Rev 2007 Rev 2008
1 #include "reflow.h" 1 #include "reflow.h"
2 #include "process.h" 2 #include "process.h"
3 #include <math.h> 3 #include <math.h>
4   4  
5 // nastaveni teplot a casu 5 // nastaveni teplot a casu
6 #define TEPLOTA_PREDEHREVU 120 6 #define TEPLOTA_PREDEHREVU 120
7 #define DOBA_PREDEHREVU 60 7 #define DOBA_PREDEHREVU 60
8   8  
9 #define TEPLOTA_VRCHOLU 210 9 #define TEPLOTA_VRCHOLU 210
10 #define DOBA_VRCHOLU 5 10 #define DOBA_VRCHOLU 5
11   11  
12 // CPU IO rozhrani 12 // CPU IO rozhrani
13 #define LCD_RS PIN_C1 // rizeni registru LCD displeje 13 #define LCD_RS PIN_C1 // rizeni registru LCD displeje
14 #define LCD_E PIN_C2 // enable LCD displeje 14 #define LCD_E PIN_C2 // enable LCD displeje
15 #define LCD_DATA_LSB PIN_D0 // data LCD 15 #define LCD_DATA_LSB PIN_D0 // data LCD
16 #include "lcd.c" 16 #include "lcd.c"
17   17  
18 #define TL1 PIN_B3 // tlacitko S1 18 #define TL1 PIN_B3 // tlacitko S1
19 #define TL2 PIN_B2 // tlacitko S2 19 #define TL2 PIN_B2 // tlacitko S2
20 #define TL3 PIN_B1 // tlacitko S3 20 #define TL3 PIN_B1 // tlacitko S3
21 #define TL4 PIN_B0 // tlacitko S4 21 #define TL4 PIN_B0 // tlacitko S4
22   22  
23 #define POWER_T3 PIN_C4 // ovladani optotriaku T3 23 #define POWER_T3 PIN_C4 // ovladani optotriaku T3
24 #define POWER_T4 PIN_C5 // ovladani optotriaku T4 24 #define POWER_T4 PIN_C5 // ovladani optotriaku T4
25 #define POWER_T5 PIN_C6 // ovladani optotriaku T5 25 #define POWER_T5 PIN_C6 // ovladani optotriaku T5
26   26  
27 #define ADC_PIN PIN_A0 //info, nelze menit - pin pouzit jako input analog 27 #define ADC_PIN PIN_A0 //info, nelze menit - pin pouzit jako input analog
28 #define ADC_PIN_NC PIN_A1 //info, nelze menit - pin pouzit jako input analog 28 #define ADC_PIN_NC PIN_A1 //info, nelze menit - pin pouzit jako input analog
29 #define REF_PIN PIN_A3 //info, nelze menit - pin pouzit jako input reference 2.5V 29 #define REF_PIN PIN_A3 //info, nelze menit - pin pouzit jako input reference 2.5V
30   30  
31 // interni 31 // interni
32 #define PowerOn() output_low(POWER_T4);output_low(POWER_T5) 32 #define PowerOn() output_low(POWER_T4);output_low(POWER_T5)
33 #define PowerOff() output_high(POWER_T4);output_high(POWER_T5) 33 #define PowerOff() output_high(POWER_T4);output_high(POWER_T5)
34   34  
35 // globalni promenne 35 // globalni promenne
36 struct time 36 struct time
37 { 37 {
38 volatile unsigned int8 hod; 38 volatile signed int8 hod;
39 volatile unsigned int8 min; 39 volatile signed int8 min;
40 volatile unsigned int8 sec; 40 volatile signed int8 sec;
41 }cas; 41 }cas;
42   42  
43 unsigned int top_heat_power=0; // range 0-200% nad 100% je ale teleso jiz pretizene 43 unsigned int top_heat_power=0; // range 0-200% nad 100% je ale teleso jiz pretizene
44 unsigned int bottom_heat_power=0; // contains heating power range 0-100% 44 unsigned int bottom_heat_power=0; // contains heating power range 0-100%
45 unsigned int period; 45 unsigned int period;
