Rev 3524 Rev 3598
1 { 1 {
2 "metadata": { 2 "metadata": {
3 "name": "" 3 "name": "ALTIMET_test"
4 }, 4 },
5 "nbformat": 3, 5 "nbformat": 3,
6 "nbformat_minor": 0, 6 "nbformat_minor": 0,
7 "worksheets": [ 7 "worksheets": [
8 { 8 {
9 "cells": [ 9 "cells": [
10 { 10 {
11 "cell_type": "markdown", 11 "cell_type": "markdown",
12 "metadata": {}, 12 "metadata": {},
13 "source": [ 13 "source": [
14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty\n", 14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty\n",
15 "=======\n", 15 "=======\n",
16 "\n", 16 "\n",
17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 moduluvou stavebnici MLAB a jej\u00ed knihovnu https://github.com/MLAB-project/MLAB-I2c-modules \n", 17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 moduluvou stavebnici MLAB a jej\u00ed knihovnu https://github.com/MLAB-project/MLAB-I2c-modules \n",
18 "\n", 18 "\n",
19 "Zprovozn\u011bn\u00ed demo k\u00f3du\n", 19 "Zprovozn\u011bn\u00ed demo k\u00f3du\n",
20 "---------------------\n", 20 "---------------------\n",
21 "\n", 21 "\n",
22 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n" 22 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n"
23 ] 23 ]
24 }, 24 },
25 { 25 {
26 "cell_type": "code", 26 "cell_type": "code",
27 "collapsed": false, 27 "collapsed": false,
28 "input": [ 28 "input": [
29 "!i2cdetect -l" 29 "!i2cdetect -l"
30 ], 30 ],
31 "language": "python", 31 "language": "python",
32 "metadata": {}, 32 "metadata": {},
33 "outputs": [ 33 "outputs": [
34 { 34 {
35 "output_type": "stream", 35 "output_type": "stream",
36 "stream": "stdout", 36 "stream": "stdout",
37 "text": [ 37 "text": [
-   38 "i2c-0\ti2c \ti915 gmbus ssc \tI2C adapter\r\n",
-   39 "i2c-1\ti2c \ti915 gmbus vga \tI2C adapter\r\n",
38 "i2c-5\ti2c \ti2c-tiny-usb at bus 002 device 008\tI2C adapter\r\n", 40 "i2c-2\ti2c \ti915 gmbus panel \tI2C adapter\r\n",
39 "i2c-0\ti2c \tintel drm CRTDDC_A \tI2C adapter\r\n", 41 "i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n",
40 "i2c-1\ti2c \tintel drm LVDSBLC_B \tI2C adapter\r\n", 42 "i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
41 "i2c-2\ti2c \tintel drm LVDSDDC_C \tI2C adapter\r\n", 43 "i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
42 "i2c-3\ti2c \tintel drm HDMIB \tI2C adapter\r\n", 44 "i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n",
43 "i2c-4\ti2c \tDPDDC-B \tI2C adapter\r\n" 45 "i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n",
-   46 "i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 006\tI2C adapter\r\n"
44 ] 47 ]
45 } 48 }
46 ], 49 ],
47 "prompt_number": 1 50 "prompt_number": 1
48 }, 51 },
49 { 52 {
50 "cell_type": "markdown", 53 "cell_type": "markdown",
51 "metadata": {}, 54 "metadata": {},
52 "source": [ 55 "source": [
53 "Proto\u017ee pro p\u0159ipojen\u00ed \u010didel k po\u010d\u00edta\u010di pou\u017e\u00edv\u00e1me adapt\u00e9r i2c-tiny-usb. Vid\u00edme, \u017ee sb\u011brnice m\u00e1 aktu\u00e1ln\u011b ozna\u010den\u00ed nap\u0159\u00edklad i2c-8. \n", 56 "Proto\u017ee pro p\u0159ipojen\u00ed \u010didel k po\u010d\u00edta\u010di pou\u017e\u00edv\u00e1me adapt\u00e9r i2c-tiny-usb. Vid\u00edme, \u017ee sb\u011brnice m\u00e1 aktu\u00e1ln\u011b ozna\u010den\u00ed nap\u0159\u00edklad i2c-8. \n",
54 "\n", 57 "\n",
55 "V p\u0159\u00edpad\u011b, \u017ee v\u00fd\u0161e uveden\u00fd p\u0159\u00edklad vr\u00e1t\u00ed chybu, nebo pojmenov\u00e1n\u00ed \"unknown\" tak nem\u00e1me p\u0159\u00edstup k syst\u00e9mov\u00fdm rozhran\u00edm. Ten z\u00edsk\u00e1me vytvo\u0159en\u00edm souboru s n\u00e1sleduj\u00edc\u00edm obsahem ve slo\u017ece: /etc/udev/rules.d/i2c-devices.rules" 58 "V p\u0159\u00edpad\u011b, \u017ee v\u00fd\u0161e uveden\u00fd p\u0159\u00edklad vr\u00e1t\u00ed chybu, nebo pojmenov\u00e1n\u00ed \"unknown\" tak nem\u00e1me p\u0159\u00edstup k syst\u00e9mov\u00fdm rozhran\u00edm. Ten z\u00edsk\u00e1me vytvo\u0159en\u00edm souboru s n\u00e1sleduj\u00edc\u00edm obsahem ve slo\u017ece: /etc/udev/rules.d/i2c-devices.rules"
56 ] 59 ]
57 }, 60 },
58 { 61 {
59 "cell_type": "raw", 62 "cell_type": "raw",
60 "metadata": {}, 63 "metadata": {},
61 "source": [ 64 "source": [
62 "KERNEL==\"i2c-[0-9]*\", GROUP=\"i2c\"" 65 "KERNEL==\"i2c-[0-9]*\", GROUP=\"i2c\""
63 ] 66 ]
64 }, 67 },
65 { 68 {
66 "cell_type": "markdown", 69 "cell_type": "markdown",
67 "metadata": {}, 70 "metadata": {},
68 "source": [ 71 "source": [
69 "Toto ozna\u010den\u00ed budeme je\u0161t\u011b d\u00e1le pot\u0159ebovat, proto si jej ulo\u017e\u00edme da prom\u011bnn\u00e9. " 72 "Toto ozna\u010den\u00ed budeme je\u0161t\u011b d\u00e1le pot\u0159ebovat, proto si jej ulo\u017e\u00edme da prom\u011bnn\u00e9. "
70 ] 73 ]
71 }, 74 },
72 { 75 {
73 "cell_type": "code", 76 "cell_type": "code",
74 "collapsed": false, 77 "collapsed": false,
75 "input": [ 78 "input": [
76 "port = 5" 79 "port = 8"
77 ], 80 ],
78 "language": "python", 81 "language": "python",
79 "metadata": {}, 82 "metadata": {},
80 "outputs": [], 83 "outputs": [],
81 "prompt_number": 2 84 "prompt_number": 2
82 }, 85 },
83 { 86 {
84 "cell_type": "markdown", 87 "cell_type": "markdown",
85 "metadata": {}, 88 "metadata": {},
86 "source": [ 89 "source": [
87 "Budeme pokra\u010dovat na\u010dten\u00edm pot\u0159ebn\u00fdch modul\u016f pro zach\u00e1zen\u00ed s I\u00b2C sn\u00edma\u010di." 90 "Budeme pokra\u010dovat na\u010dten\u00edm pot\u0159ebn\u00fdch modul\u016f pro zach\u00e1zen\u00ed s I\u00b2C sn\u00edma\u010di."
88 ] 91 ]
89 }, 92 },
90 { 93 {
91 "cell_type": "code", 94 "cell_type": "code",
92 "collapsed": false, 95 "collapsed": false,
93 "input": [ 96 "input": [
94 "import time\n", 97 "import time\n",
95 "import datetime\n", 98 "import datetime\n",
96 "import sys\n", 99 "import sys\n",
97 "\n", 100 "\n",
98 "from pymlab import config\n", 101 "from pymlab import config\n",
99 "import matplotlib.pyplot as plt\n", 102 "import matplotlib.pyplot as plt\n",
100 "import numpy as np" 103 "import numpy as np"
101 ], 104 ],
102 "language": "python", 105 "language": "python",
103 "metadata": {}, 106 "metadata": {},
104 "outputs": [], 107 "outputs": [],
105 "prompt_number": 3 108 "prompt_number": 3
106 }, 109 },
107 { 110 {
108 "cell_type": "markdown", 111 "cell_type": "markdown",
109 "metadata": {}, 112 "metadata": {},
110 "source": [ 113 "source": [
111 "Nyn\u00ed si nadefinujeme strukturu p\u0159ipojen\u00ed jednotliv\u00fdch \u010didel na I\u00b2C sb\u011brnici." 114 "Nyn\u00ed si nadefinujeme strukturu p\u0159ipojen\u00ed jednotliv\u00fdch \u010didel na I\u00b2C sb\u011brnici."
112 ] 115 ]
113 }, 116 },
114 { 117 {
115 "cell_type": "code", 118 "cell_type": "code",
116 "collapsed": false, 119 "collapsed": false,
117 "input": [ 120 "input": [
118 "cfg = config.Config(\n", 121 "cfg = config.Config(\n",
-   122 " i2c = {\n",
119 " port = port,\n", 123 " \"port\": port,\n",
-   124 " },\n",
120 " bus = [\n", 125 " bus = [\n",
121 " {\n", 126 " {\n",
122 " \"type\": \"i2chub\",\n", 127 " \"type\": \"i2chub\",\n",
123 " \"address\": 0x72,\n", 128 " \"address\": 0x72,\n",
124 " \n", 129 " \n",
125 " \"children\": [\n", 130 " \"children\": [\n",
126 " {\"name\": \"altimet\", \"type\": \"altimet01\" , \"channel\": 7, }, \n", 131 " {\"name\": \"altimet\", \"type\": \"altimet01\" , \"channel\": 7, }, \n",
127 " ],\n", 132 " ],\n",
128 " },\n", 133 " },\n",
129 " ],\n", 134 " ],\n",
130 ")" 135 ")"
131 ], 136 ],
132 "language": "python", 137 "language": "python",
133 "metadata": {}, 138 "metadata": {},
134 "outputs": [], 139 "outputs": [],
135 "prompt_number": 4 140 "prompt_number": 4
136 }, 141 },
137 { 142 {
138 "cell_type": "markdown", 143 "cell_type": "markdown",
139 "metadata": {}, 144 "metadata": {},
140 "source": [ 145 "source": [
141 "Tuto strukturu inicializujeme, aby jsme dos\u00e1hli definovan\u00e9 konfigurace \u010didel." 146 "Tuto strukturu inicializujeme, aby jsme dos\u00e1hli definovan\u00e9 konfigurace \u010didel."
142 ] 147 ]
143 }, 148 },
144 { 149 {
145 "cell_type": "code", 150 "cell_type": "code",
146 "collapsed": false, 151 "collapsed": false,
147 "input": [ 152 "input": [
148 "cfg.initialize()\n", 153 "cfg.initialize()\n",
149 "gauge = cfg.get_device(\"altimet\")\n", 154 "gauge = cfg.get_device(\"altimet\")\n",
150 "time.sleep(0.5)" 155 "time.sleep(0.5)"
151 ], 156 ],
152 "language": "python", 157 "language": "python",
153 "metadata": {}, 158 "metadata": {},
154 "outputs": [], 159 "outputs": [],
155 "prompt_number": 5 160 "prompt_number": 5
156 }, 161 },
157 { 162 {
158 "cell_type": "markdown", 163 "cell_type": "markdown",
159 "metadata": {}, 164 "metadata": {},
160 "source": [ 165 "source": [
161 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge." 166 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge."
