo0aNcDZs2EGDBjXZvn07fn5+dOnSBZPJ5LXCbuejDwoykZd3HpXKY3UKwnlCQqLw8/NDqUy+\nro/qwm6/gCBYmTv3X7jdRv797+W0bl2X0tJW6HTPACBJTVmwoCMvvPAsx46dRaP5GEEQUSj8cbnu\nZffuAwQHDycqqiGSJFFebuD77w95ia9///4sWPANOTlzcLmMqNXbaNNmOGFhfVEq1ZSVhRIQsJZe\nvR7FbL6ERtOK114bBXjyqSIjj5CdfQidLpTs7ANs2LAQh2MAbrcP8+c/wrJls0lKqqrxGR8fz8KF\n0zl//jwnTojYbB2v5w2C0ehHrVohZGXVQ6Npff3ZSoSFRZKUVJOlSz0u50ceGcDkyc+Tl5fHggUb\ngdno9QmUlLwNfE5FRRegAlH0IzZ2O0plJGfPTmHp0hU0a5aAv78SSToKgErVmNJSFe+++x0Gg53h\nw9vToEG8V7bv+PHjXL4cRFhYX3JzRQQhCat1FDExOlq1Glvl3mRZJiMjg7KyMqKioggKCsLf34DT\nmes9xunMxd9fh9lsJjMzE4PBQK1atf7Uen9/JP6M4Jb/dfztie9W8Ees3m6V8H6rtVlcXIxCEYMo\nelylPj7Vycmx43K5vFXDv/02mcjImURHq7HbD3Px4jEUijWEhXVj4sQ3KSoqIz/fQHHx05hMjXC7\n/YiISOGll56hVauWANx/fx8++2wrWu0UfH3jsVovolAUYTAYKC0trVLz7+rVq+Tk5FCzZk1MJtNN\n77G8vJy6dY2cPr0FkymaDh1iadXqRmWWtLQ0FixYwoYNu3C5XsRqLcftdiLL/litR4iNHUSfPoNZ\ns2YXY8c+jCx3QxTtzJjxb0aMGExpqURsbDA9e3a85SjZV155hkGDnsZm2w/kU716FgMHTkQURT77\n7GvOnRtEebkMHMFTOmcE0BmbbS3fffcNBkMMP0bB/3jv1apFkJd3AJWqJrIsIYqHCA4OwGwuJT39\nByRJRK0uplWrH2sBmkwmNm9ezpo1aygvtxId/TLnzlVHqfQ0EBfXDFk+RL16WmS5Ds2b1/S6SlUq\nFYMH38OhQ8cxm8+Smrobu/0RtNoXAbDba/Lmm3NZs8ZDfFlZWUyfPovMzKu0aBHPpEnjiIuLY9Gi\nveRe5wVZPs7o0Q9x6NBzWK3+CIIJhWImY8aMpl+/vrz22mQAL0mkpaWhUjXBar2GJK2koiIVQXie\nJk2akpr6EWp1JCpV1PVzEsnMPMDgwfUICCjh2jUZtTqJK1e+ICioGnFx47FaC1my5DNefDGKzz9f\nTmpqNnq9G0mqRsOG9dBoLpCXlw7k8vLL42nWrJn3WcqyzBdffM2OHYUoFKEoFJsZP74Pw4bdz8GD\nr5KXdxVZljCZ9nHXXSOYOHEOdnscklRAmzb7GTNmqDe1469Igne6sC8tLf1b1eKD/yc+L36vYrSV\nmokVFRW43W70ev2vWni/lfg8yb3rsFqvoNOFk5u7gzp1wqvsGSoUIm63A6VSh9XqwmSqT716QwkN\nbcPWrW0xmSYTG9sdf/9szObR9O4dw4kT8NRTU2nduhkzZkxhwYIvKSy8SkFBf/z9g4mIMDF58nB8\nfHzQ6XTeiWD27PnMnLkRlysQnS6Pjz9+mpYtW1bp84ULFxg9ejoWS1Nk2UatWgcYPrz3DSHte/bs\noXfvJ7DbI5FlK7L8CrAK8AGWIYrN0WhCMBpDOHNGprS0NWFhryKKbi5dGs78+QU0btyZQ4fOsX//\nTPr27UJ8fJ2b1vCr1LjU6XQkJCQwYsT9zJu3DFmGrl0fRKvVcvz4Kbp27cjRox/gKZUTBDiB1wAF\ngtABSdqGUrmVioq5iGIcgjCHRx7x5Em++uoEHn74ScrLt+N2m0lMNNK//wiee+5rfHwGo9H4UlBw\nAIejat9MJhPDh3uCa7Kzszl9+gckKQGFQoXZnEmDBrEMGnSP9x5+Cr1eT4cOnly33bt34MmZ9EAU\nwygrswKeya1//9EUFg5BqUzk0qVlXL78HIsXz+GRR9py6lQagiDQsOHdhISEsGrVPObO/QKLxcaA\nAeO4554e169ZlRAMBgNm8w7s9iwkSUaWr6LT3Ut0dANKSoaTkzMFWXYhyw5keT2NG7fGz8+PL754\nj8mT3yU9fQ5hYVruuWcBgiBiMIRQVOTLU09N5tKlRNTqR6moWE9FxQbU6mbExtbCaDxOu3a96dGj\nKxaLxatZeuHCBbZtKyA6+l8oFErKyrL45JPPef/95/n889fZv38/AG3bvsHMmYsQxcFERNRFlt3s\n3Tub1q1PeIUE/kn4f4vvL4hbJbLfY5+v0sJzu93odDrUavV/bP+3thsVFcWLL/blvffexGyWqV07\niBde+DFfRhAEBgxox8KFc9BqO1BRsR0fHyv+/sORZQm73YJe3wJBgMDAKFyu1qxbtxSt9t9oNPXY\nsWM2ffsOoaioFpGRWwkOliksnMY99wTQvXvXKmR15swZXnttIy7X8yiVMRQXH2HkyLc5duyra+i/\nNAAAIABJREFUKonAs2YtpKJiOMHBnpD8lJR3Wbt2PQMHVk0Ef/zxl7Hbn0OlGo4kZeNyDQBaA/4I\nQgvcbgtXruTidkuUlhajUAQBMi5XHk5nNGZzLGlpgeTlVSMlJRmNxsaRI1sZNqxrFfI7fz6VDRuO\n43QqCQ9XoVZbmDNnK7K8HEFQMX/+WK5eLSQk5D6+/HIzbvcHQNfrZ/cBvkYQHkKWnQiCk5kzX2bX\nrsPk5++jU6cOjBrlIa3Y2Fi2bFnGqVOn0Gq1NG7cmIsXL5KY2JbS0kwkyU1CQlvc7h9uOtYZGRmc\nO3eOqKhrXL36DaDHZKrgnns63NK7ct99XVi/fjpOZxyC4INC8QoPPOAhrBMnTlBaGovB4JHyUqvr\nc/hwEteuXSM0NPSGgJAGDRowd+6MX23P5XKxevV6ZPkuYAoKhYjLtRA/v10Iwn1ERfngcDgoLe0I\nSPTt25H+/T3VN2rUqMGXX87BYrHw4ovzcbs9BVTLyrJxOC5x+bKIyfQMgiBgMDSjsDCZ2rW3YbFs\nonPn2jz66L/QarVVNEvLy8sRxQjcbnC7nWi1YVy54qk7ZzAYaNu2LSaTCaVSSUFBqbeUkyCIiGJ1\nSktLgaqW07lz59i79wA6nZbu3bsSFBR0S2Px38CdLuwtFssN4uR/dfztiQ/++AoNd0J4P233t8ql\ntWyZxPLlLbDZbOh0uhva7tevN6Gh+zh+/DQmUxFnz/phtV6kpOQqvr4CknQIuAenswirdQ+C0Ba9\n3mMl+Pq+wMmT9YmM/BeZmUXXBYHbs3//l1VIr6Kigu3bt2Oz1cDXty0golRGUVIyj4yMDG8gyZUr\nV9i16yj5+e1RqU4THh6AUlmDgoKcKn32SFIV43Z3wG6XEMVAoDOQgUr1GSDgciWhUGjJzj5MZGQK\nZWXZSFIhLlcuknSS8PCHcbl80OkaY7EsJzCwBhaLiTNnUmnVylOyqKioiNWrTxMU1But1pfc3PNs\n2jQJl+tptNoGANhsE9m6dSp9+46gtLQAne5uLBYbguCDLLcE5iDLIAjraNKkOv369fvF8kn+/v5V\n5Mn0ej06nUxcXFdEUcG1a1fRanU3nLd27TrGjXsNUUzC7T5F//7tmTjxKYxG4y27cDt16sS775bw\nzjsv4HA4GDy4D6NHe0L71Wo1bneZd3KU5Qpk2XXH0cYWi4XBg8ewd+85HI5xKBROAgKMlJW1wGp9\nlStXvkah2M7cuS/RsGFDlErlTS1xg8HAwIGtmTt3BkplBP7+EgMHtmfSpGXYbBUoFApUKhGlUsML\nL4y+QROyUlFm+/YdfPjhYs6ft1KvXgwNG7YkN/d76tYNY9++gyxcuAtJ0hMU5OKZZwZSv34kx45t\nJyrqXux2M3CCmJiqCkfJycmMG/cRTmcfZLmEL7+cwBdfvPM/S36/xaP1V3Tt/hr+EcR3K7gT4nO5\nXFit1jsivN/S7s1QWVX5l9po2/Yu2ra9C0mS+Oqrb9i3byXh4SamTn2PadNmYzZ/idttpm/fBqxd\nW+D9SByOTDQakfz8fchyK7Taalit+7lw4QpZWVlER0ezdu0GXnnlE0pK7DgcLhyODNTqWjidZxFF\nG0ajkdTUVLZt28fmzQcpKzMhScm43T6kpS3Gx+c76tadXKXP69d/i9MpAYeAsOsSYscRRTeyvBtZ\n3oBeX8bzz9fju+8+xOm0UqeOzKVL9yCKCmrWDECtPkNxcR52ezYBAQY0Gh1OpxWn88dIWrPZDESh\n1XoKFvv6hmK3O3C7fyy+a7VeoKyskEWLDmO1alGpvkCrHYkkXQK+JSkpFJ1uHc2a1eXZZ2ff1jsQ\nERFBUlIWyckbEUVfJOky27Zt4dVXXyYoKJj33nuZFi1a8MwzU5Ck9QhCPWS5lK++6sjAgfff9iTb\nr19f+vXre8PvzZo1o25dgdOnxyPLiYjiNzz8cK9fXOm7XC4uX76My+UiNDT0BlfYJ598xuHD4bjd\nHYGDuFw9MJuvERi4m6SkGHr3ttOkyVOEh4f/qjXxzTdrmTp1Np7cvCPMmjWJ2rVrkZd3hLKyEchy\nR3x9j3L//dVRq9WcPHmSsLCwKik9+/bt47nnPkWpnIJOd5GjRydjsVSjY8dG9OlzN2+//S1BQS+g\n1RrJzz/GJ5+s4vnnR2C1LuXMmd2o1TKPPtqViIgIb+4twOzZy1EoxmMyeVz5eXkK1q/fyPDhQ29r\nTP6XUWkx/93wjyC+W7X4btXyqtzDkyQJrVbrLZL6R/Xt94RCoaBfvz707NkdX19fcnNzGT/+EUpK\nrtGqVSvCw8O5eHE0J048jstVG5VqA2+88TwvvTQbl8uGw6FBr79ATExvMjIycDgcTJu2EJ3uMyIj\nIygsfJmysiHodHcDGdxzTzzFxcW89NIibLZ7uHhRi832HT4+Zyko+Broi9XaghkzPiUpKckbNr1r\nVzIBAU9gNs/D5VoD5KHX59G7d1vS0z+ievUQxo1bwsiRz1FYOBCFojGy/DmdO0czb957zJmznBMn\nrJSUXCQzM5+YmBis1lIcjhPExrb0ErvBYMDtTsXptHPy5E4uXMhBp6uPKH6K1ZqHJKlwOj9Fq52I\nJNVHqXwZh2M8Pj4L0GhkJk58nMcff+zXHvmvQhAE2rdvSXx8AXa7nTFjPubYsQYolZ+Qk/MDQ4f+\ni6+/nockqVEqPbmGouiHKNYnLy/vt78Q16FSqVi69GMWLVpCZuZxmjW796YECR4Px+rVO8nM9EUU\n9ajVu+nfv2UVd+jZsxdxudqjVt8HZON09sblsqJS+TJ06Mt06eJxz/5aOs/Vq1eZOnUuSuUyVKoY\nbLaTPPvsaGRZgcXSCUGQEMV1SFI+RmM7HnxwIlANuMykSYNp2bIFGRkZLFu2AVl+DIMhEYMhEbU6\nmtDQz5g8eQxHjhwBaqHVeoI3goObkpOzAl9fX6ZOHYvdbvda1G63G0mSqCwRVlZmRaEweWsfCkIA\n5eVXf4fR+GNwpxZfpdX8d8I/gvhuBbdCQJWE53K50Ol03qKef3S7vwcyMjLYs+cgSqWCtm1bYTQa\nyczMZPr0L6ioaIEsa9i3bylTpjzGJ5+8zbfffkt6ejpxcUPo1asXGzceobi4JVptKCZTIwoKPsLP\nz4/09HQEoRkajcfFVL/+FDIy1tO6tZnExDaMGTOYGTPmYbH0oqAgFIvFF0kSkaTF6HTzgBr4+UF2\n9qesW7eeoUM9MmshIR4NyRo1VlNRcZyKiu/p1q2Azz5733tPmzZtoqSkLgbDGABkuSlbtjTG5XIx\nfHhvNmz4jkuXikhIUOPjo8NoPE2rVk0IDAz0Bj2YTCYSE31Zvfoj0tKMBAY2oX37/jRs2Am3eyvl\n5Wa2b++IUvkUTudxJEmLKFawZ88mwsLC0OludEveCYKDg3E4HBw9ehS1eiWCoESt7oQsdyItLY3A\nQAN5eV+jVj+AzXYCUTyA09n3pmLOdwq9Xs8TT4z6j8dlZGRw6ZKJatU86QzFxeHs3v0DAwZ09R7T\nsGFN1q9fD/RGrR6DJKWi1TaiceO7+eqrc5jN33D//T1/tZ2srCxEsTYqladYsFbbiNxcJQ5HU1Sq\n1xEEHyTpY2T5NMuX76dWreVotVHYbDlMnjwKi2UqUAOz+QfU6ppUpqJJUgm+vnpOnTrFl19u4MyZ\n8ygUtQgLS6SkJJ3AQL3XxftTSTqPW1WF1WpFrVbTq1cb5s6dC/wLSbqGKH5NixZjsFqtiKLoFagQ\nRfF/gjjuhPhcLtfv9n79L+H/ie86KsOUb4Y/gvD+CFRUVLB3714sFgsJCQne0ivnzp1j4sR5OBzd\nkWU7q1a9w5tvPsn69XuR5V5Uq9YMt1vm4sX1bN68k969u5OSkk9KSiTnzwvs2PEuw4Z145NPduJ2\nN6SgYDft2xtJSEjg5MmTSNJZJMmCQmHA5Uqhdu1oVq360eWXn1/I2bNZiGIT3G4FDsdJBOEqKpUC\nrdZJQEAQFks4paU/rv5Hj36ETZuGU1h4BdAQFLSHSZOqSqR5Psgfoxhl2QF4Pm4fHx/69OmIw+Hw\nWuVOp9Pbp58GPdx9dxI5OXlotbFERdVBo9EQFhZPcHAZzZvXYOfO0bjd2ajVidjtK4iNrValrM3v\nBZVKdX2v7TIKRY3roskXMZk68uWXn/Dww6O5evV5RFFgyJDpXLoUyKFDJ2jdutl/vvjvCJvNjkLx\n436cTudPWVnVUNQnnxzN+vUDOHGiDbIMKlVPatRoR0GBhbNnrWzd+hWfffYVs2e/4hXU/jmio6Nx\nu9NwOjNRqapRWnoEu/0KGk1zrNYLqFRNEIR6wCK02mpotZ7Fl0YTyaVLTnx8nsXHZyh+fscoLOzP\n1asyarUfGs2XdOkymLFjZwNDkOUW7Nw5mdq1q6NQFPLww1296UA3Q2U6w7BhA5HlL9mw4TW0Wg1P\nPjmapKQk3G631zp0uVxei7CSDCsJ8a9gSZWWlt507/Wvjn8E8d2pbJkkSVRUVOB0OtFqtX8I4f1e\nFl9FRQVPPz2dlJRwBCEUpXIGb731KM2bN2fp0o0IwiCiojzyYtnZSrZs+Q6LxYVGY8LhcF7XDNVw\n5MhesrIyOH06lNjYkQiCQH7+IY4ePcAnnzzLhQsX8PVNQJIktm3bRlRUFIMHJ7F06TAUiuqI4nne\neeeFKs9JpbIjSbtRKFqhVErI8g/odBJq9XxMpkm43WdQqVbStu0r3nNCQ0PZuHEpO3fuxOVy0a7d\n6BsqQrRp04bw8A/IypoGNEYQlvLQQ32QJMm7Kq/MLfz5M66cdERRvF6JviZpadcwGPSAQGnpJRo0\n8KFmzZq8/PITTJ/eGUnyIThYzYIFc/8QsQNBEHjllReYMqUfdntfVKpTNGqkokOHDqhUKlavXsTK\nlZnUrNkOhUKJ2y1x+vQGWrX6c5VEwsJCkeUjWK1RqNV68vJO0rp11ahPlUrF1q1fs2TJl2zYsIfs\nbCO+vuWcOnUFleoe1OoArlxR8vLL77Fo0QdYLBYCAgKq3Ed4eDgjRtzLBx/0weUKxGbLxs/vPmw2\nNbL8FpI0AElaTvPmJux2CYvlPAZDXcrLz+F0pmGzZeB0zkCv74jJ1J4OHU5Qt259und/ixUrNiMI\nwwgM7ERQEEhSCqdPL8HH5wHeeOM7tmzZz+LFc381uEcURUaMGMyIEYOr/K5QKLzWIVRdZLndblwu\nFw6Hw0ugf5Z1+GdVZvgr4B9BfLeCn+7x/ZzwDAbDH/Yy/l7E9/3333P+fCRRUR7FkNLSJnzwwb9Z\nvLg5FRVOVKofAwgUCj+s1gwaN65JcvIK7PYACgtzyc7eQ05OV6zWcqzWXYSHP4RO54fBEE129lou\nX77MunXfsX//ScrLVURF3Y8gfEW1ahb0+grc7pOMHPkgiYmJVfpWo0Ysfn5qYCMgYDJ1JDbWQqdO\ndVm16glycwvw81Mzd+4SXnstwiuIazKZ6Nev3y/es8FgYP36xcyePZ+srB0kJnbi/vt7I0kSfn5+\nt+WiiY6OQKHYxpEjpwgPj6J2bQWdOnVHqVQyYMADPPhgX8xmszeY5Kf5YT+ftH7LuzJkyEDq1KlF\ncnIywcE9uO+++7wTqKd2mc6rouJyOVAq/3yrITQ0lL5967Fjx07Ky10kJkbQsmXzG45TKBS0bt2K\ns2cL+f77xdjtHXG7tSgUa6hWbTpqdSzJyTOoWzcJQdBQs2YUS5bM9S5wDhw4RHKyRJs2M9mz5zVM\npvdp0OBuLl7MobDwbSIj/02fPq14/vmnOXbsOJMmvUxRkS9lZanIcggWS1NEMQCr9QPU6mQkqTtB\nQSHExsbidsvAj5GKV69+jULxKTpdW2TZzdGjD7Ft2zaUSjWbNx9Er9cwbNh91K5d+7YJ5KeLrJ/i\np2T4Z1iHd5J4///E9xfGrVp8lbk+lYSn1+v/8DDe30p8WVlZFBQUkJubhyD8aBFpteGUlnqSk7t3\nT2TGjOWIogZJsuF0fkObNn2pXbs28+atIjOzMWZzAApFAipVbcrLoygsXMSaNe/QuPFDWK2LsVpT\n2LTpIE5nP2R5JCpVGjpdFnp9Lb76ajuNG/8bcDFv3mvUqBFLhw7tvH3p1asHX3zxFBUVw66nJczj\nqadG0LlzJzZs2IlWOw5RvJudO9fzyCPjWLt20S2H6JtMJl544VnvvorL5cJgMNwwbr82cZw8eZKH\nHhqD09kIScqkefMQJk+eh1qt9hYo9vHxqRJ9+NNVvCRJOJ0eq7lycqkkwso/tzNpJSYm3rB4AI8F\nFB2dTlbWMVQqIw7HRTp1qn2TK/zxqFGjBjVq1PjF/y8oKCA5OZlNm85w6lQOstwHUWyP212O251P\nWdlmBKE6JSUVGI17EcVQ0tLe5amnJrFy5QIA1q49SEDAw/j4RKPRfAo0oKysnPr1a5GTE8/48V2I\ni4tj1KiXyMsrplmzOvTp04FRo17Hz28iFosOSSrH5SrBaByGIDzI2rV7yc9fREJCNTZs+BCrteJ6\nPb4CjEaPvq0giMhyHXbt+o4DB5xoNI/gcl3j4MG3+Pe/J/9ulQoEQfiftQ4rcbtFaP8q+EcQ339C\npeKFy+VCq9V63WN/Bn4L8S1cuJSPPlqHQhGDy5WCQqGmrKwJGk0o+flfcN99ng+5c+cO15OJFyKK\nMmPH9iE+Pp6UlBS02nb06DGCjRu/Ax4iJeUlVKqp13PYNnD8+E4CAwOpWXMkhYXnUasfpKQkB7W6\nHSkpg1EqjUhSXxSKQNRqDVbrA3z//dEqxBcTE8OSJe+yfPk6ysvP06fPWDp27MDx48cxmwPx8xuK\nLEsoFCPIyNhITk7OdUWaX0dl/qQsy16FnJKSkirP81ZW5888Mx2r9RW02l6IooujRweyfv36X7U2\nf+4qrYQkSaxZs4ZTp1KpXj2C+++/7wYS/Okq/uc4ffocBw6k43bLJCZWp3Hjht7jFAoF3bu34cKF\nDCyWa4SH165Si/B/BT/88AP/+tdbWCxxmM2XcDrTkaT3UCrbAhVIUhlW60yMRhGNpg8KhWfBplIN\n5+TJBd7reMZOgSCIREc3Iy3tc+z2PpjN6fj4/EBcXHsmTvwASRqDj08dkpPXc+XKcsCIWm3C17cN\nNlsyxcW1iYjogq9vdXx8Yli//lHi4++iUaM+pKSswGiUSUpqRkrKhzidz2C3n0el2khqai18fKZi\nMHjqM+bmFrJr157bKup8u/gjrcM7dXX+3QSq4R9OfG63m4qKChwOByqVCoVCcVu11X5P3O5LeeHC\nBT76aCN+fp+hUpmwWM5gtf4LH5/Z5OXlERioQ5YTSU1NJTo6mpYtW9C2bWuvvFhxcfF1gvB8YJGR\nQaSnZ+BwVKDRmNFofqBRo/fJy1uBRmNFrw/B7T6MJG3B4VhPUZE/KlUFouiP05mP2VxCWFgILlcO\nAQE+2Gw21qxZQ1GRmUaNGtKkSRNef/2lKveg0+mQJDNFRZ9TUPAusiyhVFZw4MABUlNTiYuLuykB\nVu7hSZL0i/mTK1Z8zbRp71NRYaVTp7v54IPXq6jH/BQ5OVdQqTy5WIKgxOlswdWrdxaWPnXqW3z1\nVTqSdA8KxT527TrMggUfAngnrspcsJ+7Si9dymTTpmxCQjojCCLbtu1Ho0kFJLKysqhduzY1atSg\nbl1PMIjT6eTZZyexePFiJElHrVrVmTFjEu3bt7+jvv9eePnlj5DllzAaE7BYCigtfRy3+31kuTXg\nwGBYw/DhXWjQoC6TJm24rnijwuE4QPXqPxJ5jx7NmD9/BQ5HDyIjm+FwfEBAwAWiooIZO3YcZrMZ\nmy2ekBCPxmto6EAuXlyLyaTAYlmC3e7E6UxHEDKoXt0j1eZwWCksLCUmph9arR8JCQPJzl7Eo482\nZdCgJ8nI+BBR1BEc7JkHZNn1kzuTUCj+O4ncv4d1eKe1+P7f4vuL4ueD/VPCqxRXdrvdv7lE0J32\n7U50QnNyclAo6qBSefKPDIZ4Kir8GDfuYaZPX4bNdj9bt0ps3foB48f3oXr16kRHR7N+/SaWLNlO\nRUUF997bAqPxEhkZy/H11WM0bsXlOo0gzKBu3X+h11dHpcpDo7Gg1YbhdG6ltHQrsvzYdU3S/dSs\nGUtR0Wby8goRBAPBwcfp2/c1HnpoFCdPmpCkeiiVr/HSSwMZMWJYlXuIi4ujfn0fNm+eBaxElv2Q\npJFMnLiLhg07o1TOYcqU/rRo4dk/stlsXLhwAY1GQ2Rk5C8GGx06dIgXXvgEpXIZWm0E27dP5cUX\nX+Pdd1+54ViApk0bsW/fZ2i1z+N256NSradRoxdveSwqUVRUxFdfbUWr/Q5RNCDLgzl8uCdnz56l\nYcOGVfYcb+YqPX8+E5WqFqKoQRRFfHzq8c47b7F9+z4UigQk6QgzZ77EgAEeBZEZM95nyZL92O01\ngcmcP1/AoEHPsHbtv2ne/MY9t5tBkiROnDhDZqYZo1FLixbxt1QgtxJut5t169aRnn6RWrVi6d27\nN7m5BZhMjRBFNVqt4rqm6rfYbAkoFG5q1qzOtGmTcbvdbNiwi4MHu6JQxKDXn+CDD+Z4r92u3V1o\nNBoOHNiDXq/i1Vff4vjx8xw9eok1a/bTsGEobncesiwhCAocjkL0ehXDh9/LvHlbMJs/Q5bzadky\nDJttE7m5NSkv30dsbDBarR+yLGOxWKiokDl79ixWayDR0TtQKHyxWr8lM3MadvvTQGN0umBCQk7S\nocPU/5lIzNu1DgHsdruXCG9l77C0tNQrev53wj+C+CrhKSdjw263V4n4g/+uQsGduDurV6+O230G\nuz0HjSaSkpL9BAYq2bbtELLcj8DANoDAqVNFTJgwn7p178JuP01paShRUVNRKmXWrFlIjRpWMjNX\n43IFEhRUzLvvvs7s2asoK9tAQcFC+vSpSWJiIx5/fAClpf7IcitgKaL4MHr9KGJj/WjUKBy1egP3\n3tuBu+8ewuHDhzlzRo3BMOe6+ktP3n77AYYPH1rlIxNFkS5d2rBnT30UiggE4ThWa1vKy+sSFdWH\nsrKWfPTRbBYtakZaWhpPPTWNoiItslzC8OHdeOqpkTd9lgcPHsbpfACdzlM8U6MZx3ffDfjFZ/n+\n+68ydOhTpKQsARxMmPA4d999922NB3C9uLAeQdBf74sSUfS/QTi6sp8/d5WaTH7Isg2lUoksu8nO\nPsXGjTsRxYO43cFIUioTJnSha9fOGI1GtmzZi90eAExAELoiyxVUVNhYsmT1LRPfvn1HOXYMjMbG\n5OUVk529hwEDOlXJX/slyLLMhAkvs359Dk5nB1SqNezde4yGDeM4dWolAQED0eks6HTJ9O07g+Dg\nKARBQqfbj0qlQpIk5s+fxZkzZygpKaFx4+lV9s8EQaBVq0RatfLsd65atZGdOyE8/BFKS4vZvPlr\nfHwukJzcG622GkFBLsaPf5CePbuTlNSEwsJCIiMjCQgIYOfO77h6NZ24uGacPh1CaupuLl6Uyc7O\nRKM5SFmZE0lKQqv1kL5G04LsbDMxMQ9TXFyE1bqBBx/sTFRUlLfiyv8qfsk6tFgs3nftVvcOr127\ndluuzs2bNzNu3DgkSeKxxx7j+eefv+GYsWPHsmnTJvR6PQsXLqRJk1+ulfhH4R9BfLIsY7Vab0p4\nlfizFVR+K2JiYpg27RGmTx+N1WrEx8fKO+9M4quvtgEqlEolxcXXKCqSiYxshSi2IS3tFJIUR61a\nwQiCA+X/sXfegVFUXRv/zc72zab3SkIIgYQeuiBFBQIiWEEFCwi8dhRFERtgF1HEgoKggoKACEoR\naSJSg0RqIJQE0usmm91sm53vj5CYQAIhiPq9vs9fLJly586d+9xz7jnPUfZl48YX6dbta0wmK+Xl\nx/j448UsXvw2p0+fxmAw0Lx5c7Zt24YoxiIIU4FI4C7c7jFYLEkUFlYQHd2CSZOeqYnGq6ioAMJq\nPh6lMhSz2YEkSRcErYSEhGAw7ESt9sBmc+F2G/DwqCIOvT6E/HwzJpOJl156j+LiO/HzG47LZWbB\ngsdISmpTpwJ8Nfz8fFAq99dY0U5nGmFhVZZxtXVVXacPIDAwkHXrllJaWoper6/zt8tBaGgocXH+\nHD36Omr1rTgc2wgMLKhT3f1iaNcunmPHtpCTUwkocDpT0OkScLkCkWUQxTgUCm/y8/NRqVT4+noC\nBUD1uHWhUDRe99XtdnPgQC5hYcNQKESMRn+yswspKCggIiLikudnZmbyww+70Gq3oNNpcbvvZfXq\nvnz99Zu8885C0tOXIgh2rr22BX5+/qjVKkpL99OvX9WCpHrSrS+Qpz6kpJwmNHQcarUBtdrI5s3H\nKCsLRa3uh8Oxg8DAfAYNuh6A6OjoOrmWyckDav7dqZOVV155n4ICM9HRXYmLe5MjR+bhdK5Bkh5F\nFH0xmd4GWlFcvJPKSgtK5TA++GADrVqt5YYb/v9VZq/+Fs+vFNOQdfjDDz+wfPlyNBoNBoOBqKgo\nWrRocdFIaUmSePjhh9m4cSNhYWF07tyZoUOH1hn/a9eu5cSJE6Snp7N7927+85//sGvXrqv34A3g\nX0F8UPWCLxbiXk18f0d15aaS7pAhg+jTpxcFBQUYjUbUajU33dSbvXu/obRUS2FhIS7XdxQWKsnN\ndWCxGLDbPyE7Oxwfn+6Ul2eiVPqSmnqK8vIKKipW4XTuZvr0t5g+/bkaAigtLUUQYlAqVbhchchy\nAIJQjEazlZEj7+Puu++u4x5LSkpCqZyN1boZtbo1lZUf0bNn53ojNQcPHszSpWvYtWs4VbXdjpKQ\n8C4Oh4Xs7G/o2TMWo9HIyZPZeHldB4BSaUSSupKRkVEv8Q0fPpyvvvqB9PT7kOUwlMqfeO21tzl2\nLJ21a1NxOBSEhWm56abeNe0WBAFfX9/Lfge1oVAoWLjwPZ5//k0OHHiImJhwZsz4CIPB0KjzPTw8\nGDnyOrKyspBlGVG8nW+++RpJ2o8odsDpXIfB4CA6Ohq1Ws2MGZO54YabsFgeQ5afQRCMYBDcAAAg\nAElEQVTMGI0fM2LE+9jt9kZFlQoCuN0SCkXVdyHLzosGdlVPkNUKJkqlD4KgPff8OkTRB71ez6JF\nsykvL0en01FWVsaWLSlYrS769YugY8d2l9mzVTAYNNhsJtRqA1ZrIWfOnMLbewEGgw9eXjeRkTGG\n9PR04uPjL3odvV5PZGQzunbtjJ9f1bHR0TehUh0mNfU6RNEfQUhHEK6nvLw3gqDC7d6GXj+ROXO+\noHfvHn9bLEBT0dD80pB12KdPH7RaLYsXL+bnn39m4cKF5ObmMmLECObPn1/vtfbs2UNsbGyNa3TE\niBGsWrWqDvGtXr2ae+6p2vLo2rWq+kd+fv4F1T+uNv4VxKdQKC45+fydfvumEp/L5UKWZXx9fWuC\nPLp06cKrr4qsXLmJgoJCiopKqay8B7X6FlyuNNzuUHbu/AAfnwXEx2uxWCopLDRRUfEJTucNyLKV\nDz5Yx/Llm5g9+zluvHEw7dq1QxQ/RKHogVrdEafzfXS6AFq0iKdnz54X7AlFRUXxxRdv88wzb1JU\nVELv3h2YOvX5ep9BpVKxaNHHbN++HZPJhEo1nK++Wkpx8Wf07duaxx4bj1KppHnzcI4f/wVf32Qk\nqRKFIoXw8JH19qVOp2PVqi/56aefqKiooFu30RiNRj76aDP+/kPOVWE4wrp1v3L77QMvu98vBl9f\nXz744PUmn6/T6WjR4o8Uhblz32L8+GG43Rq8vUUWL55b44ZMTExkz56fmT17Nnv3fkl4eBgTJrxL\nUlLSBWkW9UWVKhQKevSIYevWbeh0sdjtJYSHVzY4CR06dJQffzyAwwEtW/rQv39XfH1t5OZ+gkYz\nCLt9LaGhDmJiYhAEAS8vL8xmM1Onvs6WLb+i0WiYMuUhOnVq36S+ufXWa/jooxWUlbUnI2M3FRVl\nVFbKCEIBBkMBwcFV6jyNQVSUP3v3HsbXNw4As/kw9957G126dKCkpIRx46Zz8uTtWCyBKBStkaQ0\nfHwqkWXtP97VeTE0NrUrODiYYcOGsXz5cubOnUtwcDBms5mioqIGz8vOzq7jKQgPD2f37t2XPCYr\nK+t/xHc1cDklgv4/WHy1E+zrk1BLSupEUlInZFlm6NAx7NunwWQ6hCiG4unZ/1w9Pj9Gjw5i27Zd\nfP75s0hSCyAdUAPfUVR0hClT5hMY6E/Xrl35+OOpjBs3hZycYjw9WxIZ2Z3evTUkJCTU28bOnTuz\nadMyoIqgLxY4JIoiPXv2rBH+7t+//wWRmq+88iTjxj1HaekqJKmYO+7oVqe8z/nQarXceOONNb+P\nHTuGIETW7OEEBbXi9Ol9l3zff7cLfODAAaSn76e4uJiAgIALrObw8HDefLOqLp7L5cLpdF5wTG13\n1vlRpfHxseh0avLzs/D01NO6da96LfPc3FxWr04nKGgYarWe48d/Q6vdz5IlH/H00zM4duwL2reP\n4a23PqqzP/jCC2+yZYsvev1eJCmXl18eS3R0JN26dbvsby0+Pp7Jkz3JyMjgkUe+Q6Vqjtv9HbI8\nCLN5OeHhJ4mLi7voNRwOB+vWbeHgwTM4ncc5efIoarWB9u096d//djQaDT4+Pmg0Wtq1i2Pv3pO4\n3bloNAIaTTpRUYZL7nkdOHCAzZv3oFKJDB16XaPcxlcbV1J9vfp5jUbjRQOfGnv9+lSU/mr8K4gP\nLq9Cw19de6qxk2vtaNTGKMoIgsDIkYMoKDhEYWELBMEDu30DzZp1RKHQYbcXk5/vRKMRsVoF4Azw\nPBCEJJXjcAxn+/Y9dO3ald69e5OWtp29e/dy5EgaxcWFJCQkUFZWdlEXYWZmJqmpRwEX1157zQWT\nhtvtxmq1Nkji1YiOjmbVqnlkZGTg4eFBZGTkJfurNgwGA5J0vMatV16ej4/PhbUL/4lQq9WEhIQ0\n+fza7qxq1I4qjY5uRlRU5DnZuvotxMLCQhSKaDSaKs9JYGBrTp5cTXJyH7766uMG7719ewpa7dco\nFFoUimis1uHs2bOPbt26NartJpOJb7/dxKlTRYSFeXHbbdfRo0cPKiud+PjMxGpdjtP5PrKcxc03\n96kh3eoUpepv6/jx45SXl/Prr79x9Gg4fn7D8PQ8i0q1iYkThxIeHl4nX/Lmm69h2bIFJCb24tSp\nL5DlVSQlXcPUqRMvOj/s3ZvC1KlLUCpvQZIsbNz4NrNnT/pHkF9T4HA4GkwDOh9hYWGcPXu25vfZ\ns2cvqI94/jFZWVmEhYX9OY29DPxriK8xuJhQ9dXEpYivdjRqdfpFY8n59tuHk509l/nzJ1FSIuHj\n04ODB2Wczk8ICQlFFMMIDtZw6lQ6YAOOASpEUYkkZeDjU1cfs1WrVrzyygekpxsQhEKMxg/4+uvZ\n9YY8Hz9+nNmzN6FQdMFmK2Pv3q+YNOlOvL29m/RMer2e1q1bX/KZ6+vL8PBwunU7ya5d3yOKXqjV\nhQwffuH+4D8FtSfuq4GGEvBlWUaSpAtcpYIgYLPl4XRWqfWXlxfi73/pyhQBAX6cOnUUpTLs3L7l\nUQICGhfF53a7+eyz1eTltcPffyhnzpxi7txVTJp0N926dWTLlgV4er6AJGXjdo+kV69elJSU8OCD\nz7B37360Wi3Tpj2BxSKxZUspEMK+ffvo1asrRmMYRmMYZ89m1MjP1cbYsXcTHLyefft2csstXowY\n8R2+vr44nc4aNZ/6sGTJRvT6sXh7V7lzc3KcbNz4C/fdd2ejnvlqoSkWX/V31NjzkpKSSE9PJyMj\ng9DQUJYuXcrXX39d55ihQ4cyZ84cRowYwa5du/D29v7L3ZzwLyK+xlp8/yTiq677ZbPZGoxGvRSU\nSiVPPfUQDz54L1OmzGDZsn2oVGa8ve9g9+4jeHjsw9e3D3l5XXE6D+N0voxCcSOCkE94eA7Dh8+r\nc72vvlrK0aOx+Pi8hCAIlJV9w4wZ7zNv3kzKy8tJTU0lIyODmJgYdu5Mx2gcjLd3FHa7nbw8Jfv3\nH6B79y5UVlaiUqn+dJWci32k/fr1oHXrPOx2O35+HRsddPJXwmw2s3r1NjIzK9BqYejQJGJjm/9l\n9xcEoV5XaXx8PO3b53LgwBoEwYBWm0OvXlXu6drKNOfnhU2fPpF7751MZeVmIIdWrcwMGzasUW0x\nmUzk5EB4eFVqRlBQItnZBykqKmLmzJeZMOEpdu+OR61W8+KLT9C1a1dGj36IlJQEPDw+x+XKYPLk\nu2nTpjtt2rwKKDh0yMhvv60lNLQTgqDAajWxcuU61OrtdO4cT5s2CeTm5qLVahk6NJmbbrrcMj4S\nCsUfFpIgqHG5GibKvwpXsoXT2POUSiVz5sxhwIABSJLEmDFjaNWqFXPnVlVVGT9+PMnJyaxdu5bY\n2FgMBgMLFixoUpuuFP8a4msM/k7iq43ahKdSqS5bcLk+GAwGIiObERLSncLCOMrL/XE6A5CkncTF\nncTTczMmUyRabSJq9beMGjWQKVMWXFCSJCurEEFIrGmzWp1IVtZKSkpKeO65Oaxfb8dsFlAoFuHv\nb2fIkF5Adb+qKS0tZM2adaxcuQWNRsW4cbfTtWvXK3q2y0FgYOA/2r25du12srObExGRSGVlGcuX\n/8i4cT6Njji9GuNXEARUKhU33XQ9nTvn4HQ68fdPQq/X16tVWpsI27dvzw8/zCclJQWDoRN9+/at\ncUdeajKuOq4Sp9OGSqVFkpxIkrlmH27p0nk1lnFFRQUZGRns2fMbev37CIISlSoWq3UQ5eVnUCiq\nprqWLWNJTf2a7OxdWK3ZpKdvoLT0HrTacNat+xqjcSVBQb1IT09Bqz3LwIHduf/+UTWLpEu1eejQ\nHrzxxme43XfjclkRxe/p2/fhP+9l/MW43EXpoEGDGDRoUJ3/Gz9+fJ3fc+bMueJ2XSn+R3y18HcG\nMlTvudjtdmw2G6IoYjQaGy3WnJeXh8lkIiwsrMEN6MBAL7KzUzAab8TprMBiOYTVWkBCQhgvv1y1\nCvfy8qJz52kN+t27dm3LsmXLcLmuR5Y1FBfPR63O4rrrRpCT0x2XaxguVxscjl+wWD5h/fonGTz4\nA6zWMmR5J2VlPrz55lpE8XFkuZLdu6exaNErtG/ftEi/fwqsViuyLF+RFSnLMqdOlRAWVlWgVafz\nwu0Op7i4+JLEt2vXLl566UOKikro3LkNr7zy1BWnZ5wPQRAuGBfnu0prB9FUE6Kfnx+DBg2qsQgl\nSSIlJYUZM+ZQVFRKy5bNufba62nbNoKOHdvWEIvBYCA5uTWrVy9BoYjF7c6gX7+wmgoZULX/uWLF\ndzz77BsIgjfFxSY8Pffj6dn7nATeMfR6MJlO4+kZiU53lr59g7j22gJycrIpLh5EeHjV2M/I2EpB\nQQClpQGcPHkDkpTCqVMn2bPnaRYseK9R32K/fn1QKkXWrv0ejUbJiBHjiI2NvfLOv0I0xeKz2WyN\nEjL4/4h/DfE1Noz37yI+l8tFWVnZOakqj0YTHsCSJd8yf/4WRDEYjSaX1157sGYvLCMjg9OnT+Pj\n48OQIQN44YWPsVqnYTKlIQilqFSPsWlTOocPryEhoRXjxvW56GZzcvIgjh/P4MMPbyA/vxhZ9qOk\nJBKF4iySZMTt9kQUlQhCDG53CzIyVpObO5NWrVpz22038cwzb6NUPoWHR3X17jJWrFj3pxHfX/0O\nJUli27a9HD1ajiAItGzpwbXXdmmShS4IAt7eWioqCjEaA3G7JdzuInS6iwtRnzlzhieemI0oTsPH\npwUpKYt45pnX+eSTN2uOsVgsuFwuPDw8Ltk2SZIwmUyIooiXlxeCIFBeXs7bb7/PsWOZdOzYisce\n+0+9if7Vll5tnB9V+ssvvzBq1EQcjldwu0M4deoNysr2k5WlRZL206VLR6Bqn7NHj85ERYVSVFSE\nt3f7OlGbaWlp7N69m5de+hCNZjVKZQw63TuYTKNRq28DMujaVcfUqY+xYME35ORUEB8fypgxj+Pj\n48PWrVvZtCm/5np2uxWFwofTpwvQ6UbicAgYDB4cPvwBaWlpJCYmNioK+Npre3PttZev/HM10RTi\n+2+tzAD/IuJrDP7qSVOWZZxOJ3a7HVmW8fDwuGjhy/pw4sQJ5s//FX//N1GpjJSVHeKllz5k6dL3\n2LZtO6+/vhJZbo/bvY2BA4O5//5hzJv3A7LsBQylsnIpSqUXeXnZJCW9yquvTsNut3DdddfVO7EJ\ngsDEiQ9y+PAJfvmlC7m5XVAqY7HbXwDWA82QpCAEYQOyXIBSGUNxsZqICCOhoaEolSJVldKr+8B+\n1YV/XS4XqampWK1WEhMT65QXulIcPXqcw4dVhIdXuXeOHEnBzy+Ndu3qT/O4FG68sStLlmymvDwE\nl6uUbt28L4iMq4bZbObgwYNs374dl6sLnp6JOJ1OjMa72LdvCU6nE5VKxb59B0lNLQZUBARIXHdd\nUoMJ2BaLhe+/305BgQZZttOmjSc9enRg2LBRHD+eiNs9gp07l5Oa+jBfffVpoxeU1VGlhYWFvPfe\nIior70ahGIrbLSOK75Caeif9+z/M7t0/kZDQkhdeeIUvvvgCWYYbbhjIZ5/NqTMeFy5czKxZK7HZ\nWmIy6fH0/BmjMQYvrydQKj9jypQYwsN707t3b5RKJW+8EX/B5N+2bVt8fGaSl/cTGk0IgnASH59g\nSko8keUyJGknNlsMsmy+aEDLfyv+WyszwL+I+Br7gVaLuV5t1C6po1arcblcl016APn5+SgULVCp\nqtybXl6JZGdXYrFYeOedrxHFSUiSJ3q9yI8/vsPzzw/g88/Xo1A8iCyvA4bhcvnjcm3lu+9uRqns\nzJNPrqJly29YtGjOBXt8f9zXhFZbZaU5HA6gE4KQiSy/DLyFLLvQarug0eg4ebKIadPWsWrVPvr2\nTSQ19Q1MJhNudyU63ZeMHDmrib14aVRWVnLzzaM5cKAQp1ODRpPFnDmvXrAP0RAutRjKyyvHwyOm\nZnwZjREUFJxocnvDw8MZP34ARUVF6HTNL6g6X40zZ84wZMidnD2bjyQ5gUQiI+8CPJCkLATBTklJ\nCZIksW+flbCwPigUIgUFp9iz5zB9+nSu97o7dvxOcXFzQkPjcbvdpKb+gtn8IxkZLkRxFkqlgCwP\nYMeO9uTk5Fx2KPq+fUcRxWaIohWFQkSS3EhSGUqlBoXCfU4tZAlLlvwOnEYQdGzZcg9Tp85gxoyp\nNZVFZs36Cr1+GWq1BwUFBykvn4xePwhJykOnUzJy5MgLvqfz5wBfX19ef/0RvvlmHTk5u+jYMR6T\nqZCionXk5S1AlgOx243o9Tp27z5A27Zta2TWasPlcrFz504KC0uJigqjY8eO/7h95KZafA19///f\n8ffU2PiH4q+w+FwuF2azGYvFgkajwdPTs0mEV43w8HDc7qPY7cUAFBfvITTUiCAInDlTxL59xaSm\nlrJ790ny8hSYTCaaN29HSIgDWS4DRgM+QHMcDi9keTReXvM4diyBmTPf59ixY/UqVfTs2Rab7Ut8\nfLTI8mHgSyAbhWIgMBxRvBdZzgHKUKsfx8PjGfT6SWzalME77zzIoEF7ufnmNJYseYeWLavK7Miy\nzMGDB9mxYwdlZWX1Pu+lVt7nv8O5c+fx229elJevx2xeRWHhPdx990Q+/fTPiSbz9zdgseTV/LZY\n8vD1vbiclSRJZGZmkp6eTklJyQV/NxqNREdHN0h6AM8++ypnzpThds9HEPKBKM6ceQCb7TNgGsnJ\nD7J+/T7M5gqUysAaSTJv7xDy8ysavG5BQQWenlWuVYVCgUoVQnm5hbpThYI/ApYuD06nRNu2g9Hr\nNyBJr+F2L0SWx9Ct2xDKyn6hT582bN/+GzbbWAShSg7N6XyEHTt+QxRF3G43ubm5CEIgCoUvkI/B\ncAi324nZfBsKxf3MmTMDi8XCnj17OHTo0EUXs8HBwfTtm0Rqajpr1zrZvv0Mw4e3JzRUS0DA/cTG\n9qdfv7msX3+i3lJVbreb2bMX8O676Sxd6sNrr21nxYrvL7tfrjaaWovvf67OfwGuJvFdTG3lSu4b\nFRXFxImDee+9yciyF97eNqZNexyHw0FhYTZWawZu90BkuRyrdRPBwTcSGOiisrKMvDwXbvd+YBbQ\nBUjA6fwESMJsjmHZsi9JTw/Az6+Q559/gMDAwJr7Pv74BAoKXuGHH+5AqcxBpWqGILTA03MqlZXf\n4ufnid0ehyBYAANhYXr0+lDKyyOIjIzknXfqSoVJksS4cRPZuPEwohiETpfJypULavZ0Tp8+zejR\nj5CWdhh//yA++eQtevXqdcn+OXYsA7u9Dy6XDHgBg5GkH5k27U3uvnsEOt2lc9EuhoSElmRn7yQz\ncxMA4eFuoqLa1Ew0KSkpnDhxguDgYFq1aoW/vz+bNu3i5EktomgEUklOjmvQndkQjh8/hSwbgVxk\neRZwH6L4BF26mOne/WWCglqQk7MMvV6Hy5WD2x2NQiFSVpZHZGTDrt6QEE8OHcpEp2uDJLlwOLLo\n3Lkj4eGLOXVqCrLcH1FcTlJSfJMSj9u0ieb331MZM+YDdu5cism0m8GDh9K3b3eaNQsjJCSEyMgg\nlMo9yPKoc2ftJSIiFJVKhUqlokWLFhgMpZjN66isLEUUW+LnN5CePf3p319NcHAQw4dPwGqNQZIK\n6dUrhLfffrHBvc2XXvoQWZ6En197JMnGTz/9h4CAKFq27FtzTHm5L1arFR8fnzoEcvr0aXbvNhMV\nNRlBUOBy9WD58hcYPPj6Kx5bfzfKysr+5+r8/46/K7ilMWorV3rf5OQb6NWrO2VlZQQGBqJWq8nM\nzEStDkSW9wMbEEVPFAo/9u7dx2uvTWTatA85cmQ/TueTwDigP1COJH1Lbu4X2Gw7iI29h7Cw28nN\n/ZWFC7/j6afHAX+o6r/44iSee+5x0tLSmDjxTc6cycXpXMH11/egefNm7N79O0VFmYSF2QgMjMJu\nNyHL2fVGG65atYqffipEpdqIIGgwmZbw8MPPsWHDMtxuN7fdNoazZ+9Fp7sPk2kno0aNZ8eONZes\nQJ6UlMg33yxHlocAbuBrlMoOQB5ms/mKJyeVSkVyci9KS0vZsWMHzz77BpWVboKCvGnbtgVr1/6O\n05mA272L5OShJCd3oKAgkMjIqhQOqzWMbdt2cOedl0d8bdvGc+zYamA7EA88BuTRvn0ywcFxFBSc\nJDzcSEREBJ06mUhN3Ur1Hl/nzp1YufI7tm7dTXCwLxMmjMXHp6p6RY8e7Skr+5WzZ88gy046dvQl\nMzOTMWNuZ8eO/eTkfESHDvFMnjytSe68Zs2aceedbnbvPk5UVDeSkkbRqlVdUeknnniYtWtvoqBg\nEGBAo9nPa6+trPm7wWDg44+n88ADkygpaY2XVzEjR44kODiII0dm8+mniygouJ/Q0FsRRdi6dRKr\nV6+uiSytXXpHkiQKCkoJCmoLgChqUana4eGxj7y8zfj7d8dkOoCXV2G9Y83pdKJQeCAIinPn65Bl\nNXa7/R9FfP+z+OriX0N8jcGfSXxXorbSFJyvoxcSEoIglKLTXY9Wex0u135crpcoLbWRn19AixZR\nTJhwG++8swS3ux0KRQCy7IUs+1FRMZOoqEHExd0KgJdXC7KytgJVrlqr1Yrb7Uav16NSqejZsyfz\n5k3nuefmcPr0QdLTZQRhB3fe2Y6EhGG88caX5OcHIoqFjB/fv14XXmbmGez27qjVVeHTanVfMjLe\nAKCwsJDc3DK02rHn/nYN0IFDhw5dMBmd/w7vvXc0W7bsZMWKRGTZB1GMQansR2iof52w+CtBVc1B\nB08/PRO3ez4GQweyslZw5MhjaLX7EAR/ZPkEa9cOxN8/nMDAP+6r1XpQWNg4YeXauOaaDqxYUYjb\n/QZV+qrd0OlGo1YfJzv7LEFBIgMG9ASgU6c2xMdXRXUajUZmzfqA2bPX4XDchyge4rvvbmfjxm8x\nGo1otVqGDeuH2WzG5XIxatRDpKWJQBiiuIuvv/6ATp06XVF/xcTEEBMTU5O2cz58fX357rvFzJjx\nPmazSETEeAoLS4mJ+eOYNm3a8OWXc1i48BSxsYMRBIG0tFQWL16O1aoEWlFWlk7r1nHIcgeKiooR\nRfGCwqxbtvyC2WwnO/s/REffjcHQAkFI5ZlnxvD997+Snr6SiAh/HntsPHq9nsrKyjoEEhkZiY9P\nPvn5v+Dp2ZKioh0kJvr84wijqcQXFRV1lVr09+JfQ3x/lcXXFLWVq2FpqtVqbr21L19+ORu7/WO0\nWh/CwlojyzZefvl7VKpk7PZiNJqlwGoUighcrnJcro20aBFFYGAAkmRHFLUUF++id+9QKioqaly1\nGo2mpk8rKir48stfaN9+Oq1bV5CVlYLBcJARI15ArVYzd240x48fx9vbm+Dg4Ho/wtatW6HRzEaS\nxmCzqbHbF5CQ4E91OSlZtiJJmYhiFLJciSSdbBRxiaLIokWfMGLED0yc+DxFRSm0bu1kwYJ5f+pC\n5NixY0ACGk2Hc/0/CFl+AUmyIssSEIss6zh9Og9vbyXl5fHodJ4UFByldevAi167PsiyjJdXIuCN\nJEkoFK1RKETGjh2IQqFAp6urQ1o7Afv99+cCv6LVVi0a8vPvZOPGjQwfPhyoGo+enp58+eWXHD7s\nh0r12TnJsjU89dQrbN787ZV0VaOwZs0uIiMfIiCgBU5nJatXryAyMrSOZmlMTAyJicc5fnwjoujD\n2rVvIwgPoNFkYren4HAkk5d3AoNhK61a3V3jKq3uh61bf+GLL07Qps277Nv3O8eOvUtIiIkpU8bR\nvn17WrZsyS+//Ep5uRWTyURERMQF36ler+fFF8exYMFKsrI20adPOKNG3fePC25pCsrKyv5xBP5n\n4V9DfI3BlRDQlaitXK1agM888yhFRa9x+rQKQXCSlKQjN9eJl9c9eHhEI0kSAQHfUFFxnIqKcYCI\nt7eTFi1epqzsC3JzXwY0xMV5MHTo7YiiWK+rtri4GIcjgMDAqonU3z+Os2fnUlFRga+vL0ajkT17\nDvPbb8UoFAo6dw5izJg76gT13HDDDYwZs5933mmHw6FDENScOOHBtGmv8+KLz/LKK1N4/vlhSFJf\nBGE/N93U5bIqNw8YMIC9e6/B7XajVCpRKBS4XFW6k39GnwcFBSFJJxDFchQKTxSKLKAEt/s0ghCJ\n270Cnc4DWY4mKckPi+UAFRV2EhP96NLl8uvTXXPNNSiVo3A6r0elisPtfo3+/fuiVCovWkhXlmVc\nLhdKpee53xINldrJyyvE6WyLWl1dxLQdhYXFl93Wy4Usy2RnlxMeHnvuvjoUinBKS0vrEJ8oitx2\n2wBOnjyJzWZj3bpSLJZuaDSdsNufxO2ei9ns4KGH7mPXrt95770lhIT48uSTY4iKimLnzjS8vIbg\n4xPH4MEtOHs2lJ49D3HjjclYLBamTp3F6dMtUShC+PrrZTzySB7XXNPj3ELjjxqHQUFBPPPMhKve\nL1eCplp8/9vj+xegKQR0JWorte97JUhLS+Onn/YAMGBAt5qAEB8fHz76aAYZGRns3buPtWv3kpKS\nRlBQX1q3rqpOHRt7I4KwjN9/r0Cp1BMa2o7CwjTMZiePPnotcXFx+Pv7o9frG7SQjEYjslyEw2FF\nrdZTWVmKSlVZY2Vs3vwLO3eqad78SURRZNeuFUREbGXw4Ovr9MGwYYOYO3cVHh5LEMVoZLmcjz/u\nysMPj+O++0bRsWNbDh48SFjYAPr06YMgCJSUlJCamopOp6Nz584XLF4kScJqtSJJEhqNpub9nl+e\np/beT31J2JdCfHw89947gIULhyKKbYA9TJx4L59+ej82G+h03lx77dPExQUTHGygbdvEy7r++YiN\njaVHj9Z8//1IZNlNQkIcb7751SXPUygU3HjjYNaseQinsy8WyxTAxlNPrSMoKIj+/fvXHNu1axJq\n9TQk6VYUimBcrvfp0ePK3JyNgSzLZGT8zsqVt+Lh4UPv3nej0WTj7R19wbFKpeImqOIAACAASURB\nVLImKvimm67ngw+mUl5eiCTdBZSjVq8gJeUghw83Q69/ijNn0hg7dgpLl76Ph4cGh8N07koCCoUF\nX9+q7/fgwYOcPduMZs3uA8BiacPixTPp2bM7LpcLh8NR77g5X6v0n4KmEN//LL7/AjTW1QmNGySy\nLONwOKisrGyS2kp9927K4ExLS+Oll5ahUg0GYMeOJbz88oga8lOr1VRUVPDppzvR6SYgCJ+Tmvoi\nhYXXEhvbC6NxF6NH38UDD7xGZeXNHDpUgSCswN+/DwsW7Gfy5MB6Ky/Uhq+vL7fd1oFvvlmIKAYh\nCDnce2+fGqLZtm0fxcUJaDQ5RESE4+XVjpMnd1xwHbPZjFodiSxXF2L1Qan0oqKiAj8/P9q1a0e7\ndn9YR2lpadx223hstgTc7gI6dfLi00/fQaVS1Qkqqo6idbvduFyuOn1cTYTVFQmq1ferJ7VqAjx/\nlV8fnn12IsnJ/cjJySEu7gGaN29OcvIQNm4sICSkO5Jkx2LZTXh4iwav0VhMn/4669eXIQifIQjF\nnDo1m6VLl3P//fdc8txZs17B0/N1PvnkCeBzlMobsVp3MHr07aSmbicgIACA3r1789xzd/Pqq/2w\n2Zz07NmDN95464rbXo2GxvvcuZ+xd28FlZVPYTKV8PXXk3nttYcvGcj0xBMPsX79Jn777WZUqpvx\n9fVCENrw00/PkZj4MQqFGlGMJidnG8uWLeOmmwaSmvo5Z84UAU58fPZxww1VlltVbuofe+ZqtRdl\nZU4EQUCr1dZ8r7XHTX1apbUJ8e9CU71Y/7P4/kvQGFfmpUoTVautVLuGDAbDFeXhXU7b6sP69btQ\nq28kMLBqJZ6XJ/PTT7vrSDtt27YXWR7E2bOrMJvj0GiuIT9/DVFRn/Lqq9N4//3P0Gjup6KiN4Lg\ngyxH4uV1AH//Mfz445YaObFqN1l9z9urV3datmyOyWTCz68XBoOBH3/8iU2bfmXbttOYTP7k5IRy\n8GAafn6ZJCVdqCeamJiIRnMak2kJKlVfXK6viIoyNBg2//TTr2Iy/Qedri9KpQd79kzi22+/5ZZb\nbqGsrKxRe6y1y/NUo7ZVWJ03aLPZLpjUqt2ktSe188m5U6e2KBSHOHp0Bx4eSgYN6nDFGppWq5Xv\nvjuMy/UiotgTWbZis2WyZs3WRhGfVqvlvvtGsHjxj1RWDj3XDz0RxRYcP368hvgAxo69l/vvH43L\n5aq3LltZWRnr16+nsLCQli1bEhUVRUxMzBUtApct+wmN5g2MxlZIkpvy8hwKCgouOM7hcLB//wFK\nSiqIigpCpVISEhKCn18kXl5V9e+sVu9z79KK2Wzj5MmzuN0FzJp1kMzMIl59dRy//34AUVTTseND\nNe8mMTERvX4WRUVx6HQhFBevYujQDjVkXd+4gT/qS6ampuJyuYiLi8NgMNQhwdpRpX8lLvd+FRUV\n/7UJ7P8q4msMLkZAtdVWdDrdn1ov7WoEuPzyy3Y++WQJu3b9RmlpF0CNl9fziGIRnp7NsNk+5J13\n5vHDD3spL2+LKLrQ65WIYjNUqsMIggK3u6pNmZmZfPjhCvLzLYSFefLgg7deQEiBgYEEBgbidDp5\n+eX3OHAgkKNHIxBFJUrlTnJytuFyeVJcXMaqVTqSk/vj5+dXc763tzffffc5Dz74LJmZM+jYsTUf\nfrigwUk0Pf0UdnsZTudBoBhZjiAzMwu3231FFS3Or1XndDrR6/V1NCer3V3VqR3nr/Krx4VCoaBT\np7Z06tS2SW2pD5WVlRgM/sBJnM7PkOXjgA2DofHFTgMDA3G58pHlUwhCDLKcj8Nxot6IW4VCUS/p\nlZSUcN11w8nPj8PhMCKKcxk58imuuSaDYcP6N7n/NRo1bneV9qlSKSKKZrTauveXJInFi38gPT0A\njSaMt9+eyalTxxFFH0pKpiPLfmi13rjdb9CzZzypqRMoKemJIBRhMOgICPiWdesexNd3MYcP5+Dh\noSUsLKyG+AIDA5kxYywLFqymtNTKddfFcccdw7Db7Rdte0VFBc888zZnzgQiCCr8/H7gzTefxM/P\nr2YhVR1V+le5SpsaO1C90PtvxL+K+Jpak8/lclFZWYkkSeh0OtRq9Z8+OJtKfAMHdmPXrmXk58uA\njCSt4frrR7Bq1RpefHEVBQX9EMWuuFxzcDjikOV0DIYSYmNbcPKkid27QwkPf4pjx5YjSZG43bmo\nVJ/j79+dsrLV3HNPLyorK5k58xtk+RYiI2MpKjrMrFlLeO21R+u1/o4cOcKRI3oiIkaRkXEQnS6W\njIyb8fJ6AEGIpFWreEpK1rF69Truu+/uOue2atWKLVu+q/N/LpcLl8tVJ2jDZrPh6dmM3FwZt7sY\nWXYgij/TqtX9qFSqq/LBXkyAWZKkOuV5/qwVvtVqZdKkF/jxx00YDEamT5/EoEEDGTSoLQcPTkWW\n7wLGAotJS/v5ggCQhuDr68uMGS/w/PN9UCq7Ikn7ePTRcTRv3vjaf598Mp+8vF64XG+hUChxub5i\n+/ZlBAeP5ezZs5d0kUP9VsjEiaN4/PEplJXdDxTi47OWm2+eX+eYrKwsTpxQExXVj6ys/Rw7lgWs\nwNMzDJfrAyyWB2nduiPdu3fBak0kIMDO8uWLUKsjCAt7DqXSk4qKED78cA0Gw2u4XIX8+usTLFs2\np6YPmjdvzowZE2vuWb2ffzGsWrWOjIy2hIVVjeu8vB9YvHgVEyc+gCiKdaJK/8mu0r9LrP+vwr+K\n+BqD2gR0MbWVfwri4+N56aXb2LBhN4IgMGBA1f7eU0/NAiag17dEo/EGTLhcy1AoFtG69RDKypbi\n5WVDELqi04USGdmR3Nx3UamyGDiwC4mJerp374SnpweHDx/GavUlLKxqbyogIJGsrE2UlJTUWz3Z\n4XCgUBhQKlUEBnqQl1dwzmUYicHgh4eHJw5HMCbTsYs+myzLzJw5m3ff/QRJkrn22h58+uksjEYj\nFosFf/8oDh404XYnAWW43XKNNNdfhdoCzLXbXbs0T+0Vfn2u0oaQlZXFxIkvsX27DVHcgM1WzKOP\n3sOKFaH06BGDVuuD3f4SkIks7yIjo4j27a/h2Wef4PHHH7pk28eOvZdevbqTlpZGTMwTtGnTpuZv\nFRUVFBQUoFQqKSsrIzw8vCbJvRq5uSVIUhtABgQEoTXl5cUoFEaczkvnJjY0ufbr14+xYw+xbdvX\nRESE88wzn9Yh84qKClJSUigoyCMszElZWRaC0B6ocst5ez+MUvkJS5bMYeHCdRiNvYiO9iU1VSIr\nS8bpLEAQZMrKNhIQMB2DoUqhpbS0gDVrfuTRRx+8aLsv9s4KC82o1R1rfut0MeTlpdZ7jYZcpbXH\nTm2vQlMXUk21+P6pgTp/Bv5HfOehWs3BYrFcVG3laty3qaus+Ph44uPrql+4XBI6nQdlZVbAG1H0\nJDq6H2FhOfj5rSYhIYKKimt4661XgfbIsgWdzsXjj49iwoTRbN68mQkTnsVq9cFiycZgUNG/f1/8\n/Fpgt5cjCOYGqxzExcVhNK4iP38HERFhlJcvJSJCwGr9imbNJuNwZONwfE/37rde9LnWrFnDe++t\nR6ncgVrtzbZtTzNlyiu8996riKLI/v3bEYRZaDRdgEJcrijmzVvGDTdURYtu3bqVd99deE4O7Q6S\nkxsnTH2lqE2GtVf4tSe1S0WUpqefZPXqE+zYYcTlmoAs/45aPQC7/W62bt1GcvJAVConoMBuf/ic\nvNdY3O5Spk/vy/ffb+C2227kgQfuu6j127Jly5qoyGps3ryZRx55mYoKF+Xlpfj5tUanK2HOnJfq\nlNu5/vqefPvtTOz2fkiSDwrFmzRv3g6V6ixBQf2a1Hdut5uHHnqan38243L1Jy3tR9q02cC4cVXR\nlTk5OQwbNprcXDd2u4UdO9YzaNBkXK5taLU5OBwxVFb+QEiINwaDAbVaidlsA+DWW5NZuPAtzObZ\neHt70ayZBw5HbcUcNwpFw995YwikbdsYNmzYiNPZFoVCRXn5j3Ts2Hgr+lJlnZriKm0K8VVf/78V\n/yriu9SLrL3K0mq1V11t5fy2/ZnuheHDezFz5keUlnajsLAIjeZrmjXrwiuvTCE0NBSFQsGECZNR\nq+/Abh8AuHE43sbTU83UqbNZsWIL5eWjcbv7ABIlJf9h8eLhBAcnYjSqefLJ5AaLrnp5eTFjxn9Y\nsOA7Cgs389BD0SQnL+bbb9ewfv0MlEolkycPolu3i1de37nzN5zOO1Crq4ItlMoJbN/+QE3giodH\nJeXlW5DlU4ALpTIQSbJis9k4cOAAd931JE5nVS7ivn0v8OGHEgMHDvhbPuiGLMOGIkq3bj2Ep2dv\nPDwOUFISiNutxe3ORKk8hbd3AvHx8SQltWDPnpG43SnAV4iiAofDF1m+kYMHKzl5cjPZ2flMn/5c\no9tZUlLCI49Mx+l8jfLyF5DlFZSUaAgMLOSRR8axa9fampJGQ4YM4dSps8yc2R+brZLWrTty++1D\nGDSoW5ODIn777Te2bctCp/sOQVDhco1i5swbGDWqSld14sTnSE93IAiPIMs2srPf49Spedx///V8\n/vlN2GxeaDQyHTsmk5mZSf/+bfnii81UVLRFkiw88EBLRo58ED8/v3MFbCdTVDQWt7sYb+/FDBly\nZeLl/fv3JSenkGXLHkWWBYYM6cTNNw+5oms2tJBqrKu0KfNKeXn5n1q+65+GfxXxNYTayecKhQKt\nVttgvbKrhT+b+Fq1ikGlWkNg4G+ABp2uO926tSIi4o8AiDNnComJeRhRDEeWZcrLk9m2bR1O5zDs\n9g0olQOwWBSoVAHI8kCczlMUFeXQqtUDbNmylz598ut1dQKEhYUxdeof7jaLxcI994xg/Ph7G/0M\nERFBiOL+cx+5C5ttA/7+3jW5kuPG3cWMGauBSUApSuUPJCXdhV6vZ+HC5Tgck9BqbwbAbhf45JPP\nGDhwQBN68+rgYhGlsqxAqVRxyy2DWLBgPg5HIG73LiIicrn55ucBWLJkPnPnzuONN/Zgs/2KKCZj\nt1sQhBQ0midRKHry5ZedmTZtSqPJ/uzZs0AECoUeiEOhiAVyEMUEnE5PCgsL68hYPfrof3jkkQk1\nz1MfKioqsNvteHl51QlUqs8SMZvNiGIYglA1wYtiAIJQlWCv0+nYu/cYMB1RvAmoCjgrLl7JHXc8\ngc3WCX//jhiNQVRUFLBmzc889NDtjB+v4+TJM2g0Slq3HoLT6cRms9G8eTQxMREUF29ApVITFtab\nsrLyBvumMZaTIAiMHn0Hd911K7IsX1F066Xuc7Fo5PNdpUBNrnFj9g3Ly8v/ayM64V9GfPW5AM5X\nW6k9UP7qtl3ufd1uNytXruHHH39DrVZy55396NGjOwCpqWkEBo4lKKg/SqWI1ZrJ77/Pq3N+q1aR\nbN26AX//CUhSBWbzIrKznajVOXh5RZKfvxVBGIQkVSBJO1Cp7sDpXMbRo6BQRJOenl4v8e3fn8q2\nbalotUqSk68lIiKiSc83evQoli27k6NHr6es7ASyrODQIYHFi5dwzz138+STjyJJLj7//G1UKjUD\nB47g0UerggpEUYEsu2pdzYFCoWDDhg3k5eWRkJBA587116Q7H03NsWwKqie0pKQoNm/eR/PmbRkz\nZjCnTi2nV68e3HHHHTWakbIs88AD99O5c0fuvHMCDsdHOBwnUav7oVYPQZZLL/v+ISEhuN1nkGUF\ncBxZPgFocLkOotGU16nQUbvNDWHv3lS2bDmF06lCry9n9OiBdSJ5z0ebNm1QqV7FbF6DStUJp3Mp\nLVuG1OwvGo0elJaK58aSDKjw9fXFbneg0QTj41O1sNNqvbBYqgoeh4aGEhoaSllZGU8//SqHDuUB\nDiIivFAohmMwBKFUiqhU5ezefZR27aoicKvLZOXm5hIeHk58fDylpaVYLBb8/Pwu6g36O6IhG9o3\ntNvtuN3uGq3Sauvw/D3n2q7SplZmKCkp4Y477iAzM5NmzZrxzTff1HudZs2a1UReq1Qq9uzZ0+Tn\nbgoE+b89fKcWqv3j56ut6HS6mpWZzWZDkqQG3XhXC9UT2eVYmj/88CPz5p0gKOhOXC4rpaULePHF\nG4mJiWHlylUsXOgkMvIBBAEKCn6mQ4edzJgxCaj6GLKzs3nxxVkcOVJKbu5JZLkDGk17LJbfiI0N\nJyNjMyaTEkFwIQhJiGI4np4OPDxG4O+/hJkze9G1a1135e7de3jzzZ/QagfjclnQaNbz+uv/wdvb\nG0EQGq1YX50PZTabufbaoRQXP4XBMBJZzgKGs379fBISqqqcS5KEzWZDp9Phcrmw2+0cO3aMYcPG\nYrM9iSBoUKlep1OnOA4elHG52qNQbGDSpNuZMGHMJdtisVjQ6XR/mdsbqibdw4fTOHYsF71eRdeu\nCRfk/9WOKC0oKGD79u288MKbWCxjUSjaoFB8xKhRrZg+feplkfayZd/y/PPvY7frMJky8PFpicFg\nYs6cl+vs8V0KeXl5LFiQQnp6AZs3f4HT6cbfX83kyY/QoUM8kZHhF/SrLMs8+uhTfPXVOtxuNx4e\nWlatmk/HjlUBI4sWfc2TT36Jw/EkUIle/xZLl75CbGws77+/EW/vQWg0nmRnbyMpyULnzm0JCAjA\nYDDw0ksz2bQpmICAMUhSBamp96JWxxEdPYW8vG8oKFhFixYy7733DB07dmT+/MUsXvw7gtAGt/s3\nwsJs5OTIKBRqOnQI5KWXJv7l80RTUL2Y12g0Nf93vqu0ehyVl5czbtw4mjVrhtlsZsaMGcTFxTXa\ncn366afx9/fn6aef5o033qC0tJTXX3/9guOio6PZt2/fFee0NhX/OuKzWCw1ait6vf6CF2q323E6\nnX+5f7sphPvMM7MoKLgVT89oZFkmK2sr/fuf4L77RiBJEpMmvcapU4GAB0bjAd555wnUajWTJ0/j\n+PFcvLx8eOyxEahUCu6//1NUqvdRKg2UlBzE5ZpMq1aBtGzpy6ZNB7Ba9YiiF97eD2I2HyA+fi+r\nVn1ygTtkypR3yc0dird3VQL92bPrueOOCoYMGdAoYq9thVcrvzRv3gmt9mTN5C1JjzBzZjduu+22\nC853OBzY7XaMRiMpKSl8/PEiTKYS1GpPfvrpEIKwEtDhdhcAA9izZ80la+H9HcRXH1wuF5mZmXh4\neDQYTXv27FlmzfqE3Nxi+vRJ4t5776pZxVev7iVJ4v3357Jp024CA3154YXHadGirppMTk4OWVlZ\neHh4IMsy4eHhl5SvOnLkCGlpaURGRpKUlMTx48d5993trF27AaVyPpWVKuz22bRqdZr+/YfQr58X\n11zTraZfMzMzWbRoEZ9++jNG4xpE0RuLZSFt265nxYqqdAZZllm6dDlffPEDKpXIo4/eVSOzdvLk\nSRYvXk9aWiZgQRTD8fVtjkKRzS23dOattxbhcr2GVhuKxVLB3r0folCsRBA8kaRAlMrRREXJeHp+\nxYwZ9/Dcc1/i5zcbpdJAdvYyjh9fS/fu76HTeZCbO4/hwx088sjYP+HNXl3Y7XYEQag3F7M2ZFmm\nsrKSn3/+mc2bN7Njxw4qKyvJyckhISGBX375pQ551of4+Hh+/vlngoKCyMvLo0+fPqSlpV1wXHR0\nNCkpKRe1/q8m/lWuzmrf/sXUVq5GInljcDn3lSSJvLw8ZNlBZWUhen34uTyyEoKCfGusqnfffZ59\n+/bhcrlITByGQqGgb9+RZGUl4HR6I0lnOHhwJiNGJCJJIXh7h2M2m7Faw5FlD/LyPImKknnxxQd4\n883luFw6CgunIMue5OeH8dBDU5k79/UaMjObzaSk7CY3N5OwsC60bDmSxlbqrpaAs1qtdUS+q6oz\neGCx7Eat7obbbUaW9xMZeftFrwWQlJTEK69E8OGHmygq0iEINmw2DWq1FpUqBofDk2XLfmLixPsa\n1e9/J7Kzsxk69E7y8yuRpDLuvPNW3n57xgWWXHh4OHPmvFHn/86PKH3uuRmsWJEDTObw4TRSUkaz\nYcM3hIWF1ZBQtXsQqtxXR48eJSAggOjoaH7//XcsFgsJCQk1LsjPP1/Myy9/iCD0RJY/4J57bmD8\n+HvIy9uPyzUIUfRCkhxoNPeSkzMKT8+ubN/+Pb16Vbnmf/75Z8aNm4rF0gGzWcTheI6AgPfRaody\n/PicmmcRBIERI25jxIgLFz16vZ6SEgmt9npSU/ej1fbG4fBg584iVqx4BUEwERS0k7CwYZw4kYVC\nkU9AwCMUFQkoFFvw8grHzy8Uq7WYXbv2IIr+KJVVC9HKykIEoReSpEAQFHh69uHw4fkXtOGfiOp0\niEtBEAT0ej2DBg3CZDLRtm1bHnzwQcxmM0eOHLkk6QHk5/+x7x8UFER+fn6D97ruuusQRZHx48fz\nwAMPXN5DXSH+VcRXPaFezO3zdxFfY2Gz2fjww684csROWZmNkyffIjT0dpRKF8HBh+nf/3Ggihyz\ns7MJCgoiKioKlUrFp59+Tm7uNTidRpzOYchyBCbTVr777jNUqhAslu8pLAwEjqJSCXh5LWDHjkH8\n/vuPyPL15OVtw+2uwMOjHxUVzdiy5VeSk2+nuNiKh4cBrVbJmTOdMJlakZu7naysX2jXzo/u3cch\nCEJNDbTz4XQ6sVqtCIJwgci3IAjMm/cOo0ePxe1ugcuVyT33DL7AxVr7+NrIzs4GWhIbG4UgvIos\n/4rL1Q34Bj+/QMrLpf9j77zDoyi7Nv6b2b6b3fReCAkkEHrvvYuAiOCLiiIIiA1FBeyiL2IXRVRQ\nQUQFCwKC9N4lVCGUAAmm97a9zXx/hKyhY/fT976uXEDYmeeZeWafM+ec+5z791iWPxz33vs42dnD\ngCeAKr78cgCdOy/3SQldDbVZgbIss2zZKpTKfYhiENAJh+NHNm/ezLBhw3w5ohqafGpqKnfccT+Q\niNudSUSEP2ZzIKIYilZ7hsWL5xAREcFzz72GIGxCFOOQ5Uo++aQ7I0cOpWPHBPbt243bPRxQYLXu\nwWZz8eqr79O4cSbTpo1CEAQefvh5vN65qNWNEYRybLbx2O0bkeUKUlLir+se7d59CJerEyaTEYPB\ngywns23bGgyGsXi9EkZjAtnZ01Eq9+JwZBATUx+1ujGVlaU4ncEYDCWYTMlYreVERoZjNKZTVraL\ngIB2eDylKBQlaDTVOWSr9Qjx8aHXmNH/X9TUbkJ1E/ra37c+ffpQUFBwyTEzZsy44N9XqwPctWsX\nkZGRFBcX06dPHxo0aECXLl1+xyu4Ov5Vhu96ij7/7h7f+vVbOXo0lMjIfoSHi4jiFzRqdJLOndvR\nqtUj+Pv7Y7PZeO65Nzl61I0giCQnC/z3v5MpLa1CqYzE5TqLKPZEEEqBQGy2xjRuXElBwVpkOReF\nQklo6HjASXl5PlVVkXg83yNJPYD2WCyReL198HhEDh9eQlLSWsrLV5Ob+yENG04lMFAiN7c52dm3\n0Llz5yu+KdZWTqgRtb3c+rRv354uXdqyYcNeBEHg6NHjpKamEhkZec0wpUajweMpwGhsw623Psfn\nnz+Nx2MlKqoFnTvfR2Ki9TpW569HWloasjznfJ2ZPzbbINLSTlyX4bsYoqhAln+WIRIEu69etXbe\n0OVyMWbMJGy291GpeuJ0FnLqVDciIl5Dre5CZeXXPP74DN555wUUikAEIe78+f0RhHoUFhYyadID\nHDkyif37x2O1qpDldLTaNxCESk6e3M7q1au54YYbKC8vRa9vjiCo0Otd2GzRuFxPER6u4803371g\n/jabjVWrVlFcXE6rVs1o0aIFR48eJTPzLBCGwRCGLG/Bbk8C9EhSPgqFSGDgUBSK+UyZ0pKPPiog\nPPx+lMoQ/PzsnDixD70+mfz8NKKiDtG//4u0adOGF198n59+epvmzcNRqQTOnJmCUmkgJqaK8eOf\n+A0r+ufh10oSXSm0vWHDhiseVxPijIiIID8//7JkKMDXkCA0NJShQ4eyb9++/xm+vxJX80z+6HGv\nZfjcbjenT+eh1bZHrdagUIhERHQgNHQ/PXv+XDC8dOlKjhyJJSZmDAAnTnzG4sXL6NChGYsWfUJZ\nmRZZPoEsZ6HV5uN2nyY2tj49e9bh229Pk5+fgE7XhezssXg8nfB6C5Gkh4EsoBmgwu3OxuMR0ema\nolD4oVbXBQLOF/67MZslZDmIVavCOHRoFCtXLvKFRGsrJ2i12mt2xJkz50O2bRMRhB243RJbtz5K\ndvZ7DB58IwMGFNChQ+srHpuUlERCwgn27n0PhwO6dWtLWFgcfn6hxMQUM3jwDde7RH8pEhISOHx4\nDTAeWXai020mMfHK4d4rQRAE7r//bmbPvgu7fRyynEZAwA+0afOg7w3d4XCQn5+PwWCgrKwUtbrH\neYNoQpbb43KdRqVqikrVgqysNwkJCcHPz0tp6bdoNEPxePagVp+gQYMGqFQqPvlkNgcOHOC22yZg\ns01BqXShVCbidA4nLe0kN954I02aNOXYsbnodPfj51eMVrufN954hL59+16Q93Y6nYwd+yjHj8ci\ny0kIwrvIcgYORwxerwOF4iv69HmH+PhojhyZgSTlY7H4oVLFc/bsBAIDi+nXrx8REdG89dab2O3+\nGI3FzJz5H2TZg8FgoE+fF/D398ff358FC17zGQ673U5GRgZFRUWYTCZfA/O/O/5MLb7BgwezcOFC\npk6dysKFC7npppsu+UzNy25NB6b169fz3HPP/eKxfgv+2mz9n4zrWfxfW/D5W3E1w+fxeDCbzVit\nVurVi8TpPIUogixLmM1p1K174