46   46  
47 float temp_last=0; 47 float temp_last=0;
48 float temp_slope=0; 48 float temp_slope=0;
49   49  
50   50  
51 void GeneralCpuInit() // inicializace 51 void GeneralCpuInit() // inicializace
52 { 52 {
53 output_high(POWER_T4); 53 output_high(POWER_T4);
54 output_high(POWER_T5); 54 output_high(POWER_T5);
55 port_b_pullups(true); 55 port_b_pullups(true);
56 56
57 setup_psp(PSP_DISABLED); 57 setup_psp(PSP_DISABLED);
58 setup_spi(SPI_SS_DISABLED); 58 setup_spi(SPI_SS_DISABLED);
59 59
60 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); //nepouzit 60 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_64); //nepouzit
61 setup_timer_1(T1_INTERNAL|T1_DIV_BY_1); // rizeni 61 setup_timer_1(T1_INTERNAL|T1_DIV_BY_1); // rizeni
62 setup_timer_2(T2_DIV_BY_16,249,10); //rtc 40ms 62 setup_timer_2(T2_DIV_BY_16,249,10); //rtc 40ms
63 63
64 setup_comparator(NC_NC_NC_NC); 64 setup_comparator(NC_NC_NC_NC);
65 setup_vref(FALSE); 65 setup_vref(FALSE);
66 66
67 enable_interrupts(GLOBAL); 67 enable_interrupts(GLOBAL);
68 enable_interrupts(INT_TIMER2); 68 enable_interrupts(INT_TIMER2);
69 enable_interrupts(INT_TIMER1); 69 enable_interrupts(INT_TIMER0);
70 70
71 setup_adc_ports(AN0_AN1_VSS_VREF); //A0 vstup cidla, A1 nepozit, A3 - ref. 2.5V 71 setup_adc_ports(AN0_AN1_VSS_VREF); //A0 vstup cidla, A1 nepozit, A3 - ref. 2.5V
72 setup_adc(ADC_CLOCK_DIV_8); 72 setup_adc(ADC_CLOCK_DIV_8);
73 SET_ADC_CHANNEL(0); //AN0, PIN_A0 73 SET_ADC_CHANNEL(0); //AN0, PIN_A0
74 } 74 }
75   75  
76 void heat_failure() // exception in case of heating fail 76 void heat_failure() // exception in case of heating fail
77 { 77 {
78 top_heat_power=0; 78 top_heat_power=0;
79 bottom_heat_power=0; 79 bottom_heat_power=0;
80   80  
81 lcd_gotoxy(1,2); 81 lcd_gotoxy(1,2);
82 printf(lcd_putc,"HEATING FAILURE!"); 82 printf(lcd_putc,"HEATING FAILURE!");
83 83
84 while(true); 84 while(true);
85   85  
86 } 86 }
87   87  
88 unsigned int16 adc(void) // adc read and filtering 88 unsigned int16 adc(void) // adc read and filtering
89 { 89 {
90 unsigned int16 analog; 90 unsigned int16 analog;
91 unsigned int8 a; 91 unsigned int8 a;
92   92  
93 analog = 0; 93 analog = 0;
94 for (a=0;a<32;a++) 94 for (a=0;a<32;a++)
95 { 95 {
96 analog += read_adc(); 96 analog += read_adc();
97 delay_us(50); 97 delay_us(50);
98 } 98 }
99 return (analog >> 5 ); // prumer = analog/32 99 return (analog >> 5 ); // prumer = analog/32
100 } 100 }
101   101  
102 float teplota(void) // temperature measuring 102 float teplota(void) // temperature measuring
103 { 103 {
104 return (0.674201*adc() - 294.35); // temperature calculaton (linear aproximation) 104 return (0.674201*adc() - 294.35); // temperature calculaton (linear aproximation)
105 } 105 }
106   106  
107 void top_heating() 107 void top_heating()
108 { 108 {
109 if (period < top_heat_power){ 109 if (period < top_heat_power){
110 output_low(POWER_T4); 110 output_low(POWER_T4);