162 ] 167 ]
163 }, 168 },
164 { 169 {
165 "cell_type": "code", 170 "cell_type": "code",
166 "collapsed": false, 171 "collapsed": false,
167 "input": [ 172 "input": [
168 "MEASUREMENTS = 100\n", 173 "MEASUREMENTS = 100\n",
169 "t = np.zeros(MEASUREMENTS)\n", 174 "t = np.zeros(MEASUREMENTS)\n",
170 "p = np.zeros(MEASUREMENTS)\n", 175 "p = np.zeros(MEASUREMENTS)\n",
171 "\n", 176 "\n",
172 "for n in range(MEASUREMENTS):\n", 177 "for n in range(MEASUREMENTS):\n",
173 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n", 178 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
174 " (t[n], p[n]) = gauge.get_tp()\n", 179 " (t[n], p[n]) = gauge.get_tp()\n",
175 " print(n,t[n], p[n])" 180 " print(n,t[n], p[n])"
176 ], 181 ],
177 "language": "python", 182 "language": "python",
178 "metadata": {}, 183 "metadata": {},
179 "outputs": [ 184 "outputs": [
180 { 185 {
181 "output_type": "stream", 186 "output_type": "stream",
182 "stream": "stdout", 187 "stream": "stdout",
183 "text": [ 188 "text": [
184 "(0, 22.0, 96976.25)\n", 189 "(0, 21.3125, 98476.75)\n",
185 "(1, 22.0, 96978.0)" 190 "(1, 21.3125, 98476.75)"
186 ] 191 ]
187 }, 192 },
188 { 193 {
189 "output_type": "stream", 194 "output_type": "stream",
190 "stream": "stdout", 195 "stream": "stdout",
191 "text": [ 196 "text": [
192 "\n", 197 "\n",
193 "(2, 22.0, 96978.0)" 198 "(2, 21.3125, 98476.75)"
194 ] 199 ]
195 }, 200 },
196 { 201 {
197 "output_type": "stream", 202 "output_type": "stream",
198 "stream": "stdout", 203 "stream": "stdout",
199 "text": [ 204 "text": [
200 "\n", 205 "\n",
201 "(3, 22.0, 96976.75)" 206 "(3, 21.3125, 98480.25)"
202 ] 207 ]
203 }, 208 },
204 { 209 {
205 "output_type": "stream", 210 "output_type": "stream",
206 "stream": "stdout", 211 "stream": "stdout",
207 "text": [ 212 "text": [
208 "\n", 213 "\n",
209 "(4, 22.0, 96976.75)" 214 "(4, 21.3125, 98480.25)"
210 ] 215 ]
211 }, 216 },
212 { 217 {
213 "output_type": "stream", 218 "output_type": "stream",
214 "stream": "stdout", 219 "stream": "stdout",
215 "text": [ 220 "text": [
216 "\n", 221 "\n",
217 "(5, 22.0, 96978.5)" 222 "(5, 21.3125, 98480.25)"
218 ] 223 ]
219 }, 224 },
220 { 225 {
221 "output_type": "stream", 226 "output_type": "stream",
222 "stream": "stdout", 227 "stream": "stdout",
223 "text": [ 228 "text": [
224 "\n", 229 "\n",
225 "(6, 22.0, 96978.5)" 230 "(6, 21.3125, 98480.25)"
226 ] 231 ]
227 }, 232 },
228 { 233 {
229 "output_type": "stream", 234 "output_type": "stream",
230 "stream": "stdout", 235 "stream": "stdout",
231 "text": [ 236 "text": [
232 "\n", 237 "\n",
233 "(7, 22.0, 96976.25)" 238 "(7, 21.3125, 98476.75)"
234 ] 239 ]
235 }, 240 },
236 { 241 {
237 "output_type": "stream", 242 "output_type": "stream",
238 "stream": "stdout", 243 "stream": "stdout",
239 "text": [ 244 "text": [
240 "\n", 245 "\n",
241 "(8, 22.0, 96976.25)" 246 "(8, 21.3125, 98476.75)"
242 ] 247 ]
243 }, 248 },
244 { 249 {
245 "output_type": "stream", 250 "output_type": "stream",
246 "stream": "stdout", 251 "stream": "stdout",
247 "text": [ 252 "text": [
248 "\n", 253 "\n",
249 "(9, 22.0, 96982.25)" 254 "(9, 21.3125, 98480.5)"
250 ] 255 ]
251 }, 256 },
252 { 257 {
253 "output_type": "stream", 258 "output_type": "stream",
254 "stream": "stdout", 259 "stream": "stdout",
255 "text": [ 260 "text": [
256 "\n", 261 "\n",
257 "(10, 22.0, 96982.25)" 262 "(10, 21.3125, 98480.5)"
258 ] 263 ]
259 }, 264 },
260 { 265 {
261 "output_type": "stream", 266 "output_type": "stream",
262 "stream": "stdout", 267 "stream": "stdout",
263 "text": [ 268 "text": [
264 "\n", 269 "\n",
265 "(11, 22.0, 96978.0)" 270 "(11, 21.3125, 98482.0)"
266 ] 271 ]
267 }, 272 },
268 { 273 {
269 "output_type": "stream", 274 "output_type": "stream",
270 "stream": "stdout", 275 "stream": "stdout",
271 "text": [ 276 "text": [
272 "\n", 277 "\n",
273 "(12, 22.0, 96978.0)" 278 "(12, 21.3125, 98482.0)"
274 ] 279 ]
275 }, 280 },
276 { 281 {
277 "output_type": "stream", 282 "output_type": "stream",
278 "stream": "stdout", 283 "stream": "stdout",
279 "text": [ 284 "text": [
280 "\n", 285 "\n",
281 "(13, 22.0, 96976.75)" 286 "(13, 21.3125, 98484.5)"
282 ] 287 ]
283 }, 288 },
284 { 289 {
285 "output_type": "stream", 290 "output_type": "stream",
286 "stream": "stdout", 291 "stream": "stdout",
287 "text": [ 292 "text": [
288 "\n", 293 "\n",
289 "(14, 22.0, 96976.75)" 294 "(14, 21.3125, 98480.5)"
290 ] 295 ]
291 }, 296 },
292 { 297 {
293 "output_type": "stream", 298 "output_type": "stream",
294 "stream": "stdout", 299 "stream": "stdout",
295 "text": [ 300 "text": [
296 "\n", 301 "\n",
297 "(15, 22.0, 96976.0)" 302 "(15, 21.3125, 98476.5)"
298 ] 303 ]
299 }, 304 },
300 { 305 {
301 "output_type": "stream", 306 "output_type": "stream",
302 "stream": "stdout", 307 "stream": "stdout",
303 "text": [ 308 "text": [
304 "\n", 309 "\n",
305 "(16, 22.0, 96976.0)" 310 "(16, 21.3125, 98480.5)"
306 ] 311 ]
307 }, 312 },
308 { 313 {
309 "output_type": "stream", 314 "output_type": "stream",
310 "stream": "stdout", 315 "stream": "stdout",
311 "text": [ 316 "text": [
312 "\n", 317 "\n",
313 "(17, 22.0, 96982.0)" 318 "(17, 21.3125, 98480.5)"
314 ] 319 ]
315 }, 320 },
316 { 321 {
317 "output_type": "stream", 322 "output_type": "stream",
318 "stream": "stdout", 323 "stream": "stdout",
319 "text": [ 324 "text": [
320 "\n", 325 "\n",
321 "(18, 22.0, 96982.0)" 326 "(18, 21.3125, 98482.25)"
322 ] 327 ]
323 }, 328 },
324 { 329 {
325 "output_type": "stream", 330 "output_type": "stream",
326 "stream": "stdout", 331 "stream": "stdout",
327 "text": [ 332 "text": [
328 "\n", 333 "\n",
329 "(19, 22.0, 96972.75)" 334 "(19, 21.3125, 98482.25)"
330 ] 335 ]
331 }, 336 },
332 { 337 {
333 "output_type": "stream", 338 "output_type": "stream",
334 "stream": "stdout", 339 "stream": "stdout",
335 "text": [ 340 "text": [
336 "\n", 341 "\n",
337 "(20, 22.0, 96972.75)" 342 "(20, 21.3125, 98482.25)"
338 ] 343 ]
339 }, 344 },
340 { 345 {
341 "output_type": "stream", 346 "output_type": "stream",
342 "stream": "stdout", 347 "stream": "stdout",
343 "text": [ 348 "text": [
344 "\n", 349 "\n",
345 "(21, 22.0, 96982.0)" 350 "(21, 21.3125, 98482.25)"
346 ] 351 ]
347 }, 352 },
348 { 353 {
349 "output_type": "stream", 354 "output_type": "stream",
350 "stream": "stdout", 355 "stream": "stdout",
351 "text": [ 356 "text": [
352 "\n", 357 "\n",
353 "(22, 22.0, 96982.0)" 358 "(22, 21.3125, 98482.75)"
354 ] 359 ]
355 }, 360 },
356 { 361 {
357 "output_type": "stream", 362 "output_type": "stream",
358 "stream": "stdout", 363 "stream": "stdout",
359 "text": [ 364 "text": [
360 "\n", 365 "\n",
361 "(23, 22.0, 96976.75)" 366 "(23, 21.3125, 98482.75)"
362 ] 367 ]
363 }, 368 },
364 { 369 {
365 "output_type": "stream", 370 "output_type": "stream",
366 "stream": "stdout", 371 "stream": "stdout",
367 "text": [ 372 "text": [
368 "\n", 373 "\n",
369 "(24, 22.0, 96976.75)" 374 "(24, 21.3125, 98478.5)"
370 ] 375 ]
371 }, 376 },
372 { 377 {
373 "output_type": "stream", 378 "output_type": "stream",
374 "stream": "stdout", 379 "stream": "stdout",
375 "text": [ 380 "text": [
376 "\n", 381 "\n",
377 "(25, 22.0, 96978.75)" 382 "(25, 21.3125, 98478.5)"
378 ] 383 ]
379 }, 384 },
380 { 385 {
381 "output_type": "stream", 386 "output_type": "stream",
382 "stream": "stdout", 387 "stream": "stdout",
383 "text": [ 388 "text": [
384 "\n", 389 "\n",
385 "(26, 22.0, 96978.75)" 390 "(26, 21.3125, 98482.5)"
386 ] 391 ]
387 }, 392 },
388 { 393 {
389 "output_type": "stream", 394 "output_type": "stream",
390 "stream": "stdout", 395 "stream": "stdout",
391 "text": [ 396 "text": [
392 "\n", 397 "\n",
393 "(27, 22.0, 96978.5)" 398 "(27, 21.3125, 98482.5)"
394 ] 399 ]
395 }, 400 },
396 { 401 {
397 "output_type": "stream", 402 "output_type": "stream",
398 "stream": "stdout", 403 "stream": "stdout",
399 "text": [ 404 "text": [
400 "\n", 405 "\n",
401 "(28, 22.0, 96978.5)" 406 "(28, 21.3125, 98486.75)"
402 ] 407 ]
403 }, 408 },
404 { 409 {
405 "output_type": "stream", 410 "output_type": "stream",
406 "stream": "stdout", 411 "stream": "stdout",
407 "text": [ 412 "text": [
408 "\n", 413 "\n",
409 "(29, 22.0, 96978.75)" 414 "(29, 21.3125, 98482.75)"
410 ] 415 ]
411 }, 416 },
412 { 417 {
413 "output_type": "stream", 418 "output_type": "stream",
414 "stream": "stdout", 419 "stream": "stdout",
415 "text": [ 420 "text": [
416 "\n", 421 "\n",
417 "(30, 22.0, 96976.75)" 422 "(30, 21.3125, 98482.75)"
418 ] 423 ]
419 }, 424 },
420 { 425 {
421 "output_type": "stream", 426 "output_type": "stream",
422 "stream": "stdout", 427 "stream": "stdout",
423 "text": [ 428 "text": [
424 "\n", 429 "\n",
425 "(31, 22.0, 96976.75)" 430 "(31, 21.3125, 98480.25)"
426 ] 431 ]
427 }, 432 },
428 { 433 {
429 "output_type": "stream", 434 "output_type": "stream",
430 "stream": "stdout", 435 "stream": "stdout",
431 "text": [ 436 "text": [
432 "\n", 437 "\n",
433 "(32, 22.0, 96972.75)" 438 "(32, 21.3125, 98480.25)"
434 ] 439 ]
435 }, 440 },
436 { 441 {
437 "output_type": "stream", 442 "output_type": "stream",
438 "stream": "stdout", 443 "stream": "stdout",
439 "text": [ 444 "text": [
440 "\n", 445 "\n",
441 "(33, 22.0, 96976.75)" 446 "(33, 21.3125, 98478.25)"
442 ] 447 ]
443 }, 448 },
444 { 449 {
445 "output_type": "stream", 450 "output_type": "stream",
446 "stream": "stdout", 451 "stream": "stdout",
447 "text": [ 452 "text": [
448 "\n", 453 "\n",
449 "(34, 22.0, 96978.5)" 454 "(34, 21.3125, 98478.25)"
450 ] 455 ]
451 }, 456 },
452 { 457 {
453 "output_type": "stream", 458 "output_type": "stream",
454 "stream": "stdout", 459 "stream": "stdout",
455 "text": [ 460 "text": [
456 "\n", 461 "\n",
457 "(35, 22.0, 96978.5)" 462 "(35, 21.3125, 98478.25)"
458 ] 463 ]
459 }, 464 },
460 { 465 {
461 "output_type": "stream", 466 "output_type": "stream",
462 "stream": "stdout", 467 "stream": "stdout",
463 "text": [ 468 "text": [
464 "\n", 469 "\n",
465 "(36, 22.0, 96978.25)" 470 "(36, 21.3125, 98478.25)"
466 ] 471 ]
467 }, 472 },
468 { 473 {
469 "output_type": "stream", 474 "output_type": "stream",
470 "stream": "stdout", 475 "stream": "stdout",
471 "text": [ 476 "text": [
472 "\n", 477 "\n",
473 "(37, 22.0, 96978.25)" 478 "(37, 21.3125, 98478.25)"
474 ] 479 ]
475 }, 480 },
476 { 481 {
477 "output_type": "stream", 482 "output_type": "stream",
478 "stream": "stdout", 483 "stream": "stdout",
479 "text": [ 484 "text": [
480 "\n", 485 "\n",
481 "(38, 22.0, 96976.5)" 486 "(38, 21.3125, 98478.25)"
482 ] 487 ]
483 }, 488 },
484 { 489 {
485 "output_type": "stream", 490 "output_type": "stream",
486 "stream": "stdout", 491 "stream": "stdout",
487 "text": [ 492 "text": [
488 "\n", 493 "\n",
489 "(39, 22.0, 96976.5)" 494 "(39, 21.3125, 98480.75)"
490 ] 495 ]
491 }, 496 },
492 { 497 {
493 "output_type": "stream", 498 "output_type": "stream",
494 "stream": "stdout", 499 "stream": "stdout",
495 "text": [ 500 "text": [
496 "\n", 501 "\n",
497 "(40, 22.0, 96976.75)" 502 "(40, 21.3125, 98480.75)"
498 ] 503 ]
499 }, 504 },
500 { 505 {
501 "output_type": "stream", 506 "output_type": "stream",
502 "stream": "stdout", 507 "stream": "stdout",
503 "text": [ 508 "text": [
504 "\n", 509 "\n",
505 "(41, 22.0, 96976.75)" 510 "(41, 21.3125, 98482.25)"
506 ] 511 ]
507 }, 512 },
508 { 513 {
509 "output_type": "stream", 514 "output_type": "stream",
510 "stream": "stdout", 515 "stream": "stdout",
511 "text": [ 516 "text": [
512 "\n", 517 "\n",
513 "(42, 22.0, 96980.75)" 518 "(42, 21.3125, 98482.25)"
514 ] 519 ]
515 }, 520 },
516 { 521 {
517 "output_type": "stream", 522 "output_type": "stream",
518 "stream": "stdout", 523 "stream": "stdout",
519 "text": [ 524 "text": [
520 "\n", 525 "\n",
521 "(43, 22.0, 96980.75)" 526 "(43, 21.3125, 98478.25)"
522 ] 527 ]
523 }, 528 },
524 { 529 {
525 "output_type": "stream", 530 "output_type": "stream",
526 "stream": "stdout", 531 "stream": "stdout",
527 "text": [ 532 "text": [
528 "\n", 533 "\n",
529 "(44, 22.0, 96976.25)" 534 "(44, 21.3125, 98478.25)"
530 ] 535 ]
531 }, 536 },
532 { 537 {
533 "output_type": "stream", 538 "output_type": "stream",
534 "stream": "stdout", 539 "stream": "stdout",
535 "text": [ 540 "text": [
536 "\n", 541 "\n",
537 "(45, 22.0, 96976.25)" 542 "(45, 21.3125, 98478.25)"
538 ] 543 ]
539 }, 544 },
540 { 545 {
541 "output_type": "stream", 546 "output_type": "stream",
542 "stream": "stdout", 547 "stream": "stdout",
543 "text": [ 548 "text": [
544 "\n", 549 "\n",
545 "(46, 22.0, 96974.25)" 550 "(46, 21.3125, 98482.0)"
546 ] 551 ]
547 }, 552 },
548 { 553 {
549 "output_type": "stream", 554 "output_type": "stream",
550 "stream": "stdout", 555 "stream": "stdout",
551 "text": [ 556 "text": [
552 "\n", 557 "\n",
553 "(47, 22.0, 96974.25)" 558 "(47, 21.3125, 98482.0)"
554 ] 559 ]
555 }, 560 },
556 { 561 {
557 "output_type": "stream", 562 "output_type": "stream",
558 "stream": "stdout", 563 "stream": "stdout",
559 "text": [ 564 "text": [
560 "\n", 565 "\n",
561 "(48, 22.0, 96972.25)" 566 "(48, 21.3125, 98484.5)"
562 ] 567 ]
563 }, 568 },
564 { 569 {
565 "output_type": "stream", 570 "output_type": "stream",
566 "stream": "stdout", 571 "stream": "stdout",
567 "text": [ 572 "text": [
568 "\n", 573 "\n",
569 "(49, 22.0, 96972.25)" 574 "(49, 21.3125, 98484.5)"
570 ] 575 ]
571 }, 576 },
572 { 577 {
573 "output_type": "stream", 578 "output_type": "stream",
574 "stream": "stdout", 579 "stream": "stdout",
575 "text": [ 580 "text": [
576 "\n", 581 "\n",
577 "(50, 22.0, 96978.25)" 582 "(50, 21.3125, 98476.5)"
578 ] 583 ]
579 }, 584 },
580 { 585 {
581 "output_type": "stream", 586 "output_type": "stream",
582 "stream": "stdout", 587 "stream": "stdout",
583 "text": [ 588 "text": [
584 "\n", 589 "\n",
585 "(51, 22.0, 96978.25)" 590 "(51, 21.3125, 98476.5)"
586 ] 591 ]
587 }, 592 },
588 { 593 {
589 "output_type": "stream", 594 "output_type": "stream",
590 "stream": "stdout", 595 "stream": "stdout",
591 "text": [ 596 "text": [
592 "\n", 597 "\n",
593 "(52, 22.0, 96976.25)" 598 "(52, 21.3125, 98478.75)"
594 ] 599 ]
595 }, 600 },
596 { 601 {
597 "output_type": "stream", 602 "output_type": "stream",
598 "stream": "stdout", 603 "stream": "stdout",
599 "text": [ 604 "text": [
600 "\n", 605 "\n",
601 "(53, 22.0, 96976.25)" 606 "(53, 21.3125, 98478.75)"
602 ] 607 ]
603 }, 608 },
604 { 609 {
605 "output_type": "stream", 610 "output_type": "stream",
606 "stream": "stdout", 611 "stream": "stdout",
607 "text": [ 612 "text": [
608 "\n", 613 "\n",
609 "(54, 22.0, 96978.5)" 614 "(54, 21.3125, 98480.25)"
610 ] 615 ]
611 }, 616 },
612 { 617 {
613 "output_type": "stream", 618 "output_type": "stream",
614 "stream": "stdout", 619 "stream": "stdout",
615 "text": [ 620 "text": [
616 "\n", 621 "\n",
617 "(55, 22.0, 96978.5)" 622 "(55, 21.3125, 98480.25)"
618 ] 623 ]
619 }, 624 },
620 { 625 {
621 "output_type": "stream", 626 "output_type": "stream",
622 "stream": "stdout", 627 "stream": "stdout",
623 "text": [ 628 "text": [
624 "\n", 629 "\n",
625 "(56, 22.0, 96978.5)" 630 "(56, 21.3125, 98480.0)"
626 ] 631 ]
627 }, 632 },
628 { 633 {
629 "output_type": "stream", 634 "output_type": "stream",
630 "stream": "stdout", 635 "stream": "stdout",
631 "text": [ 636 "text": [
632 "\n", 637 "\n",
633 "(57, 22.0, 96978.5)" 638 "(57, 21.3125, 98480.0)"
634 ] 639 ]
635 }, 640 },
636 { 641 {
637 "output_type": "stream", 642 "output_type": "stream",
638 "stream": "stdout", 643 "stream": "stdout",
639 "text": [ 644 "text": [
640 "\n", 645 "\n",
641 "(58, 22.0, 96978.0)" 646 "(58, 21.3125, 98482.0)"
642 ] 647 ]
643 }, 648 },
644 { 649 {
645 "output_type": "stream", 650 "output_type": "stream",
646 "stream": "stdout", 651 "stream": "stdout",
647 "text": [ 652 "text": [
648 "\n", 653 "\n",
649 "(59, 22.0, 96978.0)" 654 "(59, 21.3125, 98482.0)"
650 ] 655 ]
651 }, 656 },
652 { 657 {
653 "output_type": "stream", 658 "output_type": "stream",
654 "stream": "stdout", 659 "stream": "stdout",
655 "text": [ 660 "text": [
656 "\n", 661 "\n",
657 "(60, 22.0, 96978.0)" 662 "(60, 21.3125, 98482.0)"
658 ] 663 ]
659 }, 664 },
660 { 665 {
661 "output_type": "stream", 666 "output_type": "stream",
662 "stream": "stdout", 667 "stream": "stdout",
663 "text": [ 668 "text": [
664 "\n", 669 "\n",
665 "(61, 22.0, 96978.25)" 670 "(61, 21.3125, 98476.25)"
666 ] 671 ]
667 }, 672 },
668 { 673 {
669 "output_type": "stream", 674 "output_type": "stream",
670 "stream": "stdout", 675 "stream": "stdout",
671 "text": [ 676 "text": [
672 "\n", 677 "\n",
673 "(62, 22.0, 96978.25)" 678 "(62, 21.3125, 98476.25)"
674 ] 679 ]
675 }, 680 },
676 { 681 {
677 "output_type": "stream", 682 "output_type": "stream",
678 "stream": "stdout", 683 "stream": "stdout",
679 "text": [ 684 "text": [
680 "\n", 685 "\n",
681 "(63, 22.0, 96976.0)" 686 "(63, 21.3125, 98480.75)"
682 ] 687 ]
683 }, 688 },
684 { 689 {
685 "output_type": "stream", 690 "output_type": "stream",
686 "stream": "stdout", 691 "stream": "stdout",
687 "text": [ 692 "text": [
688 "\n", 693 "\n",
689 "(64, 22.0, 96980.0)" 694 "(64, 21.3125, 98480.75)"
690 ] 695 ]
691 }, 696 },
692 { 697 {
693 "output_type": "stream", 698 "output_type": "stream",
694 "stream": "stdout", 699 "stream": "stdout",
695 "text": [ 700 "text": [
696 "\n", 701 "\n",
697 "(65, 22.0, 96976.0)" 702 "(65, 21.3125, 98480.5)"
698 ] 703 ]
699 }, 704 },
700 { 705 {
701 "output_type": "stream", 706 "output_type": "stream",
702 "stream": "stdout", 707 "stream": "stdout",
703 "text": [ 708 "text": [
704 "\n", 709 "\n",
705 "(66, 22.0, 96976.0)" 710 "(66, 21.3125, 98480.5)"
706 ] 711 ]
707 }, 712 },
708 { 713 {
709 "output_type": "stream", 714 "output_type": "stream",
710 "stream": "stdout", 715 "stream": "stdout",
711 "text": [ 716 "text": [
712 "\n", 717 "\n",
713 "(67, 22.0, 96976.0)" 718 "(67, 21.3125, 98482.0)"
714 ] 719 ]
715 }, 720 },
716 { 721 {
717 "output_type": "stream", 722 "output_type": "stream",
718 "stream": "stdout", 723 "stream": "stdout",
719 "text": [ 724 "text": [
720 "\n", 725 "\n",
721 "(68, 22.0, 96976.0)" 726 "(68, 21.3125, 98482.0)"
722 ] 727 ]
723 }, 728 },
724 { 729 {
725 "output_type": "stream", 730 "output_type": "stream",
726 "stream": "stdout", 731 "stream": "stdout",
727 "text": [ 732 "text": [
728 "\n", 733 "\n",
729 "(69, 22.0, 96976.5)" 734 "(69, 21.3125, 98482.25)"
730 ] 735 ]
731 }, 736 },
732 { 737 {
733 "output_type": "stream", 738 "output_type": "stream",
734 "stream": "stdout", 739 "stream": "stdout",
735 "text": [ 740 "text": [
736 "\n", 741 "\n",
737 "(70, 22.0, 96976.5)" 742 "(70, 21.3125, 98482.25)"
738 ] 743 ]
739 }, 744 },
740 { 745 {
741 "output_type": "stream", 746 "output_type": "stream",
742 "stream": "stdout", 747 "stream": "stdout",
743 "text": [ 748 "text": [
744 "\n", 749 "\n",
745 "(71, 22.0, 96976.75)" 750 "(71, 21.375, 98482.75)"
746 ] 751 ]
747 }, 752 },
748 { 753 {
749 "output_type": "stream", 754 "output_type": "stream",
750 "stream": "stdout", 755 "stream": "stdout",
751 "text": [ 756 "text": [
752 "\n", 757 "\n",
753 "(72, 22.0, 96976.75)" 758 "(72, 21.375, 98486.75)"
754 ] 759 ]
755 }, 760 },
756 { 761 {
757 "output_type": "stream", 762 "output_type": "stream",
758 "stream": "stdout", 763 "stream": "stdout",
759 "text": [ 764 "text": [
760 "\n", 765 "\n",
761 "(73, 22.0, 96978.75)" 766 "(73, 21.3125, 98484.25)"
762 ] 767 ]
763 }, 768 },
764 { 769 {
765 "output_type": "stream", 770 "output_type": "stream",
766 "stream": "stdout", 771 "stream": "stdout",
767 "text": [ 772 "text": [
768 "\n", 773 "\n",
769 "(74, 22.0, 96978.75)" 774 "(74, 21.3125, 98480.25)"
770 ] 775 ]
771 }, 776 },
772 { 777 {
773 "output_type": "stream", 778 "output_type": "stream",
774 "stream": "stdout", 779 "stream": "stdout",
775 "text": [ 780 "text": [
776 "\n", 781 "\n",
777 "(75, 22.0, 96980.75)" 782 "(75, 21.3125, 98480.25)"
778 ] 783 ]
779 }, 784 },
780 { 785 {
781 "output_type": "stream", 786 "output_type": "stream",
782 "stream": "stdout", 787 "stream": "stdout",
783 "text": [ 788 "text": [
784 "\n", 789 "\n",
785 "(76, 22.0, 96980.75)" 790 "(76, 21.3125, 98480.5)"
786 ] 791 ]
787 }, 792 },
788 { 793 {
789 "output_type": "stream", 794 "output_type": "stream",
790 "stream": "stdout", 795 "stream": "stdout",
791 "text": [ 796 "text": [
792 "\n", 797 "\n",
793 "(77, 22.0, 96976.25)" 798 "(77, 21.3125, 98480.5)"
794 ] 799 ]
795 }, 800 },
796 { 801 {
797 "output_type": "stream", 802 "output_type": "stream",
798 "stream": "stdout", 803 "stream": "stdout",
799 "text": [ 804 "text": [
800 "\n", 805 "\n",
801 "(78, 22.0, 96976.25)" 806 "(78, 21.3125, 98482.5)"
802 ] 807 ]
803 }, 808 },
804 { 809 {
805 "output_type": "stream", 810 "output_type": "stream",
806 "stream": "stdout", 811 "stream": "stdout",
807 "text": [ 812 "text": [
808 "\n", 813 "\n",
809 "(79, 22.0, 96976.75)" 814 "(79, 21.3125, 98482.5)"
810 ] 815 ]
811 }, 816 },
812 { 817 {
813 "output_type": "stream", 818 "output_type": "stream",
814 "stream": "stdout", 819 "stream": "stdout",
815 "text": [ 820 "text": [
816 "\n", 821 "\n",
817 "(80, 22.0, 96976.75)" 822 "(80, 21.3125, 98482.0)"
818 ] 823 ]
819 }, 824 },
820 { 825 {
821 "output_type": "stream", 826 "output_type": "stream",
822 "stream": "stdout", 827 "stream": "stdout",
823 "text": [ 828 "text": [
824 "\n", 829 "\n",
825 "(81, 22.0, 96980.25)" 830 "(81, 21.3125, 98482.0)"
826 ] 831 ]
827 }, 832 },
828 { 833 {
829 "output_type": "stream", 834 "output_type": "stream",
830 "stream": "stdout", 835 "stream": "stdout",
831 "text": [ 836 "text": [
832 "\n", 837 "\n",
833 "(82, 22.0, 96980.25)" 838 "(82, 21.375, 98480.0)"
834 ] 839 ]
835 }, 840 },
836 { 841 {
837 "output_type": "stream", 842 "output_type": "stream",
838 "stream": "stdout", 843 "stream": "stdout",
839 "text": [ 844 "text": [
840 "\n", 845 "\n",
841 "(83, 22.0, 96978.25)" 846 "(83, 21.375, 98480.0)"
842 ] 847 ]
843 }, 848 },
844 { 849 {
845 "output_type": "stream", 850 "output_type": "stream",
846 "stream": "stdout", 851 "stream": "stdout",
847 "text": [ 852 "text": [
848 "\n", 853 "\n",
849 "(84, 22.0, 96978.25)" 854 "(84, 21.3125, 98476.0)"
850 ] 855 ]
851 }, 856 },
852 { 857 {
853 "output_type": "stream", 858 "output_type": "stream",
854 "stream": "stdout", 859 "stream": "stdout",
855 "text": [ 860 "text": [
856 "\n", 861 "\n",
857 "(85, 22.0, 96978.75)" 862 "(85, 21.3125, 98476.0)"
858 ] 863 ]
859 }, 864 },
860 { 865 {
861 "output_type": "stream", 866 "output_type": "stream",
862 "stream": "stdout", 867 "stream": "stdout",
863 "text": [ 868 "text": [
864 "\n", 869 "\n",
865 "(86, 22.0, 96978.75)" 870 "(86, 21.3125, 98478.5)"
866 ] 871 ]
867 }, 872 },
868 { 873 {
869 "output_type": "stream", 874 "output_type": "stream",
870 "stream": "stdout", 875 "stream": "stdout",
871 "text": [ 876 "text": [
872 "\n", 877 "\n",
873 "(87, 22.0, 96982.0)" 878 "(87, 21.3125, 98478.5)"
874 ] 879 ]
875 }, 880 },
876 { 881 {
877 "output_type": "stream", 882 "output_type": "stream",
878 "stream": "stdout", 883 "stream": "stdout",
879 "text": [ 884 "text": [