VvVuXNF6PVNfRuZwdCMzMwiunbtwpNP9sNk2oMo3otW+xVu99fA\nTRw/3p916w7xwQfTufFGDR7PjchyHvHxTyIIaiAc8AcOAG4k6SQKxUH0+mpShFbbCKXyLDbbQvLy\ntgKL0evbYzS+QHFxMtu3b/clzysrK4HqQveLlcIvh/37T+B0DkYQjEiS5ctsQQAAIABJREFUFoXi\nLsrKXCiVbdm48TRW689e28X3UaFQIEkeLBY1bncsfn7JDBiQwqOP9mPcuGH/b4p033//VYKCXker\n7Y5a3YIePUIZMeKXGz6ARx55gOefH0ZS0ue0aFHMHXe8zZo1JykqKmLPnj20bNmDXr3upGHDTjgc\nEpWVX2CzOfB6i4AdVFTMIisrntzc5siyE1EUWbBgFuHhL+N0JqDXj2fevJcJCgryFVS3bduWxo2b\nolKp0esHoFI1RK3eSd261V7i3Lmvkpy8Fru9IYIwhNdfn8zQoUMvIXvt3LmTU6cCCAp6kZCQO6ms\nfILsbBCElcjy95jN7Th9+r+0b1/JRx/dS5MmQSgU/RDF25DlrkRENMBut5OcXA9RLCc7+xDZ2eco\nKqrgzjtHMnz4LZds+DXPp0KhID39HAsXHmbOnAymTVvAwYOHftUa/N3xa7X4pk2bxoYNG0hKSmLz\n5s1MmzYNqCZLDRxYLZ1WUFBAly5daN68Oe3atePGG2+kb9++v+v8r4V/ncd3vSHFP6tuqwaXm9fl\neoUOGNCL3NwvOXTobUCmbdtgevUaeMFxDRrEsn37XgIDWyJJbsrLN6LTuXjssRl4PDLvv/8sixev\nYOvWXSgUvWjR4i70+gCKitSsWbODuXNfJzMzk+HDXyQoKAaPZyC5uTOQpGEoFKcRhBUEBsZQr145\nBQUryc4+gMVyCoNBplWr/WzYsB+9fiL+/vefv4ca3G43brcbs9lMenomGRklBATo6NGjzSU9IC9G\nQkIkkrQbUeyPLAvAXvz8opAkAYVCh9PpvCIbNisri8OHXTRrdjcg4Hbb2LDhfeLjY8jM/ImAABOh\noaGIoohGo7mgf+bFNPu/EvXr12f//q0cP34cg8FA48aNf/Hz6XA4sNvtBAQEkJTUiGHDOhERUd2u\nrLQ0m71705gyZRo22wdYLC+d9/LjEIRxuN0z0Wgs+PmFUFGRBOwDLBQUDOKbb5YyatQd7N+/GbPZ\njFarRZIkX/1YTY5x5sxp3HbbfdhsK/B6i+nSJZ6bb65uMBAVFcXatV9ek0FbzVAM9l27y2VAljU4\nHHZcLgVeb1+Ki+cTFGSkfv16BAQkcsMNd2Oz2TAam1NRUU5qaipffLGKY8eaExX1ELLs4KuvHqNZ\ns4307dsXr9fLoUOHqKyspH79+sTFVRvnY8eO8fbbSzEaexIb2xKdrh9z577Lu+82/l2kyf4o/Jke\nX1BQEBs3brzk91FRUXz//fdATfTi0v6lfyb+dYbvWqjxkv5KwydJEg6HA6fTiUaj8dXAQbWw7MSJ\nd1BWVoYgCAQGBl4yz5tuGkh6+nusXj2K3NwKZFngyJFSAgLGEBPTmLVrX0Svj0evfwSLpZQzZ2Zi\nsw3DbM7gxImPUam8TJkymVatgtm37xUCAjpRUuLB5ZqBIISg01XSv39D3njjDRYsWMSsWbuIifkA\nPz8dZ87MYMCAduzdewyX6xBe73GMxh9ISvoP99//FPv2ncDplOjTZywJCclkZq5h4sSbrlrmMHny\nfaxaNYycnGGAhFZroW7dJ3E6C4mLc1/2zbQmV+VwOBCEavV4i8XK999v4Ny5VWzfvpn+/Sfx008b\nEEWJyMhQOneuQ9++3WqVTXh9a1Jzvt9a0lBUVMTq1avxer307dv3gk4614LJZKJ9+/a/atw333yX\nWbM+AJQ0adKQ+++/B1H8mZyhUCgpKSnD7TagVHbA6z0B3IkgVKDVvogsn2Pw4GZs3vwCgjAZUdQi\nijqczjHs2LGPUaPuQBCES8pbajNKExISWLt2CcePH0ev19OwYUOfxFNN/v1a5TwtWrRAo/mYqqpN\naLVJKBTzUKk0OJ1eFAol8B1JST05fNhM9+4O1GonglBBaGjU+VrXEyxf7mDfvmJcrp4UFpYSERGC\nLHfn5MkMevXy8tJLs9m5044gxGK1fsHIka3p0aM7zz8/j6yszuh0CWRkLKBjx1vxejVYrda/tWDr\nrzV813oh/f+Mf1Wo83rxVxBcasasCQXKsoy/vz96vf6Sh1YQBIKDgwkKCrrsA61SqRg//jbq1q1H\nvXqTcTon4PE8Q3l5AVlZesrK1Nhsd1Ov3hAUij4UFpqpqtqGKB5Eo5nJ66+vZ+XKlcya9QLjxgUR\nETGX4GA/+vXbT9++m2nUaDZKpR6TycSRI+cIDX2UiIhW+PmloFDcSUxMAg8+2IQGDWbRvfs+li79\nkHnzvuTo0VbAUvT6pWzZsg6v101lZRQ5OTmXXIPFYuHgwYMcPHgQtVrNtm3LmTq1B0OHJtGlSzO0\n2uVkZ38LuCgrK7vkPtYU5kZFReHvX0R+/hE+/XQh6ekZOJ2DyM7ux2efPUl5eTNstpsIDx/N9u0u\njh8/hUajQa1WI4oiHk9195cawofb7cblcvkaBf+SfHBOTg49egzh2WdP8vzzWfTsOZRTp6oVKv7I\nfNGGDRuYPXsVSuUPqFSnOHq0BQsXLsbtPn6evFSE2fwj7do1BCrwek8gihHATsCNWh0DnCAoKAR/\n/1AEYTeiWH2f1erdxMdfWQapxttTqVRoNBrCw8MxGo1MnvwizZt3Z9iwsZw7dw6bzYbNZsNut+N0\nOn339+LvYWRkJB9++AJJSV+g002iceOzKJXZ2O2tcDpbkZiopEOHcQiCEoVCwSOPDMdsfpP8/Pcp\nKHgBWS7C4+lMaGgiopiO3a7AbrcCB4iPj+LQoUPs3GknPPwZ8vPbkZFxOzNmrGbkyEmUlXXCz68z\nGk0HlMoxHDz4GSaT429dxP5r9zGHw3GBDNg/DYrnn3/++b96En8mLvdluhhOpxOVSvWnFSzXdJJx\nu90IgoCfnx8ajeY3eZznzp3jhx88nDplRJJCcbtjEYQTCEIyLtdGTKb+1K1bBz8/FdnZy1GpCtHp\nemKzLcLhyCA19QdGjRpBt26dcTgsnDnTCn//puep7kqczo2MGDGALVt2kZERiF5fHTKzWPbQtKmZ\niRPHcPvtN3PLLYMJCQnhhRfewWB4DptNQqkMx+UqJSKiCoNBQ4sWQRd0cCgvL2fmzE/Ytk1k//4q\nDhzYQseOTenZsyuDB/dGrYbS0jrExt5CcbGRAwfW0bp1Mmq12sdGdLlceL1eFAoFjRrFcfToKnbs\nWIJCMQRRHIFS2ROHYxHR0T1RqwOJjQ1CltXodDnExIRRWlqKLMu+vq01z0MN3b/Gk6nt0dT2Di+3\ndi+88CqpqR1QKl9CFPvicGg5fXohlZUCW7YcIysri7i4sF+04UiSxIwZrzN+/GQ++GAhSqVM27YX\nkn2WLl3Grl3NUKt7n59XPSoq3uWll+6nqiodrbaQrl3rkJycRGJiLOvX349KZcLpnIfR+CMazQq6\ndw8iJcWfhIRQ0tJmoVRuQ6WaS1xcPnPmvHFdNV5QXed1883jqar6L1rti+Tl2di1azZ9+nRl2rSZ\nzJmziGPH0mjVqgmiKPrWsfb9DQsL45ZbbgCcrF9fSVjYQgQBJCmYNm1uQZbziY8vp0uXNsTGxtCt\nWxNSUlSsW/ctx465OHu2PlVVFnS6jTid24Bv6N7dn/vuu4fTp0+zezfYbLH89JMDjaYjkrQRtbot\npaXQvHk3SkvPUVV1mvLyxYCBLVu20axZvb+th+R2u697fWrw+eefM2bMmD816vVn4n+hzsvgz/L4\nZFn2qbrXPGC/l+ZfYGAgkpQHBOHnF0tl5XokKROP5zB6fQnwDRkZfZCkHLTaY4ji05jNryPLDYHu\n5ORsZujQu9mxYyXNmzcCPsHhaIdKFURZ2Vfcckt1u7CJE29j796nKCzMQ5ZdGI3rGTly5iXKFmFh\nweTnHycgoBmlpSV4vYex2ZKJiRF9OZQarF27nfLyNsTHV9Obs7K2sWHDToYPr+5yv2vXaWJjJ6JU\nqjEaI8jKyiEjI4OUlBSguu6otjisyWRixIg+fPTRIgShPy6XEq/XBpgxmzOIjIxBo9Fis2WTl5fN\n22+XoVD4ERzsYsSIHj5DdDnJmIuNX43nVvNnTehcEARKSiqBjrWOjiE93Uzfvp2JjQ2nuPgsK1bs\nZNSoG677GZgzZx7z5u1FklYiSTZmzhyFXq9h9OjRvnNER0eiVm9Blr0IggK3ezN6vYqCggIGDepy\nwVg33ngDrVu3JCMjA61WS2VlJSEhIRfkFO+9dwS7du1Co9HQrVu3X2Sojx07hiQ1R6vtgSxLGAzj\nOHduLv/5z72Ul49Bo2nPmjVfk5//DIsXz/Xdy8vp061f/wNq9T1oNNFERU0mP/9tCgvnM3TocPr0\nGezrlxkWFsbq1Ws4e7Yeen1/nE4lbndvBEFB//5VjB07kJYtWyKKIvXq1UMUV5CTE4PVasRme53A\nQH/Cwm4kPX0yXm9nEhJ07Nu3lOTk+6hTZzRlZft5/vn3WLDglb+dYvmvCXP+1fnsPwP/OsN3PQ/B\nn2H4PB4PNpsNSZJ8HkVFRcXvlluMiori1lubkZu7mtOnN+PvX4nHcxY4iMkkkJu7BklKRacz06tX\nQzZtegZZjgbeQRTVqNWjOXSoB6mpqbRp04apUwt5992pVFW5GDCgNRMnVndaSEpKYtGimaxfvxGl\nUsHAgbOJianuAPPRR1/y44/niIwM4L77hvP88zNxOJri9Z4iNraKTp2a07hxFFVVVYSEhPjmXlFh\nQ6//mamq14dRXp4LVK+NUini9TpRKlVIkozX67jEKF0sAdSgQQMGDOjMmjW3I8s3IAhrSEgIJCkp\nEz8/PRkZBwkJKaGoKIK6dYeg0WgpLs5k7dq9jBx5ZR2/mjGvJERb83eAPn06smXLbLzelgiCFlF8\nnfr1u2AyVXe6CA1NJCfnMHa7/bp7tn733RY8nidQKsOw2cbj8biZMuUtdu8+wpw5r6JWqxk+fDjf\nfruew4cH4PXqMJu3kp3djIED76Fz5yZ8+eWCC+YfERFBRETEFccMDg5m8ODB1zW/ixEYGIjXm4ko\nugAlXm8+Ho8Zs7khRuNdAKhUT/Ljj90pKSkhNDT0kraCNfc0KMgPt/un80LEarTaADp1SmbAgO6+\nYv2a71JeXhGS1Aw/v34IwlYcjt243d/z7LOLLhC5jY2NZejQJjz99PNIUhAKRTxWaxllZV/Tr189\nwsPXk5tbSEyMjoSE6vkGBbUmP38hFRUVf1kLrt8bVys+/yfgX2f4rgd/pOG7mKlZO6T5e4/brVsH\n9Holx44dY/9+C/v3J6HTNeX48SUoFJ8QHByNx5PNyZPTGDv2Bt5/PxulUofXK+F06pBlAxMnvsxb\nbz1Mv369iYmJxOv10qhRI7Rarc94h4aGMm7cWF8BerVy+kccPhxPSMgIzpw5Q3b21zz22Ejef381\noaGdKS3N4L33fqJ9+xgMhi+ZNGkg8fHxADRpEs++fbswGqMBqKraTZMmDX3XNWhQKxYvXopG0wyn\ns5g6dcqoV+/qdGhRFPnggzf44ovFHDlykpSUPtxxx+2+/peyLGM2m1m3TkaSqkPPfn4R5OTs9DET\nr3cjqN0ppQayLHPbbf+huLiM994bhNfr5eabBxAUVB+n04FSqcbpNKNUuq/ZU7E2goJMSNI57Pat\neL0RwBwUCiebN0/jo48+4b77xqNWq/nyy4/Zu3cvEyY8Rmnpm1it4wAXO3f2YsmSJdx+++3XPWZN\neU210Ov1zxWqySn9+qWwdu0teL0tUCq3MGbMLXz11XGfRyrLNmTZecG5c3Nzefnl98jKKqJNmwZM\nnjyRSZPu5sCBKVRUZAIugoP3ctddb/j06WrIYQqFghYtGqNUzkOSbkKv7wls5oYb2l9g9KC63+jy\n5buIiHgWjaY1OTlFuFy7MBiW89JLcwkODqagoIDx49/G47GgUhmx2XLQaBx/y9KYX/Mi7XK5/jA5\npb8L/tlX9yvxRxi+i4u2L6fq/nuMW1BQwMmTJ6mqqmLhwvWYzZF4vSXY7XkkJb1FRsZyFIo4BCEa\nt1tCpYrA6TTRo0cPPvzwCZzOr4HWwGpUKhk/vxeYPn0GoaFfkJYGKpWOOnXMzJr1DEaj8RLjDdVK\nE4cP5xEd/RiCIKDVtiUvbz/Ll+8mMnIKguCivDwBrzcRSVKh0TTkm2+2MWFCMM8//xp79x5BrRbw\nek/j729ixIhWtG/fFuB84auBZs0EzOa9NG2aRLt2wy/YJD0eDxaLBaPReIHxUSgUjBp1B6NG/ZxX\n9Xg81K1bF41GQ35+PirVIRSK6jxmSUk6YWEGLBaL7/jaP7/UGCqVSh599CEeffQhoHoOu3ensm3b\nekQxGMjnxhsb+0LgtcOkV8o3P/30Q6Sm3klZmQlZfglRdGAyheB2D+HgwTW+zymVSjp37kxFRSlQ\nU7SvxmbrSUZG5nVdA1Q/X198sZmqKjUqlYNhw9rSoEHSdR8vCAKzZs1g48aN5OTk0Lz5DJo2bUp6\n+kPs3/8IstweQVhJx44pzJ79IevWbcdqdVJWVoZefy9a7d2cOfMlOTnP8cEHr/HNN++yfft2FAoF\nPXuOJigoiP379zNt2huUl1tITIzm5ZenkJycTL9+8axc2RFRVNGxYyuefXbmBYzSPXt+4J13tpOV\n5UdZmQej0U6LFimUlZ2jf//uGI1GBEEgJiaGu+/uzIIFTyGKdRCEMzzxxO2/OI/2Z+DXGL5fW8P3\n/wn/OsP3Z4c6a6sNqNXqq6q6/9Zxjx07xqOPvoPL1ZwzZ1ai0dxFu3a3I8sudu4cg1q9H4MhAoXC\njtu9AlnugcOxm4CAXPbvP4lG0weX6yNk+R1AicfTgPz8TVitx0hNjQeSEIRQiorCePnld5g9+/I5\njWoiiBe324xabUKWJQoKzpCVdQRRPINaXYhO1wiFQoPH40avD6eqys699z7G7t1RqFRvYrf/QGHh\ne2zZspTw8HAfU3PTpp3s2mXl+PGfKCrKJD8/h65dO/nGTk9PZ968NdhsKvz9PUyceNMFOURZlvF4\nPD7RYYPB4LuGqKgoevcuYsuW7wAdwcFuhgzphslkuiBn6HK5KCws5L33FlBQUEGXLs25667bLyDA\nXA8EQaBTp7bUq1d4nhLfgMDAwAtYqTVh0prSitqaaaIo0qRJEzZuXMqECZM5enQHRmMPFAoRj2c7\nSUmXlko0atSE1NQP8XqfA8rR67+ladOp1zVfSZJYsmQzXm9PYmJisdsr+eqr5UyaFP6LNkpRFOnV\nqxdOp9MX0v3447dYsuQrMjNPUlhoIjMzmjVrvsfjmYxanYLN9hVu9w8EBDyAVpvCzp3dqaqqIjIy\nkltvvdV37n379jF8+GO43QkYDC04ezaee+55FJOpPpLUlsaNI2jbVsW0adUiybVV7xct2oC//wRa\ntChkx463qKqykp0tEBi4nOHDL2xPNnz4ENq1a0FJSQkxMcOv2Jrr/yOu1q7sn4J/neG7Hvwehq/G\no7Db7ReoDfyR47766gIE4QHCw1ty5sxhrNYGlJQUExYWRlhYZyorPycgYDQGgxqL5QO83vcIChKZ\nP/8V3n77S0SxK2r1BFyuEOAwgpBBQcFyJMmB19sU6I8kbcHpPMamTU6+/vp7br11kG+jl2WZtWvX\ns3fvj4SHy/z006uoVB2xWI5SUnKMmJhxFBbm4XDUpbJyBRER7dHrW7B//+e0bFnJrl1H0Os/oKLC\nhiTdQlHRJqZPf5PXXnsWjaa6Xio1NZ/ly78hJycMSerK0aOfY7FMQanUcPLkOSorlXTqNJPY2DjK\nyzN4773lvPjiRFQqlS/MXMPWvFzRcZs2zUlJqY/L5bqgYXZNDlGlUmE2m7nttvsoKOiPLHdh585P\nyMjI4qmnHvV1Kqn9cy1jeLHE0MUeXm3ttJoXqfz8fGRZJjIykri4OD77bC7Dh99DQcFQvF43jRrp\nuO++Sw3a/PnvMHDgCAoLP8bjqeTOO8dcd77ObrdTUSESE1NtUHU6f8rKwqioqLiujVKWZV599U0W\nL/4OlUrHmDG3cO+9YxEEAY1Gw113jaKsrIxx497EYGiDIBSh1f4HpzMfmIjdfguSVEn1tiVdEo6r\nqqri6afn4nY/hlY7HIdjK5K0jry8Ujp3nkVQUDKyLJGaOoO0tDSfxl/N/fV4vGg0OgyG5jRvPp60\ntHk0aABPP/0YiYmJOJ3OC8aLi4u7hJj1d8P/PL7L419n+K7X4/u1/TprwlQ2mw1RFC9RG7jWuL/F\n8BUXV2Iw1APAzy+O4uI0XK4I3G4zJtNp7rvvdvLyShDFLtSpE0VAQACJiYlERUXRuPEPrF37I7Kc\niEZjwOnchiwrMRqLqayMQJbHAXUQhK7Ick9CQpqwe3c5nTvn+hpFz5//GXPm/IBSORSPx5/AwLWM\nHt2I/HwlK1feTFDQrej1mygoOERV1U6Skx0sXz4HjSaWs2ehqqoMrzcfSYpAodAgy06KiiL54YcD\ndO3aEUEQyM4+S36+C4ViHkqliMczkIULmxEU9ABwG2bzJuz2QwwfHkdgYAI5OToqKirw8/Pz0brV\navVVnwODwXDV2qzt27dTWlofjeY/WCzbkaRBLFgwiwcfHEdUVJTPM6yRwaptDGVZZteuanHW4GA9\nvXu3u4AQIUkSBw/+SFpaHlqtkm7dmhIREeEzhna7nW++2UxeXnVTg6Cgo9x6ay8CAgJYtuwTTpw4\ngVqtpkmTJqjV6kuK7mNiYjh4cAdZWVmYTKbrJmPU1HXp9R7M5iKMxjBcLhtQitHY8rrO8fDDU/j0\n0w0IQgfgGK+88hVhYSEMG/ZzP8dqNqwKlcqELBcgyxIKhQpByMPlKsFs3oAgrGbkyAGXEICys7OR\npEREMQYQUKt743AsRZLcmEx1ARAEEVGsJl/VoMaD7tOnBd988zVVVY1JT88AZEpKDJw+fc6nV1ij\n5VmjXlFbufzviF9r+P7OBfm/B/51hu968GsNUA3Zo0Zw9UpqA38U2rRJZu3aOZSXV2G15uLxLMNq\n3UBJiYZmzYJZtuwHlEoFd97Zn169uuPxeKiqqmLdui2YzR7i4/dz8uRO3G4DWm0Adesa6dKlCx9/\nfAjwIMsnARlRdNGy5a2IYj4ulwuo/oJ9+OG3BAYuRKWq3kxLSgoJCgokNjaG+fM/wWzuSlRUV/z8\n4vDzK6S0tIiwsJcxGjsiy17Ky2/Dar0FQXgAr/cQEREi0dFdOXx4N7m5PxEZGUlYmIjXa0ShAEly\nU919X4VW+wAAdnsGubm5WCwWRNGBKFb61tLPz+9X12bm5+djsVioW7d6A5UksFp3IIo3oFQa8Xh+\nZMmSbTz88K2oVKoLvMnaYdLvvttIaqqGoKDO5OWVkJHxHRMnDkWr1TJ//kI2bNiDxxNA//5PYLFI\nfPHFHkaP7uarczxw4Ci5udHExbVFFEVyc39k797DdO7cGpPJROfOnS9glcLPpRVOp5O3357Ljh2H\niIwM5umnH7qm4SstLeWTT74nP9+O0SjSu3cK27evxmwOQpYrGDQo5bpUtAsLC1m8eB2wAUFIRJZz\nqKzsw/LlG2ndugUqlYrIyEiCg4Np1MjEjz9mEhiopbh4FKLYhMDAbbRu3ZrY2MO0atWLm2++tPmx\nn58fWq2V2Fg/srP3AgJe7yG6d29GUdFKIiJuwmbLQhQPUa/epUryw4bdiNP5DTNmzCQkpC91685A\nrQ7i44+n0KtXVxQKBXq93ud917zc1LxcXGwQ/67G8Fr4n8f3L4Uoir/I46str6PT6a7pUVwJv9Xj\nu+eeW1m69EEsluFoNH1ISCihYcNUevduzdy5xwgOfhCHw8XMmXPw89PTqlVL1qzZzMaNLkJCbqFl\nyy7Ur7+EhAQdOp0/7do15Z13vsFg8MdiWYIsd0SWVxEVFYDX6yI9/Rs+/vg4gwb1om3btni9EqL4\nc02XIGipqqpiypQZZGRY8Xju5Phxf5o3D+Hll5/i9tsfQa9vfP6zCgICOtGwoZvs7A3ExnakadNp\nbN36FMuXn0Wp7I0grKJfvziMxjSqqj5CpWoPfIJarUUQ/M/n7NpTWfkUeXlqtNpSRo/uSnBw8K+u\nr5IkiUmTnmDp0jUoFCYiIzUsXPgufn5HqKyMRKVqhyyvpE2bzthsTiwWyyVvy7U3xbS0YurVG3ve\nW4skKyufrKwsXnnlXbZudWC3D0IUt5CXN4mHH/6CvLxEcnNzCQoKwm63s3r1Lo4d8+PkyUxSUpqi\nUvlRUXHuika9JownSRKPP/4cq1d7UKme5ezZ4wwffi+rVi0kPDz8sgQaWZaZP38VFRUdiYtLwWwu\nYPXqZTz0UDUr1WAwXPcGWVBQgFIZi9sdcX69Y5CkIE6fzuP113cjSQ6aNdOQmXmSJUs2YLdbiYwM\nZ9Cg+jRq5KZt20nXlK2Ji4tj8OAGrFjxFRpNJC7XfsaOvZNhw4bw1lsLOHhwPAEBep555j9ER0df\ncrxCoaBDh1bUr59JWNgjvt8LQgBms9nXOrDGuNW+T7XrOGu6ztSwe2sbxD/bGP7P47s8/nWG7/ck\nt/xSeZ3fa9wroaKiguTkGwgPv/O8bptAbm4q27YdwWS6Db2+Ojdjsw1h587DtG7dip07TxEd/Qhq\ntRGdLgKLJYuePU107dqVxYu/Zs+eLJTKV1CrP0MQ5uHv76Fly2jWrp2GKN7BTz9FsGzZy7z11n0M\nHdqdb76ZgV7/H5zOsxiNB9m0KZvTp0NQqT5CoajC630Bh6OQlJQUWrduzO7dnxMYOAGXKx9R3Mjj\njz9OdnYJu3adoaTkY86cScVk2ohSGYYk2Vm/fjDvvfcS8+YtISvrM1q1akJ6egKnT49DFLshitvo\n378ODz/cnOjoaEJCQn7TmixdupRly04gCIeQJAM//fQKzzzzKl999SF33/06TucmGjSoT7t2jbFa\nV121/q6a2Qkejwu1WocggCC4sVgsbNt2EIXiICoVSNJIsrO7kJl5GFm24XLpsNvtrFmzA7u9CWp1\nNKIYxYED60lMFOjdO+mqhKma0P2aNVswGPYiinq02hbY7ftJTU1We+mkAAAgAElEQVRl4MCBFxTf\nQ7WxtlqtFBV5iY2taQwQQVVVJFarlYSEBADOnDlDaWkpycnJV90s69Spg9FYjt2+A0nqgCynAtnU\nr/8OMTE3IMte5s17hnPn1qBWf44gRFJQ8BYqVRWPPjr5utZKEATGjbuD9u2PUlJSQlxcN+rVqw79\nT5/+yHX1Wo2MjESvL6Ki4gj+/k0pK0slIMBKSEiIr33d5catCWXXePoXq97XhL1rG87aYdI/yiBe\nr/p6bVRVVREVFfWHzOfvgn+d4bseXMsA1WZqajSaqzI1f89xrwWj0YjXW4AsewA1DkcJSqWTwMAA\nMjNLfZ/zeEoxGrXnv7AiLpcVWVYhCCIqlReNRkNGRgazZ3+Ov39nXC4rYWGvY7GsJClpDW3bxnP4\ncEOCgycBYLMl8tZbr7Ny5XxCQr5gx44PCQsL4KGHXmbEiPuRpDFIUgAKRV1keSJFRc8AMHPmEzz4\n4NMcOfIlSqXMM89MoE2bNrRpAzfdJJGfn8/atdVGD0AUdSgUcRiNRpYuXQDA/v2HmDdvM06nhYqK\nFfTuHcWMGa9ctlzkYpw8eZKDBw8SEhLC6dPnmD9/6fnNczgjRw6nsrKS1NTDOBwD0Wr9zs9hBGlp\nS0hOTuaDDyaxYkUasmzHbF7DiBHtr1rXJooi/fs3Y9mylWg0KbhcRdSrZycsLAlRVFGd25JxONwI\ngobi4uOYTHmcOVMHk8lEenoh9esPQaMp5MyZ41itVpKTBZo0aXjFN/vTp09TWFiMyeR3PpJhRRRr\njLPFV45S2zOsKbxXqVQolQ7M5hL0+kC8Xjdnz+7lkUcWo9OZ8Hgq2bv3BCpVLApFFl9/PZ8WLVpc\n9toDAgL4+ONXGTduChYLKJV2unS5kfj46vZqTqeb4mI/BKETKlX1OdzuiezYMeyqa3gxBEGgadOm\nV7z/14LBYOC//53If/87j7w8MzExgTz11APnBY09v7mWs7bQb02YtGZuF3uGf1Wo9H+szn8gfovH\n92uYmr90br9FBDc+Pp5Bg+qxcuUriGI8spzGpEk3ERcXzZEjb5GTU4AsuwgK2sOQIU/h9XoZNKg1\nixZ9jsHQBY+njLCwsyxefIRTpzycPFmJVnsUg8GGw7EWWT7OkCFd8XoF4OeQpij643K5zzfHvovx\n46t/f/r0abKyCvF6nUiSG0E4iSieJCkpFlmWCQwM5NNPZ2O3VyuA176XoigSHh5ORISW3NxFaLXD\nKCpah9e7jXnzqmupQkJC+OSTLYSGjqV3byMej5Xy8vk+evrVsHLlKh54YDqy3Ben8yBudy5hYSsR\nBAUzZz7EmjX7qV+/D6dOFaFUnkKWJyIIGiRpLfXqVXs7TZs2pk6dWMxmM/7+/hiNxmuuUdu2rQgK\n8icrqwCTyY+mTdujVCpJTo4iLW0qMBylch2hoWYyM78jNTULQUhCkp5i5MhRKJVl5ObmsmvXdtzu\nI0RGhjF06I0olcpL2KTbtu1m1ao8lMokCgr2Y7GYqaoajFI5moCAbBIScunatTrXJQgCFouFKVOm\ns2nTToxGIy++OJk77+zJggVfU1ERy6FDKzl48ByS1AtZLkKWf0SjmY4sj8TtXs6YMQ9z6NC2K157\n586dOXJkKyUlJfj7+7Ns2ToWL/6OjAwTbrcDp/M4guDxGXGvN+Oy99Tj8ZCbm+trev17G4j69evz\nySev4nb/3EygJnT5W1C7DKWG8HbxC4fH47mgLVttz/DX5A3/TEmi/08Q5H9DY7aLUPNgXQmyLFNe\nXu5L2l/M1NTr9X9IZ4OaRtW/pQOELMucOHGC0tJS4uLiqFOnDlDNePvhh1SUSgUdOrTH6XSyefMO\nHA43MTGh2O0yJpOOM2d+YsUKmTNnzlBe3gynsxydbg9xcd0JCtrCF1+8Tnl5OcOHT0aSpqJSheJ0\nzuKhh9oxceLYC+YyZcp/Wb06lNzcLTgcA5HlEvz8FrFjx+cIgoDL5aJu3bpUVlayYcNe7HY3bdok\n0bJlc985srKyeOCBZ9i1aw8eTyA6XVNstiMolVbuuONGrNY6xMbei1KpRBRFcnIW8OSTPXxM0yvd\no/r1W2G3L0ahaIrZXIHbPYyIiKlotX0pKFhKePjn3HXXQjweB0uWDKO01IxKFYqfXymrVn3h6zJz\nMbKystiy5SAej0T79sk0atTI9381uWCdTnfJ81NRUcHTT8/kyJGTJCfH07dvJx588F3s9q0Igg5Z\n3oVWO4IBA0by3XcFQL3zigfHmTixMU888YiPcOH1erFarcyYsYSIiLG43V7effcjHA47anUYbvca\nQkLOsm/fZoKCgrDZbDz55H9ZsuQ77HYtQUFvoVCEAPfy7beziY6OJi0tjZEjZ1FRMRVB6IwspwMf\noFA40enmIstOvN5IsrNP+zZruLKX5Xa7WbXqex56aDYeT18EQcLr/Q6FQoPXm4Isx6LRrGbhwun0\n7NmTsrIyMjIykCSJOXMWc/asE0my0b9/E5566mEEQaC0tBSFQnFdZJtfipq0xp+lxHBxLWftOs5f\nwii12Wy+7jXXiwkTJjB9+nQfk/WfiH+dx/dLUFPsXFP7ZTAY/lDByd+jflAQBF+z5tqIjY0lJiYG\nu93O2bNnefbZd3E6u6NUxqJUbuPpp4fSsmULdu6cxblzVZSVdTivXJ2Nx2NDr1/LO+88R1hYGOHh\n4cyfP5233lqI2Wzjppu6c/fdd1wyZmWlDZOpNUFB/Sgv34LFUkjv3t356qvV7NxZgkLhj59fFoGB\n0Wg0A1Gr/Th4cAtjxrhp164NUE1YmDv3ZXr0uBu3ezSlpakolXuRpHOsWvU6ycl7CQwcSFBQIpWV\nWWi1Zdfc+DweDxUV5chyIoLgRJJEIBmPp5jCwqLzzNDTvP/+Ddx116f07TuegQND0Ol0FBYWsnv3\nbsxmM02aNLngvHl5ecyevQ6VqgcKhYoff9zGuHEyjRs3pqioiGXLdlNVpUCtdjFkSGvi4+v4jg0I\nCODdd1/x/Xv+/Pm43c0RhBpZqo7Y7WbS09OAvmi1A5EkB263hk2bdjBmTHURfEhICP7+/ng8HtRq\nP3Q6P7Kz04EolEo9anVbtNr7cTqbUlVVhclk4qGHnmDNGi8Wy1dADiUlk4iMXIXTeTN79+5l/Pjx\nhISEYDbrEAQDgqAEEpFlB16vC0EAj+dLEhIaoFKpfBt1dnY2u3fvQRAEIiOj8HrVhIUZady4+vnc\ntGkfev0UDIYeCIIKu70XwcEvUq+egL9/Cffc8z6NGzfm+PHjTJ06G6czmXPn9uP1GkhJWQB4Wb36\naVJSlrNnTxqHDhUCHvr3b8Kjj078XaMxf4U+55V6lP7RjNJ/uhYf/M/wXRY1D43ZbEaSpN/E1Pyl\n4/4RDnjtEG1aWhpjxz5JSUkoSuWnNG06hvDwO1iy5DtatmxBXFwQJSV7UCj6oVQakGU3KlUAbrfM\nc899itGoZNKkEbRp04YvvmhzwTgnT55kzpzPqKqyMXBgJwYM6EBq6nyMxikYDCk4HF8BsWzc6CIq\n6gkqK9NIS1uMUqnn1ltbIAigVhvYsGGlz/AB51823NhsR4DhgB5B0KDR3Ia//xeoVCvIzgajUeKB\nBwZfs8FzUVER/v7RlJe/hyg+iigew+v9DqtVwm4/jCDsRKVahtm8kRUrnmTAgI60atWPKVNeZPdu\nF7LcEFF8gRdeuJMhQwb5znv48Anc7mYYDAaUSg0BAb3YsWMXKSkpLF++G6+3A9HRUdhsFSxbtpHx\n40Mu8SBqogtJSUnI8ivAWWQ5EUl6nYCAWCAElao+CkUyCgXY7SvweBzMnr0NQQhGqdzFXXd1IT4+\nnsREHWfO7OH06QKs1iMIQh00mhCgGEmyotfrzzNF1yKKRxFFkKRmwA7s9s2oVGcxmarVJEJDQ1Gr\n87HbtwECspwN7EKtLkCpbEVAgJNFixb5XgzT09MZN246FksfLJaTCMIhbr99NApFJTk52+jRoz1G\now4oRqGoDqs5HIU4nRri4gahVBb71nHmzI+RpIcIDW1BRsZBbLZPsVgOYDS2QZY78P77H1BZ2ZT4\n+FkoFBpWr55Jw4brGDToBv5JuFLe8GqM0pr/+yXG8H85vn8ormZgakIaUN3fUKfT/b+tx4HqsG6N\n7JFer2fKlFdxu/+LUtkGhcLGkSN3061bDE5nNWOtX7/uvPrqpxQVvYUkZaLTBWK3b0Cl6kRMzKNY\nrTm88soHvP125AVtms6dO8eoUVNxOMajUoVz4MBcHnywPe3b61iz5k5KSwsICOjD2rWleL27sVoD\nsdsTsFgSsdkqycvLJSQk9DxDtvoLXJPkDw4O5sYbO7Fo0Q4kKRJIxGBQIIrpJCfX4bnnHsBqtWIw\nGHyhtbS0NNatO4THI9GlSwPat2/jW8fS0lJ69nyI3buXkp//DhpNAO3adUSlymL37hD8/L7E4QjB\n6+1ISckcRo9+imPHjrFnjwV//w8RBAUu181Mn34ngwYN9I1ZVVXBkSOH0OubAxYCA91ERQnY7Xaq\nqkQfU06vD6CiIojKykqf4du3bx/vvrsQp9PNqFGD6d+/P/fcM4IPP2yLLItoNPWJjx+K11uFRrMe\nt7sSWVaiUm0gMXEQUVEjUChUWCzFLF68nCeeGM0ddwziwQef5tChdBQKCY/nEFVVuZhMm3n88ft8\n66fT6XE4CjAY6mKxWJDlDDye/SQn6+jduzdOp5PAwEAmT+7Pa68txu3eCpwBsjAYwrj33ht47LHJ\nF8gTzZv3FS7XWEJCOuBy7cDhCODMmRL69+/F8ePLaNmykjFj/sP69Q9QUVGJJCmx2z8iMfFORLEu\nBkN7vvzyOx57LJaCglJCQqpDxn5+fpjNkWRnn8Dp1GKzLUWnM6BS1cXhmEWDBg+iUnXmxIkjDPr5\nneQfi2sxSj0ej69h9/UySiXp0q44/zT8s6/uF0CSJBwOh6+juyiKf4qXVxu/p8d3OdmjsrIyKiu9\nBAV1xmotQZKCkOX65Od/xt13DwEgOjqawYO7s3evErM5HaezFIWigJYtq/Mo1dp+ieTk5BAWFoYs\ny+zZs5fXXnuf3NyuxMb2R6PRUFGhZ/r0UURGdsXp7IQoRgNujMZXyM4ehSi6iYy8AY/HhEKxhIMH\nN9KmTSus1m3cfHMzHA4HXq+XGtHXp556hMTEKN544xMcjh/x8zMSGZnH/ffP9rUSy8zMRBRFnE4n\nH310AJcrluLiAnbsWMWkSVZ69+4BQFBQEDqdhVGjPkMUVZSXZ+Lvv5mEBCM//rgMpTIUo1GH3f49\nPXq0IympPpmZGQhCDIJQ/batUkVjNnsuEPnMz7eiVCYgy40QBIGMjI8YN64LWq0WtdqN1VqOwRCI\n1VrFiRN7WLcug549e1JUVMSwYRNwOp8ANOzaNZ3589W89NKz9OrVk9mzvyMoaATNmjUjKysHhWIx\n4eEWBKGcDh1uoqwsBYWietPz8wslK6t6wzMYDKSlpRMYOAelMgmbbTlW62cMG9aSCRPGYLPZ0Ov1\nPP30Izz77O243Xei1x/H3/8kzz03mSFDhvjEfd1uN/ffP4GmTVN48cU3OXWqLrAFs7mE2bOH07Zt\na/r2/Vkho6LCilodBsiAiMejZevWTRw+fIp69Qq4557OxMTEsGrVJ6xYsZKVKzdw+nR70tPrcerU\nl3Ts2J6AAAVms5mUlHjS0tYQGjqYOnUM5OWtwWIxAUvRaIKBUQhCQ5zODAoLNyGKPxEX9/v2zvyz\nQ52/BbXrB51OJzqdDrgwVFoTJq3pKiSKIkeOHPnVpJavv/6a559/npMnT5KamuprB3cx1q5dy8MP\nP4zX6+Wee+5h6tTr6xP7e+NfafhqP8BXYmp6PJ4/JOx4rXn91jFr1xbWUNWtVivp6emo1Wr0ehmP\nJ43o6BSKi88iy/u4++6xDBjQB6gu4n322QeZN28Jp07lUqdOAseOKXE6i1Aqo/B6XUhSLv7+1Y2h\nt2/fyaxZuyguTsFuF8jIyMNo1FBRsQmbTcJsjsDrzUGhOIrdHk1AQA6CIFNRkY3bvYg6dfxp3348\neXkf0KqVgVatupCSkuK7jhrPb+/e/VRVQWJiPRwOA+DCaPTjzTcXEh0dgM2mxGqNRZI8VFSkUlgY\nzY8/HsPjaYEg6HjttW9o06Yl/v7+xMTEcPPNySxf/hHgj7+/mYYNI9i9+whxcZWcO9cWlcpE/fpG\nnnnmdUpLS2nUqBFK5Rwslr3odI2orFxIq1YNL+jIb7fDgAG9zjNZZVSq9gQFBaFQKLjpprZ8++0m\niosNfPbZh1gsIlu3NuDll2+jQYM6OByPodXehSCAy6XnnXcW0rdvX7p2bcfOnTnExnahoKCAHTtS\nKSrKwN8/jRdemEadOnV4++3V2Gxl6PVBFBYeJy7O6Hv7V6mUSJIFQRAxGG7G6z1KQcFJbrllKiUl\npSQlGXnoobF8+ukLbN26i7CweowaNR2TyXTJsyXLMgMGDGDKlBnI8geIYiSCEIndPpHvvltPt27d\nADh79iwNG0Zw+PB8lMrHcbmyKSn5Dj+/3lRU+HHgwBa+/XYl48ffTUxMDH379mbVqkKCg+9EqYxF\nFHuwa9ejjBzZFpPJxNSp43n22bfJzFyGKLpo0MBEXNyLpKevwOW6FZstH7d7BXa7ldLSQwwY0IjB\ng0f/pu/RPwm1Zc+uxihdtmwZK1asoLi4mG7dutGiRQtatmxJv379rqrPCNCkSROWLVvGhAkTrvgZ\nr9fLAw88wMaNG4mOjqZNmzYMHjyYhg0bXvGYPwr/SsMH1YteEwZUKBSX9NT8o/JtV8NvGfNKtYXZ\n2dk888z7VFXF4PWW06lTS7Zvn4rXG01AQC4PPjiGu+6644KXAX9/fx5//OcH+MCBg7z22hxKSupg\ns51gwIB6vgLm77/fR0DASLzeKrzex3A6dVitemA+SuWTqNUjcTjK8Hhew+U6QG5uOiASF6fCaGyE\nKBZQVXWY0aNvZMCAXrhcLo4ePYrJZCIsLAyTycSXX37Hpk0uzp6NIi9vIBERNtzuluzdu5zMzGIk\n6ScMhoaMHNkNlUpFRkY5e/YsR6t9i/9j77zDq6jyN/6ZmdtLei+EEnoLHQlNmiAqRVAUCyLYRRFF\nWN1FXUSwoYiIgggioggICApLVRABSYDQSSAhCen19jYzvz9CsoCoqOi6P/d9Hp48udzMzL1zzrzn\nfMv7Go1JuFw5ZGcf4ciRI6Sm1hB2796ptGvXCpfLxXff7eXpp99HUcahqnFYre8zceJtiKKVjz/O\nAASSk7XMmTOFF154jZKScrp0acY//vHkRTuB+vXDOXMmnzZt2uDzuSgqOlIXoqtXL5EePUoYO3Yi\neXmVGI03YTROxePpw8GDjyMIN/HvWyDVjQOj0UhEhMjZsxksWbIJj6czgtCRAweyefnld/jkkwWM\nHt2F+fPfw24P0LJlLLfe+m/R6YkTxzB58hM4HA8CxWg0n1JWdgeFhd0pLxfIzFzLzp2TeO21J3j+\n+Wd/dnxKkkRwcBD5+btQ1WgEIQaN5hRRUaG43W4mTXqOHTuO4PPJ6PXVWK2FiGIxFktDQkLCCAS0\nKMokli59mfHja1zia2T+QnC7XVRUZKCqASyWUho1snDDDWOprKyiW7cUlix5lujoaCZMmIHbbSI+\nvguHDy/BZivHau2CKOaTmAg7d35HSkofWrVqzltvTb+sSssvxX/Tjq8WP3fNl1pevfTSS7z44osM\nGjSIadOmkZ6ezqZNm2jcuPHPEl+zZs1+9nr27dtHcnJyXUX0qFGjWLt27f+I74+C3++vE6n9sUrN\n/xbiu5TAL+0tnDfvE5zOYcTGXoOiyGRlzWHWrInExsYSGRmJ0Wj82XN26NCeRx9188wz7xAIxLNu\n3SGioz9n1KjhiKJAIODl9Gkv9erNJz//fny+UlQ1gCDEEAgUoqqgqjJe7yl8vhEEBUUTCOwmOHgH\ndnseLVsmoNNFMHHikyxbthm/34hG4+PBB4fxt789xY4dWSQlTeLUqX2EhralqupTSkqOEgi0wmbL\nR1GqsNmkOgfs8PD6+P0V6HTleDyg1Raj0QRx+vRpCgsL0Wg09O7dm5CQEIKDg3nnnRVoNC9hMLSn\npORFiooCPPvsBkQxn/Hj36V+/c7s3r2UzMxDTJkyDp9PYN++YpYuTSM5+SjDhvVFr9dz4409WbFi\nC/n5RxBFH0OHptQZnRYXFzNmzCRKSh5DVdvidq9AUSYSFvYCoqjF738Jh0ML6DEYXuDBB6fVjYnb\nb+/Ps8++ic93DkmKxGAYgkbTgF27muNyuZg/fzGff74TjSaafftKuP76rnVVeTffPIzQ0GC++GIb\nQUEm7PabOXCgE5WVIjpdd0TRgqJYmDZtNp06tScuLu4nK5fPnTtH27a9OH58A4pyAI3mHFFRZ3no\noU2sX/8l69en4/V2AVKx2T4lMrKSe+65kfff1+PztcHlEpHl78nPd7F06UruumskSUlJFBR8jdfb\nmZiYDthsX6HVunjppeXo9S9hsTTi668XoijvMmfOdB59dCTTpy9Eq22F378HnW4MQUHNiIlJJS3t\nnwQHjyQo6A6OHl3M+PGTWbduSV1O63/4adT6WPbt25e+ffte1WOfO3eOxMR/W2UlJCSwd+/eq3qO\nK8VfkviA83mXH8/h/SeIrxZXurqs7S2EHyfw/PwKgoObnz8u2GyRpKWlM2bM3URHR2O323/2c6qq\nyltvrcBimUJISAp+v50FC/5GSkoLhgzpxowZS3G7GwN+FEXCYJiL17sRWV5PIGBBEGxI0jY0mqmo\nalNMppYEAtEYjRVotVY2bEjntdc2U1WVC/wNURyOJOUzb95dREQEU1xcTGiom+joYE6dyiUQqFH6\n0GorCQq6FkWRKSpagdfrRhRBry+kWbMoKio2odV2RaNRcbm+45VXis/3jHmIilrCp5/OJyoqCp/P\njyhacLu/o7p6O7AJVTUgywdYtuxprrvuYT7//H0kKZUlS94iNtbIuHFLkSQNmZl72Lnze/r1647V\namXs2KG4XC50Ot1F9yMtLQ2frwMWyzDc7ipU9Rm83g54va+SmpqCICRy9OgaFCVAixa9aNfu372M\nUVFRjBjRi02bFiCKdyOKWhSlDEFQ2bp1K2vWnESj+RpRNFFZuYKHH36GLVtW1v19nz596NOnDwCv\nvPIWX3zxPX5/T6ACVT2B359Nbm4evXuPITJSw6efvlcnxn0pPvvsaxo0GMukSQ9w9OhhHI5tvPTS\n80RERLB37wE8niAkac55MYaBnDzZkSFDrmflyomcOVONJCWh0XxCp05TWbduE337dkOr1ZKcnExR\n0dc4HJ9Tr14SqtqE4uJEwsLaAmCx3MvatT1wOg3UqxfG1KkjzvcqJlG//ki0WiN5eXkIQjN0ukRE\nUYPVOpYzZ97FZrOdVzW6WJLtcvqkF6Kqqgqn00lkZCRwZeIXfyZc7eb1/v37U1RU9IPXZ8yYwY1X\nUEn0Z/r+/pLEp9Ppfnb195/a8dWe96cGyS8RxW7Vqh7fffc10dHX8/3331Na+g07djTl2LH5/OMf\nd/zAC+5S5Ofns3XrDo4cySYuLp6ysjIMBiPQhIKCArp168bQocc5d+4Tysv9mExj0enaIAh6AoGF\n+Hy3YbU2AaJxuaJQ1TAqK3ORJD95eTvQajXIcnPcbh2wCBiOqkr4fIlAJ2bPXole35i0tGfo3fs2\nLJYDVFdvQq/3otMNBBKQ5SLCw/Nwu9dQXGzlppuace21Y1i4cCdVVbuRpFKsVj+FhY8TGjoSVVUp\nKnqT995bwoQJ9zNsWG/mzZuG19sKRWmNKEoYjQa83muw2Yr4/POZ+P0TUJQq/P44srI+Izc3nQYN\nOhMWlkxe3rcX3cNLWxRqlWRkuQSDwUBYmJXy8uMoSgkJCQcoKYkjIuIaxo2bdt5x4RBHj2ZdFKLr\n1asXjRvP58SJCchye3S6T3n00fHk5+fj93dHq60p/dfr+5OT88Jl72VxcTHl5QZCQ09RUnKWQEBC\np8vF7T6HTvc1Wm0TCguXcN99T7F588of/L2qqpSVOYmPj0MURaKi+pKf/2+7pbi4CEBLjQZpzTjW\n6YyEhITw1lvTeOyxt7FYQkhKeoWwsJacO7cLqGkbCg01ER9/FyZTLIGAi8OHn0QQclEUGRDIzv4e\nt9vEwYO9KCry4HBsZcaMR+jf/zibNn2K0diT8vIzqOoOtNo7EATw+8+i0wmEhobWXeOF+pm196YW\nF5LhmjVf8tFHuxCEYMLCXEydek/d7v2/BVfbi2/z5s2/6Xri4+PJy8ur+z0vL+8nhSZ+T/wlie/3\n9uT7Lfipa/s1otgPPHA7VVXz2bVrLWVlNjp2vItGjW6kvPwwS5Z8ydNPj60jeL/ff9EuJTs7m0cf\nfRWHoy+FhQJnz64mNLQvgpBJRMReYmN788or89m5s4KIiEFUVW3G691HUFB3Gjdug8s1htzcDJo1\nm8yBA1NRlOUIwoNYrSY8npWkpsZRUNCGzMxsfL4aGxk4jqq2RJbtCMJRDIbROJ3lOBx72LJlIlOn\n3sXIkW+zcOEq9u6NwO8/iigW0K1bDyZPvrdOwSUvL4/Ro6vxer2kpAxm2rS5lJc3BITzuapG2Gx7\nCQoK4qGHxmMyGVm2bC12ez4Wy0QMhki83k8wmy3YbE5Ah053D7JcjseznZ0716PTJQDFqGohW7Zs\noWnTpheFcmrzrn6/n+7du9O69SccOvQwqppCVNQqwsKaUlHRA4dD4ujRM1RVbeKmmwahKF602oub\nr/V6PWvXLuXDD5eSl3eGbt0eYPDgwWzbtg2tdjaK8hCiGIzXu5o2bZpcdiycPHkarbYrd989lkOH\ntrNt2w7s9uNotUMIDa0RczYYbuXEiX/W/Y0sy5SVlWG1WjGZTDRqFE5u7lFiYlrj8dhQ1VzCwpJx\nuVyMGXMXCxZ8Rnn5TOAaNJq1dO3ajKioKEJCQujWrQUlJU2lsCwAACAASURBVK0wGMLIy1tLYqLK\n9OmLqK42Y7OVIwivEBnZEUUp4oEHbuCLLzaTnj4Ruz0Ku301VuuN+HxxnDlTjSxXU1paSmpqG5Yv\nf4Py8s1IkkpCgguP5yn8/lYIwjfMmPFkXe7+0h3e5fRJFUXh+PHjLF6cTnT0NHQ6K6Wle3jzzWXM\nmvXUT861/w+4GpZEP7Zh6NixI5mZmeTk5BAXF8enn37K8uXLf9O5fi3+ksR3JRBF8aLV4B+JSwfO\nhZWnOp3uF4liBwcHM2PGZJYv/4xVq4Jp0KCmqddojKa62oUgCOTk5PDyyx+Ql1dBbGwwf//7/SQn\nJ7N8+Xp8vpGEh3fDbA4iEFiA2/0NZrMGs9lLQUEBy5alodWORhD8hIa2QRB2EhS0BJstEqdzHUFB\nCnv2TEGWBwB7EYSHcTiCaNSoPtdffz0ffPAdBgOoakNgKHAv0BbIRBDs5OefAnoDDyAIa9m58zi3\n367lscfuYs2azWRnnyIpKYzhw++o01Xcty+NxYu/RxCaIMvnEIRM+vbtyNGjC9Bo4hEEBVVdRq9e\ntyIIAjqdjvvuG8t9941lwYIPmDHjBmQ5jLg4P2+88TJjxryA3Z6AIAThdpcjy4mkpx/l2LHHadTI\njc0WjEZTDLzNG29MpEePHnVq/BqNps4yaPnyd1m5ciUFBSUEBV3P3LnfERQ0HaPxLGVlmzh4cBfN\nm5sJDz9FSsoQZFmmsLAQRVGIiYnBbDbz4IMPXHR/+/Tpw5gx+/nggx5IUiixsQrz5i38wTg4d+4c\nR44cIy9PIiIimQ4dBtKwYQvKynSsWpUGeAATXu+OOof1vLw87rnnCfLz7QiCi6efvp/hw29g+fJN\n5OXtR6PxM2xYuzoJv5iYGHbuXMvUqTM4c+YbOnduxbRpcxGEGof1Z54Zz7JlX5CXt4+UlFgyMmQ8\nnhHEx7clMtJGfv5M7rorgebN+xMdHc2NN17H2rVrmTlzEdXVfZGkm7HZ9mM0NqCg4DRlZWUsW7aF\ntm1fJCQkGVEUyMlZSu/eVURFRdGixbCfLJy4tLijdq6Vl5ej0bRAp7OiqhAW1oHs7MV1ItUXNoP/\nmfOGf6T7+ueff86ECRMoKytj8ODBtGvXjq+++oqCggLGjx/Phg0b0Gg0zJ07l+uuuw5Zlrn33nv/\nI4Ut8D/i+1H8p3J8F573Qo3Qy1We/pJjduyYwpo1n+FwtEWvD6Gk5EuGDk3G6/Uybdp83O47SUjo\nRGXlIZ55Zh6LFv0Th8OLRhOM3+9Ho0kmPHwCYWFb6Nx5ImVlc9iwYSeqOoTg4BtQFB8FBUdQ1SCS\nkvKxWnOpqurHgQM7MZun4XCYEYSnkaRpWK0NcbvX07lzZ6zWYCZM+DtQD7AAsUAUkICiVADH0Ghm\no6o5KEoCVVUOsrOz6dixI3feORyoCZW99tp80tJOEhlpxW5XaNjw74SGxqAoMmvXPkd8vB27fQeF\nhT3Q6yWefvpeBg8eVPcdqarKunXr2bfvOIMH92P48P6kpqai1+sZMWIQa9ceo7Q0A1UVMZlaExo6\nEJ8vm6NHP6Nly8+RJD0ez0kmT57AunXN+OSTz8jLK6V9++bccssIoCavfMcdNdJuO3fuxOvdBGzH\naOxMRMQgKipG0LNnR3r3HoLZbGbx4tVkZWkQBC0xMbu4554bfyDaLAgC06Y9zQMPjMFms1GvXr2L\nWiygpr1gwYJd+P1tyc09zLlzs+nQYQAazUkefHA0iuLl88/7Igj1MJkyeeedeQA88siz5ObeQlDQ\nnQQCRcyceScpKS25//6R2O12ZFlGp9NhNBrrCCA+Pp4PP3z7suMwPDycCRPGADXRhTvu+DuJiTVO\nCjpdEDpda0wmU134XavVEhkZS3z8XVRVRePxVKAo8ZSVvYBGU8Dddz+Pw1FKz55DURSZQEBFUYKp\nVy+Ivn371imX/BKnA0EQiImJQVF2oyheRNFAeflBkpKiMBgMF+0SgToNzQu99v4sZPhHClQPGzaM\nYcOG/eD1uLg4NmzYUPf7oEGDGDRo0A/e90fjL0l8V9OT72qj9rwXurlfDY3QJk2a8MQT/Vi8eAFV\nVV6uv74lt9xyEzk5OVRVmYmP7wxAWFgKRUXh5Ofn06dPe3bv/gSzeTyKkkUgsJ5GjW6nquoEMTEq\nJlMoJpMep7MAlysNhyOC+vXvpWPHfqxb90+SkzsSCGxGq41HklQ0GhVFCcNi8ZGYGENa2kG2bcsg\nMbE+mZn7CAQUVPU6oB9QAuiBJwkEVqDTxaLV6nE6czCb+9V9LlVVmTTpefbuTURVJ7F377f4/e8S\nG7ubLl1aY7N9w7ffHsDtTkaSWhET0x+Nxs++fWkXjYNlyz5h5sxNaDQPEAgUsW/fbFatakxiYiJj\nxw7G4djMiRNBHDpUjskUhMXSF7t9DaqajCjW2PpotclUVLgYP34SR47Eoygt+OCDN5k69XX69Utl\n+vTJxMTEUFVVxXPPzaasTEWW30GjmUZERGd6927L0KE3cPToUWbO/IgTJzw0adKZzp0HUVJygm3b\n9jBkSP/L3t/o6Oi6YqWlSz+muLiSa65JoU+fPvzrX+lYLP0JDa1HXFwK6enriI9PZ/jwwcTHx/Pa\na9MZN+44lZWVNG/enLCwMFRV5dixkwQFLQVAo4lBVXtx7NgxmjSpCaVaLBY0Gs0P5lNFRQXHjx9H\nFEVatWp1WYcFrVZLTEwQFRXHCA9vid/vRFWziIzscNH7ZFmhYcMGlJaWUVGhpbw8Da+3Ekn6EJst\nHkXZxI4dkxgy5DPc7nL0+gM0b34bUKNaVBu1udS54qfIsFmzZowa1Zzly59FFEMJDbUxefL9F83B\nHwuT1lzzxYLS8Ochw5+DzWa7SJHp/yuk55577rn/9EX8J/BzYczaNoELZZj+CHi9XgKBAB6PB4PB\ngNlsvmpiuwkJCdxwQy+GDetDu3atkSQJv9/PmjWbMBh6IEkGfD47DsdabrmlDy1aNCcmRiUnZzUR\nEUeIinLhch0gOPgUjz46mogIKydOHEWSLJSW7kCvj+O6664hLCyS7OwiPJ5CdDorFRWH8fsj0GjO\nYjR+TpMmrYmJKWfXLjeKMgynsxF5ed8gig1QVT+qGocotkRV/QjCVmAnsryXQOAbwsPtjBlzc93D\ntLq6mhkzPiAoaDaFhSCKqbhce3A4FE6cyCE/fxUazWuoaj8kaTiVlY/jcuWRmZlBUlIkrVu3JCPj\nMI8/Pgu3+zkslvZYrSlUV1cSHX2W9u3bERERQdu28VitOezduwSj8V4kKRiXawGBwNc4HFn4/YX4\nfMeJiTlNdraK0TifsrIZ+P0jcbvvprhYZcuWNxg58gbeeus9tm+PJyxsHorSD7+/goYN97F8+btU\nVFTw6qvrcTgGoapDqary4HB8T716bVGULDp0qAkNffHFlzzyyAu8995y8vPz6Nq1Az6fj9GjH+bL\nL80cOdKYjRuXYzQ6cTpBVZuj05nRaLSAh549Q2nVqiWnTp3ihRdeZ+vW74iPj6J9+5Q6Uli1agPV\n1Q3QaOphs5Vjt8/GYoHWrRuTmZnJffc9w9tvLyYrK4vU1E5otVoKCwv55z+XsGdPKPv3O9i//190\n7tzisvOoefNEdu/+mPLyQzgcm7nzzk507tzxoveYTAbS079Fq1Wx2bZTWfk9Wm07TKbxeL1+FCUK\nh2MelZXfEBWVyeTJo2jatCkajQadTlf3r1YBKBAI4PV68fl8dbqWl+6M/H4/DRvWo2/fNvTv34xR\nowYTERFx0XVdGCaVJAmNRlOXX659vZYMLyVI+GP6AmtDs7/k+bF9+3YaNGhA06ZNf8cr+8/jfzu+\nn3jPH7njU1W1TqlEq9USEhLyh5T/BgcHM25cfxYufAFBaIYsn+See3rWhZsGDuzPwIH9UVWVBQs+\nZtu2EjyeGGbO/Iynnx7Bffe1ZOPG7Wg054iO7kFiYiKKopCQoKG6Og2NpgmiuA1J+giNRkNUVI0t\nznffVaAovYiMdNGiRXuSk0eTmbkCaIogrEeSqtFoduD3q8AkJCkCs/lbFKWcL77Ywf333w7UClgH\n8PlsqKoGu92NKGrR60V8vs14vRATE0NBgQOv14eqNkQQnkEUs3jyyRksXrwGjSaSQCAYRTFRWuoi\nKkoAFC78+hMSEhgz5i7q1Utg2rTpVFdXExKiIgiDqKxsg822g+joozz22FSmTPkCWT5LIACieD+K\nko/F0o2ion9x6tQpsrLyEYQbkCSJiIhw3O4+hIUdx2QycezYMRSlOdHR9SkuriQoqCfnzs0iPv4I\nHTrUPHzT0tJ48cU1WK2vEhQUzvr1b2AyLaRt2yZkZ8cQFlZj9Ov392LOnFuZO/cFVq/+GuiJz+dE\nFA/SuPFAcnNzGTHiIVyu+5GkGL77bi52u4MxY2rCsW+88Q/uuedpysuTcLnyaN68HcHB9/LqqyvZ\nuXMHWu2r6HRJrFnzEllZD3LbbTeTmZmDz9efevVqRMbz8rawY8duhg79oWB0/fr1eeONJykpKcFi\nsRAeHn7R/9tsNmbMmMvq1eux2yPRajsjywqCcBDwEgj48fmyCAtrRseOb+BwLPhBmO5Cgrpwx3ah\ny0HtzrCWjFRVRa/XExcX94udDi7XL3gp+dUuumt/XphnvJo7w1/rvv7/3ZkB/qLEBz9PbH8U8V0q\nmabT6S4bPvo9cd11fWnZsinFxcXExqaSnJz8g/ccO3aMrVsrSEychChK2GzZzJu3hLlzn2HQoH6U\nlJTw9ttryclx4/fb6dDBT2lpfTZuzEWnC8XnCyMQMJGbq+H0aRFZ1qHRuDAYwjlwIIv4+EQ6dWrL\nxo3H8fkkfL48goKaU1zcD42mBVFRTRHF7pSW3kJVVTMURSEtLY2KigoGDGjLV19NwefrhKqeQK+3\nYjKNwGTy4XCsR1W/Jzi4JcXFmxEEN6pahSh+jMv1ACdOxKKq/yIhIZL8/BdQlLspKTlHdPRXDBgw\nj4KCArZv344oivTt25c+ffpw7bXXcuzYMUaNeoH4+NdJTNQgy3fhcIykcePGhIcXk5e3FFnOQ1XP\nodFocLlsaDQOQkND6d69HV9//SkVFe1xu2UCgflERNh5662ldOjQCJ/vHLGx/WnQwMWpU1sQhDM0\na5bEkSMuNm78nqKi0/j912Iw1AMgOPgutm2bQnr6Ic6dy6K8/BFiYx9Er29IIBCgS5cOCEI63377\nBVFRJgYOvJaYmBjeeeddHI6bCAm5EwCvN4GFCyfWEV9KSgpffPE+kya9TGLiTBIS2iMIIhkZVjye\njgQHdyAQKMPp1LNrV0NMpghOnlxPs2at6saNThdOdXXZj449o9FY5xl5KaZPn8O2bUbc7ubodAsJ\nBArRau8kELgfn28kPp8JrbaQ1NSXCQpqgM3WgczMzCsqka8lKK1WWxfdqS1Gqi1sq/XtvDRM+mvI\nEPhRV4Va7z24mAwvV3zze+Ov4MwAf2Hi+zn8EcRXW7giCEJd4UptXu/3Ru3Eq+kvk4mOjiYuLg5J\nkvD5fD+Y4DabDUlKRBRrJq/VmkR+vr3uGEFBQTzwwA2UlJRgMpmIiIjgzjv/iV7fDkXxotd3wm7P\nRpbjEUU7BkMRHs+3FBfLWCwuKiuXcvZsExQlHrPZT48eIzhxYjPl5T50ugBVVTkoSiGSVEaXLk2Y\nO/cDtm1zAo0AIzffnEBZ2Qk+/XQjknQdgvAZkZG9CA3dTUzMhxQUFON0FmOxTMFgqKCoqAuS1BOj\n0YjH04KiogcZPPgR0tJWkpTkZ9asN/B4PNx22wRstl7Y7ekIwmxGj76eCRPGoSgKkqSnVrRaFLUI\ngha9Xs+KFe9yyy0TcDjCCASeRqcbSHX1BgYOrDEGvuOOUSxduo4jR/oTCEiEhKRgNKZy5kw9wsNL\n6dhRZN++9xHFCJo1O84999zJunV7KC3tRlhYSwoL11FW9hWxsXciCBIeTw4lJbkUFQ1DFO/G5XKT\nkzOViIj6DBnSk/LycmbNepsTJ86i0aiEhj5KXFzceScGEb8/B0WxI8vVyLJStwhzu92EhYXRpEkL\nzOZGCELtA9yDKJYCYLfvxu9vg8ViJCGhF1VVCseOLSM2tjOK4sft/pqUlB4AZGRk8Pe/v0Z+fjGt\nWzdh1qxnfrKP9LvvDmE2P4UglCJJ4SiKD4OhGo/HSuPGIZSUnKJNm1eIiup4fjwXYTb/tLTWpZBl\nuc6NxWKx/CAseKn/ncfjuSpk+HMWQ5fmDGv/5peQ4a8tbvnfju8vjNoB83vE4mvNbWVZrnNOuFBI\n9vdG7QpTVVU0Gg1Wq7XutVpPr0sneE3z7laczp6YTFEUFGynRYv4ugeHJElERUXVNfnWSMKpOJ3l\nCEI9ZNlxXiw5GFARhAiMxp7AesrLDwHdqa5+iIgIM273v8jM/Jj4+Ciqqo5SUjIP6IAgbCEkxEtZ\nWTE7dpSgKHdRXFyNJMXy/feLWLXqNcaOHcWECS/gdhuB3cya9QQDBvRHlmUyMjJ48MEXqKw0oCiR\nhIdr8XgUHI5KFKWcc+eOMHhwBx5+eAgRERE88MCTnD0bgtv9MaraH1G8h48/3k9e3ossWvQ6jRvr\nOXFiNnp9bzyeLbRqZSUpKQlJkujatQe9e48lO3sLpaWnEYRmjB3bDUEQsNvttGlzPY0a9WTfvmL8\nfgvZ2Z8THHycqCg9U6aMoU+fU7hcLuLiuuB0OikqMp2XnVNp0+YWcnM3UVg4Ga22HjrdTlRVR1zc\nY4SEeMnJycNmM1Kv3lGuu+5JJkz4O4cP98BsXowoljJ16kheeuk9/H4jFRWnqK4+hSR1w+f7FI+n\nmN6972T06P488MA96HQ6RoxIZcmS1YhiSwKBUrp2NXDkSDqHDzdGlv2I4m0kJw9CUVQSEpIICrLg\n872LJAmMG9eV8PAwxox5iLVr96AoUVgs7bHbGzJmzETee28WR44cwWg0oigK8+evxO32MmJEX8LC\ngikqCiBJxQQC21HVOEymAzRqZGT+/EnY7Q5eemkV3367H5crn5YtK2nR4vYrngO1uT6DwXDRHLwQ\nF+4Ma3Gp/53X6z2/EPpzkeEf2c7w34a/LPFdyY7uSlRUfgkudU74sQb032vHd+EkunSiCIJQl6C/\n8HpryTAyMpLx43vw/vsvU1Ii0KRJJHffPQK3213Xx3UhjEYjMTEK6emrcTjMqGonVDUCVd2I0WhF\nlquA4whCJQZDCwKBoeh0KZSXH6NBg2swmXYQGdmJpKQY7HYngqASFTUJvd7Hp5++T0FBHPn5xWg0\nDRAELwUF+eTn59OuXTvmzPkHjz32EtXVJp57biGVlXZuvXU47dq1Y/36BRw4cIDp09/l9OnPgDbo\n9Wto0OA2/P5KBg3qUVfIsGvXfjyeVFRVRFVnIsvZCEILsrJmkJOTw8KFr/L66+9y4sQ7tGiRxMSJ\nL9c9tBo0COfYsZO0aDECWfaRl/dh3e7GZDIhCC7sdht2u56goDbAXvLyBJo0KUEUxYtEf4uLixEE\nD5IkotVKSJJKp05NGTq0KaIo0rz53xg//u94PEUYjbGEhh6isvIcZ88O4vHHl5OX9w16/Uw8Hi+C\nEMDhCCCKszAaWyOK3+D3TweaoNMNRa8PEBJyBx999Hfatv2OXr16kZLShtDQYPLy8rFYYpk5cw2q\nOgpRHIyqpgMfcPJkDJWV2cTFnWDq1MHExUXjdDpRVZX77nue/ft1BALLEMXmuFyvoNdLZGZWcvPN\nDwN9cDozKCvLJC7uTbTaIF599VVuvTWZL798k+joZAoLn0Snc9O6dUdeeeVl6tevj8/nIzJyFRUV\ndgTByqlTdqZOnc6bb874yR1R7cJTFMW6HstfgloyvHDMX7pw/L3JsPZ8l6rQ1Ob1fm3EyuVy/UB5\n6P8j/rLEdyW4WuHOH3NO+LFzXm3FmAsJD648gX7pard3756kpl6Dw+Gom8SKotT1GWo0mrrX33pr\nEfn5TZAkJ4LQA3Ch0ewjEMgGfISHR9OggYaCAhs63QPk5e0E+qOqFmy29VgsAYqL3VRW5qLTXYtO\ndwuKYsPhWMzp09nk5BxFVfsjCDKCsJugoCC+/PJLdu8+xpYte4D+iOIQFGUnTz75Pnq9xNChNTu5\n/v37k5KSQr9+t1NVtQ2zOYjk5K6oalHd/ZZlmcpKG7I8EJhHTWuFFZ0ugKoGEEWR4OBgnn9+8mW/\nu44dG7N//2ccP/4NFovEDTc0pUWLFkAN8Y0c2Ynp09eg1zfCZvua8PAIwsKiiY01/uBYUVFR9O4d\nz9ati5CkpsjyUW66qTW33DK07v4+8cSdvPLKVCoqepKd/RZm80KiotpRXb2ZQOAgOt0ZtNruuN3H\nUZQwXK4kKipcBAJdgHAkKQhIxu//Ho8nC4cjhE2bttGzZ08EQSApKYmkpCQ8Hg9paYeRpNnUeFa2\nxe3egM+3hoKCOCTJy9KlZUBb/H4jJ0+uxeeLxGC4GY9Hg6pqUNVBuN1L8PuLCAmZRUTEjdjtr+D1\ndkeWmxEUFIqqTiQt7XVWrHiNw4cPYzZfR9euXetECgDOnj1LWVk0Z8/6qag4A7QlO3sjMTGv88wz\nT152HtQq6fzULu/X4HILx9+TDH9MhaaW/Px+/0Xnv9B09ufm/39L68VvwV+W+P6Iys6fc074Pc55\n6fl/DeH92LF8Pl+dsWWtWe+F5pYOh4PTp0/jdrvZuPEIcXGzych4iECgD/AmcD2RkckkJWUTH7+H\nN998mkmTpnPsmEJkZBylpXciy0XExQXj99enrKwxqhqL2z0HWdbjcm3G46nGYrkFr3chsBxRNCMI\n4bjdEcyd+ynFxQp+fwegEHiDkJDX8PlyWLToK/r0ubbOZ66oqIji4hK83ok4HGY2bJhIp05tiY+f\niizLfPHFRgQhGINBwOOJBp5BFFshikdJSQm+bAFQLRYsWMLbb29AFJvj929hypQ7uemm6y56T/fu\nXbn33kLWrSsjOvoGrNYEqqoOER+vsHbtZrKzy4iLC2bgwO4EBQVx990jad06neLicuLiOpKS8m8R\na0EQGDFiGA0bJrFnzz5efz2Y+PiO5xdRLgyGgcBkvN5OKMpBRLGIQMANJAHFgBtVzUSWQ/B4MsjM\nrMbvD2HjxmwaNlzGuHF31J2ruLgYp9OFz5eNLMciCBpU1YHJNBmDIYGoqDC2bBlFSkp70tM/xOPR\nIss7sVgaYjA0we3ORJa3o6p7iIgwExRU074gSQZU1UkgUFvkUYnJpCMhIeFHi1UkSSIvL5OKimq0\n2oUIQhA+X2cWL57OPffcXud4D/82Zr5QSef3xn+CDAE8Hg+1BtS1TfyX0ye9NEz6nxLl/0/gL0t8\nV4LfQkJX4pxwtc95IS5c/f0S5YrLoTapL4riD/oKa0MxZWVlPP74DEpKwvH5KiktPYnBUI7DYUUQ\n9lLjdtCXiopv6devLx5PJRUVFbz44pM88sg0CgpkDIZq7r57GAUFPtzukRw+XILLVZ/Q0OvRaF6m\nqkpL/fpLKSn5COgPFCMI16LRePF6V1NWZsbvjwe6AJXAfmy2dzGbbWi1TamqqqK8vJyPP97AqlUb\ncLuHIIojURQBRdHi8y0jPDwcp9NJWloO3btP5NtvX0Wv743T+SWiuBqzOZ7Y2P44HA6Cg4Pr7lXt\n95uXl8e8eWuxWD5CownF58vntdfG0KpV87pc1oABA7BYLNx00/WUl68mMzMDu/0oSUkuSkoEsrIS\nkKSmnDxZQG7uah57bDRarZaOHTteemsAKC0txe1206pVK1JSUti8eR/Z2csJDh6BqtrQavMZMOB1\n9u+fR0lJOIJQgNM5Go0mBVEswGC4Dkn6Hr8/G48nF4NhAtHRJhITRRYvnkH//j1ISko6r5CzgjZt\nxnLgwNN4vT3xevcDZahqFElJMYCELMukpa1Bq12NwWDAbl+N2z0Dg+E0Ol0VFstJYmMjqK72cvbs\nXBo1mkZw8DUUFt6NzydSVhaJTvcJjzzyQ23MI0eOsH//USwWA717p2I2l6CqOlRVQVGyMRgikeVw\nbDYbcXFxF7UJGY3G3ywE8VvxS8iwtkfw0sb7H4Pf768rTLowjfJT+qQXkqHf76e6uvoPrSj/T+F/\nxPcT+DUk9EucE67WOS/ET+XxfilkWa5bPRoMhp9ss5gzZwnFxQOJjh6CqsoUFj7BkSOTgesQhC9R\n1QIkKR3woddrqa4uZffu3ZhMZv7xj4frvPFCQ0OZMmUORqOZ1NS2VFZWUliYyM03P8rs2ZtQlGz8\n/qbAIARhIZJ0EEFIJzw8ksLCUmAikAKIwFMoymoUJYQ9e7J56ql8KislTp++htLSQchyJpKUgSR1\nQpKM510naqr7goONhIc3Z9iwN8jO/hfp6RKRka9jMjVi06YdwAIaN67Hxo3pSJLArbf2ZsCAazl4\n8CCyHAposdt3I8suHA43d9wxFUW5EUE4zcKFq/nkk3kEBQUxbtxICgsLUVUVk8nE9OmrOHs2m+rq\nYEAhK+sIw4bl0qhRo8ve60WLlrNq1X4EIYiYGC8zZjzOvHkv8tRTMzh8+F3i4yMZPz6VlStnUVra\nEllujSDEoKqVyLILg6EFUElCQhBdusSyd28oERENyMt7h337cpHlAOPGTWHp0tlUVVXhciXQpctd\nREd35euvV2Gz5Z9fXO1GkizY7V9hNrtxOHoiiuGAA6u1D07nNIzGQkJDNZSXJyBJrxAbqyEz8z5y\ncnoSGRnOrFmP4vX68HiKGTDgeVq3bn3R5929ew+vvbYVrbYvgUAFW7e+zYMP3sLDD78BfIVe3wu/\nfz+RkRUkJCRcRARWq/VP+0D/OTKsba34MTIELiqW+ylZwx8Lkx49epQnnniCbt26/X4f9E+Evyzx\nXW2HBkVR8Hg8eL3eK3ZO+LFz/hriu9phzdpciF6vvyLyPnu2FKu1HQCCIJGQ0B+D4T0qKxdhMo1G\no7Fgt+8DAhQWFuJ2n2DFinBEMQpYycSJ/ejYsQM2u39jIQAAIABJREFUm43u3Zvw2WefERraF1mu\nJj7+LP3738XKlZvZvv01AoFWgICqRqDTNcFkKqR5cwNlZcX4fAFqhrXt/E83fv/1mM19+PrrxXi9\nrZCkALJcAgjI8jIUxYnf/ywaTVO2b9+OIAjUrx/EyZOr8fs74/OVAZ0QxU643dlUVtp5//2PaNdu\nHHp9H9zuEmbP3sK//rULt7sR5eUBioruQacbhixLuFw6YmJuIzLyXmS5kjNnXmbdui+4447RaDSa\nOkcHp9NJbm4W1dXDCA3tjaqqZGcXMXv221RUlHPiRCFms5WHHrqV2267hfT0dFasyCI29hU0GiNF\nRZuZPXsxM2c+zUcfvXVRYVZ2dgU5OS1Q1Swk6TFU1Ybff4hA4CsSEkJISAjh0UfvwGZ7j+PH36e0\n1Isovo7BUEZFRRrTp8/hoYfuwOcrw+/3YbMFo9XeQUiIEVG8hsrKxeTkfMTYsUNJTp7AxIkL8HpP\nYjJFoiiHUZQwrrvuC9LTX6aysg3l5VYaN65Pw4av06zZp8yfP73uWv1+P06ns+5BX4tPPtlGaOgY\nrNb658ech9DQIJ599g7eeONNXK5XqV8/mg8+mIEgCHg8np8lgj8rfgkZAufzrbq6913psycQCDBn\nzhy2bt3KokWL6uTo/r/jv29E/IG4krj3b3FOuBx+KfFdbcK7nKvAlaBFi0Q2b96G0Xg3iuJBVb9j\n8uSH+OCDVWzfvh1ZbogkfUVMjJVz58KoqtKRmjoavT4Ep7Mjr732FDfckEtIiIn+/a/FbDbx/fdb\nMZu1DBhwI3q9nupqO6oahapakKTP0WpbIYrf0KaNyKuvTuStt5by0Udf4vWWIYouVHUvkIokJeJ2\n70Cn64PdvhVRjAb6AnuBxajqFsDIN99k8s03zxMT04GoqHCuucZIv34KGRlGzpypIhBI59y5D1GU\ngfj9SezZ8zU6XRaC0BSv9ygVFZFce+04mjb1k5aWiar6CAkxo9XeitN5GvgIt7sCj8fG5s3fMWrU\nrRc92MxmM/HxwRQVebDZinA68zh3zs7y5Xb8/sbodHbq1ZvESy/NJyYmEofDAaSg0dTsVMPDu5CV\n9Xnd8WoffrIsU79+JIHAIRRFQJIao6o70ekaExOjpWvXpiiKj/T040yZci8PPfQMstwfi6Wa+vWT\nACN5ef+icePGdOuWxldfzSA7243T6UEUOxAcPICIiIYIwgu0bNmY4cNvoKLCybx5DyBJsXi9p2jQ\n4O7zhVImBKESh8PFsWOZeL0HSUiorLvWvXv3MXPmUrxeLdHRWp5//mHq1atp1Pf5ZESxRlavpofS\ngCwrTJjwAI8+ej+BQKBu0SZJ0vnq2T/nLu/X4EIyrA3h1kZjgJ/dGV76XWRmZvL4448zcOBANm/e\n/F+5QPi1+MtqdQI/u5urnUiXywvUkkRNE3CNkLTBYPjNE+2XaIRemsf7LaRXm/xXFKWueOWXfJa2\nbZtz+PBacnI+w+lcy4gRzRk5chjDhw+mbVsrSUnleDwxpKS8jUbTj5ycAIHAEaKjO3Lu3DYyMg5i\nsw0gPb2KtLS1jBt3G9de24VOndoSFhZGRkYGixYdx2h8C6u1G4rSGFmey0031WPRolfJy8sjOFiP\nTncWSdqLVvsNOl0zAoGpaLXDCQS8QAZe71kE4SlU1QREABuBF4G7keUvkOVxeL31cTi+x+WSGDEi\nla5du7Jx4xecPr0OVZ2GJLVEFI/i8/nR6+djNPbE42lGRcU7HDtWTFFRJooSScOGbRkx4nqcThd5\neR+jKNcgijciCD6io8OIjnbToMHFqiV6PWRnnyUyMoaMjN1UV1cTCPRFEIaiqjpE8TB6fT+02v20\nb9+KHTu+w2y+BlHUUFb2LU2alJOcnMDBgwcpLS2loqKCjIwMmjdP5vjxL8nLO0Yg4EIQFDQaK8HB\nB2jatDt2eymHDq1mz54iPB4bgYCNhg1vRavVU1W1ms6doU+f7ixZspw9ew7hdFZSXb2LQMCG17sf\nVf2e+vU74/efJTW1LR06tGXo0Gu5/voUhgzpz9696eh0rQkKakBm5rO4XBX4fMeR5dV4PAHatEnE\nYNDz1FPzMZn+Rnj4bVRUhLBnzwcMGdIPQRCori5h8eLnOXRoJUePLkavP86jj47BarXWRVxqw32/\nNMXw34TaHbEkSZjN5joy1GprBBT0en1dWkJRlLrFrN/vZ8qUKRw/fpwNGzYwf/583n77bW6++ea/\nRCXnhfjrUPyvwI+FOi90TqidZFfznFeyy7xaebzaB0YgEPhNJd5BQUHMmfM8ZWVl6HS6izQT+/Wr\ncVPYt8+PXh9KWJgeo7ERxcWr8HorOHLkfWJjnyEmpisAublz2L9/P6mpqaxb9xX79p3E4SjGaIzH\n4ajAaEwiNLQ91dV6hg3rx9tvL2b58nQqK1UEoYqbb26J1dqBr7/uyPHjDtzuXCASr/cgJpOE338K\nVfWhqiIQhyAMRFVnA+OBO9FotMhyNIWFS3C73URHR/Pgg0N54olXEcVgNBoDktSGkpIjBAJVeL0O\nJMmC1ythsTyD1/sBgcBWTp3SsXx5Cap6mODgSqqqTiGKdpKTY4mKasbZs5k/+B579epGWVk17733\nCqWlR1HVG4HuKEoNUXs83+J2H2fVqmJWrdqDXi9QWnorMTGtiYpy0b17KuPGzcHlao7Xexaf7wQN\nGtyIqu7k7ruHM2BAPnPnfoLdHowsKzidHSkoOElu7lISE28gIWEkERGVlJXdQ1HRSAyGEJo0MfHk\nk9NYu3YtW7d6CQ3dQHFxFYKwAlnegqJcA6wiJKQf0dE1rQKBQICIiAhCQ0NRVZX77y/nww+n4/X6\nadYsmPz8AhwOFZ3udkpKDjN79gdMnfoAitIYsznx/JhqytmzFZSXlxMREUFGxkkEoR8WyygEwUF1\n9T85c+YMYWFheL3eKw7L/7fiwhTETxXq/FjvnyzLNGzYkM2bN5OZmUlZWRm33HIL7du356233vqB\nVur/Z/xlie/XtDPU9qzVDrxfuiu60uuqrby69NhXO6xZq1yh0+muSvJfFMUftTQJCQlBVb9HVWvK\nrJs3N1BYWEAg8BJhYTJNmlxoSGnC4XDwwQefsHJlKVbrjVRXH8Vmm0tQUFccjkJ8vs106hRLy5bN\nmTlzDR5PP6KibicQsLNy5WTGjTPi928jJeVhzpwpoLr6Y1JTY4iOjmfjxj2UlUXj9+8DilDVU4AT\naAqUo9XGEwgYEYRyGjZsCMAtt9zA7t3fsnHjAkJC7kOWo6msfIfw8EwsluYUFq7B74/H5XoeWe6M\nKPZHlrdQWlpKUlIL8vOj0esrCQ29B7e7mv37VzNs2MVVml6vlxUrVvPNN99z4sQO9PpmBAKZQDmB\nQA6K8h5OZxYQg6I0JDz8CXy+UmJjdzF8eAyjRt3MNdfcTknJfahqA9zuCCyWcFq0uAardTTLlj3D\nk08O5ppr9ISEDCcraz+FhekUFLxDfHwkDRrU9AUaDKE0bz6GUaNUUlJSCAkJwev1cvr0WRSlG4Kg\nwePxYTYPxutdRXh4OzyeTPz+zxg9+gU0Gg1Op5MDBw6g1Wpp3749/fv35dpre1FcXMzTTz/PsWOV\nBAUtQZLCcbszOXFi8vmxfZZAwEVu7hdkZX2FqlYzceJLzJo1ifT0kyQkzEGnq5ElKy6+ngMHMmjb\ntu1VdTH5M+LCdoxfM1dVVWX58uWsWbOGN954gy5duhAIBDh+/DhpaWl1bT5/Ffxlie9KcCEJud3u\nulXl7+mc8GNKLn+GPN5vQfv27enR4xC7dr2CJIUREpLN66+/TIMGDZg/fwmrVy8kJGQo5eUnycn5\niFdfrceZM2fo0GEOISGtCAlphc93DIvlE1RVS/v2jXnqqTmcO3cOhwOMxl6IogatNhRJ6kxoqMpt\nt6l89tmTxMSojB7dmoceeva8Hc1Mli37HEEYhqpGAFOAMGAPkiQgy0FI0lwmT76tTsVFFEVeffWf\nJCa+x/btLxASYuGxxybw4YdvUl5eQZs2oZw61ZDKSgWT6V5crqlI0t8wmeLR6w3nm7cX43AcRxBU\nkpJk2rUbw6FDhygtLSM8PIxly9azYoULWe6FzSYB36LVBuP1DgGcSBKYzSMxm1tjtydhs3mxWuMw\nmXqTk7OHjIwMiop8mM03oapevF47TmcZfr8TjcaMw6Hjs89Wcu6clRMnTmC3NwJaYLNNoGFDA1VV\nmYSHt0CW/ShKDvXr9+LAgcMsWrQZVTWiqkXAARSlxlg3EFhLfHwbmjQxU1JSweTJY4iPjyc/P5/R\nox+jujoZRXHRuPEilix5k/z8fMaOnUpurh+XS8bj+Q6rNRmdrpSoqKZIksSIEa15//3xZGer6HQP\n0bp1C8rLDzBr1kLi4iI4efIwOl0MsuxHVTOIj++A2Wz+y+/yfgrFxcU89thjJCcns23bNozGmpyw\nRqOhdevWP6ie/Svgf8T3M5BlmaqqKrRa7RU1oF8NXCiVdjX78Wp1NWtDtH9kMlsURR599B4GDcrC\n7XaTlDS0Lhx67723Y7WuYefOhZw4sZ8mTZ4mJmYQWVmfcujQe/To8ToajQmTKZKpU3uTmpp60XGD\ng50UFR0kJCQWp7MAk6mY+PiW9OnTk1tvHYJer8dkMgE1D5IzZ3LR6e5Fku7F6SwBDiEI09BqmwP/\nJCkpkSZNYtFodLjd7roHhU6n46mnHuGpC9rL7rrrLqDG9HTq1Bl88MEuvN5dSJIXg8GNIAQoL69G\nUbYgSTeh1d5OIJBGSclMVq/+km++8aCqjaio+JLMzDQEYS4hIclAX6qq7sbn+w5BeAVBaI1Gs55A\nYD2q2gZRtKMo9fD7S/D5yjhyJIOzZ7OQJD9+/3o0mmv/r70zj4uyXP//+5mFZVhFEQUsLAmXREFB\nT9bP6hwr1/RY2mLHFssyF1qOeyWtWqZWLtn32zHtdLSyPFIClfh1qRxwyeVY7mKAiuK4AAOz//6w\nmTMzbAPMwMDc79er1yvhAe7neeZ5rvu67+v6fIDTWCxqiovN/PxzOhUVv3PiRH+02qtYLB9y/fX/\npKLi/2jXbiAGQz6BgV9QVBSL2VzC3Xd3QiaT8dFHuQQHz0ahCOXq1R1ER3/I+fNDCAlRoNNpiI19\nEp1uNcOGxdjuy4IFK7h48QHCw8dhsVg4fPg1/vnPdWzbto/Cws5UVLRFLj+DyVSBTneMxMQ2tGlT\nQZcuXejZsycmk5aPP5aIje2Nv78/ZnMqR46sZvHiF3jmmXQuXtyC2XyBW24JYdiwYa026Fml1eRy\neYOzvK+//pqlS5fy9ttv21R4BD4c+Or6AFgb0M1mM6GhoU0aJKx7i/YOCt6wj9dYZDJZteXSSqWS\nhx++nwEDUnj2WRlRUYMBiI+/hd9++5aiokwUCjMdO56id++HHX523779tGnjz9Gjb6HVZhMVpeL2\n24Po168Pfn5+VbIBSZLQ6SzIZAWYzTogFOiITBaPSrWMq1cHcOyYhhMnLKjVOWzdupcPPniVgICA\nWu+Bn58f77zzMu3avU9Gxr+RpG6cPLkIP7+h6PXlSFIBMtk8wA+Z7Eb8/G7m229/ISpqNnv2nKKi\n4lbOn99FQMBZ/P3jCA2NoLLSjMHQk5CQOwkPD+PixccwGr8kIECJVptDZeWPtGkTyH/+kwV0QqHw\no7LSH4XiYyQpl4CAoygUhzh+vILKyikEBNxEZeVyQkJuRqP5nsuXJxAd/f+47rqHgEUsXDiVoqIi\ngoKCiI2NJTs7m+PHw9Bq8wEZISEh3HhjB774YhmVlZXo9XpOnz5NeHgvevfubbs+BQXn8ffvZbve\nktSL33/fy9mzJWi1evz83kWpvIBW+y4WywFksg6kp8+yLbf17duXL7/cQECAHLlcQUnJPq6/PoqY\nmBg++WQ+R48eRaVSkZR0rX3Gue2hpeOOLO/ixYu8+OKLhIeHs3nzZptxs+AaPhv4oPpCEvsG9ICA\nACoqKpo06FnHY12KbIw3n73MmLc38YJ1H7AEnU6Dv38EHTqEUF5uYMCA41x3XQdGjZrhIKB7zebm\nc4KDZ9OnD5w9u5DRo2OYNOkpQkNDazzX4cMHceLERioq5gBtADVK5WTKyzdhsYQSHLwVMHL16qvs\n2pXP/v376d69u61owKpJ6lwiLpPJmDlzGrfcsp1vv/2eoKAILJadxMYGsmmThEIBRmMxUELbtnJA\nxd69p1AqkygtLcNiCaa8fD16vYHAwF8JDi7FbJYTERGCJCkIDdWi0Wjo2dPAlSuhREefAy6TnT2I\ntm1fx2KpRJLeR6dbS1ycheTk7lgs8fzyy2COHAnBzy8eo/FB4N8EBHQgNvYmrr9+GCUlXzB6dC9C\nQkIcxLEPHfoNjeYEoaHPI5P5o9F8Tdu2Fxz2cauTbuvXrwfHjn1BQEBXzOZKYCMpKfdgNBo5cOD/\ngEokqSP+/o/TseMqpk+/x2FC1Lt3b+6//z+sX/935PIIgoMvMG3aRFvP43XXXWfrZdPpdJhMJoeC\nDnvZr5aGfZbXkG0Ii8VCdnY2CxYsID09nXvuucern/nmwqcDnz32zgnWBnTr3l5TYL+P5+/vb3uo\ntVqtTQneVR0/i8VisxaqTmbMWwkPD2fSpGEsW/YKknQTFstxZs9+kBEjBld7/I4du5GkEQQHd/vD\nU/BFTpxY5WCrYrFY+P77HPbsOUJkZCj33TeMZ599jMpKHRkZP1BcXIgkxRMcvBONZit6/cNIUtAf\nL9IhVFQssS1zO3uzWcV/qyppSPz88xUCA+disZg5fnwZgwZ15ttvX8Bs/guSdJSzZ3eQmPhnjh49\nQmDgTVy6pCY0tBt6/S7gVSTpEq+9lsbu3QfIzn4YszkZmSyHmTMn0K9fLCrVTSQmJvLMM/NQKm9B\nkuRIUhB+frcSFraFzZv/hb+/P/Pnv8+uXWeJiIhBozmNxXIKuEqnTidISJBjMi1mzJgejBt3X5Xr\nazAoiYiIQKudB7RDqTxMx451V/6lpU3kzJlX2bLlz0iSmUceGc699w7nz3++g927f+GXXx5GkgYT\nGXmV7t1LSU1Ndfh5SZJ48slHGDLkTjQaDe3btyciIsIh87EXT7fXi3UOhvbPTV2SX82JO7K8q1ev\nMmvWLIxGI9nZ2URERHhgpK0Dnw989s4J1TWg11Rh6e4x2O/j2bdH1CVqa32wrft/zjJjza1NWF+G\nDbubxMRunDlzho4d76nRnRtApfLDYCjBaDQhl8swm68SHOzobrB69VrWrDlJQMA96PWn+OmnN1i2\nLJ25c59jzpw0zGYz+/fvp6ysjI0b/diwIYCKihMoFFHo9buIiSmlW7duNZaI279wrc3DX321BaXy\nb/j5deD06X9y5YqRs2dPoFQmoNcHI5MNQ6vtxJ49GYSFneXKlV+Bc1RU6AHo2PFmOnUqY+zYvzJu\n3FhycnIoKiqiS5eZJCYm2sr2f/vtNyRJh0x2lPLyI8jl4Wi1W7jjji74+/sD8OijY9i+fRZmcyGV\nlZfQ6TaRlHQzr776OjfffDO1ER8fS5s2lcTFjcVsrqS01J8+fXR13sPAwEA++OAtysvLUSgUtrGE\nhoaSk/M1mZlZ/PLLUaKi2jFmzATb/qv9dTUYDISEhBAREVFnf6wr96a2iUpzB8PG2iRZLBZ27NjB\nyy+/zPTp0xk9enSzn5O349OBT6/X2xpBqytc8fSHx5V+vLp88vR6vU1t3fo7lUolQUFBLXKpB+C6\n666zqXVUh3UJ9/bbB7Bx4wKKiw1IUgj+/t/xxBOTbMeZzWbWrt1CVNQylMoQ4BaKis6wb98+BgwY\nYHthJicnA3DjjTdy9Og8jh07SXn5JTp1Osnatctq9Cer6YUbFBSAwXCVo0c/QK8fBAyhtPTfVFb+\nB3//J/5QHAnn4sVvmDPnXj79NIdz50qRyWYTFtaVS5e+Ijx8A/7+/pSWliKXy4mMjCQuLs72Yvyf\n/1nNkiUbsFjiKS1dR3j4Sfz9ZfTqVc7ChQts4+nQoQOffrqQnTt3YrHE8ac/TbJVqtbFvfcOY8+e\nt9my5SUkSUGPHuE89dTLLv0sUO11kySJoUOHMHTokGp/xrryYnUXaOg2Q0sIhq6a4daGVqvllVde\n4dy5c3zzzTe1OtoL/otPBz6z2Vync4J9haW7aGx7gr1PnvXh0el0DmoNpaWlXjm7bSzWJVy4FiA/\n/vgNtm7dRmVlJX/6099tfXdWrhlz/vdjLknKGgUCYmJiWLPmbQ4cOIBCoSA5OdlW0ekqkiTxyCMj\n2LYtnbKyGJTKziiV+URH38WhQ3no9XuwWKKQpOX4+QXSqVMsDz74/zh71kB5eTAGw2kiIpIJDt7C\nxYsXmTr1dc6di0cm8yc8/HuWLJmOTCbjvffWERi4HoWiLQEB+ZSWjmbp0vn079+/yue5bdu2DBs2\nrF7nAVZlIxkqVXtATmCgn8cmU/ZtNn5+fh6RG/OmYGitJWhMlrdr1y5mzpzJpEmTGDduXIud6DYH\nPh34VCqVQ7ZUHd7qjwf/XSKRJIng4OAaH2ij0Whbhmus71dzUVNlatu2bRk9+q/V/oxMJuPeewfw\n1VeLCQkZRmVlPhERR0lMHFft8QBt2rRh4MCBjRpr9+7dWbz4eZ5+eikhIVeIi0tCqZRx+PBZTKZH\n/thDvBGj8QqdO3dGp9MRHLydG254FLlcyZkzPxAS4sfq1es4d+5PxMaOQ5KguPg71qz5mmHDbkcu\nj0ahuLbf5ucXR2DgjbRv377GSVx5eTlff53BmTMakpIS+Mtf7qzz8/fvf29i9+5I4uKuZXnHjn3G\np59+xaRJj9breuzfv5/PPvsWk8nM/fcPon///g7ft7bZAE2+H93UwdAdWZ5Op+Ott97i0KFDrF+/\nvka/wvrw+OOPs2nTJtq3b8/BgwerPWbq1KlkZWWhUqn45JNPbFW1LRGfDnyuYM2gGvswurMfz7oc\nZLU+qq7y0/6Btldtt98vrKysxGKxVCkA8KaZY2MrU59+ejyRkRnk5m4gKiqM8eNnNYlKRb9+/Zg6\n9SQbNnzD5cs90Gp3ERMTiVK5mnPnLmI0+mEyvcrChR/yxhuzGDLkEN9//yJnzugoKzsM9GH16izC\nwyf8YfJbSnl5IKdOFRMXF4ef31nKy38mKOgWysu3o1JdJDo6mvXrN7J5816Cg/157LF76dGjBzqd\njrS0Vzly5Cb8/HqzadP3nDpVxMSJ42s9h/z88wQGptiud3BwEidOfFWv63Dw4EEmTlyAxfIkkqRk\nx47lLF5sYsCAAQ731pvkxmqT/KrJJsj6DNU2kWxslgfXKpmff/55HnnkEebPn++2Z/Wxxx5jypQp\ntr5UZzIzMzl+/DjHjh0jNzeXZ555BrVa7Za/3Rz4dOBz5SFrrDOxO3U1nWXG6rscVJ/9wtrK9psK\n+4y2oZmAXC5nzJhRjBnjgQHWwaOPPkCvXr9w9uw5/PxuIT29AEkKQqPxIySkI3p9BAcORPGvf21g\n5swpdOy4mmXLfqFXrwz8/SM4fvxrCgpWUl7emcLCMozGLzl3bj/btu3ggw9e5rnnXubSpXLatQth\nxYr5bNr0PStX/kZY2KPo9Zd48cXlLF/+IhcvXuT48VA6dnwaSZIwGlNZu/YJHn/8oVqX+W+6KYbN\nm9WYzSlIkpzS0p1061a/7GL9+mxMpvG0a3cPAJcvK/jss2/p37+/LctrKvWgxlCXTVBtbuqSJKHX\n6xuV5RkMBpYsWcKOHTtYs2ZNtW0kjeG2224jPz+/xu9nZGQwfvy1iVK/fv24fPkyxcXFLXZP0acD\nnyt4iz+ep2TG7PcL7cdd0zKPKzPbxuItDfeNRZIkW+EMwG+/5bN06WyMxluBI8TFDSAy8k4OHFhN\neXk5MpmCkJBBBARcK0Pv1Ok2DIb/4fffp6BQdCMm5nbatHmR+fPT+O671Wze/DlXr14lMDAQuVzO\nG2+sIjz8RYKCrgckzpwpIC9vN9df3wlJ+q+urEzmh8VyrQK4tsA3bNg9/PrrcnbsSAPk9OnTloce\nmlrva2CPxcIf4tjlLfregmvB0LqqAtiutTVTdPW8jxw5QlpaGsOHD+e7775rltakoqIim28kQGxs\nLIWFhSLwtVaa0x8PHIs5mkJmrK5lnppmttbl1sa8xFpaw319mTJlAlrtJb74YhexsY/Rrt2fOHPm\n3/TsGUpAQADduiUgSRsxGO5CoQjm0qUckpO7oFSG06bNa7ZrUVKiRKfTERERQVBQkO3+BAT4UVZW\njtFoAiwYjVexWPyIj48nIuJTiov/jUqVQGlpJoMG9a7T+kqpVDJ79lQuXLiAxWKhffv29b4fo0ff\nTXb2m1y8qECSFBiNHzF27BMtIstrCPa9g9d0YY34+/sjl8sxm821ZobOwdBkMvHhhx/yzTffsGLF\nCnr06NGMZ0aV92BLfjZ9OvA1xKGhNty9j+ctWU9tM1uj0WjLRoEGq2e4Y1nT25EkibS0qVy6tJj9\n+7MpKtpMdPQlnn56OkqlkpSUFB5//BSrV0/BYvGja9cIpkx5iscem0dFxXFUqnguXdpMhw6BDrZP\n1vszYcJw5s1bjk43HKNRQ1RUHgMHziYgIID585/jH/9Yz/nzPzJ0aBf+9rcxtuX3unrkanLccIWe\nPXuycuVMPv10IwaDiTFjJjlorbZG7It1agrwNU0mt2/fzrZt2+jSpQvr16/nrrvuIicnp9n7cWNi\nYigoKLD9u7CwkJiYmGYcUeOQLO4qWWyBWE0aa8Ne1LkmnPfxGpv12O/jecL6yBNYG/3tH2ZXKuG8\nKcA3BSaTidLSUk6ePIlCoeCmm26qknmVl5dTWVlJREQEkiTx448/MWfOe2i1EBMTwuLFc+ncuXO1\nv//AgQP8+OMegoMDGDz4L0RGRtq+Z7+Ebf0PGj5ZcQWDwWCT/QsMDGzV97axxTpms5lDhw7x0Ucf\nsWvXLkpKStBqtSQnJ/PAAw/w1FNPeXD0kJ+PSZepAAAbqElEQVSfz/Dhw6ut6szMzGTp0qVkZmai\nVqtJS0tr0cUtPh34rB/U2rC6OlfXjOvufTx7nb7AwMAWvxTkvF9oNBptSzzWczMYDCiVSp94KVon\nNA15KZpMJsrLy926/Gs/WbFOVNwl9WU/oWlqJ5DmwD7Ls+651pezZ88ybdo0unfvzquvXhNGLykp\nYc+ePcjlcpuhsyd48MEH2bZtGyUlJURFRZGenm5LCiZOnAjA5MmTyc7OJigoiFWrVjnsX7c0ROCr\nI/DpdDoMBgPBwcEOP+fOfTx7uyBre0JrxX5WbP815yrSlh707bHPeupyeWhunCcr1v9c7WGzL8RS\nKpV1yo21dNzRkmGxWPjyyy9ZsWIFCxcu5NZbb23V18wbaL1vWDfhvMfn7n08a2D1pj4mT1HTsmZt\nLRXOeqQtCev5Wvstm3ufxhXqauiuTQwBsOnE+kKWZzab0Wq1QMMb7y9cuMALL7xAVFQUOTk5DhNs\ngefw6YwPcMg8qsM6Ww8JCXHrPp599aK/v79XZwGNxfl868oCrEtw9stvzlmHQqHwWtUZ+/NtSfu0\n9cG5odtoNNomg0qlssUpA9UH+6y2MVnepk2bWLhwIa+//jqDBg1qddfJm2ndUzIXcKVq02p1Yn3x\nNgbrA9OS7IIaQ0OqNa0TC2eXCms5uL1yhrdJsDWn/FZTYt0HlCQJg8GATCazFem4q9LXG7GqJl0T\nI2/Y/b18+TIzZsxALpfz/fffO1ToCpoGn8/49Hp9tYHPfnnHunxjfdE2ZC/K2S6oMQazLYGmqNas\nrooUmudFa++n5gvVqa7ubTVHJakncBbRbkgWb7FY2Lp1K+np6cyePZt77723VX9GvBmfD3wGg8FW\npAL/bdKsbh+vpoe4tgo4+xeiL+zj1XdZ09043yOj0eiWKsXaaEnFK+7AXnOyvtXHNVWSerOTiLNV\nUkOyvPLycl566SU0Gg3Lli1zaDMRND0i8NkFvvr249VUAedcrm/tYWrtL0T7Zc2GlnS7m7qqFBsj\nwWb/Qmzt1bjgHmeBmn5vYypJPYW7sjy1Ws3s2bOZOnUqDz30kNcEdF9GBL4/tCjd2Y/nXK4Pjks7\nrW2Zs6U1oTsXZljvf3VVpDWV7Htb8UpZWRkff/wF+/adIioqjKee+msVb8LGYN9j2hRZrfOervM9\n8vSerjuyvMrKSt544w2OHj3KypUriY6Odvs4BQ2jdacgdWA2m9m/fz9lZWW2GWZjHmjrw6LT6QgI\nCCAkJITQ0FCCg4NthRo6nY6rV69SWlqKVqtFp9PZllVbGtYMoKysDJlMRkhISItYyrUuffr7+6NS\nqWz3yRrA9Ho9ZWVllJaW2lRUDAaDrdK0rKwMg8FAUFCQ1/SpffDBGrZvb0tg4CyKiobwyiv/QKPR\nNPr3WiwWKioq0Gq1BAQEoFKpmmTlwtpW4XyPrEHXaDSi1Wq5evUqZWVlVFRU2FphGvssWe+/XC6v\n4nPpKr/88gtDhw4lISGBjRs3ui3oZWdn07VrV+Lj41mwYEGV72/dupWwsDCSkpJISkri9ddfd8vf\nbW207rUZF/j888/Jy8vDbDaTmJhI3759SU1N5frrr3f5AXeWGXNW16jNAaG6vqi6Mg5vwJoBtJbq\nVGsZvv09st+L0ul0tp4tuVyOUqm0HdPc90iv17NnTz6xsVOQJBlt2/aiqGgvJ0+eJCIiosG/137v\n0hsEwz2tGWvfd9nQPkSDwcDChQtRq9V89tlnbs26TSYTkydPZvPmzcTExJCSksKIESPo1q2bw3ED\nBw4kIyPDbX+3NeLTgU8mk/HOO+/YAte+ffvYuXMnr732GqdPnyYiIoKUlBRSU1NJTk6u8vBbl2Lq\naxdUm0msNRB6ky+ePfbLmjWZ4LYGrJMO67lZ92r9/Pxs98pbWioUCgVKpYROd5mAgIg/xnexTveF\nmnBHAGgq6usxWVMwtAZ5pVJJcHBwg+7f4cOHSUtLY9SoUWRnZ7t9MpiXl0eXLl2Ii4sD4IEHHmDj\nxo1VAl9LXD1qarz3E92ESJJEQEAA/fv3p3///sC1D09xcTFqtZrt27ezaNEitFotCQkJpKSkEB4e\nznvvvcfcuXMZOHBgo18Ozg+wcxO3vS+ecztFU7xknfe1vCED8DTO+zzV3WNvcLWXyWRMmDCY5cvf\nB/piNv9Ov36KKi/EunCWG2toAGhuqlthsX+WrNsL1uPMZrNNLrAh6jomk4lly5aRlZXFypUr633d\nXaU6T7zc3FyHYyRJ4ueff6ZXr17ExMSwcOFCunfv7pHxtGRE4KsBSZLo0KEDI0eOZOTIkcC15b1t\n27bx8ssvs3//fgYOHMj777/PTz/9REpKCikpKbRt29YtL4uamrirszLx9Eu2tS1r1kV9nO7rm3F4\nKnv/859vJyamA6dO5RMW1oPU1NR63SdXgnxLpaZnSa/X28QkZDKZrUWjPpWkJ0+eZNq0adx5553k\n5OR49Lq58nlJTk6moKAAlUpFVlYWI0eO5OjRox4bU0ul9Xy6mwBJknj22WcZPnw4mZmZhIaGcuXK\nFfLy8ti5cyf/+Mc/uHjxInFxcbYl0p49ezo8cI39+3W9ZI1Go9vKwH1lWdMe+yDfULPU+rrau0uC\nrWvXrnTt2rVeP+OcydcW5FsL1oIdo9FIUFCQwypLXepAGo2Gdu3aIZPJWLVqFevWrWPZsmX07t3b\n4+N29sQrKCggNjbW4ZiQkBDb/w8ePJhJkyah0WgatdfbGvH5dob6otVqa/XmM5vNnDhxgp07d5Kb\nm8uBAweQyWT06tXLFgxjY2M99nKpzQrIuZ2ipjF4Y7m+p2nqlgxXyvXd4WpfG+6w0mlp2O/luVKR\n69z68sQTT7BlyxYiIyOJjIxkypQp3HLLLXTu3Nnjz4jRaCQhIYGcnByio6NJTU1l7dq1DkurxcXF\ntG/fHkmSyMvLY8yYMeTn53t0XC0REfg8jMViQavVsnfvXtRqNbm5uRQVFREVFWULhL179/boTLsu\naS/7KlL7jCcgIKDVvwy9yUanOkUTcL+8V2O9AVsi9lleQ5dyzWYz69atY82aNdx///2UlZWxa9cu\ndu3axZw5c3j66ac9MHJHsrKySEtLswXhWbNmsXLlSuCab96yZctYsWIFCoUClUrFokWLbHULgv8i\nAl8zYLFYKCwsRK1Wo1ar2bt3L3q9nh49etj2Crt06eKxgoiaZKOs+Pn52RT2W/MLsSX4IDpn741V\nNGmM3FhLxdrz1xgX+PPnz/P8888TGxvL/Pnzq6z6mM1mn7iWrQUR+LwEg8HA/v37bVnh8ePHCQsL\no0+fPqSmptK3b1/Cw8M9IvRs3eS3BjvnpbfWZhDbkjOe2uS9aqv29TURbXA854ZWbFosFjIyMli8\neDFvvfUWd955Z6u/br6ACHxeisVi4eLFi+Tm5qJWq8nLy+PKlSvEx8fblki7d+/eqCylrmXNhohy\nezv259xaMp66JNisajRyubzVnHNduCPLu3TpEn//+98JDAxk0aJFhIWFeWCkguZABL4WhMlk4siR\nI+zcuRO1Ws2vv/6Kv78/SUlJpKamkpKSQlRUVJ0PeUOrNWsT5W7OBm5XcD7nluCG3his98naswaO\nwgkt1dW+LtyV5eXk5PD666/z0ksvMWzYsFZ3nXwdEfhaMBaLhbKyMnbv3m2rIi0uLiY2Nta2V9i7\nd29bVaZOp6OgoID27du7rVqzOidu8B6/NW8qXmlKnKsXgTpd7VtiBm+PO4S0S0tLmTt3LuXl5bz/\n/vu0a9fOAyMVNDci8LUyzGYzp0+ftgXCffv2YTabadu2LQcPHmTgwIEsWbLEo4UcdRVkuKNnzRV8\nsVzfXm6sroIdZ83YpnZAcBfuyvJ+/vln5s6dy3PPPcfYsWO9+pwFjUMEvlZOQUEBzz33HD/99BP3\n3Xcf58+f5/fff69Th9Sd1PWCdbcod0suXmko7spsvcnV3hXckeVVVFTw6quvcvr0aVasWEHHjh09\nMFKBNyECXyvn008/5dixY8ycOdNWgm2vQ6pWq9m9e7eDDmlqaioJCQkezZBq61lrjKyX9eXfVL5x\n3oA7vOPq+v1N7WpfF86muA1VR9qzZw/Tp0/nySef5NFHH/WJz4tABD4HvvzyS+bNm8fhw4fZtWsX\nycnJ1R6XnZ1tayKdMGECM2bMaOKRuh+j0cihQ4ds7RS//fYbwcHB9OnTh759+5KSkkK7du08mhXW\ntAfliii3rxWvQPMp7HjS1d4V3NGLqNfrefvtt9mzZw8rV660OR4IfAMR+Ow4fPgwMpmMiRMn8u67\n71Yb+EwmEwkJCQ6eWM6yQa0Bi8XioEOal5dHSUkJnTt39ogOaU1jqK5M3zkQWgW7fUVeDbxv/7Ku\nlgp3SLA5Z3kN7UU8dOiQbR/v2WefdVuW58qEeOrUqWRlZaFSqfjkk09ISkpyy98W1A/vk6poRlwR\n+HXVE6ulI0kS4eHh3HXXXdx1112Aow7punXrmD17NnK5nMTERI/okNYlym1fqm99qVrbK1pr8PPW\n/UtPm8TaZ3kNFQ83Go188MEHbN68mY8//piEhIR6/47axleXSWxmZibHjx/n2LFj5Obm8swzz6BW\nq902BoHriMBXT1zxxGqtyGQy4uPjiY+P529/+5tN/3Dv3r3s3LmTOXPmOOiQpqSkkJSU5FYdUuvy\nmVV829p4bw2I1Snqe1rsualwh3NEU1KTx6S9rVZdLRXuyvKOHTtGWload999Nz/88IPbq5pdmRBn\nZGQwfvx4APr168fly5cpLi4mKirKrWMR1I3PBb5BgwZx7ty5Kl9/8803GT58eJ0/39Jfnu5EkiRU\nKhW33nort956K+CoQ/rdd9/x1ltvuVWH1NqfVpvjvf2yW3WZRktr3m4tcmPWyUdtlk32ExfrMnZj\nfCDNZjP/+7//y1dffcWyZctITEx092kBrk2IqzumsLBQBL5mwOcC3w8//NCon3fFE8uXkSSJTp06\n0alTJ+6//37AUYf03XffbZAOaX2MUu0zDX9//yqZhrXPramKMRqDfbl+S8jy6ou9mowVs9lsy/Ks\n2XxZWVm9dWMLCgqYMmUKqamp5OTkeHQ/2tXPjXNJhbd93nwFnwt8rlJTzU/fvn05duwY+fn5REdH\n8/nnn7N27domHl3LQqlU0rdvX/r27cvkyZOxWCxoNBpyc3PZuXMny5cvd9AhTUlJoXv37iiVSoxG\nI1u3biU1NbXBRqm1ZRpGo9HBzd45K2xOxRmrjY6vVKmCY9FOSEiI7fq74mpvMpnw9/fHbDbzr3/9\ni1WrVrFkyRL69evn8XG7MiF2PqawsJCYmBiPj01QFVHVaceGDRuYOnUqJSUlhIWFkZSURFZWFmfO\nnOHJJ59k06ZNQPWeWILGUZ0OqU6n48qVK7Rr1441a9YQHR3tcXNY53YKaHxvYX2pr1lqa8C+NcOV\nop3qWipuueUWFAoFfn5+REZG8tprr5GSktIkkwZXTGIzMzNZunQpmZmZqNVq0tLSRHFLMyECn8Dr\nKC0tZc6cOXz++edMmDABlUpFXl4e58+ft1XMOeuQeoKGWgA1lPrIjbUm3NGaYbFYWL9+PWvXruXm\nm29Go9GQl5fHqVOn+OKLLxg6dKi7h12FukxiASZPnkx2djZBQUGsWrWqxl5hgWcRgU/gdZSUlJCe\nns68efNo27at7etms5nff//dlhVadUgTExNtTfZxcXEeXZ70hCi3vdyYL/Ui1jfLqwmNRsMLL7xA\neHg477zzDqGhobbvlZaW2opjBAIrIvC1YDQaDWPHjuX06dPExcXxxRdfEB4eXuW4uLg4QkNDkcvl\nKJVK8vLymmG07sda6r5v3z6bKPfp06ebVIcUGifK7Wm5MW/FbDaj1WqBxmV53333HfPnz2fevHkM\nHjzYJyYMgsYjAl8LZvr06bRr147p06ezYMECLl26xPz586sc17lzZ/bs2UNEREQzjLJp8RYdUldc\nDwwGA3q9XmR5DTjvq1evMmvWLAwGA++//75PfLYF7kMEvhZM165d2bZtG1FRUZw7d47bb7+dw4cP\nVzmuc+fO7N6922HZ0JcwGo38+uuvtqywqXVIwVHFxNn1wNp60ZJ6CxuCNbu1WCyNyvJ27NjByy+/\nzPTp0xk9enSrvmYCzyACXwumTZs2XLp0Cbj2QoiIiLD9254bbriBsLAw5HI5EydO5Mknn2zqoXoV\nzaVDaq9C4ufnh1KpbDah56bEXXuYWq2WefPmcebMGVasWCEavwUNRgQ+L6cmpZk33niD8ePHOwS6\niIgINBpNlWPPnj1Lx44duXDhAoMGDeKDDz7gtttu8+i4Wxr2OqS5ubkcOHDArTqk9nJjNTkK1Cb0\nXJ/GbW/CXXuYeXl5zJw5k0mTJjFu3LgWdQ0E3ocIfC2Yrl27snXrVjp06MDZs2e54447ql3qtCc9\nPZ3g4GBeeOGFJhply8RZhzQ3N7dBOqSNlRvzRi88V3BXlqfT6Zg/fz4HDx5k5cqVDpJfAkFDEYGv\nBTN9+nTatm3LjBkzmD9/PpcvX65S3KLVajGZTISEhFBeXs5dd93FK6+8YnNcELiOvQ6pWq1m7969\nteqQ7t69m/j4eFsjujuyFOfeQqtYd3XtFM0VDN2V5R08eJDnnnuOcePG8fTTT4ssT+A2ROBrwWg0\nGsaMGcPvv//u0M5grzRz8uRJ/vrXvwLXltsefvhhoTTjRux1SNVqNSdOnEClUmEymTh+/DgZGRkk\nJCQ0SeGMfRUpOPYWWh0qPIm7sjyj0cjixYvZvn07H374IfHx8R4YrcCXEYFPIHAj69evZ8qUKaSk\npNCzZ092795dow6pJ3Fup6hPb2FD/541y2uM6syRI0dIS0tj2LBhPP/88x5pO/H1/leBCHwCgdsw\nmUw89NBDTJkyxWbTZP26sw6pv78/SUlJpKamkpKSQlRUlMezQqsod3UO6Y0R5bZqizYmyzOZTKxc\nuZKMjAyWL1/OzTffXO/f4Sqi/1UgAp+gycjOzrZpGU6YMIEZM2ZUOWbq1KlkZWWhUqn45JNPSEpK\naoaRehaLxUJZWRm7d++2Fc40tQ6pdRyNEeV2l7Zofn4+06ZNY8CAAcyZM8fj2bDofxWIwCdoEkwm\nEwkJCWzevNn2gq9NvT43N5dp06b5jHq9t+iQuirKbW3PaIyDhNlsZs2aNfzzn//kvffeIyUlxQNn\nVRXR/yrwDfl3QbOTl5dHly5diIuLA+CBBx5g48aNDoEvIyOD8ePHA9CvXz8uX75McXGxTzQqy2Qy\n4uLiiIuL48EHH6yiQ/r66697XIe0OlNY58KZyspKm1elUqlEoVBgsVjqPYazZ88ybdo0unXrxpYt\nWwgICHDLOViprf/VHqtXY3X89NNPDv2vXbt2Ff2vrQQR+ARNQlFRkUMPVmxsLLm5uXUeU1hY6BOB\nzxlJkggICKB///70798fcNQh3b59O4sWLfK4Dqm9m73BYMBoNNoCntUp3blwprYlUqt90IoVK3jn\nnXe49dZbPbKc+8MPP9T4PesSp7X/tX379tUe17FjRwAiIyMZNWoUeXl5IvC1EkTgEzQJrr7cnFfe\nva0xuzmRJIkOHTowcuRIRo4cCTjqkC5fvtwjOqT2bvAqlarKXp6zKLder3conPnxxx+56aabUKlU\nvPjii0RGRvLDDz8QEhLSqOvRUEaMGMHq1auZMWMGq1evtl1Le5z7X7///nteeeWVZhitwBOIwCdo\nEmJiYigoKLD9u6CggNjY2FqPKSwsJCYmpsnG2BJRKBQkJiaSmJjIxIkTq+iQrlq1qlE6pPZu8DUt\nq9ovkVp/r70o9+rVq/nxxx/RarX06tWL5ORk9uzZQ0pKSrP45M2cOZMxY8bw8ccf29oZAIf+13Pn\nzlXpfxWiD60HUdwiaBKMRiMJCQnk5OQQHR1NampqrcUtarWatLQ0nylu8SQN0SG17uUZDAYCAwMb\nXGl55coVW/XuCy+8wOHDh8nNzUWtVvP8889z3333ueUcBYL6IAKfoMnIysqytTM88cQTzJo1i5Ur\nVwIwceJEACZPnkx2djZBQUGsWrWK5OTk5hxyq6QuHdKgoCAWLVrEmjVrSElJadAyqcViYevWraSn\npzNr1ixGjhwplq0FXoMIfAKBAIvFwtGjR5k2bRo7d+7kjjvu4MKFCzXqkNZGeXk5L730EhqNhmXL\nlhEZGdkEZyAQuI4IfAKBALhW9NGmTRuWLFlCmzZtqtUhDQsLo0+fPqSmptK3b1/Cw8NtmZzFYkGt\nVjN79mymTp3KQw89JLI8gVciAp9AUAd1Kc5s3bqVe++9lxtuuAGA0aNHM3fu3OYYaqO4evUqoaGh\nNX7fYrGg0WjIzc21GfhadUiTkpL4z3/+w/nz51m5cqUoShJ4NSLwCQS14IrizNatW1m0aBEZGRnN\nONLmwapDmp2dTX5+PkuWLBH2QQKvR7QzCAS14IriDFTtP/QV5HI53bt3p3v37s09FIHAZcTUTCCo\nherUZIqKihyOkSSJn3/+mV69ejFkyBB+/fXXph6mQCCoByLjEwhqwZXijOTkZAoKClCpVGRlZTFy\n5EiOHj3aBKMTCAQNQWR8AkEtuKI4ExISgkqlAmDw4MEYDAY0Gk2TjlMgELiOCHwCQS307duXY8eO\nkZ+fj16v5/PPP2fEiBEOxxQXF9v2+PLy8mxWN4L68eWXX9KjRw/kcjl79+6t8bjs7Gy6du1KfHw8\nCxYsaMIRCloLYqlTIKgFhULB0qVLufvuu22KM926dXNQnLG6DSgUClQqFevWrWvmUbdMevbsyYYN\nG2wqPtVhMpmYPHmyQ5XtiBEjqhQbCQS1IdoZBAKBV3HHHXfw7rvvVitXt3PnTtLT08nOzgZg/vz5\nwDXhaYHAVcRSp0AgaDG4UmUrENSFWOoUCARNRk3O6G+++SbDhw+v8+eFBJrAHYjAJxC0Uh5//HE2\nbdpE+/btOXjwYLXHTJ06laysLFQqFZ988glJSUkeHVNtzuiu4EqVrUBQF2KpUyBopTz22GO2vbDq\nyMzM5Pjx4xw7doyPPvqIZ555pglHVzs1lR64UmUrENSFCHwCQSvltttuo02bNjV+PyMjg/HjxwPQ\nr18/Ll++THFxcVMNrwobNmygU6dOqNVqhg4dyuDBg4FrzuhDhw4FHKtsu3fvztixY0VFp6DeiKVO\ngcBHqa5QpLCwkKioqGYZz6hRoxg1alSVr0dHR7Np0ybbvwcPHmwLigJBQxAZn0DgwzgvKYriEYEv\nIAKfQOCjOBeKFBYWCh89gU8gAp9A4KOMGDGCNWvWAKBWqwkPD2+2ZU6BoCkRe3wCQSvlwQcfZNu2\nbZSUlNCpUyfS09MxGAzANam1IUOGkJmZSZcuXQgKCmLVqlXNPGKBoGkQkmUCgUAg8CnEUqdAIBAI\nfAoR+AQCgUDgU4jAJxAIBAKfQgQ+gUAgEPgUIvAJBAKBwKcQgU8gEAgEPsX/B5KYXLk3/yC5AAAA\nAElFTkSuQmCC\n",
"output_type": "pyout",
"prompt_number": 5,
"text": [
"<matplotlib.figure.Figure at 0xb5c440c>"
"<matplotlib.text.Text at 0x7f67ec372650>"
]
}
],
"prompt_number": 4
"prompt_number": "*"
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"std(p)"
"help(map)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"output_type": "stream",
"stream": "stdout",
"text": [
"2.3585270827361722"
"Help on built-in function map in module __builtin__:\n",
"\n",
"map(...)\n",
" map(function, sequence[, sequence, ...]) -> list\n",
" \n",
" Return a list of the results of applying the function to the items of\n",
" the argument sequence(s). If more than one sequence is given, the\n",
" function is called with an argument list consisting of the corresponding\n",
" item of each sequence, substituting None for missing values when not all\n",
" sequences have the same length. If the function is None, return a list of\n",
" the items of the sequence (or a list of tuples if more than one sequence).\n",
"\n"
]
}
],
"prompt_number": 9
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.plot(p)"
],
"input": [],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"text": [
"[<matplotlib.lines.Line2D at 0xa00bb2c>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x9eb46cc>"
]
}
],
"prompt_number": 9
"outputs": []
}
],
"metadata": {}
/Modules/Sensors/IMU01A/SW/Python/IMU_test.ipynb
50,11 → 50,11
"i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
"i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
"i2c-6\ti2c \tDPDDC-B \tI2C adapter\r\n",
"i2c-7\ti2c \ti2c-tiny-usb at bus 001 device 008\tI2C adapter\r\n"
"i2c-7\ti2c \ti2c-tiny-usb at bus 001 device 025\tI2C adapter\r\n"
]
}
],
"prompt_number": 27
"prompt_number": 1
},
{
"cell_type": "markdown",
88,7 → 88,7
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 28
"prompt_number": 2
},
{
"cell_type": "markdown",
112,7 → 112,7
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 29
"prompt_number": 3
},
{
"cell_type": "markdown",
178,6 → 178,9
"cell_type": "markdown",
"metadata": {},
"source": [
"\u010cten\u00ed dat z akcelerometru\n",
"-------------------------\n",
"\n",
"Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako acc."
]
},
228,7 → 231,10
"cell_type": "markdown",
"metadata": {},
"source": [
"Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. "
"Kalibrace akcelerometru\n",
"-----------------------\n",
"\n",
"Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. \n"
]
},
{
420,8 → 426,171
"prompt_number": 26
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\u010cten\u00ed dat z gyroskopu\n",
"---------------------\n",
"\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"cfg = config.Config(\n",
" i2c = {\n",
" \"port\": port,\n",
" },\n",
"\n",
"\tbus = [\n",
"\t\t{\n",
" \"type\": \"i2chub\",\n",
" \"address\": 0x72,\n",
" \n",
" \"children\": [\n",
" {\"name\": \"gyro\", \"type\": \"imu01_gyro\", \"channel\": 0, }\n",
" ],\n",
"\t\t},\n",
"\t],\n",
")\n",
"\n",
"cfg.initialize()\n",
"#acc = cfg.get_device(\"acc\")\n",
"gyro = cfg.get_device(\"gyro\")\n",
"sys.stdout.write(\" MLAB accelerometer sensor IMU01A module example \\r\\n\")\n",
"time.sleep(0.5)\n",
"gyro.route()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING:pymlab.sensors.iic:HID device does not exist, we will try SMBus directly...\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" MLAB accelerometer sensor IMU01A module example \r\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
"True"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import sys\n",
"import time\n",
"from IPython.display import clear_output\n",
"\n",
"MEASUREMENTS = 100\n",
"list_meas = []\n",
"# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
"\n",
"for n in range(MEASUREMENTS):\n",
" clear_output()\n",
" (x, y, z) = gyro.axes()\n",
" list_meas.append([x, y, z])\n",
" print (n, list_meas[n])\n",
" sys.stdout.flush()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(99, [195, -118, 7])\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"measurements = np.array(list_meas)\n",
"\n",
"%pylab qt\n",
"plt.subplot(1, 1, 1)\n",
"plt.plot(measurements[:, 0])\n",
"plt.plot(measurements[:, 1])\n",
"plt.plot(measurements[:, 2])\n",
"plt.xlabel('sample number')\n",
"plt.ylabel('ADC')\n",
"plt.title('Raw sensors')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"<matplotlib.text.Text at 0x7f5b38053450>"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"help(map)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Help on built-in function map in module __builtin__:\n",
"\n",
"map(...)\n",
" map(function, sequence[, sequence, ...]) -> list\n",
" \n",
" Return a list of the results of applying the function to the items of\n",
" the argument sequence(s). If more than one sequence is given, the\n",
" function is called with an argument list consisting of the corresponding\n",
" item of each sequence, substituting None for missing values when not all\n",
" sequences have the same length. If the function is None, return a list of\n",
" the items of the sequence (or a list of tuples if more than one sequence).\n",
"\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
/Modules/Sensors/IMU01A/pdf/A3G4250D.pdf
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream