/Aparatus/DART01B/SW/1_00/A.BAT
0,0 → 1,4
call picpgr stop
call picpgr erase pic16f88
call picpgr program DART.hex hex pic16f88
call picpgr run
/Aparatus/DART01B/SW/1_00/DART.C
0,0 → 1,415
// DART01A verze programu 1.00
// (c)miho 2005
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlosti nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug;
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// Test menice PWM a rozjezdoveho PWM
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// Testovani rozjezdu
// Zadava se cas mezi stupni razeni pro rozjezd v ms
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN: %3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// Test nabijeciho algoritmu
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// Standardni beh
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int1 Run;
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(65);
}
}
}
}
/Aparatus/DART01B/SW/1_00/DART.H
0,0 → 1,10
// DART01A verze programu 1.00
// (c)miho 2005
 
#include <16F88.h> // standardni definice konstant
#include <16F88_Reg.h> // standardni definice vsech FSR
 
#device adc=8 // AD prevodnik jen na 8 bitu
#define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
#use delay(clock=xclock,restart_wdt)
#fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
/Aparatus/DART01B/SW/1_00/DART.HEX
0,0 → 1,124
:1000000000308A00042A0000FF00030E8301A100D3
:100010007F08A0000A08A8008A01A00E0408A20018
:100020007708A3007808A4007908A5007A08A6003C
:100030007B08A700831383128C308400801D222844
:100040008C1939288B1E26280B193B28220884007E
:100050002308F7002408F8002508F9002608FA000C
:100060002708FB0028088A00210E8300FF0E7F0E60
:1000700009008A1196288A11C4280A108A100A11C8
:100080008207023406340E341E343E347E34FE348D
:10009000FF340A108A100A1182070C344D346F3471
:1000A000643465343A342534643400340A108A10D8
:1000B0000A1182070A34503457344D343A34253407
:1000C0003034333475342034523455344E343A3469
:1000D000253430343334753400340A108A100A1150
:1000E00082070A34523455344E343A34203425349D
:1000F000333475346D347334203400340A108A106C
:100100000A1182070A3441344C3447343A342534D6
:10011000303433347534203425343034333475344A
:1001200020342534303433347534003429089300B6
:100130008C118A112628C308031DAA2883160611CC
:1001400083120611831694018312940183168C1175
:10015000C22883124308073C0318B0280830C300A4
:10016000C30343083D20F800A9008316061183123B
:1001700006118316940122308312940029089300FB
:1001800083168C15831200342A082B040319CC28FB
:100190002A080319AB03AA03AC080319D028AC033F
:1001A000AE080319E0282E08073C031CE028AC0821
:1001B000031DE0282D08AC00AE0A2E08C3009B20CA
:1001C0000B118A1126281A30831699008030831269
:1001D000980024308316980083128A11282A3C3014
:1001E00084000008031905290130F800BF30F7002A
:1001F0006400F70BF828F80BF6285830F700F70BD7
:10020000FF2800006400800BF428003400308316BF
:1002100098180130003A031D10298312062983160D
:1002200083124008990000344108F8014002031885
:100230001C294008F7002829F7010830C200C00D2A
:10024000F70D410877020318F700F80DC20B1F29BC
:1002500000343D08F700BD1B31293E1D3B292030ED
:100260003629F709F70A7708BD002D30F800C000DD
:1002700006213E1DBE153D08C0006430C10014219A
:100280007708BD0078083030031D4D293E18BE1593
:10029000BE1953293E1A20304F29BE113E12F807CD
:1002A0007808C00006213D08C0000A30C1001421B2
:1002B0007708BD0078083030031D6229BE19662911
:1002C0003E1A2030F8077808C00006213030BD07FC
:1002D0003D08C00006218A11692A83160108C03929
:1002E0000138810083128B16C0308B048A11772A63
:1002F0003C08043C031D8029831686108312861453
:10030000303083169F0083123C0DF700F70DF70D78
:10031000F830F7057708413E9F001130F700F70BE2
:100320008F291F151130F700F70B942983168610BB
:10033000831286101E08F800003478083E08C000BA
:100340006430C10014217708BE0078083030031DE6
:10035000B0293F18BF15BF19B6293F1A2030B2295E
:10036000BF113F12F8077808C00006213E08C00000
:100370000A30C10014217708BE0078083030031D10
:10038000C529BF19C9293F1A2030F8077808C000CD
:1003900006213030BE073E08C000062100340B089D
:1003A0000B058B13A0003C08C3009B20A01B8B17E0
:1003B000C0308B0400348B123D08AB003C08AA000F
:1003C0008B1600348B12AA08031DE929AB08031908
:1003D000EB293C10EC293C148B1600303C18013002
:1003E000F80000348B120130AE003C08AD002D083F
:1003F000AC008B160B080B058B13A0000130C3005B
:100400009B20A01B8B17003484011F3083058316AB
:100410009F019D01073083129F00623083168F0079
:100420008611831286118316061183120611831614
:100430008610831286108316811381110E30831269
:10044000031785001F30831603139B008312E328D4
:100450000130B00030081D3C031C452A3118322AF7
:100460000513332A05178316051301308312B106CD
:1004700031183C2A85133D2A8517831685130130D0
:100480008312BC00EF20B00A2A2AAF018316861718
:100490008312861B4C2A2F14831606178312061B01
:1004A000522AAF14831686138312861383160613FB
:1004B00083120613BC013C084920BC0AC000062177
:1004C00006303C02031D5B2A2F08BD001830BE0019
:1004D00029291F30831692000430831292000C30B9
:1004E0009700950183168611831286116D292F0BB3
:1004F000B02A6400BC0178217808B200B20CB20CBA
:100500003F30B2050130BC0078217808B300B30E4B
:100510000F30B305BC013C085620BC0AC0000621C0
:1005200005303C02031D8B2A3208BE00BF019D210D
:100530000930BD003D085620BD0AC00006210E301E
:100540003D02031D9A2A3308BE00BF019D211430CD
:10055000BC00EF20320895003308BC00CF21792A77
:100560002F08023C031D002BB5010130BC0078218F
:100570007808B400BC013C086D20BC0AC00006210C
:1005800006303C02031DBB2A3408BE001030BF00F9
:100590009D216D30C00006217330C000062120303F
:1005A000C00006210A30BC00EF20B508031DDE2A7A
:1005B000B50A0730BD00D030BC00DB21350BF02A76
:1005C000E221F8080319F02AB50A5230C0000621CA
:1005D0003408BC00F2210730BD00D030BC00DB2164
:1005E0003508023C031DFE2AE221F8080319FE2A01
:1005F000B50A5330C0000621BC01CF216400B52AE2
:100600002F08033C031D5A2BB6016400BC0178215E
:100610007808B700BC0178210310780CF700323E4F
:10062000B7000430BC0078217808B80037083802D9
:1006300003181F2B36081D3C031C1F2BB60A370856
:100640003802031C272BB6080319272BB6030A30E0
:10065000B807370838020318322B36081D3C031C34
:10066000322BB60A3608183C0318382B1830B6005F
:1006700036089500BC013C087E20BC0AC00006215B
:1006800005303C02031D3B2B3708BE00BF019D21F6
:100690002030C00006213808BE00BF019D21203057
:1006A000C00006213608BE00BF019D210A30BC00F3
:1006B000EF20052BAF08031DC32BB9013630BD0059
:1006C000B030BC00DB21B1146400BC017821780893
:1006D000BA00BC0178210310780CF700323EBA0052
:1006E0000430BC0078217808BB003A083B020318AC
:1006F0007E2B39081D3C031C7E2BB90A3A083B02AD
:10070000031C862BB9080319862BB9030A30BB07D3
:100710003A083B020318912B39081D3C031C912B0E
:10072000B90A3908183C0318972B1830B900390852
:100730009500BC013C087E20BC0AC00006210530A3
:100740003C02031D9A2B3A08BE00BF019D212030B8
:10075000C00006213B08BE00BF019D212030C00023
:1007600006213908BE00BF019D210A30BC00EF20E0
:10077000E221F8080319C22BB11CC22BB110413081
:08078000BC00F221642B6300B0
:02400E003C2F45
:00000001FF
;PIC16F88
/Aparatus/DART01B/SW/1_00/DART.LST
0,0 → 1,1408
CCS PCW C Compiler, Version 3.110, 15448
 
Filename: c:\miho_dat\dart\dart.LST
 
ROM used: 964 (24%)
Largest free fragment is 2048
RAM used: 24 (14%) at main() level
41 (23%) worst case
Stack: 6 worst case (3 in main + 3 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 204
0003: NOP
0004: MOVWF 7F
0005: SWAPF 03,W
0006: CLRF 03
0007: MOVWF 21
0008: MOVF 7F,W
0009: MOVWF 20
000A: MOVF 0A,W
000B: MOVWF 28
000C: CLRF 0A
000D: SWAPF 20,F
000E: MOVF 04,W
000F: MOVWF 22
0010: MOVF 77,W
0011: MOVWF 23
0012: MOVF 78,W
0013: MOVWF 24
0014: MOVF 79,W
0015: MOVWF 25
0016: MOVF 7A,W
0017: MOVWF 26
0018: MOVF 7B,W
0019: MOVWF 27
001A: BCF 03.7
001B: BCF 03.5
001C: MOVLW 8C
001D: MOVWF 04
001E: BTFSS 00.3
001F: GOTO 022
0020: BTFSC 0C.3
0021: GOTO 039
0022: BTFSS 0B.5
0023: GOTO 026
0024: BTFSC 0B.2
0025: GOTO 03B
0026: MOVF 22,W
0027: MOVWF 04
0028: MOVF 23,W
0029: MOVWF 77
002A: MOVF 24,W
002B: MOVWF 78
002C: MOVF 25,W
002D: MOVWF 79
002E: MOVF 26,W
002F: MOVWF 7A
0030: MOVF 27,W
0031: MOVWF 7B
0032: MOVF 28,W
0033: MOVWF 0A
0034: SWAPF 21,W
0035: MOVWF 03
0036: SWAPF 7F,F
0037: SWAPF 7F,W
0038: RETFIE
0039: BCF 0A.3
003A: GOTO 096
003B: BCF 0A.3
003C: GOTO 0C4
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include "DART.h"
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include <16F88.h> // standardni definice konstant
.................... //////// Header file for the PIC16F88
.................... #device PIC16F88
.................... #list
.................... #include <16F88_Reg.h> // standardni definice vsech FSR
.................... #list
....................
....................
.................... #device adc=8 // AD prevodnik jen na 8 bitu
.................... #define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
.................... #use delay(clock=xclock,restart_wdt)
*
00EF: MOVLW 3C
00F0: MOVWF 04
00F1: MOVF 00,W
00F2: BTFSC 03.2
00F3: GOTO 105
00F4: MOVLW 01
00F5: MOVWF 78
00F6: MOVLW BF
00F7: MOVWF 77
00F8: CLRWDT
00F9: DECFSZ 77,F
00FA: GOTO 0F8
00FB: DECFSZ 78,F
00FC: GOTO 0F6
00FD: MOVLW 58
00FE: MOVWF 77
00FF: DECFSZ 77,F
0100: GOTO 0FF
0101: NOP
0102: CLRWDT
0103: DECFSZ 00,F
0104: GOTO 0F4
0105: RETLW 00
.................... #fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
....................
....................
....................
.................... #define BEEP0 PIN_A6 // pipak, prvni vystup
.................... #define BEEP1 PIN_A7 // pipak, druhy vystup
.................... #define PWM PIN_B3 // PWM vystup pro menic
.................... #define REFPOWER PIN_B1 // napajeni zdroje Vref
.................... #define MOTOR PIN_B2 // zapinani motoru
.................... #define SW0 PIN_B7 // konfiguracni prepinac 0
.................... #define SW1 PIN_B6 // konfiguracni prepinac 1
....................
....................
.................... void InitRS232()
.................... // Inicializace HW RS232
.................... {
.................... SPBRG=xclock/9600/16-1; // ryclost 9600Bd
*
00E3: MOVLW 1A
00E4: BSF 03.5
00E5: MOVWF 19
.................... RCSTA=0b10000000; // enable USART
00E6: MOVLW 80
00E7: BCF 03.5
00E8: MOVWF 18
.................... TXSTA=0b00100100; // BRGH=1, TX enable
00E9: MOVLW 24
00EA: BSF 03.5
00EB: MOVWF 18
00EC: BCF 03.5
00ED: BCF 0A.3
00EE: GOTO 228 (RETURN)
.................... }
....................
....................
.................... void Putc(char c)
.................... // Posilani znaku pres HW RS232
.................... {
.................... while(TRMT==0); // cekej na prazdny TX buffer
*
0106: MOVLW 00
0107: BSF 03.5
0108: BTFSC 18.1
0109: MOVLW 01
010A: XORLW 00
010B: BTFSS 03.2
010C: GOTO 110
010D: BCF 03.5
010E: GOTO 106
010F: BSF 03.5
.................... TXREG=c; // predej data
0110: BCF 03.5
0111: MOVF 40,W
0112: MOVWF 19
0113: RETLW 00
.................... }
....................
....................
.................... // Globalni promenna pro data posilana na SSP
.................... // Nastavuje se funkci MotorPatternSet()
.................... // Vyuziva se v prerusovaci rutine IntSSP()
.................... unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
....................
....................
.................... void MotorPatternSet(unsigned int Gear)
.................... // Na zaklade rychlosti nastavi MotorPattern pro SSP
.................... // Rychlost 0 znamena stop, rychlost 8 je maximum
.................... {
.................... // Tabulka rychlost -> pattern pro SSP
.................... unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
*
003D: BCF 0A.0
003E: BCF 0A.1
003F: BCF 0A.2
0040: ADDWF 02,F
0041: RETLW 02
0042: RETLW 06
0043: RETLW 0E
0044: RETLW 1E
0045: RETLW 3E
0046: RETLW 7E
0047: RETLW FE
0048: RETLW FF
....................
.................... // Vyber patternu
.................... if (Gear==0) // stav 0 znamena stop
*
009B: MOVF 43,F
009C: BTFSS 03.2
009D: GOTO 0AA
.................... {
.................... output_low(MOTOR); // klidovy stav
009E: BSF 03.5
009F: BCF 06.2
00A0: BCF 03.5
00A1: BCF 06.2
.................... SSPSTAT = 0;
00A2: BSF 03.5
00A3: CLRF 14
.................... SSPCON1 = 0; // SPI stop
00A4: BCF 03.5
00A5: CLRF 14
.................... disable_interrupts(INT_SSP); // neni preruseni od SSP
00A6: BSF 03.5
00A7: BCF 0C.3
.................... }
.................... else // rizeny vykon
00A8: GOTO 0C2
00A9: BCF 03.5
.................... {
.................... if (Gear>7) // stav 8 a vice znamena plny vykon
00AA: MOVF 43,W
00AB: SUBLW 07
00AC: BTFSC 03.0
00AD: GOTO 0B0
.................... {
.................... Gear=8; // plny plyn
00AE: MOVLW 08
00AF: MOVWF 43
.................... }
....................
.................... MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
00B0: DECF 43,F
00B1: MOVF 43,W
00B2: CALL 03D
00B3: MOVWF 78
00B4: MOVWF 29
.................... output_low(MOTOR); // klidovy stav
00B5: BSF 03.5
00B6: BCF 06.2
00B7: BCF 03.5
00B8: BCF 06.2
.................... SSPSTAT = 0;
00B9: BSF 03.5
00BA: CLRF 14
.................... SSPCON1 = 0x22; // SPI OSC/64
00BB: MOVLW 22
00BC: BCF 03.5
00BD: MOVWF 14
....................
.................... SSPBUF=MotorPattern; // prvni data pro vyslani
00BE: MOVF 29,W
00BF: MOVWF 13
.................... enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
00C0: BSF 03.5
00C1: BSF 0C.3
.................... }
00C2: BCF 03.5
00C3: RETLW 00
.................... }
....................
....................
.................... // Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
.................... #INT_SSP
.................... void IntSSP()
.................... {
.................... SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
*
0096: MOVF 29,W
0097: MOVWF 13
0098: BCF 0C.3
0099: BCF 0A.3
009A: GOTO 026
.................... }
....................
....................
.................... void MotorSet(unsigned int Gear)
.................... // Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
.................... // od SSP jednotky
.................... // 0 stop
.................... // 1-7 pocet 1/8 vykonu
.................... // >7 plny vykon
.................... {
*
01CF: MOVF 0B,W
01D0: ANDWF 0B,W
01D1: BCF 0B.7
01D2: MOVWF 20
.................... // Nastav PWM pattern
.................... MotorPatternSet(Gear); // nastav PWM pattern pro SSP
01D3: MOVF 3C,W
01D4: MOVWF 43
01D5: CALL 09B
01D6: BTFSC 20.7
01D7: BSF 0B.7
....................
.................... // Povol preruseni
.................... enable_interrupts(GLOBAL); // povol preruseni
01D8: MOVLW C0
01D9: IORWF 0B,F
01DA: RETLW 00
.................... }
....................
....................
.................... void InitT0()
.................... // Inicializace casovace T0 (cca 1000x za sekundu)
.................... {
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
*
016D: BSF 03.5
016E: MOVF 01,W
016F: ANDLW C0
0170: IORLW 01
0171: MOVWF 01
.................... enable_interrupts(INT_RTCC); // generuj preruseni od T0
0172: BCF 03.5
0173: BSF 0B.5
.................... enable_interrupts(GLOBAL); // povol preruseni
0174: MOVLW C0
0175: IORWF 0B,F
0176: BCF 0A.3
0177: GOTO 277 (RETURN)
.................... }
....................
....................
.................... // Globalni promenna pro mereni casu
.................... // Nastavuje se procedurou TimeSet()
.................... // Testuje se funkci TimeIf()
.................... // Modifikuje se pri preruseni od casovace IntTo()
.................... unsigned int16 TimeTime;
....................
....................
.................... void TimerSet(unsigned int16 Time)
.................... // Nastavi casovac na zadany pocet ms
.................... // Test uplynuti casu se dela pomoci TimerIf()
.................... {
.................... // Nastav hodnotu
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
*
01DB: BCF 0B.5
.................... TimeTime=Time; // pri nastavovani hodnoty
01DC: MOVF 3D,W
01DD: MOVWF 2B
01DE: MOVF 3C,W
01DF: MOVWF 2A
.................... enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
01E0: BSF 0B.5
01E1: RETLW 00
.................... }
....................
....................
.................... int1 TimerIf()
.................... // Vraci TRUE pokud casovac jiz dobehl
.................... {
.................... int1 Flag; // pomocna promenna
....................
.................... // Otestuj casovac
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
01E2: BCF 0B.5
.................... Flag=(TimeTime==0); // behem testu promenne
01E3: MOVF 2A,F
01E4: BTFSS 03.2
01E5: GOTO 1E9
01E6: MOVF 2B,F
01E7: BTFSC 03.2
01E8: GOTO 1EB
01E9: BCF 3C.0
01EA: GOTO 1EC
01EB: BSF 3C.0
.................... enable_interrupts(INT_RTCC); // ted uz muze
01EC: BSF 0B.5
....................
.................... // Navratova hodnota
.................... return Flag; // TRUE znamena dobehl casovac
01ED: MOVLW 00
01EE: BTFSC 3C.0
01EF: MOVLW 01
01F0: MOVWF 78
01F1: RETLW 00
.................... }
....................
....................
.................... // Globalni promenne pro akceleraci
.................... // Nastavuje se metodou MotorStart()
.................... // Pouziva se v obsluze preruseni IntT0()
.................... unsigned int8 MotorTime; // aktualni casovac pro rozjezd
.................... unsigned int8 MotorDelay; // spozdeni mezi razenim
.................... unsigned int8 MotorGear; // rychlostni stupen
....................
....................
.................... void MotorStart(unsigned int8 Delay)
.................... // Provede rizeny rozjezd motoru
.................... {
.................... disable_interrupts(INT_RTCC);
01F2: BCF 0B.5
.................... MotorGear=1;
01F3: MOVLW 01
01F4: MOVWF 2E
.................... MotorDelay=Delay;
01F5: MOVF 3C,W
01F6: MOVWF 2D
.................... MotorTime=MotorDelay;
01F7: MOVF 2D,W
01F8: MOVWF 2C
.................... enable_interrupts(INT_RTCC);
01F9: BSF 0B.5
01FA: MOVF 0B,W
01FB: ANDWF 0B,W
01FC: BCF 0B.7
01FD: MOVWF 20
....................
.................... MotorPatternSet(1);
01FE: MOVLW 01
01FF: MOVWF 43
0200: CALL 09B
0201: BTFSC 20.7
0202: BSF 0B.7
0203: RETLW 00
.................... }
....................
....................
.................... #INT_TIMER0
.................... void IntT0()
.................... // Preruseni od casovace cca 1000x za sekundu
.................... {
.................... // Odpocitavani casovace
.................... if (TimeTime) TimeTime--;
*
00C4: MOVF 2A,W
00C5: IORWF 2B,W
00C6: BTFSC 03.2
00C7: GOTO 0CC
00C8: MOVF 2A,W
00C9: BTFSC 03.2
00CA: DECF 2B,F
00CB: DECF 2A,F
....................
.................... // Obsluha akcelerace
.................... if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
00CC: MOVF 2C,F
00CD: BTFSC 03.2
00CE: GOTO 0D0
00CF: DECF 2C,F
.................... if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
00D0: MOVF 2E,F
00D1: BTFSC 03.2
00D2: GOTO 0E0
00D3: MOVF 2E,W
00D4: SUBLW 07
00D5: BTFSS 03.0
00D6: GOTO 0E0
00D7: MOVF 2C,F
00D8: BTFSS 03.2
00D9: GOTO 0E0
.................... {
.................... MotorTime=MotorDelay; // znovu nastav casovac
00DA: MOVF 2D,W
00DB: MOVWF 2C
.................... MotorGear++; // dalsi rychlost
00DC: INCF 2E,F
.................... MotorPatternSet(MotorGear); // nastav rychlost
00DD: MOVF 2E,W
00DE: MOVWF 43
00DF: CALL 09B
.................... }
00E0: BCF 0B.2
00E1: BCF 0A.3
00E2: GOTO 026
.................... }
....................
....................
.................... // Cteni dat z AD prevodniku, zadava se cislo kanalu
.................... int8 ReadAD(int8 Ch)
.................... {
.................... // Pokud merim Vref zapnu si jeho napajeni
.................... if (Ch==4) output_high(REFPOWER);
*
0178: MOVF 3C,W
0179: SUBLW 04
017A: BTFSS 03.2
017B: GOTO 180
017C: BSF 03.5
017D: BCF 06.1
017E: BCF 03.5
017F: BSF 06.1
....................
.................... // Inicializace a cislo kanalu
.................... ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
0180: MOVLW 30
0181: BSF 03.5
0182: MOVWF 1F
.................... ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
0183: BCF 03.5
0184: RLF 3C,W
0185: MOVWF 77
0186: RLF 77,F
0187: RLF 77,F
0188: MOVLW F8
0189: ANDWF 77,F
018A: MOVF 77,W
018B: ADDLW 41
018C: MOVWF 1F
....................
.................... // Mereni
.................... delay_us(50); // doba na prepnuti kanalu
018D: MOVLW 11
018E: MOVWF 77
018F: DECFSZ 77,F
0190: GOTO 18F
.................... ADCON0 |= 4; // start prevodu
0191: BSF 1F.2
.................... delay_us(50); // doba na prevod
0192: MOVLW 11
0193: MOVWF 77
0194: DECFSZ 77,F
0195: GOTO 194
....................
.................... // Vypnu napajeni Vref (vzdycky)
.................... output_low(REFPOWER);
0196: BSF 03.5
0197: BCF 06.1
0198: BCF 03.5
0199: BCF 06.1
....................
.................... // Navrat hodnoty
.................... return ADRESH;
019A: MOVF 1E,W
019B: MOVWF 78
019C: RETLW 00
.................... }
....................
....................
.................... void main()
.................... {
.................... unsigned int8 Debug;
.................... unsigned int8 i;
*
0204: CLRF 04
0205: MOVLW 1F
0206: ANDWF 03,F
0207: BSF 03.5
0208: CLRF 1F
0209: CLRF 1D
020A: MOVLW 07
020B: BCF 03.5
020C: MOVWF 1F
....................
.................... // Hodiny
.................... OSCCON = 0x62; // 4 MHz interni RC oscilator
020D: MOVLW 62
020E: BSF 03.5
020F: MOVWF 0F
....................
.................... // Digitalni vystupy
.................... output_low(PWM); // PWM vystup
0210: BCF 06.3
0211: BCF 03.5
0212: BCF 06.3
.................... output_low(MOTOR); // Proud do motoru
0213: BSF 03.5
0214: BCF 06.2
0215: BCF 03.5
0216: BCF 06.2
.................... output_low(REFPOWER); // Napajeni Vref
0217: BSF 03.5
0218: BCF 06.1
0219: BCF 03.5
021A: BCF 06.1
.................... port_b_pullups(TRUE); // Zbyvajici vyvody portu B
021B: BSF 03.5
021C: BCF 01.7
....................
.................... // Watch Dog
.................... PSA=0; // preddelic prirazen casovaci
021D: BCF 01.3
.................... WDTCON=0x0E; // Watch Dog cca 130ms
021E: MOVLW 0E
021F: BCF 03.5
0220: BSF 03.6
0221: MOVWF 05
....................
.................... // Analogove vstupy
.................... ANSEL = 0x1F; // AN0 az AN4
0222: MOVLW 1F
0223: BSF 03.5
0224: BCF 03.6
0225: MOVWF 1B
....................
.................... // nastaveni RS232
.................... InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
0226: BCF 03.5
0227: GOTO 0E3
....................
.................... // Pipnuti (a cekani)
.................... for (i=1;i<30;i++) // pocet 1/2 period
0228: MOVLW 01
0229: MOVWF 30
022A: MOVF 30,W
022B: SUBLW 1D
022C: BTFSS 03.0
022D: GOTO 245
.................... {
.................... int1 beep; // stavova promenna pro pipak
....................
.................... output_bit(BEEP0,beep);
022E: BTFSC 31.0
022F: GOTO 232
0230: BCF 05.6
0231: GOTO 233
0232: BSF 05.6
0233: BSF 03.5
0234: BCF 05.6
.................... beep=~beep;
0235: MOVLW 01
0236: BCF 03.5
0237: XORWF 31,F
.................... output_bit(BEEP1,beep);
0238: BTFSC 31.0
0239: GOTO 23C
023A: BCF 05.7
023B: GOTO 23D
023C: BSF 05.7
023D: BSF 03.5
023E: BCF 05.7
.................... delay_us(1000);
023F: MOVLW 01
0240: BCF 03.5
0241: MOVWF 3C
0242: CALL 0EF
.................... }
0243: INCF 30,F
0244: GOTO 22A
....................
.................... // Rozhodnuti o rezimu cinnosti
.................... Debug=0;
0245: CLRF 2F
.................... if (~input(SW0)) Debug|=1; // precti bit 0
0246: BSF 03.5
0247: BSF 06.7
0248: BCF 03.5
0249: BTFSC 06.7
024A: GOTO 24C
024B: BSF 2F.0
.................... if (~input(SW1)) Debug|=2; // precti bit 1
024C: BSF 03.5
024D: BSF 06.6
024E: BCF 03.5
024F: BTFSC 06.6
0250: GOTO 252
0251: BSF 2F.1
.................... output_low(SW0); // nastav L aby se snizila spotreba
0252: BSF 03.5
0253: BCF 06.7
0254: BCF 03.5
0255: BCF 06.7
.................... output_low(SW1); // na obou vstupech
0256: BSF 03.5
0257: BCF 06.6
0258: BCF 03.5
0259: BCF 06.6
....................
.................... // Zobrazeni rezimu
.................... printf(Putc,"\fMode:%d",Debug);
*
0049: BCF 0A.0
004A: BCF 0A.1
004B: BCF 0A.2
004C: ADDWF 02,F
004D: RETLW 0C
004E: RETLW 4D
004F: RETLW 6F
0050: RETLW 64
0051: RETLW 65
0052: RETLW 3A
0053: RETLW 25
0054: RETLW 64
0055: RETLW 00
*
0129: MOVF 3D,W
012A: MOVWF 77
012B: BTFSC 3D.7
012C: GOTO 131
012D: BTFSS 3E.2
012E: GOTO 13B
012F: MOVLW 20
0130: GOTO 136
0131: COMF 77,F
0132: INCF 77,F
0133: MOVF 77,W
0134: MOVWF 3D
0135: MOVLW 2D
0136: MOVWF 78
0137: MOVWF 40
0138: CALL 106
0139: BTFSS 3E.2
013A: BSF 3E.3
013B: MOVF 3D,W
013C: MOVWF 40
013D: MOVLW 64
013E: MOVWF 41
013F: CALL 114
0140: MOVF 77,W
0141: MOVWF 3D
0142: MOVF 78,W
0143: MOVLW 30
0144: BTFSS 03.2
0145: GOTO 14D
0146: BTFSC 3E.0
0147: BSF 3E.3
0148: BTFSC 3E.3
0149: GOTO 153
014A: BTFSC 3E.4
014B: MOVLW 20
014C: GOTO 14F
014D: BCF 3E.3
014E: BCF 3E.4
014F: ADDWF 78,F
0150: MOVF 78,W
0151: MOVWF 40
0152: CALL 106
0153: MOVF 3D,W
0154: MOVWF 40
0155: MOVLW 0A
0156: MOVWF 41
0157: CALL 114
0158: MOVF 77,W
0159: MOVWF 3D
015A: MOVF 78,W
015B: MOVLW 30
015C: BTFSS 03.2
015D: GOTO 162
015E: BTFSC 3E.3
015F: GOTO 166
0160: BTFSC 3E.4
0161: MOVLW 20
0162: ADDWF 78,F
0163: MOVF 78,W
0164: MOVWF 40
0165: CALL 106
0166: MOVLW 30
0167: ADDWF 3D,F
0168: MOVF 3D,W
0169: MOVWF 40
016A: CALL 106
016B: BCF 0A.3
016C: GOTO 269 (RETURN)
*
025A: CLRF 3C
025B: MOVF 3C,W
025C: CALL 049
025D: INCF 3C,F
025E: MOVWF 40
025F: CALL 106
0260: MOVLW 06
0261: SUBWF 3C,W
0262: BTFSS 03.2
0263: GOTO 25B
0264: MOVF 2F,W
0265: MOVWF 3D
0266: MOVLW 18
0267: MOVWF 3E
0268: GOTO 129
....................
.................... // Inicializace PWM
.................... PR2 = 0x1F; // perioda PWM casovace
0269: MOVLW 1F
026A: BSF 03.5
026B: MOVWF 12
.................... T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
026C: MOVLW 04
026D: BCF 03.5
026E: MOVWF 12
.................... CCP1CON = 0x0C; // PWM mode, lsb bity nulove
026F: MOVLW 0C
0270: MOVWF 17
.................... CCPR1L = 0; // na zacatku nulova data
0271: CLRF 15
.................... output_low(PWM); // PWM vystup
0272: BSF 03.5
0273: BCF 06.3
0274: BCF 03.5
0275: BCF 06.3
....................
.................... // Inicializace casovace
.................... InitT0(); // nastav casovac na cca 1ms
0276: GOTO 16D
....................
.................... // Test menice PWM a rozjezdoveho PWM
.................... if (Debug==1)
0277: DECFSZ 2F,W
0278: GOTO 2B0
.................... {
.................... unsigned int8 Data1; // poteniometr P1 = PWM
.................... unsigned int8 Data2; // poteniometr P2 = Rozjezd
....................
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0279: CLRWDT
....................
.................... // mereni vstupu
.................... Data1=ReadAD(0); // nacti parametr pro PWM
027A: CLRF 3C
027B: CALL 178
027C: MOVF 78,W
027D: MOVWF 32
.................... Data1>>=2; // redukuj rozsah na 0 az 63
027E: RRF 32,F
027F: RRF 32,F
0280: MOVLW 3F
0281: ANDWF 32,F
.................... Data2=ReadAD(1); // nacti parametr pro rozjezd
0282: MOVLW 01
0283: MOVWF 3C
0284: CALL 178
0285: MOVF 78,W
0286: MOVWF 33
.................... Data2>>=4; // redukuj rozsah na 0 az 15
0287: SWAPF 33,F
0288: MOVLW 0F
0289: ANDWF 33,F
....................
.................... // zobrazeni
.................... printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
*
0056: BCF 0A.0
0057: BCF 0A.1
0058: BCF 0A.2
0059: ADDWF 02,F
005A: RETLW 0A
005B: RETLW 50
005C: RETLW 57
005D: RETLW 4D
005E: RETLW 3A
005F: RETLW 25
0060: RETLW 30
0061: RETLW 33
0062: RETLW 75
0063: RETLW 20
0064: RETLW 52
0065: RETLW 55
0066: RETLW 4E
0067: RETLW 3A
0068: RETLW 25
0069: RETLW 30
006A: RETLW 33
006B: RETLW 75
006C: RETLW 00
*
019D: MOVF 78,W
019E: MOVF 3E,W
019F: MOVWF 40
01A0: MOVLW 64
01A1: MOVWF 41
01A2: CALL 114
01A3: MOVF 77,W
01A4: MOVWF 3E
01A5: MOVF 78,W
01A6: MOVLW 30
01A7: BTFSS 03.2
01A8: GOTO 1B0
01A9: BTFSC 3F.0
01AA: BSF 3F.3
01AB: BTFSC 3F.3
01AC: GOTO 1B6
01AD: BTFSC 3F.4
01AE: MOVLW 20
01AF: GOTO 1B2
01B0: BCF 3F.3
01B1: BCF 3F.4
01B2: ADDWF 78,F
01B3: MOVF 78,W
01B4: MOVWF 40
01B5: CALL 106
01B6: MOVF 3E,W
01B7: MOVWF 40
01B8: MOVLW 0A
01B9: MOVWF 41
01BA: CALL 114
01BB: MOVF 77,W
01BC: MOVWF 3E
01BD: MOVF 78,W
01BE: MOVLW 30
01BF: BTFSS 03.2
01C0: GOTO 1C5
01C1: BTFSC 3F.3
01C2: GOTO 1C9
01C3: BTFSC 3F.4
01C4: MOVLW 20
01C5: ADDWF 78,F
01C6: MOVF 78,W
01C7: MOVWF 40
01C8: CALL 106
01C9: MOVLW 30
01CA: ADDWF 3E,F
01CB: MOVF 3E,W
01CC: MOVWF 40
01CD: CALL 106
01CE: RETLW 00
*
028A: CLRF 3C
028B: MOVF 3C,W
028C: CALL 056
028D: INCF 3C,F
028E: MOVWF 40
028F: CALL 106
0290: MOVLW 05
0291: SUBWF 3C,W
0292: BTFSS 03.2
0293: GOTO 28B
0294: MOVF 32,W
0295: MOVWF 3E
0296: CLRF 3F
0297: CALL 19D
0298: MOVLW 09
0299: MOVWF 3D
029A: MOVF 3D,W
029B: CALL 056
029C: INCF 3D,F
029D: MOVWF 40
029E: CALL 106
029F: MOVLW 0E
02A0: SUBWF 3D,W
02A1: BTFSS 03.2
02A2: GOTO 29A
02A3: MOVF 33,W
02A4: MOVWF 3E
02A5: CLRF 3F
02A6: CALL 19D
.................... delay_ms(20);
02A7: MOVLW 14
02A8: MOVWF 3C
02A9: CALL 0EF
....................
.................... // nastaveni parametru PWM
.................... CCPR1L = Data1;
02AA: MOVF 32,W
02AB: MOVWF 15
....................
.................... // nastaveni parametru RUN
.................... MotorSet(Data2);
02AC: MOVF 33,W
02AD: MOVWF 3C
02AE: CALL 1CF
.................... }
02AF: GOTO 279
.................... }
....................
.................... // Testovani rozjezdu
.................... // Zadava se cas mezi stupni razeni pro rozjezd v ms
.................... if (Debug==2)
02B0: MOVF 2F,W
02B1: SUBLW 02
02B2: BTFSS 03.2
02B3: GOTO 300
.................... {
.................... int8 Data;
.................... int8 Start;
....................
.................... Start=0; // uvodni stav
02B4: CLRF 35
.................... while(1)
.................... {
.................... // Nacti a zobraz parametr
.................... Data=ReadAD(1); // potenciometr P2 = rozjezd
02B5: MOVLW 01
02B6: MOVWF 3C
02B7: CALL 178
02B8: MOVF 78,W
02B9: MOVWF 34
.................... printf(Putc,"\nRUN: %3ums ",Data); // zobraz
*
006D: BCF 0A.0
006E: BCF 0A.1
006F: BCF 0A.2
0070: ADDWF 02,F
0071: RETLW 0A
0072: RETLW 52
0073: RETLW 55
0074: RETLW 4E
0075: RETLW 3A
0076: RETLW 20
0077: RETLW 25
0078: RETLW 33
0079: RETLW 75
007A: RETLW 6D
007B: RETLW 73
007C: RETLW 20
007D: RETLW 00
*
02BA: CLRF 3C
02BB: MOVF 3C,W
02BC: CALL 06D
02BD: INCF 3C,F
02BE: MOVWF 40
02BF: CALL 106
02C0: MOVLW 06
02C1: SUBWF 3C,W
02C2: BTFSS 03.2
02C3: GOTO 2BB
02C4: MOVF 34,W
02C5: MOVWF 3E
02C6: MOVLW 10
02C7: MOVWF 3F
02C8: CALL 19D
02C9: MOVLW 6D
02CA: MOVWF 40
02CB: CALL 106
02CC: MOVLW 73
02CD: MOVWF 40
02CE: CALL 106
02CF: MOVLW 20
02D0: MOVWF 40
02D1: CALL 106
.................... delay_ms(10); // prodleva pro terminal
02D2: MOVLW 0A
02D3: MOVWF 3C
02D4: CALL 0EF
....................
.................... // Uvodni pauza
.................... if (Start==0) // spousti se 1x na zacatku
02D5: MOVF 35,F
02D6: BTFSS 03.2
02D7: GOTO 2DE
.................... {
.................... Start++; // dalsi stav je cekani
02D8: INCF 35,F
.................... TimerSet(2000); // na dokonceni uvodni prodlevy
02D9: MOVLW 07
02DA: MOVWF 3D
02DB: MOVLW D0
02DC: MOVWF 3C
02DD: CALL 1DB
.................... }
....................
.................... // Rozjezd
.................... if ((Start==1) && TimerIf())
02DE: DECFSZ 35,W
02DF: GOTO 2F0
02E0: CALL 1E2
02E1: MOVF 78,F
02E2: BTFSC 03.2
02E3: GOTO 2F0
.................... {
.................... Start++;
02E4: INCF 35,F
.................... printf(Putc,"R");
02E5: MOVLW 52
02E6: MOVWF 40
02E7: CALL 106
.................... MotorStart(Data); // rozjezd s nastavenim prodlevy
02E8: MOVF 34,W
02E9: MOVWF 3C
02EA: CALL 1F2
....................
.................... TimerSet(2000); // nastav celkovy cas jizdy
02EB: MOVLW 07
02EC: MOVWF 3D
02ED: MOVLW D0
02EE: MOVWF 3C
02EF: CALL 1DB
.................... }
....................
.................... // Zastaveni
.................... if ((Start==2) && TimerIf())
02F0: MOVF 35,W
02F1: SUBLW 02
02F2: BTFSS 03.2
02F3: GOTO 2FE
02F4: CALL 1E2
02F5: MOVF 78,F
02F6: BTFSC 03.2
02F7: GOTO 2FE
.................... {
.................... Start++;
02F8: INCF 35,F
.................... printf(Putc,"S");
02F9: MOVLW 53
02FA: MOVWF 40
02FB: CALL 106
.................... MotorSet(0); // pokud dobehl casovac zastav motor
02FC: CLRF 3C
02FD: CALL 1CF
.................... }
....................
.................... // watch dog
.................... restart_wdt();
02FE: CLRWDT
.................... }
02FF: GOTO 2B5
.................... }
....................
.................... // Test nabijeciho algoritmu
.................... if (Debug==3)
0300: MOVF 2F,W
0301: SUBLW 03
0302: BTFSS 03.2
0303: GOTO 35A
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
0304: CLRF 36
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0305: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
0306: CLRF 3C
0307: CALL 178
0308: MOVF 78,W
0309: MOVWF 37
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
030A: CLRF 3C
030B: CALL 178
030C: BCF 03.0
030D: RRF 78,W
030E: MOVWF 77
030F: ADDLW 32
0310: MOVWF 37
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0311: MOVLW 04
0312: MOVWF 3C
0313: CALL 178
0314: MOVF 78,W
0315: MOVWF 38
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
0316: MOVF 37,W
0317: SUBWF 38,W
0318: BTFSC 03.0
0319: GOTO 31F
031A: MOVF 36,W
031B: SUBLW 1D
031C: BTFSS 03.0
031D: GOTO 31F
031E: INCF 36,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
031F: MOVF 37,W
0320: SUBWF 38,W
0321: BTFSS 03.0
0322: GOTO 327
0323: MOVF 36,F
0324: BTFSC 03.2
0325: GOTO 327
0326: DECF 36,F
.................... Vref+=10;
0327: MOVLW 0A
0328: ADDWF 38,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
0329: MOVF 37,W
032A: SUBWF 38,W
032B: BTFSC 03.0
032C: GOTO 332
032D: MOVF 36,W
032E: SUBLW 1D
032F: BTFSS 03.0
0330: GOTO 332
0331: INCF 36,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0332: MOVF 36,W
0333: SUBLW 18
0334: BTFSC 03.0
0335: GOTO 338
0336: MOVLW 18
0337: MOVWF 36
.................... CCPR1L = PwmOut; // pouziti vystupu
0338: MOVF 36,W
0339: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
*
007E: BCF 0A.0
007F: BCF 0A.1
0080: BCF 0A.2
0081: ADDWF 02,F
0082: RETLW 0A
0083: RETLW 41
0084: RETLW 4C
0085: RETLW 47
0086: RETLW 3A
0087: RETLW 25
0088: RETLW 30
0089: RETLW 33
008A: RETLW 75
008B: RETLW 20
008C: RETLW 25
008D: RETLW 30
008E: RETLW 33
008F: RETLW 75
0090: RETLW 20
0091: RETLW 25
0092: RETLW 30
0093: RETLW 33
0094: RETLW 75
0095: RETLW 00
*
033A: CLRF 3C
033B: MOVF 3C,W
033C: CALL 07E
033D: INCF 3C,F
033E: MOVWF 40
033F: CALL 106
0340: MOVLW 05
0341: SUBWF 3C,W
0342: BTFSS 03.2
0343: GOTO 33B
0344: MOVF 37,W
0345: MOVWF 3E
0346: CLRF 3F
0347: CALL 19D
0348: MOVLW 20
0349: MOVWF 40
034A: CALL 106
034B: MOVF 38,W
034C: MOVWF 3E
034D: CLRF 3F
034E: CALL 19D
034F: MOVLW 20
0350: MOVWF 40
0351: CALL 106
0352: MOVF 36,W
0353: MOVWF 3E
0354: CLRF 3F
0355: CALL 19D
.................... delay_ms(10);
0356: MOVLW 0A
0357: MOVWF 3C
0358: CALL 0EF
.................... }
0359: GOTO 305
.................... }
....................
.................... // Standardni beh
.................... if (Debug==0)
035A: MOVF 2F,F
035B: BTFSS 03.2
035C: GOTO 3C3
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
.................... int1 Run;
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
035D: CLRF 39
.................... TimerSet(14000); // casovani startu
035E: MOVLW 36
035F: MOVWF 3D
0360: MOVLW B0
0361: MOVWF 3C
0362: CALL 1DB
.................... Run=1;
0363: BSF 31.1
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0364: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
0365: CLRF 3C
0366: CALL 178
0367: MOVF 78,W
0368: MOVWF 3A
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
0369: CLRF 3C
036A: CALL 178
036B: BCF 03.0
036C: RRF 78,W
036D: MOVWF 77
036E: ADDLW 32
036F: MOVWF 3A
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0370: MOVLW 04
0371: MOVWF 3C
0372: CALL 178
0373: MOVF 78,W
0374: MOVWF 3B
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
0375: MOVF 3A,W
0376: SUBWF 3B,W
0377: BTFSC 03.0
0378: GOTO 37E
0379: MOVF 39,W
037A: SUBLW 1D
037B: BTFSS 03.0
037C: GOTO 37E
037D: INCF 39,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
037E: MOVF 3A,W
037F: SUBWF 3B,W
0380: BTFSS 03.0
0381: GOTO 386
0382: MOVF 39,F
0383: BTFSC 03.2
0384: GOTO 386
0385: DECF 39,F
.................... Vref+=10;
0386: MOVLW 0A
0387: ADDWF 3B,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
0388: MOVF 3A,W
0389: SUBWF 3B,W
038A: BTFSC 03.0
038B: GOTO 391
038C: MOVF 39,W
038D: SUBLW 1D
038E: BTFSS 03.0
038F: GOTO 391
0390: INCF 39,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0391: MOVF 39,W
0392: SUBLW 18
0393: BTFSC 03.0
0394: GOTO 397
0395: MOVLW 18
0396: MOVWF 39
.................... CCPR1L = PwmOut; // pouziti vystupu
0397: MOVF 39,W
0398: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
0399: CLRF 3C
039A: MOVF 3C,W
039B: CALL 07E
039C: INCF 3C,F
039D: MOVWF 40
039E: CALL 106
039F: MOVLW 05
03A0: SUBWF 3C,W
03A1: BTFSS 03.2
03A2: GOTO 39A
03A3: MOVF 3A,W
03A4: MOVWF 3E
03A5: CLRF 3F
03A6: CALL 19D
03A7: MOVLW 20
03A8: MOVWF 40
03A9: CALL 106
03AA: MOVF 3B,W
03AB: MOVWF 3E
03AC: CLRF 3F
03AD: CALL 19D
03AE: MOVLW 20
03AF: MOVWF 40
03B0: CALL 106
03B1: MOVF 39,W
03B2: MOVWF 3E
03B3: CLRF 3F
03B4: CALL 19D
.................... delay_ms(10);
03B5: MOVLW 0A
03B6: MOVWF 3C
03B7: CALL 0EF
....................
.................... // rozjezd
.................... if (TimerIf()&&Run)
03B8: CALL 1E2
03B9: MOVF 78,F
03BA: BTFSC 03.2
03BB: GOTO 3C2
03BC: BTFSS 31.1
03BD: GOTO 3C2
.................... {
.................... Run=0;
03BE: BCF 31.1
.................... MotorStart(65);
03BF: MOVLW 41
03C0: MOVWF 3C
03C1: CALL 1F2
.................... }
.................... }
03C2: GOTO 364
.................... }
.................... }
....................
03C3: SLEEP
/Aparatus/DART01B/SW/1_00/DART_.C
0,0 → 1,430
// DART01A verze programu 1.00
// (c)miho 2005
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232 (pro ladici vystupy)
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
// Parametrem je prodleva mezi razenim rychlosti v ms
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu (na ladici seriovy vystup)
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// Test menice PWM a rozjezdoveho PWM
// ==================================
// P1 nastavuje primo stridu hlavniho PWM menice
// P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
// Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// Testovani rozjezdu
// ==================
// P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
// Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN: %3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// Test nabijeciho algoritmu
// =========================
// P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
// Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
// algoritmus jako pro standardni beh
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// Standardni beh
// ==============
// P1 nastavuje pozadovane napeti na clancich
// Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
// rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int1 Run;
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(65);
}
}
}
}
/Aparatus/DART01B/SW/1_00/LIB/16f88.h
0,0 → 1,216
//////// Header file for the PIC16F88
#device PIC16F88
#nolist
//////// Program memory: 4096x14 Data RAM: 368 Stack: 8
//////// I/O: 16 Analog Pins: 7
//////// Data EEPROM: 256
//////// C Scratch area: 77 ID Location: 2000
// Fuses:
// Oscilator: LP - oscilator LP
// XT - oscilator XT
// HS - oscilator HS
// EC_IO - externi vstup, RA6/CLKO je IO port
// INTRC - RC oscilator, RA6/CLKO je CLKO, RA7/CLKI je IO port port,
// INTRC_IO - RC oscilator, RA6 i RA7 je IO port
// RC - ext RC, RA6/CLKO je CLKO
// RC_IO - ext RC, RA6 je IO port
// Watch: NOWDT - neni watchog
// WDT - je watchdog
// PUT: NOPUT - neni power up timer
// PUT - je power up timer
// MCLR: MCLR - RA5/MCLR je MCLR
// NOMCLR - RA5/MCLR je IO port
// BOR: BROWNOUT - BOR povolen
// NOBROWNOUT - BOR zakazan
// LVP: LVP - RB3/PGM je PGM
// NOLVP - RB3/PGM je IO port
// CPD: CPD - je ochrana EEPROM
// NOCPD - neni ochrana EEPROM
// WRT WRT - zakaz zapisu do pameti programu
// NOWRT - povolen zapis do pameti programu
// DEBUG: DEBUG - RB6 a RB7 jsou ICD port
// NODEBUG - RB6 a RB7 jsou IO port
// CCPMX: CCPB0 - CCP/PWM na RB0
// CCPB3 - CCP/PWM na RB3
// CP: PROTECT - pamet programu je chranena
// NOPROTECT - pamet programu neni chranena
//
 