880 "\n", 885 "\n",
881 "(88, 22.0, 96982.0)" 886 "(88, 21.3125, 98478.5)"
882 ] 887 ]
883 }, 888 },
884 { 889 {
885 "output_type": "stream", 890 "output_type": "stream",
886 "stream": "stdout", 891 "stream": "stdout",
887 "text": [ 892 "text": [
888 "\n", 893 "\n",
889 "(89, 22.0, 96982.75)" 894 "(89, 21.3125, 98478.0)"
890 ] 895 ]
891 }, 896 },
892 { 897 {
893 "output_type": "stream", 898 "output_type": "stream",
894 "stream": "stdout", 899 "stream": "stdout",
895 "text": [ 900 "text": [
896 "\n", 901 "\n",
897 "(90, 22.0, 96976.0)" 902 "(90, 21.375, 98478.0)"
898 ] 903 ]
899 }, 904 },
900 { 905 {
901 "output_type": "stream", 906 "output_type": "stream",
902 "stream": "stdout", 907 "stream": "stdout",
903 "text": [ 908 "text": [
904 "\n", 909 "\n",
905 "(91, 22.0, 96976.0)" 910 "(91, 21.375, 98484.0)"
906 ] 911 ]
907 }, 912 },
908 { 913 {
909 "output_type": "stream", 914 "output_type": "stream",
910 "stream": "stdout", 915 "stream": "stdout",
911 "text": [ 916 "text": [
912 "\n", 917 "\n",
913 "(92, 22.0, 96980.75)" 918 "(92, 21.3125, 98484.0)"
914 ] 919 ]
915 }, 920 },
916 { 921 {
917 "output_type": "stream", 922 "output_type": "stream",
918 "stream": "stdout", 923 "stream": "stdout",
919 "text": [ 924 "text": [
920 "\n", 925 "\n",
921 "(93, 22.0, 96976.75)" 926 "(93, 21.3125, 98480.0)"
922 ] 927 ]
923 }, 928 },
924 { 929 {
925 "output_type": "stream", 930 "output_type": "stream",
926 "stream": "stdout", 931 "stream": "stdout",
927 "text": [ 932 "text": [
928 "\n", 933 "\n",
929 "(94, 22.0, 96974.25)" 934 "(94, 21.3125, 98480.0)"
930 ] 935 ]
931 }, 936 },
932 { 937 {
933 "output_type": "stream", 938 "output_type": "stream",
934 "stream": "stdout", 939 "stream": "stdout",
935 "text": [ 940 "text": [
936 "\n", 941 "\n",
937 "(95, 22.0, 96978.25)" 942 "(95, 21.3125, 98478.5)"
938 ] 943 ]
939 }, 944 },
940 { 945 {
941 "output_type": "stream", 946 "output_type": "stream",
942 "stream": "stdout", 947 "stream": "stdout",
943 "text": [ 948 "text": [
944 "\n", 949 "\n",
945 "(96, 22.0, 96976.5)" 950 "(96, 21.3125, 98478.5)"
946 ] 951 ]
947 }, 952 },
948 { 953 {
949 "output_type": "stream", 954 "output_type": "stream",
950 "stream": "stdout", 955 "stream": "stdout",
951 "text": [ 956 "text": [
952 "\n", 957 "\n",
953 "(97, 22.0, 96976.5)" 958 "(97, 21.3125, 98476.75)"
954 ] 959 ]
955 }, 960 },
956 { 961 {
957 "output_type": "stream", 962 "output_type": "stream",
958 "stream": "stdout", 963 "stream": "stdout",
959 "text": [ 964 "text": [
960 "\n", 965 "\n",
961 "(98, 21.9375, 96972.5)" 966 "(98, 21.3125, 98476.75)"
962 ] 967 ]
963 }, 968 },
964 { 969 {
965 "output_type": "stream", 970 "output_type": "stream",
966 "stream": "stdout", 971 "stream": "stdout",
967 "text": [ 972 "text": [
968 "\n", 973 "\n",
969 "(99, 21.9375, 96972.5)" 974 "(99, 21.3125, 98482.75)"
970 ] 975 ]
971 }, 976 },
972 { 977 {
973 "output_type": "stream", 978 "output_type": "stream",
974 "stream": "stdout", 979 "stream": "stdout",
975 "text": [ 980 "text": [
976 "\n" 981 "\n"
977 ] 982 ]
978 } 983 }
979 ], 984 ],
980 "prompt_number": 6 985 "prompt_number": 6
981 }, 986 },
982 { 987 {
983 "cell_type": "code", 988 "cell_type": "code",
984 "collapsed": false, 989 "collapsed": false,
985 "input": [ 990 "input": [
986 "np.savez(\"data_ground\", t, p)\n", 991 "np.savez(\"data_ground\", t, p)\n",
987 "#np.savez(\"data_top\", t, p)" 992 "#np.savez(\"data_top\", t, p)"
988 ], 993 ],
989 "language": "python", 994 "language": "python",
990 "metadata": {}, 995 "metadata": {},
991 "outputs": [], 996 "outputs": [],
992 "prompt_number": 22 997 "prompt_number": 22
993 }, 998 },
994 { 999 {
995 "cell_type": "code", 1000 "cell_type": "code",
996 "collapsed": false, 1001 "collapsed": false,
997 "input": [ 1002 "input": [
998 "amin(p)" 1003 "amin(p)"
999 ], 1004 ],
1000 "language": "python", 1005 "language": "python",
1001 "metadata": {}, 1006 "metadata": {},
1002 "outputs": [ 1007 "outputs": [
1003 { 1008 {
1004 "metadata": {}, 1009 "metadata": {},
1005 "output_type": "pyout", 1010 "output_type": "pyout",
1006 "prompt_number": 7, 1011 "prompt_number": 7,
1007 "text": [ 1012 "text": [
1008 "96972.25" 1013 "96972.25"
1009 ] 1014 ]
1010 } 1015 }
1011 ], 1016 ],
1012 "prompt_number": 7 1017 "prompt_number": 7
1013 }, 1018 },
1014 { 1019 {
1015 "cell_type": "code", 1020 "cell_type": "code",
1016 "collapsed": false, 1021 "collapsed": false,
1017 "input": [ 1022 "input": [
1018 "amax(p)" 1023 "amax(p)"
1019 ], 1024 ],
1020 "language": "python", 1025 "language": "python",
1021 "metadata": {}, 1026 "metadata": {},
1022 "outputs": [ 1027 "outputs": [
1023 { 1028 {
1024 "metadata": {}, 1029 "metadata": {},
1025 "output_type": "pyout", 1030 "output_type": "pyout",
1026 "prompt_number": 8, 1031 "prompt_number": 8,
1027 "text": [ 1032 "text": [
1028 "96838.75" 1033 "96838.75"
1029 ] 1034 ]
1030 } 1035 }
1031 ], 1036 ],
1032 "prompt_number": 8 1037 "prompt_number": 8
1033 }, 1038 },
1034 { 1039 {
1035 "cell_type": "code", 1040 "cell_type": "code",
1036 "collapsed": false, 1041 "collapsed": false,
1037 "input": [ 1042 "input": [
1038 "std(p)" 1043 "std(p)"
1039 ], 1044 ],
1040 "language": "python", 1045 "language": "python",
1041 "metadata": {}, 1046 "metadata": {},
1042 "outputs": [ 1047 "outputs": [
1043 { 1048 {
1044 "metadata": {}, 1049 "metadata": {},
1045 "output_type": "pyout", 1050 "output_type": "pyout",
1046 "prompt_number": 9, 1051 "prompt_number": 9,
1047 "text": [ 1052 "text": [
1048 "2.3585270827361722" 1053 "2.3585270827361722"
1049 ] 1054 ]
1050 } 1055 }
1051 ], 1056 ],
1052 "prompt_number": 9 1057 "prompt_number": 9
1053 }, 1058 },
1054 { 1059 {
1055 "cell_type": "code", 1060 "cell_type": "code",
1056 "collapsed": false, 1061 "collapsed": false,
1057 "input": [ 1062 "input": [
1058 "plt.plot(p)" 1063 "plt.plot(p)"
1059 ], 1064 ],
1060 "language": "python", 1065 "language": "python",
1061 "metadata": {}, 1066 "metadata": {},
1062 "outputs": [ 1067 "outputs": [
1063 { 1068 {
1064 "metadata": {}, 1069 "metadata": {},
1065 "output_type": "pyout", 1070 "output_type": "pyout",
1066 "prompt_number": 9, 1071 "prompt_number": 9,
1067 "text": [ 1072 "text": [
1068 "[<matplotlib.lines.Line2D at 0xa00bb2c>]" 1073 "[<matplotlib.lines.Line2D at 0xa00bb2c>]"
1069 ] 1074 ]
1070 }, 1075 },
1071 { 1076 {
1072 "metadata": {}, 1077 "metadata": {},
1073 "output_type": "display_data", 1078 "output_type": "display_data",
1074 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n", 1079 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n",
1075 "text": [ 1080 "text": [
1076 "<matplotlib.figure.Figure at 0x9eb46cc>" 1081 "<matplotlib.figure.Figure at 0x9eb46cc>"
1077 ] 1082 ]
1078 } 1083 }
1079 ], 1084 ],
1080 "prompt_number": 9 1085 "prompt_number": 9
1081 }, 1086 },
1082 { 1087 {
1083 "cell_type": "code", 1088 "cell_type": "code",
1084 "collapsed": false, 1089 "collapsed": false,
1085 "input": [ 1090 "input": [
1086 "plt.plot(t)" 1091 "plt.plot(t)"
1087 ], 1092 ],
1088 "language": "python", 1093 "language": "python",
1089 "metadata": {}, 1094 "metadata": {},
1090 "outputs": [ 1095 "outputs": [
1091 { 1096 {
1092 "metadata": {}, 1097 "metadata": {},
1093 "output_type": "pyout", 1098 "output_type": "pyout",
1094 "prompt_number": 11, 1099 "prompt_number": 11,
1095 "text": [ 1100 "text": [
1096 "[<matplotlib.lines.Line2D at 0x9ee51ec>]" 1101 "[<matplotlib.lines.Line2D at 0x9ee51ec>]"
1097 ] 1102 ]
1098 }, 1103 },
1099 { 1104 {
1100 "metadata": {}, 1105 "metadata": {},
1101 "output_type": "display_data", 1106 "output_type": "display_data",
