Rev 2225 Rev 2228
1 <?xml version="1.0" encoding="UTF-8"?> 1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
-   2 <svg
-   3 xmlns:dc="http://purl.org/dc/elements/1.1/"
-   4 xmlns:cc="http://creativecommons.org/ns#"
2 <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="170pt" height="106pt" viewBox="0 0 170 106" version="1.1"> 5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
-   6 xmlns:svg="http://www.w3.org/2000/svg"
-   7 xmlns="http://www.w3.org/2000/svg"
-   8 xmlns:xlink="http://www.w3.org/1999/xlink"
-   9 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
-   10 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
-   11 width="170pt"
-   12 height="106pt"
-   13 viewBox="0 0 170 106"
-   14 version="1.1"
-   15 id="svg3209"
-   16 inkscape:version="0.48.1 r9760"
-   17 sodipodi:docname="USB232R01B_breadboard.svg">
-   18 <metadata
-   19 id="metadata3219">
-   20 <rdf:RDF>
-   21 <cc:Work
-   22 rdf:about="">
-   23 <dc:format>image/svg+xml</dc:format>
-   24 <dc:type
-   25 rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
-   26 </cc:Work>
-   27 </rdf:RDF>
-   28 </metadata>
-   29 <sodipodi:namedview
-   30 pagecolor="#ffffff"
-   31 bordercolor="#666666"
-   32 borderopacity="1"
-   33 objecttolerance="10"
-   34 gridtolerance="10"
-   35 guidetolerance="10"
-   36 inkscape:pageopacity="0"
-   37 inkscape:pageshadow="2"
-   38 inkscape:window-width="1024"
-   39 inkscape:window-height="696"
-   40 id="namedview3217"
-   41 showgrid="false"
-   42 inkscape:zoom="2.8070805"
-   43 inkscape:cx="85.718185"
-   44 inkscape:cy="52.447624"
-   45 inkscape:window-x="0"
-   46 inkscape:window-y="24"
-   47 inkscape:window-maximized="1"
-   48 inkscape:current-layer="svg3209" />
3 <defs> 49 <defs
-   50 id="defs3211">
4 <image id="image2692" width="709" height="442" xlink:href=""/> 51 <image
-   52 id="image2692"
-   53 width="709"
-   54 height="442"
5 </defs> 55 xlink:href="" />
-   56 </defs>
-   57 <g
6 <g id="surface2688"> 58 id="surface2688">
-   59 <use
-   60 xlink:href="#image2692"
-   61 transform="matrix(0.24,0,0,0.24,0,0)"
-   62 id="use3215" />
-   63 </g>
-   64 <rect
-   65 style="fill:none"
-   66 height="5.3040056"
-   67 width="2.157968"
-   68 y="30.749302"
-   69 x="61.964127"
-   70 id="connector1pin" />
-   71 <rect
-   72 style="fill:none"
-   73 height="5.3669462"
-   74 width="2.1569686"
-   75 y="57.899738"
-   76 x="61.974129"
-   77 id="connector3pin" />
-   78 <rect
-   79 style="fill:none"
-   80 height="5.3669462"
-   81 width="2.1569686"
-   82 y="57.899738"
-   83 x="61.974129"
-   84 id="connector5pin" />
-   85 <rect
-   86 style="fill:none"
-   87 height="5.3669462"
-   88 width="2.1569686"
-   89 y="57.899738"
-   90 x="61.974129"
-   91 id="connector4pin" />
-   92 <rect
-   93 style="fill:none"
-   94 height="3.6655478"
-   95 width="2.157968"
-   96 y="30.749302"
-   97 x="61.964127"
-   98 id="connector1terminal" />
-   99 <rect
-   100 style="fill:none"
-   101 height="3.7105057"
-   102 width="2.1569686"
-   103 y="59.556171"
-   104 x="61.974129"
-   105 id="connector3terminal" />
-   106 <rect
-   107 style="fill:none"
-   108 height="3.7105057"
-   109 width="2.1569686"
-   110 y="59.556171"
-   111 x="61.974129"
-   112 id="connector5terminal" />
-   113 <rect
-   114 style="fill:none"
-   115 height="3.7105057"
-   116 width="2.1569686"
-   117 y="59.556171"
-   118 x="61.974129"
-   119 id="connector4terminal" />
-   120 <g
-   121 id="g40"
-   122 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)">
-   123 <rect
-   124 style="fill:#898989"
-   125 id="rect42"
-   126 height="34.015999"
-   127 width="45.355"
-   128 y="4.2519999"
-   129 x="0.001" />
-   130 </g>
-   131 <g
-   132 id="g44"
-   133 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)">
-   134 <rect
-   135 style="fill:#dddddd"
-   136 id="rect46"
-   137 height="0.74299997"
-   138 width="45.355"
-   139 y="4.2519999"
-   140 x="0.001" />
-   141 </g>
-   142 <g
-   143 id="g48"
-   144 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)">
-   145 <rect
-   146 style="fill:#c6c6c6"
-   147 id="rect50"
-   148 height="0.889"
-   149 width="45.355"
-   150 y="4.9910002"
-   151 x="0.001" />
-   152 </g>
-   153 <rect
-   154 y="31.626476"
-   155 width="45.313328"
-   156 height="31.312511"
-   157 id="rect54"
-   158 x="8.5184603"
-   159 style="fill:#adadad" />
-   160 <g
-   161 id="g56"
-   162 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)">
-   163 <line
-   164 style="fill:#919191;stroke:#4d4d4d;stroke-width:0.1"
-   165 id="line58"
-   166 y2="38.268002"
-   167 x2="34.173"
-   168 y1="4.2519999"
-   169 x1="34.173" />
-   170 </g>
-   171 <g
-   172 id="g76"
-   173 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)">
-   174 <path
-   175 style="fill:#4d4d4d"
-   176 inkscape:connector-curvature="0"
-   177 id="path78"
7 <use xlink:href="#image2692" transform="matrix(0.24,0,0,0.24,0,0)"/> 178 d="m 30.074,21.386 -2.64,-1.524 v 1.134 H 13.468 c 0.515,-0.416 1.008,-0.965 1.493,-1.505 0.802,-0.894 1.631,-1.819 2.338,-1.819 h 2.277 c 0.141,0.521 0.597,0.913 1.163,0.913 0.677,0 1.226,-0.548 1.226,-1.225 0,-0.677 -0.549,-1.226 -1.226,-1.226 -0.566,0 -1.022,0.392 -1.163,0.914 h -2.277 c -0.985,0 -1.868,0.984 -2.803,2.026 -0.744,0.83 -1.509,1.675 -2.255,1.922 h -1.82 c -0.185,-1.02 -1.073,-1.794 -2.145,-1.794 -1.206,0 -2.184,0.978 -2.184,2.184 0,1.207 0.978,2.184 2.184,2.184 1.072,0 1.96,-0.774 2.145,-1.794 h 5.196 c 0.746,0.247 1.511,1.093 2.254,1.922 0.934,1.043 1.817,2.026 2.802,2.026 h 2.142 v 0.985 h 2.595 v -2.595 h -2.595 v 0.985 h -2.142 c -0.707,0 -1.536,-0.925 -2.337,-1.818 -0.485,-0.541 -0.978,-1.09 -1.493,-1.506 h 10.592 v 1.134 l 2.639,-1.523 z" />
-   179 </g>
-   180 <g
-   181 transform="matrix(1.000278,0,0,1.000278,43.36261,75.73517)"
-   182 id="use4089">
-   183 <rect
-   184 style="fill:none"
-   185 height="2.7909999"
-   186 width="2.7909999"
-   187 y="2.204"
-   188 x="2.204"
-   189 id="rect3586" />
-   190 <rect
-   191 style="fill:none"
-   192 height="2.2620001"
-   193 width="2.164"
-   194 y="2.4690001"
-   195 x="2.5179999"
-   196 id="rect3588" />
-   197 <rect
-   198 style="fill:none"
-   199 height="2.7909999"
-   200 width="2.7909999"
-   201 y="2.204"
-   202 x="9.4029999"
-   203 id="rect3590" />
-   204 <rect
-   205 style="fill:none"
-   206 height="2.2620001"
-   207 width="2.164"
-   208 y="2.4690001"
-   209 x="9.717"
-   210 id="rect3592" />
-   211 <rect
-   212 style="fill:none"
-   213 height="2.7909999"
-   214 width="2.7909999"
-   215 y="2.204"
-   216 x="16.601999"
-   217 id="rect3594" />
-   218 <rect
-   219 style="fill:none"
-   220 height="2.2620001"
-   221 width="2.164"
-   222 y="2.4690001"
-   223 x="16.916"
-   224 id="rect3596" />
-   225 <g
-   226 id="g3598">
-   227 <g
-   228 id="g3600">
-   229 <polygon
-   230 style="fill:#404040"
-   231 id="polygon3602"
-   232 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " />
-   233 </g>
-   234 <g
-   235 id="g3604">
-   236 <rect
-   237 style="fill:#8d8c8c"
-   238 id="rect3606"
-   239 height="2.299"
-   240 width="2.2969999"
-   241 y="2.45"
-   242 x="2.451" />
-   243 <rect
-   244 style="fill:#8c8663"
-   245 id="rect3608"
-   246 height="1.183"
-   247 width="1.182"
-   248 y="3.0079999"
-   249 x="3.0090001" />
-   250 <polygon
-   251 style="fill:#b8af82"
-   252 id="polygon3610"
-   253 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " />
-   254 <polygon
-   255 style="fill:#80795b"
-   256 id="polygon3612"
-   257 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " />
-   258 <polygon
-   259 style="fill:#5e5b43"
-   260 id="polygon3614"
-   261 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " />
-   262 <polygon
-   263 style="fill:#9a916c"
-   264 id="polygon3616"
-   265 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " />
-   266 </g>
-   267 <g
-   268 id="g3618">
-   269 <polygon
-   270 style="fill:#404040"
-   271 id="polygon3620"
-   272 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " />
-   273 </g>
-   274 <g
-   275 id="g3622">
-   276 <rect
-   277 style="fill:#8d8c8c"
-   278 id="rect3624"
-   279 height="2.299"
-   280 width="2.2969999"
-   281 y="2.45"
-   282 x="9.6499996" />
-   283 <rect
-   284 style="fill:#8c8663"
-   285 id="rect3626"
-   286 height="1.183"
-   287 width="1.182"
-   288 y="3.0079999"
-   289 x="10.208" />
-   290 <polygon
-   291 style="fill:#b8af82"
-   292 id="polygon3628"
-   293 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " />
-   294 <polygon
-   295 style="fill:#80795b"
-   296 id="polygon3630"
-   297 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " />
-   298 <polygon
-   299 style="fill:#5e5b43"
-   300 id="polygon3632"
-   301 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " />
-   302 <polygon
-   303 style="fill:#9a916c"
-   304 id="polygon3634"
-   305 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " />
-   306 </g>
-   307 <g
-   308 id="g3636">
-   309 <polygon
-   310 style="fill:#404040"
-   311 id="polygon3638"
-   312 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " />
-   313 </g>
-   314 <g
-   315 id="g3640">
-   316 <rect
-   317 style="fill:#8d8c8c"
-   318 id="rect3642"
-   319 height="2.299"
-   320 width="2.2969999"
-   321 y="2.45"
-   322 x="16.849001" />
-   323 <rect
-   324 style="fill:#8c8663"
-   325 id="rect3644"
-   326 height="1.183"
-   327 width="1.182"
-   328 y="3.0079999"
-   329 x="17.407" />
-   330 <polygon
-   331 style="fill:#b8af82"
-   332 id="polygon3646"
-   333 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " />
-   334 <polygon
-   335 style="fill:#80795b"
-   336 id="polygon3648"
-   337 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " />
-   338 <polygon
-   339 style="fill:#5e5b43"
-   340 id="polygon3650"
-   341 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " />
-   342 <polygon
-   343 style="fill:#9a916c"
-   344 id="polygon3652"
-   345 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " />
-   346 </g>
-   347 </g>
-   348 <rect
-   349 style="fill:none"
-   350 id="rect3654"
-   351 x="2.1632509"
-   352 y="-5.0085835"
-   353 width="2.7909999"
-   354 height="2.7909999" />
-   355 <rect
-   356 style="fill:none"
-   357 id="rect3656"
-   358 x="2.4772508"
-   359 y="-4.7435832"
-   360 width="2.164"
-   361 height="2.2620001" />
-   362 <rect
-   363 style="fill:none"
-   364 id="rect3658"
-   365 x="9.3622513"
-   366 y="-5.0085835"
-   367 width="2.7909999"
-   368 height="2.7909999" />
-   369 <rect
-   370 style="fill:none"
-   371 id="rect3660"
-   372 x="9.6762514"
-   373 y="-4.7435832"
-   374 width="2.164"
-   375 height="2.2620001" />
-   376 <rect
-   377 style="fill:none"
-   378 id="rect3662"
-   379 x="16.561251"
-   380 y="-5.0085835"
-   381 width="2.7909999"
-   382 height="2.7909999" />
-   383 <rect
-   384 style="fill:none"
-   385 id="rect3664"
-   386 x="16.875252"
-   387 y="-4.7435832"
-   388 width="2.164"
-   389 height="2.2620001" />
-   390 <g
-   391 transform="translate(0,-7.192209)"
-   392 id="g3666">
-   393 <g
-   394 id="g3668">
-   395 <polygon
-   396 style="fill:#404040"
-   397 points="1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 "
-   398 id="polygon3670" />
-   399 </g>
-   400 <g
-   401 id="g3672">
-   402 <rect
-   403 style="fill:#8d8c8c"
-   404 x="2.451"
-   405 y="2.45"
-   406 width="2.2969999"
-   407 height="2.299"
-   408 id="rect3674" />
-   409 <rect
-   410 style="fill:#8c8663"
-   411 x="3.0090001"
-   412 y="3.0079999"
-   413 width="1.182"
-   414 height="1.183"
-   415 id="rect3676" />
-   416 <polygon
-   417 style="fill:#b8af82"
-   418 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 "
-   419 id="polygon3678" />
-   420 <polygon
-   421 style="fill:#80795b"
-   422 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 "
-   423 id="polygon3680" />
-   424 <polygon
-   425 style="fill:#5e5b43"
-   426 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 "
-   427 id="polygon3682" />
-   428 <polygon
-   429 style="fill:#9a916c"
-   430 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 "
-   431 id="polygon3684" />
-   432 </g>
-   433 <g
-   434 id="g3686">
-   435 <polygon
-   436 style="fill:#404040"
-   437 points="8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 "
-   438 id="polygon3688" />
-   439 </g>
-   440 <g
-   441 id="g3690">
-   442 <rect
-   443 style="fill:#8d8c8c"
-   444 x="9.6499996"
-   445 y="2.45"
-   446 width="2.2969999"
-   447 height="2.299"
-   448 id="rect3692" />
-   449 <rect
-   450 style="fill:#8c8663"
-   451 x="10.208"
-   452 y="3.0079999"
-   453 width="1.182"
-   454 height="1.183"
-   455 id="rect3694" />
-   456 <polygon
-   457 style="fill:#b8af82"
-   458 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 "
-   459 id="polygon3696" />
-   460 <polygon
-   461 style="fill:#80795b"
-   462 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 "
-   463 id="polygon3698" />
-   464 <polygon
-   465 style="fill:#5e5b43"
-   466 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 "
-   467 id="polygon3700" />
-   468 <polygon
-   469 style="fill:#9a916c"
-   470 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 "
-   471 id="polygon3702" />
-   472 </g>
-   473 <g
-   474 id="g3704">
-   475 <polygon
-   476 style="fill:#404040"
-   477 points="15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 "
-   478 id="polygon3706" />
-   479 </g>
-   480 <g
-   481 id="g3708">
-   482 <rect
-   483 style="fill:#8d8c8c"
-   484 x="16.849001"
-   485 y="2.45"
-   486 width="2.2969999"
-   487 height="2.299"
-   488 id="rect3710" />
-   489 <rect
-   490 style="fill:#8c8663"
-   491 x="17.407"
-   492 y="3.0079999"
-   493 width="1.182"
-   494 height="1.183"
-   495 id="rect3712" />
-   496 <polygon
-   497 style="fill:#b8af82"
-   498 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 "
-   499 id="polygon3714" />
-   500 <polygon
-   501 style="fill:#80795b"
-   502 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 "
-   503 id="polygon3716" />
-   504 <polygon
-   505 style="fill:#5e5b43"
-   506 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 "
-   507 id="polygon3718" />
-   508 <polygon
-   509 style="fill:#9a916c"
-   510 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 "
-   511 id="polygon3720" />
-   512 </g>
-   513 </g>
-   514 </g>
-   515 <g
-   516 id="g3881"
-   517 transform="matrix(1.000139,0,0,1.000139,43.397586,18.268968)">
-   518 <rect
-   519 height="2.7909999"
-   520 width="2.7909999"
-   521 y="2.204"
-   522 x="2.204"
-   523 id="connector0pin"
-   524 style="fill:none" />
-   525 <rect
-   526 height="2.2620001"
-   527 width="2.164"
-   528 y="2.4690001"
-   529 x="2.5179999"
-   530 id="connector0terminal"
-   531 style="fill:none" />
-   532 <rect
-   533 height="2.7909999"
-   534 width="2.7909999"
-   535 y="2.204"
-   536 x="9.4029999"
-   537 id="connector1pin-6"
-   538 style="fill:none" />
-   539 <rect
-   540 height="2.2620001"
-   541 width="2.164"
-   542 y="2.4690001"
-   543 x="9.717"
-   544 id="connector1terminal-5"
-   545 style="fill:none" />
-   546 <rect
-   547 height="2.7909999"
-   548 width="2.7909999"
-   549 y="2.204"
-   550 x="16.601999"
-   551 id="connector2pin"
-   552 style="fill:none" />
-   553 <rect
-   554 height="2.2620001"
-   555 width="2.164"
-   556 y="2.4690001"
-   557 x="16.916"
-   558 id="connector2terminal"
-   559 style="fill:none" />
-   560 <g
-   561 id="breadboard">
-   562 <g
-   563 id="g10">
-   564 <polygon
-   565 id="polygon12"
-   566 points="5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 "
-   567 style="fill:#404040" />
-   568 </g>
-   569 <g
-   570 id="g14">
-   571 <rect
-   572 id="rect16"
-   573 height="2.299"
-   574 width="2.2969999"
-   575 y="2.45"
-   576 x="2.451"
-   577 style="fill:#8d8c8c" />
-   578 <rect
-   579 id="rect18"
-   580 height="1.183"
-   581 width="1.182"
-   582 y="3.0079999"
-   583 x="3.0090001"
-   584 style="fill:#8c8663" />
-   585 <polygon
-   586 id="polygon20"
-   587 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
-   588 style="fill:#b8af82" />
-   589 <polygon
-   590 id="polygon22"
-   591 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
-   592 style="fill:#80795b" />
-   593 <polygon
-   594 id="polygon24"
-   595 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
-   596 style="fill:#5e5b43" />
-   597 <polygon
-   598 id="polygon26"
-   599 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
-   600 style="fill:#9a916c" />
-   601 </g>
-   602 <g
-   603 id="g28">
-   604 <polygon
-   605 id="polygon30"
-   606 points="12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 "
-   607 style="fill:#404040" />
-   608 </g>
-   609 <g
-   610 id="g32">
-   611 <rect
-   612 id="rect34"
-   613 height="2.299"
-   614 width="2.2969999"
-   615 y="2.45"
-   616 x="9.6499996"
-   617 style="fill:#8d8c8c" />
-   618 <rect
-   619 id="rect36"
-   620 height="1.183"
-   621 width="1.182"
-   622 y="3.0079999"
-   623 x="10.208"
-   624 style="fill:#8c8663" />
-   625 <polygon
-   626 id="polygon38"
-   627 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
-   628 style="fill:#b8af82" />
-   629 <polygon
-   630 id="polygon40"
-   631 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
-   632 style="fill:#80795b" />
-   633 <polygon
-   634 id="polygon42"
-   635 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
-   636 style="fill:#5e5b43" />
-   637 <polygon
-   638 id="polygon44"
-   639 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
-   640 style="fill:#9a916c" />
-   641 </g>
-   642 <g
-   643 id="g46">
-   644 <polygon
-   645 id="polygon48"
-   646 points="20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 "
-   647 style="fill:#404040" />
-   648 </g>
-   649 <g
-   650 id="g50">
-   651 <rect
-   652 id="rect52"
-   653 height="2.299"
-   654 width="2.2969999"
-   655 y="2.45"
-   656 x="16.849001"
-   657 style="fill:#8d8c8c" />
-   658 <rect
-   659 id="rect54-1"
-   660 height="1.183"
-   661 width="1.182"
-   662 y="3.0079999"
-   663 x="17.407"
-   664 style="fill:#8c8663" />
-   665 <polygon
-   666 id="polygon56"
-   667 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
-   668 style="fill:#b8af82" />
-   669 <polygon
-   670 id="polygon58"
-   671 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
-   672 style="fill:#80795b" />
-   673 <polygon
-   674 id="polygon60"
-   675 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
-   676 style="fill:#5e5b43" />
-   677 <polygon
-   678 id="polygon62"
-   679 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
-   680 style="fill:#9a916c" />
-   681 </g>
-   682 </g>
-   683 <rect
-   684 style="fill:none"
-   685 id="rect3045"
-   686 x="2.1632509"
-   687 y="-5.0085835"
-   688 width="2.7909999"
-   689 height="2.7909999" />
-   690 <rect
-   691 style="fill:none"
-   692 id="rect3047"
-   693 x="2.4772508"
-   694 y="-4.7435832"
-   695 width="2.164"
-   696 height="2.2620001" />
-   697 <rect
-   698 style="fill:none"
-   699 id="rect3049"
-   700 x="9.3622513"
-   701 y="-5.0085835"
-   702 width="2.7909999"
-   703 height="2.7909999" />
-   704 <rect
-   705 style="fill:none"
-   706 id="rect3051"
-   707 x="9.6762514"
-   708 y="-4.7435832"
-   709 width="2.164"
-   710 height="2.2620001" />
-   711 <rect
-   712 style="fill:none"
-   713 id="rect3053"
-   714 x="16.561251"
-   715 y="-5.0085835"
-   716 width="2.7909999"
-   717 height="2.7909999" />
-   718 <rect
-   719 style="fill:none"
-   720 id="rect3055"
-   721 x="16.875252"
-   722 y="-4.7435832"
-   723 width="2.164"
-   724 height="2.2620001" />
-   725 <g
-   726 transform="translate(0,-7.192209)"
-   727 id="g3057">
-   728 <g
-   729 id="g3059">
-   730 <polygon
-   731 style="fill:#404040"
-   732 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
-   733 id="polygon3061" />
-   734 </g>
-   735 <g
-   736 id="g3063">
-   737 <rect
-   738 style="fill:#8d8c8c"
-   739 x="2.451"
-   740 y="2.45"
-   741 width="2.2969999"
-   742 height="2.299"
-   743 id="rect3065" />
-   744 <rect
-   745 style="fill:#8c8663"
-   746 x="3.0090001"
-   747 y="3.0079999"
-   748 width="1.182"
-   749 height="1.183"
-   750 id="rect3067" />
-   751 <polygon
-   752 style="fill:#b8af82"
-   753 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
-   754 id="polygon3069" />
-   755 <polygon
-   756 style="fill:#80795b"
-   757 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
-   758 id="polygon3071" />
-   759 <polygon
-   760 style="fill:#5e5b43"
-   761 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
-   762 id="polygon3073" />
-   763 <polygon
-   764 style="fill:#9a916c"
-   765 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
-   766 id="polygon3075" />
-   767 </g>
-   768 <g
-   769 id="g3077">
-   770 <polygon
-   771 style="fill:#404040"
-   772 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
-   773 id="polygon3079" />
-   774 </g>
-   775 <g
-   776 id="g3081">
-   777 <rect
-   778 style="fill:#8d8c8c"
-   779 x="9.6499996"
-   780 y="2.45"
-   781 width="2.2969999"
-   782 height="2.299"
-   783 id="rect3083" />
-   784 <rect
-   785 style="fill:#8c8663"
-   786 x="10.208"
-   787 y="3.0079999"
-   788 width="1.182"
-   789 height="1.183"
-   790 id="rect3085" />
-   791 <polygon
-   792 style="fill:#b8af82"
-   793 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
-   794 id="polygon3087" />
-   795 <polygon
-   796 style="fill:#80795b"
-   797 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
-   798 id="polygon3089" />
-   799 <polygon
-   800 style="fill:#5e5b43"
-   801 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
-   802 id="polygon3091" />
-   803 <polygon
-   804 style="fill:#9a916c"
-   805 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
-   806 id="polygon3093" />
-   807 </g>
-   808 <g
-   809 id="g3095">
-   810 <polygon
-   811 style="fill:#404040"
-   812 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 "
-   813 id="polygon3097" />
-   814 </g>
-   815 <g
-   816 id="g3099">
-   817 <rect
-   818 style="fill:#8d8c8c"
-   819 x="16.849001"
-   820 y="2.45"
-   821 width="2.2969999"
-   822 height="2.299"
-   823 id="rect3101" />
-   824 <rect
-   825 style="fill:#8c8663"
-   826 x="17.407"
-   827 y="3.0079999"
-   828 width="1.182"
-   829 height="1.183"
-   830 id="rect3103" />
-   831 <polygon
-   832 style="fill:#b8af82"
-   833 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
-   834 id="polygon3105" />
-   835 <polygon
-   836 style="fill:#80795b"
-   837 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
-   838 id="polygon3107" />
-   839 <polygon
-   840 style="fill:#5e5b43"
-   841 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
-   842 id="polygon3109" />
-   843 <polygon
-   844 style="fill:#9a916c"
-   845 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
-   846 id="polygon3111" />
-   847 </g>
-   848 </g>
-   849 </g>
-   850 <g
-   851 id="g3957"
-   852 transform="matrix(1.0001389,0,0,1.0001389,68.57072,10.774555)">
-   853 <rect
-   854 height="2.7909999"
-   855 width="2.7909999"
-   856 y="2.204"
-   857 x="2.204"
-   858 id="connector0pin-5"
-   859 style="fill:none" />
-   860 <rect
-   861 height="2.2620001"
-   862 width="2.164"
-   863 y="2.4690001"
-   864 x="2.5179999"
-   865 id="connector0terminal-7"
-   866 style="fill:none" />
-   867 <rect
-   868 height="2.7909999"
-   869 width="2.7909999"
-   870 y="2.204"
-   871 x="9.4029999"
-   872 id="connector1pin-4"
-   873 style="fill:none" />
-   874 <rect
-   875 height="2.2620001"
-   876 width="2.164"
-   877 y="2.4690001"
-   878 x="9.717"
-   879 id="connector1terminal-9"
-   880 style="fill:none" />
-   881 <rect
-   882 height="2.7909999"
-   883 width="2.7909999"
-   884 y="2.204"
-   885 x="16.601999"
-   886 id="connector2pin-0"
-   887 style="fill:none" />
-   888 <rect
-   889 height="2.2620001"
-   890 width="2.164"
-   891 y="2.4690001"
-   892 x="16.916"
-   893 id="connector2terminal-3"
-   894 style="fill:none" />
-   895 <g
-   896 id="breadboard-0">
-   897 <g
-   898 id="g3897">
-   899 <polygon
-   900 id="polygon3899"
-   901 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 "
-   902 style="fill:#404040" />
-   903  
-   904 </g>
-   905  
-   906 <g
-   907 id="g3901">
-   908 <rect
-   909 id="rect3903"
-   910 height="2.299"
-   911 width="2.2969999"
-   912 y="2.45"
-   913 x="2.451"
-   914 style="fill:#8d8c8c" />
-   915  
-   916 <rect
-   917 id="rect3905"
-   918 height="1.183"
-   919 width="1.182"
-   920 y="3.0079999"
-   921 x="3.0090001"
-   922 style="fill:#8c8663" />
-   923  
-   924 <polygon
-   925 id="polygon3907"
-   926 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
-   927 style="fill:#b8af82" />
-   928  
-   929 <polygon
-   930 id="polygon3909"