////////////////////////////////////////////////////////////////// I/O
// Discrete I/O Functions: SET_TRIS_x(), OUTPUT_x(), INPUT_x(),
// PORT_B_PULLUPS(), INPUT(),
// OUTPUT_LOW(), OUTPUT_HIGH(),
// OUTPUT_FLOAT(), OUTPUT_BIT()
// Constants used to identify pins in the above are:
 
 
 
#define PIN_A0 40
#define PIN_A1 41
#define PIN_A2 42
#define PIN_A3 43
#define PIN_A4 44
#define PIN_A5 45
#define PIN_A6 46
#define PIN_A7 47
 
#define PIN_B0 48
#define PIN_B1 49
#define PIN_B2 50
#define PIN_B3 51
#define PIN_B4 52
#define PIN_B5 53
#define PIN_B6 54
#define PIN_B7 55
 
////////////////////////////////////////////////////////////////// Useful defines
#define FALSE 0
#define TRUE 1
 
#define BYTE int
#define BOOLEAN short int
 
#define getc getch
#define fgetc getch
#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts
 
////////////////////////////////////////////////////////////////// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART_CAUSE()
// Constants returned from RESTART_CAUSE() are:
#define WDT_FROM_SLEEP 0
#define WDT_TIMEOUT 8
#define MCLR_FROM_SLEEP 16
#define NORMAL_POWER_UP 24
 
 
////////////////////////////////////////////////////////////////// Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER0(),
// SET_TIMER0() or SET_RTCC(),
// GET_TIMER0() or GET_RTCC()
// Constants used for SETUP_TIMER0() are:
#define RTCC_INTERNAL 0
#define RTCC_EXT_L_TO_H 32
#define RTCC_EXT_H_TO_L 48
 
#define RTCC_DIV_1 8
#define RTCC_DIV_2 0
#define RTCC_DIV_4 1
#define RTCC_DIV_8 2
#define RTCC_DIV_16 3
#define RTCC_DIV_32 4
#define RTCC_DIV_64 5
#define RTCC_DIV_128 6
#define RTCC_DIV_256 7
 
 
#define RTCC_8_BIT 0
 
// Constants used for SETUP_COUNTERS() are the above
// constants for the 1st param and the following for
// the 2nd param:
 
////////////////////////////////////////////////////////////////// WDT
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT()
//
#define WDT_18MS 8
#define WDT_36MS 9
#define WDT_72MS 10
#define WDT_144MS 11
#define WDT_288MS 12
#define WDT_576MS 13
#define WDT_1152MS 14
#define WDT_2304MS 15
 
////////////////////////////////////////////////////////////////// Timer 1
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1, SET_TIMER1
// Constants used for SETUP_TIMER_1() are:
// (or (via |) together constants from each group)
#define T1_DISABLED 0
#define T1_INTERNAL 0x85
#define T1_EXTERNAL 0x87
#define T1_EXTERNAL_SYNC 0x83
 
#define T1_CLK_OUT 8
 
#define T1_DIV_BY_1 0
#define T1_DIV_BY_2 0x10
#define T1_DIV_BY_4 0x20
#define T1_DIV_BY_8 0x30
 
////////////////////////////////////////////////////////////////// Timer 2
// Timer 2 Functions: SETUP_TIMER_2, GET_TIMER2, SET_TIMER2
// Constants used for SETUP_TIMER_2() are:
#define T2_DISABLED 0
#define T2_DIV_BY_1 4
#define T2_DIV_BY_4 5
#define T2_DIV_BY_16 6
 
////////////////////////////////////////////////////////////////// CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY
// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH
// Constants used for SETUP_CCPx() are:
#define CCP_OFF 0
#define CCP_CAPTURE_FE 4
#define CCP_CAPTURE_RE 5
#define CCP_CAPTURE_DIV_4 6
#define CCP_CAPTURE_DIV_16 7
#define CCP_COMPARE_SET_ON_MATCH 8
#define CCP_COMPARE_CLR_ON_MATCH 9
#define CCP_COMPARE_INT 0xA
#define CCP_COMPARE_RESET_TIMER 0xB
#define CCP_PWM 0xC
#define CCP_PWM_PLUS_1 0x1c
#define CCP_PWM_PLUS_2 0x2c
#define CCP_PWM_PLUS_3 0x3c
long CCP_1;
#byte CCP_1 = 0x15
#byte CCP_1_LOW= 0x15
#byte CCP_1_HIGH= 0x16
////////////////////////////////////////////////////////////////// COMP
// Comparator Variables: C1OUT, C2OUT
// Constants used in setup_comparators() are:
#define A0_A3_A1_A2 4
#define A0_A2_A1_A2 3
#define NC_NC_A1_A2 5
#define NC_NC_NC_NC 7
#define A0_VR_A1_VR 2
#define A3_VR_A2_VR 10
#define A0_A2_A1_A2_OUT_ON_A3_A4 6
#define A3_A2_A1_A2 9
 
//#bit C1OUT = 0x1f.6
//#bit C2OUT = 0x1f.7
 
////////////////////////////////////////////////////////////////// VREF
// Constants used in setup_vref() are:
#define VREF_LOW 0xa0
#define VREF_HIGH 0x80
#define VREF_A2 0x40
 
////////////////////////////////////////////////////////////////// INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),
// EXT_INT_EDGE()
//
// Constants used in EXT_INT_EDGE() are:
#define L_TO_H 0x40
#define H_TO_L 0
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:
#define GLOBAL 0x0BC0
#define INT_RTCC 0x0B20
#define INT_RB 0x0B08
#define INT_EXT 0x0B10
#define INT_TBE 0x8C10
#define INT_RDA 0x8C20
#define INT_TIMER1 0x8C01
#define INT_TIMER2 0x8C02
#define INT_CCP1 0x8C04
#define INT_SSP 0x8C08
#define INT_COMP 0x8D40
#define INT_EEPROM 0x8D10
#define INT_TIMER0 0x0B20
#list
/Aparatus/DART01B/SW/1_00/LIB/16f88_reg.h
0,0 → 1,314
#nolist
//
// Komplete definition of all Special Feature Registers for CCS C compiler
//
// PIC16F87
// PIC16F88
//
// (c)miho 2005
//
// History:
//
// 1.00 First Version, not verified yet
 
 
// SFR Registers in Memory Bank 0
//
#byte INDF = 0x00
#byte TMR0 = 0x01
#byte PCL = 0x02
#byte STATUS = 0x03
#bit IRP = STATUS.7
#bit RP1 = STATUS.6
#bit RP0 = STATUS.5
#bit TO = STATUS.4
#bit PD = STATUS.3
#bit Z = STATUS.2
#bit DC = STATUS.1
#bit C = STATUS.0
#byte FSR = 0x04
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PCLATH = 0x0A
#byte INTCON = 0x0B
#bit GIE = INTCON.7
#bit PEIE = INTCON.6
#bit TMR0IE = INTCON.5
#bit INT0IE = INTCON.4
#bit RBIE = INTCON.3
#bit TMR0IF = INTCON.2
#bit INT0IF = INTCON.1
#bit RBIF = INTCON.0
#byte PIR1 = 0x0C
#bit ADIF = PIR1.6
#bit RCIF = PIR1.5
#bit TXIF = PIR1.4
#bit SSPIF = PIR1.3
#bit CCP1IF = PIR1.2
#bit TMR2IF = PIR1.1
#bit TMR1IF = PIR1.0
#byte PIR2 = 0x0D
#bit OSFIF = PIR2.7
#bit CMIF = PIR2.6
#bit EEIF = PIR2.4
#byte TMR1L = 0x0E
#byte TMR1H = 0x0F
#byte T1CON = 0x10
#bit T1RUN = T1CON.6
#bit T1CKPS1 = T1CON.5
#bit T1CKPS0 = T1CON.4
#bit T1OSCEN = T1CON.3
#bit T1SYNC = T1CON.2
#bit TMR1CS = T1CON.1
#bit TMR1ON = T1CON.0
#byte TMR2 = 0x11
#byte T2CON = 0x12
#bit TOUTPS3 = T2CON.6
#bit TOUTPS2 = T2CON.5
#bit TOUTPS1 = T2CON.4
#bit TOUTPS0 = T2CON.3
#bit TMR2ON = T2CON.2
#bit T2CKPS1 = T2CON.1
#bit T2CKPS0 = T2CON.0
#byte SSPBUF = 0x13
#byte SSPCON1 = 0x14
#bit WCOL = SSPCON1.7
#bit SSPOV = SSPCON1.6
#bit SSPEN = SSPCON1.5
#bit CKP = SSPCON1.4
#bit SSPM3 = SSPCON1.3
#bit SSPM2 = SSPCON1.2
#bit SSPM1 = SSPCON1.1
#bit SSPM0 = SSPCON1.0
#byte CCPR1L = 0x15
#byte CCPR1H = 0x16
#byte CCP1CON = 0x17
#bit CCP1X = CCP1CON.5
#bit CCP1Y = CCP1CON.4
#bit CCP1M3 = CCP1CON.3
#bit CCP1M2 = CCP1CON.2
#bit CCP1M1 = CCP1CON.1
#bit CCP1M0 = CCP1CON.0
#byte RCSTA = 0x18
#bit SPEN = RCSTA.7
#bit RX9 = RCSTA.6
#bit SREN = RCSTA.5
#bit CREN = RCSTA.4
#bit ADDEN = RCSTA.3
#bit FERR = RCSTA.2
#bit OERR = RCSTA.1
#bit RX9D = RCSTA.0
#byte TXREG = 0x19
#byte RCREG = 0x1A
#byte ADRESH = 0x1E // F88 only
#byte ADCON0 = 0x1F // F88 only
#bit ADCS1 = ADCON0.7
#bit ADCS0 = ADCON0.6
#bit CHS2 = ADCON0.5
#bit CHS1 = ADCON0.4
#bit CHS0 = ADCON0.3
#bit GO = ADCON0.2
#bit ADON = ADCON0.0
 
 
// SFR Registers in Memory Bank 1
//
#byte INDF_1 = 0x80 // miror
#byte OPTION = 0x81
#bit RBPU = OPTION.7
#bit INTEDG = OPTION.6
#bit T0CS = OPTION.5
#bit T0SE = OPTION.4
#bit PSA = OPTION.3
#bit PS2 = OPTION.2
#bit PS1 = OPTION.1
#bit PS0 = OPTION.0
#byte PCL = 0x82
#byte STATUS_1 = 0x83 // mirror
#bit IRP_1 = STATUS_1.7
#bit RP1_1 = STATUS_1.6
#bit RP0_1 = STATUS_1.5
#bit TO_1 = STATUS_1.4
#bit PD_1 = STATUS_1.3
#bit Z_1 = STATUS_1.2
#bit DC_1 = STATUS_1.1
#bit C_1 = STATUS_1.0
#byte FSR = 0x84
#byte TRISA = 0x85
#byte TRISB = 0x86
#byte PCLATH_1 = 0x8A // mirror
#byte INTCON_1 = 0x8B // mirror
#bit GIE_1 = INTCON_1.7
#bit PEIE_1 = INTCON_1.6
#bit TMR0IE_1 = INTCON_1.5
#bit INT0IE_1 = INTCON_1.4
#bit RBIE_1 = INTCON_1.3
#bit TMR0IF_1 = INTCON_1.2
#bit INT0IF_1 = INTCON_1.1
#bit RBIF_1 = INTCON_1.0
#byte PIE1 = 0x8C
#bit ADIE = PIE1.6
#bit RCIE = PIE1.5
#bit TXIE = PIE1.4
#bit SSPIE = PIE1.3
#bit CCP1IE = PIE1.2
#bit TMR2IE = PIE1.1
#bit TMR1IE = PIE1.0
#byte PIE2 = 0x8D
#bit OSFIE = PIE2.7
#bit CMIE = PIE2.6
#bit EEIE = PIE2.4
#byte PCON = 0x8E
#bit POR = PCON.1
#bit BOR = PCON.0
#byte OSCCON = 0x8F
#bit IRCF2 = OSCCON.6
#bit IRCF1 = OSCCON.5
#bit IRCF0 = OSCCON.4
#bit OSTS = OSCCON.3
#bit IOFS = OSCCON.2
#bit SCS1 = OSCCON.1
#bit SCS0 = OSCCON.0
#byte OSCTUNE = 0x90
#bit TUN5 = OSCTUNE.5
#bit TUN4 = OSCTUNE.4
#bit TUN3 = OSCTUNE.3
#bit TUN2 = OSCTUNE.2
#bit TUN1 = OSCTUNE.1
#bit TUN0 = OSCTUNE.0
#byte PR2 = 0x92
#byte SSPADD = 0x93
#byte SSPSTAT = 0x94
#bit SMP = SSPSTAT.7
#bit CKE = SSPSTAT.6
#bit DA = SSPSTAT.5
#bit P = SSPSTAT.4
#bit S = SSPSTAT.3
#bit RW = SSPSTAT.2
#bit UA = SSPSTAT.1
#bit BF = SSPSTAT.0
#byte TXSTA = 0x98
#bit CSRC = TXSTA.7
#bit TX9 = TXSTA.6
#bit TXEN = TXSTA.5
#bit SYNC = TXSTA.4
#bit BRGH = TXSTA.2
#bit TRMT = TXSTA.1
#bit TX9D = TXSTA.0
#byte SPBRG = 0x99
#byte ANSEL = 0x9B // F88 only
#bit ANS6 = ANSEL.6
#bit ANS5 = ANSEL.5
#bit ANS4 = ANSEL.4
#bit ANS3 = ANSEL.3
#bit ANS2 = ANSEL.2
#bit ANS1 = ANSEL.1
#bit ANS0 = ANSEL.0
#byte CMCON = 0x9C
#bit C2OUT = CMCON.7
#bit C1OUT = CMCON.6
#bit C2INV = CMCON.5
#bit C1INV = CMCON.4
#bit CIS = CMCON.3
#bit CM2 = CMCON.2
#bit CM1 = CMCON.1
#bit CM0 = CMCON.0
#byte CVRCON = 0x9D
#bit CVREN = CVRCON.7
#bit CVROE = CVRCON.6
#bit CVRR = CVRCON.5
#bit CVR3 = CVRCON.3
#bit CVR2 = CVRCON.2
#bit CVR1 = CVRCON.1
#bit CVR0 = CVRCON.0
#byte ADRESL = 0x9E // F88 only
#byte ADCON1 = 0x9F // F88 only
#bit ADFM = ADCON1.7
#bit ADCS2 = ADCON1.6
#bit VCFG1 = ADCON1.5
#bit VCFG0 = ADCON1.4
 
 
// SFR Registers in Memory Bank 2
//
#byte INDF_2 = 0x100 // mirror
#byte TMR0_2 = 0x101 // mirror
#byte PCL_2 = 0x102 // mirror
#byte STATUS_2 = 0x103 // mirror
#bit IRP_2 = STATUS_2.7
#bit RP1_2 = STATUS_2.6
#bit RP0_2 = STATUS_2.5
#bit TO_2 = STATUS_2.4
#bit PD_2 = STATUS_2.3
#bit Z_2 = STATUS_2.2
#bit DC_2 = STATUS_2.1
#bit C_2 = STATUS_2.0
#byte FSR_2 = 0x104 // mirror
#byte WDTCON = 0x105
#bit WDTPS3 = WDTCON.4
#bit WDTPS2 = WDTCON.3
#bit WDTPS1 = WDTCON.2
#bit WDTPS0 = WDTCON.1
#bit SWDTEN = WDTCON.0
#byte PORTB_2 = 0x106 // mirror
#byte PCLATH_2 = 0x10A // mirror
#byte INTCON_2 = 0x10B // mirror
#bit GIE_2 = INTCON_2.7
#bit PEIE_2 = INTCON_2.6
#bit TMR0IE_2 = INTCON_2.5
#bit INT0IE_2 = INTCON_2.4
#bit RBIE_2 = INTCON_2.3
#bit TMR0IF_2 = INTCON_2.2
#bit INT0IF_2 = INTCON_2.1
#bit RBIF_2 = INTCON_2.0
#byte EEDATA = 0x10C
#byte EEADR = 0x10D
#byte EEDATH = 0x10E
#byte EEADRH = 0x10F
 
 
// SFR Registers in Memory Bank 3
//
#byte INDF_3 = 0x180 // mirror
#byte OPTION_3 = 0x181 // mirror
#bit RBPU_3 = OPTION_3.7
#bit INTEDG_3 = OPTION_3.6
#bit T0CS_3 = OPTION_3.5
#bit T0SE_3 = OPTION_3.4
#bit PSA_3 = OPTION_3.3
#bit PS2_3 = OPTION_3.2
#bit PS1_3 = OPTION_3.1
#bit PS0_3 = OPTION_3.0
#byte PCL_3 = 0x182 // mirror
#byte STATUS_3 = 0x183 // mirror
#bit IRP_3 = STATUS_3.7
#bit RP1_3 = STATUS_3.6
#bit RP0_3 = STATUS_3.5
#bit TO_3 = STATUS_3.4
#bit PD_3 = STATUS_3.3
#bit Z_3 = STATUS_3.2
#bit DC_3 = STATUS_3.1
#bit C_3 = STATUS_3.0
#byte FSR_3 = 0x184 // mirror
#byte TRISB_3 = 0x186 // mirror
#byte PLATH_3 = 0x18A // mirror
#byte INTCON_3 = 0x18B // mirror
#bit GIE_3 = INTCON_3.7
#bit PEIE_3 = INTCON_3.6
#bit TMR0IE_3 = INTCON_3.5
#bit INT0IE_3 = INTCON_3.4
#bit RBIE_3 = INTCON_3.3
#bit TMR0IF_3 = INTCON_3.2
#bit INT0IF_3 = INTCON_3.1
#bit RBIF_3 = INTCON_3.0
#byte EECON1 = 0x18C
#bit EEPGD = EECON1.7
#bit FREE = EECON1.4
#bit WRERR = EECON1.3
#bit WREN = EECON1.2
#bit WR = EECON1.1
#bit RD = EECON1.0
#byte EECON2 = 0x18D
 
 
#list
/Aparatus/DART01B/SW/1_01/A.BAT
0,0 → 1,4
call picpgr stop
call picpgr erase pic16f88
call picpgr program DART.hex hex pic16f88
call picpgr run
/Aparatus/DART01B/SW/1_01/DART.C
0,0 → 1,441
// DART01A verze programu 1.01
// (c)miho 2005
//
// 1.00 Uvodni verze
// 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
 
 
void InitRS232()
// Inicializace HW RS232 (pro ladici vystupy)
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
// Parametrem je prodleva mezi razenim rychlosti v ms
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu (na ladici seriovy vystup)
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// ALG=1 Test menice PWM a rozjezdoveho PWM
// ========================================
// P1 nastavuje primo stridu hlavniho PWM menice
// P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
// Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// ALG=2 Testovani rozjezdu
// ========================
// P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
// Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN:%3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// ALG=3 Test nabijeciho algoritmu
// ===============================
// P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
// Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
// algoritmus jako pro standardni jizdu
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// ALG=0 Standardni jizda
// ======================
// P1 nastavuje pozadovane napeti na clancich
// P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
// Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
// rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
// Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int8 Delay; // pozadovana honota prodlevy razeni z P2
int1 Run;
 
// Nacti parametr rozjezdu
Delay=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc," RUN:%3ums ",Delay); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(Delay); // prodleva razeni z P2
}
}
}
}
/Aparatus/DART01B/SW/1_01/DART.H
0,0 → 1,10
// DART01A verze programu 1.00
// (c)miho 2005
 
#include <16F88.h> // standardni definice konstant
#include <16F88_Reg.h> // standardni definice vsech FSR
 
#device adc=8 // AD prevodnik jen na 8 bitu
#define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
#use delay(clock=xclock,restart_wdt)
#fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
/Aparatus/DART01B/SW/1_01/DART.HEX
0,0 → 1,140
:1000000000308A005F2A0000FF00030E8301A10078
:100010007F08A0000A08A8008A01A00E0408A20018
:100020007708A3007808A4007908A5007A08A6003C
:100030007B08A700831383128C308400801D222844
:100040008C1939288B1E26280B193B28220884007E
:100050002308F7002408F8002508F9002608FA000C
:100060002708FB0028088A00210E8300FF0E7F0E60
:1000700009008A11A5288A11D3280A108A100A11AA
:100080008207023406340E341E343E347E34FE348D
:10009000FF340A108A100A1182070C344D346F3471
:1000A000643465343A342534643400340A108A10D8
:1000B0000A1182070A34503457344D343A34253407
:1000C0003034333475342034523455344E343A3469
:1000D000253430343334753400340A108A100A1150
:1000E00082070A34523455344E343A34253433348A
:1000F00075346D347334203400340A108A100A11B8
:1001000082070A3441344C3447343A34253430348D
:10011000333475342034253430343334753420345A
:10012000253430343334753400340A108A100A11FF
:1001300082072034523455344E343A342534333423
:1001400075346D347334203400342A0893008C11D4
:100150008A112628C508031DB928831606118312A3
:100160000611831694018312940183168C11D128F1
:1001700083124508073C0318BF280830C500C50393
:1001800045083D20F800AA008316061183120611C7
:10019000831694012230831294002A089300831658
:1001A0008C15831200342B082C040319DB282B0830
:1001B0000319AC03AB03AD08031DAD03AF0803196E
:1001C000EE282F08073C031CEE28AD08031DEE287F
:1001D0002E08AD00AF0A2F08C500AA200B118A1106
:1001E00026281A3083169900803083129800243014
:1001F0008316980083128A118A2A1130BF02031CC9
:100200000F293F308400FC3080050310800C800CE7
:10021000000803190F290D296400800B0C298A118D
:10022000A82A8316981816298312112983124208C6
:10023000990000344308F8014202031822294208B9
:10024000F7002E29F7010830C400C20DF70D43084E
:1002500077020318F700F80DC40B25290034BF1FDF
:100260003529C017BF09BF0A3C29401D3C29203051
:10027000401E3030C20011214013C0123F08C2009E
:100280006430C3001A217708BF007808031D66296F
:10029000C01A6629C0197429401B542940185429D2
:1002A00040195429C01B7429401C6029C01B7429A3
:1002B000401B60294018742940196029C01B74290B
:1002C0002030401E3030C20011217429C016C01FDA
:1002D000702978088000F8002D30C2001121C01369
:1002E00030307807C2001121401B7F293F08C2002F
:1002F0000A30C3001A217708BF0040174529C01FE4
:1003000084292D30C200112130303F07C200112155
:100310008A11CF2A83160108C0390138810083125F
:100320008B16C0308B048A11DD2A3E08043C031D65
:100330009D298316861083128614303083169F0001
:1003400083123E0DF700F70DF70DF830F70577082B
:10035000413E9F0064001030F700F70BAD2900000C
:1003600000001F1564001030F700F70BB5290000DE
:10037000000083168610831286101E08F8000034D1
:100380004113C1124008C2006430C3001A2177082B
:10039000C0007808031DEA29C11AEA29C119F82901
:1003A000411BD8294118D8294119D829C11BF8293E
:1003B000411CE429C11BF829411BE4294118F829F3
:1003C0004119E429C11BF8292030411E3030C200F8
:1003D0001121F829C116C11FF42978088000F800FE
:1003E0002D30C2001121C11330307807C200112115
:1003F000411B032A4008C2000A30C3001A217708B3
:10040000C0004117C929C11F082A2D30C20011217F
:1004100030304007C200112100343E308400000813
:100420000319232A0130F800BF30F7006400F70BEE
:10043000162AF80B142A5830F700F70B1D2A000073
:100440006400800B122A0034A9018B1BA9178B139F
:100450003E08C500AA20A91B8B17C0308B040034AE
:100460008B123F08AC003E08AB008B1600348B1299
:10047000AB08031D3E2AAC080319402A0030412A6C
:100480000130F8007818462A3E10472A3E148B1691
:1004900000303E180130F80000348B120130AF00FC
:1004A0003E08AE002E08AD008B16A9018B1BA917C4
:1004B0008B130130C500AA20A91B8B1700348401BF
:1004C0001F30830583161F129F121B0880399B0063
:1004D00007309C00050864001C0883120D1362306D
:1004E00083168F00861183128611831606118312DC
:1004F00006118316861083128610831681138111CC
:100500000E308312031785001F30831603139B00E0
:100510008312F1280130B10031081D3C031CAC2AC4
:100520003218942A0513952A0517831605130130EE
:100530008312B20632189E2A85139F2A85178316C6
:100540008513640009308312BE006C30BF00FD28A3
:10055000BE0BA52AB10A8C2AB00183168617831216
:10056000861F3014831606178312061FB0148316D5
:100570008613831286138316061383120613BE0195
:100580003E084920BE0AF700C200112106303E0293
:10059000031DC02A3008BF001830C0002F291F30AB
:1005A000831692000430831292000C30970095015C
:1005B00083168611831286118A29300B182B64004A
:1005C000BE0195217808B300B30CB30C3F30B305DE
:1005D0000130BE0095217808B400B40E0F30B40588
:1005E000BE013E085620BE0AF700C20011210530A8
:1005F0003E02031DF12A3308C000C101C0210930A9
:10060000BF003F085620BF0AF700C20011210E307C
:100610003F02031D012B3408C000C101C02114306A
:10062000BE000D22330895003408BE002422DF2AC4
:100630003008023C031D692BB6010130BE00952134
:100640007808B500BE013E086D20BE0AF700C20062
:10065000112105303E02031D232B3508C000103048
:10066000C100C0216D30C20011217330C2001121C0
:100670002030C20011210A30BE000D22B608031D31
:10068000472BB60A0730BF00D030BE003022360BF1
:10069000592B3722F8080319592BB60A5230C200D9
:1006A00011213508BE004D220730BF00D030BE00FA
:1006B00030223608023C031D672B3722F808031945
:1006C000672BB60A5330C2001121BE0124226400F8
:1006D0001D2B3008033C031DC02BB7016400BE0175
:1006E00095217808B800BE0195210310780C323EA0
:1006F000B8000430BE0095217808B90038083902E6
:100700000318862B37081D3C0318B70A380839022E
:10071000031C8D2BB708031DB7030A30B90738082F
:1007200039020318972B37081D3C0318B70A3708FE
:10073000183C03189D2B1830B70037089500BE01F0
:100740003E087D20BE0AF700C200112105303E029E
:10075000031DA02B3808C000C101C0212030C200F9
:1007600011213908C000C101C0212030C20011216F
:100770003708C000C101C0210A30BE000D226E2B17
:10078000B008031D472C0130BE0095217808BD003C
:10079000BE013E089520BE0AF700C20011210530B7
:1007A0003E02031DC92B3D08C0001030C100C0210E
:1007B0006D30C20011217330C20011212030C200FF
:1007C00011210A30BE000D22BA013630BF00B03010
:1007D000BE003022B2146400BE0195217808BB002F
:1007E000BE0195210310780C323EBB000430BE00E0
:1007F00095217808BC003B083C020318032C3A08FA
:100800001D3C0318BA0A3B083C02031C0A2CBA0818
:10081000031DBA030A30BC073B083C020318142C22
:100820003A081D3C0318BA0A3A08183C03181A2C57
:100830001830BA003A089500BE013E087D20BE0A75
:10084000F700C200112105303E02031D1D2C3B089C
:10085000C000C101C0212030C20011213C08C000ED
:10086000C101C0212030C20011213A08C000C101DD
:10087000C0210A30BE000D223722F8080319462C89
:10088000B21C462CB2103D08BE004D22EB2B63007B
:04400E003C2FFF3F05
:00000001FF
;PIC16F88
/Aparatus/DART01B/SW/1_01/DART.LST
0,0 → 1,1288
CCS PCM C Compiler, Version 3.221, 27853 03-IX-05 19:25
 
Filename: D:\MLAB\_Z\DART01A\SW\1_01\DART.LST
 
ROM used: 1096 words (27%)
Largest free fragment is 2048
RAM used: 25 (14%) at main() level
43 (25%) worst case
Stack: 6 worst case (3 in main + 3 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 25F
0003: NOP
0004: MOVWF 7F
0005: SWAPF 03,W
0006: CLRF 03
0007: MOVWF 21
0008: MOVF 7F,W
0009: MOVWF 20
000A: MOVF 0A,W
000B: MOVWF 28
000C: CLRF 0A
000D: SWAPF 20,F
000E: MOVF 04,W
000F: MOVWF 22
0010: MOVF 77,W
0011: MOVWF 23
0012: MOVF 78,W
0013: MOVWF 24
0014: MOVF 79,W
0015: MOVWF 25
0016: MOVF 7A,W
0017: MOVWF 26
0018: MOVF 7B,W
0019: MOVWF 27
001A: BCF 03.7
001B: BCF 03.5
001C: MOVLW 8C
001D: MOVWF 04
001E: BTFSS 00.3
001F: GOTO 022
0020: BTFSC 0C.3
0021: GOTO 039
0022: BTFSS 0B.5
0023: GOTO 026
0024: BTFSC 0B.2
0025: GOTO 03B
0026: MOVF 22,W
0027: MOVWF 04
0028: MOVF 23,W
0029: MOVWF 77
002A: MOVF 24,W
002B: MOVWF 78
002C: MOVF 25,W
002D: MOVWF 79
002E: MOVF 26,W
002F: MOVWF 7A
0030: MOVF 27,W
0031: MOVWF 7B
0032: MOVF 28,W
0033: MOVWF 0A
0034: SWAPF 21,W
0035: MOVWF 03
0036: SWAPF 7F,F
0037: SWAPF 7F,W
0038: RETFIE
0039: BCF 0A.3
003A: GOTO 0A5
003B: BCF 0A.3
003C: GOTO 0D3
.................... // DART01A verze programu 1.01
.................... // (c)miho 2005
.................... //
.................... // 1.00 Uvodni verze
.................... // 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
....................
.................... #include "DART.h"
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include <16F88.h> // standardni definice konstant
.................... //////// Header file for the PIC16F88
.................... #device PIC16F88
.................... #list
.................... #include <16F88_Reg.h> // standardni definice vsech FSR
.................... #list
....................
....................
.................... #device adc=8 // AD prevodnik jen na 8 bitu
.................... #define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
.................... #use delay(clock=xclock,restart_wdt)
*
00FD: MOVLW 11
00FE: SUBWF 3F,F
00FF: BTFSS 03.0
0100: GOTO 10F
0101: MOVLW 3F
0102: MOVWF 04
0103: MOVLW FC
0104: ANDWF 00,F
0105: BCF 03.0
0106: RRF 00,F
0107: RRF 00,F
0108: MOVF 00,W
0109: BTFSC 03.2
010A: GOTO 10F
010B: GOTO 10D
010C: CLRWDT
010D: DECFSZ 00,F
010E: GOTO 10C
010F: BCF 0A.3
0110: GOTO 2A8 (RETURN)
*
020D: MOVLW 3E
020E: MOVWF 04
020F: MOVF 00,W
0210: BTFSC 03.2
0211: GOTO 223
0212: MOVLW 01
0213: MOVWF 78
0214: MOVLW BF
0215: MOVWF 77
0216: CLRWDT
0217: DECFSZ 77,F
0218: GOTO 216
0219: DECFSZ 78,F
021A: GOTO 214
021B: MOVLW 58
021C: MOVWF 77
021D: DECFSZ 77,F
021E: GOTO 21D
021F: NOP
0220: CLRWDT
0221: DECFSZ 00,F
0222: GOTO 212
0223: RETLW 00
.................... #fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
....................
....................
....................
.................... #define BEEP0 PIN_A6 // pipak, prvni vystup
.................... #define BEEP1 PIN_A7 // pipak, druhy vystup
.................... #define PWM PIN_B3 // PWM vystup pro menic
.................... #define REFPOWER PIN_B1 // napajeni zdroje Vref
.................... #define MOTOR PIN_B2 // zapinani motoru
.................... #define SW0 PIN_B7 // konfiguracni prepinac 0
.................... #define SW1 PIN_B6 // konfiguracni prepinac 1
....................
....................
.................... void InitRS232()
.................... // Inicializace HW RS232 (pro ladici vystupy)
.................... {
.................... SPBRG=xclock/9600/16-1; // ryclost 9600Bd
*
00F1: MOVLW 1A
00F2: BSF 03.5
00F3: MOVWF 19
.................... RCSTA=0b10000000; // enable USART
00F4: MOVLW 80
00F5: BCF 03.5
00F6: MOVWF 18
.................... TXSTA=0b00100100; // BRGH=1, TX enable
00F7: MOVLW 24
00F8: BSF 03.5
00F9: MOVWF 18
.................... }
00FA: BCF 03.5
00FB: BCF 0A.3
00FC: GOTO 28A (RETURN)
....................
....................
.................... void Putc(char c)
.................... // Posilani znaku pres HW RS232
.................... {
.................... while(TRMT==0); // cekej na prazdny TX buffer
*
0111: BSF 03.5
0112: BTFSC 18.1
0113: GOTO 116
0114: BCF 03.5
0115: GOTO 111
.................... TXREG=c; // predej data
0116: BCF 03.5
0117: MOVF 42,W
0118: MOVWF 19
.................... }
0119: RETLW 00
....................
....................
.................... // Globalni promenna pro data posilana na SSP
.................... // Nastavuje se funkci MotorPatternSet()
.................... // Vyuziva se v prerusovaci rutine IntSSP()
.................... unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
....................
....................
.................... void MotorPatternSet(unsigned int Gear)
.................... // Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
.................... // Rychlost 0 znamena stop, rychlost 8 je maximum
.................... {
.................... // Tabulka rychlost -> pattern pro SSP
.................... unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
....................
.................... // Vyber patternu
.................... if (Gear==0) // stav 0 znamena stop
*
00AA: MOVF 45,F
00AB: BTFSS 03.2
00AC: GOTO 0B9
.................... {
.................... output_low(MOTOR); // klidovy stav
00AD: BSF 03.5
00AE: BCF 06.2
00AF: BCF 03.5
00B0: BCF 06.2
.................... SSPSTAT = 0;
00B1: BSF 03.5
00B2: CLRF 14
.................... SSPCON1 = 0; // SPI stop
00B3: BCF 03.5
00B4: CLRF 14
.................... disable_interrupts(INT_SSP); // neni preruseni od SSP
00B5: BSF 03.5
00B6: BCF 0C.3
.................... }
.................... else // rizeny vykon
00B7: GOTO 0D1
00B8: BCF 03.5
.................... {
.................... if (Gear>7) // stav 8 a vice znamena plny vykon
00B9: MOVF 45,W
00BA: SUBLW 07
00BB: BTFSC 03.0
00BC: GOTO 0BF
.................... {
.................... Gear=8; // plny plyn
00BD: MOVLW 08
00BE: MOVWF 45
.................... }
....................
.................... MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
00BF: DECF 45,F
00C0: MOVF 45,W
00C1: CALL 03D
00C2: MOVWF 78
00C3: MOVWF 2A
.................... output_low(MOTOR); // klidovy stav
00C4: BSF 03.5
00C5: BCF 06.2
00C6: BCF 03.5
00C7: BCF 06.2
.................... SSPSTAT = 0;
00C8: BSF 03.5
00C9: CLRF 14
.................... SSPCON1 = 0x22; // SPI OSC/64
00CA: MOVLW 22
00CB: BCF 03.5
00CC: MOVWF 14
....................
.................... SSPBUF=MotorPattern; // prvni data pro vyslani
00CD: MOVF 2A,W
00CE: MOVWF 13
.................... enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
00CF: BSF 03.5
00D0: BSF 0C.3
.................... }
.................... }
00D1: BCF 03.5
00D2: RETLW 00
....................
....................
.................... // Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
.................... #INT_SSP
.................... void IntSSP()
.................... {
.................... SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
*
00A5: MOVF 2A,W
00A6: MOVWF 13
.................... }
....................
....................
00A7: BCF 0C.3
00A8: BCF 0A.3
00A9: GOTO 026
.................... void MotorSet(unsigned int Gear)
*
0224: CLRF 29
0225: BTFSC 0B.7
0226: BSF 29.7
0227: BCF 0B.7
.................... // Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
.................... // od SSP jednotky
.................... // 0 stop
.................... // 1-7 pocet 1/8 vykonu
.................... // >7 plny vykon
.................... {
.................... // Nastav PWM pattern
.................... MotorPatternSet(Gear); // nastav PWM pattern pro SSP
0228: MOVF 3E,W
0229: MOVWF 45
022A: CALL 0AA
022B: BTFSC 29.7
022C: BSF 0B.7
....................
.................... // Povol preruseni
.................... enable_interrupts(GLOBAL); // povol preruseni
022D: MOVLW C0
022E: IORWF 0B,F
.................... }
022F: RETLW 00
....................
....................
.................... void InitT0()
.................... // Inicializace casovace T0 (cca 1000x za sekundu)
.................... {
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
*
018A: BSF 03.5
018B: MOVF 01,W
018C: ANDLW C0
018D: IORLW 01
018E: MOVWF 01
.................... enable_interrupts(INT_RTCC); // generuj preruseni od T0
018F: BCF 03.5
0190: BSF 0B.5
.................... enable_interrupts(GLOBAL); // povol preruseni
0191: MOVLW C0
0192: IORWF 0B,F
.................... }
0193: BCF 0A.3
0194: GOTO 2DD (RETURN)
....................
....................
.................... // Globalni promenna pro mereni casu
.................... // Nastavuje se procedurou TimeSet()
.................... // Testuje se funkci TimeIf()
.................... // Modifikuje se pri preruseni od casovace IntTo()
.................... unsigned int16 TimeTime;
....................
....................
.................... void TimerSet(unsigned int16 Time)
.................... // Nastavi casovac na zadany pocet ms
.................... // Test uplynuti casu se dela pomoci TimerIf()
.................... {
.................... // Nastav hodnotu
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
*
0230: BCF 0B.5
.................... TimeTime=Time; // pri nastavovani hodnoty
0231: MOVF 3F,W
0232: MOVWF 2C
0233: MOVF 3E,W
0234: MOVWF 2B
.................... enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
0235: BSF 0B.5
.................... }
0236: RETLW 00
....................
....................
.................... int1 TimerIf()
.................... // Vraci TRUE pokud casovac jiz dobehl
.................... {
.................... int1 Flag; // pomocna promenna
....................
.................... // Otestuj casovac
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
0237: BCF 0B.5
.................... Flag=(TimeTime==0); // behem testu promenne
0238: MOVF 2B,F
0239: BTFSS 03.2
023A: GOTO 23E
023B: MOVF 2C,F
023C: BTFSC 03.2
023D: GOTO 240
023E: MOVLW 00
023F: GOTO 241
0240: MOVLW 01
0241: MOVWF 78
0242: BTFSC 78.0
0243: GOTO 246
0244: BCF 3E.0
0245: GOTO 247
0246: BSF 3E.0
.................... enable_interrupts(INT_RTCC); // ted uz muze
0247: BSF 0B.5
....................
.................... // Navratova hodnota
.................... return Flag; // TRUE znamena dobehl casovac
0248: MOVLW 00
0249: BTFSC 3E.0
024A: MOVLW 01
024B: MOVWF 78
.................... }
024C: RETLW 00
....................
....................
.................... // Globalni promenne pro akceleraci
.................... // Nastavuje se metodou MotorStart()
.................... // Pouziva se v obsluze preruseni IntT0()
.................... unsigned int8 MotorTime; // aktualni casovac pro rozjezd
.................... unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
.................... unsigned int8 MotorGear; // rychlostni stupen
....................
....................
.................... void MotorStart(unsigned int8 Delay)
.................... // Provede rizeny rozjezd motoru
.................... // Parametrem je prodleva mezi razenim rychlosti v ms
.................... {
.................... disable_interrupts(INT_RTCC);
024D: BCF 0B.5
.................... MotorGear=1;
024E: MOVLW 01
024F: MOVWF 2F
.................... MotorDelay=Delay;
0250: MOVF 3E,W
0251: MOVWF 2E
.................... MotorTime=MotorDelay;
0252: MOVF 2E,W
0253: MOVWF 2D
.................... enable_interrupts(INT_RTCC);
0254: BSF 0B.5
0255: CLRF 29
0256: BTFSC 0B.7
0257: BSF 29.7
0258: BCF 0B.7
....................
.................... MotorPatternSet(1);
0259: MOVLW 01
025A: MOVWF 45
025B: CALL 0AA
025C: BTFSC 29.7
025D: BSF 0B.7
.................... }
025E: RETLW 00
....................
....................
.................... #INT_TIMER0
.................... void IntT0()
.................... // Preruseni od casovace cca 1000x za sekundu
.................... {
.................... // Odpocitavani casovace
.................... if (TimeTime) TimeTime--;
*
00D3: MOVF 2B,W
00D4: IORWF 2C,W
00D5: BTFSC 03.2
00D6: GOTO 0DB
00D7: MOVF 2B,W
00D8: BTFSC 03.2
00D9: DECF 2C,F
00DA: DECF 2B,F
....................
.................... // Obsluha akcelerace
.................... if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
00DB: MOVF 2D,F
00DC: BTFSS 03.2
00DD: DECF 2D,F
.................... if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
00DE: MOVF 2F,F
00DF: BTFSC 03.2
00E0: GOTO 0EE
00E1: MOVF 2F,W
00E2: SUBLW 07
00E3: BTFSS 03.0
00E4: GOTO 0EE
00E5: MOVF 2D,F
00E6: BTFSS 03.2
00E7: GOTO 0EE
.................... {
.................... MotorTime=MotorDelay; // znovu nastav casovac
00E8: MOVF 2E,W
00E9: MOVWF 2D
.................... MotorGear++; // dalsi rychlost
00EA: INCF 2F,F
.................... MotorPatternSet(MotorGear); // nastav rychlost
00EB: MOVF 2F,W
00EC: MOVWF 45
00ED: CALL 0AA
.................... }
.................... }
....................
....................
.................... // Cteni dat z AD prevodniku, zadava se cislo kanalu
00EE: BCF 0B.2
00EF: BCF 0A.3
00F0: GOTO 026
.................... int8 ReadAD(int8 Ch)
.................... {
.................... // Pokud merim Vref zapnu si jeho napajeni
.................... if (Ch==4) output_high(REFPOWER);
*
0195: MOVF 3E,W
0196: SUBLW 04
0197: BTFSS 03.2
0198: GOTO 19D
0199: BSF 03.5
019A: BCF 06.1
019B: BCF 03.5
019C: BSF 06.1
....................
.................... // Inicializace a cislo kanalu
.................... ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
019D: MOVLW 30
019E: BSF 03.5
019F: MOVWF 1F
.................... ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
01A0: BCF 03.5
01A1: RLF 3E,W
01A2: MOVWF 77
01A3: RLF 77,F
01A4: RLF 77,F
01A5: MOVLW F8
01A6: ANDWF 77,F
01A7: MOVF 77,W
01A8: ADDLW 41
01A9: MOVWF 1F
....................
.................... // Mereni
.................... delay_us(50); // doba na prepnuti kanalu
01AA: CLRWDT
01AB: MOVLW 10
01AC: MOVWF 77
01AD: DECFSZ 77,F
01AE: GOTO 1AD
01AF: NOP
01B0: NOP
.................... ADCON0 |= 4; // start prevodu
01B1: BSF 1F.2
.................... delay_us(50); // doba na prevod
01B2: CLRWDT
01B3: MOVLW 10
01B4: MOVWF 77
01B5: DECFSZ 77,F
01B6: GOTO 1B5
01B7: NOP
01B8: NOP
....................
.................... // Vypnu napajeni Vref (vzdycky)
.................... output_low(REFPOWER);
01B9: BSF 03.5
01BA: BCF 06.1
01BB: BCF 03.5
01BC: BCF 06.1
....................
.................... // Navrat hodnoty
.................... return ADRESH;
01BD: MOVF 1E,W
01BE: MOVWF 78
.................... }
01BF: RETLW 00
....................
....................
.................... void main()
.................... {
*
025F: CLRF 04
0260: MOVLW 1F
0261: ANDWF 03,F
0262: BSF 03.5
0263: BCF 1F.4
0264: BCF 1F.5
0265: MOVF 1B,W
0266: ANDLW 80
0267: MOVWF 1B
0268: MOVLW 07
0269: MOVWF 1C
026A: MOVF 05,W
026B: CLRWDT
026C: MOVF 1C,W
026D: BCF 03.5
026E: BCF 0D.6
.................... unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
.................... unsigned int8 i;
....................
.................... // Hodiny
.................... OSCCON = 0x62; // 4 MHz interni RC oscilator
026F: MOVLW 62
0270: BSF 03.5
0271: MOVWF 0F
....................
.................... // Digitalni vystupy
.................... output_low(PWM); // PWM vystup
0272: BCF 06.3
0273: BCF 03.5
0274: BCF 06.3
.................... output_low(MOTOR); // Proud do motoru
0275: BSF 03.5
0276: BCF 06.2
0277: BCF 03.5
0278: BCF 06.2
.................... output_low(REFPOWER); // Napajeni Vref
0279: BSF 03.5
027A: BCF 06.1
027B: BCF 03.5
027C: BCF 06.1
.................... port_b_pullups(TRUE); // Zbyvajici vyvody portu B
027D: BSF 03.5
027E: BCF 01.7
....................
.................... // Watch Dog
.................... PSA=0; // preddelic prirazen casovaci
027F: BCF 01.3
.................... WDTCON=0x0E; // Watch Dog cca 130ms
0280: MOVLW 0E
0281: BCF 03.5
0282: BSF 03.6
0283: MOVWF 05
....................
.................... // Analogove vstupy
.................... ANSEL = 0x1F; // AN0 az AN4
0284: MOVLW 1F
0285: BSF 03.5
0286: BCF 03.6
0287: MOVWF 1B
....................
.................... // nastaveni RS232
.................... InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
0288: BCF 03.5
0289: GOTO 0F1
....................
.................... // Pipnuti (a cekani)
.................... for (i=1;i<30;i++) // pocet 1/2 period
028A: MOVLW 01
028B: MOVWF 31
028C: MOVF 31,W
028D: SUBLW 1D
028E: BTFSS 03.0
028F: GOTO 2AC
.................... {
.................... int1 beep; // stavova promenna pro pipak
....................
.................... output_bit(BEEP0,beep);
0290: BTFSC 32.0
0291: GOTO 294
0292: BCF 05.6
0293: GOTO 295
0294: BSF 05.6
0295: BSF 03.5
0296: BCF 05.6
.................... beep=~beep;
0297: MOVLW 01
0298: BCF 03.5
0299: XORWF 32,F
.................... output_bit(BEEP1,beep);
029A: BTFSC 32.0
029B: GOTO 29E
029C: BCF 05.7
029D: GOTO 29F
029E: BSF 05.7
029F: BSF 03.5
02A0: BCF 05.7
.................... delay_us(1000);
02A1: CLRWDT
02A2: MOVLW 09
02A3: BCF 03.5
02A4: MOVWF 3E
02A5: MOVLW 6C
02A6: MOVWF 3F
02A7: GOTO 0FD
02A8: DECFSZ 3E,F
02A9: GOTO 2A5
.................... }
02AA: INCF 31,F
02AB: GOTO 28C
....................
.................... // Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
.................... Debug=0;
02AC: CLRF 30
.................... if (~input(SW0)) Debug|=1; // precti bit 0
02AD: BSF 03.5
02AE: BSF 06.7
02AF: BCF 03.5
02B0: BTFSS 06.7
02B1: BSF 30.0
.................... if (~input(SW1)) Debug|=2; // precti bit 1
02B2: BSF 03.5
02B3: BSF 06.6
02B4: BCF 03.5
02B5: BTFSS 06.6
02B6: BSF 30.1
.................... output_low(SW0); // nastav L aby se snizila spotreba
02B7: BSF 03.5
02B8: BCF 06.7
02B9: BCF 03.5
02BA: BCF 06.7
.................... output_low(SW1); // na obou vstupech
02BB: BSF 03.5
02BC: BCF 06.6
02BD: BCF 03.5
02BE: BCF 06.6
....................
.................... // Zobrazeni rezimu (na ladici seriovy vystup)
.................... printf(Putc,"\fMode:%d",Debug);
02BF: CLRF 3E
02C0: MOVF 3E,W
02C1: CALL 049
02C2: INCF 3E,F
02C3: MOVWF 77
02C4: MOVWF 42
02C5: CALL 111
02C6: MOVLW 06
02C7: SUBWF 3E,W
02C8: BTFSS 03.2
02C9: GOTO 2C0
02CA: MOVF 30,W
02CB: MOVWF 3F
02CC: MOVLW 18
02CD: MOVWF 40
02CE: GOTO 12F
....................
.................... // Inicializace PWM
.................... PR2 = 0x1F; // perioda PWM casovace
02CF: MOVLW 1F
02D0: BSF 03.5
02D1: MOVWF 12
.................... T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
02D2: MOVLW 04
02D3: BCF 03.5
02D4: MOVWF 12
.................... CCP1CON = 0x0C; // PWM mode, lsb bity nulove
02D5: MOVLW 0C
02D6: MOVWF 17
.................... CCPR1L = 0; // na zacatku nulova data
02D7: CLRF 15
.................... output_low(PWM); // PWM vystup
02D8: BSF 03.5
02D9: BCF 06.3
02DA: BCF 03.5
02DB: BCF 06.3
....................
.................... // Inicializace casovace
.................... InitT0(); // nastav casovac na cca 1ms
02DC: GOTO 18A
....................
.................... // ALG=1 Test menice PWM a rozjezdoveho PWM
.................... // ========================================
.................... // P1 nastavuje primo stridu hlavniho PWM menice
.................... // P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
.................... // Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
.................... if (Debug==1)
02DD: DECFSZ 30,W
02DE: GOTO 318
.................... {
.................... unsigned int8 Data1; // poteniometr P1 = PWM
.................... unsigned int8 Data2; // poteniometr P2 = Rozjezd
....................
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
02DF: CLRWDT
....................
.................... // mereni vstupu
.................... Data1=ReadAD(0); // nacti parametr pro PWM
02E0: CLRF 3E
02E1: CALL 195
02E2: MOVF 78,W
02E3: MOVWF 33
.................... Data1>>=2; // redukuj rozsah na 0 az 63
02E4: RRF 33,F
02E5: RRF 33,F
02E6: MOVLW 3F
02E7: ANDWF 33,F
.................... Data2=ReadAD(1); // nacti parametr pro rozjezd
02E8: MOVLW 01
02E9: MOVWF 3E
02EA: CALL 195
02EB: MOVF 78,W
02EC: MOVWF 34
.................... Data2>>=4; // redukuj rozsah na 0 az 15
02ED: SWAPF 34,F
02EE: MOVLW 0F
02EF: ANDWF 34,F
....................
.................... // zobrazeni
.................... printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
02F0: CLRF 3E
02F1: MOVF 3E,W
02F2: CALL 056
02F3: INCF 3E,F
02F4: MOVWF 77
02F5: MOVWF 42
02F6: CALL 111
02F7: MOVLW 05
02F8: SUBWF 3E,W
02F9: BTFSS 03.2
02FA: GOTO 2F1
02FB: MOVF 33,W
02FC: MOVWF 40
02FD: CLRF 41
02FE: CALL 1C0
02FF: MOVLW 09
0300: MOVWF 3F
0301: MOVF 3F,W
0302: CALL 056
0303: INCF 3F,F
0304: MOVWF 77
0305: MOVWF 42
0306: CALL 111
0307: MOVLW 0E
0308: SUBWF 3F,W
0309: BTFSS 03.2
030A: GOTO 301
030B: MOVF 34,W
030C: MOVWF 40
030D: CLRF 41
030E: CALL 1C0
.................... delay_ms(20);
030F: MOVLW 14
0310: MOVWF 3E
0311: CALL 20D
....................
.................... // nastaveni parametru PWM
.................... CCPR1L = Data1;
0312: MOVF 33,W
0313: MOVWF 15
....................
.................... // nastaveni parametru RUN
.................... MotorSet(Data2);
0314: MOVF 34,W
0315: MOVWF 3E
0316: CALL 224
.................... }
0317: GOTO 2DF
.................... }
....................
.................... // ALG=2 Testovani rozjezdu
.................... // ========================
.................... // P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
.................... // Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
.................... if (Debug==2)
0318: MOVF 30,W
0319: SUBLW 02
031A: BTFSS 03.2
031B: GOTO 369
.................... {
.................... int8 Data;
.................... int8 Start;
....................
.................... Start=0; // uvodni stav
031C: CLRF 36
.................... while(1)
.................... {
.................... // Nacti a zobraz parametr
.................... Data=ReadAD(1); // potenciometr P2 = rozjezd
031D: MOVLW 01
031E: MOVWF 3E
031F: CALL 195
0320: MOVF 78,W
0321: MOVWF 35
.................... printf(Putc,"\nRUN:%3ums ",Data); // zobraz
0322: CLRF 3E
0323: MOVF 3E,W
0324: CALL 06D
0325: INCF 3E,F
0326: MOVWF 77
0327: MOVWF 42
0328: CALL 111
0329: MOVLW 05
032A: SUBWF 3E,W
032B: BTFSS 03.2
032C: GOTO 323
032D: MOVF 35,W
032E: MOVWF 40
032F: MOVLW 10
0330: MOVWF 41
0331: CALL 1C0
0332: MOVLW 6D
0333: MOVWF 42
0334: CALL 111
0335: MOVLW 73
0336: MOVWF 42
0337: CALL 111
0338: MOVLW 20
0339: MOVWF 42
033A: CALL 111
.................... delay_ms(10); // prodleva pro terminal
033B: MOVLW 0A
033C: MOVWF 3E
033D: CALL 20D
....................
.................... // Uvodni pauza
.................... if (Start==0) // spousti se 1x na zacatku
033E: MOVF 36,F
033F: BTFSS 03.2
0340: GOTO 347
.................... {
.................... Start++; // dalsi stav je cekani
0341: INCF 36,F
.................... TimerSet(2000); // na dokonceni uvodni prodlevy
0342: MOVLW 07
0343: MOVWF 3F
0344: MOVLW D0
0345: MOVWF 3E
0346: CALL 230
.................... }
....................
.................... // Rozjezd
.................... if ((Start==1) && TimerIf())
0347: DECFSZ 36,W
0348: GOTO 359
0349: CALL 237
034A: MOVF 78,F
034B: BTFSC 03.2
034C: GOTO 359
.................... {
.................... Start++;
034D: INCF 36,F
.................... printf(Putc,"R");
034E: MOVLW 52
034F: MOVWF 42
0350: CALL 111
.................... MotorStart(Data); // rozjezd s nastavenim prodlevy
0351: MOVF 35,W
0352: MOVWF 3E
0353: CALL 24D
....................
.................... TimerSet(2000); // nastav celkovy cas jizdy
0354: MOVLW 07
0355: MOVWF 3F
0356: MOVLW D0
0357: MOVWF 3E
0358: CALL 230
.................... }
....................
.................... // Zastaveni
.................... if ((Start==2) && TimerIf())
0359: MOVF 36,W
035A: SUBLW 02
035B: BTFSS 03.2
035C: GOTO 367
035D: CALL 237
035E: MOVF 78,F
035F: BTFSC 03.2
0360: GOTO 367
.................... {
.................... Start++;
0361: INCF 36,F
.................... printf(Putc,"S");
0362: MOVLW 53
0363: MOVWF 42
0364: CALL 111
.................... MotorSet(0); // pokud dobehl casovac zastav motor
0365: CLRF 3E
0366: CALL 224
.................... }
....................
.................... // watch dog
.................... restart_wdt();
0367: CLRWDT
.................... }
0368: GOTO 31D
.................... }
....................
.................... // ALG=3 Test nabijeciho algoritmu
.................... // ===============================
.................... // P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
.................... // Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
.................... // algoritmus jako pro standardni jizdu
.................... if (Debug==3)
0369: MOVF 30,W
036A: SUBLW 03
036B: BTFSS 03.2
036C: GOTO 3C0
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
036D: CLRF 37
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
036E: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
036F: CLRF 3E
0370: CALL 195
0371: MOVF 78,W
0372: MOVWF 38
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
0373: CLRF 3E
0374: CALL 195
0375: BCF 03.0
0376: RRF 78,W
0377: ADDLW 32
0378: MOVWF 38
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
0379: MOVLW 04
037A: MOVWF 3E
037B: CALL 195
037C: MOVF 78,W
037D: MOVWF 39
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
037E: MOVF 38,W
037F: SUBWF 39,W
0380: BTFSC 03.0
0381: GOTO 386
0382: MOVF 37,W
0383: SUBLW 1D
0384: BTFSC 03.0
0385: INCF 37,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0386: MOVF 38,W
0387: SUBWF 39,W
0388: BTFSS 03.0
0389: GOTO 38D
038A: MOVF 37,F
038B: BTFSS 03.2
038C: DECF 37,F
.................... Vref+=10;
038D: MOVLW 0A
038E: ADDWF 39,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
038F: MOVF 38,W
0390: SUBWF 39,W
0391: BTFSC 03.0
0392: GOTO 397
0393: MOVF 37,W
0394: SUBLW 1D
0395: BTFSC 03.0
0396: INCF 37,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0397: MOVF 37,W
0398: SUBLW 18
0399: BTFSC 03.0
039A: GOTO 39D
039B: MOVLW 18
039C: MOVWF 37
.................... CCPR1L = PwmOut; // pouziti vystupu
039D: MOVF 37,W
039E: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
039F: CLRF 3E
03A0: MOVF 3E,W
03A1: CALL 07D
03A2: INCF 3E,F
03A3: MOVWF 77
03A4: MOVWF 42
03A5: CALL 111
03A6: MOVLW 05
03A7: SUBWF 3E,W
03A8: BTFSS 03.2
03A9: GOTO 3A0
03AA: MOVF 38,W
03AB: MOVWF 40
03AC: CLRF 41
03AD: CALL 1C0
03AE: MOVLW 20
03AF: MOVWF 42
03B0: CALL 111
03B1: MOVF 39,W
03B2: MOVWF 40
03B3: CLRF 41
03B4: CALL 1C0
03B5: MOVLW 20
03B6: MOVWF 42
03B7: CALL 111
03B8: MOVF 37,W
03B9: MOVWF 40
03BA: CLRF 41
03BB: CALL 1C0
.................... delay_ms(10);
03BC: MOVLW 0A
03BD: MOVWF 3E
03BE: CALL 20D
.................... }
03BF: GOTO 36E
.................... }
....................
.................... // ALG=0 Standardni jizda
.................... // ======================
.................... // P1 nastavuje pozadovane napeti na clancich
.................... // P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
.................... // Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
.................... // rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
.................... // Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
.................... if (Debug==0)
03C0: MOVF 30,F
03C1: BTFSS 03.2
03C2: GOTO 447
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
.................... int8 Delay; // pozadovana honota prodlevy razeni z P2
.................... int1 Run;
....................
.................... // Nacti parametr rozjezdu
.................... Delay=ReadAD(1); // potenciometr P2 = rozjezd
03C3: MOVLW 01
03C4: MOVWF 3E
03C5: CALL 195
03C6: MOVF 78,W
03C7: MOVWF 3D
.................... printf(Putc," RUN:%3ums ",Delay); // zobraz
03C8: CLRF 3E
03C9: MOVF 3E,W
03CA: CALL 095
03CB: INCF 3E,F
03CC: MOVWF 77
03CD: MOVWF 42
03CE: CALL 111
03CF: MOVLW 05
03D0: SUBWF 3E,W
03D1: BTFSS 03.2
03D2: GOTO 3C9
03D3: MOVF 3D,W
03D4: MOVWF 40
03D5: MOVLW 10
03D6: MOVWF 41
03D7: CALL 1C0
03D8: MOVLW 6D
03D9: MOVWF 42
03DA: CALL 111
03DB: MOVLW 73
03DC: MOVWF 42
03DD: CALL 111
03DE: MOVLW 20
03DF: MOVWF 42
03E0: CALL 111
.................... delay_ms(10); // prodleva pro terminal
03E1: MOVLW 0A
03E2: MOVWF 3E
03E3: CALL 20D
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
03E4: CLRF 3A
.................... TimerSet(14000); // casovani startu
03E5: MOVLW 36
03E6: MOVWF 3F
03E7: MOVLW B0
03E8: MOVWF 3E
03E9: CALL 230
.................... Run=1;
03EA: BSF 32.1
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
03EB: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
03EC: CLRF 3E
03ED: CALL 195
03EE: MOVF 78,W
03EF: MOVWF 3B
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
03F0: CLRF 3E
03F1: CALL 195
03F2: BCF 03.0
03F3: RRF 78,W
03F4: ADDLW 32
03F5: MOVWF 3B
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
03F6: MOVLW 04
03F7: MOVWF 3E
03F8: CALL 195
03F9: MOVF 78,W
03FA: MOVWF 3C
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
03FB: MOVF 3B,W
03FC: SUBWF 3C,W
03FD: BTFSC 03.0
03FE: GOTO 403
03FF: MOVF 3A,W
0400: SUBLW 1D
0401: BTFSC 03.0
0402: INCF 3A,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0403: MOVF 3B,W
0404: SUBWF 3C,W
0405: BTFSS 03.0
0406: GOTO 40A
0407: MOVF 3A,F
0408: BTFSS 03.2
0409: DECF 3A,F
.................... Vref+=10;
040A: MOVLW 0A
040B: ADDWF 3C,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
040C: MOVF 3B,W
040D: SUBWF 3C,W
040E: BTFSC 03.0
040F: GOTO 414
0410: MOVF 3A,W
0411: SUBLW 1D
0412: BTFSC 03.0
0413: INCF 3A,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0414: MOVF 3A,W
0415: SUBLW 18
0416: BTFSC 03.0
0417: GOTO 41A
0418: MOVLW 18
0419: MOVWF 3A
.................... CCPR1L = PwmOut; // pouziti vystupu
041A: MOVF 3A,W
041B: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
041C: CLRF 3E
041D: MOVF 3E,W
041E: CALL 07D
041F: INCF 3E,F
0420: MOVWF 77
0421: MOVWF 42
0422: CALL 111
0423: MOVLW 05
0424: SUBWF 3E,W
0425: BTFSS 03.2
0426: GOTO 41D
0427: MOVF 3B,W
0428: MOVWF 40
0429: CLRF 41
042A: CALL 1C0
042B: MOVLW 20
042C: MOVWF 42
042D: CALL 111
042E: MOVF 3C,W
042F: MOVWF 40
0430: CLRF 41
0431: CALL 1C0
0432: MOVLW 20
0433: MOVWF 42
0434: CALL 111
0435: MOVF 3A,W
0436: MOVWF 40
0437: CLRF 41
0438: CALL 1C0
.................... delay_ms(10);
0439: MOVLW 0A
043A: MOVWF 3E
043B: CALL 20D
....................
.................... // rozjezd
.................... if (TimerIf()&&Run)
043C: CALL 237
043D: MOVF 78,F
043E: BTFSC 03.2
043F: GOTO 446
0440: BTFSS 32.1
0441: GOTO 446
.................... {
.................... Run=0;
0442: BCF 32.1
.................... MotorStart(Delay); // prodleva razeni z P2
0443: MOVF 3D,W
0444: MOVWF 3E
0445: CALL 24D
.................... }
.................... }
0446: GOTO 3EB
.................... }
.................... }
....................
0447: SLEEP
 
