Rev 3522 Rev 3524
1 { 1 {
2 "metadata": { 2 "metadata": {
3 "name": "ALTIMET_test" 3 "name": ""
4 }, 4 },
5 "nbformat": 3, 5 "nbformat": 3,
6 "nbformat_minor": 0, 6 "nbformat_minor": 0,
7 "worksheets": [ 7 "worksheets": [
8 { 8 {
9 "cells": [ 9 "cells": [
10 { 10 {
11 "cell_type": "markdown", 11 "cell_type": "markdown",
12 "metadata": {}, 12 "metadata": {},
13 "source": [ 13 "source": [
14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty\n", 14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty\n",
15 "=======\n", 15 "=======\n",
16 "\n", 16 "\n",
17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 moduluvou stavebnici MLAB a jej\u00ed knihovnu https://github.com/MLAB-project/MLAB-I2c-modules \n", 17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 moduluvou stavebnici MLAB a jej\u00ed knihovnu https://github.com/MLAB-project/MLAB-I2c-modules \n",
18 "\n", 18 "\n",
19 "Zprovozn\u011bn\u00ed demo k\u00f3du\n", 19 "Zprovozn\u011bn\u00ed demo k\u00f3du\n",
20 "---------------------\n", 20 "---------------------\n",
21 "\n", 21 "\n",
22 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n" 22 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n"
23 ] 23 ]
24 }, 24 },
25 { 25 {
26 "cell_type": "code", 26 "cell_type": "code",
27 "collapsed": false, 27 "collapsed": false,
28 "input": [ 28 "input": [
29 "!i2cdetect -l" 29 "!i2cdetect -l"
30 ], 30 ],
31 "language": "python", 31 "language": "python",
32 "metadata": {}, 32 "metadata": {},
33 "outputs": [ 33 "outputs": [
34 { 34 {
35 "output_type": "stream", 35 "output_type": "stream",
36 "stream": "stdout", 36 "stream": "stdout",
37 "text": [ 37 "text": [
38 "i2c-0\tsmbus \tCP2112 SMBus Bridge on hiddev0 \tSMBus adapter\r\n", -  
39 "i2c-1\ti2c \ti2c-tiny-usb at bus 001 device 007\tI2C adapter\r\n", 38 "i2c-5\ti2c \ti2c-tiny-usb at bus 002 device 008\tI2C adapter\r\n",
40 "i2c-2\ti2c \ti915 gmbus ssc \tI2C adapter\r\n", -  
41 "i2c-3\ti2c \ti915 gmbus vga \tI2C adapter\r\n", 39 "i2c-0\ti2c \tintel drm CRTDDC_A \tI2C adapter\r\n",
42 "i2c-4\ti2c \ti915 gmbus panel \tI2C adapter\r\n", -  
43 "i2c-5\ti2c \ti915 gmbus dpc \tI2C adapter\r\n", 40 "i2c-1\ti2c \tintel drm LVDSBLC_B \tI2C adapter\r\n",
44 "i2c-6\ti2c \ti915 gmbus dpb \tI2C adapter\r\n", 41 "i2c-2\ti2c \tintel drm LVDSDDC_C \tI2C adapter\r\n",
45 "i2c-7\ti2c \ti915 gmbus dpd \tI2C adapter\r\n", 42 "i2c-3\ti2c \tintel drm HDMIB \tI2C adapter\r\n",
46 "i2c-8\ti2c \tDPDDC-B \tI2C adapter\r\n" 43 "i2c-4\ti2c \tDPDDC-B \tI2C adapter\r\n"
47 ] 44 ]
48 } 45 }
49 ], 46 ],
50 "prompt_number": 1 47 "prompt_number": 1
51 }, 48 },
52 { 49 {
53 "cell_type": "markdown", 50 "cell_type": "markdown",
54 "metadata": {}, 51 "metadata": {},
55 "source": [ 52 "source": [
56 "Proto\u017ee pro p\u0159ipojen\u00ed \u010didel k po\u010d\u00edta\u010di pou\u017e\u00edv\u00e1me adapt\u00e9r i2c-tiny-usb. Vid\u00edme, \u017ee sb\u011brnice m\u00e1 aktu\u00e1ln\u011b ozna\u010den\u00ed nap\u0159\u00edklad i2c-8. \n", 53 "Proto\u017ee pro p\u0159ipojen\u00ed \u010didel k po\u010d\u00edta\u010di pou\u017e\u00edv\u00e1me adapt\u00e9r i2c-tiny-usb. Vid\u00edme, \u017ee sb\u011brnice m\u00e1 aktu\u00e1ln\u011b ozna\u010den\u00ed nap\u0159\u00edklad i2c-8. \n",
57 "\n", 54 "\n",
58 "V p\u0159\u00edpad\u011b, \u017ee v\u00fd\u0161e uveden\u00fd p\u0159\u00edklad vr\u00e1t\u00ed chybu, nebo pojmenov\u00e1n\u00ed \"unknown\" tak nem\u00e1me p\u0159\u00edstup k syst\u00e9mov\u00fdm rozhran\u00edm. Ten z\u00edsk\u00e1me vytvo\u0159en\u00edm souboru s n\u00e1sleduj\u00edc\u00edm obsahem ve slo\u017ece: /etc/udev/rules.d/i2c-devices.rules" 55 "V p\u0159\u00edpad\u011b, \u017ee v\u00fd\u0161e uveden\u00fd p\u0159\u00edklad vr\u00e1t\u00ed chybu, nebo pojmenov\u00e1n\u00ed \"unknown\" tak nem\u00e1me p\u0159\u00edstup k syst\u00e9mov\u00fdm rozhran\u00edm. Ten z\u00edsk\u00e1me vytvo\u0159en\u00edm souboru s n\u00e1sleduj\u00edc\u00edm obsahem ve slo\u017ece: /etc/udev/rules.d/i2c-devices.rules"
59 ] 56 ]
60 }, 57 },
61 { 58 {
62 "cell_type": "raw", 59 "cell_type": "raw",
63 "metadata": {}, 60 "metadata": {},
64 "source": [ 61 "source": [
65 "KERNEL==\"i2c-[0-9]*\", GROUP=\"i2c\"" 62 "KERNEL==\"i2c-[0-9]*\", GROUP=\"i2c\""
66 ] 63 ]
67 }, 64 },
68 { 65 {
69 "cell_type": "markdown", 66 "cell_type": "markdown",
70 "metadata": {}, 67 "metadata": {},
71 "source": [ 68 "source": [
72 "Toto ozna\u010den\u00ed budeme je\u0161t\u011b d\u00e1le pot\u0159ebovat, proto si jej ulo\u017e\u00edme da prom\u011bnn\u00e9. " 69 "Toto ozna\u010den\u00ed budeme je\u0161t\u011b d\u00e1le pot\u0159ebovat, proto si jej ulo\u017e\u00edme da prom\u011bnn\u00e9. "
73 ] 70 ]
74 }, 71 },
75 { 72 {
76 "cell_type": "code", 73 "cell_type": "code",
77 "collapsed": false, 74 "collapsed": false,
78 "input": [ 75 "input": [
79 "port = 1" 76 "port = 5"
80 ], 77 ],
81 "language": "python", 78 "language": "python",
82 "metadata": {}, 79 "metadata": {},
83 "outputs": [], 80 "outputs": [],
84 "prompt_number": 2 81 "prompt_number": 2
85 }, 82 },
86 { 83 {
87 "cell_type": "markdown", 84 "cell_type": "markdown",
88 "metadata": {}, 85 "metadata": {},
89 "source": [ 86 "source": [
90 "Budeme pokra\u010dovat na\u010dten\u00edm pot\u0159ebn\u00fdch modul\u016f pro zach\u00e1zen\u00ed s I\u00b2C sn\u00edma\u010di." 87 "Budeme pokra\u010dovat na\u010dten\u00edm pot\u0159ebn\u00fdch modul\u016f pro zach\u00e1zen\u00ed s I\u00b2C sn\u00edma\u010di."
91 ] 88 ]
92 }, 89 },
93 { 90 {
94 "cell_type": "code", 91 "cell_type": "code",
95 "collapsed": false, 92 "collapsed": false,
96 "input": [ 93 "input": [
97 "import time\n", 94 "import time\n",
98 "import datetime\n", 95 "import datetime\n",
99 "import sys\n", 96 "import sys\n",
100 "import serial\n", -  
101 "\n", 97 "\n",
102 "from pymlab import config\n", 98 "from pymlab import config\n",
103 "import matplotlib.pyplot as plt\n", 99 "import matplotlib.pyplot as plt\n",
104 "import numpy as np" 100 "import numpy as np"
105 ], 101 ],
106 "language": "python", 102 "language": "python",
107 "metadata": {}, 103 "metadata": {},
108 "outputs": [], 104 "outputs": [],
109 "prompt_number": 3 105 "prompt_number": 3
110 }, 106 },
111 { 107 {
112 "cell_type": "markdown", 108 "cell_type": "markdown",
113 "metadata": {}, 109 "metadata": {},
114 "source": [ 110 "source": [
115 "Nyn\u00ed si nadefinujeme strukturu p\u0159ipojen\u00ed jednotliv\u00fdch \u010didel na I\u00b2C sb\u011brnici." 111 "Nyn\u00ed si nadefinujeme strukturu p\u0159ipojen\u00ed jednotliv\u00fdch \u010didel na I\u00b2C sb\u011brnici."
116 ] 112 ]
117 }, 113 },
118 { 114 {
119 "cell_type": "code", 115 "cell_type": "code",
120 "collapsed": false, 116 "collapsed": false,
121 "input": [ 117 "input": [
122 "cfg = config.Config(\n", 118 "cfg = config.Config(\n",
123 " port = port,\n", 119 " port = port,\n",
124 " bus = [\n", 120 " bus = [\n",
125 " {\n", 121 " {\n",
126 " \"type\": \"i2chub\",\n", 122 " \"type\": \"i2chub\",\n",
127 " \"address\": 0x72,\n", 123 " \"address\": 0x72,\n",
128 " \n", 124 " \n",
129 " \"children\": [\n", 125 " \"children\": [\n",
130 " {\"name\": \"altimet\", \"type\": \"altimet01\" , \"channel\": 7, }, \n", 126 " {\"name\": \"altimet\", \"type\": \"altimet01\" , \"channel\": 7, }, \n",
131 " ],\n", 127 " ],\n",
132 " },\n", 128 " },\n",
133 " ],\n", 129 " ],\n",
134 ")" 130 ")"
135 ], 131 ],
136 "language": "python", 132 "language": "python",
137 "metadata": {}, 133 "metadata": {},
138 "outputs": [], 134 "outputs": [],
139 "prompt_number": 4 135 "prompt_number": 4
140 }, 136 },
141 { 137 {
142 "cell_type": "markdown", 138 "cell_type": "markdown",
143 "metadata": {}, 139 "metadata": {},
144 "source": [ 140 "source": [
145 "Tuto strukturu inicializujeme, aby jsme dos\u00e1hli definovan\u00e9 konfigurace \u010didel." 141 "Tuto strukturu inicializujeme, aby jsme dos\u00e1hli definovan\u00e9 konfigurace \u010didel."
146 ] 142 ]
147 }, 143 },
148 { 144 {
149 "cell_type": "code", 145 "cell_type": "code",
150 "collapsed": false, 146 "collapsed": false,
151 "input": [ 147 "input": [
152 "cfg.initialize()\n", 148 "cfg.initialize()\n",
153 "gauge = cfg.get_device(\"altimet\")\n", 149 "gauge = cfg.get_device(\"altimet\")\n",
154 "time.sleep(0.5)" 150 "time.sleep(0.5)"
155 ], 151 ],
156 "language": "python", 152 "language": "python",
157 "metadata": {}, 153 "metadata": {},
158 "outputs": [], 154 "outputs": [],
159 "prompt_number": 5 155 "prompt_number": 5
160 }, 156 },
161 { 157 {
162 "cell_type": "markdown", 158 "cell_type": "markdown",
163 "metadata": {}, 159 "metadata": {},
164 "source": [ 160 "source": [
165 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge." 161 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge."