1102 "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEECAYAAAAvY19bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHpFJREFUeJzt3X9wk/XhB/B3+kM5ql86JoSZRMtIaBOQNKMYj+ldtNRq\nlUyBzaLTjlXXK1ernrd9x+27G72bQA83V1Z313pnofNW+mc7L0SskE3EtGMtsKOdpBz5mgTpd4px\ngvgNTZ/vH/kaSJs+SfNEyofn/brrtU/yeZ588py8+/GdJ41GkiQJRESkGjmzPQEiIrq6GPxERCrD\n4CciUhkGPxGRyjD4iYhUhsFPRKQy13Tw//SnP4XZbIbVasW6devw2WefTRnz5Zdfwm63o7S0FBaL\nBVu2bInf98tf/hJWqxWlpaUoLy9HIBAAAJw7dw733nsvbr75Zjz77LNpzaW1tRVGoxE5OTk4d+5c\ndp4gEdEsuGaC3+PxYNOmTQm33X///Thx4gSOHTuGpUuXYvv27VP2mzNnDg4ePIijR4/i+PHjOHjw\nIA4dOgQA+NnPfoZjx47h6NGjeOSRR9DU1BTf59e//jVefvnltOd3991345133sHtt9+u4FkSEc2+\nayb4NRrNlNsqKiqQkxObot1uRzAYTLrv3LlzAQCRSATRaBTz588HANx8883xMefPn8ctt9wSH//d\n734XN95445Rj7d+/H6tXr8bKlSvxgx/8ABcuXAAAlJaWMvSJ6LpwzQR/qjcQv/7666iqqkp638TE\nBEpLS6HVanHvvffCYrHE7/vFL36B2267DXv27MHPf/7zhP0m/7L5+OOP8dJLL+Gdd97B3//+d6xc\nuRK//e1vM3xGRETXplkP/rvuugs2mw3PPPMMent7YbPZYLPZsH///viYl156CTfccAMef/zxpMfI\nycnB0aNHEQwG8de//hUejydh3w8//BA/+tGP8MILL8jOxev1Ynh4GKtXr4bNZkNnZyc+/PDDrDxP\nIqJrRd5sT8Dr9QIA/vKXv2D37t3o6OhIuH/37t1wuVx45513Uh5r3rx5eOihh3DkyBE4HI6E+x5/\n/PFp/4/hShUVFfjTn/6U/hMgIhLMrK/4v5Ks6nG73di5cyd6enowZ86cpPt9/PHHCIfDAICLFy/i\n7bffhs1mAwD4fL74uJ6envjt0z3mXXfdhffeew+nTp0CAFy4cCHhGHJzJSISRcrgd7vdKCkpgclk\nQnNzc9IxjY2NMJlMsFqtGBoaAgB88MEH8drGZrNh3rx52LVr17SPo9FopnTuzz77LM6fP4+KigrY\nbDZs3rwZAHDmzBk89NBD8Z/vu+8+lJaWwm63Y+3atSgvLwcAbNmyBXfccQdKS0vh8Xjwm9/8Jn7s\noqIivPjii9i9ezcMBgP++c9/4pZbbsHu3buxceNGWK1WrF69Gh988AEAYNeuXTAYDAiFQlixYgV+\n8pOfpDp1RETXJI3cn2WORqMoLi5GX18fdDodVq1aha6uLpjN5vgYl8uF1tZWuFwu9Pf347nnnovX\nN1+ZmJiATqfDwMAADAbD1/dsiIgoJdkV/8DAAIxGI4qKipCfn4/q6mr09PQkjOnt7UVNTQ2A2CWX\n4XAYY2NjCWP6+vqwZMkShj4R0TVA9sXdUCiUENZ6vR79/f0pxwSDQWi12vhte/fuTXpFTrJr94mI\nKDUlrzXKrvjTDebJE7hyv0gkgj//+c/4/ve/P+2+/JLwq1/9atbncK188VzwXPBcyH8pJRv8Op0u\n/vdtACAQCECv18uOCQaD0Ol08e19+/Zh5cqVWLBggeLJEhGRcrLBX1ZWBp/PB7/fj0gkgu7ubjid\nzoQxTqcTnZ2dAGLX5BcWFibUPF1dXdi4cePXMHUiIsqEbMefl5eH1tZWVFZWIhqNora2FmazGW1t\nbQCAuro6VFVVweVywWg0oqCgIOENWBcuXEBfXx9ee+21r/dZXAcmv+FMzXguLuO5uIznIntkL+f8\n2h9co8lKX0VEpCZKs/OaeecuERFdHQx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKMPiJ\niFSGwU9EpDIMfiIilZn1D1vPxLp1wFtvJb+vuBgYHJTf/3//F7j9duDzz7M/NyKir0tPD7BmjfLj\nCBn8//3fseCf9NnpOHcOsFpT73/xIvDFF8D//M/XMz8ioq/DjTdm5zhCBv/4OPAf/wEUFCTeHo3G\n7ktn/xtumLo/EZEaCNnxj48DeUl+ZeXlpR/8yfYnIlIDIYP/0qXpg//Spcz3JyJSAyGDf3wcyM+f\nevtXK/5Uf6Z6uv2JiNRA2OBPtmLPyYl9TUxktj8RkRoIGfxyVU06dQ+rHiJSMyGDX27Fns4LvFzx\nE5GaCRv803X0+fnpBT87fiJSKyGDn1UPEVHmhAx+Vj1ERJkTNvhZ9RARZSZl8LvdbpSUlMBkMqG5\nuTnpmMbGRphMJlitVgwNDcVvD4fD2LBhA8xmMywWC7xer+IJS1LsTzPkTDNzrviJiOTJBn80GkVD\nQwPcbjeGh4fR1dWFkZGRhDEulwujo6Pw+Xxob29HfX19/L7nnnsOVVVVGBkZwfHjx2E2mxVP+KvQ\n1miS38+On4hInmz8DQwMwGg0oqioCABQXV2Nnp6ehADv7e1FTU0NAMButyMcDmNsbAxz5szBu+++\niz179sQeKC8P8+bNm/IYW7dujf/scDjgcDhkJ5yqpmHVQ0TXG4/HA4/Hk7XjyQZ/KBSCwWCIb+v1\nevT396ccEwwGkZubiwULFmDTpk04duwYVq5ciZaWFsydOzdh/yuDPx2pahpWPUR0vZm8KG5qalJ0\nPNmqRzNdnzKJNOmP42g0GoyPj2NwcBCbN2/G4OAgCgoKsGPHjsxn+v9S1TSseoiI5MkGv06nQyAQ\niG8HAgHo9XrZMcFgEDqdDnq9Hnq9HqtWrQIAbNiwAYOpPhorDVzxExEpIxv8ZWVl8Pl88Pv9iEQi\n6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8WiRYtgMBhw8uRJAEBfXx+WLVumeMLs+ImIlJFd9+bl\n5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0dHfP/f//73eOKJJxCJRLBk\nyZKE+zLFqoeISBmNNLmgv5oPrtFMeX0glVOngPvvj31Pprwc2LJF/gOJ29uBv/0NeO21GT00EdE1\nIZPsvJJw79xl1UNEpIyQwc8Xd4mIMidc8LPjJyJSRrjgZ9VDRKSMkMHPqoeIKHPCBT+rHiIiZYQL\nfq74iYiUETL42fETEWVOuOBn1UNEpIxwwc+qh4hIGSGDn1UPEVHmhAx+rviJiDInXPCz4yciUka4\n4GfVQ0SkjJDBz6qHiChzwgU/qx4iImWEC36u+ImIlBEy+NnxExFlTrjgZ9VDRKSMcMHPqoeISBkh\ng59VDxFR5oQMfq74iYgylzL43W43SkpKYDKZ0NzcnHRMY2MjTCYTrFYrhoaG4rcXFRVhxYoVsNls\nuPPOO7MyYXb8RETKyMZfNBpFQ0MD+vr6oNPpsGrVKjidTpjN5vgYl8uF0dFR+Hw+9Pf3o76+Hl6v\nFwCg0Wjg8Xgwf/78rE2YVQ8RkTKyK/6BgQEYjUYUFRUhPz8f1dXV6OnpSRjT29uLmpoaAIDdbkc4\nHMbY2Fj8fkmSsjphVj1ERMrIxl8oFILBYIhv6/V69Pf3pxwTCoWg1Wqh0WiwZs0a5Obmoq6uDs88\n88yUx9i6dWv8Z4fDAYfDITthVj1EpDYejwcejydrx5ONP41Gk9ZBplvVHzp0CLfeeiv+9a9/oaKi\nAiUlJbjnnnsSxlwZ/Ongip+I1GbyoripqUnR8WSrHp1Oh0AgEN8OBALQ6/WyY4LBIHQ6HQDg1ltv\nBQAsWLAAjz76KAYGBhRNFmDHT0SklGzwl5WVwefzwe/3IxKJoLu7G06nM2GM0+lEZ2cnAMDr9aKw\nsBBarRZffPEFPv/8cwDAhQsXsH//ftxxxx2KJ8yqh4hIGdn4y8vLQ2trKyorKxGNRlFbWwuz2Yy2\ntjYAQF1dHaqqquByuWA0GlFQUICOjg4AwNmzZ7Fu3ToAwPj4OJ544gncf//9iifMqoeISBmNlO3L\nbmby4BrNjK/6qa4GHn0UeOyx5Pf39wONjbHv01mwABgejn0nIhJNJtl5Jb5zl4hIZYQLfnb8RETK\nCBf8vKqHiEgZIYOfVQ8RUeaEC36lVY8kAdEokJub/bkREYlAuOBXuuIfH4+FfppvSiYiuu4IGfxK\nOn72+0SkdsIFv9Kqh1f0EJHaCRf82ah6GPxEpGZCBj+rHiKizAkZ/FzxExFlTrjgZ8dPRKSMcMGf\nqqrJzQUmJmJfmexPRHS9EzL45VbsGk3s/mg0s/2JiK53wgV/OlWNXN3DqoeI1E644E9nxS73Ai9X\n/ESkdkIGf6qOXu6STnb8RKR2wgU/qx4iImWEC35WPUREylyXwc+qh4hoekIF/8RE7HLNnBSz5oqf\niGh6QgV/uv08O34ioukJFfzp1jSseoiIppcy+N1uN0pKSmAymdDc3Jx0TGNjI0wmE6xWK4aGhhLu\ni0ajsNlsWLt2reLJplvTsOohIpqebPBHo1E0NDTA7XZjeHgYXV1dGBkZSRjjcrkwOjoKn8+H9vZ2\n1NfXJ9zf0tICi8UCTRY+65BVDxGRcrLBPzAwAKPRiKKiIuTn56O6uho9PT0JY3p7e1FTUwMAsNvt\nCIfDGBsbAwAEg0G4XC48/fTTkCRJ8WS54iciUk42AkOhEAwGQ3xbr9ejv78/5ZhQKAStVosXXngB\nO3fuxL///e9pH2Pr1q3xnx0OBxwOx7Rj2fETkRp5PB54PJ6sHU82+NOtZyav5iVJwptvvomFCxfC\nZrPJTvjK4E+FVQ8RqdHkRXFTU5Oi48lWPTqdDoFAIL4dCASg1+tlxwSDQeh0Ohw+fBi9vb1YvHgx\nNm7ciAMHDuCpp55SNFlWPUREyskGf1lZGXw+H/x+PyKRCLq7u+F0OhPGOJ1OdHZ2AgC8Xi8KCwux\naNEibNu2DYFAAKdPn8bevXtx3333xcdlilUPEZFysmvfvLw8tLa2orKyEtFoFLW1tTCbzWhrawMA\n1NXVoaqqCi6XC0ajEQUFBejo6Eh6rGxc1cMVPxGRchopG5fbZPrgGs2MrvYZHASefjr2Xc66dcAT\nTwDr10+9b+dOYGwMePnlGU6WiOgaMdPsnIzv3CUiUhnhgp9VDxGRMkIFPy/nJCJSTqjg54qfiEg5\n4YKfHT8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRLvi54iciUkao4GfHT0SknFDBz6qHiEg5\n4YKfVQ8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRKvhZ9RARKSdU8HPFT0SknHDBz46fiEgZ\n4YKfK34iImWECn52/EREygkV/Kx6iIiUEy74WfUQESkjVPCz6iEiUi5l8LvdbpSUlMBkMqG5uTnp\nmMbGRphMJlitVgwNDQEAvvzyS9jtdpSWlsJisWDLli2KJ8uqh4hIOdngj0ajaGhogNvtxvDwMLq6\nujAyMpIwxuVyYXR0FD6fD+3t7aivrwcAzJkzBwcPHsTRo0dx/PhxHDx4EIcOHVI0WVY9RETKyQb/\nwMAAjEYjioqKkJ+fj+rqavT09CSM6e3tRU1NDQDAbrcjHA5jbGwMADB37lwAQCQSQTQaxfz58xVN\nllUPEZFyshEYCoVgMBji23q9Hv39/SnHBINBaLVaRKNRrFy5EqdOnUJ9fT0sFsuUx9i6dWv8Z4fD\nAYfDMe18uOInIjXyeDzweDxZO55sBGo0mrQOIklS0v1yc3Nx9OhRfPbZZ6isrITH45kS7FcGfyrs\n+IlIjSYvipuamhQdT7bq0el0CAQC8e1AIAC9Xi87JhgMQqfTJYyZN28eHnroIRw5ckTRZFn1EBEp\nJxv8ZWVl8Pl88Pv9iEQi6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8XHH3+McDgMALh48SLefvtt\n2Gw2RZNl1UNEpJxsBObl5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0cH\nAOCjjz5CTU0NJiYmMDExgSeffBLl5eWKJsuqh4hIOY00uaC/mg+u0Ux5fUBORQXwn/8JrFkjP250\nFHjggdj3yXJyYuGfI9Rb14iILptpdk4mVPwp7fij0dh3hj4RqZlQEai06mHNQ0QkYPAreXGXL+wS\nEQkW/EqrHl7KSUQkWPBzxU9EpJxwwc+On4hIGaGCn1UPEZFyQgX/TKueyZe5suohIhIw+NOpanJy\nYl8TE5ntT0R0PRMu+NNdsSd7gZcrfiIiwYJ/Jh19sp6fHT8RkWDBP5OqJtmVPax6iIgEDH5WPURE\nyggV/Kx6iIiUEyr4ueInIlJOmOCXpNifVc7NTW88O34iouSECf6vVutpfv47qx4iomkIF/zpYtVD\nRJScUME/k5qGVQ8RUXJCBT9X/EREygkT/DPt59nxExElJ0zws+ohIsoOoYKfVQ8RkXIpg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaAgAEAgEcO+992LZsmVYvnw5du3apWiirHqIiLJDNvij0Sga\nGhrgdrsxPDyMrq4ujIyMJIxxuVwYHR2Fz+dDe3s76uvrAQD5+fl45ZVXcOLECXi9Xrz66qtT9p0J\nrviJiLJDNvgHBgZgNBpRVFSE/Px8VFdXo6enJ2FMb28vampqAAB2ux3hcBhjY2NYtGgRSktLAQA3\n3XQTzGYzzpw5k/FE2fETEWWH7Po3FArBYDDEt/V6Pfr7+1OOCQaD0Gq18dv8fj+GhoZgt9unPMbW\nrVvjPzscDjgcjqRzYdVDRGrl8Xjg8XiydjzZGNSk+fcRpEkfbnvlfufPn8eGDRvQ0tKCm266acq+\nVwa/HFY9RKRWkxfFTU1Nio4nW/XodDoEAoH4diAQgF6vlx0TDAah0+kAAJcuXcL69evxwx/+EI88\n8oiiibLqISLKDtngLysrg8/ng9/vRyQSQXd3N5xOZ8IYp9OJzs5OAIDX60VhYSG0Wi0kSUJtbS0s\nFguef/55xRPlip+IKDtkYzAvLw+tra2orKxENBpFbW0tzGYz2traAAB1dXWoqqqCy+WC0WhEQUEB\nOjo6AADvvfce3njjDaxYsQI2mw0AsH37djzwwAMZTTRbHf+NN2b08ERE142UUfrggw/iwQcfTLit\nrq4uYbu1tXXKfnfffTcmJiYUTu+ybFU9SV5mICJSFb5zl4hIZYQJfl7OSUSUHcIEP1f8RETZIVTw\n83JOIiLlhAl+Vj1ERNkhTPCz6iEiyg6hgp9VDxGRckIFP1f8RETKCRP87PiJiLJDmOBn1UNElB1C\nBT+rHiIi5YQJflY9RETZIUzwc8VPRJQdQgU/O34iIuWECX5WPURE2SFM8LPqISLKDqGCn1UPEZFy\nQgU/V/xERMoJE/zs+ImIskOY4GfVQ0SUHUIFP6seIiLlhAl+Vj1ERNkhTPBzxU9ElB0pg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaCh++49//GNotVrccccdiifKjp+IKDtkgz8ajaKhoQFutxvD\nw8Po6urCyMhIwhiXy4XR0VH4fD60t7ejvr4+ft+mTZvgdruzMlFWPURE2SEb/AMDAzAajSgqKkJ+\nfj6qq6vR09OTMKa3txc1NTUAALvdjnA4jLNnzwIA7rnnHnzjG9/IykRZ9RARZYdsDIZCIRgMhvi2\nXq9Hf39/yjGhUAiLFi1KawJbt26N/+xwOOBwOJKOY9VDRGrl8Xjg8XiydjzZ4NdoNGkdRJKkjPYD\nEoNfjtIVvyQB0SiQm5v+MYiIrgWTF8VNTU2Kjidb9eh0OgQCgfh2IBCAXq+XHRMMBqHT6RRNKhml\nHf/4eCz0Z/A7iYjouiQb/GVlZfD5fPD7/YhEIuju7obT6UwY43Q60dnZCQDwer0oLCyEVqvN+kSV\nVj2seYiIYmSDPy8vD62traisrITFYsFjjz0Gs9mMtrY2tLW1AQCqqqrw7W9/G0ajEXV1dfjDH/4Q\n33/jxo1YvXo1Tp48CYPBgI6OjownqrTq4Qu7REQxGmlyQX81H1yjmfL6wHRsNuD112Pf0/Hpp8Di\nxUA4HNs+dw5YsiR2OxGRyGaSncmo5p27XPETEcUIFfzs+ImIlBMm+JVe1cN37RIRxQgT/DOtanJz\ngYmJ2Fcm+xMRXa+ECv6ZVDUaTSzoo9HM9iciul4JFfwzXbFf+QIvV/xERDHCBH8mHf2VPT87fiKi\nGGGCP5Oq5sore1j1EBHFCBX8rHqIiJQTJvhZ9RARZYcwwc8VPxFRdggR/BMTscszc2Y4W3b8RERT\nCRH8mdY0rHqIiKYSIvgzrWlY9RARTSVM8GdS07DqISKaSpjg54qfiCg7hAh+dvxERNkjRPCz6iEi\nyp5ZXwNv2JB6zIULmQf/f/0XsGAB4PcDpaUzPwYR0fVm1oO/ujq9cXr9zI/d0gJ88MHl7XQ/r5eI\n6HomzIetExFRjGo+bJ2IiLKDwX+N8Hg8sz2FawbPxWU8F5fxXGRPyuB3u90oKSmByWRCc3Nz0jGN\njY0wmUywWq0YGhqa0b4Uw/+oL+O5uIzn4jKei+yRDf5oNIqGhga43W4MDw+jq6sLIyMjCWNcLhdG\nR0fh8/nQ3t6O+vr6tPclIqKrTzb4BwYGYDQaUVRUhPz8fFRXV6OnpydhTG9vL2pqagAAdrsd4XAY\nZ8+eTWtfIiK6+mQv5wyFQjAYDPFtvV6P/v7+lGNCoRDOnDmTcl8g9uo0xTQ1Nc32FK4ZPBeX8Vxc\nxnORHbLBn24oZ3pZES/lJCK6+mSDX6fTIRAIxLcDgQD0k95JNXlMMBiEXq/HpUuXUu5LRERXn2zH\nX1ZWBp/PB7/fj0gkgu7ubjidzoQxTqcTnZ2dAACv14vCwkJotdq09iUioqtPdsWfl5eH1tZWVFZW\nIhqNora2FmazGW1tbQCAuro6VFVVweVywWg0oqCgAB0dHbL7EhHRLJNmyb59+6Ti4mLJaDRKO3bs\nmK1pzIoPP/xQcjgcksVikZYtWya1tLRIkiRJn3zyibRmzRrJZDJJFRUV0qeffjrLM716xsfHpdLS\nUunhhx+WJEm95+LTTz+V1q9fL5WUlEhms1nyer2qPRfbtm2TLBaLtHz5cmnjxo3Sl19+qZpzsWnT\nJmnhwoXS8uXL47fJPfdt27ZJRqNRKi4ult56662Ux5+Vd+6q/Rr//Px8vPLKKzhx4gS8Xi9effVV\njIyMYMeOHaioqMDJkydRXl6OHTt2zPZUr5qWlhZYLJb4BQVqPRfPPfccqqqqMDIyguPHj6OkpESV\n58Lv9+O1117D4OAg/vGPfyAajWLv3r2qORebNm2C2+1OuG265z48PIzu7m4MDw/D7XZj8+bNmJiY\nkH+Ar+XXVQqHDx+WKisr49vbt2+Xtm/fPhtTuSZ873vfk95++22puLhYOnv2rCRJkvTRRx9JxcXF\nszyzqyMQCEjl5eXSgQMH4it+NZ6LcDgsLV68eMrtajwXn3zyibR06VLp3Llz0qVLl6SHH35Y2r9/\nv6rOxenTpxNW/NM9923btiW0JpWVldL7778ve+xZWfFPd+2/Gvn9fgwNDcFut2NsbAxarRYAoNVq\nMTY2NsuzuzpeeOEF7Ny5Ezk5l/9zVOO5OH36NBYsWIBNmzbhO9/5Dp555hlcuHBBledi/vz5ePHF\nF3Hbbbfh1ltvRWFhISoqKlR5Lr4y3XM/c+ZMwhWT6eTprAQ/37QVc/78eaxfvx4tLS24+eabE+7T\naDSqOE9vvvkmFi5cCJvNNu37OtRyLsbHxzE4OIjNmzdjcHAQBQUFU6oMtZyLU6dO4Xe/+x38fj/O\nnDmD8+fP44033kgYo5ZzkUyq557qvMxK8Kfz/oDr3aVLl7B+/Xo8+eSTeOSRRwDEfoufPXsWAPDR\nRx9h4cKFsznFq+Lw4cPo7e3F4sWLsXHjRhw4cABPPvmkKs+FXq+HXq/HqlWrAAAbNmzA4OAgFi1a\npLpzceTIEaxevRrf/OY3kZeXh3Xr1uH9999X5bn4ynT/JpK9l0qn08kea1aCX+3X+EuShNraWlgs\nFjz//PPx251OJ/bs2QMA2LNnT/wXwvVs27ZtCAQCOH36NPbu3Yv77rsPf/zjH1V5LhYtWgSDwYCT\nJ08CAPr6+rBs2TKsXbtWdeeipKQEXq8XFy9ehCRJ6Ovrg8ViUeW5+Mp0/yacTif27t2LSCSC06dP\nw+fz4c4775Q/WLZfkEiXy+WSli5dKi1ZskTatm3bbE1jVrz77ruSRqORrFarVFpaKpWWlkr79u2T\nPvnkE6m8vPy6v1RtOh6PR1q7dq0kSZJqz8XRo0elsrIyacWKFdKjjz4qhcNh1Z6L5ubm+OWcTz31\nlBSJRFRzLqqrq6VvfetbUn5+vqTX66XXX39d9rm/9NJL0pIlS6Ti4mLJ7XanPP6sfvQiERFdffwE\nLiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyvwf/46pxWPvViQAAAAASUVORK5CYII=\n", 1107 "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEECAYAAAAvY19bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHpFJREFUeJzt3X9wk/XhB/B3+kM5ql86JoSZRMtIaBOQNKMYj+ldtNRq\nlUyBzaLTjlXXK1ernrd9x+27G72bQA83V1Z313pnofNW+mc7L0SskE3EtGMtsKOdpBz5mgTpd4px\ngvgNTZ/vH/kaSJs+SfNEyofn/brrtU/yeZ588py8+/GdJ41GkiQJRESkGjmzPQEiIrq6GPxERCrD\n4CciUhkGPxGRyjD4iYhUhsFPRKQy13Tw//SnP4XZbIbVasW6devw2WefTRnz5Zdfwm63o7S0FBaL\nBVu2bInf98tf/hJWqxWlpaUoLy9HIBAAAJw7dw733nsvbr75Zjz77LNpzaW1tRVGoxE5OTk4d+5c\ndp4gEdEsuGaC3+PxYNOmTQm33X///Thx4gSOHTuGpUuXYvv27VP2mzNnDg4ePIijR4/i+PHjOHjw\nIA4dOgQA+NnPfoZjx47h6NGjeOSRR9DU1BTf59e//jVefvnltOd3991345133sHtt9+u4FkSEc2+\nayb4NRrNlNsqKiqQkxObot1uRzAYTLrv3LlzAQCRSATRaBTz588HANx8883xMefPn8ctt9wSH//d\n734XN95445Rj7d+/H6tXr8bKlSvxgx/8ABcuXAAAlJaWMvSJ6LpwzQR/qjcQv/7666iqqkp638TE\nBEpLS6HVanHvvffCYrHE7/vFL36B2267DXv27MHPf/7zhP0m/7L5+OOP8dJLL+Gdd97B3//+d6xc\nuRK//e1vM3xGRETXplkP/rvuugs2mw3PPPMMent7YbPZYLPZsH///viYl156CTfccAMef/zxpMfI\nycnB0aNHEQwG8de//hUejydh3w8//BA/+tGP8MILL8jOxev1Ynh4GKtXr4bNZkNnZyc+/PDDrDxP\nIqJrRd5sT8Dr9QIA/vKXv2D37t3o6OhIuH/37t1wuVx45513Uh5r3rx5eOihh3DkyBE4HI6E+x5/\n/PFp/4/hShUVFfjTn/6U/hMgIhLMrK/4v5Ks6nG73di5cyd6enowZ86cpPt9/PHHCIfDAICLFy/i\n7bffhs1mAwD4fL74uJ6envjt0z3mXXfdhffeew+nTp0CAFy4cCHhGHJzJSISRcrgd7vdKCkpgclk\nQnNzc9IxjY2NMJlMsFqtGBoaAgB88MEH8drGZrNh3rx52LVr17SPo9FopnTuzz77LM6fP4+KigrY\nbDZs3rwZAHDmzBk89NBD8Z/vu+8+lJaWwm63Y+3atSgvLwcAbNmyBXfccQdKS0vh8Xjwm9/8Jn7s\noqIivPjii9i9ezcMBgP++c9/4pZbbsHu3buxceNGWK1WrF69Gh988AEAYNeuXTAYDAiFQlixYgV+\n8pOfpDp1RETXJI3cn2WORqMoLi5GX18fdDodVq1aha6uLpjN5vgYl8uF1tZWuFwu9Pf347nnnovX\nN1+ZmJiATqfDwMAADAbD1/dsiIgoJdkV/8DAAIxGI4qKipCfn4/q6mr09PQkjOnt7UVNTQ2A2CWX\n4XAYY2NjCWP6+vqwZMkShj4R0TVA9sXdUCiUENZ6vR79/f0pxwSDQWi12vhte/fuTXpFTrJr94mI\nKDUlrzXKrvjTDebJE7hyv0gkgj//+c/4/ve/P+2+/JLwq1/9atbncK188VzwXPBcyH8pJRv8Op0u\n/vdtACAQCECv18uOCQaD0Ol08e19+/Zh5cqVWLBggeLJEhGRcrLBX1ZWBp/PB7/fj0gkgu7ubjid\nzoQxTqcTnZ2dAGLX5BcWFibUPF1dXdi4cePXMHUiIsqEbMefl5eH1tZWVFZWIhqNora2FmazGW1t\nbQCAuro6VFVVweVywWg0oqCgIOENWBcuXEBfXx9ee+21r/dZXAcmv+FMzXguLuO5uIznIntkL+f8\n2h9co8lKX0VEpCZKs/OaeecuERFdHQx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKMPiJ\niFSGwU9EpDIMfiIilZn1D1vPxLp1wFtvJb+vuBgYHJTf/3//F7j9duDzz7M/NyKir0tPD7BmjfLj\nCBn8//3fseCf9NnpOHcOsFpT73/xIvDFF8D//M/XMz8ioq/DjTdm5zhCBv/4OPAf/wEUFCTeHo3G\n7ktn/xtumLo/EZEaCNnxj48DeUl+ZeXlpR/8yfYnIlIDIYP/0qXpg//Spcz3JyJSAyGDf3wcyM+f\nevtXK/5Uf6Z6uv2JiNRA2OBPtmLPyYl9TUxktj8RkRoIGfxyVU06dQ+rHiJSMyGDX27Fns4LvFzx\nE5GaCRv803X0+fnpBT87fiJSKyGDn1UPEVHmhAx+Vj1ERJkTNvhZ9RARZSZl8LvdbpSUlMBkMqG5\nuTnpmMbGRphMJlitVgwNDcVvD4fD2LBhA8xmMywWC7xer+IJS1LsTzPkTDNzrviJiOTJBn80GkVD\nQwPcbjeGh4fR1dWFkZGRhDEulwujo6Pw+Xxob29HfX19/L7nnnsOVVVVGBkZwfHjx2E2mxVP+KvQ\n1miS38+On4hInmz8DQwMwGg0oqioCABQXV2Nnp6ehADv7e1FTU0NAMButyMcDmNsbAxz5szBu+++\niz179sQeKC8P8+bNm/IYW7dujf/scDjgcDhkJ5yqpmHVQ0TXG4/HA4/Hk7XjyQZ/KBSCwWCIb+v1\nevT396ccEwwGkZubiwULFmDTpk04duwYVq5ciZaWFsydOzdh/yuDPx2pahpWPUR0vZm8KG5qalJ0\nPNmqRzNdnzKJNOmP42g0GoyPj2NwcBCbN2/G4OAgCgoKsGPHjsxn+v9S1TSseoiI5MkGv06nQyAQ\niG8HAgHo9XrZMcFgEDqdDnq9Hnq9HqtWrQIAbNiwAYOpPhorDVzxExEpIxv8ZWVl8Pl88Pv9iEQi\n6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8WiRYtgMBhw8uRJAEBfXx+WLVumeMLs+ImIlJFd9+bl\n5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0dHfP/f//73eOKJJxCJRLBk\nyZKE+zLFqoeISBmNNLmgv5oPrtFMeX0glVOngPvvj31Pprwc2LJF/gOJ29uBv/0NeO21GT00EdE1\nIZPsvJJw79xl1UNEpIyQwc8Xd4mIMidc8LPjJyJSRrjgZ9VDRKSMkMHPqoeIKHPCBT+rHiIiZYQL\nfq74iYiUETL42fETEWVOuOBn1UNEpIxwwc+qh4hIGSGDn1UPEVHmhAx+rviJiDInXPCz4yciUka4\n4GfVQ0SkjJDBz6qHiChzwgU/qx4iImWEC36u+ImIlBEy+NnxExFlTrjgZ9VDRKSMcMHPqoeISBkh\ng59VDxFR5oQMfq74iYgylzL43W43SkpKYDKZ0NzcnHRMY2MjTCYTrFYrhoaG4rcXFRVhxYoVsNls\nuPPOO7MyYXb8RETKyMZfNBpFQ0MD+vr6oNPpsGrVKjidTpjN5vgYl8uF0dFR+Hw+9Pf3o76+Hl6v\nFwCg0Wjg8Xgwf/78rE2YVQ8RkTKyK/6BgQEYjUYUFRUhPz8f1dXV6OnpSRjT29uLmpoaAIDdbkc4\nHMbY2Fj8fkmSsjphVj1ERMrIxl8oFILBYIhv6/V69Pf3pxwTCoWg1Wqh0WiwZs0a5Obmoq6uDs88\n88yUx9i6dWv8Z4fDAYfDITthVj1EpDYejwcejydrx5ONP41Gk9ZBplvVHzp0CLfeeiv+9a9/oaKi\nAiUlJbjnnnsSxlwZ/Ongip+I1GbyoripqUnR8WSrHp1Oh0AgEN8OBALQ6/WyY4LBIHQ6HQDg1ltv\nBQAsWLAAjz76KAYGBhRNFmDHT0SklGzwl5WVwefzwe/3IxKJoLu7G06nM2GM