Configuration Fuses:
Word 1: 2F3C WDT NOPUT MCLR NOBROWNOUT NOLVP NOCPD NOWRT NODEBUG CCPB3 NOPROTECT INTRC_IO
Word 2: 3FFF FCMEN IESO
/Aparatus/DART01B/SW/1_01/LIB/16f88.h
0,0 → 1,216
//////// Header file for the PIC16F88
#device PIC16F88
#nolist
//////// Program memory: 4096x14 Data RAM: 368 Stack: 8
//////// I/O: 16 Analog Pins: 7
//////// Data EEPROM: 256
//////// C Scratch area: 77 ID Location: 2000
// Fuses:
// Oscilator: LP - oscilator LP
// XT - oscilator XT
// HS - oscilator HS
// EC_IO - externi vstup, RA6/CLKO je IO port
// INTRC - RC oscilator, RA6/CLKO je CLKO, RA7/CLKI je IO port port,
// INTRC_IO - RC oscilator, RA6 i RA7 je IO port
// RC - ext RC, RA6/CLKO je CLKO
// RC_IO - ext RC, RA6 je IO port
// Watch: NOWDT - neni watchog
// WDT - je watchdog
// PUT: NOPUT - neni power up timer
// PUT - je power up timer
// MCLR: MCLR - RA5/MCLR je MCLR
// NOMCLR - RA5/MCLR je IO port
// BOR: BROWNOUT - BOR povolen
// NOBROWNOUT - BOR zakazan
// LVP: LVP - RB3/PGM je PGM
// NOLVP - RB3/PGM je IO port
// CPD: CPD - je ochrana EEPROM
// NOCPD - neni ochrana EEPROM
// WRT WRT - zakaz zapisu do pameti programu
// NOWRT - povolen zapis do pameti programu
// DEBUG: DEBUG - RB6 a RB7 jsou ICD port
// NODEBUG - RB6 a RB7 jsou IO port
// CCPMX: CCPB0 - CCP/PWM na RB0
// CCPB3 - CCP/PWM na RB3
// CP: PROTECT - pamet programu je chranena
// NOPROTECT - pamet programu neni chranena
//
 
////////////////////////////////////////////////////////////////// I/O
// Discrete I/O Functions: SET_TRIS_x(), OUTPUT_x(), INPUT_x(),
// PORT_B_PULLUPS(), INPUT(),
// OUTPUT_LOW(), OUTPUT_HIGH(),
// OUTPUT_FLOAT(), OUTPUT_BIT()
// Constants used to identify pins in the above are:
 
 
 
#define PIN_A0 40
#define PIN_A1 41
#define PIN_A2 42
#define PIN_A3 43
#define PIN_A4 44
#define PIN_A5 45
#define PIN_A6 46
#define PIN_A7 47
 
#define PIN_B0 48
#define PIN_B1 49
#define PIN_B2 50
#define PIN_B3 51
#define PIN_B4 52
#define PIN_B5 53
#define PIN_B6 54
#define PIN_B7 55
 
////////////////////////////////////////////////////////////////// Useful defines
#define FALSE 0
#define TRUE 1
 
#define BYTE int
#define BOOLEAN short int
 
#define getc getch
#define fgetc getch
#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts
 
////////////////////////////////////////////////////////////////// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART_CAUSE()
// Constants returned from RESTART_CAUSE() are:
#define WDT_FROM_SLEEP 0
#define WDT_TIMEOUT 8
#define MCLR_FROM_SLEEP 16
#define NORMAL_POWER_UP 24
 
 
////////////////////////////////////////////////////////////////// Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER0(),
// SET_TIMER0() or SET_RTCC(),
// GET_TIMER0() or GET_RTCC()
// Constants used for SETUP_TIMER0() are:
#define RTCC_INTERNAL 0
#define RTCC_EXT_L_TO_H 32
#define RTCC_EXT_H_TO_L 48
 
#define RTCC_DIV_1 8
#define RTCC_DIV_2 0
#define RTCC_DIV_4 1
#define RTCC_DIV_8 2
#define RTCC_DIV_16 3
#define RTCC_DIV_32 4
#define RTCC_DIV_64 5
#define RTCC_DIV_128 6
#define RTCC_DIV_256 7
 
 
#define RTCC_8_BIT 0
 
// Constants used for SETUP_COUNTERS() are the above
// constants for the 1st param and the following for
// the 2nd param:
 
////////////////////////////////////////////////////////////////// WDT
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT()
//
#define WDT_18MS 8
#define WDT_36MS 9
#define WDT_72MS 10
#define WDT_144MS 11
#define WDT_288MS 12
#define WDT_576MS 13
#define WDT_1152MS 14
#define WDT_2304MS 15
 
////////////////////////////////////////////////////////////////// Timer 1
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1, SET_TIMER1
// Constants used for SETUP_TIMER_1() are:
// (or (via |) together constants from each group)
#define T1_DISABLED 0
#define T1_INTERNAL 0x85
#define T1_EXTERNAL 0x87
#define T1_EXTERNAL_SYNC 0x83
 
#define T1_CLK_OUT 8
 
#define T1_DIV_BY_1 0
#define T1_DIV_BY_2 0x10
#define T1_DIV_BY_4 0x20
#define T1_DIV_BY_8 0x30
 
////////////////////////////////////////////////////////////////// Timer 2
// Timer 2 Functions: SETUP_TIMER_2, GET_TIMER2, SET_TIMER2
// Constants used for SETUP_TIMER_2() are:
#define T2_DISABLED 0
#define T2_DIV_BY_1 4
#define T2_DIV_BY_4 5
#define T2_DIV_BY_16 6
 
////////////////////////////////////////////////////////////////// CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY
// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH
// Constants used for SETUP_CCPx() are:
#define CCP_OFF 0
#define CCP_CAPTURE_FE 4
#define CCP_CAPTURE_RE 5
#define CCP_CAPTURE_DIV_4 6
#define CCP_CAPTURE_DIV_16 7
#define CCP_COMPARE_SET_ON_MATCH 8
#define CCP_COMPARE_CLR_ON_MATCH 9
#define CCP_COMPARE_INT 0xA
#define CCP_COMPARE_RESET_TIMER 0xB
#define CCP_PWM 0xC
#define CCP_PWM_PLUS_1 0x1c
#define CCP_PWM_PLUS_2 0x2c
#define CCP_PWM_PLUS_3 0x3c
long CCP_1;
#byte CCP_1 = 0x15
#byte CCP_1_LOW= 0x15
#byte CCP_1_HIGH= 0x16
////////////////////////////////////////////////////////////////// COMP
// Comparator Variables: C1OUT, C2OUT
// Constants used in setup_comparators() are:
#define A0_A3_A1_A2 4
#define A0_A2_A1_A2 3
#define NC_NC_A1_A2 5
#define NC_NC_NC_NC 7
#define A0_VR_A1_VR 2
#define A3_VR_A2_VR 10
#define A0_A2_A1_A2_OUT_ON_A3_A4 6
#define A3_A2_A1_A2 9
 
//#bit C1OUT = 0x1f.6
//#bit C2OUT = 0x1f.7
 
////////////////////////////////////////////////////////////////// VREF
// Constants used in setup_vref() are:
#define VREF_LOW 0xa0
#define VREF_HIGH 0x80
#define VREF_A2 0x40
 
////////////////////////////////////////////////////////////////// INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),
// EXT_INT_EDGE()
//
// Constants used in EXT_INT_EDGE() are:
#define L_TO_H 0x40
#define H_TO_L 0
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:
#define GLOBAL 0x0BC0
#define INT_RTCC 0x0B20
#define INT_RB 0x0B08
#define INT_EXT 0x0B10
#define INT_TBE 0x8C10
#define INT_RDA 0x8C20
#define INT_TIMER1 0x8C01
#define INT_TIMER2 0x8C02
#define INT_CCP1 0x8C04
#define INT_SSP 0x8C08
#define INT_COMP 0x8D40
#define INT_EEPROM 0x8D10
#define INT_TIMER0 0x0B20
#list
/Aparatus/DART01B/SW/1_01/LIB/16f88_reg.h
0,0 → 1,314
#nolist
//
// Komplete definition of all Special Feature Registers for CCS C compiler
//
// PIC16F87
// PIC16F88
//
// (c)miho 2005
//
// History:
//
// 1.00 First Version, not verified yet
 
 
// SFR Registers in Memory Bank 0
//
#byte INDF = 0x00
#byte TMR0 = 0x01
#byte PCL = 0x02
#byte STATUS = 0x03
#bit IRP = STATUS.7
#bit RP1 = STATUS.6
#bit RP0 = STATUS.5
#bit TO = STATUS.4
#bit PD = STATUS.3
#bit Z = STATUS.2
#bit DC = STATUS.1
#bit C = STATUS.0
#byte FSR = 0x04
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PCLATH = 0x0A
#byte INTCON = 0x0B
#bit GIE = INTCON.7
#bit PEIE = INTCON.6
#bit TMR0IE = INTCON.5
#bit INT0IE = INTCON.4
#bit RBIE = INTCON.3
#bit TMR0IF = INTCON.2
#bit INT0IF = INTCON.1
#bit RBIF = INTCON.0
#byte PIR1 = 0x0C
#bit ADIF = PIR1.6
#bit RCIF = PIR1.5
#bit TXIF = PIR1.4
#bit SSPIF = PIR1.3
#bit CCP1IF = PIR1.2
#bit TMR2IF = PIR1.1
#bit TMR1IF = PIR1.0
#byte PIR2 = 0x0D
#bit OSFIF = PIR2.7
#bit CMIF = PIR2.6
#bit EEIF = PIR2.4
#byte TMR1L = 0x0E
#byte TMR1H = 0x0F
#byte T1CON = 0x10
#bit T1RUN = T1CON.6
#bit T1CKPS1 = T1CON.5
#bit T1CKPS0 = T1CON.4
#bit T1OSCEN = T1CON.3
#bit T1SYNC = T1CON.2
#bit TMR1CS = T1CON.1
#bit TMR1ON = T1CON.0
#byte TMR2 = 0x11
#byte T2CON = 0x12
#bit TOUTPS3 = T2CON.6
#bit TOUTPS2 = T2CON.5
#bit TOUTPS1 = T2CON.4
#bit TOUTPS0 = T2CON.3
#bit TMR2ON = T2CON.2
#bit T2CKPS1 = T2CON.1
#bit T2CKPS0 = T2CON.0
#byte SSPBUF = 0x13
#byte SSPCON1 = 0x14
#bit WCOL = SSPCON1.7
#bit SSPOV = SSPCON1.6
#bit SSPEN = SSPCON1.5
#bit CKP = SSPCON1.4
#bit SSPM3 = SSPCON1.3
#bit SSPM2 = SSPCON1.2
#bit SSPM1 = SSPCON1.1
#bit SSPM0 = SSPCON1.0
#byte CCPR1L = 0x15
#byte CCPR1H = 0x16
#byte CCP1CON = 0x17
#bit CCP1X = CCP1CON.5
#bit CCP1Y = CCP1CON.4
#bit CCP1M3 = CCP1CON.3
#bit CCP1M2 = CCP1CON.2
#bit CCP1M1 = CCP1CON.1
#bit CCP1M0 = CCP1CON.0
#byte RCSTA = 0x18
#bit SPEN = RCSTA.7
#bit RX9 = RCSTA.6
#bit SREN = RCSTA.5
#bit CREN = RCSTA.4
#bit ADDEN = RCSTA.3
#bit FERR = RCSTA.2
#bit OERR = RCSTA.1
#bit RX9D = RCSTA.0
#byte TXREG = 0x19
#byte RCREG = 0x1A
#byte ADRESH = 0x1E // F88 only
#byte ADCON0 = 0x1F // F88 only
#bit ADCS1 = ADCON0.7
#bit ADCS0 = ADCON0.6
#bit CHS2 = ADCON0.5
#bit CHS1 = ADCON0.4
#bit CHS0 = ADCON0.3
#bit GO = ADCON0.2
#bit ADON = ADCON0.0
 
 
// SFR Registers in Memory Bank 1
//
#byte INDF_1 = 0x80 // miror
#byte OPTION = 0x81
#bit RBPU = OPTION.7
#bit INTEDG = OPTION.6
#bit T0CS = OPTION.5
#bit T0SE = OPTION.4
#bit PSA = OPTION.3
#bit PS2 = OPTION.2
#bit PS1 = OPTION.1
#bit PS0 = OPTION.0
#byte PCL = 0x82
#byte STATUS_1 = 0x83 // mirror
#bit IRP_1 = STATUS_1.7
#bit RP1_1 = STATUS_1.6
#bit RP0_1 = STATUS_1.5
#bit TO_1 = STATUS_1.4
#bit PD_1 = STATUS_1.3
#bit Z_1 = STATUS_1.2
#bit DC_1 = STATUS_1.1
#bit C_1 = STATUS_1.0
#byte FSR = 0x84
#byte TRISA = 0x85
#byte TRISB = 0x86
#byte PCLATH_1 = 0x8A // mirror
#byte INTCON_1 = 0x8B // mirror
#bit GIE_1 = INTCON_1.7
#bit PEIE_1 = INTCON_1.6
#bit TMR0IE_1 = INTCON_1.5
#bit INT0IE_1 = INTCON_1.4
#bit RBIE_1 = INTCON_1.3
#bit TMR0IF_1 = INTCON_1.2
#bit INT0IF_1 = INTCON_1.1
#bit RBIF_1 = INTCON_1.0
#byte PIE1 = 0x8C
#bit ADIE = PIE1.6
#bit RCIE = PIE1.5
#bit TXIE = PIE1.4
#bit SSPIE = PIE1.3
#bit CCP1IE = PIE1.2
#bit TMR2IE = PIE1.1
#bit TMR1IE = PIE1.0
#byte PIE2 = 0x8D
#bit OSFIE = PIE2.7
#bit CMIE = PIE2.6
#bit EEIE = PIE2.4
#byte PCON = 0x8E
#bit POR = PCON.1
#bit BOR = PCON.0
#byte OSCCON = 0x8F
#bit IRCF2 = OSCCON.6
#bit IRCF1 = OSCCON.5
#bit IRCF0 = OSCCON.4
#bit OSTS = OSCCON.3
#bit IOFS = OSCCON.2
#bit SCS1 = OSCCON.1
#bit SCS0 = OSCCON.0
#byte OSCTUNE = 0x90
#bit TUN5 = OSCTUNE.5
#bit TUN4 = OSCTUNE.4
#bit TUN3 = OSCTUNE.3
#bit TUN2 = OSCTUNE.2
#bit TUN1 = OSCTUNE.1
#bit TUN0 = OSCTUNE.0
#byte PR2 = 0x92
#byte SSPADD = 0x93
#byte SSPSTAT = 0x94
#bit SMP = SSPSTAT.7
#bit CKE = SSPSTAT.6
#bit DA = SSPSTAT.5
#bit P = SSPSTAT.4
#bit S = SSPSTAT.3
#bit RW = SSPSTAT.2
#bit UA = SSPSTAT.1
#bit BF = SSPSTAT.0
#byte TXSTA = 0x98
#bit CSRC = TXSTA.7
#bit TX9 = TXSTA.6
#bit TXEN = TXSTA.5
#bit SYNC = TXSTA.4
#bit BRGH = TXSTA.2
#bit TRMT = TXSTA.1
#bit TX9D = TXSTA.0
#byte SPBRG = 0x99
#byte ANSEL = 0x9B // F88 only
#bit ANS6 = ANSEL.6
#bit ANS5 = ANSEL.5
#bit ANS4 = ANSEL.4
#bit ANS3 = ANSEL.3
#bit ANS2 = ANSEL.2
#bit ANS1 = ANSEL.1
#bit ANS0 = ANSEL.0
#byte CMCON = 0x9C
#bit C2OUT = CMCON.7
#bit C1OUT = CMCON.6
#bit C2INV = CMCON.5
#bit C1INV = CMCON.4
#bit CIS = CMCON.3
#bit CM2 = CMCON.2
#bit CM1 = CMCON.1
#bit CM0 = CMCON.0
#byte CVRCON = 0x9D
#bit CVREN = CVRCON.7
#bit CVROE = CVRCON.6
#bit CVRR = CVRCON.5
#bit CVR3 = CVRCON.3
#bit CVR2 = CVRCON.2
#bit CVR1 = CVRCON.1
#bit CVR0 = CVRCON.0
#byte ADRESL = 0x9E // F88 only
#byte ADCON1 = 0x9F // F88 only
#bit ADFM = ADCON1.7
#bit ADCS2 = ADCON1.6
#bit VCFG1 = ADCON1.5
#bit VCFG0 = ADCON1.4
 
 
// SFR Registers in Memory Bank 2
//
#byte INDF_2 = 0x100 // mirror
#byte TMR0_2 = 0x101 // mirror
#byte PCL_2 = 0x102 // mirror
#byte STATUS_2 = 0x103 // mirror
#bit IRP_2 = STATUS_2.7
#bit RP1_2 = STATUS_2.6
#bit RP0_2 = STATUS_2.5
#bit TO_2 = STATUS_2.4
#bit PD_2 = STATUS_2.3
#bit Z_2 = STATUS_2.2
#bit DC_2 = STATUS_2.1
#bit C_2 = STATUS_2.0
#byte FSR_2 = 0x104 // mirror
#byte WDTCON = 0x105
#bit WDTPS3 = WDTCON.4
#bit WDTPS2 = WDTCON.3
#bit WDTPS1 = WDTCON.2
#bit WDTPS0 = WDTCON.1
#bit SWDTEN = WDTCON.0
#byte PORTB_2 = 0x106 // mirror
#byte PCLATH_2 = 0x10A // mirror
#byte INTCON_2 = 0x10B // mirror
#bit GIE_2 = INTCON_2.7
#bit PEIE_2 = INTCON_2.6
#bit TMR0IE_2 = INTCON_2.5
#bit INT0IE_2 = INTCON_2.4
#bit RBIE_2 = INTCON_2.3
#bit TMR0IF_2 = INTCON_2.2
#bit INT0IF_2 = INTCON_2.1
#bit RBIF_2 = INTCON_2.0
#byte EEDATA = 0x10C
#byte EEADR = 0x10D
#byte EEDATH = 0x10E
#byte EEADRH = 0x10F
 
 
// SFR Registers in Memory Bank 3
//
#byte INDF_3 = 0x180 // mirror
#byte OPTION_3 = 0x181 // mirror
#bit RBPU_3 = OPTION_3.7
#bit INTEDG_3 = OPTION_3.6
#bit T0CS_3 = OPTION_3.5
#bit T0SE_3 = OPTION_3.4
#bit PSA_3 = OPTION_3.3
#bit PS2_3 = OPTION_3.2
#bit PS1_3 = OPTION_3.1
#bit PS0_3 = OPTION_3.0
#byte PCL_3 = 0x182 // mirror
#byte STATUS_3 = 0x183 // mirror
#bit IRP_3 = STATUS_3.7
#bit RP1_3 = STATUS_3.6
#bit RP0_3 = STATUS_3.5
#bit TO_3 = STATUS_3.4
#bit PD_3 = STATUS_3.3
#bit Z_3 = STATUS_3.2
#bit DC_3 = STATUS_3.1
#bit C_3 = STATUS_3.0
#byte FSR_3 = 0x184 // mirror
#byte TRISB_3 = 0x186 // mirror
#byte PLATH_3 = 0x18A // mirror
#byte INTCON_3 = 0x18B // mirror
#bit GIE_3 = INTCON_3.7
#bit PEIE_3 = INTCON_3.6
#bit TMR0IE_3 = INTCON_3.5
#bit INT0IE_3 = INTCON_3.4
#bit RBIE_3 = INTCON_3.3
#bit TMR0IF_3 = INTCON_3.2
#bit INT0IF_3 = INTCON_3.1
#bit RBIF_3 = INTCON_3.0
#byte EECON1 = 0x18C
#bit EEPGD = EECON1.7
#bit FREE = EECON1.4
#bit WRERR = EECON1.3
#bit WREN = EECON1.2
#bit WR = EECON1.1
#bit RD = EECON1.0
#byte EECON2 = 0x18D
 
 
#list
/Aparatus/DART01B/SW/1_02/A.BAT
0,0 → 1,4
call picpgr stop
call picpgr erase pic16f88
call picpgr program DART.hex hex pic16f88
call picpgr run
/Aparatus/DART01B/SW/1_02/DART.C
0,0 → 1,444
// DART01A verze programu 1.02
// (c)miho 2005
//
// 1.00 Uvodni verze
// 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
// 1.02 Doplnena deaktivace vyvodu pro LED (LED tato verze programu nepouziva)
 
#include "DART.h"
 
 
#define BEEP0 PIN_A6 // pipak, prvni vystup
#define BEEP1 PIN_A7 // pipak, druhy vystup
#define PWM PIN_B3 // PWM vystup pro menic
#define REFPOWER PIN_B1 // napajeni zdroje Vref
#define MOTOR PIN_B2 // zapinani motoru
#define SW0 PIN_B7 // konfiguracni prepinac 0
#define SW1 PIN_B6 // konfiguracni prepinac 1
#define LED PIN_B4 // dioda LED v elektornice DART01B
 
 
void InitRS232()
// Inicializace HW RS232 (pro ladici vystupy)
{
SPBRG=xclock/9600/16-1; // ryclost 9600Bd
RCSTA=0b10000000; // enable USART
TXSTA=0b00100100; // BRGH=1, TX enable
}
 
 
void Putc(char c)
// Posilani znaku pres HW RS232
{
while(TRMT==0); // cekej na prazdny TX buffer
TXREG=c; // predej data
}
 