166 ] 162 ]
167 }, 163 },
168 { 164 {
169 "cell_type": "code", 165 "cell_type": "code",
170 "collapsed": false, 166 "collapsed": false,
171 "input": [ 167 "input": [
172 "MEASUREMENTS = 100\n", 168 "MEASUREMENTS = 100\n",
173 "t = np.zeros(MEASUREMENTS)\n", 169 "t = np.zeros(MEASUREMENTS)\n",
174 "p = np.zeros(MEASUREMENTS)\n", 170 "p = np.zeros(MEASUREMENTS)\n",
175 "\n", 171 "\n",
176 "for n in range(MEASUREMENTS):\n", 172 "for n in range(MEASUREMENTS):\n",
177 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n", 173 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
178 " (t[n], p[n]) = gauge.get_tp()\n", 174 " (t[n], p[n]) = gauge.get_tp()\n",
179 " print(n,t[n], p[n])" 175 " print(n,t[n], p[n])"
180 ], 176 ],
181 "language": "python", 177 "language": "python",
182 "metadata": {}, 178 "metadata": {},
183 "outputs": [ 179 "outputs": [
184 { 180 {
185 "output_type": "stream", 181 "output_type": "stream",
186 "stream": "stdout", 182 "stream": "stdout",
187 "text": [ 183 "text": [
188 "(0, 22.625, 94868.25)\n", 184 "(0, 22.0, 96976.25)\n",
189 "(1, 22.625, 94868.25)" 185 "(1, 22.0, 96978.0)"
190 ] 186 ]
191 }, 187 },
192 { 188 {
193 "output_type": "stream", 189 "output_type": "stream",
194 "stream": "stdout", 190 "stream": "stdout",
195 "text": [ 191 "text": [
196 "\n", 192 "\n",
197 "(2, 22.625, 94868.25)" 193 "(2, 22.0, 96978.0)"
198 ] 194 ]
199 }, 195 },
200 { 196 {
201 "output_type": "stream", 197 "output_type": "stream",
202 "stream": "stdout", 198 "stream": "stdout",
203 "text": [ 199 "text": [
204 "\n", 200 "\n",
205 "(3, 22.625, 94870.0)" 201 "(3, 22.0, 96976.75)"
206 ] 202 ]
207 }, 203 },
208 { 204 {
209 "output_type": "stream", 205 "output_type": "stream",
210 "stream": "stdout", 206 "stream": "stdout",
211 "text": [ 207 "text": [
212 "\n", 208 "\n",
213 "(4, 22.625, 94870.0)" 209 "(4, 22.0, 96976.75)"
214 ] 210 ]
215 }, 211 },
216 { 212 {
217 "output_type": "stream", 213 "output_type": "stream",
218 "stream": "stdout", 214 "stream": "stdout",
219 "text": [ 215 "text": [
220 "\n", 216 "\n",
221 "(5, 22.625, 94868.5)" 217 "(5, 22.0, 96978.5)"
222 ] 218 ]
223 }, 219 },
224 { 220 {
225 "output_type": "stream", 221 "output_type": "stream",
226 "stream": "stdout", 222 "stream": "stdout",
227 "text": [ 223 "text": [
228 "\n", 224 "\n",
229 "(6, 22.625, 94868.5)" 225 "(6, 22.0, 96978.5)"
230 ] 226 ]
231 }, 227 },
232 { 228 {
233 "output_type": "stream", 229 "output_type": "stream",
234 "stream": "stdout", 230 "stream": "stdout",
235 "text": [ 231 "text": [
236 "\n", 232 "\n",
237 "(7, 22.5625, 94866.5)" 233 "(7, 22.0, 96976.25)"
238 ] 234 ]
239 }, 235 },
240 { 236 {
241 "output_type": "stream", 237 "output_type": "stream",
242 "stream": "stdout", 238 "stream": "stdout",
243 "text": [ 239 "text": [
244 "\n", 240 "\n",
245 "(8, 22.5625, 94866.5)" 241 "(8, 22.0, 96976.25)"
246 ] 242 ]
247 }, 243 },
248 { 244 {
249 "output_type": "stream", 245 "output_type": "stream",
250 "stream": "stdout", 246 "stream": "stdout",
251 "text": [ 247 "text": [
252 "\n", 248 "\n",
253 "(9, 22.625, 94868.5)" 249 "(9, 22.0, 96982.25)"
254 ] 250 ]
255 }, 251 },
256 { 252 {
257 "output_type": "stream", 253 "output_type": "stream",
258 "stream": "stdout", 254 "stream": "stdout",
259 "text": [ 255 "text": [
260 "\n", 256 "\n",
261 "(10, 22.625, 94868.5)" 257 "(10, 22.0, 96982.25)"
262 ] 258 ]
263 }, 259 },
264 { 260 {
265 "output_type": "stream", 261 "output_type": "stream",
266 "stream": "stdout", 262 "stream": "stdout",
267 "text": [ 263 "text": [
268 "\n", 264 "\n",
269 "(11, 22.5625, 94868.5)" 265 "(11, 22.0, 96978.0)"
270 ] 266 ]
271 }, 267 },
272 { 268 {
273 "output_type": "stream", 269 "output_type": "stream",
274 "stream": "stdout", 270 "stream": "stdout",
275 "text": [ 271 "text": [
276 "\n", 272 "\n",
277 "(12, 22.5625, 94868.0)" 273 "(12, 22.0, 96978.0)"
278 ] 274 ]
279 }, 275 },
280 { 276 {
281 "output_type": "stream", 277 "output_type": "stream",
282 "stream": "stdout", 278 "stream": "stdout",
283 "text": [ 279 "text": [
284 "\n", 280 "\n",
285 "(13, 22.5625, 94868.0)" 281 "(13, 22.0, 96976.75)"
286 ] 282 ]
287 }, 283 },
288 { 284 {
289 "output_type": "stream", 285 "output_type": "stream",
290 "stream": "stdout", 286 "stream": "stdout",
291 "text": [ 287 "text": [
292 "\n", 288 "\n",
293 "(14, 22.5625, 94866.25)" 289 "(14, 22.0, 96976.75)"
294 ] 290 ]
295 }, 291 },
296 { 292 {
297 "output_type": "stream", 293 "output_type": "stream",
298 "stream": "stdout", 294 "stream": "stdout",
299 "text": [ 295 "text": [
300 "\n", 296 "\n",
301 "(15, 22.625, 94866.25)" 297 "(15, 22.0, 96976.0)"
302 ] 298 ]
303 }, 299 },
304 { 300 {
305 "output_type": "stream", 301 "output_type": "stream",
306 "stream": "stdout", 302 "stream": "stdout",
307 "text": [ 303 "text": [
308 "\n", 304 "\n",
309 "(16, 22.625, 94868.5)" 305 "(16, 22.0, 96976.0)"
310 ] 306 ]
311 }, 307 },
312 { 308 {
313 "output_type": "stream", 309 "output_type": "stream",
314 "stream": "stdout", 310 "stream": "stdout",
315 "text": [ 311 "text": [
316 "\n", 312 "\n",
317 "(17, 22.625, 94868.5)" 313 "(17, 22.0, 96982.0)"
318 ] 314 ]
319 }, 315 },
320 { 316 {
321 "output_type": "stream", 317 "output_type": "stream",
322 "stream": "stdout", 318 "stream": "stdout",
323 "text": [ 319 "text": [
324 "\n", 320 "\n",
325 "(18, 22.625, 94870.75)" 321 "(18, 22.0, 96982.0)"
326 ] 322 ]
327 }, 323 },
328 { 324 {
329 "output_type": "stream", 325 "output_type": "stream",
330 "stream": "stdout", 326 "stream": "stdout",
331 "text": [ 327 "text": [
332 "\n", 328 "\n",
333 "(19, 22.625, 94870.75)" 329 "(19, 22.0, 96972.75)"
334 ] 330 ]
335 }, 331 },
336 { 332 {
337 "output_type": "stream", 333 "output_type": "stream",
338 "stream": "stdout", 334 "stream": "stdout",
339 "text": [ 335 "text": [
340 "\n", 336 "\n",
341 "(20, 22.5625, 94864.5)" 337 "(20, 22.0, 96972.75)"
342 ] 338 ]
343 }, 339 },
344 { 340 {
345 "output_type": "stream", 341 "output_type": "stream",
346 "stream": "stdout", 342 "stream": "stdout",
347 "text": [ 343 "text": [
348 "\n", 344 "\n",
349 "(21, 22.5625, 94864.5)" 345 "(21, 22.0, 96982.0)"
350 ] 346 ]
351 }, 347 },
352 { 348 {
353 "output_type": "stream", 349 "output_type": "stream",
354 "stream": "stdout", 350 "stream": "stdout",
355 "text": [ 351 "text": [
356 "\n", 352 "\n",
357 "(22, 22.625, 94868.5)" 353 "(22, 22.0, 96982.0)"
358 ] 354 ]
359 }, 355 },
360 { 356 {
361 "output_type": "stream", 357 "output_type": "stream",
362 "stream": "stdout", 358 "stream": "stdout",
363 "text": [ 359 "text": [
364 "\n", 360 "\n",
365 "(23, 22.625, 94868.5)" 361 "(23, 22.0, 96976.75)"
366 ] 362 ]
367 }, 363 },
368 { 364 {
369 "output_type": "stream", 365 "output_type": "stream",
370 "stream": "stdout", 366 "stream": "stdout",
371 "text": [ 367 "text": [
372 "\n", 368 "\n",
373 "(24, 22.5625, 94870.25)" 369 "(24, 22.0, 96976.75)"
374 ] 370 ]
375 }, 371 },
376 { 372 {
377 "output_type": "stream", 373 "output_type": "stream",
378 "stream": "stdout", 374 "stream": "stdout",
379 "text": [ 375 "text": [
380 "\n", 376 "\n",
381 "(25, 22.5625, 94866.25)" 377 "(25, 22.0, 96978.75)"
382 ] 378 ]
383 }, 379 },
384 { 380 {
385 "output_type": "stream", 381 "output_type": "stream",
386 "stream": "stdout", 382 "stream": "stdout",
387 "text": [ 383 "text": [
388 "\n", 384 "\n",
389 "(26, 22.5625, 94866.25)" 385 "(26, 22.0, 96978.75)"
390 ] 386 ]
391 }, 387 },
392 { 388 {
393 "output_type": "stream", 389 "output_type": "stream",
394 "stream": "stdout", 390 "stream": "stdout",
395 "text": [ 391 "text": [
396 "\n", 392 "\n",
397 "(27, 22.5625, 94864.75)" 393 "(27, 22.0, 96978.5)"
398 ] 394 ]
399 }, 395 },
400 { 396 {
401 "output_type": "stream", 397 "output_type": "stream",
402 "stream": "stdout", 398 "stream": "stdout",
403 "text": [ 399 "text": [
404 "\n", 400 "\n",
405 "(28, 22.5625, 94864.75)" 401 "(28, 22.0, 96978.5)"
406 ] 402 ]
407 }, 403 },
408 { 404 {
409 "output_type": "stream", 405 "output_type": "stream",
410 "stream": "stdout", 406 "stream": "stdout",
411 "text": [ 407 "text": [
412 "\n", 408 "\n",
413 "(29, 22.5625, 94868.0)" 409 "(29, 22.0, 96978.75)"
414 ] 410 ]
415 }, 411 },
416 { 412 {
417 "output_type": "stream", 413 "output_type": "stream",
418 "stream": "stdout", 414 "stream": "stdout",
419 "text": [ 415 "text": [
420 "\n", 416 "\n",
421 "(30, 22.5625, 94868.0)" 417 "(30, 22.0, 96976.75)"
422 ] 418 ]
423 }, 419 },
424 { 420 {
425 "output_type": "stream", 421 "output_type": "stream",
426 "stream": "stdout", 422 "stream": "stdout",
427 "text": [ 423 "text": [
428 "\n", 424 "\n",
429 "(31, 22.5625, 94868.5)" 425 "(31, 22.0, 96976.75)"
430 ] 426 ]
431 }, 427 },
432 { 428 {
433 "output_type": "stream", 429 "output_type": "stream",
434 "stream": "stdout", 430 "stream": "stdout",
435 "text": [ 431 "text": [
436 "\n", 432 "\n",
437 "(32, 22.5625, 94868.5)" 433 "(32, 22.0, 96972.75)"
438 ] 434 ]
439 }, 435 },
440 { 436 {
441 "output_type": "stream", 437 "output_type": "stream",
442 "stream": "stdout", 438 "stream": "stdout",
443 "text": [ 439 "text": [
444 "\n", 440 "\n",
445 "(33, 22.5625, 94870.0)" 441 "(33, 22.0, 96976.75)"
446 ] 442 ]
447 }, 443 },
448 { 444 {
449 "output_type": "stream", 445 "output_type": "stream",
450 "stream": "stdout", 446 "stream": "stdout",
451 "text": [ 447 "text": [
452 "\n", 448 "\n",
453 "(34, 22.5625, 94870.0)" 449 "(34, 22.0, 96978.5)"
454 ] 450 ]
455 }, 451 },
456 { 452 {
457 "output_type": "stream", 453 "output_type": "stream",
458 "stream": "stdout", 454 "stream": "stdout",
459 "text": [ 455 "text": [
460 "\n", 456 "\n",