0+lEZ2cnAMDr9aKw\nsBBarRZffPEFPv/8cwDAhQsXsH//ftxxxx2KJ8yqh4hIGdn4y8vLQ2trKyorKxGNRlFbWwuz2Yy2\ntjYAQF1dHaqqquByuWA0GlFQUICOjg4AwNmzZ7Fu3ToAwPj4OJ544gncf//9iifMqoeISBmNlO3L\nbmby4BrNjK/6qa4GHn0UeOyx5Pf39wONjbHv01mwABgejn0nIhJNJtl5Jb5zl4hIZYQLfnb8RETK\nCBf8vKqHiEgZIYOfVQ8RUeaEC36lVY8kAdEokJub/bkREYlAuOBXuuIfH4+FfppvSiYiuu4IGfxK\nOn72+0SkdsIFv9Kqh1f0EJHaCRf82ah6GPxEpGZCBj+rHiKizAkZ/FzxExFlTrjgZ8dPRKSMcMGf\nqqrJzQUmJmJfmexPRHS9EzL45VbsGk3s/mg0s/2JiK53wgV/OlWNXN3DqoeI1E644E9nxS73Ai9X\n/ESkdkIGf6qOXu6STnb8RKR2wgU/qx4iImWEC35WPUREylyXwc+qh4hoekIF/8RE7HLNnBSz5oqf\niGh6QgV/uv08O34ioukJFfzp1jSseoiIppcy+N1uN0pKSmAymdDc3Jx0TGNjI0wmE6xWK4aGhhLu\ni0ajsNlsWLt2reLJplvTsOohIpqebPBHo1E0NDTA7XZjeHgYXV1dGBkZSRjjcrkwOjoKn8+H9vZ2\n1NfXJ9zf0tICi8UCTRY+65BVDxGRcrLBPzAwAKPRiKKiIuTn56O6uho9PT0JY3p7e1FTUwMAsNvt\nCIfDGBsbAwAEg0G4XC48/fTTkCRJ8WS54iciUk42AkOhEAwGQ3xbr9ejv78/5ZhQKAStVosXXngB\nO3fuxL///e9pH2Pr1q3xnx0OBxwOx7Rj2fETkRp5PB54PJ6sHU82+NOtZyav5iVJwptvvomFCxfC\nZrPJTvjK4E+FVQ8RqdHkRXFTU5Oi48lWPTqdDoFAIL4dCASg1+tlxwSDQeh0Ohw+fBi9vb1YvHgx\nNm7ciAMHDuCpp55SNFlWPUREyskGf1lZGXw+H/x+PyKRCLq7u+F0OhPGOJ1OdHZ2AgC8Xi8KCwux\naNEibNu2DYFAAKdPn8bevXtx3333xcdlilUPEZFysmvfvLw8tLa2orKyEtFoFLW1tTCbzWhrawMA\n1NXVoaqqCi6XC0ajEQUFBejo6Eh6rGxc1cMVPxGRchopG5fbZPrgGs2MrvYZHASefjr2Xc66dcAT\nTwDr10+9b+dOYGwMePnlGU6WiOgaMdPsnIzv3CUiUhnhgp9VDxGRMkIFPy/nJCJSTqjg54qfiEg5\n4YKfHT8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRLvi54iciUkao4GfHT0SknFDBz6qHiEg5\n4YKfVQ8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRKvhZ9RARKSdU8HPFT0SknHDBz46fiEgZ\n4YKfK34iImWECn52/EREygkV/Kx6iIiUEy74WfUQESkjVPCz6iEiUi5l8LvdbpSUlMBkMqG5uTnp\nmMbGRphMJlitVgwNDQEAvvzyS9jtdpSWlsJisWDLli2KJ8uqh4hIOdngj0ajaGhogNvtxvDwMLq6\nujAyMpIwxuVyYXR0FD6fD+3t7aivrwcAzJkzBwcPHsTRo0dx/PhxHDx4EIcOHVI0WVY9RETKyQb/\nwMAAjEYjioqKkJ+fj+rqavT09CSM6e3tRU1NDQDAbrcjHA5jbGwMADB37lwAQCQSQTQaxfz58xVN\nllUPEZFyshEYCoVgMBji23q9Hv39/SnHBINBaLVaRKNRrFy5EqdOnUJ9fT0sFsuUx9i6dWv8Z4fD\nAYfDMe18uOInIjXyeDzweDxZO55sBGo0mrQOIklS0v1yc3Nx9OhRfPbZZ6isrITH45kS7FcGfyrs\n+IlIjSYvipuamhQdT7bq0el0CAQC8e1AIAC9Xi87JhgMQqfTJYyZN28eHnroIRw5ckTRZFn1EBEp\nJxv8ZWVl8Pl88Pv9iEQi6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8XHH3+McDgMALh48SLefvtt\n2Gw2RZNl1UNEpJxsBObl5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0cH\nAOCjjz5CTU0NJiYmMDExgSeffBLl5eWKJsuqh4hIOY00uaC/mg+u0Ux5fUBORQXwn/8JrFkjP250\nFHjggdj3yXJyYuGfI9Rb14iILptpdk4mVPwp7fij0dh3hj4RqZlQEai06mHNQ0QkYPAreXGXL+wS\nEQkW/EqrHl7KSUQkWPBzxU9EpJxwwc+On4hIGaGCn1UPEZFyQgX/TKueyZe5suohIhIw+NOpanJy\nYl8TE5ntT0R0PRMu+NNdsSd7gZcrfiIiwYJ/Jh19sp6fHT8RkWDBP5OqJtmVPax6iIgEDH5WPURE\nyggV/Kx6iIiUEyr4ueInIlJOmOCXpNifVc7NTW88O34iouSECf6vVutpfv47qx4iomkIF/zpYtVD\nRJScUME/k5qGVQ8RUXJCBT9X/EREygkT/DPt59nxExElJ0zws+ohIsoOoYKfVQ8RkXIpg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaAgAEAgEcO+992LZsmVYvnw5du3apWiirHqIiLJDNvij0Sga\nGhrgdrsxPDyMrq4ujIyMJIxxuVwYHR2Fz+dDe3s76uvrAQD5+fl45ZVXcOLECXi9Xrz66qtT9p0J\nrviJiLJDNvgHBgZgNBpRVFSE/Px8VFdXo6enJ2FMb28vampqAAB2ux3hcBhjY2NYtGgRSktLAQA3\n3XQTzGYzzpw5k/FE2fETEWWH7Po3FArBYDDEt/V6Pfr7+1OOCQaD0Gq18dv8fj+GhoZgt9unPMbW\nrVvjPzscDjgcjqRzYdVDRGrl8Xjg8XiydjzZGNSk+fcRpEkfbnvlfufPn8eGDRvQ0tKCm266acq+\nVwa/HFY9RKRWkxfFTU1Nio4nW/XodDoEAoH4diAQgF6vlx0TDAah0+kAAJcuXcL69evxwx/+EI88\n8oiiibLqISLKDtngLysrg8/ng9/vRyQSQXd3N5xOZ8IYp9OJzs5OAIDX60VhYSG0Wi0kSUJtbS0s\nFguef/55xRPlip+IKDtkYzAvLw+tra2orKxENBpFbW0tzGYz2traAAB1dXWoqqqCy+WC0WhEQUEB\nOjo6AADvvfce3njjDaxYsQI2mw0AsH37djzwwAMZTTRbHf+NN2b08ERE142UUfrggw/iwQcfTLit\nrq4uYbu1tXXKfnfffTcmJiYUTu+ybFU9SV5mICJSFb5zl4hIZYQJfl7OSUSUHcIEP1f8RETZIVTw\n83JOIiLlhAl+Vj1ERNkhTPCz6iEiyg6hgp9VDxGRckIFP1f8RETKCRP87PiJiLJDmOBn1UNElB1C\nBT+rHiIi5YQJflY9RETZIUzwc8VPRJQdQgU/O34iIuWECX5WPURE2SFM8LPqISLKDqGCn1UPEZFy\nQgU/V/xERMoJE/zs+ImIskOY4GfVQ0SUHUIFP6seIiLlhAl+Vj1ERNkhTPBzxU9ElB0pg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaCh++49//GNotVrccccdiifKjp+IKDtkgz8ajaKhoQFutxvD\nw8Po6urCyMhIwhiXy4XR0VH4fD60t7ejvr4+ft+mTZvgdruzMlFWPURE2SEb/AMDAzAajSgqKkJ+\nfj6qq6vR09OTMKa3txc1NTUAALvdjnA4jLNnzwIA7rnnHnzjG9/IykRZ9RARZYdsDIZCIRgMhvi2\nXq9Hf39/yjGhUAiLFi1KawJbt26N/+xwOOBwOJKOY9VDRGrl8Xjg8XiydjzZ4NdoNGkdRJKkjPYD\nEoNfjtIVvyQB0SiQm5v+MYiIrgWTF8VNTU2Kjidb9eh0OgQCgfh2IBCAXq+XHRMMBqHT6RRNKhml\nHf/4eCz0Z/A7iYjouiQb/GVlZfD5fPD7/YhEIuju7obT6UwY43Q60dnZCQDwer0oLCyEVqvN+kSV\nVj2seYiIYmSDPy8vD62traisrITFYsFjjz0Gs9mMtrY2tLW1AQCqqqrw7W9/G0ajEXV1dfjDH/4Q\n33/jxo1YvXo1Tp48CYPBgI6OjownqrTq4Qu7REQxGmlyQX81H1yjmfL6wHRsNuD112Pf0/Hpp8Di\nxUA4HNs+dw5YsiR2OxGRyGaSncmo5p27XPETEcUIFfzs+ImIlBMm+JVe1cN37RIRxQgT/DOtanJz\ngYmJ2Fcm+xMRXa+ECv6ZVDUaTSzoo9HM9iciul4JFfwzXbFf+QIvV/xERDHCBH8mHf2VPT87fiKi\nGGGCP5Oq5sore1j1EBHFCBX8rHqIiJQTJvhZ9RARZYcwwc8VPxFRdggR/BMTscszc2Y4W3b8RERT\nCRH8mdY0rHqIiKYSIvgzrWlY9RARTSVM8GdS07DqISKaSpjg54qfiCg7hAh+dvxERNkjRPCz6iEi\nyp5ZXwNv2JB6zIULmQf/f/0XsGAB4PcDpaUzPwYR0fVm1oO/ujq9cXr9zI/d0gJ88MHl7XQ/r5eI\n6HomzIetExFRjGo+bJ2IiLKDwX+N8Hg8sz2FawbPxWU8F5fxXGRPyuB3u90oKSmByWRCc3Nz0jGN\njY0wmUywWq0YGhqa0b4Uw/+oL+O5uIzn4jKei+yRDf5oNIqGhga43W4MDw+jq6sLIyMjCWNcLhdG\nR0fh8/nQ3t6O+vr6tPclIqKrTzb4BwYGYDQaUVRUhPz8fFRXV6OnpydhTG9vL2pqagAAdrsd4XAY\nZ8+eTWtfIiK6+mQv5wyFQjAYDPFtvV6P/v7+lGNCoRDOnDmTcl8g9uo0xTQ1Nc32FK4ZPBeX8Vxc\nxnORHbLBn24oZ3pZES/lJCK6+mSDX6fTIRAIxLcDgQD0k95JNXlMMBiEXq/HpUuXUu5LRERXn2zH\nX1ZWBp/PB7/fj0gkgu7ubjidzoQxTqcTnZ2dAACv14vCwkJotdq09iUioqtPdsWfl5eH1tZWVFZW\nIhqNora2FmazGW1tbQCAuro6VFVVweVywWg0oqCgAB0dHbL7EhHRLJNmyb59+6Ti4mLJaDRKO3bs\nmK1pzIoPP/xQcjgcksVikZYtWya1tLRIkiRJn3zyibRmzRrJZDJJFRUV0qeffjrLM716xsfHpdLS\nUunhhx+WJEm95+LTTz+V1q9fL5WUlEhms1nyer2qPRfbtm2TLBaLtHz5cmnjxo3Sl19+qZpzsWnT\nJmnhwoXS8uXL47fJPfdt27ZJRqNRKi4ult56662Ux5+Vd+6q/Rr//Px8vPLKKzhx4gS8Xi9effVV\njIyMYMeOHaioqMDJkydRXl6OHTt2zPZUr5qWlhZYLJb4BQVqPRfPPfccqqqqMDIyguPHj6OkpESV\n58Lv9+O1117D4OAg/vGPfyAajWLv3r2qORebNm2C2+1OuG265z48PIzu7m4MDw/D7XZj8+bNmJiY\nkH+Ar+XXVQqHDx+WKisr49vbt2+Xtm/fPhtTuSZ873vfk95++22puLhYOnv2rCRJkvTRRx9JxcXF\nszyzqyMQCEjl5eXSgQMH4it+NZ6LcDgsLV68eMrtajwXn3zyibR06VLp3Llz0qVLl6SHH35Y2r9/\nv6rOxenTpxNW/NM9923btiW0JpWVldL7778ve+xZWfFPd+2/Gvn9fgwNDcFut2NsbAxarRYAoNVq\nMTY2NsuzuzpeeOEF7Ny5Ezk5l/9zVOO5OH36NBYsWIBNmzbhO9/5Dp555hlcuHBBledi/vz5ePHF\nF3Hbbbfh1ltvRWFhISoqKlR5Lr4y3XM/c+ZMwhWT6eTprAQ/37QVc/78eaxfvx4tLS24+eabE+7T\naDSqOE9vvvkmFi5cCJvNNu37OtRyLsbHxzE4OIjNmzdjcHAQBQUFU6oMtZyLU6dO4Xe/+x38fj/O\nnDmD8+fP44033kgYo5ZzkUyq557qvMxK8Kfz/oDr3aVLl7B+/Xo8+eSTeOSRRwDEfoufPXsWAPDR\nRx9h4cKFsznFq+Lw4cPo7e3F4sWLsXHjRhw4cABPPvmkKs+FXq+HXq/HqlWrAAAbNmzA4OAgFi1a\npLpzceTIEaxevRrf/OY3kZeXh3Xr1uH9999X5bn4ynT/JpK9l0qn08kea1aCX+3X+EuShNraWlgs\nFjz//PPx251OJ/bs2QMA2LNnT/wXwvVs27ZtCAQCOH36NPbu3Yv77rsPf/zjH1V5LhYtWgSDwYCT\nJ08CAPr6+rBs2TKsXbtWdeeipKQEXq8XFy9ehCRJ6Ovrg8ViUeW5+Mp0/yacTif27t2LSCSC06dP\nw+fz4c4775Q/WLZfkEiXy+WSli5dKi1ZskTatm3bbE1jVrz77ruSRqORrFarVFpaKpWWlkr79u2T\nPvnkE6m8vPy6v1RtOh6PR1q7dq0kSZJqz8XRo0elsrIyacWKFdKjjz4qhcNh1Z6L5ubm+OWcTz31\nlBSJRFRzLqqrq6VvfetbUn5+vqTX66XXX39d9rm/9NJL0pIlS6Ti4mLJ7XanPP6sfvQiERFdffwE\nLiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyvwf/46pxWPvViQAAAAASUVORK5CYII=\n",
1103 "text": [ 1108 "text": [
1104 "<matplotlib.figure.Figure at 0x9d764cc>" 1109 "<matplotlib.figure.Figure at 0x9d764cc>"
1105 ] 1110 ]
1106 } 1111 }
1107 ], 1112 ],
1108 "prompt_number": 11 1113 "prompt_number": 11
1109 }, 1114 },
1110 { 1115 {
1111 "cell_type": "code", 1116 "cell_type": "code",
1112 "collapsed": false, 1117 "collapsed": false,
1113 "input": [], 1118 "input": [],
1114 "language": "python", 1119 "language": "python",
1115 "metadata": {}, 1120 "metadata": {},
1116 "outputs": [] 1121 "outputs": []
1117 } 1122 }
1118 ], 1123 ],
1119 "metadata": {} 1124 "metadata": {}
1120 } 1125 }
1121 ] 1126 ]
1122 } 1127 }