 
// Globalni promenna pro data posilana na SSP
// Nastavuje se funkci MotorPatternSet()
// Vyuziva se v prerusovaci rutine IntSSP()
unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
 
 
void MotorPatternSet(unsigned int Gear)
// Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
// Rychlost 0 znamena stop, rychlost 8 je maximum
{
// Tabulka rychlost -> pattern pro SSP
unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
 
// Vyber patternu
if (Gear==0) // stav 0 znamena stop
{
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0; // SPI stop
disable_interrupts(INT_SSP); // neni preruseni od SSP
}
else // rizeny vykon
{
if (Gear>7) // stav 8 a vice znamena plny vykon
{
Gear=8; // plny plyn
}
 
MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
output_low(MOTOR); // klidovy stav
SSPSTAT = 0;
SSPCON1 = 0x22; // SPI OSC/64
 
SSPBUF=MotorPattern; // prvni data pro vyslani
enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
}
}
 
 
// Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
#INT_SSP
void IntSSP()
{
SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
}
 
 
void MotorSet(unsigned int Gear)
// Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
// od SSP jednotky
// 0 stop
// 1-7 pocet 1/8 vykonu
// >7 plny vykon
{
// Nastav PWM pattern
MotorPatternSet(Gear); // nastav PWM pattern pro SSP
 
// Povol preruseni
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
void InitT0()
// Inicializace casovace T0 (cca 1000x za sekundu)
{
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
enable_interrupts(INT_RTCC); // generuj preruseni od T0
enable_interrupts(GLOBAL); // povol preruseni
}
 
 
// Globalni promenna pro mereni casu
// Nastavuje se procedurou TimeSet()
// Testuje se funkci TimeIf()
// Modifikuje se pri preruseni od casovace IntTo()
unsigned int16 TimeTime;
 
 
void TimerSet(unsigned int16 Time)
// Nastavi casovac na zadany pocet ms
// Test uplynuti casu se dela pomoci TimerIf()
{
// Nastav hodnotu
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
TimeTime=Time; // pri nastavovani hodnoty
enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
}
 
 
int1 TimerIf()
// Vraci TRUE pokud casovac jiz dobehl
{
int1 Flag; // pomocna promenna
 
// Otestuj casovac
disable_interrupts(INT_RTCC); // nesmi prijit preruseni
Flag=(TimeTime==0); // behem testu promenne
enable_interrupts(INT_RTCC); // ted uz muze
 
// Navratova hodnota
return Flag; // TRUE znamena dobehl casovac
}
 
 
// Globalni promenne pro akceleraci
// Nastavuje se metodou MotorStart()
// Pouziva se v obsluze preruseni IntT0()
unsigned int8 MotorTime; // aktualni casovac pro rozjezd
unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
unsigned int8 MotorGear; // rychlostni stupen
 
 
void MotorStart(unsigned int8 Delay)
// Provede rizeny rozjezd motoru
// Parametrem je prodleva mezi razenim rychlosti v ms
{
disable_interrupts(INT_RTCC);
MotorGear=1;
MotorDelay=Delay;
MotorTime=MotorDelay;
enable_interrupts(INT_RTCC);
 
MotorPatternSet(1);
}
 
 
#INT_TIMER0
void IntT0()
// Preruseni od casovace cca 1000x za sekundu
{
// Odpocitavani casovace
if (TimeTime) TimeTime--;
 
// Obsluha akcelerace
if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
{
MotorTime=MotorDelay; // znovu nastav casovac
MotorGear++; // dalsi rychlost
MotorPatternSet(MotorGear); // nastav rychlost
}
}
 
 
// Cteni dat z AD prevodniku, zadava se cislo kanalu
int8 ReadAD(int8 Ch)
{
// Pokud merim Vref zapnu si jeho napajeni
if (Ch==4) output_high(REFPOWER);
 
// Inicializace a cislo kanalu
ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
 
// Mereni
delay_us(50); // doba na prepnuti kanalu
ADCON0 |= 4; // start prevodu
delay_us(50); // doba na prevod
 
// Vypnu napajeni Vref (vzdycky)
output_low(REFPOWER);
 
// Navrat hodnoty
return ADRESH;
}
 
 
void main()
{
unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
unsigned int8 i;
 
// Hodiny
OSCCON = 0x62; // 4 MHz interni RC oscilator
 
// Digitalni vystupy
output_low(PWM); // PWM vystup
output_low(MOTOR); // Proud do motoru
output_low(REFPOWER); // Napajeni Vref
output_low(LED); // LED dioda nesviti
port_b_pullups(TRUE); // Zbyvajici vyvody portu B
 
// Watch Dog
PSA=0; // preddelic prirazen casovaci
WDTCON=0x0E; // Watch Dog cca 130ms
 
// Analogove vstupy
ANSEL = 0x1F; // AN0 az AN4
 
// nastaveni RS232
InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
 
// Pipnuti (a cekani)
for (i=1;i<30;i++) // pocet 1/2 period
{
int1 beep; // stavova promenna pro pipak
 
output_bit(BEEP0,beep);
beep=~beep;
output_bit(BEEP1,beep);
delay_us(1000);
}
 
// Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
Debug=0;
if (~input(SW0)) Debug|=1; // precti bit 0
if (~input(SW1)) Debug|=2; // precti bit 1
output_low(SW0); // nastav L aby se snizila spotreba
output_low(SW1); // na obou vstupech
 
// Zobrazeni rezimu (na ladici seriovy vystup)
printf(Putc,"\fMode:%d",Debug);
 
// Inicializace PWM
PR2 = 0x1F; // perioda PWM casovace
T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
CCP1CON = 0x0C; // PWM mode, lsb bity nulove
CCPR1L = 0; // na zacatku nulova data
output_low(PWM); // PWM vystup
 
// Inicializace casovace
InitT0(); // nastav casovac na cca 1ms
 
// ALG=1 Test menice PWM a rozjezdoveho PWM
// ========================================
// P1 nastavuje primo stridu hlavniho PWM menice
// P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
// Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
if (Debug==1)
{
unsigned int8 Data1; // poteniometr P1 = PWM
unsigned int8 Data2; // poteniometr P2 = Rozjezd
 
while (1)
{
// watch dog
restart_wdt();
 
// mereni vstupu
Data1=ReadAD(0); // nacti parametr pro PWM
Data1>>=2; // redukuj rozsah na 0 az 63
Data2=ReadAD(1); // nacti parametr pro rozjezd
Data2>>=4; // redukuj rozsah na 0 az 15
 
// zobrazeni
printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
delay_ms(20);
 
// nastaveni parametru PWM
CCPR1L = Data1;
 
// nastaveni parametru RUN
MotorSet(Data2);
}
}
 
// ALG=2 Testovani rozjezdu
// ========================
// P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
// Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
if (Debug==2)
{
int8 Data;
int8 Start;
 
Start=0; // uvodni stav
while(1)
{
// Nacti a zobraz parametr
Data=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc,"\nRUN:%3ums ",Data); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Uvodni pauza
if (Start==0) // spousti se 1x na zacatku
{
Start++; // dalsi stav je cekani
TimerSet(2000); // na dokonceni uvodni prodlevy
}
 
// Rozjezd
if ((Start==1) && TimerIf())
{
Start++;
printf(Putc,"R");
MotorStart(Data); // rozjezd s nastavenim prodlevy
 
TimerSet(2000); // nastav celkovy cas jizdy
}
 
// Zastaveni
if ((Start==2) && TimerIf())
{
Start++;
printf(Putc,"S");
MotorSet(0); // pokud dobehl casovac zastav motor
}
 
// watch dog
restart_wdt();
}
}
 
// ALG=3 Test nabijeciho algoritmu
// ===============================
// P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
// Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
// algoritmus jako pro standardni jizdu
if (Debug==3)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
 
// Inicializace stavove promenne
PwmOut=0;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
}
}
 
// ALG=0 Standardni jizda
// ======================
// P1 nastavuje pozadovane napeti na clancich
// P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
// Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
// rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
// Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
if (Debug==0)
{
unsigned int8 PwmOut; // akcni hodnota pro PWM
unsigned int8 Req; // pozadovana hodnota z P1
unsigned int8 Vref; // merena hodnota vref
int8 Delay; // pozadovana honota prodlevy razeni z P2
int1 Run;
 
// Nacti parametr rozjezdu
Delay=ReadAD(1); // potenciometr P2 = rozjezd
printf(Putc," RUN:%3ums ",Delay); // zobraz
delay_ms(10); // prodleva pro terminal
 
// Inicializace stavove promenne
PwmOut=0;
TimerSet(14000); // casovani startu
Run=1;
 
// Hlavni smycka
while (1)
{
// watch dog
restart_wdt();
 
// pozadovana hodnota (potenciometr P1)
Req=ReadAD(0);
Req=50+(ReadAD(0)>>1); // 50 az 177
 
// napeti na napajeni (vref)
Vref=ReadAD(4);
 
// ricici algoritmus
if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
Vref+=10;
if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
 
// nastaveni parametru PWM
if (PwmOut>24) PwmOut=24; // saturace
CCPR1L = PwmOut; // pouziti vystupu
 
// zobrazeni
printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
delay_ms(10);
 
// rozjezd
if (TimerIf()&&Run)
{
Run=0;
MotorStart(Delay); // prodleva razeni z P2
}
}
}
}
/Aparatus/DART01B/SW/1_02/DART.H
0,0 → 1,10
// DART01A verze programu 1.00
// (c)miho 2005
 
#include <16F88.h> // standardni definice konstant
#include <16F88_Reg.h> // standardni definice vsech FSR
 
#device adc=8 // AD prevodnik jen na 8 bitu
#define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
#use delay(clock=xclock,restart_wdt)
#fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
/Aparatus/DART01B/SW/1_02/DART.HEX
0,0 → 1,141
:1000000000308A005F2A0000FF00030E8301A10078
:100010007F08A0000A08A8008A01A00E0408A20018
:100020007708A3007808A4007908A5007A08A6003C
:100030007B08A700831383128C308400801D222844
:100040008C1939288B1E26280B193B28220884007E
:100050002308F7002408F8002508F9002608FA000C
:100060002708FB0028088A00210E8300FF0E7F0E60
:1000700009008A11A5288A11D3280A108A100A11AA
:100080008207023406340E341E343E347E34FE348D
:10009000FF340A108A100A1182070C344D346F3471
:1000A000643465343A342534643400340A108A10D8
:1000B0000A1182070A34503457344D343A34253407
:1000C0003034333475342034523455344E343A3469
:1000D000253430343334753400340A108A100A1150
:1000E00082070A34523455344E343A34253433348A
:1000F00075346D347334203400340A108A100A11B8
:1001000082070A3441344C3447343A34253430348D
:10011000333475342034253430343334753420345A
:10012000253430343334753400340A108A100A11FF
:1001300082072034523455344E343A342534333423
:1001400075346D347334203400342A0893008C11D4
:100150008A112628C508031DB928831606118312A3
:100160000611831694018312940183168C11D128F1
:1001700083124508073C0318BF280830C500C50393
:1001800045083D20F800AA008316061183120611C7
:10019000831694012230831294002A089300831658
:1001A0008C15831200342B082C040319DB282B0830
:1001B0000319AC03AB03AD08031DAD03AF0803196E
:1001C000EE282F08073C031CEE28AD08031DEE287F
:1001D0002E08AD00AF0A2F08C500AA200B118A1106
:1001E00026281A3083169900803083129800243014
:1001F0008316980083128A118C2A1130BF02031CC7
:100200000F293F308400FC3080050310800C800CE7
:10021000000803190F290D296400800B0C298A118D
:10022000AA2A8316981816298312112983124208C4
:10023000990000344308F8014202031822294208B9
:10024000F7002E29F7010830C400C20DF70D43084E
:1002500077020318F700F80DC40B25290034BF1FDF
:100260003529C017BF09BF0A3C29401D3C29203051
:10027000401E3030C20011214013C0123F08C2009E
:100280006430C3001A217708BF007808031D66296F
:10029000C01A6629C0197429401B542940185429D2
:1002A00040195429C01B7429401C6029C01B7429A3
:1002B000401B60294018742940196029C01B74290B
:1002C0002030401E3030C20011217429C016C01FDA
:1002D000702978088000F8002D30C2001121C01369
:1002E00030307807C2001121401B7F293F08C2002F
:1002F0000A30C3001A217708BF0040174529C01FE4
:1003000084292D30C200112130303F07C200112155
:100310008A11D12A83160108C0390138810083125D
:100320008B16C0308B048A11DF2A3E08043C031D63
:100330009D298316861083128614303083169F0001
:1003400083123E0DF700F70DF70DF830F70577082B
:10035000413E9F0064001030F700F70BAD2900000C
:1003600000001F1564001030F700F70BB5290000DE
:10037000000083168610831286101E08F8000034D1
:100380004113C1124008C2006430C3001A2177082B
:10039000C0007808031DEA29C11AEA29C119F82901
:1003A000411BD8294118D8294119D829C11BF8293E
:1003B000411CE429C11BF829411BE4294118F829F3
:1003C0004119E429C11BF8292030411E3030C200F8
:1003D0001121F829C116C11FF42978088000F800FE
:1003E0002D30C2001121C11330307807C200112115
:1003F000411B032A4008C2000A30C3001A217708B3
:10040000C0004117C929C11F082A2D30C20011217F
:1004100030304007C200112100343E308400000813
:100420000319232A0130F800BF30F7006400F70BEE
:10043000162AF80B142A5830F700F70B1D2A000073
:100440006400800B122A0034A9018B1BA9178B139F
:100450003E08C500AA20A91B8B17C0308B040034AE
:100460008B123F08AC003E08AB008B1600348B1299
:10047000AB08031D3E2AAC080319402A0030412A6C
:100480000130F8007818462A3E10472A3E148B1691
:1004900000303E180130F80000348B120130AF00FC
:1004A0003E08AE002E08AD008B16A9018B1BA917C4
:1004B0008B130130C500AA20A91B8B1700348401BF
:1004C0001F30830583161F129F121B0880399B0063
:1004D00007309C001C0883120D13623083168F00B6
:1004E0008611831286118316061183120611831654
:1004F0008610831286108316061283120612831644
:10050000811381110E308312031785001F3083166B
:1005100003139B008312F1280130B10031081D3C08
:10052000031CAE2A3218962A0513972A051783163C
:10053000051301308312B2063218A02A8513A12AAE
:10054000851783168513640009308312BE006C3052
:10055000BF00FD28BE0BA72AB10A8E2AB001831660
:1005600086178312861F3014831606178312061F00
:10057000B014831686138312861383160613831210
:100580000613BE013E084920BE0AF700C200112131
:1005900006303E02031DC22A3008BF001830C000DA
:1005A0002F291F30831692000430831292000C30E2
:1005B0009700950183168611831286118A29300BC4
:1005C0001A2B6400BE0195217808B300B30CB30C5C
:1005D0003F30B3050130BE0095217808B400B40E59
:1005E0000F30B405BE013E085620BE0AF700C20017
:1005F000112105303E02031DF32A3308C000C1015A
:10060000C0210930BF003F085620BF0AF700C200D2
:1006100011210E303F02031D032B3408C000C1011D
:10062000C0211430BE000D22330895003408BE00EE
:100630002422E12A3008023C031D6B2BB601013055
:10064000BE0095217808B500BE013E086D20BE0AA7
:10065000F700C200112105303E02031D252B35088D
:10066000C0001030C100C0216D30C20011217330B4
:10067000C20011212030C20011210A30BE000D221B
:10068000B608031D492BB60A0730BF00D030BE00A4
:100690003022360B5B2B3722F80803195B2BB60A86
:1006A0005230C20011213508BE004D220730BF0074
:1006B000D030BE0030223608023C031D692B3722A1
:1006C000F8080319692BB60A5330C2001121BE0184
:1006D000242264001F2B3008033C031DC22BB701EA
:1006E0006400BE0195217808B800BE019521031071
:1006F000780C323EB8000430BE0095217808B9006D
:10070000380839020318882B37081D3C0318B70A2C
:1007100038083902031C8F2BB708031DB7030A30B2
:10072000B907380839020318992B37081D3C0318FC
:10073000B70A3708183C03189F2B1830B700370842
:100740009500BE013E087D20BE0AF700C2001121BF
:1007500005303E02031DA22B3808C000C101C02194
:100760002030C20011213908C000C101C021203051
:10077000C20011213708C000C101C0210A30BE00EB
:100780000D22702BB008031D492C0130BE009521AD
:100790007808BD00BE013E089520BE0AF700C200E1
:1007A000112105303E02031DCB2B3D08C000103047
:1007B000C100C0216D30C20011217330C20011216F
:1007C0002030C20011210A30BE000D22BA0136309D
:1007D000BF00B030BE003022B2146400BE019521CB
:1007E0007808BB00BE0195210310780C323EBB0097
:1007F0000430BE0095217808BC003B083C02031879
:10080000052C3A081D3C0318BA0A3B083C02031C9D
:100810000C2CBA08031DBA030A30BC073B083C0283
:100820000318162C3A081D3C0318BA0A3A08183C5B
:1008300003181C2C1830BA003A089500BE013E0877
:100840007D20BE0AF700C200112105303E02031DC3
:100850001F2C3B08C000C101C0212030C200112163
:100860003C08C000C101C0212030C20011213A085B
:10087000C000C101C0210A30BE000D223722F80895
:100880000319482CB21C482CB2103D08BE004D2262
:04089000ED2B6300E9
:04400E003C2FFF3F05
:00000001FF
;PIC16F88
/Aparatus/DART01B/SW/1_02/DART.LST
0,0 → 1,1293
CCS PCM C Compiler, Version 3.221, 27853 18-IX-05 10:59
 