461 "(35, 22.5625, 94864.25)" 457 "(35, 22.0, 96978.5)"
462 ] 458 ]
463 }, 459 },
464 { 460 {
465 "output_type": "stream", 461 "output_type": "stream",
466 "stream": "stdout", 462 "stream": "stdout",
467 "text": [ 463 "text": [
468 "\n", 464 "\n",
469 "(36, 22.5625, 94864.25)" 465 "(36, 22.0, 96978.25)"
470 ] 466 ]
471 }, 467 },
472 { 468 {
473 "output_type": "stream", 469 "output_type": "stream",
474 "stream": "stdout", 470 "stream": "stdout",
475 "text": [ 471 "text": [
476 "\n", 472 "\n",
477 "(37, 22.5625, 94866.75)" 473 "(37, 22.0, 96978.25)"
478 ] 474 ]
479 }, 475 },
480 { 476 {
481 "output_type": "stream", 477 "output_type": "stream",
482 "stream": "stdout", 478 "stream": "stdout",
483 "text": [ 479 "text": [
484 "\n", 480 "\n",
485 "(38, 22.5625, 94866.75)" 481 "(38, 22.0, 96976.5)"
486 ] 482 ]
487 }, 483 },
488 { 484 {
489 "output_type": "stream", 485 "output_type": "stream",
490 "stream": "stdout", 486 "stream": "stdout",
491 "text": [ 487 "text": [
492 "\n", 488 "\n",
493 "(39, 22.5625, 94870.5)" 489 "(39, 22.0, 96976.5)"
494 ] 490 ]
495 }, 491 },
496 { 492 {
497 "output_type": "stream", 493 "output_type": "stream",
498 "stream": "stdout", 494 "stream": "stdout",
499 "text": [ 495 "text": [
500 "\n", 496 "\n",
501 "(40, 22.5625, 94870.5)" 497 "(40, 22.0, 96976.75)"
502 ] 498 ]
503 }, 499 },
504 { 500 {
505 "output_type": "stream", 501 "output_type": "stream",
506 "stream": "stdout", 502 "stream": "stdout",
507 "text": [ 503 "text": [
508 "\n", 504 "\n",
509 "(41, 22.5625, 94870.5)" 505 "(41, 22.0, 96976.75)"
510 ] 506 ]
511 }, 507 },
512 { 508 {
513 "output_type": "stream", 509 "output_type": "stream",
514 "stream": "stdout", 510 "stream": "stdout",
515 "text": [ 511 "text": [
516 "\n", 512 "\n",
517 "(42, 22.5625, 94868.75)" 513 "(42, 22.0, 96980.75)"
518 ] 514 ]
519 }, 515 },
520 { 516 {
521 "output_type": "stream", 517 "output_type": "stream",
522 "stream": "stdout", 518 "stream": "stdout",
523 "text": [ 519 "text": [
524 "\n", 520 "\n",
525 "(43, 22.5625, 94868.75)" 521 "(43, 22.0, 96980.75)"
526 ] 522 ]
527 }, 523 },
528 { 524 {
529 "output_type": "stream", 525 "output_type": "stream",
530 "stream": "stdout", 526 "stream": "stdout",
531 "text": [ 527 "text": [
532 "\n", 528 "\n",
533 "(44, 22.5625, 94868.0)" 529 "(44, 22.0, 96976.25)"
534 ] 530 ]
535 }, 531 },
536 { 532 {
537 "output_type": "stream", 533 "output_type": "stream",
538 "stream": "stdout", 534 "stream": "stdout",
539 "text": [ 535 "text": [
540 "\n", 536 "\n",
541 "(45, 22.5625, 94868.0)" 537 "(45, 22.0, 96976.25)"
542 ] 538 ]
543 }, 539 },
544 { 540 {
545 "output_type": "stream", 541 "output_type": "stream",
546 "stream": "stdout", 542 "stream": "stdout",
547 "text": [ 543 "text": [
548 "\n", 544 "\n",
549 "(46, 22.5625, 94870.0)" 545 "(46, 22.0, 96974.25)"
550 ] 546 ]
551 }, 547 },
552 { 548 {
553 "output_type": "stream", 549 "output_type": "stream",
554 "stream": "stdout", 550 "stream": "stdout",
555 "text": [ 551 "text": [
556 "\n", 552 "\n",
557 "(47, 22.5625, 94870.0)" 553 "(47, 22.0, 96974.25)"
558 ] 554 ]
559 }, 555 },
560 { 556 {
561 "output_type": "stream", 557 "output_type": "stream",
562 "stream": "stdout", 558 "stream": "stdout",
563 "text": [ 559 "text": [
564 "\n", 560 "\n",
565 "(48, 22.5625, 94868.5)" 561 "(48, 22.0, 96972.25)"
566 ] 562 ]
567 }, 563 },
568 { 564 {
569 "output_type": "stream", 565 "output_type": "stream",
570 "stream": "stdout", 566 "stream": "stdout",
571 "text": [ 567 "text": [
572 "\n", 568 "\n",
573 "(49, 22.5625, 94868.5)" 569 "(49, 22.0, 96972.25)"
574 ] 570 ]
575 }, 571 },
576 { 572 {
577 "output_type": "stream", 573 "output_type": "stream",
578 "stream": "stdout", 574 "stream": "stdout",
579 "text": [ 575 "text": [
580 "\n", 576 "\n",
581 "(50, 22.5625, 94866.75)" 577 "(50, 22.0, 96978.25)"
582 ] 578 ]
583 }, 579 },
584 { 580 {
585 "output_type": "stream", 581 "output_type": "stream",
586 "stream": "stdout", 582 "stream": "stdout",
587 "text": [ 583 "text": [
588 "\n", 584 "\n",
589 "(51, 22.5625, 94866.75)" 585 "(51, 22.0, 96978.25)"
590 ] 586 ]
591 }, 587 },
592 { 588 {
593 "output_type": "stream", 589 "output_type": "stream",
594 "stream": "stdout", 590 "stream": "stdout",
595 "text": [ 591 "text": [
596 "\n", 592 "\n",
597 "(52, 22.5625, 94868.5)" 593 "(52, 22.0, 96976.25)"
598 ] 594 ]
599 }, 595 },
600 { 596 {
601 "output_type": "stream", 597 "output_type": "stream",
602 "stream": "stdout", 598 "stream": "stdout",
603 "text": [ 599 "text": [
604 "\n", 600 "\n",
605 "(53, 22.5625, 94868.5)" 601 "(53, 22.0, 96976.25)"
606 ] 602 ]
607 }, 603 },
608 { 604 {
609 "output_type": "stream", 605 "output_type": "stream",
610 "stream": "stdout", 606 "stream": "stdout",
611 "text": [ 607 "text": [
612 "\n", 608 "\n",
613 "(54, 22.625, 94866.75)" 609 "(54, 22.0, 96978.5)"
614 ] 610 ]
615 }, 611 },
616 { 612 {
617 "output_type": "stream", 613 "output_type": "stream",
618 "stream": "stdout", 614 "stream": "stdout",
619 "text": [ 615 "text": [
620 "\n", 616 "\n",
621 "(55, 22.625, 94870.75)" 617 "(55, 22.0, 96978.5)"
622 ] 618 ]
623 }, 619 },
624 { 620 {
625 "output_type": "stream", 621 "output_type": "stream",
626 "stream": "stdout", 622 "stream": "stdout",
627 "text": [ 623 "text": [
628 "\n", 624 "\n",
629 "(56, 22.5625, 94870.75)" 625 "(56, 22.0, 96978.5)"
630 ] 626 ]
631 }, 627 },
632 { 628 {
633 "output_type": "stream", 629 "output_type": "stream",
634 "stream": "stdout", 630 "stream": "stdout",
635 "text": [ 631 "text": [
636 "\n", 632 "\n",
637 "(57, 22.5625, 94868.25)" 633 "(57, 22.0, 96978.5)"
638 ] 634 ]
639 }, 635 },
640 { 636 {
641 "output_type": "stream", 637 "output_type": "stream",
642 "stream": "stdout", 638 "stream": "stdout",
643 "text": [ 639 "text": [
644 "\n", 640 "\n",
645 "(58, 22.5625, 94868.25)" 641 "(58, 22.0, 96978.0)"
646 ] 642 ]
647 }, 643 },
648 { 644 {
649 "output_type": "stream", 645 "output_type": "stream",
650 "stream": "stdout", 646 "stream": "stdout",
651 "text": [ 647 "text": [
652 "\n", 648 "\n",
653 "(59, 22.5625, 94866.75)" 649 "(59, 22.0, 96978.0)"
654 ] 650 ]
655 }, 651 },
656 { 652 {
657 "output_type": "stream", 653 "output_type": "stream",
658 "stream": "stdout", 654 "stream": "stdout",
659 "text": [ 655 "text": [
660 "\n", 656 "\n",
661 "(60, 22.5625, 94866.75)" 657 "(60, 22.0, 96978.0)"
662 ] 658 ]
663 }, 659 },
664 { 660 {
665 "output_type": "stream", 661 "output_type": "stream",
666 "stream": "stdout", 662 "stream": "stdout",
667 "text": [ 663 "text": [
668 "\n", 664 "\n",
669 "(61, 22.5625, 94868.25)" 665 "(61, 22.0, 96978.25)"
670 ] 666 ]
671 }, 667 },
672 { 668 {
673 "output_type": "stream", 669 "output_type": "stream",
674 "stream": "stdout", 670 "stream": "stdout",
675 "text": [ 671 "text": [
676 "\n", 672 "\n",
677 "(62, 22.5625, 94868.25)" 673 "(62, 22.0, 96978.25)"
678 ] 674 ]
679 }, 675 },
680 { 676 {
681 "output_type": "stream", 677 "output_type": "stream",
682 "stream": "stdout", 678 "stream": "stdout",
683 "text": [ 679 "text": [
684 "\n", 680 "\n",
685 "(63, 22.5625, 94864.25)" 681 "(63, 22.0, 96976.0)"
686 ] 682 ]
687 }, 683 },
688 { 684 {
689 "output_type": "stream", 685 "output_type": "stream",
690 "stream": "stdout", 686 "stream": "stdout",
691 "text": [ 687 "text": [
692 "\n", 688 "\n",
693 "(64, 22.5625, 94864.25)" 689 "(64, 22.0, 96980.0)"
694 ] 690 ]
695 }, 691 },
696 { 692 {
697 "output_type": "stream", 693 "output_type": "stream",
698 "stream": "stdout", 694 "stream": "stdout",
699 "text": [ 695 "text": [
700 "\n", 696 "\n",
701 "(65, 22.5625, 94868.75)" 697 "(65, 22.0, 96976.0)"
702 ] 698 ]
703 }, 699 },
704 { 700 {
705 "output_type": "stream", 701 "output_type": "stream",
706 "stream": "stdout", 702 "stream": "stdout",
707 "text": [ 703 "text": [
708 "\n", 704 "\n",
709 "(66, 22.5625, 94868.75)" 705 "(66, 22.0, 96976.0)"
710 ] 706 ]
711 }, 707 },
712 { 708 {
713 "output_type": "stream", 709 "output_type": "stream",
714 "stream": "stdout", 710 "stream": "stdout",
715 "text": [ 711 "text": [
716 "\n", 712 "\n",
717 "(67, 22.5625, 94868.75)" 713 "(67, 22.0, 96976.0)"
718 ] 714 ]
719 }, 715 },
720 { 716 {
721 "output_type": "stream", 717 "output_type": "stream",
722 "stream": "stdout", 718 "stream": "stdout",
723 "text": [ 719 "text": [
724 "\n", 720 "\n",
725 "(68, 22.5625, 94868.75)" 721 "(68, 22.0, 96976.0)"
726 ] 722 ]
727 }, 723 },
728 { 724 {
729 "output_type": "stream", 725 "output_type": "stream",
730 "stream": "stdout", 726 "stream": "stdout",
731 "text": [ 727 "text": [
732 "\n", 728 "\n",
733 "(69, 22.5625, 94864.0)" 729 "(69, 22.0, 96976.5)"
734 ] 730 ]
735 }, 731 },
736 { 732 {
737 "output_type": "stream", 733 "output_type": "stream",
738 "stream": "stdout", 734 "stream": "stdout",
739 "text": [ 735 "text": [
740 "\n", 736 "\n",
741 "(70, 22.5625, 94868.0)" 737 "(70, 22.0, 96976.5)"
742 ] 738 ]
743 }, 739 },
744 { 740 {
745 "output_type": "stream", 741 "output_type": "stream",
746 "stream": "stdout", 742 "stream": "stdout",
747 "text": [ 743 "text": [
748 "\n", 744 "\n",
749 "(71, 22.5625, 94868.0)" 745 "(71, 22.0, 96976.75)"
750 ] 746 ]
751 }, 747 },
752 { 748 {
753 "output_type": "stream", 749 "output_type": "stream",
754 "stream": "stdout", 750 "stream": "stdout",
755 "text": [ 751 "text": [
756 "\n", 752 "\n",
757 "(72, 22.5625, 94868.0)" 753 "(72, 22.0, 96976.75)"
758 ] 754 ]
759 }, 755 },
760 { 756 {
761 "output_type": "stream", 757 "output_type": "stream",
762 "stream": "stdout", 758 "stream": "stdout",
763 "text": [ 759 "text": [
764 "\n", 760 "\n",