-   931 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
-   932 style="fill:#80795b" />
-   933  
-   934 <polygon
-   935 id="polygon3911"
-   936 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
-   937 style="fill:#5e5b43" />
-   938  
-   939 <polygon
-   940 id="polygon3913"
-   941 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
-   942 style="fill:#9a916c" />
-   943  
-   944 </g>
-   945  
-   946 <g
-   947 id="g3915">
-   948 <polygon
-   949 id="polygon3917"
-   950 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 "
-   951 style="fill:#404040" />
-   952  
-   953 </g>
-   954  
-   955 <g
-   956 id="g3919">
-   957 <rect
-   958 id="rect3921"
-   959 height="2.299"
-   960 width="2.2969999"
-   961 y="2.45"
-   962 x="9.6499996"
-   963 style="fill:#8d8c8c" />
-   964  
-   965 <rect
-   966 id="rect3923"
-   967 height="1.183"
-   968 width="1.182"
-   969 y="3.0079999"
-   970 x="10.208"
-   971 style="fill:#8c8663" />
-   972  
-   973 <polygon
-   974 id="polygon3925"
-   975 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
-   976 style="fill:#b8af82" />
-   977  
-   978 <polygon
-   979 id="polygon3927"
-   980 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
-   981 style="fill:#80795b" />
-   982  
-   983 <polygon
-   984 id="polygon3929"
-   985 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
-   986 style="fill:#5e5b43" />
-   987  
-   988 <polygon
-   989 id="polygon3931"
-   990 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
-   991 style="fill:#9a916c" />
-   992  
-   993 </g>
-   994  
-   995 <g
-   996 id="g3933">
-   997 <polygon
-   998 id="polygon3935"
-   999 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 "
-   1000 style="fill:#404040" />
-   1001  
-   1002 </g>
-   1003  
-   1004 <g
-   1005 id="g3937">
-   1006 <rect
-   1007 id="rect3939"
-   1008 height="2.299"
-   1009 width="2.2969999"
-   1010 y="2.45"
-   1011 x="16.849001"
-   1012 style="fill:#8d8c8c" />
-   1013  
-   1014 <rect
-   1015 id="rect3941"
-   1016 height="1.183"
-   1017 width="1.182"
-   1018 y="3.0079999"
-   1019 x="17.407"
-   1020 style="fill:#8c8663" />
-   1021  
-   1022 <polygon
-   1023 id="polygon3943"
-   1024 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
-   1025 style="fill:#b8af82" />
-   1026  
-   1027 <polygon
-   1028 id="polygon3945"
-   1029 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
-   1030 style="fill:#80795b" />
-   1031  
-   1032 <polygon
-   1033 id="polygon3947"
-   1034 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
-   1035 style="fill:#5e5b43" />
-   1036  
-   1037 <polygon
-   1038 id="polygon3949"
-   1039 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
-   1040 style="fill:#9a916c" />
-   1041  
-   1042 </g>
-   1043  
8 </g> 1044 </g>
-   1045 </g>
-   1046 <g
-   1047 id="g4209"
-   1048 transform="matrix(0,-1.0001389,1.0001389,0,78.620656,55.811367)">
-   1049 <rect
-   1050 height="2.7909999"
-   1051 width="2.7909999"
-   1052 y="2.204"
-   1053 x="2.204"
-   1054 id="connector0pin-8"
-   1055 style="fill:none" />
-   1056 <rect
-   1057 height="2.2620001"
-   1058 width="2.164"
-   1059 y="2.4690001"
-   1060 x="2.5179999"
-   1061 id="connector0terminal-4"
-   1062 style="fill:none" />
-   1063 <rect
-   1064 height="2.7909999"
-   1065 width="2.7909999"
-   1066 y="2.204"
-   1067 x="9.4029999"
-   1068 id="connector1pin-0"
-   1069 style="fill:none" />
-   1070 <rect
-   1071 height="2.2620001"
-   1072 width="2.164"
-   1073 y="2.4690001"
-   1074 x="9.717"
-   1075 id="connector1terminal-1"
-   1076 style="fill:none" />
-   1077 <rect
-   1078 height="2.7909999"
-   1079 width="2.7909999"
-   1080 y="2.204"
-   1081 x="16.601999"
-   1082 id="connector2pin-2"
-   1083 style="fill:none" />
-   1084 <rect
-   1085 height="2.2620001"
-   1086 width="2.164"
-   1087 y="2.4690001"
-   1088 x="16.916"
-   1089 id="connector2terminal-7"
-   1090 style="fill:none" />
-   1091 <g
-   1092 id="breadboard-4">
-   1093 <g
-   1094 id="g4149">
-   1095 <polygon
-   1096 id="polygon4151"
-   1097 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 "
-   1098 style="fill:#404040" />
-   1099  
-   1100 </g>
-   1101  
-   1102 <g
-   1103 id="g4153">
-   1104 <rect
-   1105 id="rect4155"
-   1106 height="2.299"
-   1107 width="2.2969999"
-   1108 y="2.45"
-   1109 x="2.451"
-   1110 style="fill:#8d8c8c" />
-   1111  
-   1112 <rect
-   1113 id="rect4157"
-   1114 height="1.183"
-   1115 width="1.182"
-   1116 y="3.0079999"
-   1117 x="3.0090001"
-   1118 style="fill:#8c8663" />
-   1119  
-   1120 <polygon
-   1121 id="polygon4159"
-   1122 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
-   1123 style="fill:#b8af82" />
-   1124  
-   1125 <polygon
-   1126 id="polygon4161"
-   1127 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
-   1128 style="fill:#80795b" />
-   1129  
-   1130 <polygon
-   1131 id="polygon4163"
-   1132 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
-   1133 style="fill:#5e5b43" />
-   1134  
-   1135 <polygon
-   1136 id="polygon4165"
-   1137 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
-   1138 style="fill:#9a916c" />
-   1139  
-   1140 </g>
-   1141  
-   1142 <g
-   1143 id="g4167">
-   1144 <polygon
-   1145 id="polygon4169"
-   1146 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 "
-   1147 style="fill:#404040" />
-   1148  
-   1149 </g>
-   1150  
-   1151 <g
-   1152 id="g4171">
-   1153 <rect
-   1154 id="rect4173"
-   1155 height="2.299"
-   1156 width="2.2969999"
-   1157 y="2.45"
-   1158 x="9.6499996"
-   1159 style="fill:#8d8c8c" />
-   1160  
-   1161 <rect
-   1162 id="rect4175"
-   1163 height="1.183"
-   1164 width="1.182"
-   1165 y="3.0079999"
-   1166 x="10.208"
-   1167 style="fill:#8c8663" />
-   1168  
-   1169 <polygon
-   1170 id="polygon4177"
-   1171 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
-   1172 style="fill:#b8af82" />
-   1173  
-   1174 <polygon
-   1175 id="polygon4179"
-   1176 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
-   1177 style="fill:#80795b" />
-   1178  
-   1179 <polygon
-   1180 id="polygon4181"
-   1181 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
-   1182 style="fill:#5e5b43" />
-   1183  
-   1184 <polygon
-   1185 id="polygon4183"
-   1186 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
-   1187 style="fill:#9a916c" />
-   1188  
-   1189 </g>
-   1190  
-   1191 <g
-   1192 id="g4185">
-   1193 <polygon
-   1194 id="polygon4187"
-   1195 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 "
-   1196 style="fill:#404040" />
-   1197  
-   1198 </g>
-   1199  
-   1200 <g
-   1201 id="g4189">
-   1202 <rect
-   1203 id="rect4191"
-   1204 height="2.299"
-   1205 width="2.2969999"
-   1206 y="2.45"
-   1207 x="16.849001"
-   1208 style="fill:#8d8c8c" />
-   1209  
-   1210 <rect
-   1211 id="rect4193"
-   1212 height="1.183"
-   1213 width="1.182"
-   1214 y="3.0079999"
-   1215 x="17.407"
-   1216 style="fill:#8c8663" />
-   1217  
-   1218 <polygon
-   1219 id="polygon4195"
-   1220 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
-   1221 style="fill:#b8af82" />
-   1222  
-   1223 <polygon
-   1224 id="polygon4197"
-   1225 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
-   1226 style="fill:#80795b" />
-   1227  
-   1228 <polygon
-   1229 id="polygon4199"
-   1230 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
-   1231 style="fill:#5e5b43" />
-   1232  
-   1233 <polygon
-   1234 id="polygon4201"
-   1235 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
-   1236 style="fill:#9a916c" />
-   1237  
-   1238 </g>
-   1239  
-   1240 </g>
-   1241 </g>
-   1242 <g
-   1243 transform="matrix(1.0001389,0,0,1.0001389,103.05495,10.917051)"
-   1244 id="g4245">
-   1245 <rect
-   1246 style="fill:none"
-   1247 id="rect4247"
-   1248 x="2.204"
-   1249 y="2.204"
-   1250 width="2.7909999"
-   1251 height="2.7909999" />
-   1252 <rect
-   1253 style="fill:none"
-   1254 id="rect4249"
-   1255 x="2.5179999"
-   1256 y="2.4690001"
-   1257 width="2.164"
-   1258 height="2.2620001" />
-   1259 <rect
-   1260 style="fill:none"
-   1261 id="rect4251"
-   1262 x="9.4029999"
-   1263 y="2.204"
-   1264 width="2.7909999"
-   1265 height="2.7909999" />
-   1266 <rect