Filename: D:\MLAB\_Z\DART01B\SW\1_02\DART.LST
 
ROM used: 1098 words (27%)
Largest free fragment is 2048
RAM used: 25 (14%) at main() level
43 (25%) worst case
Stack: 6 worst case (3 in main + 3 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 25F
0003: NOP
0004: MOVWF 7F
0005: SWAPF 03,W
0006: CLRF 03
0007: MOVWF 21
0008: MOVF 7F,W
0009: MOVWF 20
000A: MOVF 0A,W
000B: MOVWF 28
000C: CLRF 0A
000D: SWAPF 20,F
000E: MOVF 04,W
000F: MOVWF 22
0010: MOVF 77,W
0011: MOVWF 23
0012: MOVF 78,W
0013: MOVWF 24
0014: MOVF 79,W
0015: MOVWF 25
0016: MOVF 7A,W
0017: MOVWF 26
0018: MOVF 7B,W
0019: MOVWF 27
001A: BCF 03.7
001B: BCF 03.5
001C: MOVLW 8C
001D: MOVWF 04
001E: BTFSS 00.3
001F: GOTO 022
0020: BTFSC 0C.3
0021: GOTO 039
0022: BTFSS 0B.5
0023: GOTO 026
0024: BTFSC 0B.2
0025: GOTO 03B
0026: MOVF 22,W
0027: MOVWF 04
0028: MOVF 23,W
0029: MOVWF 77
002A: MOVF 24,W
002B: MOVWF 78
002C: MOVF 25,W
002D: MOVWF 79
002E: MOVF 26,W
002F: MOVWF 7A
0030: MOVF 27,W
0031: MOVWF 7B
0032: MOVF 28,W
0033: MOVWF 0A
0034: SWAPF 21,W
0035: MOVWF 03
0036: SWAPF 7F,F
0037: SWAPF 7F,W
0038: RETFIE
0039: BCF 0A.3
003A: GOTO 0A5
003B: BCF 0A.3
003C: GOTO 0D3
.................... // DART01A verze programu 1.02
.................... // (c)miho 2005
.................... //
.................... // 1.00 Uvodni verze
.................... // 1.01 Doplneno nasatvovani parametru rozjezdu P2 u standardniho algoritmu
.................... // 1.02 Doplnena deaktivace vyvodu pro LED (LED tato verze programu nepouziva)
....................
.................... #include "DART.h"
.................... // DART01A verze programu 1.00
.................... // (c)miho 2005
....................
.................... #include <16F88.h> // standardni definice konstant
.................... //////// Header file for the PIC16F88
.................... #device PIC16F88
.................... #list
.................... #include <16F88_Reg.h> // standardni definice vsech FSR
.................... #list
....................
....................
.................... #device adc=8 // AD prevodnik jen na 8 bitu
.................... #define xclock 4168000 // muj konkretni PIC je trochu rychlejsi
.................... #use delay(clock=xclock,restart_wdt)
*
00FD: MOVLW 11
00FE: SUBWF 3F,F
00FF: BTFSS 03.0
0100: GOTO 10F
0101: MOVLW 3F
0102: MOVWF 04
0103: MOVLW FC
0104: ANDWF 00,F
0105: BCF 03.0
0106: RRF 00,F
0107: RRF 00,F
0108: MOVF 00,W
0109: BTFSC 03.2
010A: GOTO 10F
010B: GOTO 10D
010C: CLRWDT
010D: DECFSZ 00,F
010E: GOTO 10C
010F: BCF 0A.3
0110: GOTO 2AA (RETURN)
*
020D: MOVLW 3E
020E: MOVWF 04
020F: MOVF 00,W
0210: BTFSC 03.2
0211: GOTO 223
0212: MOVLW 01
0213: MOVWF 78
0214: MOVLW BF
0215: MOVWF 77
0216: CLRWDT
0217: DECFSZ 77,F
0218: GOTO 216
0219: DECFSZ 78,F
021A: GOTO 214
021B: MOVLW 58
021C: MOVWF 77
021D: DECFSZ 77,F
021E: GOTO 21D
021F: NOP
0220: CLRWDT
0221: DECFSZ 00,F
0222: GOTO 212
0223: RETLW 00
.................... #fuses INTRC_IO, WDT, NOPUT, NOPROTECT, NOBROWNOUT, MCLR, NOLVP, NOCPD, NODEBUG, CCPB3
....................
....................
....................
.................... #define BEEP0 PIN_A6 // pipak, prvni vystup
.................... #define BEEP1 PIN_A7 // pipak, druhy vystup
.................... #define PWM PIN_B3 // PWM vystup pro menic
.................... #define REFPOWER PIN_B1 // napajeni zdroje Vref
.................... #define MOTOR PIN_B2 // zapinani motoru
.................... #define SW0 PIN_B7 // konfiguracni prepinac 0
.................... #define SW1 PIN_B6 // konfiguracni prepinac 1
.................... #define LED PIN_B4 // dioda LED v elektornice DART01B
....................
....................
.................... void InitRS232()
.................... // Inicializace HW RS232 (pro ladici vystupy)
.................... {
.................... SPBRG=xclock/9600/16-1; // ryclost 9600Bd
*
00F1: MOVLW 1A
00F2: BSF 03.5
00F3: MOVWF 19
.................... RCSTA=0b10000000; // enable USART
00F4: MOVLW 80
00F5: BCF 03.5
00F6: MOVWF 18
.................... TXSTA=0b00100100; // BRGH=1, TX enable
00F7: MOVLW 24
00F8: BSF 03.5
00F9: MOVWF 18
.................... }
00FA: BCF 03.5
00FB: BCF 0A.3
00FC: GOTO 28C (RETURN)
....................
....................
.................... void Putc(char c)
.................... // Posilani znaku pres HW RS232
.................... {
.................... while(TRMT==0); // cekej na prazdny TX buffer
*
0111: BSF 03.5
0112: BTFSC 18.1
0113: GOTO 116
0114: BCF 03.5
0115: GOTO 111
.................... TXREG=c; // predej data
0116: BCF 03.5
0117: MOVF 42,W
0118: MOVWF 19
.................... }
0119: RETLW 00
....................
....................
.................... // Globalni promenna pro data posilana na SSP
.................... // Nastavuje se funkci MotorPatternSet()
.................... // Vyuziva se v prerusovaci rutine IntSSP()
.................... unsigned int8 MotorPattern; // aktualni data pro SSP jednotku
....................
....................
.................... void MotorPatternSet(unsigned int Gear)
.................... // Na zaklade rychlostniho stupne nastavi MotorPattern pro SSP
.................... // Rychlost 0 znamena stop, rychlost 8 je maximum
.................... {
.................... // Tabulka rychlost -> pattern pro SSP
.................... unsigned int8 const ExpTab[8] = {0x02,0x06,0x0e,0x1e,0x3e,0x7e,0xfe,0xff};
....................
.................... // Vyber patternu
.................... if (Gear==0) // stav 0 znamena stop
*
00AA: MOVF 45,F
00AB: BTFSS 03.2
00AC: GOTO 0B9
.................... {
.................... output_low(MOTOR); // klidovy stav
00AD: BSF 03.5
00AE: BCF 06.2
00AF: BCF 03.5
00B0: BCF 06.2
.................... SSPSTAT = 0;
00B1: BSF 03.5
00B2: CLRF 14
.................... SSPCON1 = 0; // SPI stop
00B3: BCF 03.5
00B4: CLRF 14
.................... disable_interrupts(INT_SSP); // neni preruseni od SSP
00B5: BSF 03.5
00B6: BCF 0C.3
.................... }
.................... else // rizeny vykon
00B7: GOTO 0D1
00B8: BCF 03.5
.................... {
.................... if (Gear>7) // stav 8 a vice znamena plny vykon
00B9: MOVF 45,W
00BA: SUBLW 07
00BB: BTFSC 03.0
00BC: GOTO 0BF
.................... {
.................... Gear=8; // plny plyn
00BD: MOVLW 08
00BE: MOVWF 45
.................... }
....................
.................... MotorPattern=ExpTab[--Gear]; // prevod z hodnoty plynu na data pro SSP
00BF: DECF 45,F
00C0: MOVF 45,W
00C1: CALL 03D
00C2: MOVWF 78
00C3: MOVWF 2A
.................... output_low(MOTOR); // klidovy stav
00C4: BSF 03.5
00C5: BCF 06.2
00C6: BCF 03.5
00C7: BCF 06.2
.................... SSPSTAT = 0;
00C8: BSF 03.5
00C9: CLRF 14
.................... SSPCON1 = 0x22; // SPI OSC/64
00CA: MOVLW 22
00CB: BCF 03.5
00CC: MOVWF 14
....................
.................... SSPBUF=MotorPattern; // prvni data pro vyslani
00CD: MOVF 2A,W
00CE: MOVWF 13
.................... enable_interrupts(INT_SSP); // az budou vyslana prijde interrupt od SSP
00CF: BSF 03.5
00D0: BSF 0C.3
.................... }
.................... }
00D1: BCF 03.5
00D2: RETLW 00
....................
....................
.................... // Obsluha preruseni od SSP jednotky, posila data z promenne MotorRun do SSP.
.................... #INT_SSP
.................... void IntSSP()
.................... {
.................... SSPBUF=MotorPattern; // znova hdnota PWM patternu na SSP
*
00A5: MOVF 2A,W
00A6: MOVWF 13
.................... }
....................
....................
00A7: BCF 0C.3
00A8: BCF 0A.3
00A9: GOTO 026
.................... void MotorSet(unsigned int Gear)
*
0224: CLRF 29
0225: BTFSC 0B.7
0226: BSF 29.7
0227: BCF 0B.7
.................... // Nastavi vykon motoru dle hodnoty Gear a zahaji posilani PWM dat pres SSP pod prerusenim
.................... // od SSP jednotky
.................... // 0 stop
.................... // 1-7 pocet 1/8 vykonu
.................... // >7 plny vykon
.................... {
.................... // Nastav PWM pattern
.................... MotorPatternSet(Gear); // nastav PWM pattern pro SSP
0228: MOVF 3E,W
0229: MOVWF 45
022A: CALL 0AA
022B: BTFSC 29.7
022C: BSF 0B.7
....................
.................... // Povol preruseni
.................... enable_interrupts(GLOBAL); // povol preruseni
022D: MOVLW C0
022E: IORWF 0B,F
.................... }
022F: RETLW 00
....................
....................
.................... void InitT0()
.................... // Inicializace casovace T0 (cca 1000x za sekundu)
.................... {
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_4); // T0 z internich hodin 1/4
*
018A: BSF 03.5
018B: MOVF 01,W
018C: ANDLW C0
018D: IORLW 01
018E: MOVWF 01
.................... enable_interrupts(INT_RTCC); // generuj preruseni od T0
018F: BCF 03.5
0190: BSF 0B.5
.................... enable_interrupts(GLOBAL); // povol preruseni
0191: MOVLW C0
0192: IORWF 0B,F
.................... }
0193: BCF 0A.3
0194: GOTO 2DF (RETURN)
....................
....................
.................... // Globalni promenna pro mereni casu
.................... // Nastavuje se procedurou TimeSet()
.................... // Testuje se funkci TimeIf()
.................... // Modifikuje se pri preruseni od casovace IntTo()
.................... unsigned int16 TimeTime;
....................
....................
.................... void TimerSet(unsigned int16 Time)
.................... // Nastavi casovac na zadany pocet ms
.................... // Test uplynuti casu se dela pomoci TimerIf()
.................... {
.................... // Nastav hodnotu
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
*
0230: BCF 0B.5
.................... TimeTime=Time; // pri nastavovani hodnoty
0231: MOVF 3F,W
0232: MOVWF 2C
0233: MOVF 3E,W
0234: MOVWF 2B
.................... enable_interrupts(INT_RTCC); // promenne (o delce vice nez 8 bitu)
0235: BSF 0B.5
.................... }
0236: RETLW 00
....................
....................
.................... int1 TimerIf()
.................... // Vraci TRUE pokud casovac jiz dobehl
.................... {
.................... int1 Flag; // pomocna promenna
....................
.................... // Otestuj casovac
.................... disable_interrupts(INT_RTCC); // nesmi prijit preruseni
0237: BCF 0B.5
.................... Flag=(TimeTime==0); // behem testu promenne
0238: MOVF 2B,F
0239: BTFSS 03.2
023A: GOTO 23E
023B: MOVF 2C,F
023C: BTFSC 03.2
023D: GOTO 240
023E: MOVLW 00
023F: GOTO 241
0240: MOVLW 01
0241: MOVWF 78
0242: BTFSC 78.0
0243: GOTO 246
0244: BCF 3E.0
0245: GOTO 247
0246: BSF 3E.0
.................... enable_interrupts(INT_RTCC); // ted uz muze
0247: BSF 0B.5
....................
.................... // Navratova hodnota
.................... return Flag; // TRUE znamena dobehl casovac
0248: MOVLW 00
0249: BTFSC 3E.0
024A: MOVLW 01
024B: MOVWF 78
.................... }
024C: RETLW 00
....................
....................
.................... // Globalni promenne pro akceleraci
.................... // Nastavuje se metodou MotorStart()
.................... // Pouziva se v obsluze preruseni IntT0()
.................... unsigned int8 MotorTime; // aktualni casovac pro rozjezd
.................... unsigned int8 MotorDelay; // spozdeni mezi razenim rychlosti
.................... unsigned int8 MotorGear; // rychlostni stupen
....................
....................
.................... void MotorStart(unsigned int8 Delay)
.................... // Provede rizeny rozjezd motoru
.................... // Parametrem je prodleva mezi razenim rychlosti v ms
.................... {
.................... disable_interrupts(INT_RTCC);
024D: BCF 0B.5
.................... MotorGear=1;
024E: MOVLW 01
024F: MOVWF 2F
.................... MotorDelay=Delay;
0250: MOVF 3E,W
0251: MOVWF 2E
.................... MotorTime=MotorDelay;
0252: MOVF 2E,W
0253: MOVWF 2D
.................... enable_interrupts(INT_RTCC);
0254: BSF 0B.5
0255: CLRF 29
0256: BTFSC 0B.7
0257: BSF 29.7
0258: BCF 0B.7
....................
.................... MotorPatternSet(1);
0259: MOVLW 01
025A: MOVWF 45
025B: CALL 0AA
025C: BTFSC 29.7
025D: BSF 0B.7
.................... }
025E: RETLW 00
....................
....................
.................... #INT_TIMER0
.................... void IntT0()
.................... // Preruseni od casovace cca 1000x za sekundu
.................... {
.................... // Odpocitavani casovace
.................... if (TimeTime) TimeTime--;
*
00D3: MOVF 2B,W
00D4: IORWF 2C,W
00D5: BTFSC 03.2
00D6: GOTO 0DB
00D7: MOVF 2B,W
00D8: BTFSC 03.2
00D9: DECF 2C,F
00DA: DECF 2B,F
....................
.................... // Obsluha akcelerace
.................... if (MotorTime) MotorTime--; // dekrementuj casovac rozjezdu
00DB: MOVF 2D,F
00DC: BTFSS 03.2
00DD: DECF 2D,F
.................... if ((MotorGear>0) && (MotorGear<8) && (!MotorTime)) // dalsi rychlostni stupen
00DE: MOVF 2F,F
00DF: BTFSC 03.2
00E0: GOTO 0EE
00E1: MOVF 2F,W
00E2: SUBLW 07
00E3: BTFSS 03.0
00E4: GOTO 0EE
00E5: MOVF 2D,F
00E6: BTFSS 03.2
00E7: GOTO 0EE
.................... {
.................... MotorTime=MotorDelay; // znovu nastav casovac
00E8: MOVF 2E,W
00E9: MOVWF 2D
.................... MotorGear++; // dalsi rychlost
00EA: INCF 2F,F
.................... MotorPatternSet(MotorGear); // nastav rychlost
00EB: MOVF 2F,W
00EC: MOVWF 45
00ED: CALL 0AA
.................... }
.................... }
....................
....................
.................... // Cteni dat z AD prevodniku, zadava se cislo kanalu
00EE: BCF 0B.2
00EF: BCF 0A.3
00F0: GOTO 026
.................... int8 ReadAD(int8 Ch)
.................... {
.................... // Pokud merim Vref zapnu si jeho napajeni
.................... if (Ch==4) output_high(REFPOWER);
*
0195: MOVF 3E,W
0196: SUBLW 04
0197: BTFSS 03.2
0198: GOTO 19D
0199: BSF 03.5
019A: BCF 06.1
019B: BCF 03.5
019C: BSF 06.1
....................
.................... // Inicializace a cislo kanalu
.................... ADCON1=0x30; // Vref+-, bez deleni hodin, Left Justify
019D: MOVLW 30
019E: BSF 03.5
019F: MOVWF 1F
.................... ADCON0=0x41+(Ch<<3); // on, Tosc/8, cislo kanalu
01A0: BCF 03.5
01A1: RLF 3E,W
01A2: MOVWF 77
01A3: RLF 77,F
01A4: RLF 77,F
01A5: MOVLW F8
01A6: ANDWF 77,F
01A7: MOVF 77,W
01A8: ADDLW 41
01A9: MOVWF 1F
....................
.................... // Mereni
.................... delay_us(50); // doba na prepnuti kanalu
01AA: CLRWDT
01AB: MOVLW 10
01AC: MOVWF 77
01AD: DECFSZ 77,F
01AE: GOTO 1AD
01AF: NOP
01B0: NOP
.................... ADCON0 |= 4; // start prevodu
01B1: BSF 1F.2
.................... delay_us(50); // doba na prevod
01B2: CLRWDT
01B3: MOVLW 10
01B4: MOVWF 77
01B5: DECFSZ 77,F
01B6: GOTO 1B5
01B7: NOP
01B8: NOP
....................
.................... // Vypnu napajeni Vref (vzdycky)
.................... output_low(REFPOWER);
01B9: BSF 03.5
01BA: BCF 06.1
01BB: BCF 03.5
01BC: BCF 06.1
....................
.................... // Navrat hodnoty
.................... return ADRESH;
01BD: MOVF 1E,W
01BE: MOVWF 78
.................... }
01BF: RETLW 00
....................
....................
.................... void main()
.................... {
*
025F: CLRF 04
0260: MOVLW 1F
0261: ANDWF 03,F
0262: BSF 03.5
0263: BCF 1F.4
0264: BCF 1F.5
0265: MOVF 1B,W
0266: ANDLW 80
0267: MOVWF 1B
0268: MOVLW 07
0269: MOVWF 1C
026A: MOVF 1C,W
026B: BCF 03.5
026C: BCF 0D.6
.................... unsigned int8 Debug; // Promenna pro rezim cinnosti (stav prepinacu)
.................... unsigned int8 i;
....................
.................... // Hodiny
.................... OSCCON = 0x62; // 4 MHz interni RC oscilator
026D: MOVLW 62
026E: BSF 03.5
026F: MOVWF 0F
....................
.................... // Digitalni vystupy
.................... output_low(PWM); // PWM vystup
0270: BCF 06.3
0271: BCF 03.5
0272: BCF 06.3
.................... output_low(MOTOR); // Proud do motoru
0273: BSF 03.5
0274: BCF 06.2
0275: BCF 03.5
0276: BCF 06.2
.................... output_low(REFPOWER); // Napajeni Vref
0277: BSF 03.5
0278: BCF 06.1
0279: BCF 03.5
027A: BCF 06.1
.................... output_low(LED); // LED dioda nesviti
027B: BSF 03.5
027C: BCF 06.4
027D: BCF 03.5
027E: BCF 06.4
.................... port_b_pullups(TRUE); // Zbyvajici vyvody portu B
027F: BSF 03.5
0280: BCF 01.7
....................
.................... // Watch Dog
.................... PSA=0; // preddelic prirazen casovaci
0281: BCF 01.3
.................... WDTCON=0x0E; // Watch Dog cca 130ms
0282: MOVLW 0E
0283: BCF 03.5
0284: BSF 03.6
0285: MOVWF 05
....................
.................... // Analogove vstupy
.................... ANSEL = 0x1F; // AN0 az AN4
0286: MOVLW 1F
0287: BSF 03.5
0288: BCF 03.6
0289: MOVWF 1B
....................
.................... // nastaveni RS232
.................... InitRS232(); // inicializace HW RS232 (nutno pockat cca 10ms)
028A: BCF 03.5
028B: GOTO 0F1
....................
.................... // Pipnuti (a cekani)
.................... for (i=1;i<30;i++) // pocet 1/2 period
028C: MOVLW 01
028D: MOVWF 31
028E: MOVF 31,W
028F: SUBLW 1D
0290: BTFSS 03.0
0291: GOTO 2AE
.................... {
.................... int1 beep; // stavova promenna pro pipak
....................
.................... output_bit(BEEP0,beep);
0292: BTFSC 32.0
0293: GOTO 296
0294: BCF 05.6
0295: GOTO 297
0296: BSF 05.6
0297: BSF 03.5
0298: BCF 05.6
.................... beep=~beep;
0299: MOVLW 01
029A: BCF 03.5
029B: XORWF 32,F
.................... output_bit(BEEP1,beep);
029C: BTFSC 32.0
029D: GOTO 2A0
029E: BCF 05.7
029F: GOTO 2A1
02A0: BSF 05.7
02A1: BSF 03.5
02A2: BCF 05.7
.................... delay_us(1000);
02A3: CLRWDT
02A4: MOVLW 09
02A5: BCF 03.5
02A6: MOVWF 3E
02A7: MOVLW 6C
02A8: MOVWF 3F
02A9: GOTO 0FD
02AA: DECFSZ 3E,F
02AB: GOTO 2A7
.................... }
02AC: INCF 31,F
02AD: GOTO 28E
....................
.................... // Rozhodnuti o rezimu cinnosti (cteni stavu prepinacu)
.................... Debug=0;
02AE: CLRF 30
.................... if (~input(SW0)) Debug|=1; // precti bit 0
02AF: BSF 03.5
02B0: BSF 06.7
02B1: BCF 03.5
02B2: BTFSS 06.7
02B3: BSF 30.0
.................... if (~input(SW1)) Debug|=2; // precti bit 1
02B4: BSF 03.5
02B5: BSF 06.6
02B6: BCF 03.5
02B7: BTFSS 06.6
02B8: BSF 30.1
.................... output_low(SW0); // nastav L aby se snizila spotreba
02B9: BSF 03.5
02BA: BCF 06.7
02BB: BCF 03.5
02BC: BCF 06.7
.................... output_low(SW1); // na obou vstupech
02BD: BSF 03.5
02BE: BCF 06.6
02BF: BCF 03.5
02C0: BCF 06.6
....................
.................... // Zobrazeni rezimu (na ladici seriovy vystup)
.................... printf(Putc,"\fMode:%d",Debug);
02C1: CLRF 3E
02C2: MOVF 3E,W
02C3: CALL 049
02C4: INCF 3E,F
02C5: MOVWF 77
02C6: MOVWF 42
02C7: CALL 111
02C8: MOVLW 06
02C9: SUBWF 3E,W
02CA: BTFSS 03.2
02CB: GOTO 2C2
02CC: MOVF 30,W
02CD: MOVWF 3F
02CE: MOVLW 18
02CF: MOVWF 40
02D0: GOTO 12F
....................
.................... // Inicializace PWM
.................... PR2 = 0x1F; // perioda PWM casovace
02D1: MOVLW 1F
02D2: BSF 03.5
02D3: MOVWF 12
.................... T2CON = 0x04; // povoleni casovace T2 bez preddelicu a postdelicu
02D4: MOVLW 04
02D5: BCF 03.5
02D6: MOVWF 12
.................... CCP1CON = 0x0C; // PWM mode, lsb bity nulove
02D7: MOVLW 0C
02D8: MOVWF 17
.................... CCPR1L = 0; // na zacatku nulova data
02D9: CLRF 15
.................... output_low(PWM); // PWM vystup
02DA: BSF 03.5
02DB: BCF 06.3
02DC: BCF 03.5
02DD: BCF 06.3
....................
.................... // Inicializace casovace
.................... InitT0(); // nastav casovac na cca 1ms
02DE: GOTO 18A
....................
.................... // ALG=1 Test menice PWM a rozjezdoveho PWM
.................... // ========================================
.................... // P1 nastavuje primo stridu hlavniho PWM menice
.................... // P2 nastavuje rychlostni stupen spinace motoru (rychlostni stupne 0-8)
.................... // Trvale nacita P1 a P2 a nastavuje podle nich akcni hodnoty menicu
.................... if (Debug==1)
02DF: DECFSZ 30,W
02E0: GOTO 31A
.................... {
.................... unsigned int8 Data1; // poteniometr P1 = PWM
.................... unsigned int8 Data2; // poteniometr P2 = Rozjezd
....................
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
02E1: CLRWDT
....................
.................... // mereni vstupu
.................... Data1=ReadAD(0); // nacti parametr pro PWM
02E2: CLRF 3E
02E3: CALL 195
02E4: MOVF 78,W
02E5: MOVWF 33
.................... Data1>>=2; // redukuj rozsah na 0 az 63
02E6: RRF 33,F
02E7: RRF 33,F
02E8: MOVLW 3F
02E9: ANDWF 33,F
.................... Data2=ReadAD(1); // nacti parametr pro rozjezd
02EA: MOVLW 01
02EB: MOVWF 3E
02EC: CALL 195
02ED: MOVF 78,W
02EE: MOVWF 34
.................... Data2>>=4; // redukuj rozsah na 0 az 15
02EF: SWAPF 34,F
02F0: MOVLW 0F
02F1: ANDWF 34,F
....................
.................... // zobrazeni
.................... printf(Putc,"\nPWM:%03u RUN:%03u",Data1,Data2);
02F2: CLRF 3E
02F3: MOVF 3E,W
02F4: CALL 056
02F5: INCF 3E,F
02F6: MOVWF 77
02F7: MOVWF 42
02F8: CALL 111
02F9: MOVLW 05
02FA: SUBWF 3E,W
02FB: BTFSS 03.2
02FC: GOTO 2F3
02FD: MOVF 33,W
02FE: MOVWF 40
02FF: CLRF 41
0300: CALL 1C0
0301: MOVLW 09
0302: MOVWF 3F
0303: MOVF 3F,W
0304: CALL 056
0305: INCF 3F,F
0306: MOVWF 77
0307: MOVWF 42
0308: CALL 111
0309: MOVLW 0E
030A: SUBWF 3F,W
030B: BTFSS 03.2
030C: GOTO 303
030D: MOVF 34,W
030E: MOVWF 40
030F: CLRF 41
0310: CALL 1C0
.................... delay_ms(20);
0311: MOVLW 14
0312: MOVWF 3E
0313: CALL 20D
....................
.................... // nastaveni parametru PWM
.................... CCPR1L = Data1;
0314: MOVF 33,W
0315: MOVWF 15
....................
.................... // nastaveni parametru RUN
.................... MotorSet(Data2);
0316: MOVF 34,W
0317: MOVWF 3E
0318: CALL 224
.................... }
0319: GOTO 2E1
.................... }
....................
.................... // ALG=2 Testovani rozjezdu
.................... // ========================
.................... // P2 nastavuje cas mezi stupni razeni pro rozjezd v ms
.................... // Po resetu 2 sekundy pocka, 2 sekundy jede a nakonec zastavi motor
.................... if (Debug==2)
031A: MOVF 30,W
031B: SUBLW 02
031C: BTFSS 03.2
031D: GOTO 36B
.................... {
.................... int8 Data;
.................... int8 Start;
....................
.................... Start=0; // uvodni stav
031E: CLRF 36
.................... while(1)
.................... {
.................... // Nacti a zobraz parametr
.................... Data=ReadAD(1); // potenciometr P2 = rozjezd
031F: MOVLW 01
0320: MOVWF 3E
0321: CALL 195
0322: MOVF 78,W
0323: MOVWF 35
.................... printf(Putc,"\nRUN:%3ums ",Data); // zobraz
0324: CLRF 3E
0325: MOVF 3E,W
0326: CALL 06D
0327: INCF 3E,F
0328: MOVWF 77
0329: MOVWF 42
032A: CALL 111
032B: MOVLW 05
032C: SUBWF 3E,W
032D: BTFSS 03.2
032E: GOTO 325
032F: MOVF 35,W
0330: MOVWF 40
0331: MOVLW 10
0332: MOVWF 41
0333: CALL 1C0
0334: MOVLW 6D
0335: MOVWF 42
0336: CALL 111
0337: MOVLW 73
0338: MOVWF 42
0339: CALL 111
033A: MOVLW 20
033B: MOVWF 42
033C: CALL 111
.................... delay_ms(10); // prodleva pro terminal
033D: MOVLW 0A
033E: MOVWF 3E
033F: CALL 20D
....................
.................... // Uvodni pauza
.................... if (Start==0) // spousti se 1x na zacatku
0340: MOVF 36,F
0341: BTFSS 03.2
0342: GOTO 349
.................... {
.................... Start++; // dalsi stav je cekani
0343: INCF 36,F
.................... TimerSet(2000); // na dokonceni uvodni prodlevy
0344: MOVLW 07
0345: MOVWF 3F
0346: MOVLW D0
0347: MOVWF 3E
0348: CALL 230
.................... }
....................
.................... // Rozjezd
.................... if ((Start==1) && TimerIf())
0349: DECFSZ 36,W
034A: GOTO 35B
034B: CALL 237
034C: MOVF 78,F
034D: BTFSC 03.2
034E: GOTO 35B
.................... {
.................... Start++;
034F: INCF 36,F
.................... printf(Putc,"R");
0350: MOVLW 52
0351: MOVWF 42
0352: CALL 111
.................... MotorStart(Data); // rozjezd s nastavenim prodlevy
0353: MOVF 35,W
0354: MOVWF 3E
0355: CALL 24D
....................
.................... TimerSet(2000); // nastav celkovy cas jizdy
0356: MOVLW 07
0357: MOVWF 3F
0358: MOVLW D0
0359: MOVWF 3E
035A: CALL 230
.................... }
....................
.................... // Zastaveni
.................... if ((Start==2) && TimerIf())
035B: MOVF 36,W
035C: SUBLW 02
035D: BTFSS 03.2
035E: GOTO 369
035F: CALL 237
0360: MOVF 78,F
0361: BTFSC 03.2
0362: GOTO 369
.................... {
.................... Start++;
0363: INCF 36,F
.................... printf(Putc,"S");
0364: MOVLW 53
0365: MOVWF 42
0366: CALL 111
.................... MotorSet(0); // pokud dobehl casovac zastav motor
0367: CLRF 3E
0368: CALL 224
.................... }
....................
.................... // watch dog
.................... restart_wdt();
0369: CLRWDT
.................... }
036A: GOTO 31F
.................... }
....................
.................... // ALG=3 Test nabijeciho algoritmu
.................... // ===============================
.................... // P1 nastavuje pozadovane napeti na clancich (meri se Vref vuci napajeni)
.................... // Nacitani P1 probiha stale dokola, pro rizeni je pouzit stejny
.................... // algoritmus jako pro standardni jizdu
.................... if (Debug==3)
036B: MOVF 30,W
036C: SUBLW 03
036D: BTFSS 03.2
036E: GOTO 3C2
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
036F: CLRF 37
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
0370: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
0371: CLRF 3E
0372: CALL 195
0373: MOVF 78,W
0374: MOVWF 38
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
0375: CLRF 3E
0376: CALL 195
0377: BCF 03.0
0378: RRF 78,W
0379: ADDLW 32
037A: MOVWF 38
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
037B: MOVLW 04
037C: MOVWF 3E
037D: CALL 195
037E: MOVF 78,W
037F: MOVWF 39
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
0380: MOVF 38,W
0381: SUBWF 39,W
0382: BTFSC 03.0
0383: GOTO 388
0384: MOVF 37,W
0385: SUBLW 1D
0386: BTFSC 03.0
0387: INCF 37,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0388: MOVF 38,W
0389: SUBWF 39,W
038A: BTFSS 03.0
038B: GOTO 38F
038C: MOVF 37,F
038D: BTFSS 03.2
038E: DECF 37,F
.................... Vref+=10;
038F: MOVLW 0A
0390: ADDWF 39,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
0391: MOVF 38,W
0392: SUBWF 39,W
0393: BTFSC 03.0
0394: GOTO 399
0395: MOVF 37,W
0396: SUBLW 1D
0397: BTFSC 03.0
0398: INCF 37,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0399: MOVF 37,W
039A: SUBLW 18
039B: BTFSC 03.0
039C: GOTO 39F
039D: MOVLW 18
039E: MOVWF 37
.................... CCPR1L = PwmOut; // pouziti vystupu
039F: MOVF 37,W
03A0: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
03A1: CLRF 3E
03A2: MOVF 3E,W
03A3: CALL 07D
03A4: INCF 3E,F
03A5: MOVWF 77
03A6: MOVWF 42
03A7: CALL 111
03A8: MOVLW 05
03A9: SUBWF 3E,W
03AA: BTFSS 03.2
03AB: GOTO 3A2
03AC: MOVF 38,W
03AD: MOVWF 40
03AE: CLRF 41
03AF: CALL 1C0
03B0: MOVLW 20
03B1: MOVWF 42
03B2: CALL 111
03B3: MOVF 39,W
03B4: MOVWF 40
03B5: CLRF 41
03B6: CALL 1C0
03B7: MOVLW 20
03B8: MOVWF 42
03B9: CALL 111
03BA: MOVF 37,W
03BB: MOVWF 40
03BC: CLRF 41
03BD: CALL 1C0
.................... delay_ms(10);
03BE: MOVLW 0A
03BF: MOVWF 3E
03C0: CALL 20D
.................... }
03C1: GOTO 370
.................... }
....................
.................... // ALG=0 Standardni jizda
.................... // ======================
.................... // P1 nastavuje pozadovane napeti na clancich
.................... // P2 nastavuje prodlevu razeni pri rozjezdu, nacita se jen 1x na zacatku
.................... // Po resetu cca 14.5 sekundy akumuluje do kondenzatoru a pak provede
.................... // rozjezd motoru. Po celou dobu probiha rizeni zateze slunecnich clanku.
.................... // Parametry P1 a P2 jsou chapany stejne jako v algoritmech 2 a 3.
.................... if (Debug==0)
03C2: MOVF 30,F
03C3: BTFSS 03.2
03C4: GOTO 449
.................... {
.................... unsigned int8 PwmOut; // akcni hodnota pro PWM
.................... unsigned int8 Req; // pozadovana hodnota z P1
.................... unsigned int8 Vref; // merena hodnota vref
.................... int8 Delay; // pozadovana honota prodlevy razeni z P2
.................... int1 Run;
....................
.................... // Nacti parametr rozjezdu
.................... Delay=ReadAD(1); // potenciometr P2 = rozjezd
03C5: MOVLW 01
03C6: MOVWF 3E
03C7: CALL 195
03C8: MOVF 78,W
03C9: MOVWF 3D
.................... printf(Putc," RUN:%3ums ",Delay); // zobraz
03CA: CLRF 3E
03CB: MOVF 3E,W
03CC: CALL 095
03CD: INCF 3E,F
03CE: MOVWF 77
03CF: MOVWF 42
03D0: CALL 111
03D1: MOVLW 05
03D2: SUBWF 3E,W
03D3: BTFSS 03.2
03D4: GOTO 3CB
03D5: MOVF 3D,W
03D6: MOVWF 40
03D7: MOVLW 10
03D8: MOVWF 41
03D9: CALL 1C0
03DA: MOVLW 6D
03DB: MOVWF 42
03DC: CALL 111
03DD: MOVLW 73
03DE: MOVWF 42
03DF: CALL 111
03E0: MOVLW 20
03E1: MOVWF 42
03E2: CALL 111
.................... delay_ms(10); // prodleva pro terminal
03E3: MOVLW 0A
03E4: MOVWF 3E
03E5: CALL 20D
....................
.................... // Inicializace stavove promenne
.................... PwmOut=0;
03E6: CLRF 3A
.................... TimerSet(14000); // casovani startu
03E7: MOVLW 36
03E8: MOVWF 3F
03E9: MOVLW B0
03EA: MOVWF 3E
03EB: CALL 230
.................... Run=1;
03EC: BSF 32.1
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
.................... // watch dog
.................... restart_wdt();
03ED: CLRWDT
....................
.................... // pozadovana hodnota (potenciometr P1)
.................... Req=ReadAD(0);
03EE: CLRF 3E
03EF: CALL 195
03F0: MOVF 78,W
03F1: MOVWF 3B
.................... Req=50+(ReadAD(0)>>1); // 50 az 177
03F2: CLRF 3E
03F3: CALL 195
03F4: BCF 03.0
03F5: RRF 78,W
03F6: ADDLW 32
03F7: MOVWF 3B
....................
.................... // napeti na napajeni (vref)
.................... Vref=ReadAD(4);
03F8: MOVLW 04
03F9: MOVWF 3E
03FA: CALL 195
03FB: MOVF 78,W
03FC: MOVWF 3C
....................
.................... // ricici algoritmus
.................... if ((Vref<Req) &&(PwmOut<30)) PwmOut++;
03FD: MOVF 3B,W
03FE: SUBWF 3C,W
03FF: BTFSC 03.0
0400: GOTO 405
0401: MOVF 3A,W
0402: SUBLW 1D
0403: BTFSC 03.0
0404: INCF 3A,F
.................... if ((Vref>=Req)&&(PwmOut> 0)) PwmOut--;
0405: MOVF 3B,W
0406: SUBWF 3C,W
0407: BTFSS 03.0
0408: GOTO 40C
0409: MOVF 3A,F
040A: BTFSS 03.2
040B: DECF 3A,F
.................... Vref+=10;
040C: MOVLW 0A
040D: ADDWF 3C,F
.................... if ((Vref<(Req))&&(PwmOut<30)) PwmOut++; // urychleni nabehu
040E: MOVF 3B,W
040F: SUBWF 3C,W
0410: BTFSC 03.0
0411: GOTO 416
0412: MOVF 3A,W
0413: SUBLW 1D
0414: BTFSC 03.0
0415: INCF 3A,F
....................
.................... // nastaveni parametru PWM
.................... if (PwmOut>24) PwmOut=24; // saturace
0416: MOVF 3A,W
0417: SUBLW 18
0418: BTFSC 03.0
0419: GOTO 41C
041A: MOVLW 18
041B: MOVWF 3A
.................... CCPR1L = PwmOut; // pouziti vystupu
041C: MOVF 3A,W
041D: MOVWF 15
....................
.................... // zobrazeni
.................... printf(Putc,"\nALG:%03u %03u %03u",Req,Vref,PwmOut);
041E: CLRF 3E
041F: MOVF 3E,W
0420: CALL 07D
0421: INCF 3E,F
0422: MOVWF 77
0423: MOVWF 42
0424: CALL 111
0425: MOVLW 05
0426: SUBWF 3E,W
0427: BTFSS 03.2
0428: GOTO 41F
0429: MOVF 3B,W
042A: MOVWF 40
042B: CLRF 41
042C: CALL 1C0
042D: MOVLW 20
042E: MOVWF 42
042F: CALL 111
0430: MOVF 3C,W
0431: MOVWF 40
0432: CLRF 41
0433: CALL 1C0
0434: MOVLW 20
0435: MOVWF 42
0436: CALL 111
0437: MOVF 3A,W
0438: MOVWF 40
0439: CLRF 41
043A: CALL 1C0
.................... delay_ms(10);
043B: MOVLW 0A
043C: MOVWF 3E
043D: CALL 20D
....................
.................... // rozjezd
.................... if (TimerIf()&&Run)
043E: CALL 237
043F: MOVF 78,F
0440: BTFSC 03.2
0441: GOTO 448
0442: BTFSS 32.1
0443: GOTO 448
.................... {
.................... Run=0;
0444: BCF 32.1
.................... MotorStart(Delay); // prodleva razeni z P2
0445: MOVF 3D,W
0446: MOVWF 3E
0447: CALL 24D
.................... }
.................... }
0448: GOTO 3ED
.................... }
.................... }
....................
0449: SLEEP
 
Configuration Fuses:
Word 1: 2F3C WDT NOPUT MCLR NOBROWNOUT NOLVP NOCPD NOWRT NODEBUG CCPB3 NOPROTECT INTRC_IO
Word 2: 3FFF FCMEN IESO
/Aparatus/DART01B/SW/1_02/LIB/16f88.h
0,0 → 1,216
//////// Header file for the PIC16F88
#device PIC16F88
#nolist
//////// Program memory: 4096x14 Data RAM: 368 Stack: 8
//////// I/O: 16 Analog Pins: 7
//////// Data EEPROM: 256
//////// C Scratch area: 77 ID Location: 2000
// Fuses:
// Oscilator: LP - oscilator LP
// XT - oscilator XT
// HS - oscilator HS
// EC_IO - externi vstup, RA6/CLKO je IO port
// INTRC - RC oscilator, RA6/CLKO je CLKO, RA7/CLKI je IO port port,
// INTRC_IO - RC oscilator, RA6 i RA7 je IO port
// RC - ext RC, RA6/CLKO je CLKO
// RC_IO - ext RC, RA6 je IO port
// Watch: NOWDT - neni watchog
// WDT - je watchdog
// PUT: NOPUT - neni power up timer
// PUT - je power up timer
// MCLR: MCLR - RA5/MCLR je MCLR
// NOMCLR - RA5/MCLR je IO port
// BOR: BROWNOUT - BOR povolen
// NOBROWNOUT - BOR zakazan
// LVP: LVP - RB3/PGM je PGM
// NOLVP - RB3/PGM je IO port
// CPD: CPD - je ochrana EEPROM
// NOCPD - neni ochrana EEPROM
// WRT WRT - zakaz zapisu do pameti programu
// NOWRT - povolen zapis do pameti programu
// DEBUG: DEBUG - RB6 a RB7 jsou ICD port
// NODEBUG - RB6 a RB7 jsou IO port
// CCPMX: CCPB0 - CCP/PWM na RB0
// CCPB3 - CCP/PWM na RB3
// CP: PROTECT - pamet programu je chranena
// NOPROTECT - pamet programu neni chranena
//
 
////////////////////////////////////////////////////////////////// I/O
// Discrete I/O Functions: SET_TRIS_x(), OUTPUT_x(), INPUT_x(),
// PORT_B_PULLUPS(), INPUT(),
// OUTPUT_LOW(), OUTPUT_HIGH(),
// OUTPUT_FLOAT(), OUTPUT_BIT()
// Constants used to identify pins in the above are:
 
 
 
#define PIN_A0 40
#define PIN_A1 41
#define PIN_A2 42
#define PIN_A3 43
#define PIN_A4 44
#define PIN_A5 45
#define PIN_A6 46
#define PIN_A7 47
 
#define PIN_B0 48
#define PIN_B1 49
#define PIN_B2 50
#define PIN_B3 51
#define PIN_B4 52
#define PIN_B5 53
#define PIN_B6 54
#define PIN_B7 55
 
////////////////////////////////////////////////////////////////// Useful defines
#define FALSE 0
#define TRUE 1
 
#define BYTE int
#define BOOLEAN short int
 
#define getc getch
#define fgetc getch
#define getchar getch
#define putc putchar
#define fputc putchar
#define fgets gets
#define fputs puts
 
////////////////////////////////////////////////////////////////// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART_CAUSE()
// Constants returned from RESTART_CAUSE() are:
#define WDT_FROM_SLEEP 0
#define WDT_TIMEOUT 8
#define MCLR_FROM_SLEEP 16
#define NORMAL_POWER_UP 24
 
 
////////////////////////////////////////////////////////////////// Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS() or SETUP_TIMER0(),
// SET_TIMER0() or SET_RTCC(),
// GET_TIMER0() or GET_RTCC()
// Constants used for SETUP_TIMER0() are:
#define RTCC_INTERNAL 0
#define RTCC_EXT_L_TO_H 32
#define RTCC_EXT_H_TO_L 48
 
#define RTCC_DIV_1 8
#define RTCC_DIV_2 0
#define RTCC_DIV_4 1
#define RTCC_DIV_8 2
#define RTCC_DIV_16 3
#define RTCC_DIV_32 4
#define RTCC_DIV_64 5
#define RTCC_DIV_128 6
#define RTCC_DIV_256 7
 
 
#define RTCC_8_BIT 0
 
// Constants used for SETUP_COUNTERS() are the above
// constants for the 1st param and the following for
// the 2nd param:
 
////////////////////////////////////////////////////////////////// WDT
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)
// RESTART_WDT()
//
#define WDT_18MS 8
#define WDT_36MS 9
#define WDT_72MS 10
#define WDT_144MS 11
#define WDT_288MS 12
#define WDT_576MS 13
#define WDT_1152MS 14
#define WDT_2304MS 15
 
////////////////////////////////////////////////////////////////// Timer 1
// Timer 1 Functions: SETUP_TIMER_1, GET_TIMER1, SET_TIMER1
// Constants used for SETUP_TIMER_1() are:
// (or (via |) together constants from each group)
#define T1_DISABLED 0
#define T1_INTERNAL 0x85
#define T1_EXTERNAL 0x87
#define T1_EXTERNAL_SYNC 0x83
 
#define T1_CLK_OUT 8
 
#define T1_DIV_BY_1 0
#define T1_DIV_BY_2 0x10
#define T1_DIV_BY_4 0x20
#define T1_DIV_BY_8 0x30
 
////////////////////////////////////////////////////////////////// Timer 2
// Timer 2 Functions: SETUP_TIMER_2, GET_TIMER2, SET_TIMER2
// Constants used for SETUP_TIMER_2() are:
#define T2_DISABLED 0
#define T2_DIV_BY_1 4
#define T2_DIV_BY_4 5
#define T2_DIV_BY_16 6
 
////////////////////////////////////////////////////////////////// CCP
// CCP Functions: SETUP_CCPx, SET_PWMx_DUTY
// CCP Variables: CCP_x, CCP_x_LOW, CCP_x_HIGH
// Constants used for SETUP_CCPx() are:
#define CCP_OFF 0
#define CCP_CAPTURE_FE 4
#define CCP_CAPTURE_RE 5
#define CCP_CAPTURE_DIV_4 6
#define CCP_CAPTURE_DIV_16 7
#define CCP_COMPARE_SET_ON_MATCH 8
#define CCP_COMPARE_CLR_ON_MATCH 9
#define CCP_COMPARE_INT 0xA
#define CCP_COMPARE_RESET_TIMER 0xB
#define CCP_PWM 0xC
#define CCP_PWM_PLUS_1 0x1c
#define CCP_PWM_PLUS_2 0x2c
#define CCP_PWM_PLUS_3 0x3c
long CCP_1;
#byte CCP_1 = 0x15
#byte CCP_1_LOW= 0x15
#byte CCP_1_HIGH= 0x16
////////////////////////////////////////////////////////////////// COMP
// Comparator Variables: C1OUT, C2OUT
// Constants used in setup_comparators() are:
#define A0_A3_A1_A2 4
#define A0_A2_A1_A2 3
#define NC_NC_A1_A2 5
#define NC_NC_NC_NC 7
#define A0_VR_A1_VR 2
#define A3_VR_A2_VR 10
#define A0_A2_A1_A2_OUT_ON_A3_A4 6
#define A3_A2_A1_A2 9
 
//#bit C1OUT = 0x1f.6
//#bit C2OUT = 0x1f.7
 
////////////////////////////////////////////////////////////////// VREF
// Constants used in setup_vref() are:
#define VREF_LOW 0xa0
#define VREF_HIGH 0x80
#define VREF_A2 0x40
 
////////////////////////////////////////////////////////////////// INT
// Interrupt Functions: ENABLE_INTERRUPTS(), DISABLE_INTERRUPTS(),
// EXT_INT_EDGE()
//
// Constants used in EXT_INT_EDGE() are:
#define L_TO_H 0x40
#define H_TO_L 0
// Constants used in ENABLE/DISABLE_INTERRUPTS() are:
#define GLOBAL 0x0BC0
#define INT_RTCC 0x0B20
#define INT_RB 0x0B08
#define INT_EXT 0x0B10
#define INT_TBE 0x8C10
#define INT_RDA 0x8C20
#define INT_TIMER1 0x8C01
#define INT_TIMER2 0x8C02
#define INT_CCP1 0x8C04
#define INT_SSP 0x8C08
#define INT_COMP 0x8D40
#define INT_EEPROM 0x8D10
#define INT_TIMER0 0x0B20
#list
/Aparatus/DART01B/SW/1_02/LIB/16f88_reg.h
0,0 → 1,314
#nolist
//
// Komplete definition of all Special Feature Registers for CCS C compiler
//
// PIC16F87
// PIC16F88
//
// (c)miho 2005
//
// History:
//
// 1.00 First Version, not verified yet
 