765 "(73, 22.5625, 94868.0)" 761 "(73, 22.0, 96978.75)"
766 ] 762 ]
767 }, 763 },
768 { 764 {
769 "output_type": "stream", 765 "output_type": "stream",
770 "stream": "stdout", 766 "stream": "stdout",
771 "text": [ 767 "text": [
772 "\n", 768 "\n",
773 "(74, 22.5625, 94870.25)" 769 "(74, 22.0, 96978.75)"
774 ] 770 ]
775 }, 771 },
776 { 772 {
777 "output_type": "stream", 773 "output_type": "stream",
778 "stream": "stdout", 774 "stream": "stdout",
779 "text": [ 775 "text": [
780 "\n", 776 "\n",
781 "(75, 22.5625, 94870.25)" 777 "(75, 22.0, 96980.75)"
782 ] 778 ]
783 }, 779 },
784 { 780 {
785 "output_type": "stream", 781 "output_type": "stream",
786 "stream": "stdout", 782 "stream": "stdout",
787 "text": [ 783 "text": [
788 "\n", 784 "\n",
789 "(76, 22.5625, 94868.75)" 785 "(76, 22.0, 96980.75)"
790 ] 786 ]
791 }, 787 },
792 { 788 {
793 "output_type": "stream", 789 "output_type": "stream",
794 "stream": "stdout", 790 "stream": "stdout",
795 "text": [ 791 "text": [
796 "\n", 792 "\n",
797 "(77, 22.5625, 94868.75)" 793 "(77, 22.0, 96976.25)"
798 ] 794 ]
799 }, 795 },
800 { 796 {
801 "output_type": "stream", 797 "output_type": "stream",
802 "stream": "stdout", 798 "stream": "stdout",
803 "text": [ 799 "text": [
804 "\n", 800 "\n",
805 "(78, 22.5625, 94866.75)" 801 "(78, 22.0, 96976.25)"
806 ] 802 ]
807 }, 803 },
808 { 804 {
809 "output_type": "stream", 805 "output_type": "stream",
810 "stream": "stdout", 806 "stream": "stdout",
811 "text": [ 807 "text": [
812 "\n", 808 "\n",
813 "(79, 22.5625, 94866.75)" 809 "(79, 22.0, 96976.75)"
814 ] 810 ]
815 }, 811 },
816 { 812 {
817 "output_type": "stream", 813 "output_type": "stream",
818 "stream": "stdout", 814 "stream": "stdout",
819 "text": [ 815 "text": [
820 "\n", 816 "\n",
821 "(80, 22.5625, 94864.75)" 817 "(80, 22.0, 96976.75)"
822 ] 818 ]
823 }, 819 },
824 { 820 {
825 "output_type": "stream", 821 "output_type": "stream",
826 "stream": "stdout", 822 "stream": "stdout",
827 "text": [ 823 "text": [
828 "\n", 824 "\n",
829 "(81, 22.5625, 94864.75)" 825 "(81, 22.0, 96980.25)"
830 ] 826 ]
831 }, 827 },
832 { 828 {
833 "output_type": "stream", 829 "output_type": "stream",
834 "stream": "stdout", 830 "stream": "stdout",
835 "text": [ 831 "text": [
836 "\n", 832 "\n",
837 "(82, 22.5625, 94866.25)" 833 "(82, 22.0, 96980.25)"
838 ] 834 ]
839 }, 835 },
840 { 836 {
841 "output_type": "stream", 837 "output_type": "stream",
842 "stream": "stdout", 838 "stream": "stdout",
843 "text": [ 839 "text": [
844 "\n", 840 "\n",
845 "(83, 22.5625, 94866.25)" 841 "(83, 22.0, 96978.25)"
846 ] 842 ]
847 }, 843 },
848 { 844 {
849 "output_type": "stream", 845 "output_type": "stream",
850 "stream": "stdout", 846 "stream": "stdout",
851 "text": [ 847 "text": [
852 "\n", 848 "\n",
853 "(84, 22.5625, 94864.25)" 849 "(84, 22.0, 96978.25)"
854 ] 850 ]
855 }, 851 },
856 { 852 {
857 "output_type": "stream", 853 "output_type": "stream",
858 "stream": "stdout", 854 "stream": "stdout",
859 "text": [ 855 "text": [
860 "\n", 856 "\n",
861 "(85, 22.5625, 94868.25)" 857 "(85, 22.0, 96978.75)"
862 ] 858 ]
863 }, 859 },
864 { 860 {
865 "output_type": "stream", 861 "output_type": "stream",
866 "stream": "stdout", 862 "stream": "stdout",
867 "text": [ 863 "text": [
868 "\n", 864 "\n",
869 "(86, 22.5625, 94868.25)" 865 "(86, 22.0, 96978.75)"
870 ] 866 ]
871 }, 867 },
872 { 868 {
873 "output_type": "stream", 869 "output_type": "stream",
874 "stream": "stdout", 870 "stream": "stdout",
875 "text": [ 871 "text": [
876 "\n", 872 "\n",
877 "(87, 22.5625, 94870.25)" 873 "(87, 22.0, 96982.0)"
878 ] 874 ]
879 }, 875 },
880 { 876 {
881 "output_type": "stream", 877 "output_type": "stream",
882 "stream": "stdout", 878 "stream": "stdout",
883 "text": [ 879 "text": [
884 "\n", 880 "\n",
885 "(88, 22.5625, 94870.25)" 881 "(88, 22.0, 96982.0)"
886 ] 882 ]
887 }, 883 },
888 { 884 {
889 "output_type": "stream", 885 "output_type": "stream",
890 "stream": "stdout", 886 "stream": "stdout",
891 "text": [ 887 "text": [
892 "\n", 888 "\n",
893 "(89, 22.5625, 94870.25)" 889 "(89, 22.0, 96982.75)"
894 ] 890 ]
895 }, 891 },
896 { 892 {
897 "output_type": "stream", 893 "output_type": "stream",
898 "stream": "stdout", 894 "stream": "stdout",
899 "text": [ 895 "text": [
900 "\n", 896 "\n",
901 "(90, 22.5625, 94870.25)" 897 "(90, 22.0, 96976.0)"
902 ] 898 ]
903 }, 899 },
904 { 900 {
905 "output_type": "stream", 901 "output_type": "stream",
906 "stream": "stdout", 902 "stream": "stdout",
907 "text": [ 903 "text": [
908 "\n", 904 "\n",
909 "(91, 22.5625, 94868.0)" 905 "(91, 22.0, 96976.0)"
910 ] 906 ]
911 }, 907 },
912 { 908 {
913 "output_type": "stream", 909 "output_type": "stream",
914 "stream": "stdout", 910 "stream": "stdout",
915 "text": [ 911 "text": [
916 "\n", 912 "\n",
917 "(92, 22.5625, 94868.0)" 913 "(92, 22.0, 96980.75)"
918 ] 914 ]
919 }, 915 },
920 { 916 {
921 "output_type": "stream", 917 "output_type": "stream",
922 "stream": "stdout", 918 "stream": "stdout",
923 "text": [ 919 "text": [
924 "\n", 920 "\n",
925 "(93, 22.5625, 94864.5)" 921 "(93, 22.0, 96976.75)"
926 ] 922 ]
927 }, 923 },
928 { 924 {
929 "output_type": "stream", 925 "output_type": "stream",
930 "stream": "stdout", 926 "stream": "stdout",
931 "text": [ 927 "text": [
932 "\n", 928 "\n",
933 "(94, 22.5625, 94864.5)" 929 "(94, 22.0, 96974.25)"
934 ] 930 ]
935 }, 931 },
936 { 932 {
937 "output_type": "stream", 933 "output_type": "stream",
938 "stream": "stdout", 934 "stream": "stdout",
939 "text": [ 935 "text": [
940 "\n", 936 "\n",
941 "(95, 22.5625, 94874.5)" 937 "(95, 22.0, 96978.25)"
942 ] 938 ]
943 }, 939 },
944 { 940 {
945 "output_type": "stream", 941 "output_type": "stream",
946 "stream": "stdout", 942 "stream": "stdout",
947 "text": [ 943 "text": [
948 "\n", 944 "\n",
949 "(96, 22.5625, 94874.5)" 945 "(96, 22.0, 96976.5)"
950 ] 946 ]
951 }, 947 },
952 { 948 {
953 "output_type": "stream", 949 "output_type": "stream",
954 "stream": "stdout", 950 "stream": "stdout",
955 "text": [ 951 "text": [
956 "\n", 952 "\n",
957 "(97, 22.5625, 94872.5)" 953 "(97, 22.0, 96976.5)"
958 ] 954 ]
959 }, 955 },
960 { 956 {
961 "output_type": "stream", 957 "output_type": "stream",
962 "stream": "stdout", 958 "stream": "stdout",
963 "text": [ 959 "text": [
964 "\n", 960 "\n",
965 "(98, 22.5625, 94868.5)" 961 "(98, 21.9375, 96972.5)"
966 ] 962 ]
967 }, 963 },
968 { 964 {
969 "output_type": "stream", 965 "output_type": "stream",
970 "stream": "stdout", 966 "stream": "stdout",
971 "text": [ 967 "text": [
972 "\n", 968 "\n",
973 "(99, 22.5625, 94870.25)" 969 "(99, 21.9375, 96972.5)"
974 ] 970 ]
975 }, 971 },
976 { 972 {
977 "output_type": "stream", 973 "output_type": "stream",
978 "stream": "stdout", 974 "stream": "stdout",
979 "text": [ 975 "text": [
980 "\n" 976 "\n"
981 ] 977 ]
982 } 978 }
983 ], 979 ],
984 "prompt_number": 21 980 "prompt_number": 6
985 }, 981 },
986 { 982 {
987 "cell_type": "code", 983 "cell_type": "code",
988 "collapsed": false, 984 "collapsed": false,
989 "input": [ 985 "input": [
990 "np.savez(\"data_ground\", t, p)\n", 986 "np.savez(\"data_ground\", t, p)\n",
991 "#np.savez(\"data_top\", t, p)" 987 "#np.savez(\"data_top\", t, p)"
992 ], 988 ],
993 "language": "python", 989 "language": "python",
994 "metadata": {}, 990 "metadata": {},
995 "outputs": [], 991 "outputs": [],
996 "prompt_number": 22 992 "prompt_number": 22
997 }, 993 },
998 { 994 {
999 "cell_type": "code", 995 "cell_type": "code",
1000 "collapsed": false, 996 "collapsed": false,
1001 "input": [ 997 "input": [
1002 "amin(p)" 998 "amin(p)"
1003 ], 999 ],
1004 "language": "python", 1000 "language": "python",
1005 "metadata": {}, 1001 "metadata": {},
1006 "outputs": [ 1002 "outputs": [
1007 { 1003 {
-   1004 "metadata": {},
1008 "output_type": "pyout", 1005 "output_type": "pyout",
1009 "prompt_number": 23, 1006 "prompt_number": 7,
1010 "text": [ 1007 "text": [
1011 "94864.0" 1008 "96972.25"
1012 ] 1009 ]
1013 } 1010 }
1014 ], 1011 ],
1015 "prompt_number": 23 1012 "prompt_number": 7
1016 }, 1013 },
1017 { 1014 {
1018 "cell_type": "code", 1015 "cell_type": "code",
1019 "collapsed": false, 1016 "collapsed": false,
1020 "input": [ 1017 "input": [
1021 "amax(p)" 1018 "amax(p)"
1022 ], 1019 ],
1023 "language": "python", 1020 "language": "python",
1024 "metadata": {}, 1021 "metadata": {},
1025 "outputs": [ 1022 "outputs": [
1026 { 1023 {
-   1024 "metadata": {},
1027 "output_type": "pyout", 1025 "output_type": "pyout",
1028 "prompt_number": 24, 1026 "prompt_number": 8,
1029 "text": [ 1027 "text": [
1030 "94874.5" 1028 "96838.75"
1031 ] 1029 ]
1032 } 1030 }
1033 ], 1031 ],
1034 "prompt_number": 24 1032 "prompt_number": 8
1035 }, 1033 },
1036 { 1034 {
1037 "cell_type": "code", 1035 "cell_type": "code",
1038 "collapsed": false, 1036 "collapsed": false,
1039 "input": [ 1037 "input": [
1040 "std(p)" 1038 "std(p)"
1041 ], 1039 ],
1042 "language": "python", 1040 "language": "python",
1043 "metadata": {}, 1041 "metadata": {},
1044 "outputs": [ 1042 "outputs": [
1045 { 1043 {
-   1044 "metadata": {},
1046 "output_type": "pyout", 1045 "output_type": "pyout",
1047 "prompt_number": 25, 1046 "prompt_number": 9,
1048 "text": [ 1047 "text": [
1049 "2.1005044037087854" 1048 "2.3585270827361722"
1050 ] 1049 ]
1051 } 1050 }
1052 ], 1051 ],
1053 "prompt_number": 25 1052 "prompt_number": 9
1054 }, 1053 },
1055 { 1054 {
1056 "cell_type": "code", 1055 "cell_type": "code",
1057 "collapsed": false, 1056 "collapsed": false,
1058 "input": [ 1057 "input": [
1059 "plt.plot(p)" 1058 "plt.plot(p)"
1060 ], 1059 ],