-   1267 style="fill:none"
-   1268 id="rect4253"
-   1269 x="9.717"
-   1270 y="2.4690001"
-   1271 width="2.164"
-   1272 height="2.2620001" />
-   1273 <rect
-   1274 style="fill:none"
-   1275 id="rect4255"
-   1276 x="16.601999"
-   1277 y="2.204"
-   1278 width="2.7909999"
-   1279 height="2.7909999" />
-   1280 <rect
-   1281 style="fill:none"
-   1282 id="rect4257"
-   1283 x="16.916"
-   1284 y="2.4690001"
-   1285 width="2.164"
-   1286 height="2.2620001" />
-   1287 <g
-   1288 id="g4259">
-   1289 <g
-   1290 id="g4261">
-   1291 <polygon
-   1292 style="fill:#404040"
-   1293 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
-   1294 id="polygon4263" />
-   1295  
-   1296 </g>
-   1297  
-   1298 <g
-   1299 id="g4265">
-   1300 <rect
-   1301 style="fill:#8d8c8c"
-   1302 x="2.451"
-   1303 y="2.45"
-   1304 width="2.2969999"
-   1305 height="2.299"
-   1306 id="rect4267" />
-   1307  
-   1308 <rect
-   1309 style="fill:#8c8663"
-   1310 x="3.0090001"
-   1311 y="3.0079999"
-   1312 width="1.182"
-   1313 height="1.183"
-   1314 id="rect4269" />
-   1315  
-   1316 <polygon
-   1317 style="fill:#b8af82"
-   1318 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
-   1319 id="polygon4271" />
-   1320  
-   1321 <polygon
-   1322 style="fill:#80795b"
-   1323 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
-   1324 id="polygon4273" />
-   1325  
-   1326 <polygon
-   1327 style="fill:#5e5b43"
-   1328 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
-   1329 id="polygon4275" />
-   1330  
-   1331 <polygon
-   1332 style="fill:#9a916c"
-   1333 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
-   1334 id="polygon4277" />
-   1335  
-   1336 </g>
-   1337  
-   1338 <g
-   1339 id="g4279">
-   1340 <polygon
-   1341 style="fill:#404040"
-   1342 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
-   1343 id="polygon4281" />
-   1344  
-   1345 </g>
-   1346  
-   1347 <g
-   1348 id="g4283">
-   1349 <rect
-   1350 style="fill:#8d8c8c"
-   1351 x="9.6499996"
-   1352 y="2.45"
-   1353 width="2.2969999"
-   1354 height="2.299"
-   1355 id="rect4285" />
-   1356  
-   1357 <rect
-   1358 style="fill:#8c8663"
-   1359 x="10.208"
-   1360 y="3.0079999"
-   1361 width="1.182"
-   1362 height="1.183"
-   1363 id="rect4287" />
-   1364  
-   1365 <polygon
-   1366 style="fill:#b8af82"
-   1367 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
-   1368 id="polygon4289" />
-   1369  
-   1370 <polygon
-   1371 style="fill:#80795b"
-   1372 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
-   1373 id="polygon4291" />
-   1374  
-   1375 <polygon
-   1376 style="fill:#5e5b43"
-   1377 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
-   1378 id="polygon4293" />
-   1379  
-   1380 <polygon
-   1381 style="fill:#9a916c"
-   1382 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
-   1383 id="polygon4295" />
-   1384  
-   1385 </g>
-   1386  
-   1387 <g
-   1388 id="g4297">
-   1389 <polygon
-   1390 style="fill:#404040"
-   1391 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 "
-   1392 id="polygon4299" />
-   1393  
-   1394 </g>
-   1395  
-   1396 <g
-   1397 id="g4301">
-   1398 <rect
-   1399 style="fill:#8d8c8c"
-   1400 x="16.849001"
-   1401 y="2.45"
-   1402 width="2.2969999"
-   1403 height="2.299"
-   1404 id="rect4303" />
-   1405  
-   1406 <rect
-   1407 style="fill:#8c8663"
-   1408 x="17.407"
-   1409 y="3.0079999"
-   1410 width="1.182"
-   1411 height="1.183"
-   1412 id="rect4305" />
-   1413  
-   1414 <polygon
-   1415 style="fill:#b8af82"
-   1416 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 "
-   1417 id="polygon4307" />
-   1418  
-   1419 <polygon
-   1420 style="fill:#80795b"
-   1421 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 "
-   1422 id="polygon4309" />
-   1423  
-   1424 <polygon
-   1425 style="fill:#5e5b43"
-   1426 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 "
-   1427 id="polygon4311" />
-   1428  
-   1429 <polygon
-   1430 style="fill:#9a916c"
-   1431 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 "
-   1432 id="polygon4313" />
-   1433  
-   1434 </g>
-   1435  
-   1436 </g>
-   1437 </g>
-   1438 <g
-   1439 id="g4491"
-   1440 transform="matrix(0,-1.0001389,1.0001389,0,119.80224,44.801534)">
-   1441 <rect
-   1442 height="2.7909999"
-   1443 width="2.7909999"
-   1444 y="2.204"
-   1445 x="2.204"
-   1446 id="connector0pin-2"
-   1447 style="fill:none" />
-   1448 <rect
-   1449 height="2.2620001"
-   1450 width="2.164"
-   1451 y="2.4690001"
-   1452 x="2.5179999"
-   1453 id="connector0terminal-5"
-   1454 style="fill:none" />
-   1455 <rect
-   1456 height="2.7909999"
-   1457 width="2.7909999"
-   1458 y="2.204"
-   1459 x="9.4029999"
-   1460 id="connector1pin-7"
-   1461 style="fill:none" />
-   1462 <rect
-   1463 height="2.2620001"
-   1464 width="2.164"
-   1465 y="2.4690001"
-   1466 x="9.717"
-   1467 id="connector1terminal-18"
-   1468 style="fill:none" />
-   1469 <g
-   1470 id="breadboard-7">
-   1471 <g
-   1472 id="g4449">
-   1473 <polygon
-   1474 id="polygon4451"
-   1475 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 "
-   1476 style="fill:#404040" />
-   1477  
-   1478 </g>
-   1479  
-   1480 <g
-   1481 id="g4453">
-   1482 <rect
-   1483 id="rect4455"
-   1484 height="2.299"
-   1485 width="2.2969999"
-   1486 y="2.45"
-   1487 x="2.451"
-   1488 style="fill:#8d8c8c" />
-   1489  
-   1490 <rect
-   1491 id="rect4457"
-   1492 height="1.183"
-   1493 width="1.182"
-   1494 y="3.0079999"
-   1495 x="3.0090001"
-   1496 style="fill:#8c8663" />
-   1497  
-   1498 <polygon
-   1499 id="polygon4459"
-   1500 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
-   1501 style="fill:#b8af82" />
-   1502  
-   1503 <polygon
-   1504 id="polygon4461"
-   1505 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
-   1506 style="fill:#80795b" />
-   1507  
-   1508 <polygon
-   1509 id="polygon4463"
-   1510 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
-   1511 style="fill:#5e5b43" />
-   1512  
-   1513 <polygon
-   1514 id="polygon4465"
-   1515 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
-   1516 style="fill:#9a916c" />
-   1517  
-   1518 </g>
-   1519  
-   1520 <g
-   1521 id="g4467">
-   1522 <polygon
-   1523 id="polygon4469"
-   1524 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 "
-   1525 style="fill:#404040" />
-   1526  
-   1527 </g>
-   1528  
-   1529 <g
-   1530 id="g4471">
-   1531 <rect
-   1532 id="rect4473"
-   1533 height="2.299"
-   1534 width="2.2969999"
-   1535 y="2.45"
-   1536 x="9.6499996"
-   1537 style="fill:#8d8c8c" />
-   1538  
-   1539 <rect
-   1540 id="rect4475"
-   1541 height="1.183"
-   1542 width="1.182"
-   1543 y="3.0079999"
-   1544 x="10.208"
-   1545 style="fill:#8c8663" />
-   1546  
-   1547 <polygon
-   1548 id="polygon4477"
-   1549 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
-   1550 style="fill:#b8af82" />
-   1551  
-   1552 <polygon
-   1553 id="polygon4479"
-   1554 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
-   1555 style="fill:#80795b" />
-   1556  
-   1557 <polygon
-   1558 id="polygon4481"
-   1559 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
-   1560 style="fill:#5e5b43" />
-   1561  
-   1562 <polygon
-   1563 id="polygon4483"
-   1564 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
-   1565 style="fill:#9a916c" />
-   1566  
-   1567 </g>
-   1568  
-   1569 </g>
-   1570 </g>
-   1571 <g
-   1572 id="g3376"
-   1573 transform="matrix(1.0001389,0,0,1.0001389,68.517272,68.604263)">
-   1574 <g
-   1575 id="breadboard-07"
-   1576 transform="translate(-5.2541901e-8,7.171834)">
-   1577 <g
-   1578 id="g20">
-   1579 <polygon
-   1580 points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 "
-   1581 id="polygon22-3"
-   1582 style="fill:#404040" />
-   1583  
-   1584 </g>
-   1585  
-   1586 <g
-   1587 id="g24">
-   1588 <rect
-   1589 x="2.451"
-   1590 y="2.45"
-   1591 width="2.2969999"
-   1592 height="2.299"
-   1593 id="rect26"
-   1594 style="fill:#8d8c8c" />
-   1595  
-   1596 <rect
-   1597 x="3.0090001"
-   1598 y="3.0079999"
-   1599 width="1.182"
-   1600 height="1.183"
-   1601 id="rect28"
-   1602 style="fill:#8c8663" />
-   1603  
-   1604 <polygon
-   1605 points="4.748,2.45 2.451,2.45 3.009,3.008 4.19,3.008 "