 
// SFR Registers in Memory Bank 0
//
#byte INDF = 0x00
#byte TMR0 = 0x01
#byte PCL = 0x02
#byte STATUS = 0x03
#bit IRP = STATUS.7
#bit RP1 = STATUS.6
#bit RP0 = STATUS.5
#bit TO = STATUS.4
#bit PD = STATUS.3
#bit Z = STATUS.2
#bit DC = STATUS.1
#bit C = STATUS.0
#byte FSR = 0x04
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PCLATH = 0x0A
#byte INTCON = 0x0B
#bit GIE = INTCON.7
#bit PEIE = INTCON.6
#bit TMR0IE = INTCON.5
#bit INT0IE = INTCON.4
#bit RBIE = INTCON.3
#bit TMR0IF = INTCON.2
#bit INT0IF = INTCON.1
#bit RBIF = INTCON.0
#byte PIR1 = 0x0C
#bit ADIF = PIR1.6
#bit RCIF = PIR1.5
#bit TXIF = PIR1.4
#bit SSPIF = PIR1.3
#bit CCP1IF = PIR1.2
#bit TMR2IF = PIR1.1
#bit TMR1IF = PIR1.0
#byte PIR2 = 0x0D
#bit OSFIF = PIR2.7
#bit CMIF = PIR2.6
#bit EEIF = PIR2.4
#byte TMR1L = 0x0E
#byte TMR1H = 0x0F
#byte T1CON = 0x10
#bit T1RUN = T1CON.6
#bit T1CKPS1 = T1CON.5
#bit T1CKPS0 = T1CON.4
#bit T1OSCEN = T1CON.3
#bit T1SYNC = T1CON.2
#bit TMR1CS = T1CON.1
#bit TMR1ON = T1CON.0
#byte TMR2 = 0x11
#byte T2CON = 0x12
#bit TOUTPS3 = T2CON.6
#bit TOUTPS2 = T2CON.5
#bit TOUTPS1 = T2CON.4
#bit TOUTPS0 = T2CON.3
#bit TMR2ON = T2CON.2
#bit T2CKPS1 = T2CON.1
#bit T2CKPS0 = T2CON.0
#byte SSPBUF = 0x13
#byte SSPCON1 = 0x14
#bit WCOL = SSPCON1.7
#bit SSPOV = SSPCON1.6
#bit SSPEN = SSPCON1.5
#bit CKP = SSPCON1.4
#bit SSPM3 = SSPCON1.3
#bit SSPM2 = SSPCON1.2
#bit SSPM1 = SSPCON1.1
#bit SSPM0 = SSPCON1.0
#byte CCPR1L = 0x15
#byte CCPR1H = 0x16
#byte CCP1CON = 0x17
#bit CCP1X = CCP1CON.5
#bit CCP1Y = CCP1CON.4
#bit CCP1M3 = CCP1CON.3
#bit CCP1M2 = CCP1CON.2
#bit CCP1M1 = CCP1CON.1
#bit CCP1M0 = CCP1CON.0
#byte RCSTA = 0x18
#bit SPEN = RCSTA.7
#bit RX9 = RCSTA.6
#bit SREN = RCSTA.5
#bit CREN = RCSTA.4
#bit ADDEN = RCSTA.3
#bit FERR = RCSTA.2
#bit OERR = RCSTA.1
#bit RX9D = RCSTA.0
#byte TXREG = 0x19
#byte RCREG = 0x1A
#byte ADRESH = 0x1E // F88 only
#byte ADCON0 = 0x1F // F88 only
#bit ADCS1 = ADCON0.7
#bit ADCS0 = ADCON0.6
#bit CHS2 = ADCON0.5
#bit CHS1 = ADCON0.4
#bit CHS0 = ADCON0.3
#bit GO = ADCON0.2
#bit ADON = ADCON0.0
 
 
// SFR Registers in Memory Bank 1
//
#byte INDF_1 = 0x80 // miror
#byte OPTION = 0x81
#bit RBPU = OPTION.7
#bit INTEDG = OPTION.6
#bit T0CS = OPTION.5
#bit T0SE = OPTION.4
#bit PSA = OPTION.3
#bit PS2 = OPTION.2
#bit PS1 = OPTION.1
#bit PS0 = OPTION.0
#byte PCL = 0x82
#byte STATUS_1 = 0x83 // mirror
#bit IRP_1 = STATUS_1.7
#bit RP1_1 = STATUS_1.6
#bit RP0_1 = STATUS_1.5
#bit TO_1 = STATUS_1.4
#bit PD_1 = STATUS_1.3
#bit Z_1 = STATUS_1.2
#bit DC_1 = STATUS_1.1
#bit C_1 = STATUS_1.0
#byte FSR = 0x84
#byte TRISA = 0x85
#byte TRISB = 0x86
#byte PCLATH_1 = 0x8A // mirror
#byte INTCON_1 = 0x8B // mirror
#bit GIE_1 = INTCON_1.7
#bit PEIE_1 = INTCON_1.6
#bit TMR0IE_1 = INTCON_1.5
#bit INT0IE_1 = INTCON_1.4
#bit RBIE_1 = INTCON_1.3
#bit TMR0IF_1 = INTCON_1.2
#bit INT0IF_1 = INTCON_1.1
#bit RBIF_1 = INTCON_1.0
#byte PIE1 = 0x8C
#bit ADIE = PIE1.6
#bit RCIE = PIE1.5
#bit TXIE = PIE1.4
#bit SSPIE = PIE1.3
#bit CCP1IE = PIE1.2
#bit TMR2IE = PIE1.1
#bit TMR1IE = PIE1.0
#byte PIE2 = 0x8D
#bit OSFIE = PIE2.7
#bit CMIE = PIE2.6
#bit EEIE = PIE2.4
#byte PCON = 0x8E
#bit POR = PCON.1
#bit BOR = PCON.0
#byte OSCCON = 0x8F
#bit IRCF2 = OSCCON.6
#bit IRCF1 = OSCCON.5
#bit IRCF0 = OSCCON.4
#bit OSTS = OSCCON.3
#bit IOFS = OSCCON.2
#bit SCS1 = OSCCON.1
#bit SCS0 = OSCCON.0
#byte OSCTUNE = 0x90
#bit TUN5 = OSCTUNE.5
#bit TUN4 = OSCTUNE.4
#bit TUN3 = OSCTUNE.3
#bit TUN2 = OSCTUNE.2
#bit TUN1 = OSCTUNE.1
#bit TUN0 = OSCTUNE.0
#byte PR2 = 0x92
#byte SSPADD = 0x93
#byte SSPSTAT = 0x94
#bit SMP = SSPSTAT.7
#bit CKE = SSPSTAT.6
#bit DA = SSPSTAT.5
#bit P = SSPSTAT.4
#bit S = SSPSTAT.3
#bit RW = SSPSTAT.2
#bit UA = SSPSTAT.1
#bit BF = SSPSTAT.0
#byte TXSTA = 0x98
#bit CSRC = TXSTA.7
#bit TX9 = TXSTA.6
#bit TXEN = TXSTA.5
#bit SYNC = TXSTA.4
#bit BRGH = TXSTA.2
#bit TRMT = TXSTA.1
#bit TX9D = TXSTA.0
#byte SPBRG = 0x99
#byte ANSEL = 0x9B // F88 only
#bit ANS6 = ANSEL.6
#bit ANS5 = ANSEL.5
#bit ANS4 = ANSEL.4
#bit ANS3 = ANSEL.3
#bit ANS2 = ANSEL.2
#bit ANS1 = ANSEL.1
#bit ANS0 = ANSEL.0
#byte CMCON = 0x9C
#bit C2OUT = CMCON.7
#bit C1OUT = CMCON.6
#bit C2INV = CMCON.5
#bit C1INV = CMCON.4
#bit CIS = CMCON.3
#bit CM2 = CMCON.2
#bit CM1 = CMCON.1
#bit CM0 = CMCON.0
#byte CVRCON = 0x9D
#bit CVREN = CVRCON.7
#bit CVROE = CVRCON.6
#bit CVRR = CVRCON.5
#bit CVR3 = CVRCON.3
#bit CVR2 = CVRCON.2
#bit CVR1 = CVRCON.1
#bit CVR0 = CVRCON.0
#byte ADRESL = 0x9E // F88 only
#byte ADCON1 = 0x9F // F88 only
#bit ADFM = ADCON1.7
#bit ADCS2 = ADCON1.6
#bit VCFG1 = ADCON1.5
#bit VCFG0 = ADCON1.4
 
 
// SFR Registers in Memory Bank 2
//
#byte INDF_2 = 0x100 // mirror
#byte TMR0_2 = 0x101 // mirror
#byte PCL_2 = 0x102 // mirror
#byte STATUS_2 = 0x103 // mirror
#bit IRP_2 = STATUS_2.7
#bit RP1_2 = STATUS_2.6
#bit RP0_2 = STATUS_2.5
#bit TO_2 = STATUS_2.4
#bit PD_2 = STATUS_2.3
#bit Z_2 = STATUS_2.2
#bit DC_2 = STATUS_2.1
#bit C_2 = STATUS_2.0
#byte FSR_2 = 0x104 // mirror
#byte WDTCON = 0x105
#bit WDTPS3 = WDTCON.4
#bit WDTPS2 = WDTCON.3
#bit WDTPS1 = WDTCON.2
#bit WDTPS0 = WDTCON.1
#bit SWDTEN = WDTCON.0
#byte PORTB_2 = 0x106 // mirror
#byte PCLATH_2 = 0x10A // mirror
#byte INTCON_2 = 0x10B // mirror
#bit GIE_2 = INTCON_2.7
#bit PEIE_2 = INTCON_2.6
#bit TMR0IE_2 = INTCON_2.5
#bit INT0IE_2 = INTCON_2.4
#bit RBIE_2 = INTCON_2.3
#bit TMR0IF_2 = INTCON_2.2
#bit INT0IF_2 = INTCON_2.1
#bit RBIF_2 = INTCON_2.0
#byte EEDATA = 0x10C
#byte EEADR = 0x10D
#byte EEDATH = 0x10E
#byte EEADRH = 0x10F
 
 
// SFR Registers in Memory Bank 3
//
#byte INDF_3 = 0x180 // mirror
#byte OPTION_3 = 0x181 // mirror
#bit RBPU_3 = OPTION_3.7
#bit INTEDG_3 = OPTION_3.6
#bit T0CS_3 = OPTION_3.5
#bit T0SE_3 = OPTION_3.4
#bit PSA_3 = OPTION_3.3
#bit PS2_3 = OPTION_3.2
#bit PS1_3 = OPTION_3.1
#bit PS0_3 = OPTION_3.0
#byte PCL_3 = 0x182 // mirror
#byte STATUS_3 = 0x183 // mirror
#bit IRP_3 = STATUS_3.7
#bit RP1_3 = STATUS_3.6
#bit RP0_3 = STATUS_3.5
#bit TO_3 = STATUS_3.4
#bit PD_3 = STATUS_3.3
#bit Z_3 = STATUS_3.2
#bit DC_3 = STATUS_3.1
#bit C_3 = STATUS_3.0
#byte FSR_3 = 0x184 // mirror
#byte TRISB_3 = 0x186 // mirror
#byte PLATH_3 = 0x18A // mirror
#byte INTCON_3 = 0x18B // mirror
#bit GIE_3 = INTCON_3.7
#bit PEIE_3 = INTCON_3.6
#bit TMR0IE_3 = INTCON_3.5
#bit INT0IE_3 = INTCON_3.4
#bit RBIE_3 = INTCON_3.3
#bit TMR0IF_3 = INTCON_3.2
#bit INT0IF_3 = INTCON_3.1
#bit RBIF_3 = INTCON_3.0
#byte EECON1 = 0x18C
#bit EEPGD = EECON1.7
#bit FREE = EECON1.4
#bit WRERR = EECON1.3
#bit WREN = EECON1.2
#bit WR = EECON1.1
#bit RD = EECON1.0
#byte EECON2 = 0x18D
 
 
#list
/Aparatus/DART01B/SW/LCD_TERM/1_00/A.BAT
0,0 → 1,2
call picpgr erase pic16f84
call picpgr program lcd_term.hex hex pic16f84
/Aparatus/DART01B/SW/LCD_TERM/1_00/LCD_TERM.C
0,0 → 1,114
// LCD Terminal pro menic pro solarni vozitko
// (c)miho 2005
 
// Pouziva PIC16F84 (mozno i jakykoli jiny, nepouzivaji se zadne specialni funkce).
// Na vstupnim vyvodu RS_IN ocekava seriovou komunikaci rychlosti RS_BOUD. Pri detekci
// start bitu pomoci preruseni dojde k programovemu prijmu znaku a jeho zarazeni do
// fronty FIFO. Po navratu z preruseni dochazi k vypisu na pripojeny dvouradkovy
// LCD displej. Program zpracovava ridici kody dle knihovny LCD.C. Pri delsich vypisech
// musi vysilajici strana ponechat (obcas) nejaky cas na zpracovani (napriklad 20ms).
 
#include <16F84.h> // define standardnich konstant procesoru
#use delay(clock=4000000) // standardni krystal
#fuses HS, NOWDT, NOPUT, NOPROTECT
 
 
// Parmetry komuniace
//
#define INV // definuje polaritu
#define RS_BOUD 9600 // komunikacni rychlost
#define RS_IN PIN_B0 // musi to byt vstup extrniho preruseni
 
 
// Pripojeni LCD displeje
//
#define LCD_RS PIN_A0 // rizeni registru LCD displeje
#define LCD_E PIN_A1 // enable LCD displeje
#define LCD_DATA_LSB PIN_B4 // pripojeni LSB bitu datoveho portu LCD displeje (celkem 4 bity vzestupne za sebou)
 
#include "LCD.C"
 
 
// Vstup seriovky
//
#ifdef INV
#use RS232 (BAUD=RS_BOUD, RCV=RS_IN, PARITY=N, INVERT)
#else
#use RS232 (BAUD=RS_BOUD, RCV=RS_IN, PARITY=N)
#endif
 
 
// Buffer FIFO
//
#define MAX 40 // delka bufferu
 
char c[MAX]; // bufer FIFO
unsigned int ci; // ukazatel na bunku kam se bude ukladat novy znak
unsigned int co; // ukazatel na bunku odkud se bude cist znak
 
// Preruseni - ukladani dat ze seriovky do bufferu
//
#int_ext // preruseni od zacatku znaku (start bit)
void Interupt()
{
c[ci]=getc(); // nacti znak (asynchronni cteni programem)
 
if (ci<(MAX-1)) ci++; else ci=0; // posun ukazovatko do FIFO
 
#ifdef INV
while(input(PIN_B0)); // pockej na konec posledniho bitu
#else
while(~input(PIN_B0)); // pockej na konec posledniho bitu
#endif
}
 
 
// Hlavni smycka
//
void main()
{
char ch; // pomocna promenna pro 1 znak
 
// Inicializace portu
output_a(0); // vsechny porty vystupni
output_b(0); // a nulove krome
output_float(RS_IN); // portu pro RS232 (a preruseni)
 
// Inicializace LCD
lcd_init(); // inicializace LCD
printf(lcd_putc,"LCD Terminal 1.0"); // standardni vypis
#ifdef INV
printf(lcd_putc,"\nInverted"); // oznameni o inverzni variante
#else
printf(lcd_putc,"\nStandard"); // oznameni o inverzni variante
#endif
delay_ms(300); // cas na precteni
printf(lcd_putc,"\f"); // smazani displeje
 
// Inicializace FIFO ukazatelu
ci=0;
co=0;
 
// Inicializace preruseni
#ifdef INV // dle polarity kominkace polarita preruseni
ext_int_edge(L_TO_H);
#else
ext_int_edge(H_TO_L);
#endif
enable_interrupts(int_ext); // povoleni preruseni od INT0
enable_interrupts(global); // povoleni globalniho preruseni
 
// Hlavni smycka
while (1)
{
 
// Test na neprazdny buffer
while (ci==co);
 
// Zobrazeni znaku
lcd_putc(c[co]);
 
// Posunuti ukazovatka
if (co<(MAX-1)) co++; else co=0;
}
}
/Aparatus/DART01B/SW/LCD_TERM/1_00/LCD_TERM.HEX
0,0 → 1,56
:1000000000308A0058290000831A0A288E00030E47
:100010008F000F2883128E00030E8F008F140A08A2
:1000200093008A0183138E0E040890000C0891003F
:100030000D08920083120B1E1F288B187E281008B3
:10004000840011088C0012088D0013088A000F0E1E
:10005000830083120E0E8F18831609000A108A106F
:100060000A11820728340C34013406340A108A102D
:100070000A1182074C3443344434203454346534F8
:1000800072346D3469346E3461346C3420343134FC
:100090002E34303400340A108A100A1182070A34D0
:1000A00049346E347634653472347434653464346F
:1000B000003408308C00831606148312061C5E2858
:1000C000CC018C1771288C1371280310061C0314A3
:1000D000CC0C0C1771280C138C0B65284C088D0068
:1000E0007D281C308C1B07308D008D0B752800007F
:1000F0008C1B63280C1B6B286528832814303C0755
:100100008400CB0059284B0884000D0880003C086F
:10011000263C031C8D28BC0A8E28BC0183160614BD
:10012000831206188E288B108A111F2841308400F4
:1001300000080319AA2801308D008C018C0B9E2821
:100140008D0B9D284A308C008C0BA42800000000E9
:10015000800B9B28003406080F39C800470E8C001E
:10016000F0308C050C08F03948048600851483169D
:1001700085100000831285108316851083120034C9
:10018000C508031DC5280510C628051483160510CB
:100190008312C60E4608C700AB20C60E4608C7002D
:1001A000AB200D308C008C0BD32800341430C100F0
:1001B00096200F30831686058312051083160510CE
:1001C00083128510831685108312BF013F08023CFD
:1001D000031CF2280230C10096200330C700AB2078
:1001E000BF0AE6280D308C008C0BF4280230C700C3
:1001F000AB200D308C008C0BFB28BF013F08023C6C
:10020000031C0E293F082E20C000C5014008C6006F
:10021000C0200230C1009620BF0AFE286C290130A0
:100220004102C3004208023C031D18294030C307A5
:1002300043088038C400C5014408C600C02000340B
:1002400040088C000C300C02031933290A300C02D0
:1002500003193B290D300C020319412908300C0207
:10026000031946294B29C5010130C600C0200230C0
:10027000C100962057290130C1000230C2000F2171
:1002800057290130C100C2000F215729C501103084
:10029000C600C020572940081F3C031C51290730C5
:1002A000C0050130C5004008C600C02057290034F1
:1002B00084011F308305831605108312051000305A
:1002C00083168500831285018316860083128601BA
:1002D000831606148312D628BF013F083620BF0AB2
:1002E000C000202110303F02031D6D29BF013F08CF
:1002F0004B20BF0AC000202109303F02031D77298F
:100300000230BF009630C1009620BF0B82290C300E
:10031000C0002021BC01BD018316011783120B16FA
:100320008B173D083C02031D9629912914303D0787
:1003300084000008BF00C00020213D08263C031CAB
:0C034000A329BD0AA429BD019129630076
:02400E00FA3F77
:00000001FF
;PIC16F84
/Aparatus/DART01B/SW/LCD_TERM/1_00/LCD_TERM.LST
0,0 → 1,873
CCS PCW C Compiler, Version 3.110, 15448
 
Filename: c:\miho_dat\dart\lcd_term\lcd_term.LST
 
ROM used: 422 (41%)
Largest free fragment is 602
RAM used: 52 (76%) at main() level
65 (96%) worst case
Stack: 6 worst case (4 in main + 2 for interrupts)
 