1061 "language": "python", 1060 "language": "python",
1062 "metadata": {}, 1061 "metadata": {},
1063 "outputs": [ 1062 "outputs": [
1064 { 1063 {
-   1064 "metadata": {},
1065 "output_type": "pyout", 1065 "output_type": "pyout",
1066 "prompt_number": 26, 1066 "prompt_number": 9,
1067 "text": [ 1067 "text": [
1068 "[<matplotlib.lines.Line2D at 0x396eed0>]" 1068 "[<matplotlib.lines.Line2D at 0xa00bb2c>]"
1069 ] 1069 ]
1070 }, 1070 },
1071 { 1071 {
-   1072 "metadata": {},
1072 "output_type": "display_data", 1073 "output_type": "display_data",
1073 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt0FdW9x78n7/BOgJyQF1IgQCBgDFGaW2osBOoDVKBe\nUbElaNcqrdbHlVprb9EqILS1arvaagUBC7hs771SLuYKYiI+UDECKVChkDQhgZAHCSSEJCeZ+8fu\n5JwzmZkz75kz5/dZKwvOa2afOTPf+c53//YeD8dxHAiCIIiwJ8ruBhAEQRDGQIJOEAThEkjQCYIg\nXAIJOkEQhEsgQScIgnAJJOgEQRAuwRZBP3z4ML761a9i+vTpWLhwIS5duiT53t7eXuTl5WHBggX9\nz3366ae49tprkZeXh4KCAnz22Wf9rx05cgRf/epXMW3aNEyfPh1dXV2K2vTggw9i6NCh2r8UQRCE\nzZgu6GVlZVi+fHnQc/fddx/Wr1+PI0eO4Pbbb8eGDRskP//CCy8gJycHHo+n/7lVq1bh5z//Ob74\n4gs8/fTTWLVqFQDA5/Nh2bJlePnll/G3v/0N5eXliI2NDdnGgwcPorW1NWgdBEEQ4Ybpgi4mkidP\nnsTs2bMBAHPnzsVf/vIX0c+eOXMGu3fvxn333YfA8U9jxoxBW1sbAKC1tRXp6ekAgHfeeQfTp09H\nbm4uACApKQlRUVH9rxUWFiI/Px933HEHOjo6ALArgFWrVmH9+vWgMVYEQYQzpgu6mEhOnToVb731\nFgDgzTffRG1trehnH374YWzYsKFflHnWrVuHRx99FFlZWXjsscewdu1aAOxE4fF48M1vfhP5+fn9\nzr+pqQnPPvss3n33XXz++efIz8/Hr371KwDAb37zG9x6661ITU017DsTBEHYQYxZC541axa6urrQ\n3t6OlpYW5OXlAQDWr1+PjRs34sEHH8TPf/5zLFy4EHFxcQM+v2vXLqSkpCAvLw9lZWVBr61YsQIv\nvvgibr/9drz55psoKSnBnj170NPTgw8++AAHDx5EYmIi5syZg/z8fFy+fBnHjh1DYWEhAKC7uxuF\nhYWor6/Hn//8Z5SVlZE7Jwgi7PGYPZdLeXk5XnvtNWzatEn09RMnTmDZsmX45JNPgp5/4oknsHXr\nVsTExODKlSu4ePEiFi9ejC1btmDYsGG4ePEiAHYFMGLECLS1teGNN97A22+/jddeew0A8MwzzyAh\nIQGTJ0/Gtm3bsG3btqB17N69GytWrEBCQgIAoKamBuPHj8eJEycM3goEQRDmY0vk0tjYCADo6+vD\nM888g+9973sD3rNmzRrU1taiqqoKO3bswDe+8Q1s2bIFADBhwgSUl5cDAPbt24fs7GwAwLx581BZ\nWYnOzk74fD6Ul5dj6tSpmDVrFj788EOcOnUKANDR0YGTJ0/ipptuwtmzZ1FVVYWqqioMGjSIxJwg\niLBFVtBLSkrg9Xr7Oxl5XnrpJUyZMgXTpk3Dj370I9kVeDyeAR2j27dvx6RJkzBlyhRkZGTgO9/5\nDgCgvr4eN998s+RyeF5++WWsWrUKV199NZ588km8/PLLAFgn6COPPIKCggLk5eUhPz8fN954I0aN\nGoXXXnsNS5cuxYwZM1BYWIgvv/xSdh0EQRDhhmzksn//fgwZMgT33nsvKisrAQDvvfce1qxZg927\ndyM2NhaNjY0YPXq0ZQ0mCIIgxJF16LNnz0ZSUlLQc7/73e/w4x//uL++m8ScIAjCGajO0E+ePIn3\n338fs2bNQlFREQ4ePGhGuwiCIAiVqC5b9Pl8uHDhAg4cOIDPPvsMd9xxB06fPj3gfZRHEwRBaENr\n8aFqh56RkYFFixYBAAoKChAVFYXm5mbJRtEfh5/97Ge2t8Epf7QtaFvQtpD/04NqQb/tttuwb98+\nAKyGvLu7GyNHjtTVCIIgCEI/spHL0qVLUV5ejubmZmRmZuLpp59GSUkJSkpKkJubi7i4uP7acIIg\nCMJeZAV9+/btos9v3brVlMa4laKiIrub4BhoW/ihbeGHtoUxmDb03+Px6M6DCIIgIg092kl3LCII\ngnAJJOgEQRAugQSdIAjCJZCgEwRBuAQSdIIgCJdAgk4QBOESSNAJgiBcAgk6QRCESyBBJwiCcAkk\n6ARBEC6BBJ0gCMIlkKATBEG4BBJ0giAIl0CCThAE4RJI0AmCIFwCCTpBEIRLIEEnCIJwCSToBEEQ\nLoEEnSAIwiWQoBMEQbgEEnSCIAiXQIJOEARhAIcPA9HRgMfD/hISgMZGa9tAgk4QBGEAzc3A9dcD\nHMf+cnKAmhpr20CCThAEYQA9PUBsrP+x1ws0NFjbBhJ0giAIAyBBJwiCcAk+HxAT439Mgk4QBBGm\nON6hl5SUwOv1Ijc3d8Brv/zlLxEVFYWWlhbTGkcQBBEu+HwOF/Tly5ejtLR0wPO1tbXYs2cPxo4d\na1rDCIIgwomeHodHLrNnz0ZSUtKA5x955BGsX7/etEYRBEGEG46PXMR46623kJGRgenTp5vRHoIg\niLDECZ2iMaHf4ufy5ctYs2YN9uzZ0/8cx3GS71+9enX//4uKilBUVKS6gQRBEOGA0KGPHAm0tg4U\neiFlZWUoKyszpA0eTk6RAVRXV2PBggWorKxEZWUl5s6di0GDBgEAzpw5g/T0dHz66adISUkJXrDH\nIyv2BEEQbuL559nI0Oef9z+Xmgp88QUwZozy5ejRTlUOPTc3Fw0B1xDjxo3D559/juTkZE0rJwiC\ncAtiTpyPXdQIuh5kM/SlS5eisLAQJ06cQGZmJjZt2hT0usfjMbVxBEEQ4YIwcgGsz9FlHfr27dtl\nP3z69GlDG0MQBBGuyDl0q6CRogRBEAbgBIdOgk4QBGEAJOgEQRAugSIXgiAIlyDl0M+ds64NJOgE\nQRAGQA6dIAjCJVCGThAE4RLEBH30aKClBejttaYNJOgEQRAGIBa5xMQAI0YATU3WtIEEnSAIwgDE\nHDpgbexCgk4QBGEAwjsW8ZCgEwRBhBnCOxbxkKATBEGEGRS5EARBuASpG1mQoBMEQYQZ5NAJgiBc\nAgk6QRCES6DIhSAIwiWQQycIgnAJUg49JQVobAT6+sxvAwk6QRCEAUg59Lg4YOhQNqeL2ZCgEwRB\nGICUoANAaqo1sQsJOkEQhAFIRS6AdTk6CTpBEIQByDl0EnSCIIgwghw6QRCES5Bz6MOGAZcumd8G\nEnSCIAgDkBP0IUOA9nbz20CCThAEYQBykcvgwUBHh/ltIEEnCIIwAHLoBEEQLoDjyKETBEG4gt5e\nIDoa8HjEX3eMQy8pKYHX60Vubm7/c4899himTJmCGTNmYNGiRWhrazO1kQRBEE5GLm4BmEN3hKAv\nX74cpaWlQc/NmzcPR48exeHDh5GdnY21a9ea1kCCIAinIxe3AMyhOyJymT17NpKSkoKeKy4uRlQU\n++h1112HM2fOmNM6giCIMMApDl3mnKKMjRs3YunSpaKvrV69uv//RUVFKCoq0rs6giAIx+HzyQu6\nnEMvKytDWVmZIe3wcBzHhXpTdXU1FixYgMrKyqDnn332WVRUVOAvf/nLwAV7PFCwaIIgiLCnrg64\n9lr2rxitrcDYsYCS7kY92qnZob/22mvYvXs33n33Xa2LIAiCcAVKIpeODlbeKFUJYwSaBL20tBQb\nNmxAeXk5EhISjG4TQRBEWBGqUzQ2lpU1dnUBZkpmyE7RpUuXorCwEF9++SUyMzOxceNGPPDAA2hv\nb0dxcTHy8vKwcuVK81pIEAThcEI5dMCaShdFGbqmBVOGThBEhHDkCHDPPexfKbKygP37WZYuhx7t\npJGiBEEQOgkVuQDWOHQSdIIgCJ0oiVysqEUnQScIgtAJOXSCIAiXQA6dIAjCJTilyoUEnSAIQidK\nIhdy6ARBEGEAOXSCIAiXoLRTlBw6QRCEw6FOUYIgCJdAkQtBEIRLoE5RgiAIl0AOnSAIwiWQQycI\ngnAJ5NAJgiBcAlW5EARBuASnTM6l+Z6iRDAHD/rPvh4PMGsWEB9vb5sIc+A44KOPmCsD2IFcWAhE\nkT2KWJzi0EnQDaCtjR3QhYXs8dGjwB//CNx6q73tIszh+HFg/nxg5kz2uKICeO89ID/f3nYR9uHz\nOSNDJ0E3gMZGIDMTKCtjj5cuBS5ftrVJhIlcvAhMm+b/vefNA5qabG0SYTM9PcCgQfLvoQw9TGhs\nBEaN8j+OjweuXLGvPYS5tLezg5Nn5Eigudm+9hD2oyRyiYtjcV13t3ntIEE3gKYmYPRo/+P4eKCr\ny772EObS0cEun3mSk4GWFvvaQ9iPkk5Rj4cZATNjF4pcDEDo0BMSSNB5tmwBPvhA/LWUFOCZZ6xt\njxEIHXpyMjn0SEeJQwf8OXpSkjntIEE3ADGHTpEL449/BK67Dpg4ceBrDzwA/OQnQGKi9e3Sg9Ch\njxwJVFXZ1x7CfpQKutk5Ogm6ATQ1kUOX4tIl1kl8zTUDX1uzBjh7FvjKV6xvlx7EHPrnn9vXHsJ+\nlEQugPmVLpShG0BjI2XoUrS3B7vZQNLTgfp6a9tjBMLvRJ2ihFMcOgm6AQgdOkUufuQEPS0NqKuz\ntj1G0NEx0KFTp2hko8ahk6A7HKFDNyJy+bd/c8dJob0dGDpU/LW0NHLo4cj69ew35f9uvtnuFknT\n1cWuBAPbK/WXkeEf/asWNQ5dGLnMmAH84x/a1iuEMnQDEHPoegT90iU2tLy1FUhN1d8+u+jrYzuv\n1ICLcI1cIt2hHz3KRP2ee4Dz59k0F06loYHVfivZzyZMYMfymDHq16OmykXo0E+fZhVfRiDr0EtK\nSuD1epGbm9v/XEtLC4qLi5GdnY158+ahtbXVmJaEMUYPLOJ3PrOHCZvN5cusgiU6Wvz1cI1chA49\nKYlN/9Dba1+brKSpiY2MHjoUGDeOGRCnjoxuaGCmSIlDHz1a+4hfpZGL0KFfvMhOOFJXsWqRFfTl\ny5ejtLQ06Ll169ahuLgYJ06cwJw5c7Bu3TpjWhKmdHeznXnECP9zeiMXXuTMHiZsNnJxCxC+kYuw\nbDE6mn3Ptjb72mQlgQYmKoqJe02NvW2SoqEB8HqVvXfUKPbdtKDVodfXsytVj0fbeoXInlNmz56N\n6urqoOd27tyJ8vJyAMC3v/1tFBUVaRb1ri5g7152aQ4wNzdnjnFfzgqamliGGthmoxy6HYJ++HDw\nwTlzprZLUIA5N6kOUUB/5NLZCezb599/hgwBbrhB+/KUIixbBPyxS3Ky+eu3G+G4i7FjgX/+E5g8\n2b42ScE7dCVY4dCFZYv19czYGIXqDL2hoQHef53yvF4vGhoaJN+7evXq/v8XFRWhqKgo6PV33wVW\nrAAKCtjj994DKivZZVy4INy5Af0Zup2Ry5Il7ABNTAROnQIWLACee07bsuQqXAB/5MJx2k7ipaXA\n97/vn+Xw3XfZAB+ljkwrQocO+DtGJ0wwd91OQBgx8oLuRJzm0AcPDj5p1NUB0dFlWL26TNuKBejq\nFPV4PPDIHImBgi5GXR3rIX/1Vfb4618HqqvDS9CFOzcQvpFLXx9z50eOMEF/8UV9ve+hIpehQ1lc\ncfEiMHy4+uWfPQssXAj8/vfscUEB23/MFnQ5h+52rlxh+/awYf7nxo51duRy1VXK3qvHoasd+s9T\nXw9cc00RVq8u6n/uqaee0tYIaChb9Hq9OHfuHADg7NmzSNHRPVtXxy67ebKynLtjSCHl0PVGLvHx\n1jv0hgYmrPxQ/IQEfd8jlEMH9OXoQvdl1f4j59DdDl/RFejjsrLIoavpFBVm6EZGLqoFfeHChdi8\neTMAYPPmzbjttts0r1z4ZZx86SaFGQ69vp5dulvt0P/5T/Yb8OgV9FAZOqCv0kV4sFq1/0SyQxcz\nME4+btUIuh0Ova7OQkFfunQpCgsL8eWXXyIzMxObNm3C448/jj179iA7Oxv79u3D448/rnnlbhB0\nMzL0ujogO9t6h260oCtx6Ho6RoUdXlbsPxw3sA4diByHLmZgnB65ON2hB6YUepFtwvbt20Wf37t3\nryErF0YuY8cCb75pyKIto6kJmDQp+Dk9kQvHsWx44sTwd+ihMnTA2Mhl7FjWMWomXV0s9xe6seRk\n4ORJc9ftBMQMTEYG22eVipqVON2h2x65GInwyzg5i5NCOOwf0Be5NDezH33kSOsdek0N+w14wi1y\nsSJDF8vPAfZ7RULkIubQ4+LYc04bU9DTwzrcR45U9n6rqlx4o9bXx06EWsuCxbBN0Ht6gAsXgoe8\nZmUBtbX+uuJwQDjsH9Dn0PlMzexJfMQIx8jF6gxdLD8HIucmF2IOHXBmXHr+PDs2oxSq3KhR7Ptx\nnPp1aalDb25mV7AJCerXJ4Vtgn7uHBPzwGHhgwezL6z1LGkHYg5dT4bOX7WYfasqMcIpcunoYCd+\n4a3geFdmFlIOPVI6RcUcOuDMHF1N3AKw/T0+Xtv+o8WhGx23ADYKulTvrhPP9HKIOXQ9kQvfSRIp\nDl1r5MIfrIHlcx6P+bGdlEOPlE7RcHLoagUd0J6j+3zqM3SjK1wAGwVd6uwUTjk6x4kLekwMm6hJ\ny2RN/I9stUPnJ5cKvNehFRn6mDHsak1tzCZ1sJrtFMmhizt0Jx63WgSdj13U0tOjLHJJSGDzP/l8\nxle4ADYLutiXceKZXoqLF/2XaYF4PNpdOn+is9qh8+480PFaEbnEx7PBTGoPIjlBt8OhjxjBTmBu\nn3FRzqGHe+QCsO+mJfJVGrl4PH6zFjGRi9N2DCnE8nMerTk6f6Kz2qEL4xbAmsgF0Ba7nDsnfrCa\n7RSlHHpUFDsxXbhg3rqdgFyG7jQjZqVDV1OyyR/bERG5OHHHkEIsbuHRWulil0OvqTFe0JVELoC2\nShe7Ihcphw64v3Sxr499P7nIRUuFiFk40aED/mM7IiIXJ2ZxUsg5dK2RS2DZotUOPbAGHbDWoRsp\n6HY4dMD9pYutrexkJiZcw4axenQnndCscuh9fexEJnUjFyEUuTiUUA5draD7fEwQvF7z7w4uRCxy\niY1lbdKaCyvJ0AFtkYvTMnTA/R2jUvk5j9Ourq1y6GpHyPIOPSIil5EjmRBeumR9m9QSKkNX624b\nGtgJIiaGicbly9ZdwooJup7OXUC5QzcychkzhglPd7e65SlFzqG7vXRRKj/ncYOga3HoauIWgB3b\nra3s5G/0VM+2CHpHBxOJwBI5HitqiY1CzqFrEcLAM3Z0NLuE7ezU10alCIf982iNXXp72eekbhAd\niJGRS0wME/UzZ9QtTynk0KVfd9Jx6/OxDmq5E5AYVjn0U6fYupTGNEqxRdB5dy51b4xwiV3kdnAt\nDl141WJVx2hXF3OWYldMWgWdn5FQyZ2I0tONi1wAc51iKIfuZkFX4tCdctw2NbETrNrJwqxy6CdO\nGB+3ADYLuhROu3STQm4H15KhCzuKrSpdrK1lv4eYW9Aq6ErjFkC9Q+/sZJGK1F2OzHSKoRy6myOX\ncMrQtcQtgDaHrlbQhwxhgm50hQtgo6DLfRkn7RhyyO3geiMXwDqHLpaf82gVdKUliwDbhhcusAND\nCQ0NbB4guSs8cujGE04ZulZBHz6c/cZK90VAfeQyeDCbatk1Dj1U766Tsjg5Qjl0vZGLVQ5dKj8H\n9Dl0JRUuALsy8HrZVKJKCHWwmnnpTw5d+nUn3UJSq6BHRbETs5rYRYtDr6kxR9BtmY5eSeTilB1D\nDqMduvDKJZwduprIBWD7wz/+4e8oT0yUdj2hDtasLOCNN5SvWw1Ocug+n/JOc6UnVzlCOfSUFHZl\ndv68/760Q4Yo60cxGqmRxErgc3Sl85Rr6RQFKHJxFN3drKxQKsfVkqELr1yscuhOEPS8PODWW9n3\n93qBu+6Sfq8Shx4JGfp3vsNENC1N/i8pCfiv/9K/vlAOPSoKuPZaYPx4tt5Ro4ANG/SvVwtaHTqg\nPkfX0ikKRFDkkpbGzvJm1RIbQXMzc2RS7iOcqlzsztAB4Pe/Z5+5dIk59XfflZ6BUYlDN+tGKXIn\nKqvLFs+fB/7nf/zbTepvxQpj7jEQyqEDQHm5f73PPw9UVelfrxb0CLraShctkQvgIkEPFbnwtcRa\nb01mBaF2brWRS2cnc/yBt8uKlAxdCO8qjx8Xfz3UwTpoEFv3+fPa1i+H2A2ieYYPZ7+hmg41PVy+\nrKzOPzGRvVcvoRy6EK+X/VZ2oNehqxF0LZ2igEsiF45TNoeB02OXUDu3WodeX89OYoGO3wqH3tfH\nBuGYIehqHLqQ2bOB998Xf03JwWrW/iP3vTweNo2uVTMuKhX0QYP0D1C7coVdMas5SYeroKu9t6gW\nhx4fLz6wUi+Wd4peuMC+jJTL4Rk7Fnj9dVavCQCTJgHXXy//mZ4e9hkphzRvHnDVVaqb3M/HHwOV\nlez/FRXyDl1Jhn7oEPDpp+z/p08PPMmZ5dBraoDSUvb/9nbmLPlOLCFWRS5Cvv51YM8e4HvfG/ia\nUkHfvBk4fJg9zskBvvY1+c9cuQJs28YcF8BG6t5zj999dXezE2BcnPQy+I7RwHvlmsXly6GPI4AJ\nul6Hzo+KVtPBGa6CPnq0X3eUoMWhyw2s1IPlgq50hrF77wXefBM4eJDNe/DSS34xleLQIeDxx1nn\nmth6d+4Edu3S1m4A+I//YD82f7AuWyb93oSE0PcmXLOGHfxf+Qp7vHJl8OtDhpjj9h54gJ30MjLY\n4yeekH6vHoeenKytfQBz6D/9KbuiE+74Sg7WkhLgrbfY/tPcDLz8Mvu/HAcOAP/5n8BNN7HH//3f\nwNVXsz/AX+EidyBa2THa0aE8ctGb7SvJz4XYJei9vew3UBMPBTJqFPDhh8rfr9ahT50KPPmk+nYp\nwbGCXlzM/gC2U+Tmhv5MQwMwcyY7eIW0t7PMSm5CrVA0NQGvvgpMnhz6vUoil/Z24OGHgZtvFn99\nyBDj5yRpagLKylin4bBhod+vR9ClYhwljB/PDszqamDcuODXlAj6zTf7t+uZM6z6IhR1dexEwu8/\nNTVsfw0U9FCO2MrSRTWRixEOXe1xM3Qoc69KtpuRNDezq041IhuI2gxdraAPH84MhxlYnqHX1anv\nDBg1ijlV/lJYCrkDfcgQ4JZb9NUnq3EpSjpF5UrgAHOm0H3zTeDGG5WJOWBfhu7xsNhl//7g57u6\nmECoyR+9Xvbbhdp/hGZDOCWBku9kZaWLlRm6Fofu8djj0vXELYD6DF1t5GImlgu6lkndo6PZgRLq\nrBnqh1y2jGXsWvD5WISiVEiUZOhyg1QAc25y8frr8lGRED0Zut7BLGIdow0NzEFFqdhzY2PZQRqq\n6kU4PkI4aZhSh25F5NLXx/Yvqb6PQOxy6EB4CrrZDt1MTD2vFBUNfO7UKZZzq4XfMVJTpd/T0DDw\n8jyQuXPZYIyTJ4GJE9Wtv7mZibnS6S6VRi5WOvTTp9l3nzdP+WcSErTdY1GvQweYQ3/ppeDntB6s\n/E005MxEXR1w3XXBnzl0yP9YyXcaNQp48UXWXwOwzvw//EH+M52dwOLFftGNimJ1+dnZ8p9JTFTW\nsWZE2aIWhw5YJ+hr1wL/93/s/42N/phMC3wdulj/jRg+X4QI+urV4s8XFKhflpIdo6EBmDVL+vWY\nGODOO5lLfeopdetX61CURC5WO/TXXwf+/d/V7Xx2RS4AMG0ac9XnzvlP5HoEPdSMjmKRy+7d/sdK\nHPr3vw8UFrL/+3ws5vvd7+SvKE6dYjX3mzaxx08+CRw7Ji/oSjtEAWMil6YmZf1YQqwS9LffZifF\nGTPY40mTtC8rPp79XbqkLJrs6XFO5KK5GWvXrsXrr7+OqKgo5ObmYtOmTYiPjw96j5hD14rXyw5s\nOZTM33DPPUzUVq9WVzak1qEoiVysdOgcxwR961Z1n7OrbBFgIvi1rwEffAAsWcKe0yroSu6KFCpy\nUXKSGj48eL8fPpydlOSuLGtqmADxn8vKCn0iV5qfA8ZELk536B0dbF/JzzdmeXyOrlTQneLQNWXo\n1dXVeOWVV1BRUYHKykr09vZix44dRrctCKUOPdTBnp/PNv6BA+rWr9ahh4pcOM5ah/7ZZ+xfJdUe\ngdgxUjQQYY6uN3KRgh/wFjghk9DVa6nWUDJzqPAG3UpO5Epr0AFjIhe5u3PJYZWghzJHalEz/N9J\nnaKamjFs2DDExsbi8uXLiI6OxuXLl5FuxjjWAIwSdI+HdQq++qp//hJ++lY51DqUUJELP0+N3CAV\nvQ79/Hl/Zcerr7KrE7WDGeyMXACWo3/3u35hraoCpkxRv5y0NOCjj6Rfb2lhwhfoer1e9jzvwLR8\nJ37EamA2L0Q4l46SE7lahy4VubS1KTMN585p7xQtL1f/ObWEMkdq4QcXZWayx0lJ0h3QTnLomgQ9\nOTkZjz76KLKyspCYmIj58+dj7ty5A963OiBELyoqQpGODMbrlR9Y1N3NLvOVDGZZtox1kM6cyR43\nNzMXKHfQGe3QleyAeob+HzrE3Dh/Eho8mI28VIvdgn7NNayig/+tAOCOO9QvJ1TkIjYDaHQ0+83P\nnWMHthaHrmQKgpoa/2AmQNmJXG2GLuXQJ0xg7jLUiT4hwT8QTQ3h6tDz84Ef/Yj9v6uLxTlvvSX+\nXr2CXlZWhrKyMu0LCECToJ86dQq//vWvUV1djeHDh+Nb3/oW/vSnP+Huu+8Oet9qqV5RDYTaMc6f\nV17OlpUVPLT3W99iA1jkBL2x0T+iUwmhMnQlOyA/9F9pb3sg58+zqRK0iHggWgTd52M7eUKCvnUD\n7Armb3/Tv5xQkYtUBQwfu2RmajtJZWWx2SPlEEYuSkYIq3HoUpELxzEz09Nj/M2KeawQdD6+NFLQ\nn36a/QFs1Ohjj0m/V2/kIjS7T6mt2AhAU4Z+8OBBFBYWYuTIkYiJicGiRYvwkdz1rAGE2jH01J4q\nqYAwuspFiUOPjWUHmtp51QFWM6908JAcCQnqKyR44bPjxgZShPqNpcZHBDp7LZf1Shy6MHIxOkOX\ncuidncx4mCXmgDWC3t3N9jW5+FIPQ4eyq38pnBS5aBL0yZMn48CBA+js7ATHcdi7dy9ycnKMblsQ\nZgq6kruIecMWAAAWhklEQVTOa6lykXO2Si8RtU7QZaSgq3XoRsUtRjJqFGuX1HeRuulKoLPXclkf\nStC7u9nVlPBOVUZm6PHxTHR6e4OfNzqmEGPECLbNtcR2SjE6PxcSStCd1CmqSdBnzJiBe++9FzNn\nzsT06dMBAN/97ncNbZiQ0aPZ5aFwp+Rxo0MHtOfoFy9K301JDVoE3YhRokbj8bAKFqnfOVTkAmgT\njlBVLnV1rKQxUBCMztA9HvGOUbOFkF+32S7d7BPTsGEud+gAsGrVKhw9ehSVlZXYvHkzYk3+RrGx\nTKCkhlWbLehG16GTQ7ceud9ZSeSiRTiSk5mDa2sTf13sblFGO3RAPEe3wqED5gu6VQ6d48Rfd4Wg\n24HcjmFm5MJx6utwjahyAfQ5dBL0YOQqXZRELlqEw+ORv+m5mKAbnaED9jl0IPwdelwc+x2lDFrY\nRy52EUrQ5UbjycE7N6kzcHs76zhS44h4hy63TKWCrsWht7WRoAuRq3RRErloFQ65HL2mxhqHLtYx\nSg5dOXI5Ojl0jZjl0IcOZeWOUjek0DJKjq/tlZqyVWmZldbBRXY6dCdm6IB05OLzsUhNbP/RW+UC\nyOfowpJFwPgMHRCPXMihK0dO0Mmha8QsQQfkYxetN8WQy9HNdugUuQxEKnI5f56dsMVcVlKS/wbe\nehy6msjFLIcujFzIoSuHHLoJmCnoch1mWuexkKt0scKhG1HlEhvLKotC3RwiEKcKulTkIjetrsfj\n3ze0Codc5CIl6EoydL2Ri5scutnfQ67ShQRdI1I7hs/H7js6cqT2ZcsJuh6HLuVuw8WhezzKpgIO\nJNwil1A3XeGdvVZHKxW5cBy7FaBY5MKPEJZCbaeo26tcKHJhuELQGxuZmOsZ8SYXuYSrQzdC0AH1\nsYtTHTovzEKhlKpw4UlLY5FJd7eyOwQJkXLo58+z31e4HygZIaw2Q7fboYea+loPVuxvQ4dK97GR\nQ9eIlKDrjVsA8xy6XRm6UVUugHsEfehQdsUhPDBD3ckoPZ3d6WnQIG3TGaSlMVMg3BfE4haeUOMP\nKEP3Q52ifkjQ/4UZGbpc5GKmQ+c4Y2OPxET1gu7EyAUQ/51DRS5paUzQtZ6koqPZMs6cCX6+pmZg\n3MITKkc3YmCRVQ49KYmtS8ucREqgTlE/YSXoKSnMLff1BT9vhKCHily0OHS5yMVMh97RwQ5go1yD\nWoduxN2KzEKroH/5pT4XKBa76HXoagcWiWXoVvxOUVHs+Al1k26t2O3QSdA1Eh/Pfjjh1KJWRC5a\nHbodGbqR+TngnsgFED9x19XJZ+jp6Wy6ZT3fSa2gG+3QpUaKWhG5AObGLlY4dLkqF4pcdCDWwaLk\nXqKhGDOGLUfo/gHtDt2uKhcSdGm0OnS9LjAra2AtulzkEsqhG9EpauXvZKagk0P3E5aCLtwxjHDo\n8fGsblvsPoJaHbpdVS52C7pTyxaBgYJ+5QrbvnIlr7zYh7NDl8rQyaErQ67KxecjQdeMWYIOiA88\n8fnYD5mUpH55djl0IytcAHc5dGHkwt8YWu5OV4MHs5O9UzL0vj5mFNSUUEpVuZBDV0Yoh06Ri0bM\nFnTh5XhzMxNzLTXudmboRowS5XGToAt/41BxS+Dn9Dr0wMjl0iW2TaWu/OQcemcnE3M1JZRSdejk\n0JVBkYtJmCnoYnN9aM3PAenIRc09N7VMn2t35BJOZYtqBF2P+GVmslGhfB8Nn59LibKcQ1ebnwPS\nI0XJoSuD6tBNQrhj9PYCLS3aRTcQschFa34OSEcuvDNS4rC03ODCTkHv7mZ18Gbd31EvaWnA2bN+\nYQ1V4cKTnq5P/AYNYr8Jv+/KxS2A/IlcbX7Or5+qXLQTLnO5OOS8ohzhjtHUxO5baMQZMi0NqKgI\nfs4Mh67GGYWDQ9+1C3jkEfb/vj5t/Q1WER/POkCzs1lu3twMPPFE6M+NG6fsikqO8eOBWbNYGy5e\nBBYtkn6v3IlcbQ06MDBy4TjrRooCQEYG8OGHbLsD7Hh9+235k5pS7HboJOg6SE0NFnSj4haAubBd\nu4Kf0+vQpQRd6Q4YF8cOvu5u5a63rc24bQKEFvQvvgDmzgUeeog9NvJkYgaHDgXfEu6qq0J/5sc/\n1jbsP5D//d/gKiq5K4MhQ6QdrRaHLoxcurrYCc2qK6lJk4C//52JHwAsX84Ga+kVdP7m1/Hx+tso\nR6gqF6dELg5phnKEDt1IQReLXPQ4dLnIRalD93j8bk3pwXfxIjBxovJ2hiKUoDc3AxMm+N2X0/F6\n1e8zRghGcjL7U4JcZ7iWDF3o0K0a9s/j8bCrHJ6xY42JYNTEl3oYPJgdA729AwsknOTQwzJDP3/e\nP2OenlvPCRGrctHj0OUiFzWXiGpLF62ucmlp0Td1MTEQud/ciAzdyrhFDKMydatOTLyxEjvJOsmh\nh52gJySwv/ffBz7/nF3uG+XQU1LYtAL8ZSFgv0MH1JcuWp2ht7Qod56EMuR+cyMydKsduhCjBN3K\nE5NUju4kh+6Q84o6brvN3wkHAD/5iTHLjY5mon72rH9ItlkZupqDSYtDt1LQm5vJoRuN0Q5dmKE7\nwaEfO6Z/OVaemKQqXUjQdbJ5s3nL5mMXXtDNqHJRWy5GDj3yMDpDT0xkkQvHsfiAHLp6pBw6RS4O\nRji4yIw6dLMdutVD/5ubSdCNxmiHHh3NOtV5g+EEhx5OGTogXeniJIdOgi4gsNKF47Tf3AKw16Fb\n1Sna18fu50qCbixGDywCgmMXNzl0KwXd6Q7dIc1wDmlpwLZtQHW1v0RJy8EDGJuhb9wIfPIJe1xQ\nANx5p/h7jb5bESAv6G1t7ITjlB3aLYQaWKRFxAIrXex26CkpzCz19clPjPanPwUP9rvlFuCGG/yP\nrRztKiboHEcO3dHcfTewZAkT9sxM4NVXtS8r1NB/pfzgB0BxMWtTVBSwZo30ey9fZus1UmDlBJ1K\nFs1BzqFrydCB4EoXux16XByLBZub5d/3zDNMLNPS2P0KNm4Mft1uh86bPrPr4JWi+bBvbW3Ffffd\nh6NHj8Lj8WDjxo2YNWuWkW2zhauuAh591JhlGTH0HwDy89kfwA6AV16Rfq/RHaJAaEGnuMV44uKY\nexUbIWxE5OKEGTH52EWq6IDj2CRmTzzB9unSUuBXvwp+j5VXGmJVLk6KWwAdDv2HP/whbrrpJhw/\nfhxHjhzBlClTjGyXK5CKXPRcJiYns50ocOh6IFYLOpUsmoPHI90xqlXQhQ7dzsgFCJ2jNzf7nbzU\n+63uFBUKupPiFkCjoLe1tWH//v0oKSkBAMTExGC4kb1wLsGoKpdAPB7xmyXwtLUZ2yEKkEO3C6kc\nXcvAImBghu4Uhy6FcEZKsfdbXbYorHJxhUOvqqrC6NGjsXz5clxzzTW4//77cVk42TJhWJWLEOHN\nEgKxw6GToJuDVI5uVJWL0x16TU2woI8ezfa33l7/c+TQg9F0bvH5fKioqMBvfvMbFBQU4KGHHsK6\ndevw9NNPB71v9erV/f8vKipCUVGRnraGHWY4dIANepJy6HZk6BS5mIOUQzeiUzRcHHrgTbRjY9nV\nZ3Mzq5IB7B9YZISgl5WVoaysTN9C/oUmQc/IyEBGRgYKCgoAAEuWLMG6desGvC9Q0CMRMzJ0QD5y\nscOhf+Urxq6PYBjt0AMjF6c49JMnpV8XuwkIfxLgBd1uh25E5CI0u0899ZTmZWmKXFJTU5GZmYkT\nJ04AAPbu3YupU6dqboRbMarKRYiTIhdy6OZhRoYeTg5dGLmIfcbuKhdXRC4A8NJLL+Huu+9Gd3c3\nxo8fj02bNhnZLldgVB26ECdFLpShm0ekZ+hyDp3HCQ7dFYI+Y8YMfPbZZ0a2xXXEx/vvsRk48MAI\nhy5X5cJfjhpFTAyriRa7vCSHbh5mZOjhVuUSmKGLfcbuKpeeHhdUuRDKiIpiP3bg/Oq9vcztJiZq\nX25aGhs2LRbnmOHQPR7p+IjKFs3DjAzdSQ49JSX4ZjWBdHSw7y40J05z6E6LXEjQTUYYu/AHo9z8\nFaGIjmaifubMwNfMEHRAOnahgUXmIebQ+/rYiVWLIXDaSNGEBHYsXLgw8LXaWjb1hvA4sduhX7oU\nfAJyRR06oRyhszXKGUnFLlYKem8vW9+IEcavjxB36J2dTJi1zB3iNIcOSMcuYvm52PutdOixsUy8\nA48DcugRhtChG+WMnCDora3MtQhvmksYg5hD15qfA/4MvaeHnYyNuPG1XuQEXZifC99vRHypFmGl\nCwl6hCGsRTfKUWRliZcuGj0XOo+YoFOHqLmIOXSt+Tngj1x4d+6EGQKlBF2sZBFgN4Tn38+Xb1r5\nPYQ5OkUuEYYwcjEq85Ny6EbfrYhHTNCpZNFcxBy61hp0wB+5OCE/51EbuaSksLuI9fXZM6e7sNKF\nHHqEIYxcjHLoTohcyKGbi9EOnY9cnJKfA+ojl7g4tl0uXLBnTndy6BGOmQ5dGLlwHBN0I+9WxEMO\n3XrEps/Vm6GHi0OXilwCP2PH9xAKutMcuoPOLe7ErAw9M5OVdgXewquzkzkYM3YwcujWI3YvWSMz\ndCcgJug+H3D2LJCRIf+ZuDh7IhcnCzo5dJMRq3IxYiccNIhFK4EHg1kdooC0oJNDNw8xh25E5OIk\nhx7YyclTX8+myhXeqYnHTocurHKhyCXCEKtDN2onFOboZuXngHTkQg7dPKQcut5OUac7dKn8XPgZ\nO74HOfQIRxi5GNkzLyxdNKvCBSCHbgdGZ+h85OIkh86Lc+DoS7n8nP/MuXP2ZeiBVS7k0CMMs6pc\nAGc4dBJ08zA6Q3dip2hiIotWAkVSqmSRJzByIYceDAm6yZhV5QLYL+jUKWouiYlsts7AW67pEfTY\nWOaEW1udE7kAA2MXpYLuhLJFEvQIw0yHLoxcyKG7C4+HiXdg7KInQ/d42EmisdE5Dh0YKOg1Ncoy\ndCc4dIpcIgwzM3Qxh251lQs5dHMR5uh6HDrAPtvYSA5dKzSXS4RjZZWLlZ2iPh87OZl1AiEYwhxd\nT6co4Bd0pzp0jlMm6OfPM2F1gkN3kqA76GLBnZhVhw6wuKO3F7jzTja46PBh4NvfNmbZQoSCfuEC\nmzZXz7zuRGiMduh85OIkh56aCvzhD8CHHzKBjI+XH+2ckMD+6uqAr33NunYC4nO5OClycVBT3ElC\nQvAOYKRD93iAnTvZqDoAuOUWYM4cY5YtRCjoVLJoDUKHridDB9jJoL7eWQ79/vuBCRP8j7///dCf\n8XqB06ftd+g9PfpOsEZDgm4yZmboAHDDDcYtSw6hoNOgImuIhAx9zBjgrrvUfcbrBQ4etL/KhTpF\nIwwzq1yshBy6PZiRoft84bkPBuL1sv3RCQ7dSRk6CbrJmFmHbiViDp0E3XzMyNCB8NwHA/F62b9W\nn5gGDWJjA3w+9thpnaIk6CaTmgps2cLybo+HXZ6F48Ek5tApcjEfMzJ0wB0OHbD+WPJ42EynsbHs\n/y+9xCYScwoOSn/cyfz5wfNUhCvk0O3BjAwdCE9TEYhdDh0AqqqsX6dSyKETiiCHbg9GZ+h85EIO\n3Z2QoBOKIIduD8Lb0Bnh0PkpAMIZXtCdVDLoBChyIRSRkMDK3bZtY4///ndy6FYwZAgbMLZtG4vu\nurr0ifGgQczVejzGtdEOvF72XaKj7W6JsyBBJxSRng7ceCOwaxd7PH06+yPMpbAQeP99/3Z/8EF9\nYpyY6I6YIjMT+OlP7W6F8/BwnPYuu97eXsycORMZGRn461//Grxgjwc6Fu0qysrKUFRUZHczHAFt\nCz92bIvf/hZ4/nngH/+wdLUhof3Cjx7t1JWhv/DCC8jJyYEn3K/fTKasrMzuJjgG2hZ+7NgWfOTi\nNGi/MAbNgn7mzBns3r0b9913HzlxgggTBg0K/woXQhrNgv7www9jw4YNiKLp9ggibBgyRH4mQyLM\n4TTw17/+lVu5ciXHcRz33nvvcbfccsuA9wCgP/qjP/qjPw1/WtHUKfrEE09g69atiImJwZUrV3Dx\n4kUsXrwYW7ZsUbsogiAIwiB0VbkAQHl5OX7xi18MqHIhCIIgrMWQAJyqXAiCIOxHt6Bff/312Llz\nZ9BzpaWlmDx5MiZOnIjnnntO7yrCitraWtxwww2YOnUqpk2bhhdffBEA0NLSguLiYmRnZ2PevHlo\nbW21uaXW0Nvbi7y8PCxYsABA5G6H1tZWLFmyBFOmTEFOTg4++eSTiN0Wa9euxdSpU5Gbm4u77roL\nXV1dEbMtSkpK4PV6kZub2/+c3Hdfu3YtJk6ciMmTJ+Odd94JuXzDS1R6e3vxgx/8AKWlpTh27Bi2\nb9+O48ePG70axxIbG4vnn38eR48exYEDB/Db3/4Wx48fx7p161BcXIwTJ05gzpw5WLdund1NtQTh\nWIVI3Q4//OEPcdNNN+H48eM4cuQIJk+eHJHborq6Gq+88goqKipQWVmJ3t5e7NixI2K2xfLly1Fa\nWhr0nNR3P3bsGN544w0cO3YMpaWlWLlyJfr6+uRXoLk7VYKPPvqImz9/fv/jtWvXcmvXrjV6NWHD\nrbfeyu3Zs4ebNGkSd+7cOY7jOO7s2bPcpEmTbG6Z+dTW1nJz5szh9u3b118JFYnbobW1lRs3btyA\n5yNxWzQ3N3PZ2dlcS0sL19PTw91yyy3cO++8E1Hboqqqips2bVr/Y6nvvmbNGm7dunX975s/fz73\n8ccfyy7bcIdeV1eHzMzM/scZGRmoq6szejVhQXV1Nb744gtcd911aGhogPdfU8R5vV40NDTY3Drz\nERurEInboaqqCqNHj8by5ctxzTXX4P7770dHR0dEbovk5GQ8+uijyMrKQlpaGkaMGIHi4uKI3BY8\nUt+9vr4eGRkZ/e9ToqWGCzp1kDLa29uxePFivPDCCxgqGMnh8Xhcv5127dqFlJQU5OXlSY4kjoTt\nAAA+nw8VFRVYuXIlKioqMHjw4AGRQqRsi1OnTuHXv/41qqurUV9fj/b2drz++utB74mUbSFGqO8e\narsYLujp6emora3tf1xbWxt0lokEenp6sHjxYixbtgy33XYbAHbmPXfuHADg7NmzSElJsbOJpvPR\nRx9h586dGDduHJYuXYp9+/Zh2bJlEbcdAOasMjIyUFBQAABYsmQJKioqkJqaGnHb4uDBgygsLMTI\nkSMRExODRYsW4eOPP47IbcEjdUwItfTMmTNIT0+XXZbhgj5z5kycPHkS1dXV6O7uxhtvvIGFCxca\nvRrHwnEcVqxYgZycHDz00EP9zy9cuBCbN28GAGzevLlf6N3KmjVrUFtbi6qqKuzYsQPf+MY3sHXr\n1ojbDgCQmpqKzMxMnDhxAgCwd+9eTJ06FQsWLIi4bTF58mQcOHAAnZ2d4DgOe/fuRU5OTkRuCx6p\nY2LhwoXYsWMHuru7UVVVhZMnT+Laa6+VX5jRgT/Hcdzu3bu57Oxsbvz48dyaNWvMWIVj2b9/P+fx\neLgZM2ZwV199NXf11Vdzb7/9Ntfc3MzNmTOHmzhxIldcXMxduHDB7qZaRllZGbdgwQKO47iI3Q6H\nDh3iZs6cyU2fPp27/fbbudbW1ojdFs899xyXk5PDTZs2jbv33nu57u7uiNkWd955JzdmzBguNjaW\ny8jI4DZu3Cj73Z999llu/Pjx3KRJk7jS0tKQy9c9UpQgCIJwBjRVIkEQhEsgQScIgnAJJOgEQRAu\ngQSdIAjCJZCgEwRBuAQSdIIgCJfw/31tYjp3QHiTAAAAAElFTkSuQmCC\n" 1074 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n",