-   1606 id="polygon30-4"
-   1607 style="fill:#b8af82" />
-   1608  
-   1609 <polygon
-   1610 points="4.748,4.749 4.19,4.19 4.19,3.008 4.748,2.45 "
-   1611 id="polygon32"
-   1612 style="fill:#80795b" />
-   1613  
-   1614 <polygon
-   1615 points="2.451,4.749 3.009,4.19 4.19,4.19 4.748,4.749 "
-   1616 id="polygon34"
-   1617 style="fill:#5e5b43" />
-   1618  
-   1619 <polygon
-   1620 points="2.451,4.749 2.451,2.45 3.009,3.008 3.009,4.19 "
-   1621 id="polygon36"
-   1622 style="fill:#9a916c" />
-   1623  
-   1624 </g>
-   1625  
-   1626 <g
-   1627 id="g38">
-   1628 <polygon
-   1629 points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 "
-   1630 id="polygon40-8"
-   1631 style="fill:#404040" />
-   1632  
-   1633 </g>
-   1634  
-   1635 <g
-   1636 id="g42">
-   1637 <rect
-   1638 x="9.6499996"
-   1639 y="2.45"
-   1640 width="2.2969999"
-   1641 height="2.299"
-   1642 id="rect44"
-   1643 style="fill:#8d8c8c" />
-   1644  
-   1645 <rect
-   1646 x="10.208"
-   1647 y="3.0079999"
-   1648 width="1.182"
-   1649 height="1.183"
-   1650 id="rect46-4"
-   1651 style="fill:#8c8663" />
-   1652  
-   1653 <polygon
-   1654 points="11.947,2.45 9.65,2.45 10.208,3.008 11.389,3.008 "
-   1655 id="polygon48-2"
-   1656 style="fill:#b8af82" />
-   1657  
-   1658 <polygon
-   1659 points="11.947,4.749 11.389,4.19 11.389,3.008 11.947,2.45 "
-   1660 id="polygon50"
-   1661 style="fill:#80795b" />
-   1662  
-   1663 <polygon
-   1664 points="9.65,4.749 10.208,4.19 11.389,4.19 11.947,4.749 "
-   1665 id="polygon52"
-   1666 style="fill:#5e5b43" />
-   1667  
-   1668 <polygon
-   1669 points="9.65,4.749 9.65,2.45 10.208,3.008 10.208,4.19 "
-   1670 id="polygon54"
-   1671 style="fill:#9a916c" />
-   1672  
-   1673 </g>
-   1674  
-   1675 <g
-   1676 id="g56-7">
-   1677 <polygon
-   1678 points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 "
-   1679 id="polygon58-5"
-   1680 style="fill:#404040" />
-   1681  
-   1682 </g>
-   1683  
-   1684 <g
-   1685 id="g60">
-   1686 <rect
-   1687 x="16.849001"
-   1688 y="2.45"
-   1689 width="2.2969999"
-   1690 height="2.299"
-   1691 id="rect62"
-   1692 style="fill:#8d8c8c" />
-   1693  
-   1694 <rect
-   1695 x="17.407"
-   1696 y="3.0079999"
-   1697 width="1.182"
-   1698 height="1.183"
-   1699 id="rect64"
-   1700 style="fill:#8c8663" />
-   1701  
-   1702 <polygon
-   1703 points="19.146,2.45 16.849,2.45 17.407,3.008 18.588,3.008 "
-   1704 id="polygon66"
-   1705 style="fill:#b8af82" />
-   1706  
-   1707 <polygon
-   1708 points="19.146,4.749 18.588,4.19 18.588,3.008 19.146,2.45 "
-   1709 id="polygon68"
-   1710 style="fill:#80795b" />
-   1711  
-   1712 <polygon
-   1713 points="16.849,4.749 17.407,4.19 18.588,4.19 19.146,4.749 "
-   1714 id="polygon70"
-   1715 style="fill:#5e5b43" />
-   1716  
-   1717 <polygon
-   1718 points="16.849,4.749 16.849,2.45 17.407,3.008 17.407,4.19 "
-   1719 id="polygon72"
-   1720 style="fill:#9a916c" />
-   1721  
-   1722 </g>
-   1723  
-   1724 <g
-   1725 id="g74">
-   1726 <polygon
-   1727 points="21.597,5.637 23.16,7.199 27.232,7.199 28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 "
-   1728 id="polygon76"
-   1729 style="fill:#404040" />
-   1730  
-   1731 </g>
-   1732  
-   1733 <g
-   1734 id="g78">
-   1735 <rect
-   1736 x="24.048"
-   1737 y="2.45"
-   1738 width="2.2969999"
-   1739 height="2.299"
-   1740 id="rect80"
-   1741 style="fill:#8d8c8c" />
-   1742  
-   1743 <rect
-   1744 x="24.606001"
-   1745 y="3.0079999"
-   1746 width="1.182"
-   1747 height="1.183"
-   1748 id="rect82"
-   1749 style="fill:#8c8663" />
-   1750  
-   1751 <polygon
-   1752 points="26.345,2.45 24.048,2.45 24.606,3.008 25.787,3.008 "
-   1753 id="polygon84"
-   1754 style="fill:#b8af82" />
-   1755  
-   1756 <polygon
-   1757 points="26.345,4.749 25.787,4.19 25.787,3.008 26.345,2.45 "
-   1758 id="polygon86"
-   1759 style="fill:#80795b" />
-   1760  
-   1761 <polygon
-   1762 points="24.048,4.749 24.606,4.19 25.787,4.19 26.345,4.749 "
-   1763 id="polygon88"
-   1764 style="fill:#5e5b43" />
-   1765  
-   1766 <polygon
-   1767 points="24.048,4.749 24.048,2.45 24.606,3.008 24.606,4.19 "
-   1768 id="polygon90"
-   1769 style="fill:#9a916c" />
-   1770  
-   1771 </g>
-   1772  
-   1773 <g
-   1774 id="g92">
-   1775 <polygon
-   1776 points="28.796,5.637 30.359,7.199 34.431,7.199 35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 "
-   1777 id="polygon94"
-   1778 style="fill:#404040" />
-   1779  
-   1780 </g>
-   1781  
-   1782 <g
-   1783 id="g96">
-   1784 <rect
-   1785 x="31.247"
-   1786 y="2.45"
-   1787 width="2.2969999"
-   1788 height="2.299"
-   1789 id="rect98"
-   1790 style="fill:#8d8c8c" />
-   1791  
-   1792 <rect
-   1793 x="31.805"
-   1794 y="3.0079999"
-   1795 width="1.182"
-   1796 height="1.183"
-   1797 id="rect100"
-   1798 style="fill:#8c8663" />
-   1799  
-   1800 <polygon
-   1801 points="33.544,2.45 31.247,2.45 31.805,3.008 32.986,3.008 "
-   1802 id="polygon102"
-   1803 style="fill:#b8af82" />
-   1804  
-   1805 <polygon
-   1806 points="33.544,4.749 32.986,4.19 32.986,3.008 33.544,2.45 "
-   1807 id="polygon104"
-   1808 style="fill:#80795b" />
-   1809  
-   1810 <polygon
-   1811 points="31.247,4.749 31.805,4.19 32.986,4.19 33.544,4.749 "
-   1812 id="polygon106"
-   1813 style="fill:#5e5b43" />
-   1814  
-   1815 <polygon
-   1816 points="31.247,4.749 31.247,2.45 31.805,3.008 31.805,4.19 "
-   1817 id="polygon108"
-   1818 style="fill:#9a916c" />
-   1819  
-   1820 </g>
-   1821  
-   1822 <g
-   1823 id="g110">
-   1824 <polygon
-   1825 points="35.995,5.637 37.558,7.199 41.63,7.199 43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 "
-   1826 id="polygon112"
-   1827 style="fill:#404040" />
-   1828  
-   1829 </g>
-   1830  
-   1831 <g
-   1832 id="g114">
-   1833 <rect
-   1834 x="38.445999"
-   1835 y="2.45"
-   1836 width="2.2969999"
-   1837 height="2.299"
-   1838 id="rect116"
-   1839 style="fill:#8d8c8c" />
-   1840  
-   1841 <rect
-   1842 x="39.004002"
-   1843 y="3.0079999"
-   1844 width="1.182"
-   1845 height="1.183"
-   1846 id="rect118"
-   1847 style="fill:#8c8663" />
-   1848  
-   1849 <polygon
-   1850 points="40.743,2.45 38.446,2.45 39.004,3.008 40.185,3.008 "
-   1851 id="polygon120"
-   1852 style="fill:#b8af82" />
-   1853  
-   1854 <polygon
-   1855 points="40.743,4.749 40.185,4.19 40.185,3.008 40.743,2.45 "
-   1856 id="polygon122"
-   1857 style="fill:#80795b" />
-   1858  
-   1859 <polygon
-   1860 points="38.446,4.749 39.004,4.19 40.185,4.19 40.743,4.749 "
-   1861 id="polygon124"
-   1862 style="fill:#5e5b43" />
-   1863  
-   1864 <polygon
-   1865 points="38.446,4.749 38.446,2.45 39.004,3.008 39.004,4.19 "
-   1866 id="polygon126"
-   1867 style="fill:#9a916c" />
-   1868  
-   1869 </g>
-   1870  
-   1871 <g
-   1872 id="g128">
-   1873 <polygon
-   1874 points="43.194,5.637 44.757,7.199 48.829,7.199 50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 "
-   1875 id="polygon130"
-   1876 style="fill:#404040" />
-   1877  
-   1878 </g>
-   1879  
-   1880 <g
-   1881 id="g132">
-   1882 <rect
-   1883 x="45.645"
-   1884 y="2.45"
-   1885 width="2.2969999"
-   1886 height="2.299"
-   1887 id="rect134"
-   1888 style="fill:#8d8c8c" />
-   1889  
-   1890 <rect
-   1891 x="46.202999"
-   1892 y="3.0079999"
-   1893 width="1.182"
-   1894 height="1.183"
-   1895 id="rect136"
-   1896 style="fill:#8c8663" />
-   1897  
-   1898 <polygon
-   1899 points="47.942,2.45 45.645,2.45 46.203,3.008 47.384,3.008 "
-   1900 id="polygon138"
-   1901 style="fill:#b8af82" />
-   1902  
-   1903 <polygon
-   1904 points="47.942,4.749 47.384,4.19 47.384,3.008 47.942,2.45 "
-   1905 id="polygon140"
-   1906 style="fill:#80795b" />
-   1907  
-   1908 <polygon
-   1909 points="45.645,4.749 46.203,4.19 47.384,4.19 47.942,4.749 "
-   1910 id="polygon142"
-   1911 style="fill:#5e5b43" />
-   1912  
-   1913 <polygon
-   1914 points="45.645,4.749 45.645,2.45 46.203,3.008 46.203,4.19 "
-   1915 id="polygon144"
-   1916 style="fill:#9a916c" />
-   1917  
-   1918 </g>
-   1919  
-   1920 <g
-   1921 id="g146">
-   1922 <polygon
-   1923 points="50.393,5.637 51.956,7.199 56.028,7.199 57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 "