*
0000: MOVLW 00
0001: MOVWF 0A
0002: GOTO 158
0003: NOP
0004: BTFSC 03.5
0005: GOTO 00A
0006: MOVWF 0E
0007: SWAPF 03,W
0008: MOVWF 0F
0009: GOTO 00F
000A: BCF 03.5
000B: MOVWF 0E
000C: SWAPF 03,W
000D: MOVWF 0F
000E: BSF 0F.1
000F: MOVF 0A,W
0010: MOVWF 13
0011: CLRF 0A
0012: BCF 03.7
0013: SWAPF 0E,F
0014: MOVF 04,W
0015: MOVWF 10
0016: MOVF 0C,W
0017: MOVWF 11
0018: MOVF 0D,W
0019: MOVWF 12
001A: BCF 03.5
001B: BTFSS 0B.4
001C: GOTO 01F
001D: BTFSC 0B.1
001E: GOTO 07E
001F: MOVF 10,W
0020: MOVWF 04
0021: MOVF 11,W
0022: MOVWF 0C
0023: MOVF 12,W
0024: MOVWF 0D
0025: MOVF 13,W
0026: MOVWF 0A
0027: SWAPF 0F,W
0028: MOVWF 03
0029: BCF 03.5
002A: SWAPF 0E,W
002B: BTFSC 0F.1
002C: BSF 03.5
002D: RETFIE
.................... // LCD Terminal pro menic pro solarni vozitko
.................... // (c)miho 2005
....................
.................... // Pouziva PIC16F84 (mozno i jakykoli jiny, nepouzivaji se zadne specialni funkce).
.................... // Na vstupnim vyvodu RS_IN ocekava seriovou komunikaci rychlosti RS_BOUD. Pri detekci
.................... // start bitu pomoci preruseni dojde k programovemu prijmu znaku a jeho zarazeni do
.................... // fronty FIFO. Po navratu z preruseni dochazi k vypisu na pripojeny dvouradkovy
.................... // LCD displej. Program zpracovava ridici kody dle knihovny LCD.C. Pri delsich vypisech
.................... // musi vysilajici strana ponechat (obcas) nejaky cas na zpracovani (napriklad 20ms).
....................
.................... #include <16F84.h> // define standardnich konstant procesoru
.................... //////// Standard Header file for the PIC16F84 device ////////////////
.................... #device PIC16F84
.................... #list
....................
.................... #use delay(clock=4000000) // standardni krystal
*
0096: MOVLW 41
0097: MOVWF 04
0098: MOVF 00,W
0099: BTFSC 03.2
009A: GOTO 0AA
009B: MOVLW 01
009C: MOVWF 0D
009D: CLRF 0C
009E: DECFSZ 0C,F
009F: GOTO 09E
00A0: DECFSZ 0D,F
00A1: GOTO 09D
00A2: MOVLW 4A
00A3: MOVWF 0C
00A4: DECFSZ 0C,F
00A5: GOTO 0A4
00A6: NOP
00A7: NOP
00A8: DECFSZ 00,F
00A9: GOTO 09B
00AA: RETLW 00
.................... #fuses HS, NOWDT, NOPUT, NOPROTECT
....................
....................
.................... // Parmetry komuniace
.................... //
.................... #define INV // definuje polaritu
.................... #define RS_BOUD 9600 // komunikacni rychlost
.................... #define RS_IN PIN_B0 // musi to byt vstup extrniho preruseni
....................
....................
.................... // Pripojeni LCD displeje
.................... //
.................... #define LCD_RS PIN_A0 // rizeni registru LCD displeje
.................... #define LCD_E PIN_A1 // enable LCD displeje
.................... #define LCD_DATA_LSB PIN_B4 // pripojeni LSB bitu datoveho portu LCD displeje (celkem 4 bity vzestupne za sebou)
....................
.................... #include "LCD.C"
.................... // LCD modul pro ovladani dvouradkoveho LCD modulu se standardnim Hitachi radicem
.................... // (c)miho 2002,2005
.................... //
.................... // Historie:
.................... //
.................... // 0.00 Uvodni verze se snadnou definici portu LCD displeje
.................... // 0.01 Oprava portu (zapomenute stare identifikatory)
.................... // 0.02 Doplnena moznost pripojeni datoveho portu LCD na libovolne porty
.................... // 0.03 Doplnena procedura lcd_clr pro smazani displeje
.................... //
.................... //
.................... // Funkce:
.................... //
.................... // lcd_init() inicializuje LCD displej a porty, nutno volat jako prvni
.................... //
.................... // lcd_putc(c) zapis snaku do lcd displeje, zpracovava nasledujici ridici znaky
.................... // \f = \x0C - nova stranka - smazani displeje
.................... // \n = \x0A - odradkovani (prechod na druhou radku)
.................... // \b = \x08 - backspace - posunuti kurzoru o 1 pozici zpet
.................... // \r = \x0D - goto home to position 1,1
.................... // \0 .. \7 - definovatelne znaky v pozicich 0 az 7 v CGRAM
.................... // \20 .. \27 - alternativne zapsane znaky (oktalove) v pozicich 0 az 7 CGRAM
.................... // Pozor na to, ze funkce printf konci tisk pokud narazi na \0 (konec retezce)
.................... //
.................... // lcd_gotoxy(x,y) presune kurzor na uvedenou adresu
.................... // nekontroluje parametry
.................... //
.................... // lcd_cursor_on zapne kurzor
.................... // lcd_cursor_off vypne kurzor
.................... //
.................... // lcd_clr smaze displej
.................... //
.................... // lcd_define_char(Index, Def) Makro, ktere definuje znaky od pozice Index obsahem definicniho
.................... // retezce Def. Kazdych 8 znaku retezce Def definuje dalsi znak v CGRAM.
.................... // Kapacita CGRAM je celkem 8 znaku s indexem 0 az 7.
.................... // Na konci se provede lcd_gotoxy(1,1).
.................... // Na konci teto knihovny je priklad pouziti definovanych znaku
.................... //
.................... //
.................... // Definice portu: // Datovy port displeje pripojeny na 4 bity za sebou na jeden port
.................... //
.................... // #define LCD_RS PIN_B2 // rizeni registru LCD displeje
.................... // #define LCD_E PIN_B1 // enable LCD displeje
.................... // #define LCD_DATA_LSB PIN_C2 // pripojeni LSB bitu datoveho portu LCD displeje (celkem 4 bity vzestupne za sebou)
.................... //
.................... //
.................... // Alternativni definice: // Datovy port displeje pripojeny na libovolne 4 bitove porty (vede na kod delsi asi o 25 slov)
.................... //
.................... // #define LCD_RS PIN_B2 // rizeni registru LCD displeje
.................... // #define LCD_E PIN_B1 // enable LCD displeje
.................... // #define LCD_D0 PIN_C2 // D0 - datove bity pripojene na libovolne porty
.................... // #define LCD_D1 PIN_C3 // D1
.................... // #define LCD_D2 PIN_C4 // D2
.................... // #define LCD_D3 PIN_C5 // D3
....................
....................
....................
....................
.................... // Privatni sekce, cist jen v pripade, ze neco nefunguje
....................
....................
....................
....................
.................... #ifdef LCD_DATA_LSB
.................... // Generovane defince portu pro ucely teto knihovny aby kod generoval spravne IO operace a soucasne
.................... // bylo mozne jednoduse deklarovat pripojene piny LCD displeje pri pouziti teto knihovny. Problem spociva
.................... // v tom, ze se musi spravne ridit smery portu a soucasne datovy port zabira jen 4 bity ze zadaneho portu
.................... //
.................... #define LCD_SHIFT (LCD_DATA_LSB&7) // pocet bitu posuvu datoveho kanalu v datovem portu
.................... #define LCD_PORT (LCD_DATA_LSB>>3) // adresa LCD datoveho portu
.................... #define LCD_TRIS (LCD_PORT+0x80) // adresa prislusneho TRIS registru
.................... #define LCD_MASK (0xF<<LCD_SHIFT) // maska platnych bitu
.................... //
.................... #if LCD_SHIFT>4 // kontrola mezi
.................... #error LCD data port LSB bit not in range 0..4
.................... #endif
.................... #endif
....................
....................
.................... // Definice konstant pro LCD display
.................... //
.................... #define LCD_CURSOR_ON_ 0x0E // kurzor jako blikajici radka pod znakem
.................... #define LCD_CURSOR_OFF_ 0x0C // zadny kurzor
.................... #define LCD_LINE_2 0x40 // adresa 1. znaku 2. radky
....................
....................
.................... // Definice rezimu LCD displeje
.................... //
.................... BYTE const LCD_INIT_STRING[4] =
.................... {
.................... 0x28, // intrfejs 4 bity, 2 radky, font 5x7
.................... LCD_CURSOR_OFF_, // display on, kurzor off,
.................... 0x01, // clear displeje
.................... 0x06 // inkrement pozice kurzoru (posun kurzoru doprava)
.................... };
*
002E: BCF 0A.0
002F: BCF 0A.1
0030: BCF 0A.2
0031: ADDWF 02,F
0032: RETLW 28
0033: RETLW 0C
0034: RETLW 01
0035: RETLW 06
....................
....................
.................... // Odesle nibble do displeje (posle data a klikne signalem e)
.................... //
.................... void lcd_send_nibble( BYTE n )
.................... {
.................... #ifdef LCD_DATA_LSB
.................... // data jsou za sebou na 4 bitech jednoho portu
.................... *LCD_PORT = (*LCD_PORT & ~LCD_MASK) | ((n << LCD_SHIFT) & LCD_MASK); // nastav datove bity portu a ostatni zachovej
*
00AB: MOVF 06,W
00AC: ANDLW 0F
00AD: MOVWF 48
00AE: SWAPF 47,W
00AF: MOVWF 0C
00B0: MOVLW F0
00B1: ANDWF 0C,F
00B2: MOVF 0C,W
00B3: ANDLW F0
00B4: IORWF 48,W
00B5: MOVWF 06
.................... #else
.................... // data jsou na libovolnych 4 bitech libovolnych portu
.................... output_bit(LCD_D0,bit_test(n,0));
.................... output_bit(LCD_D1,bit_test(n,1));
.................... output_bit(LCD_D2,bit_test(n,2));
.................... output_bit(LCD_D3,bit_test(n,3));
.................... #endif
.................... output_bit(LCD_E,1); // vzestupna hrana
00B6: BSF 05.1
00B7: BSF 03.5
00B8: BCF 05.1
.................... delay_us(1); // pockej alespon 450ns od e nebo alespon 195ns od dat
00B9: NOP
.................... output_bit(LCD_E,0); // sestupna hrana (minimalni perioda e je 1us)
00BA: BCF 03.5
00BB: BCF 05.1
00BC: BSF 03.5
00BD: BCF 05.1
00BE: BCF 03.5
00BF: RETLW 00
.................... }
....................
....................
.................... // Odesle bajt do registru LCD
.................... //
.................... // Pokud je Adr=0 .. instrukcni registr
.................... // Pokud je Adr=1 .. datovy registr
.................... //
.................... void lcd_send_byte( BOOLEAN Adr, BYTE n )
.................... {
.................... output_bit(LCD_RS,Adr); // vyber registr
00C0: MOVF 45,F
00C1: BTFSS 03.2
00C2: GOTO 0C5
00C3: BCF 05.0
00C4: GOTO 0C6
00C5: BSF 05.0
00C6: BSF 03.5
00C7: BCF 05.0
.................... swap(n);
00C8: BCF 03.5
00C9: SWAPF 46,F
.................... lcd_send_nibble(n); // posli horni pulku bajtu
00CA: MOVF 46,W
00CB: MOVWF 47
00CC: CALL 0AB
.................... swap(n);
00CD: SWAPF 46,F
.................... lcd_send_nibble(n); // posli spodni pulku bajtu
00CE: MOVF 46,W
00CF: MOVWF 47
00D0: CALL 0AB
.................... delay_us(40); // minimalni doba na provedeni prikazu
00D1: MOVLW 0D
00D2: MOVWF 0C
00D3: DECFSZ 0C,F
00D4: GOTO 0D3
00D5: RETLW 00
.................... }
....................
....................
.................... // Provede inicializaci LCD displeje, smaze obsah a nastavi mod displeje
.................... //
.................... // Tato procedura se musi volat pred pouzitim ostatnich lcd_ procedur
.................... //
.................... void lcd_init()
.................... {
....................
.................... int i; // pocitadlo cyklu
....................
.................... delay_ms(20); // spozdeni pro provedeni startu displeje po zapnuti napajeni
00D6: MOVLW 14
00D7: MOVWF 41
00D8: CALL 096
....................
.................... #ifdef LCD_DATA_LSB
.................... // data jsou na 4 bitech za sebou, nastav smer pro vsechny dalsi prenosy
.................... *LCD_TRIS = *LCD_TRIS & ~LCD_MASK; // nuluj odpovidajici bity tris registru datoveho portu LCD
00D9: MOVLW 0F
00DA: BSF 03.5
00DB: ANDWF 06,F
.................... #endif
....................
.................... output_bit(LCD_RS,0); // nastav jako vystup a nastav klidovy stav
00DC: BCF 03.5
00DD: BCF 05.0
00DE: BSF 03.5
00DF: BCF 05.0
.................... output_bit(LCD_E, 0); // nastav jako vystup a nastav klidovy stav
00E0: BCF 03.5
00E1: BCF 05.1
00E2: BSF 03.5
00E3: BCF 05.1
....................
.................... for (i=0; i<3; i++) // nastav lcd do rezimu 8 bitu sbernice
00E4: BCF 03.5
00E5: CLRF 3F
00E6: MOVF 3F,W
00E7: SUBLW 02
00E8: BTFSS 03.0
00E9: GOTO 0F2
.................... {
.................... delay_ms(2); // muze byt rozdelany prenos dat (2x 4 bity) nebo pomaly povel
00EA: MOVLW 02
00EB: MOVWF 41
00EC: CALL 096
.................... lcd_send_nibble(3); // rezim 8 bitu
00ED: MOVLW 03
00EE: MOVWF 47
00EF: CALL 0AB
.................... }
00F0: INCF 3F,F
00F1: GOTO 0E6
....................
.................... delay_us(40); // cas na zpracovani
00F2: MOVLW 0D
00F3: MOVWF 0C
00F4: DECFSZ 0C,F
00F5: GOTO 0F4
.................... lcd_send_nibble(2); // nastav rezim 4 bitu (plati od nasledujiciho prenosu)
00F6: MOVLW 02
00F7: MOVWF 47
00F8: CALL 0AB
.................... delay_us(40); // cas na zpracovani
00F9: MOVLW 0D
00FA: MOVWF 0C
00FB: DECFSZ 0C,F
00FC: GOTO 0FB
....................
.................... for (i=0;i<3;i++) // proved inicializaci (nastaveni modu, smazani apod)
00FD: CLRF 3F
00FE: MOVF 3F,W
00FF: SUBLW 02
0100: BTFSS 03.0
0101: GOTO 10E
.................... {
.................... lcd_send_byte(0,LCD_INIT_STRING[i]);
0102: MOVF 3F,W
0103: CALL 02E
0104: MOVWF 40
0105: CLRF 45
0106: MOVF 40,W
0107: MOVWF 46
0108: CALL 0C0
.................... delay_ms(2);
0109: MOVLW 02
010A: MOVWF 41
010B: CALL 096
.................... }
010C: INCF 3F,F
010D: GOTO 0FE
010E: GOTO 16C (RETURN)
.................... }
....................
....................
.................... // Proved presun kurzoru
.................... //
.................... // Pozice 1.1 je domu
.................... //
.................... void lcd_gotoxy( BYTE x, BYTE y)
.................... {
....................
.................... BYTE Adr;
....................
.................... Adr=x-1;
010F: MOVLW 01
0110: SUBWF 41,W
0111: MOVWF 43
.................... if(y==2)
0112: MOVF 42,W
0113: SUBLW 02
0114: BTFSS 03.2
0115: GOTO 118
.................... Adr+=LCD_LINE_2;
0116: MOVLW 40
0117: ADDWF 43,F
....................
.................... lcd_send_byte(0,0x80|Adr);
0118: MOVF 43,W
0119: IORLW 80
011A: MOVWF 44
011B: CLRF 45
011C: MOVF 44,W
011D: MOVWF 46
011E: CALL 0C0
011F: RETLW 00
.................... }
....................
....................
.................... // Zapis znaku na displej, zpracovani ridicich znaku
.................... //
.................... void lcd_putc( char c)
.................... {
....................
.................... switch (c)
0120: MOVF 40,W
0121: MOVWF 0C
0122: MOVLW 0C
0123: SUBWF 0C,W
0124: BTFSC 03.2
0125: GOTO 133
0126: MOVLW 0A
0127: SUBWF 0C,W
0128: BTFSC 03.2
0129: GOTO 13B
012A: MOVLW 0D
012B: SUBWF 0C,W
012C: BTFSC 03.2
012D: GOTO 141
012E: MOVLW 08
012F: SUBWF 0C,W
0130: BTFSC 03.2
0131: GOTO 146
0132: GOTO 14B
.................... {
.................... case '\f' : lcd_send_byte(0,1); // smaz displej
0133: CLRF 45
0134: MOVLW 01
0135: MOVWF 46
0136: CALL 0C0
.................... delay_ms(2);
0137: MOVLW 02
0138: MOVWF 41
0139: CALL 096
.................... break;
013A: GOTO 157
.................... case '\n' : lcd_gotoxy(1,2); break; // presun se na 1. znak 2. radky
013B: MOVLW 01
013C: MOVWF 41
013D: MOVLW 02
013E: MOVWF 42
013F: CALL 10F
0140: GOTO 157
.................... case '\r' : lcd_gotoxy(1,1); break; // presun home
0141: MOVLW 01
0142: MOVWF 41
0143: MOVWF 42
0144: CALL 10F
0145: GOTO 157
.................... case '\b' : lcd_send_byte(0,0x10); break; // posun kurzor o 1 zpet
0146: CLRF 45
0147: MOVLW 10
0148: MOVWF 46
0149: CALL 0C0
014A: GOTO 157
.................... default : if (c<0x20) c&=0x7; // preklopeni definovatelnych znaku na rozsah 0 az 0x1F
014B: MOVF 40,W
014C: SUBLW 1F
014D: BTFSS 03.0
014E: GOTO 151
014F: MOVLW 07
0150: ANDWF 40,F
.................... lcd_send_byte(1,c); break; // zapis znak
0151: MOVLW 01
0152: MOVWF 45
0153: MOVF 40,W
0154: MOVWF 46
0155: CALL 0C0
0156: GOTO 157
.................... }
0157: RETLW 00
.................... }
....................
....................
.................... // Zapni kurzor
.................... //
.................... void lcd_cursor_on()
.................... {
.................... lcd_send_byte(0,LCD_CURSOR_ON_);
.................... }
....................
....................
.................... // Vypni kurzor
.................... //
.................... void lcd_cursor_off()
.................... {
.................... lcd_send_byte(0,LCD_CURSOR_OFF_);
.................... }
....................
....................
.................... // Smaz displej
.................... //
.................... void lcd_clr()
.................... {
.................... lcd_putc('\f');
.................... }
....................
....................
.................... // Definice vlastnich fontu
.................... //
.................... // Vlastnich definic muze byt jen 8 do pozic 0 az 7 pameti CGRAM radice lcd displeje
.................... // Pro snadne definovani jsou pripraveny nasledujici definice a na konci souboru je uveden
.................... // priklad pouziti definovanych znaku.
....................
....................
.................... // Pomocna procedura pro posilani ridicich dat do radice displeje
.................... //
.................... void lcd_putc2(int Data)
.................... {
.................... lcd_send_byte(1,Data);
.................... }
....................
....................
.................... // Pomocne definice pro programovani obsahu CGRAM
.................... //
.................... #define lcd_define_start(Code) lcd_send_byte(0,0x40+(Code<<3)); delay_ms(2)
.................... #define lcd_define_def(String) printf(lcd_putc2,String);
.................... #define lcd_define_end() lcd_send_byte(0,3); delay_ms(2)
....................
....................
.................... // Vlastni vykonne makro pro definovani fontu do pozice Index CGRAM s definicnim retezcem Def
.................... //
.................... #define lcd_define_char(Index, Def) lcd_define_start(Index); lcd_define_def(Def); lcd_define_end();
....................
....................
.................... // Pripravene definice fontu vybranych znaku
.................... // V tabulce nesmi byt 00 (konec retezce v printf()), misto toho davame 80
.................... //
.................... #define LCD_CHAR_BAT100 "\x0E\x1F\x1F\x1F\x1F\x1F\x1F\x1F" /* symbol plne baterie */
.................... #define LCD_CHAR_BAT50 "\x0E\x1F\x11\x11\x13\x17\x1F\x1F" /* symbol polovicni baterie */
.................... #define LCD_CHAR_BAT0 "\x0E\x1F\x11\x11\x11\x11\x11\x1F" /* symbol vybite baterie */
.................... #define LCD_CHAR_UP "\x80\x04\x0E\x15\x04\x04\x04\x80" /* symbol sipka nahoru */
.................... #define LCD_CHAR_DOWN "\x80\x04\x04\x04\x15\x0E\x04\x80" /* symbol Sipka dolu */
.................... #define LCD_CHAR_LUA "\x04\x0E\x11\x11\x1F\x11\x11\x80" /* A s carkou */
.................... #define LCD_CHAR_LLA "\x01\x02\x0E\x01\x1F\x11\x0F\x80" /* a s carkou */
.................... #define LCD_CHAR_HUC "\x0A\x0E\x11\x10\x10\x11\x0E\x80" /* C s hackem */
.................... #define LCD_CHAR_HLC "\x0A\x04\x0E\x10\x10\x11\x0E\x80" /* c s hackem */
.................... #define LCD_CHAR_HUD "\x0A\x1C\x12\x11\x11\x12\x1C\x80" /* D s hackem */
.................... #define LCD_CHAR_HLD "\x05\x03\x0D\x13\x11\x11\x0F\x80" /* d s hackem */
.................... #define LCD_CHAR_LUE "\x04\x1F\x10\x10\x1E\x10\x1F\x80" /* E s carkou */
.................... #define LCD_CHAR_LLE "\x01\x02\x0E\x11\x1F\x10\x0E\x80" /* e s carkou */
.................... #define LCD_CHAR_HUE "\x0A\x1F\x10\x1E\x10\x10\x1F\x80" /* E s hackem */
.................... #define LCD_CHAR_HLE "\x0A\x04\x0E\x11\x1F\x10\x0E\x80" /* e s hackem */
.................... #define LCD_CHAR_LUI "\x04\x0E\x04\x04\x04\x04\x0E\x80" /* I s carkou */
.................... #define LCD_CHAR_LLI "\x02\x04\x80\x0C\x04\x04\x0E\x80" /* i s carkou */
.................... #define LCD_CHAR_HUN "\x0A\x15\x11\x19\x15\x13\x11\x80" /* N s hackem */
.................... #define LCD_CHAR_HLN "\x0A\x04\x16\x19\x11\x11\x11\x80" /* n s hackem */
.................... #define LCD_CHAR_LUO "\x04\x0E\x11\x11\x11\x11\x0E\x80" /* O s carkou */
.................... #define LCD_CHAR_LLO "\x02\x04\x0E\x11\x11\x11\x0E\x80" /* o s carkou */
.................... #define LCD_CHAR_HUR "\x0A\x1E\x11\x1E\x14\x12\x11\x80" /* R s hackem */
.................... #define LCD_CHAR_HLR "\x0A\x04\x16\x19\x10\x10\x10\x80" /* r s hackem */
.................... #define LCD_CHAR_HUS "\x0A\x0F\x10\x0E\x01\x01\x1E\x80" /* S s hackem */
.................... #define LCD_CHAR_HLS "\x0A\x04\x0E\x10\x0E\x01\x1E\x80" /* s s hackem */
.................... #define LCD_CHAR_HUT "\x0A\x1F\x04\x04\x04\x04\x04\x80" /* T s hackem */
.................... #define LCD_CHAR_HLT "\x0A\x0C\x1C\x08\x08\x09\x06\x80" /* t s hackem */
.................... #define LCD_CHAR_LUU "\x02\x15\x11\x11\x11\x11\x0E\x80" /* U s carkou */
.................... #define LCD_CHAR_LLU "\x02\x04\x11\x11\x11\x13\x0D\x80" /* u s carkou */
.................... #define LCD_CHAR_CUU "\x06\x17\x11\x11\x11\x11\x0E\x80" /* U s krouzkem */
.................... #define LCD_CHAR_CLU "\x06\x06\x11\x11\x11\x11\x0E\x80" /* u s krouzkem */
.................... #define LCD_CHAR_LUY "\x02\x15\x11\x0A\x04\x04\x04\x80" /* Y s carkou */
.................... #define LCD_CHAR_LLY "\x02\x04\x11\x11\x0F\x01\x0E\x80" /* y s carkou */
.................... #define LCD_CHAR_HUZ "\x0A\x1F\x01\x02\x04\x08\x1F\x80" /* Z s hackem */
.................... #define LCD_CHAR_HLZ "\x0A\x04\x1F\x02\x04\x08\x1F\x80" /* z s hackem */
....................
....................
.................... // Priklad pouziti definovanych znaku
.................... //
.................... //
.................... //void lcd_sample()
.................... //{
.................... // lcd_define_char(0,LCD_CHAR_BAT50); // Priklad definice znaku baterie do pozice 0
.................... // lcd_define_char(2,LCD_CHAR_HLE LCD_CHAR_LUI); // Priklad definice znaku e s hackem a I s carkou od pozice 2
.................... // // vsimnete si, ze neni carka mezi retezci s definici (oba retezce definuji
.................... // // jediny definicni retezec)
.................... // printf(lcd_putc,"\fZnaky:\20\22\23"); // priklad vypisu znaku z pozice 0, 2 a 3
.................... // delay_ms(1000);
.................... // lcd_define_char(0,LCD_CHAR_BAT0); // Predefinovani tvaru znaku v pozici 0
.................... // delay_ms(1000);
.................... //}
....................
....................
....................
.................... // Vstup seriovky
.................... //
.................... #ifdef INV
.................... #use RS232 (BAUD=RS_BOUD, RCV=RS_IN, PARITY=N, INVERT)
*
0059: MOVLW 08
005A: MOVWF 0C
005B: BSF 03.5
005C: BSF 06.0
005D: BCF 03.5
005E: BTFSS 06.0
005F: GOTO 05E
0060: CLRF 4C
0061: BSF 0C.7
0062: GOTO 071
0063: BCF 0C.7
0064: GOTO 071
0065: BCF 03.0
0066: BTFSS 06.0
0067: BSF 03.0
0068: RRF 4C,F
0069: BSF 0C.6
006A: GOTO 071
006B: BCF 0C.6
006C: DECFSZ 0C,F
006D: GOTO 065
006E: MOVF 4C,W
006F: MOVWF 0D
0070: GOTO 07D
0071: MOVLW 1C
0072: BTFSC 0C.7
0073: MOVLW 07
0074: MOVWF 0D
0075: DECFSZ 0D,F
0076: GOTO 075
0077: NOP
0078: BTFSC 0C.7
0079: GOTO 063
007A: BTFSC 0C.6
007B: GOTO 06B
007C: GOTO 065
007D: GOTO 083 (RETURN)
.................... #else
.................... #use RS232 (BAUD=RS_BOUD, RCV=RS_IN, PARITY=N)
.................... #endif
....................
....................
.................... // Buffer FIFO
.................... //
.................... #define MAX 40 // delka bufferu
....................
.................... char c[MAX]; // bufer FIFO
.................... unsigned int ci; // ukazatel na bunku kam se bude ukladat novy znak
.................... unsigned int co; // ukazatel na bunku odkud se bude cist znak
....................
.................... // Preruseni - ukladani dat ze seriovky do bufferu
.................... //
.................... #int_ext // preruseni od zacatku znaku (start bit)
.................... void Interupt()
.................... {
.................... c[ci]=getc(); // nacti znak (asynchronni cteni programem)
007E: MOVLW 14
007F: ADDWF 3C,W
0080: MOVWF 04
0081: MOVWF 4B
0082: GOTO 059
0083: MOVF 4B,W
0084: MOVWF 04
0085: MOVF 0D,W
0086: MOVWF 00
....................
.................... if (ci<(MAX-1)) ci++; else ci=0; // posun ukazovatko do FIFO
0087: MOVF 3C,W
0088: SUBLW 26
0089: BTFSS 03.0
008A: GOTO 08D
008B: INCF 3C,F
008C: GOTO 08E
008D: CLRF 3C
....................
.................... #ifdef INV
.................... while(input(PIN_B0)); // pockej na konec posledniho bitu
008E: BSF 03.5
008F: BSF 06.0
0090: BCF 03.5
0091: BTFSC 06.0
0092: GOTO 08E
.................... #else
.................... while(~input(PIN_B0)); // pockej na konec posledniho bitu
.................... #endif
0093: BCF 0B.1
0094: BCF 0A.3
0095: GOTO 01F
.................... }
....................
....................
.................... // Hlavni smycka
.................... //
.................... void main()
.................... {
.................... char ch; // pomocna promenna pro 1 znak
*
0158: CLRF 04
0159: MOVLW 1F
015A: ANDWF 03,F
015B: BSF 03.5
015C: BCF 05.0
015D: BCF 03.5
015E: BCF 05.0
....................
.................... // Inicializace portu
.................... output_a(0); // vsechny porty vystupni
015F: MOVLW 00
0160: BSF 03.5
0161: MOVWF 05
0162: BCF 03.5
0163: CLRF 05
.................... output_b(0); // a nulove krome
0164: BSF 03.5
0165: MOVWF 06
0166: BCF 03.5
0167: CLRF 06
.................... output_float(RS_IN); // portu pro RS232 (a preruseni)
0168: BSF 03.5
0169: BSF 06.0
....................
.................... // Inicializace LCD
.................... lcd_init(); // inicializace LCD
016A: BCF 03.5
016B: GOTO 0D6
.................... printf(lcd_putc,"LCD Terminal 1.0"); // standardni vypis
*
0036: BCF 0A.0
0037: BCF 0A.1
0038: BCF 0A.2
0039: ADDWF 02,F
003A: RETLW 4C
003B: RETLW 43
003C: RETLW 44
003D: RETLW 20
003E: RETLW 54
003F: RETLW 65
0040: RETLW 72
0041: RETLW 6D
0042: RETLW 69
0043: RETLW 6E
0044: RETLW 61
0045: RETLW 6C
0046: RETLW 20
0047: RETLW 31
0048: RETLW 2E
0049: RETLW 30
004A: RETLW 00
*
016C: CLRF 3F
016D: MOVF 3F,W
016E: CALL 036
016F: INCF 3F,F
0170: MOVWF 40
0171: CALL 120
0172: MOVLW 10
0173: SUBWF 3F,W
0174: BTFSS 03.2
0175: GOTO 16D
.................... #ifdef INV
.................... printf(lcd_putc,"\nInverted"); // oznameni o inverzni variante
*
004B: BCF 0A.0
004C: BCF 0A.1
004D: BCF 0A.2
004E: ADDWF 02,F
004F: RETLW 0A
0050: RETLW 49
0051: RETLW 6E
0052: RETLW 76
0053: RETLW 65
0054: RETLW 72
0055: RETLW 74
0056: RETLW 65
0057: RETLW 64
0058: RETLW 00
*
0176: CLRF 3F
0177: MOVF 3F,W
0178: CALL 04B
0179: INCF 3F,F
017A: MOVWF 40
017B: CALL 120
017C: MOVLW 09
017D: SUBWF 3F,W
017E: BTFSS 03.2
017F: GOTO 177
.................... #else
.................... printf(lcd_putc,"\nStandard"); // oznameni o inverzni variante
.................... #endif
.................... delay_ms(300); // cas na precteni
0180: MOVLW 02
0181: MOVWF 3F
0182: MOVLW 96
0183: MOVWF 41
0184: CALL 096
0185: DECFSZ 3F,F
0186: GOTO 182
.................... printf(lcd_putc,"\f"); // smazani displeje
0187: MOVLW 0C
0188: MOVWF 40
0189: CALL 120
....................
.................... // Inicializace FIFO ukazatelu
.................... ci=0;
018A: CLRF 3C
.................... co=0;
018B: CLRF 3D
....................
.................... // Inicializace preruseni
.................... #ifdef INV // dle polarity kominkace polarita preruseni
.................... ext_int_edge(L_TO_H);
018C: BSF 03.5
018D: BSF 01.6
.................... #else
.................... ext_int_edge(H_TO_L);
.................... #endif
.................... enable_interrupts(int_ext); // povoleni preruseni od INT0
018E: BCF 03.5
018F: BSF 0B.4
.................... enable_interrupts(global); // povoleni globalniho preruseni
0190: BSF 0B.7
....................
.................... // Hlavni smycka
.................... while (1)
.................... {
....................
.................... // Test na neprazdny buffer
.................... while (ci==co);
0191: MOVF 3D,W
0192: SUBWF 3C,W
0193: BTFSS 03.2
0194: GOTO 196
0195: GOTO 191
....................
.................... // Zobrazeni znaku
.................... lcd_putc(c[co]);
0196: MOVLW 14
0197: ADDWF 3D,W
0198: MOVWF 04
0199: MOVF 00,W
019A: MOVWF 3F
019B: MOVWF 40
019C: CALL 120
....................
.................... // Posunuti ukazovatka
.................... if (co<(MAX-1)) co++; else co=0;
019D: MOVF 3D,W
019E: SUBLW 26
019F: BTFSS 03.0
01A0: GOTO 1A3
01A1: INCF 3D,F
01A2: GOTO 1A4
01A3: CLRF 3D
.................... }
01A4: GOTO 191
.................... }
....................
01A5: SLEEP
/Aparatus/DART01B/SW/LCD_TERM/1_00/LIB/LCD.C
0,0 → 1,311
// LCD modul pro ovladani dvouradkoveho LCD modulu se standardnim Hitachi radicem
// (c)miho 2002,2005
//
// Historie:
//
// 0.00 Uvodni verze se snadnou definici portu LCD displeje
// 0.01 Oprava portu (zapomenute stare identifikatory)
// 0.02 Doplnena moznost pripojeni datoveho portu LCD na libovolne porty
// 0.03 Doplnena procedura lcd_clr pro smazani displeje
//
//
// Funkce:
//
// lcd_init() inicializuje LCD displej a porty, nutno volat jako prvni
//
// lcd_putc(c) zapis snaku do lcd displeje, zpracovava nasledujici ridici znaky
// \f = \x0C - nova stranka - smazani displeje
// \n = \x0A - odradkovani (prechod na druhou radku)
// \b = \x08 - backspace - posunuti kurzoru o 1 pozici zpet
// \r = \x0D - goto home to position 1,1
// \0 .. \7 - definovatelne znaky v pozicich 0 az 7 v CGRAM
// \20 .. \27 - alternativne zapsane znaky (oktalove) v pozicich 0 az 7 CGRAM
// Pozor na to, ze funkce printf konci tisk pokud narazi na \0 (konec retezce)
//
// lcd_gotoxy(x,y) presune kurzor na uvedenou adresu
// nekontroluje parametry
//
// lcd_cursor_on zapne kurzor
// lcd_cursor_off vypne kurzor
//
// lcd_clr smaze displej
//
// lcd_define_char(Index, Def) Makro, ktere definuje znaky od pozice Index obsahem definicniho
// retezce Def. Kazdych 8 znaku retezce Def definuje dalsi znak v CGRAM.
// Kapacita CGRAM je celkem 8 znaku s indexem 0 az 7.
// Na konci se provede lcd_gotoxy(1,1).
// Na konci teto knihovny je priklad pouziti definovanych znaku
//
//
// Definice portu: // Datovy port displeje pripojeny na 4 bity za sebou na jeden port
//
// #define LCD_RS PIN_B2 // rizeni registru LCD displeje
// #define LCD_E PIN_B1 // enable LCD displeje
// #define LCD_DATA_LSB PIN_C2 // pripojeni LSB bitu datoveho portu LCD displeje (celkem 4 bity vzestupne za sebou)
//
//
// Alternativni definice: // Datovy port displeje pripojeny na libovolne 4 bitove porty (vede na kod delsi asi o 25 slov)
//
// #define LCD_RS PIN_B2 // rizeni registru LCD displeje
// #define LCD_E PIN_B1 // enable LCD displeje
// #define LCD_D0 PIN_C2 // D0 - datove bity pripojene na libovolne porty
// #define LCD_D1 PIN_C3 // D1
// #define LCD_D2 PIN_C4 // D2
// #define LCD_D3 PIN_C5 // D3
 
 
 
 
// Privatni sekce, cist jen v pripade, ze neco nefunguje
 
 
 
 
#ifdef LCD_DATA_LSB
// Generovane defince portu pro ucely teto knihovny aby kod generoval spravne IO operace a soucasne
// bylo mozne jednoduse deklarovat pripojene piny LCD displeje pri pouziti teto knihovny. Problem spociva
// v tom, ze se musi spravne ridit smery portu a soucasne datovy port zabira jen 4 bity ze zadaneho portu
//
#define LCD_SHIFT (LCD_DATA_LSB&7) // pocet bitu posuvu datoveho kanalu v datovem portu
#define LCD_PORT (LCD_DATA_LSB>>3) // adresa LCD datoveho portu
#define LCD_TRIS (LCD_PORT+0x80) // adresa prislusneho TRIS registru
#define LCD_MASK (0xF<<LCD_SHIFT) // maska platnych bitu
//
#if LCD_SHIFT>4 // kontrola mezi
#error LCD data port LSB bit not in range 0..4
#endif
#endif
 
 
// Definice konstant pro LCD display
//
#define LCD_CURSOR_ON_ 0x0E // kurzor jako blikajici radka pod znakem
#define LCD_CURSOR_OFF_ 0x0C // zadny kurzor
#define LCD_LINE_2 0x40 // adresa 1. znaku 2. radky
 
 
// Definice rezimu LCD displeje
//
BYTE const LCD_INIT_STRING[4] =
{
0x28, // intrfejs 4 bity, 2 radky, font 5x7
LCD_CURSOR_OFF_, // display on, kurzor off,
0x01, // clear displeje
0x06 // inkrement pozice kurzoru (posun kurzoru doprava)
};
 
 
// Odesle nibble do displeje (posle data a klikne signalem e)
//
void lcd_send_nibble( BYTE n )
{
#ifdef LCD_DATA_LSB
// data jsou za sebou na 4 bitech jednoho portu
*LCD_PORT = (*LCD_PORT & ~LCD_MASK) | ((n << LCD_SHIFT) & LCD_MASK); // nastav datove bity portu a ostatni zachovej
#else
// data jsou na libovolnych 4 bitech libovolnych portu
output_bit(LCD_D0,bit_test(n,0));
output_bit(LCD_D1,bit_test(n,1));
output_bit(LCD_D2,bit_test(n,2));
output_bit(LCD_D3,bit_test(n,3));
#endif
output_bit(LCD_E,1); // vzestupna hrana
delay_us(1); // pockej alespon 450ns od e nebo alespon 195ns od dat
output_bit(LCD_E,0); // sestupna hrana (minimalni perioda e je 1us)
}
 
 
// Odesle bajt do registru LCD
//
// Pokud je Adr=0 .. instrukcni registr
// Pokud je Adr=1 .. datovy registr
//
void lcd_send_byte( BOOLEAN Adr, BYTE n )
{
output_bit(LCD_RS,Adr); // vyber registr
swap(n);
lcd_send_nibble(n); // posli horni pulku bajtu
swap(n);
lcd_send_nibble(n); // posli spodni pulku bajtu
delay_us(40); // minimalni doba na provedeni prikazu
}
 
 
// Provede inicializaci LCD displeje, smaze obsah a nastavi mod displeje
//
// Tato procedura se musi volat pred pouzitim ostatnich lcd_ procedur
//
void lcd_init()
{
 
int i; // pocitadlo cyklu
 
delay_ms(20); // spozdeni pro provedeni startu displeje po zapnuti napajeni
 
#ifdef LCD_DATA_LSB
// data jsou na 4 bitech za sebou, nastav smer pro vsechny dalsi prenosy
*LCD_TRIS = *LCD_TRIS & ~LCD_MASK; // nuluj odpovidajici bity tris registru datoveho portu LCD
#endif
 
output_bit(LCD_RS,0); // nastav jako vystup a nastav klidovy stav
output_bit(LCD_E, 0); // nastav jako vystup a nastav klidovy stav
 
for (i=0; i<3; i++) // nastav lcd do rezimu 8 bitu sbernice
{
delay_ms(2); // muze byt rozdelany prenos dat (2x 4 bity) nebo pomaly povel
lcd_send_nibble(3); // rezim 8 bitu
}
 
delay_us(40); // cas na zpracovani
lcd_send_nibble(2); // nastav rezim 4 bitu (plati od nasledujiciho prenosu)
delay_us(40); // cas na zpracovani
 
for (i=0;i<3;i++) // proved inicializaci (nastaveni modu, smazani apod)
{
lcd_send_byte(0,LCD_INIT_STRING[i]);
delay_ms(2);
}
}
 
 
// Proved presun kurzoru
//
// Pozice 1.1 je domu
//
void lcd_gotoxy( BYTE x, BYTE y)
{
 
BYTE Adr;
 
Adr=x-1;
if(y==2)
Adr+=LCD_LINE_2;
 
lcd_send_byte(0,0x80|Adr);
}
 
 
// Zapis znaku na displej, zpracovani ridicich znaku
//
void lcd_putc( char c)
{
 
switch (c)
{
case '\f' : lcd_send_byte(0,1); // smaz displej
delay_ms(2);
break;
case '\n' : lcd_gotoxy(1,2); break; // presun se na 1. znak 2. radky
case '\r' : lcd_gotoxy(1,1); break; // presun home
case '\b' : lcd_send_byte(0,0x10); break; // posun kurzor o 1 zpet
default : if (c<0x20) c&=0x7; // preklopeni definovatelnych znaku na rozsah 0 az 0x1F
lcd_send_byte(1,c); break; // zapis znak
}
}
 
 
// Zapni kurzor
//
void lcd_cursor_on()
{
lcd_send_byte(0,LCD_CURSOR_ON_);
}
 
 
// Vypni kurzor
//
void lcd_cursor_off()
{
lcd_send_byte(0,LCD_CURSOR_OFF_);
}
 
 
// Smaz displej
//
void lcd_clr()
{
lcd_putc('\f');
}
 
 
// Definice vlastnich fontu
//
// Vlastnich definic muze byt jen 8 do pozic 0 az 7 pameti CGRAM radice lcd displeje
// Pro snadne definovani jsou pripraveny nasledujici definice a na konci souboru je uveden
// priklad pouziti definovanych znaku.
 
 
// Pomocna procedura pro posilani ridicich dat do radice displeje
//
void lcd_putc2(int Data)
{
lcd_send_byte(1,Data);
}
 
 
// Pomocne definice pro programovani obsahu CGRAM
//
#define lcd_define_start(Code) lcd_send_byte(0,0x40+(Code<<3)); delay_ms(2)
#define lcd_define_def(String) printf(lcd_putc2,String);
#define lcd_define_end() lcd_send_byte(0,3); delay_ms(2)
 
 
// Vlastni vykonne makro pro definovani fontu do pozice Index CGRAM s definicnim retezcem Def
//
#define lcd_define_char(Index, Def) lcd_define_start(Index); lcd_define_def(Def); lcd_define_end();
 
 
// Pripravene definice fontu vybranych znaku
// V tabulce nesmi byt 00 (konec retezce v printf()), misto toho davame 80
//
#define LCD_CHAR_BAT100 "\x0E\x1F\x1F\x1F\x1F\x1F\x1F\x1F" /* symbol plne baterie */
#define LCD_CHAR_BAT50 "\x0E\x1F\x11\x11\x13\x17\x1F\x1F" /* symbol polovicni baterie */
#define LCD_CHAR_BAT0 "\x0E\x1F\x11\x11\x11\x11\x11\x1F" /* symbol vybite baterie */
#define LCD_CHAR_UP "\x80\x04\x0E\x15\x04\x04\x04\x80" /* symbol sipka nahoru */
#define LCD_CHAR_DOWN "\x80\x04\x04\x04\x15\x0E\x04\x80" /* symbol Sipka dolu */
#define LCD_CHAR_LUA "\x04\x0E\x11\x11\x1F\x11\x11\x80" /* A s carkou */
#define LCD_CHAR_LLA "\x01\x02\x0E\x01\x1F\x11\x0F\x80" /* a s carkou */
#define LCD_CHAR_HUC "\x0A\x0E\x11\x10\x10\x11\x0E\x80" /* C s hackem */
#define LCD_CHAR_HLC "\x0A\x04\x0E\x10\x10\x11\x0E\x80" /* c s hackem */
#define LCD_CHAR_HUD "\x0A\x1C\x12\x11\x11\x12\x1C\x80" /* D s hackem */
#define LCD_CHAR_HLD "\x05\x03\x0D\x13\x11\x11\x0F\x80" /* d s hackem */
#define LCD_CHAR_LUE "\x04\x1F\x10\x10\x1E\x10\x1F\x80" /* E s carkou */
#define LCD_CHAR_LLE "\x01\x02\x0E\x11\x1F\x10\x0E\x80" /* e s carkou */
#define LCD_CHAR_HUE "\x0A\x1F\x10\x1E\x10\x10\x1F\x80" /* E s hackem */
#define LCD_CHAR_HLE "\x0A\x04\x0E\x11\x1F\x10\x0E\x80" /* e s hackem */
#define LCD_CHAR_LUI "\x04\x0E\x04\x04\x04\x04\x0E\x80" /* I s carkou */
#define LCD_CHAR_LLI "\x02\x04\x80\x0C\x04\x04\x0E\x80" /* i s carkou */
#define LCD_CHAR_HUN "\x0A\x15\x11\x19\x15\x13\x11\x80" /* N s hackem */
#define LCD_CHAR_HLN "\x0A\x04\x16\x19\x11\x11\x11\x80" /* n s hackem */
#define LCD_CHAR_LUO "\x04\x0E\x11\x11\x11\x11\x0E\x80" /* O s carkou */
#define LCD_CHAR_LLO "\x02\x04\x0E\x11\x11\x11\x0E\x80" /* o s carkou */
#define LCD_CHAR_HUR "\x0A\x1E\x11\x1E\x14\x12\x11\x80" /* R s hackem */
#define LCD_CHAR_HLR "\x0A\x04\x16\x19\x10\x10\x10\x80" /* r s hackem */
#define LCD_CHAR_HUS "\x0A\x0F\x10\x0E\x01\x01\x1E\x80" /* S s hackem */
#define LCD_CHAR_HLS "\x0A\x04\x0E\x10\x0E\x01\x1E\x80" /* s s hackem */
#define LCD_CHAR_HUT "\x0A\x1F\x04\x04\x04\x04\x04\x80" /* T s hackem */
#define LCD_CHAR_HLT "\x0A\x0C\x1C\x08\x08\x09\x06\x80" /* t s hackem */
#define LCD_CHAR_LUU "\x02\x15\x11\x11\x11\x11\x0E\x80" /* U s carkou */
#define LCD_CHAR_LLU "\x02\x04\x11\x11\x11\x13\x0D\x80" /* u s carkou */
#define LCD_CHAR_CUU "\x06\x17\x11\x11\x11\x11\x0E\x80" /* U s krouzkem */
#define LCD_CHAR_CLU "\x06\x06\x11\x11\x11\x11\x0E\x80" /* u s krouzkem */
#define LCD_CHAR_LUY "\x02\x15\x11\x0A\x04\x04\x04\x80" /* Y s carkou */
#define LCD_CHAR_LLY "\x02\x04\x11\x11\x0F\x01\x0E\x80" /* y s carkou */
#define LCD_CHAR_HUZ "\x0A\x1F\x01\x02\x04\x08\x1F\x80" /* Z s hackem */
#define LCD_CHAR_HLZ "\x0A\x04\x1F\x02\x04\x08\x1F\x80" /* z s hackem */
 
 
// Priklad pouziti definovanych znaku
//
//
//void lcd_sample()
//{
// lcd_define_char(0,LCD_CHAR_BAT50); // Priklad definice znaku baterie do pozice 0
// lcd_define_char(2,LCD_CHAR_HLE LCD_CHAR_LUI); // Priklad definice znaku e s hackem a I s carkou od pozice 2
// // vsimnete si, ze neni carka mezi retezci s definici (oba retezce definuji
// // jediny definicni retezec)
// printf(lcd_putc,"\fZnaky:\20\22\23"); // priklad vypisu znaku z pozice 0, 2 a 3
// delay_ms(1000);
// lcd_define_char(0,LCD_CHAR_BAT0); // Predefinovani tvaru znaku v pozici 0
// delay_ms(1000);
//}