1 |
use<Write.scad> |
1 |
use<Write.scad> |
2 |
$fn=100; |
2 |
$fn=100; |
3 |
|
3 |
|
4 |
x_size = 20; // horizontal outer size of the pedestal. |
4 |
x_size = 20; // horizontal outer size of the pedestal. |
5 |
y_size = 20; // |
5 |
y_size = 20; // |
6 |
mount_hole = 3.5; |
6 |
mount_hole = 3.5; |
7 |
nut_size = 6.8; |
7 |
nut_size = 6.8; |
8 |
SMA_dia = 6.5; |
8 |
SMA_dia = 6.1; |
9 |
SMA_flat = 3.15; |
9 |
SMA_flat = 3.15; |
10 |
thickness = 10; // |
10 |
thickness = 10; // |
11 |
wall_thickness = 2; |
11 |
wall_thickness = 2; |
12 |
height = 55; |
12 |
height = 55; |
13 |
|
13 |
|
14 |
mount_hole = 3.7; |
14 |
mount_hole = 3.7; |
15 |
clear = 0.175; |
15 |
clear = 0.175; |
16 |
|
16 |
|
17 |
MLAB_grid = 10.16; |
17 |
MLAB_grid = 10.16; |
18 |
|
18 |
|
19 |
x_holes = floor(x_size / MLAB_grid); |
19 |
x_holes = floor(x_size / MLAB_grid); |
20 |
y_holes = floor(y_size / MLAB_grid); |
20 |
y_holes = floor(y_size / MLAB_grid); |
21 |
|
21 |
|
22 |
MLAB_grid_xoffset = (x_size - (x_holes * MLAB_grid))/2; |
22 |
MLAB_grid_xoffset = (x_size - (x_holes * MLAB_grid))/2; |
23 |
MLAB_grid_yoffset = (y_size - (y_holes * MLAB_grid))/2; |
23 |
MLAB_grid_yoffset = (y_size - (y_holes * MLAB_grid))/2; |
24 |
|
24 |
|
25 |
//Top part |
25 |
//Top part |
26 |
|
26 |
|
27 |
union () { |
27 |
union () { |
28 |
|
28 |
|
29 |
difference () { |
29 |
difference () { |
30 |
cube([x_size, y_size , thickness ]); |
30 |
cube([x_size, y_size , thickness ]); |
31 |
|
31 |
|
32 |
// MLAB grid holes |
32 |
// MLAB grid holes |
33 |
grid_list = [for (j = [MLAB_grid_xoffset : MLAB_grid: x_size], i = [MLAB_grid_yoffset :MLAB_grid: y_size]) [j, i] ]; |
33 |
grid_list = [for (j = [MLAB_grid_xoffset : MLAB_grid: x_size], i = [MLAB_grid_yoffset :MLAB_grid: y_size]) [j, i] ]; |
34 |
|
34 |
|
35 |
for (j = grid_list) { |
35 |
for (j = grid_list) { |
36 |
translate (concat(j, [0])) |
36 |
translate (concat(j, [0])) |
37 |
cylinder (h = 3, r= nut_size/2, $fn=6); |
37 |
cylinder (h = 3, r= nut_size/2, $fn=6); |
38 |
translate (concat(j, [3.2])) // one solid layer for slicer (the holes will be pierced on demand ) |
38 |
translate (concat(j, [3.2])) // one solid layer for slicer (the holes will be pierced on demand ) |
39 |
cylinder (h = thickness /3, r= mount_hole/2, $fn=30); |
39 |
cylinder (h = thickness /3, r= mount_hole/2, $fn=30); |
40 |
translate (concat(j, [6.0])) |
40 |
translate (concat(j, [6.0])) |
41 |
cylinder (h = 10, r= nut_size/2, $fn=6); |
41 |
cylinder (h = 10, r= nut_size/2, $fn=6); |
42 |
} |
42 |
} |
43 |
}; |
43 |
}; |
44 |
|
44 |
|
45 |
difference () { |
45 |
difference () { |
46 |
|
46 |
|
47 |
translate ([0, -wall_thickness, 0]) // vertical brick |
47 |
translate ([0, -wall_thickness, 0]) // vertical brick |
48 |
cube([y_size, wall_thickness , height ]); |
48 |
cube([y_size, wall_thickness , height ]); |
49 |
|
49 |
|
50 |
// SMA connector holes |
50 |
// SMA connector holes |
51 |
translate ([ x_size/2, wall_thickness/2, (height - thickness)/3 + thickness - SMA_dia/2]) |
51 |
translate ([ x_size/2, wall_thickness/2, (height - thickness)/3 + thickness - SMA_dia/2]) |
52 |
rotate([90,0,0]) { |
52 |
rotate([90,0,0]) { |
53 |
difference () { |
53 |
difference () { |
54 |
cylinder (h = 2*wall_thickness, r= SMA_dia/2, $fn=50); |
54 |
cylinder (h = 2*wall_thickness, r= SMA_dia/2, $fn=50); |
55 |
translate([ 0, SMA_flat , wall_thickness/2 + wall_thickness ]) |
55 |
translate([ 0, SMA_flat , wall_thickness/2 + wall_thickness ]) |
56 |
cube([SMA_dia, 1 , thickness ], center=true); |
56 |
cube([SMA_dia, 1 , thickness ], center=true); |
57 |
} |
57 |
} |
58 |
} |
58 |
} |
59 |
|
59 |
|
60 |
translate ([ x_size/2, wall_thickness/2, 2*(height - thickness)/3 + thickness + SMA_dia/2 ]) |
60 |
translate ([ x_size/2, wall_thickness/2, 2*(height - thickness)/3 + thickness + SMA_dia/2 ]) |
61 |
rotate([90,0,0]){ |
61 |
rotate([90,0,0]){ |
62 |
difference () { |
62 |
difference () { |
63 |
cylinder (h = 2*wall_thickness, r= SMA_dia/2, $fn=50); |
63 |
cylinder (h = 2*wall_thickness, r= SMA_dia/2, $fn=50); |
64 |
translate([ 0, SMA_flat , wall_thickness/2 + wall_thickness ]) |
64 |
translate([ 0, SMA_flat , wall_thickness/2 + wall_thickness ]) |
65 |
cube([SMA_dia, 1 , thickness ], center=true); |
65 |
cube([SMA_dia, 1 , thickness ], center=true); |
66 |
} |
66 |
} |
67 |
|
67 |
|
68 |
} |
68 |
} |
69 |
// texts |
69 |
// texts |
70 |
|
70 |
|
71 |
translate ([ x_size/2, wall_thickness/2, (height - thickness)/3 + thickness - SMA_dia/2]) |
71 |
translate ([ x_size/2, wall_thickness/2, (height - thickness)/3 + thickness - SMA_dia/2]) |
72 |
rotate([90,0,0]) { |
72 |
rotate([90,0,0]) { |
73 |
translate([ 0, -11, wall_thickness/2 + wall_thickness ]) |
73 |
translate([ 0, -11, wall_thickness/2 + wall_thickness ]) |
74 |
rotate([0,0,180]) |
74 |
rotate([0,0,180]) |
75 |
write("GPS",h=5,t=2,space= 1.1, font = "Letters.dxf", center=true); |
75 |
write("GPS",h=5,t=2,space= 1.1, font = "Letters.dxf", center=true); |
76 |
} |
76 |
} |
77 |
|
77 |
|
78 |
translate ([ x_size/2, wall_thickness/2, 2*(height - thickness)/3 + thickness + SMA_dia/2 ]) |
78 |
translate ([ x_size/2, wall_thickness/2, 2*(height - thickness)/3 + thickness + SMA_dia/2 ]) |
79 |
rotate([90,0,0]){ |
79 |
rotate([90,0,0]){ |
80 |
translate([ 0, -11, wall_thickness/2 + wall_thickness]) |
80 |
translate([ 0, -11, wall_thickness/2 + wall_thickness]) |
81 |
rotate([0,0,180]) |
81 |
rotate([0,0,180]) |
82 |
write("ANT",h=5,t=2, space= 1.1, font = "Letters.dxf",center=true); |
82 |
write("ANT",h=5,t=2, space= 1.1, font = "Letters.dxf",center=true); |
83 |
} |
83 |
} |
84 |
|
84 |
|
85 |
|
85 |
|
86 |
|
86 |
|
87 |
} |
87 |
} |
88 |
} |
88 |
} |
89 |
|
89 |
|
90 |
|
90 |
|