-   1924 id="polygon148"
-   1925 style="fill:#404040" />
-   1926  
-   1927 </g>
-   1928  
-   1929 <g
-   1930 id="g150">
-   1931 <rect
-   1932 x="52.844002"
-   1933 y="2.45"
-   1934 width="2.2969999"
-   1935 height="2.299"
-   1936 id="rect152"
-   1937 style="fill:#8d8c8c" />
-   1938  
-   1939 <rect
-   1940 x="53.402"
-   1941 y="3.0079999"
-   1942 width="1.182"
-   1943 height="1.183"
-   1944 id="rect154"
-   1945 style="fill:#8c8663" />
-   1946  
-   1947 <polygon
-   1948 points="55.141,2.45 52.844,2.45 53.402,3.008 54.583,3.008 "
-   1949 id="polygon156"
-   1950 style="fill:#b8af82" />
-   1951  
-   1952 <polygon
-   1953 points="55.141,4.749 54.583,4.19 54.583,3.008 55.141,2.45 "
-   1954 id="polygon158"
-   1955 style="fill:#80795b" />
-   1956  
-   1957 <polygon
-   1958 points="52.844,4.749 53.402,4.19 54.583,4.19 55.141,4.749 "
-   1959 id="polygon160"
-   1960 style="fill:#5e5b43" />
-   1961  
-   1962 <polygon
-   1963 points="52.844,4.749 52.844,2.45 53.402,3.008 53.402,4.19 "
-   1964 id="polygon162"
-   1965 style="fill:#9a916c" />
-   1966  
-   1967 </g>
-   1968  
-   1969 </g>
-   1970 <g
-   1971 id="g3342">
-   1972 <rect
-   1973 style="fill:none"
-   1974 height="2.7909999"
-   1975 width="2.7909999"
-   1976 y="9.3758345"
-   1977 x="2.204"
-   1978 id="connector0pin-4" />
-   1979 <rect
-   1980 style="fill:none"
-   1981 height="2.2620001"
-   1982 width="2.164"
-   1983 y="9.6408339"
-   1984 x="2.5179999"
-   1985 id="connector0terminal-0" />
-   1986 <rect
-   1987 style="fill:none"
-   1988 height="2.7909999"
-   1989 width="2.7909999"
-   1990 y="9.3758345"
-   1991 x="9.4029999"
-   1992 id="connector1pin-9" />
-   1993 <rect
-   1994 style="fill:none"
-   1995 height="2.2620001"
-   1996 width="2.164"
-   1997 y="9.6408339"
-   1998 x="9.717"
-   1999 id="connector1terminal-2" />
-   2000 <rect
-   2001 style="fill:none"
-   2002 height="2.7909999"
-   2003 width="2.7909999"
-   2004 y="9.3758345"
-   2005 x="16.601999"
-   2006 id="connector2pin-1" />
-   2007 <rect
-   2008 style="fill:none"
-   2009 height="2.2620001"
-   2010 width="2.164"
-   2011 y="9.6408339"
-   2012 x="16.916"
-   2013 id="connector2terminal-1" />
-   2014 <rect
-   2015 style="fill:none"
-   2016 height="2.7909999"
-   2017 width="2.7909999"
-   2018 y="9.3758345"
-   2019 x="23.801001"
-   2020 id="connector3pin-2" />
-   2021 <rect
-   2022 style="fill:none"
-   2023 height="2.2620001"
-   2024 width="2.164"
-   2025 y="9.6408339"
-   2026 x="24.115"
-   2027 id="connector3terminal-2" />
-   2028 <rect
-   2029 style="fill:none"
-   2030 height="2.7909999"
-   2031 width="2.7909999"
-   2032 y="9.3758345"
-   2033 x="31"
-   2034 id="connector4pin-6" />
-   2035 <rect
-   2036 style="fill:none"
-   2037 height="2.2620001"
-   2038 width="2.164"
-   2039 y="9.6408339"
-   2040 x="31.313999"
-   2041 id="connector4terminal-5" />
-   2042 <rect
-   2043 style="fill:none"
-   2044 height="2.7909999"
-   2045 width="2.7909999"
-   2046 y="9.3758345"
-   2047 x="38.199001"
-   2048 id="connector5pin-6" />
-   2049 <rect
-   2050 style="fill:none"
-   2051 height="2.2620001"
-   2052 width="2.164"
-   2053 y="9.6408339"
-   2054 x="38.513"
-   2055 id="connector5terminal-5" />
-   2056 <rect
-   2057 style="fill:none"
-   2058 height="2.7909999"
-   2059 width="2.7909999"
-   2060 y="9.3758345"
-   2061 x="45.397999"
-   2062 id="connector6pin" />
-   2063 <rect
-   2064 style="fill:none"
-   2065 height="2.2620001"
-   2066 width="2.164"
-   2067 y="9.6408339"
-   2068 x="45.712002"
-   2069 id="connector6terminal" />
-   2070 <rect
-   2071 style="fill:none"
-   2072 height="2.7909999"
-   2073 width="2.7909999"
-   2074 y="9.3758345"
-   2075 x="52.597"
-   2076 id="connector7pin" />
-   2077 <rect
-   2078 style="fill:none"
-   2079 height="2.2620001"
-   2080 width="2.164"
-   2081 y="9.6408339"
-   2082 x="52.910999"
-   2083 id="connector7terminal" />
-   2084 <rect
-   2085 style="fill:none"
-   2086 id="rect3145"
-   2087 x="2.204"
-   2088 y="2.204"
-   2089 width="2.7909999"
-   2090 height="2.7909999" />
-   2091 <rect
-   2092 style="fill:none"
-   2093 id="rect3147"
-   2094 x="2.5179999"
-   2095 y="2.4690003"
-   2096 width="2.164"
-   2097 height="2.2620001" />
-   2098 <rect
-   2099 style="fill:none"
-   2100 id="rect3149"
-   2101 x="9.4029999"
-   2102 y="2.204"
-   2103 width="2.7909999"
-   2104 height="2.7909999" />
-   2105 <rect
-   2106 style="fill:none"
-   2107 id="rect3151"
-   2108 x="9.717"
-   2109 y="2.4690003"
-   2110 width="2.164"
-   2111 height="2.2620001" />
-   2112 <rect
-   2113 style="fill:none"
-   2114 id="rect3153"
-   2115 x="16.601999"
-   2116 y="2.204"
-   2117 width="2.7909999"
-   2118 height="2.7909999" />
-   2119 <rect
-   2120 style="fill:none"
-   2121 id="rect3155"
-   2122 x="16.916"
-   2123 y="2.4690003"
-   2124 width="2.164"
-   2125 height="2.2620001" />
-   2126 <rect
-   2127 style="fill:none"
-   2128 id="rect3157"
-   2129 x="23.801001"
-   2130 y="2.204"
-   2131 width="2.7909999"
-   2132 height="2.7909999" />
-   2133 <rect
-   2134 style="fill:none"
-   2135 id="rect3159"
-   2136 x="24.115"
-   2137 y="2.4690003"
-   2138 width="2.164"
-   2139 height="2.2620001" />
-   2140 <rect
-   2141 style="fill:none"
-   2142 id="rect3161"
-   2143 x="31"
-   2144 y="2.204"
-   2145 width="2.7909999"
-   2146 height="2.7909999" />
-   2147 <rect
-   2148 style="fill:none"
-   2149 id="rect3163"
-   2150 x="31.313999"
-   2151 y="2.4690003"
-   2152 width="2.164"
-   2153 height="2.2620001" />
-   2154 <rect
-   2155 style="fill:none"
-   2156 id="rect3165"
-   2157 x="38.199001"
-   2158 y="2.204"
-   2159 width="2.7909999"
-   2160 height="2.7909999" />
-   2161 <rect
-   2162 style="fill:none"
-   2163 id="rect3167"
-   2164 x="38.513"
-   2165 y="2.4690003"
-   2166 width="2.164"
-   2167 height="2.2620001" />
-   2168 <rect
-   2169 style="fill:none"
-   2170 id="rect3169"
-   2171 x="45.397999"
-   2172 y="2.204"
-   2173 width="2.7909999"
-   2174 height="2.7909999" />
-   2175 <rect
-   2176 style="fill:none"
-   2177 id="rect3171"
-   2178 x="45.712002"
-   2179 y="2.4690003"
-   2180 width="2.164"
-   2181 height="2.2620001" />
-   2182 <rect
-   2183 style="fill:none"
-   2184 id="rect3173"
-   2185 x="52.597"
-   2186 y="2.204"
-   2187 width="2.7909999"
-   2188 height="2.7909999" />
-   2189 <rect
-   2190 style="fill:none"
-   2191 id="rect3175"
-   2192 x="52.910999"
-   2193 y="2.4690003"
-   2194 width="2.164"
-   2195 height="2.2620001" />
-   2196 </g>
-   2197 <g
-   2198 id="g3177"
-   2199 transform="translate(0.0160871,0)">
-   2200 <g
-   2201 id="g3179">
-   2202 <polygon
-   2203 id="polygon3181"
-   2204 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 "
-   2205 style="fill:#404040" />
-   2206  
-   2207 </g>
-   2208  
-   2209 <g
-   2210 id="g3183">
-   2211 <rect
-   2212 id="rect3185"
-   2213 height="2.299"
-   2214 width="2.2969999"
-   2215 y="2.45"
-   2216 x="2.451"
-   2217 style="fill:#8d8c8c" />
-   2218  
-   2219 <rect
-   2220 id="rect3187"
-   2221 height="1.183"
-   2222 width="1.182"
-   2223 y="3.0079999"
-   2224 x="3.0090001"
-   2225 style="fill:#8c8663" />
-   2226  
-   2227 <polygon
-   2228 id="polygon3189"
-   2229 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 "
-   2230 style="fill:#b8af82" />
-   2231  
-   2232 <polygon
-   2233 id="polygon3191"
-   2234 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 "
-   2235 style="fill:#80795b" />
-   2236  
-   2237 <polygon
-   2238 id="polygon3193"
-   2239 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 "
-   2240 style="fill:#5e5b43" />
-   2241  
-   2242 <polygon
-   2243 id="polygon3195"
-   2244 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 "
-   2245 style="fill:#9a916c" />
-   2246  
-   2247 </g>
-   2248  
-   2249 <g
-   2250 id="g3197">
-   2251 <polygon
-   2252 id="polygon3199"
-   2253 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 "
-   2254 style="fill:#404040" />
-   2255  
-   2256 </g>
-   2257  
-   2258 <g
-   2259 id="g3201">
-   2260 <rect
-   2261 id="rect3203"
-   2262 height="2.299"
-   2263 width="2.2969999"
-   2264 y="2.45"
-   2265 x="9.6499996"
-   2266 style="fill:#8d8c8c" />
-   2267  
-   2268 <rect