-   1075 "text": [
-   1076 "<matplotlib.figure.Figure at 0x9eb46cc>"
-   1077 ]
1074 } 1078 }
1075 ], 1079 ],
1076 "prompt_number": 26 1080 "prompt_number": 9
1077 }, 1081 },
1078 { 1082 {
1079 "cell_type": "code", 1083 "cell_type": "code",
1080 "collapsed": false, 1084 "collapsed": false,
1081 "input": [ 1085 "input": [
1082 "plt.plot(t)" 1086 "plt.plot(t)"
1083 ], 1087 ],
1084 "language": "python", 1088 "language": "python",
1085 "metadata": {}, 1089 "metadata": {},
1086 "outputs": [ 1090 "outputs": [
1087 { 1091 {
-   1092 "metadata": {},
1088 "output_type": "pyout", 1093 "output_type": "pyout",
1089 "prompt_number": 27, 1094 "prompt_number": 11,
1090 "text": [ 1095 "text": [
1091 "[<matplotlib.lines.Line2D at 0x399a4d0>]" 1096 "[<matplotlib.lines.Line2D at 0x9ee51ec>]"
1092 ] 1097 ]
1093 }, 1098 },
1094 { 1099 {
-   1100 "metadata": {},
1095 "output_type": "display_data", 1101 "output_type": "display_data",
1096 "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEECAYAAAAvY19bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9Q2/X9B/Bn+LGp1BW7tTATNrSJTeiPgFBxvTmjFRG0\nmdrepPMHV9Hl8BhWvd227+1H2X2t5Xo3R427o95EWW+Uv3YwL2ZttfG0CqxCV084m3rlltDCd1px\na60Gwuf7B9dAIHwSIPmE9zvPxx0nCZ/35/PO52VfvPPkk0SnKIoCIiJKGWnJngAREWmLjZ+IKMWw\n8RMRpRg2fiKiFMPGT0SUYtj4iYhSzJJu/D/72c9gsVhgtVpx//334/PPP5+1jc/nw2233Ya1a9di\n3bp12LdvX+hnu3btgsFgQFFREYqKiuB2u0M/O3nyJL73ve9h3bp12LBhA7766ivVuTidThiNRqSl\npeH8+fPxe5BERBrTLZXr+D0eD1599VW0tLSE7jt8+DA2b96MtLQ0/OIXvwAA7NmzJ2zc8PAwhoeH\nUVhYiAsXLqC4uBgdHR0wm81oaGjA1VdfjaeffjpszPj4OIqLi3HgwAGsX78en332GZYvX460tLl/\nD544cQLXXHMNbDYb3n//faxYsSKOj56ISDtLZsWv0+lm3VdWVhZqxqWlpfD7/bO2yc3NRWFhIQBg\n2bJlsFgsGBoaCv080u+1Q4cOYcOGDVi/fj0A4Jprrgkd59ChQ9i0aROKi4vxox/9CBcvXgQAFBYW\n4rvf/e4iHyURUfItmcYf7YnHyy+/jMrKStVtBgcH0dfXh9LS0tB9L7zwAqxWK2pqajA6OgoA8Hq9\n0Ol0uOuuu1BcXIy9e/cCAD755BM8++yzeOONN/D++++juLgYv//97xf5yIiIlpaMZE/g5ptvxldf\nfYULFy7g/PnzKCoqAgA0NjbizjvvBAA8++yz+NrXvoYf//jHc+7nwoUL2LZtG5qamrBs2TIAQG1t\nLX7zm98AAH7961/jmWeewZ/+9CeMjY3hnXfewfHjx3HllVdi8+bNKC4uxhdffIH+/n5s2rQJABAI\nBELfExHJIumNv6urCwDw1ltv4ZVXXgnL+AHglVdegcvlwhtvvDHnPsbGxrB161Y89NBDuPfee0P3\nr1q1KvT9Y489hi1btgAA8vLy8IMf/CCU01dWVqK3txdmsxllZWX4y1/+ErfHR0S01CzpqMftdmPv\n3r3o6OjAFVdcMee4mpoaFBQUYOfOnWE/O3fuXOj7v/71r6FM/84778QHH3yAS5cuYXx8HG+99RbW\nrl2Lm2++GceOHcPHH38MALh48SK8Xm9McyUiEkXUxu92u2E2m2EymdDY2Bhxm/r6ephMJlitVvT1\n9QEAPvroo9BllEVFRVi+fHnYpZYz6XS6WX/g/elPf4oLFy6grKwMRUVFeOKJJwAAZ8+exd133w0A\nOHbsGA4cOICjR4/Oumzz5z//OTZs2ACr1Yq33noLzz//PIDJP+Y+/fTT2LhxI4qKilBcXIyKigp8\n61vfwiuvvILt27fDarVi06ZN+OijjwAA+/btQ15eHoaGhrBhwwb85Cc/iXbqiIiWJNXLOYPBINas\nWYMjR45Ar9dj48aNaGtrg8ViCW3jcrngdDrhcrnQ3d2NJ598MhTfXDYxMQG9Xo+enh7k5eUl7tEQ\nEVFUqiv+np4eGI1G5OfnIzMzE1VVVejo6AjbprOzE9XV1QAmL7kcHR3FyMhI2DZHjhzB6tWr2fSJ\niJYA1cY/NDQU1qwNBkPYNfJzbTPzevuDBw+qXpFDRETaUb2qJ9KLqiKZmRZNHxcIBPC3v/1tzr8P\nxHoMIiIKt9ALTVRX/Hq9Hj6fL3Tb5/PBYDCobuP3+6HX60O3X3/9dRQXF2PlypVzHkdRFH4pCn77\n298mfQ5L5YvngueC50L9azFUG39JSQm8Xi8GBwcRCATQ3t4Ou90eto3dbkdrayuAyWvys7OzkZOT\nE/p5W1sbtm/fvqhJEhFR/KhGPRkZGXA6nSgvL0cwGERNTQ0sFguam5sBAA6HA5WVlXC5XDAajcjK\nygp7AdbFixdx5MgRvPTSS4l9FEREFLOkvzunTqdb9NMWWXg8HthstmRPY0nguZjCczGF52LKYnon\nGz8RkYAW0zuXzFs2EBGRNtj4iYhSDBs/EVGKYeMnIkoxbPxERCmGjZ+IKMWw8RMRpRg2fiKiFMPG\nT0SUYpZE48/Kit/XjTdGP95XXwG5uVNjli0Djh1b3GMwmxc231g+133fvvAx5eWLmyslzt/+Fl4r\nkynZMyKaTfVN2rTyf/8Xn/2cPw9YrdG3u3QJ+OKLqeNu3w7M+NCweTtzBjh3Dvj612Mf8z//A5w9\nG307vx/4xS+Ap58GPvoI4GfaLF1nzwIPPAC88AIwNgaovBs5UdIsicaflRWf/QSDwPh49O3Gx4Gv\nfW3quFdcEdu4aPvMzgbS5vEc6sorY5/v5RXkN76x+LlS4oyPT9Y1KwuYmJi8rSgAP2+IlpIlEfXE\nS0ZG7I00Y9qvvFjHzWViYvIf93ya/nyOO32+i50rJdb0WqWlTX5NTCR3TkQzSdf4x8aibzc2Nrvx\nxzJuLjN/kcRqIfNd7FwpseL9/xZRIkjX+C8/tVYzPg5kZk7dzsxc3Cp65v5iFetxp+9/sXOlxIr3\n/1tEiSBV44/1qXW8o57FrPgZ9cgl3v9vESWCVI0fiO2pdbyfjs/cX6wY9ciHUQ+JQMrGH22FxRU/\nJQpX/CQC6Rp/LJkqM35KFGb8JALpGn+qRD38mOKliVEPiUDKxi9z1JOWNvliIF4bvjQx6iERSNf4\nZY965jOOtMdakQiiNn632w2z2QyTyYTGxsaI29TX18NkMsFqtaKvry90/+joKLZt2waLxYKCggJ0\ndXXFb+ZzkH3FP59xpD3WikSg2viDwSDq6urgdrvR39+PtrY2DAwMhG3jcrlw+vRpeL1e7N+/H7W1\ntaGfPfnkk6isrMTAwABOnjwJi8WSmEcxjewZ/3zGkfZYKxKBauPv6emB0WhEfn4+MjMzUVVVhY6O\njrBtOjs7UV1dDQAoLS3F6OgoRkZG8Pnnn+Ptt9/Go48+CgDIyMjA8uXLE/QwpjDqoWRirUgEquvU\noaEh5OXlhW4bDAZ0d3dH3cbv9yM9PR0rV67Ejh078M9//hPFxcVoamrCVVddNes4u3btCn1vs9lg\ns9kW+HAY9VBysVaUKB6PBx6PJy77Um1XuhjfS1aZcW2hTqfD+Pg4ent74XQ6sXHjRuzcuRN79uzB\n7373u1njpzf+xWLUQ8nEWlGizFwUNzQ0LHhfqlGPXq+Hz+cL3fb5fDAYDKrb+P1+6PV6GAwGGAwG\nbNy4EQCwbds29Pb2LniiseKKn5KJtSIRqDb+kpISeL1eDA4OIhAIoL29HXa7PWwbu92O1tZWAEBX\nVxeys7ORk5OD3Nxc5OXl4dSpUwCAI0eOYO3atQl6GFOY8VMysVYkAtV1akZGBpxOJ8rLyxEMBlFT\nUwOLxYLm5mYAgMPhQGVlJVwuF4xGI7KystDS0hIa/8ILL+DBBx9EIBDA6tWrw36WKIx6KJlYKxJB\n1HZVUVGBioqKsPscDkfYbafTGXGs1WrFP/7xj0VMb/4Y9VAysVYkAr5yN8Yx89lfrBj1yIe1IhFI\n1/i54qdkYq1IBFI2fmb8lCysFYlAusbPqIeSibUiEUjX+Bn1UDKxViQCKRs/ox5KFtaKRCBl4+eK\nn5KFtSIRSNf4Zcv4L3/SVnr6/MZRcjDjJxFI1/hli3oi7ZvxwdLFqIdEIGXjlynqibRvxgdLF6Me\nEoF0jV+2qCfSvhkfLF2MekgE0jV+rvgpmbjiJxFI2fhFyfjT0ib/eHv5D7ix7pu58dLFjJ9EIF3j\nFynq0emiH5tRj1gY9ZAIpGv8IkU9sRybUY9YGPWQCKRs/KJEPbEcm1GPOC7HdmnT/lWxVrQUSdn4\nueKnZLhcK51u6j7WipYi6Rq/SBl/LMdmxi8O1opEIV3jZ9RDycJakSikbPyMeigZWCsShXSNfyFR\nz+U3QFO7nn4++5sPRj3yYK1IFNI1/mS8GpYrfgJYKxKHlI1f63e8ZMZPAGtF4oja+N1uN8xmM0wm\nExobGyNuU19fD5PJBKvVir6+vtD9+fn52LBhA4qKinDTTTfFb9YqkvHGZ4x6CGCtSByq69RgMIi6\nujocOXIEer0eGzduhN1uh8ViCW3jcrlw+vRpeL1edHd3o7a2Fl1dXQAAnU4Hj8eDFStWJPZRTMOo\nh5KFtSJRqK74e3p6YDQakZ+fj8zMTFRVVaGjoyNsm87OTlRXVwMASktLMTo6ipGRkdDPFUVJwLTn\nxqiHkoW1IlGotquhoSHk5eWFbhsMBnR3d0fdZmhoCDk5OdDpdLjjjjuQnp4Oh8OBxx9/POJxdu3a\nFfreZrPBZrMt4KFM4oqfkoW1okTyeDzweDxx2Zdqu9JNf+25irlW9e+88w6uvfZa/Pvf/0ZZWRnM\nZjNuueWWWdtNb/yLxYyfkoW1okSauShuaGhY8L5Uox69Xg+fzxe67fP5YDAYVLfx+/3Q6/UAgGuv\nvRYAsHLlStx3333o6elZ8ERjxaiHkoW1IlGoNv6SkhJ4vV4MDg4iEAigvb0ddrs9bBu73Y7W1lYA\nQFdXF7Kzs5GTk4MvvvgC//3vfwEAFy9exKFDh7B+/foEPYwpjHooWVgrEoVqu8rIyIDT6UR5eTmC\nwSBqampgsVjQ3NwMAHA4HKisrITL5YLRaERWVhZaWloAAMPDw7j//vsBAOPj43jwwQdx5513Jvjh\nMOqh5GGtSBRR16kVFRWoqKgIu8/hcITddjqds8Zdf/31OHHixCKnN39c8VOysFYkCr5ydx7j5rO/\nWDHjlwdrRaKQrvEz6qFkYa1IFNI1fkY9lCysFYlCysav9tRaUYBgcOqtmGMdp4ZRDwGsFYlDysYf\nbQWdnh7+uaixjFPDFT8BrBWJQ7rGv5DMPJZxapjxE8BakTika/wLiU5iGaeGUQ8BrBWJQ8rGP9/o\nJJZxahj1EMBakTika/xaRz2KsrjGz6hHHpFqlZ4++VnOC/08Z6JEkK7xa73in5iI/MfiWHHFL49I\ntdLpJu8LBpMzJ6JIpGz8Wmb8i8n3Yzkuc2NxJOLvR0SJIF3jj/bUOt5Rz2Ku6InluIx6xJGIK8aI\nEkG6xh/tqXW8o57F5PuxHJdRjzgSceEAUSJI1/gB9afWjHooURj1kCikbfxzrbC44qdE4YqfRCFl\n41fLVJnxU6Iw4ydRSNn4ZY960tMn/4Yxx2fcU5Iw6iFRSNv4ZY56dLrJ5s9V5NLCqIdEIWXjlz3q\niWUcaY+1IlFI2fhlX/HHMo60x1qRKKRt/DJn/LGMI+2xViQKKRs/ox5KBtaKRCFl42fUQ8nAWpEo\nojZ+t9sNs9kMk8mExsbGiNvU19fDZDLBarWir68v7GfBYBBFRUXYsmVLfGYcA0Y9lAysFYlCtfEH\ng0HU1dXB7Xajv78fbW1tGBgYCNvG5XLh9OnT8Hq92L9/P2pra8N+3tTUhIKCAugW+r7FC8AVPyUD\na0WiUG38PT09MBqNyM/PR2ZmJqqqqtDR0RG2TWdnJ6qrqwEApaWlGB0dxcjICADA7/fD5XLhscce\ng6Lhq42Y8VMysFYkCtW16tDQEPLy8kK3DQYDuru7o24zNDSEnJwcPPXUU9i7dy/+85//qE5i165d\noe9tNhtsNts8HsJsjHooGVgrSiSPxwOPxxOXfam2rFjjmZmreUVR8Nprr2HVqlUoKiqKOtnpjT8e\nGPVQMrBWlEgzF8UNDQ0L3pdq1KPX6+Hz+UK3fT4fDAaD6jZ+vx96vR7vvvsuOjs7cd1112H79u14\n88038cgjjyx4ovPBqIeSgbUiUag2/pKSEni9XgwODiIQCKC9vR12uz1sG7vdjtbWVgBAV1cXsrOz\nkZubi927d8Pn8+HMmTM4ePAgbr/99tB2icYVPyUDa0WiUG1ZGRkZcDqdKC8vRzAYRE1NDSwWC5qb\nmwEADocDlZWVcLlcMBqNyMrKQktLS8R9aX1VDzN+0hprRaKI2rIqKipQUVERdp/D4Qi77XQ6Vfdx\n66234tZbb13A9BaGUQ8lA2tFouArd2MYo4ZRD13GWpEopG38jHpIa6wViULaxi/Dil9RJj9pi6tI\nMXDFT6KQsvHLkvEHg5OftBXp7+LMjZceZvwkCikbvyxRj9q+GR8sPYx6SBTSNn4Zoh61fTM+WHoY\n9ZAopGz8skQ9avtmfLD0MOohUUjZ+EVa8aenT+4j0puXcsUvFq74SRTSNn5RMv60tMmvYHB++2Zu\nvPQw4ydRSNn4RYp61I7NqEcsjHpIFFI2fpGiHrVjM+oRh6JM1iM9ffbPWCtaaqRt/KJEPWrHZtQj\njmBwKrabibWipUbKxs+oh7TGWpFIpGz8jHpIa6wViUTaxs+oh7TEWpFIpG38C1nxB4ORr6dXwxU/\nAawViUXKxr+QjF+nm7wiI9L19GqY8RPAWpFYpGz8Wr7/DVf8BLBWJBZpG79W73jJjJ8A1orEImXj\n1/KNzxj1EMBakVikbPyMekhrrBWJRNrGz6iHtMRakUikbPyMekhrrBWJJGrjd7vdMJvNMJlMaGxs\njLhNfX09TCYTrFYr+vr6AABffvklSktLUVhYiIKCAvzyl7+M78xVMOohrbFWJBLVxh8MBlFXVwe3\n243+/n60tbVhYGAgbBuXy4XTp0/D6/Vi//79qK2tBQBcccUVOHr0KE6cOIGTJ0/i6NGjeOeddxL3\nSKZh1ENaY61IJKqNv6enB0ajEfn5+cjMzERVVRU6OjrCtuns7ER1dTUAoLS0FKOjoxgZGQEAXHXV\nVQCAQCCAYDCIFStWJOIxzMIVP2mNtSKRqLasoaEh5OXlhW4bDAZ0d3dH3cbv9yMnJwfBYBDFxcX4\n+OOPUVtbi4KCgojH2bVrV+h7m80Gm822gIcyhRk/aY21okTzeDzweDxx2Zdq49fpdDHtRJnxBjeX\nx6Wnp+PEiRP4/PPPUV5eDo/HE7GpT2/88cCoh7TGWlGizVwUNzQ0LHhfqlGPXq+Hz+cL3fb5fDAY\nDKrb+P1+6PX6sG2WL1+Ou+++G8ePH1/wROeDUQ9pjbUikag2/pKSEni9XgwODiIQCKC9vR12uz1s\nG7vdjtbWVgBAV1cXsrOzkZOTg08++QSjo6MAgEuXLuHw4cMoKipK0MMIx6iHtMZakUhU16oZGRlw\nOp0oLy9HMBhETU0NLBYLmpubAQAOhwOVlZVwuVwwGo3IyspCS0sLAODcuXOorq7GxMQEJiYm8PDD\nD2Pz5s2Jf0Tgip+0x1qRSKK2rIqKClRUVITd53A4wm47nc5Z49avX4/e3t5FTm9h5spUL7/lcqTP\nRVUbp4YZPwGsFYklpV65Gy2WYdRDC8VakUikbPwLiU7Uxqlh1EMAa0Vikbbxzzc