111 output_low(POWER_T5); 111 output_low(POWER_T5);
112 } 112 }
113 else{ 113 else{
114 output_high(POWER_T4); 114 output_high(POWER_T4);
115 output_high(POWER_T5); 115 output_high(POWER_T5);
116 } 116 }
117 } 117 }
118   118  
119 void bottom_heating() 119 void bottom_heating()
120 { 120 {
121   121  
122 if (period < 2*bottom_heat_power){ 122 if (period < 2*bottom_heat_power){
123 output_low(POWER_T3); 123 output_low(POWER_T3);
124 } 124 }
125 else{ 125 else{
126 output_high(POWER_T3); 126 output_high(POWER_T3);
127 } 127 }
128   -  
129 } 128 }
130   129  
131 #int_TIMER1 130 #int_TIMER0
132 void heating_control() //rizeni topnych teles pri preteceni casovace 131 void heating_control() //rizeni topnych teles pri preteceni casovace
133 { 132 {
134 float temp; 133 float temp;
135   134  
136 top_heating(); 135 top_heating();
137 bottom_heating(); 136 bottom_heating();
138 137
139 temp=teplota(); -  
140 138
-   139 if (period == 200)
-   140 {
-   141 temp=teplota();
141 temp_slope=(temp - temp_last)*100.0; ///(4000000.0/65536.0); // vypocet strmosti narustu teploty ve stupnich/s 142 temp_slope=(temp - temp_last) /(2*100.0*256.0/62500.0); // vypocet strmosti narustu teploty ve stupnich/s
142 temp_last = temp; 143 temp_last = temp;
-   144 }
143   145
144 if (period < 200) period++; 146 if (period < 200) period++;
145 else period=0; 147 else period=0;
146 } 148 }
147   149  
148 #int_TIMER2 150 #int_TIMER2
149 void Rtc(void) //40ms 151 void Rtc(void) //40ms
150 { 152 {
151 static unsigned int8 ms40=0; 153 static unsigned int8 ms40=0;
152 struct time* time; 154 struct time* time;
153 155
154 time=&cas; 156 time=&cas;
155 if ( ++ms40 < 25) return; 157 if ( ++ms40 < 25) return;
156 158
157 ms40=0; 159 ms40=0;
158 if (++(time->sec) >= 60) 160 if (++(time->sec) >= 60)
159 { 161 {
160 time->sec=0; //1min 162 time->sec=0; //1min
161 if (++(time->min) >= 60) 163 if (++(time->min) >= 60)
162 { 164 {
163 time->min = 0; //1hod 165 time->min = 0; //1hod
164 (time->hod)++; 166 (time->hod)++;
165 } 167 }
166 } 168 }
167 } 169 }
168   170  
169 void slope_control(float ramp, unsigned int balance) // P proporcionalni rizeni narustu teploty predpoklada periodicke volani 1x/s 171 void slope_control(float ramp, unsigned int balance) // P proporcionalni rizeni narustu teploty predpoklada periodicke volani 1x/s
170 { 172 {
171 float slope_deviation; 173 float slope_deviation;
172   174  
173 slope_deviation = temp_slope - ramp; // vypocet strmosti a odchylky od pozadovane strmosti 175 slope_deviation = temp_slope - ramp; // vypocet strmosti a odchylky od pozadovane strmosti
174   176  
175 if(slope_deviation < 0) 177 if(slope_deviation < 0)
176 { 178 {
177 top_heat_power= 80 + balance; 179 top_heat_power= 67 + balance;
178 bottom_heat_power= 90; 180 bottom_heat_power= 100;
179 } 181 }
180 else{ 182 else{
181 top_heat_power=0; 183 top_heat_power=0;
182 bottom_heat_power=0; 184 bottom_heat_power=0;
183 } 185 }
184 } 186 }