-   2269 id="rect3205"
-   2270 height="1.183"
-   2271 width="1.182"
-   2272 y="3.0079999"
-   2273 x="10.208"
-   2274 style="fill:#8c8663" />
-   2275  
-   2276 <polygon
-   2277 id="polygon3207"
-   2278 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 "
-   2279 style="fill:#b8af82" />
-   2280  
-   2281 <polygon
-   2282 id="polygon3209"
-   2283 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 "
-   2284 style="fill:#80795b" />
-   2285  
-   2286 <polygon
-   2287 id="polygon3211"
-   2288 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 "
-   2289 style="fill:#5e5b43" />
-   2290  
-   2291 <polygon
-   2292 id="polygon3213"
-   2293 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 "
-   2294 style="fill:#9a916c" />
-   2295  
-   2296 </g>
-   2297  
-   2298 <g
-   2299 id="g3215">
-   2300 <polygon
-   2301 id="polygon3217"
-   2302 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 "
-   2303 style="fill:#404040" />
-   2304  
-   2305 </g>
-   2306  
-   2307 <g
-   2308 id="g3219">
-   2309 <rect
-   2310 id="rect3221"
-   2311 height="2.299"
-   2312 width="2.2969999"
-   2313 y="2.45"
-   2314 x="16.849001"
-   2315 style="fill:#8d8c8c" />
-   2316  
-   2317 <rect
-   2318 id="rect3223"
-   2319 height="1.183"
-   2320 width="1.182"
-   2321 y="3.0079999"
-   2322 x="17.407"
-   2323 style="fill:#8c8663" />
-   2324  
-   2325 <polygon
-   2326 id="polygon3225"
-   2327 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 "
-   2328 style="fill:#b8af82" />
-   2329  
-   2330 <polygon
-   2331 id="polygon3227"
-   2332 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 "
-   2333 style="fill:#80795b" />
-   2334  
-   2335 <polygon
-   2336 id="polygon3229"
-   2337 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 "
-   2338 style="fill:#5e5b43" />
-   2339  
-   2340 <polygon
-   2341 id="polygon3231"
-   2342 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 "
-   2343 style="fill:#9a916c" />
-   2344  
-   2345 </g>
-   2346  
-   2347 <g
-   2348 id="g3233">
-   2349 <polygon
-   2350 id="polygon3235"
-   2351 points="28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 "
-   2352 style="fill:#404040" />
-   2353  
-   2354 </g>
-   2355  
-   2356 <g
-   2357 id="g3237">
-   2358 <rect
-   2359 id="rect3239"
-   2360 height="2.299"
-   2361 width="2.2969999"
-   2362 y="2.45"
-   2363 x="24.048"
-   2364 style="fill:#8d8c8c" />
-   2365  
-   2366 <rect
-   2367 id="rect3241"
-   2368 height="1.183"
-   2369 width="1.182"
-   2370 y="3.0079999"
-   2371 x="24.606001"
-   2372 style="fill:#8c8663" />
-   2373  
-   2374 <polygon
-   2375 id="polygon3243"
-   2376 points="25.787,3.008 26.345,2.45 24.048,2.45 24.606,3.008 "
-   2377 style="fill:#b8af82" />
-   2378  
-   2379 <polygon
-   2380 id="polygon3245"
-   2381 points="26.345,2.45 26.345,4.749 25.787,4.19 25.787,3.008 "
-   2382 style="fill:#80795b" />
-   2383  
-   2384 <polygon
-   2385 id="polygon3247"
-   2386 points="26.345,4.749 24.048,4.749 24.606,4.19 25.787,4.19 "
-   2387 style="fill:#5e5b43" />
-   2388  
-   2389 <polygon
-   2390 id="polygon3249"
-   2391 points="24.606,4.19 24.048,4.749 24.048,2.45 24.606,3.008 "
-   2392 style="fill:#9a916c" />
-   2393  
-   2394 </g>
-   2395  
-   2396 <g
-   2397 id="g3251">
-   2398 <polygon
-   2399 id="polygon3253"
-   2400 points="35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 "
-   2401 style="fill:#404040" />
-   2402  
-   2403 </g>
-   2404  
-   2405 <g
-   2406 id="g3255">
-   2407 <rect
-   2408 id="rect3257"
-   2409 height="2.299"
-   2410 width="2.2969999"
-   2411 y="2.45"
-   2412 x="31.247"
-   2413 style="fill:#8d8c8c" />
-   2414  
-   2415 <rect
-   2416 id="rect3259"
-   2417 height="1.183"
-   2418 width="1.182"
-   2419 y="3.0079999"
-   2420 x="31.805"
-   2421 style="fill:#8c8663" />
-   2422  
-   2423 <polygon
-   2424 id="polygon3261"
-   2425 points="32.986,3.008 33.544,2.45 31.247,2.45 31.805,3.008 "
-   2426 style="fill:#b8af82" />
-   2427  
-   2428 <polygon
-   2429 id="polygon3263"
-   2430 points="33.544,2.45 33.544,4.749 32.986,4.19 32.986,3.008 "
-   2431 style="fill:#80795b" />
-   2432  
-   2433 <polygon
-   2434 id="polygon3265"
-   2435 points="33.544,4.749 31.247,4.749 31.805,4.19 32.986,4.19 "
-   2436 style="fill:#5e5b43" />
-   2437  
-   2438 <polygon
-   2439 id="polygon3267"
-   2440 points="31.805,4.19 31.247,4.749 31.247,2.45 31.805,3.008 "
-   2441 style="fill:#9a916c" />
-   2442  
-   2443 </g>
-   2444  
-   2445 <g
-   2446 id="g3269">
-   2447 <polygon
-   2448 id="polygon3271"
-   2449 points="43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 "
-   2450 style="fill:#404040" />
-   2451  
-   2452 </g>
-   2453  
-   2454 <g
-   2455 id="g3273">
-   2456 <rect
-   2457 id="rect3275"
-   2458 height="2.299"
-   2459 width="2.2969999"
-   2460 y="2.45"
-   2461 x="38.445999"
-   2462 style="fill:#8d8c8c" />
-   2463  
-   2464 <rect
-   2465 id="rect3277"
-   2466 height="1.183"
-   2467 width="1.182"
-   2468 y="3.0079999"
-   2469 x="39.004002"
-   2470 style="fill:#8c8663" />
-   2471  
-   2472 <polygon
-   2473 id="polygon3279"
-   2474 points="40.185,3.008 40.743,2.45 38.446,2.45 39.004,3.008 "
-   2475 style="fill:#b8af82" />
-   2476  
-   2477 <polygon
-   2478 id="polygon3281"
-   2479 points="40.743,2.45 40.743,4.749 40.185,4.19 40.185,3.008 "
-   2480 style="fill:#80795b" />
-   2481  
-   2482 <polygon
-   2483 id="polygon3283"
-   2484 points="40.743,4.749 38.446,4.749 39.004,4.19 40.185,4.19 "
-   2485 style="fill:#5e5b43" />
-   2486  
-   2487 <polygon
-   2488 id="polygon3285"
-   2489 points="39.004,4.19 38.446,4.749 38.446,2.45 39.004,3.008 "
-   2490 style="fill:#9a916c" />
-   2491  
-   2492 </g>
-   2493  
-   2494 <g
-   2495 id="g3287">
-   2496 <polygon
-   2497 id="polygon3289"
-   2498 points="50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 "
-   2499 style="fill:#404040" />
-   2500  
-   2501 </g>
-   2502  
-   2503 <g
-   2504 id="g3291">
-   2505 <rect
-   2506 id="rect3293"
-   2507 height="2.299"
-   2508 width="2.2969999"
-   2509 y="2.45"
-   2510 x="45.645"
-   2511 style="fill:#8d8c8c" />
-   2512  
-   2513 <rect
-   2514 id="rect3295"
-   2515 height="1.183"
-   2516 width="1.182"
-   2517 y="3.0079999"
-   2518 x="46.202999"
-   2519 style="fill:#8c8663" />
-   2520  
-   2521 <polygon
-   2522 id="polygon3297"
-   2523 points="47.384,3.008 47.942,2.45 45.645,2.45 46.203,3.008 "
-   2524 style="fill:#b8af82" />
-   2525  
-   2526 <polygon
-   2527 id="polygon3299"
-   2528 points="47.942,2.45 47.942,4.749 47.384,4.19 47.384,3.008 "
-   2529 style="fill:#80795b" />
-   2530  
-   2531 <polygon
-   2532 id="polygon3301"
-   2533 points="47.942,4.749 45.645,4.749 46.203,4.19 47.384,4.19 "
-   2534 style="fill:#5e5b43" />
-   2535  
-   2536 <polygon
-   2537 id="polygon3303"
-   2538 points="46.203,4.19 45.645,4.749 45.645,2.45 46.203,3.008 "
-   2539 style="fill:#9a916c" />
-   2540  
-   2541 </g>
-   2542  
-   2543 <g
-   2544 id="g3305">
-   2545 <polygon
-   2546 id="polygon3307"
-   2547 points="57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 "
-   2548 style="fill:#404040" />
-   2549  
-   2550 </g>
-   2551  
-   2552 <g
-   2553 id="g3309">
-   2554 <rect
-   2555 id="rect3311"
-   2556 height="2.299"
-   2557 width="2.2969999"
-   2558 y="2.45"
-   2559 x="52.844002"
-   2560 style="fill:#8d8c8c" />
-   2561  
-   2562 <rect
-   2563 id="rect3313"
-   2564 height="1.183"
-   2565 width="1.182"
-   2566 y="3.0079999"
-   2567 x="53.402"
-   2568 style="fill:#8c8663" />
-   2569  
-   2570 <polygon
-   2571 id="polygon3315"
-   2572 points="54.583,3.008 55.141,2.45 52.844,2.45 53.402,3.008 "
-   2573 style="fill:#b8af82" />
-   2574  
-   2575 <polygon
-   2576 id="polygon3317"
-   2577 points="55.141,2.45 55.141,4.749 54.583,4.19 54.583,3.008 "
-   2578 style="fill:#80795b" />
-   2579  
-   2580 <polygon
-   2581 id="polygon3319"
-   2582 points="55.141,4.749 52.844,4.749 53.402,4.19 54.583,4.19 "
-   2583 style="fill:#5e5b43" />
-   2584  
-   2585 <polygon
-   2586 id="polygon3321"
-   2587 points="53.402,4.19 52.844,4.749 52.844,2.45 53.402,3.008 "
-   2588 style="fill:#9a916c" />
-   2589  
-   2590 </g>
-   2591  
-   2592 </g>
-   2593 </g>
9 </svg> 2594 </svg>