185   187  
186 void level_control(float level) // P proporcionalni rizeni teploty 188 void level_control(float level) // P proporcionalni rizeni teploty
187 { 189 {
188 if (teplota() > level) 190 if (teplota() > level)
189 { 191 {
190 top_heat_power=0; 192 top_heat_power=0;
191 bottom_heat_power=0; 193 bottom_heat_power=0;
192 } 194 }
193 else 195 else
194 { 196 {
195 top_heat_power=70; 197 top_heat_power=70;
196 bottom_heat_power=80; 198 bottom_heat_power=80;
197 } 199 }
198 } 200 }
199   201  
200   202  
201 void nullcas(struct time* time) 203 void nullcas(struct time* time)
202 { 204 {
203 disable_interrupts(INT_TIMER2); 205 disable_interrupts(INT_TIMER2);
204 206
205 time->sec=0; 207 time->sec=0;
206 time->hod=0; 208 time->hod=0;
207 time->min=0; 209 time->min=0;
208 210
209 enable_interrupts(INT_TIMER2); 211 enable_interrupts(INT_TIMER2);
210 } 212 }
211   213  
212 void reflow_solder() 214 void reflow_solder()
213 { 215 {
214   216  
215 struct time process_time; 217 struct time process_time;
216   218  
217 // preheat 219 // ------------------- PREHEAT ---------------------
218   220  
219 nullcas(&cas); 221 nullcas(&cas);
220 lcd_gotoxy(1,2); 222 lcd_gotoxy(1,2);
221 printf(lcd_putc,"PREHEAT"); 223 printf(lcd_putc,"PREHEAT");
222   224  
223 do { 225 do {
224 slope_control(PREHEAT_SLOPE, 0); // hlida strmost predehrevu 226 slope_control(PREHEAT_SLOPE, 0); // hlida strmost predehrevu
225   227  
226 lcd_gotoxy(1,1); 228 lcd_gotoxy(1,1);
227 printf(lcd_putc,"%3.1f\21C ",teplota()); 229 printf(lcd_putc,"%3.1f\21C ",teplota());
228   230  
229 lcd_gotoxy(12,1); 231 lcd_gotoxy(12,1);
230 printf(lcd_putc,"%02u:%02u",cas.min,cas.sec); 232 printf(lcd_putc,"%02u:%02u",cas.min,cas.sec);
231   233  
232 lcd_gotoxy(10,2); 234 lcd_gotoxy(10,2);
233 printf(lcd_putc,"%1.1f\21C/s ",temp_slope); 235 printf(lcd_putc,"%1.1f\21C/s ",temp_slope);
234   236  
235 delay_ms(1000); 237 delay_ms(200);
236 if (cas.min>3) heat_failure(); 238 if (cas.min>3) heat_failure();
237 } 239 }
238 while (teplota() < SOAK_TEMP); 240 while (teplota() < SOAK_TEMP);
239   241  
240 // soak 242 // ----------- SOAK ---------------
241 nullcas(&cas); 243 nullcas(&cas);
242 process_time.min = SOAK_TIME/60; 244 process_time.min = SOAK_TIME/60;
243 process_time.sec = SOAK_TIME - process_time.min*60; 245 process_time.sec = SOAK_TIME - process_time.min*60;
-   246  
244 247 lcd_clr();
245 lcd_gotoxy(1,2); 248 lcd_gotoxy(1,2);
246 printf(lcd_putc,"SOAK "); 249 printf(lcd_putc,"SOAK ");
247   250  
248 while (process_time.sec!=0 || process_time.min!=0) 251 while (process_time.sec!=0 || process_time.min!=0)
249 { 252 {
250 level_control(SOAK_TEMP); 253 level_control(SOAK_TEMP);
251   254  
252 lcd_gotoxy(1,1); 255 lcd_gotoxy(1,1);
253 printf(lcd_putc,"%3.1f\21C ",teplota()); 256 printf(lcd_putc,"%3.1f\21C ",teplota());
254   257  
255 if ((process_time.sec = process_time.sec - cas.sec)<0) process_time.sec=59; 258 if ((process_time.sec = process_time.sec - cas.sec)<0) process_time.sec=59;
256   259  
257 process_time.min = (SOAK_TIME - cas.min*60 - cas.sec)/60; 260 process_time.min = (SOAK_TIME - cas.min*60 - cas.sec)/60;
258 process_time.sec = (SOAK_TIME - cas.min*60 - cas.sec) - process_time.min*60; 261 process_time.sec = (SOAK_TIME - cas.min*60 - cas.sec) - process_time.min*60;
259   262  
260 lcd_gotoxy(9,1); 263 lcd_gotoxy(9,1);
261 printf(lcd_putc,"%2u:%02u:%02u",cas.hod, process_time.min, process_time.sec); 264 printf(lcd_putc,"%02u:%02u", process_time.min, process_time.sec);
262 delay_ms(1000); 265 delay_ms(200);
-   266
263 } 267 }
264 268
-   269 //----------------- solder ----------------------------
-   270  
-   271 nullcas(&cas);
-   272 lcd_clr();
-   273 lcd_gotoxy(1,2);
-   274 printf(lcd_putc,"SOLDER");
-   275  
265 // solder 276 do {
-   277 slope_control(SOLDER_SLOPE, 10); // hlida strmost predehrevu
-   278  
-   279 lcd_gotoxy(1,1);
-   280 printf(lcd_putc,"%3.1f\21C ",teplota());
-   281  
-   282 lcd_gotoxy(12,1);
-   283 printf(lcd_putc,"%02u:%02u",cas.min,cas.sec);
-   284  
-   285 lcd_gotoxy(10,2);
-   286 printf(lcd_putc,"%1.1f\21C/s ",temp_slope);
-   287  
-   288 delay_ms(200);
-   289 if (cas.min>3) heat_failure();
-   290 }
-   291 while (teplota() < SOLDER_TEMP);
-   292  
-   293 // ---------------- TAO ------------------------
-   294  
-   295  
-   296 while (process_time.sec!=0 || process_time.min!=0)
-   297 {
-   298 level_control(SOLDER_TEMP);
-   299  
-   300 lcd_gotoxy(1,1);
-   301 printf(lcd_putc,"%3.1f\21C ",teplota());
-   302  
-   303 if ((process_time.sec = process_time.sec - cas.sec)<0) process_time.sec=59;
-   304  
-   305 process_time.min = (SOLDER_TIME - cas.min*60 - cas.sec)/60;
-   306 process_time.sec = (SOLDER_TIME - cas.min*60 - cas.sec) - process_time.min*60;
-   307  
-   308 lcd_gotoxy(9,1);
-   309 printf(lcd_putc,"%02u:%02u", process_time.min, process_time.sec);
-   310 delay_ms(200);
-   311
-   312 }
-   313  
-   314 // ---------------- COOLING ------------------------
-   315  
-   316 top_heat_power=0;
-   317 bottom_heat_power=0;
-   318  
-   319 lcd_clr();
-   320  
-   321 lcd_gotoxy(1,2);
-   322 printf(lcd_putc,"REFLOW COMPLETE");
266 323
-   324 while(true)
-   325 {
-   326 lcd_gotoxy(1,1);
-   327 printf(lcd_putc,"%3.1f\21C ",teplota());
267 } 328  
-   329 lcd_gotoxy(10,1);
-   330 printf(lcd_putc,"%1.1f\21C/s ",temp_slope);
268   331  
-   332 }
-   333 }
269   334  
270 void main() // main loop 335 void main() // main loop
271 { 336 {
272 GeneralCpuInit(); 337 GeneralCpuInit();
273 PowerOff(); 338 PowerOff();
274 339
275 lcd_init(); 340 lcd_init();
276 lcd_define_char(1,LCD_CHAR_STUPEN); 341 lcd_define_char(1,LCD_CHAR_STUPEN);
277 342
278 nullcas(&cas); 343 nullcas(&cas);
279 344
280 while(true) 345 while(true)
281 { 346 {
282 delay_ms(300); 347 delay_ms(300);
283 reflow_solder(); 348 reflow_solder();
284 349
285 } 350 }
286 } 351 }