6URunhlEPAawV\niUXaxs8VP2kpllrN9/OciRJFysavVcY/MTH5jzk9ff5zjOW4zI3FoVartLTJr4kJbedENBcpG79W\nUU88Vvtqx2V8II5ExIhEiSJt44/01DreUU88Gz+jHrElIkYkShQpG/9cT63jHfXE41JOteMy6hFH\nIi4VJkoUKRs/EHmFxRU/JQpX/CQSqRv/zEw13jlsPC7lVDsuM35xMOMnkUjb+CM9tWbUQ4nCqIdE\nIm3jZ9RDWmLUQyKRuvHLHPVcfqO5y288R8nFqIdEInXjl3nFrzaOtMdakUikbfyyZ/xq40h7rBWJ\nRNrGL3vUozaOtMdakUikbvyMekgrrBWJRNrGz6iHtMRakUikbfxc8ZOWWCsSidSNnxk/aYW1IpFI\n2/gZ9ZCWWCsSibSNn1EPaYm1IpFI3fgZ9ZBWWCsSSUyN3+12w2w2w2QyobGxMeI29fX1MJlMsFqt\n6OvrAwD4fD7cdtttWLt2LdatW4d9+/bFb+ZRcMVPWmKtSCRRG38wGERdXR3cbjf6+/vR1taGgYGB\nsG1cLhdOnz4Nr9eL/fv3o7a2FgCQmZmJ559/Hh9++CG6urrw4osvzhqbKMz4SUusFYkkauPv6emB\n0WhEfn4+MjMzUVVVhY6OjrBtOjs7UV1dDQAoLS3F6OgoRkZGkJubi8LCQgDAsmXLYLFYcPbs2QQ8\njNkY9ZCWWCsSSdS2NTQ0hLy8vNBtg8GA7u7uqNv4/X7k5OSE7hscHERfXx9KS0tnHWPXrl2h7202\nG2w223weQ0SMekhLrBUlmsfjgcfjicu+orYtnU4X046UGZ9sPn3chQsXsG3bNjQ1NWHZsmWzxk5v\n/PHCqIe0xFpRos1cFDc0NCx4X1GjHr1eD5/PF7rt8/lgMBhUt/H7/dDr9QCAsbExbN26FQ899BDu\nvffeBU90vrjiJy2xViSSqI2/pKQEXq8Xg4ODCAQCaG9vh91uD9vGbrejtbUVANDV1YXs7Gzk5ORA\nURTU1NSgoKAAO3fuTMwjmAMzftISa0Uiidq2MjIy4HQ6UV5ejmAwiJqaGlgsFjQ3NwMAHA4HKisr\n4XK5YDQakZWVhZaWFgDAsWPHcODAAWzYsAFFRUUAgOeeew533XVXAh/SpLminghJk+oYNYmMeiYm\nJv+bnj6/cZQcjHpIJDGtVysqKlBRURF2n8PhCLvtdDpnjfv+97+PicsdTGOiRz2x7JvxwdLBqIdE\nwlfuRhmjJpFRTyz7ZnywdDDqIZFI3fi54ietcMVPIpG28Yt+OWcs+2ZuvHQw4yeRSNv4RYp60tIm\n/5g7/c8hjHrEwqiHRCJ14xcl6tHpZh+bUY9YGPWQSKRt/CJFPZGOzahHLIx6SCTSNn6RVvyRjs0V\nvzgux3RpKv+aWCtaSqRu/KJk/JGOzYxfHJd/Sau9rRVrRUuJtI2fUQ9phbUi0Ujb+Bn1kFZYKxKN\n1I2fUQ9pgbUi0Ujd+Oe74k9LAxQl/Hp6NVzxE8BakXikbfwLyfh1uvllscz4CWCtSDzSNn4t3viM\nUQ8BrBWJR+rGn+g3PmPUQwBrReKRtvFr8cZnjHoIYK1IPNI2fq74SSusFYlG6sbPjJ+0wFqRaKRt\n/Ix6SCusFYlG2sbPqIe0wlqRaKRu/Ix6SAusFYlG6sbPFT9pgbUi0Ujb+Jnxk1ZYKxJNTI3f7XbD\nbDbDZDKhsbEx4jb19fUwmUywWq3o6+sL3f/oo48iJycH69evj8+MY8Soh7TCWpFoojb+YDCIuro6\nuN1u9Pf3o62tDQMDA2HbuFwunD59Gl6vF/v370dtbW3oZzt27IDb7Y7/zKNg1ENaYa1INFEbf09P\nD4xGI/Lz85GZmYmqqip0dHSEbdPZ2Ynq6moAQGlpKUZHRzE8PAwAuOWWW3DNNdckYOrqGPWQVlgr\nEk3U9erQ0BDy8vJCtw0GA7q7u6NuMzQ0hNzc3JgmsWvXrtD3NpsNNpstpnFqZq6wFAUIBoH09PmN\nU8MVPwGsFWnD4/HA4/HEZV9R25ZO7YNEp1EUZUHjgPDGHy8zM9Xx8cmmH21azPhpvlgr0sLMRXFD\nQ8OC9xU16tHr9fD5fKHbPp8PBoNBdRu/3w+9Xr/gScXDQqKTSOPUMOohgLUi8URt/CUlJfB6vRgc\nHEQgEEB7ezvsdnvYNna7Ha2trQCArq4uZGdnIycnJzEzjtFCopNI49Qw6iGAtSLxRG38GRkZcDqd\nKC8vR0FBAR544AFYLBY0NzejubkZAFBZWYnrr78eRqMRDocDf/zjH0Pjt2/fjk2bNuHUqVPIy8tD\nS0tL4h5N2LznH51EGqeGUQ8BrBWJJ6a2VVFRgYqKirD7HA5H2G2n0xlxbFtb2wKntjiJXvErClf8\nNCmWWqWnT36W88TE5Gc7EyWTtP8LJjrjn5iI7Y/FsWLGL65YaqXTTf5yCAa1mRORGmkbf6KjnnjG\nPJGOy/hAHImIEYkSSdrGP/2pNRD/qCeeMU+k4zLqEUciLhwgSiRpG//Mp9bxjnrieSlnpOMy6hFH\nIi4VJkokaRs/EL7C4oqfEoUrfhKN9I3/cqbKjJ8ShRk/iUbqxj/9qTWjHkoURj0kGqkbv+xRT3r6\n5N8wZrxNEmmMUQ+JRvrGL3PUo9NNNn82k+Ri1EOikb7xy7zijzSOtMdakWikbvyyZ/yRxpH2WCsS\njdSNX/aoJ9I40h5rRaKRvvEz6qFEY61INFI3fkY9pAXWikQjdePnip+0wFqRaKRv/Mz4KdFYKxKN\n1I2fUQ9pgbUi0cRxzbr0ZGYCv/oVsHIlMDgIFBbGNuboUWDbNvXtzp0DvvnNuEwzdNz+/qnj+v2x\nN5Of/hT4xjfiNxean/ffj71W//u/wMsvJ35OJKdf/Sq2PhaNTlGS+4J/nU6HRE3hgw+Ajz6aul1U\nBKxerT7mP/8BDh+O7W0QCgomv+IhEABcrqkV4de/Dtx9d/SP6Tt+fPKXGiVPWhpQUQFceaX6dgMD\nwIcfajMnktP3vw/k5k5+v5jeKXXjJyKS1WJ6p9QZPxERzcbGT0SUYqI2frfbDbPZDJPJhMbGxojb\n1NfXw2QywWq1oq+vb15jaYrH40n2FJYMnospPBdTeC7iQ7XxB4NB1NXVwe12o7+/H21tbRgYGAjb\nxuVy4fTp0/B6vdi/fz9qa2tjHkvh+D/1FJ6LKTwXU3gu4kO18ff09MBoNCI/Px+ZmZmoqqpCR0dH\n2DadnZ2orq4GAJSWlmJ0dBTDw8MxjSUiIu2pNv6hoSHk5eWFbhsMBgwNDcW0zdmzZ6OOJSIi7am+\ngEun08W0k8VejhnrcVJBQ0NDsqewZPBcTOG5mMJzsXiqjV+v18Pn84Vu+3w+GAwG1W38fj8MBgPG\nxsaijgUW/0uDiIjmRzXqKSkpgdfrxeDgIAKBANrb22G328O2sdvtaG1tBQB0dXUhOzsbOTk5MY0l\nIiLtqa74MzIy4HQ6UV5ejmAwiJqaGlgsFjQ3NwMAHA4HKisr4XK5YDQakZWVhZaWFtWxRESUZEoS\nvf7668qaNWsUo9Go7NmzJ5lT0dy//vUvxWazKQUFBcratWuVpqYmRVEU5dNPP1XuuOMOxWQyKWVl\nZcpnn308+lUXAAAESUlEQVSW5JlqY3x8XCksLFTuueceRVFS9zwoiqJ89tlnytatWxWz2axYLBal\nq6srJc/H7t27lYKCAmXdunXK9u3blS+//DJlzsOOHTuUVatWKevWrQvdp/bYd+/erRiNRmXNmjXK\n3//+96j7T9ord1P9Ov/MzEw8//zz+PDDD9HV1YUXX3wRAwMD2LNnD8rKynDq1Cls3rwZe/bsSfZU\nNdHU1ISCgoLQH/pT9TwAwJNPPonKykoMDAzg5MmTMJvNKXc+BgcH8dJLL6G3txcffPABgsEgDh48\nmDLnYceOHXC73WH3zfXY+/v70d7ejv7+frjdbjzxxBOYmJhQP0BCfl3F4N1331XKy8tDt5977jnl\nueeeS9Z0ku6HP/yhcvjwYWXNmjXK8PCwoiiKcu7cOWXNmjVJnlni+Xw+ZfPmzcqbb74ZWvGn4nlQ\nFEUZHR1Vrrvuuln3p9r5+PTTT5UbbrhBOX/+vDI2Nqbcc889yqFDh1LqPJw5cyZsxT/XY9+9e3dY\nYlJeXq689957qvtO2oo/ltcIpIrBwUH09fWhtLQUIyMjyMnJAQDk5ORgZGQkybNLvKeeegp79+5F\n2rT3oE7F8wAAZ86cwcqVK7Fjxw7ceOONePzxx3Hx4sWUOx8rVqzAM888g+985zu49tprkZ2djbKy\nspQ7D9PN9djPnj0bdsVkLL00aY2f1+5PunDhArZu3YqmpiZcffXVYT/T6XTSn6fXXnsNq1atQlFR\n0ZyX9qbCebhsfHwcvb29eOKJJ9Db24usrKxZcUYqnI+PP/4Yf/jDHzA4OIizZ8/iwoULOHDgQNg2\nqXAe5hLtsUc7L0lr/LG8RkB2Y2Nj2Lp1Kx5++GHce++9ACZ/kw8PDwMAzp07h1WrViVzign37rvv\norOzE9dddx22b9+ON998Ew8//HDKnYfLDAYDDAYDNm7cCADYtm0bent7kZubm1Ln4/jx49i0aRO+\n+c1vIiMjA/fffz/ee++9lDsP0831byLSa6n0er3qvpLW+FP9On9FUVBTU4OCggLs3LkzdL/dbser\nr74KAHj11VdDvxBktXv3bvh8Ppw5cwYHDx7E7bffjj//+c8pdx4uy83NRV5eHk6dOgUAOHLkCNau\nXYstW7ak1Pkwm83o6urCpUuXoCgKjhw5goKCgpQ7D9PN9W/Cbrfj4MGDCAQCOHPmDLxeL2666Sb1\nncX7DxLz4XK5lBtuuEFZvXq1snv37mRORXNvv/22otPpFKvVqhQWFiqFhYXK66+/rnz66afK5s2b\npb9cLRKPx6Ns2bJFURQlpc/DiRMnlJKSEmXDhg3Kfffdp4yOjqbk+WhsbAxdzvnII48ogUAgZc5D\nVVWV8u1vf1vJzMxUDAaD8vLLL6s+9meffVZZvXq1smbNGsXtdkfdf9I/epGIiLTFT+AiIkoxbPxE\nRCmGjZ+IKMWw8RMRpRg2fiKiFMPGT0SUYv4fQ9Vq4lF/AC4AAAAASUVORK5CYII=\n" 1102 "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEECAYAAAAvY19bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHpFJREFUeJzt3X9wk/XhB/B3+kM5ql86JoSZRMtIaBOQNKMYj+ldtNRq\nlUyBzaLTjlXXK1ernrd9x+27G72bQA83V1Z313pnofNW+mc7L0SskE3EtGMtsKOdpBz5mgTpd4px\ngvgNTZ/vH/kaSJs+SfNEyofn/brrtU/yeZ588py8+/GdJ41GkiQJRESkGjmzPQEiIrq6GPxERCrD\n4CciUhkGPxGRyjD4iYhUhsFPRKQy13Tw//SnP4XZbIbVasW6devw2WefTRnz5Zdfwm63o7S0FBaL\nBVu2bInf98tf/hJWqxWlpaUoLy9HIBAAAJw7dw733nsvbr75Zjz77LNpzaW1tRVGoxE5OTk4d+5c\ndp4gEdEsuGaC3+PxYNOmTQm33X///Thx4gSOHTuGpUuXYvv27VP2mzNnDg4ePIijR4/i+PHjOHjw\nIA4dOgQA+NnPfoZjx47h6NGjeOSRR9DU1BTf59e//jVefvnltOd3991345133sHtt9+u4FkSEc2+\nayb4NRrNlNsqKiqQkxObot1uRzAYTLrv3LlzAQCRSATRaBTz588HANx8883xMefPn8ctt9wSH//d\n734XN95445Rj7d+/H6tXr8bKlSvxgx/8ABcuXAAAlJaWMvSJ6LpwzQR/qjcQv/7666iqqkp638TE\nBEpLS6HVanHvvffCYrHE7/vFL36B2267DXv27MHPf/7zhP0m/7L5+OOP8dJLL+Gdd97B3//+d6xc\nuRK//e1vM3xGRETXplkP/rvuugs2mw3PPPMMent7YbPZYLPZsH///viYl156CTfccAMef/zxpMfI\nycnB0aNHEQwG8de//hUejydh3w8//BA/+tGP8MILL8jOxev1Ynh4GKtXr4bNZkNnZyc+/PDDrDxP\nIqJrRd5sT8Dr9QIA/vKXv2D37t3o6OhIuH/37t1wuVx45513Uh5r3rx5eOihh3DkyBE4HI6E+x5/\n/PFp/4/hShUVFfjTn/6U/hMgIhLMrK/4v5Ks6nG73di5cyd6enowZ86cpPt9/PHHCIfDAICLFy/i\n7bffhs1mAwD4fL74uJ6envjt0z3mXXfdhffeew+nTp0CAFy4cCHhGHJzJSISRcrgd7vdKCkpgclk\nQnNzc9IxjY2NMJlMsFqtGBoaAgB88MEH8drGZrNh3rx52LVr17SPo9FopnTuzz77LM6fP4+KigrY\nbDZs3rwZAHDmzBk89NBD8Z/vu+8+lJaWwm63Y+3atSgvLwcAbNmyBXfccQdKS0vh8Xjwm9/8Jn7s\noqIivPjii9i9ezcMBgP++c9/4pZbbsHu3buxceNGWK1WrF69Gh988AEAYNeuXTAYDAiFQlixYgV+\n8pOfpDp1RETXJI3cn2WORqMoLi5GX18fdDodVq1aha6uLpjN5vgYl8uF1tZWuFwu9Pf347nnnovX\nN1+ZmJiATqfDwMAADAbD1/dsiIgoJdkV/8DAAIxGI4qKipCfn4/q6mr09PQkjOnt7UVNTQ2A2CWX\n4XAYY2NjCWP6+vqwZMkShj4R0TVA9sXdUCiUENZ6vR79/f0pxwSDQWi12vhte/fuTXpFTrJr94mI\nKDUlrzXKrvjTDebJE7hyv0gkgj//+c/4/ve/P+2+/JLwq1/9atbncK188VzwXPBcyH8pJRv8Op0u\n/vdtACAQCECv18uOCQaD0Ol08e19+/Zh5cqVWLBggeLJEhGRcrLBX1ZWBp/PB7/fj0gkgu7ubjid\nzoQxTqcTnZ2dAGLX5BcWFibUPF1dXdi4cePXMHUiIsqEbMefl5eH1tZWVFZWIhqNora2FmazGW1t\nbQCAuro6VFVVweVywWg0oqCgIOENWBcuXEBfXx9ee+21r/dZXAcmv+FMzXguLuO5uIznIntkL+f8\n2h9co8lKX0VEpCZKs/OaeecuERFdHQx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKMPiJ\niFSGwU9EpDIMfiIilZn1D1vPxLp1wFtvJb+vuBgYHJTf/3//F7j9duDzz7M/NyKir0tPD7BmjfLj\nCBn8//3fseCf9NnpOHcOsFpT73/xIvDFF8D//M/XMz8ioq/DjTdm5zhCBv/4OPAf/wEUFCTeHo3G\n7ktn/xtumLo/EZEaCNnxj48DeUl+ZeXlpR/8yfYnIlIDIYP/0qXpg//Spcz3JyJSAyGDf3wcyM+f\nevtXK/5Uf6Z6uv2JiNRA2OBPtmLPyYl9TUxktj8RkRoIGfxyVU06dQ+rHiJSMyGDX27Fns4LvFzx\nE5GaCRv803X0+fnpBT87fiJSKyGDn1UPEVHmhAx+Vj1ERJkTNvhZ9RARZSZl8LvdbpSUlMBkMqG5\nuTnpmMbGRphMJlitVgwNDcVvD4fD2LBhA8xmMywWC7xer+IJS1LsTzPkTDNzrviJiOTJBn80GkVD\nQwPcbjeGh4fR1dWFkZGRhDEulwujo6Pw+Xxob29HfX19/L7nnnsOVVVVGBkZwfHjx2E2mxVP+KvQ\n1miS38+On4hInmz8DQwMwGg0oqioCABQXV2Nnp6ehADv7e1FTU0NAMButyMcDmNsbAxz5szBu+++\niz179sQeKC8P8+bNm/IYW7dujf/scDjgcDhkJ5yqpmHVQ0TXG4/HA4/Hk7XjyQZ/KBSCwWCIb+v1\nevT396ccEwwGkZubiwULFmDTpk04duwYVq5ciZaWFsydOzdh/yuDPx2pahpWPUR0vZm8KG5qalJ0\nPNmqRzNdnzKJNOmP42g0GoyPj2NwcBCbN2/G4OAgCgoKsGPHjsxn+v9S1TSseoiI5MkGv06nQyAQ\niG8HAgHo9XrZMcFgEDqdDnq9Hnq9HqtWrQIAbNiwAYOpPhorDVzxExEpIxv8ZWVl8Pl88Pv9iEQi\n6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8WiRYtgMBhw8uRJAEBfXx+WLVumeMLs+ImIlJFd9+bl\n5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0dHfP/f//73eOKJJxCJRLBk\nyZKE+zLFqoeISBmNNLmgv5oPrtFMeX0glVOngPvvj31Pprwc2LJF/gOJ29uBv/0NeO21GT00EdE1\nIZPsvJJw79xl1UNEpIyQwc8Xd4mIMidc8LPjJyJSRrjgZ9VDRKSMkMHPqoeIKHPCBT+rHiIiZYQL\nfq74iYiUETL42fETEWVOuOBn1UNEpIxwwc+qh4hIGSGDn1UPEVHmhAx+rviJiDInXPCz4yciUka4\n4GfVQ0SkjJDBz6qHiChzwgU/qx4iImWEC36u+ImIlBEy+NnxExFlTrjgZ9VDRKSMcMHPqoeISBkh\ng59VDxFR5oQMfq74iYgylzL43W43SkpKYDKZ0NzcnHRMY2MjTCYTrFYrhoaG4rcXFRVhxYoVsNls\nuPPOO7MyYXb8RETKyMZfNBpFQ0MD+vr6oNPpsGrVKjidTpjN5vgYl8uF0dFR+Hw+9Pf3o76+Hl6v\nFwCg0Wjg8Xgwf/78rE2YVQ8RkTKyK/6BgQEYjUYUFRUhPz8f1dXV6OnpSRjT29uLmpoaAIDdbkc4\nHMbY2Fj8fkmSsjphVj1ERMrIxl8oFILBYIhv6/V69Pf3pxwTCoWg1Wqh0WiwZs0a5Obmoq6uDs88\n88yUx9i6dWv8Z4fDAYfDITthVj1EpDYejwcejydrx5ONP41Gk9ZBplvVHzp0CLfeeiv+9a9/oaKi\nAiUlJbjnnnsSxlwZ/Ongip+I1GbyoripqUnR8WSrHp1Oh0AgEN8OBALQ6/WyY4LBIHQ6HQDg1ltv\nBQAsWLAAjz76KAYGBhRNFmDHT0SklGzwl5WVwefzwe/3IxKJoLu7G06nM2GM0+lEZ2cnAMDr9aKw\nsBBarRZffPEFPv/8cwDAhQsXsH//ftxxxx2KJ8yqh4hIGdn4y8vLQ2trKyorKxGNRlFbWwuz2Yy2\ntjYAQF1dHaqqquByuWA0GlFQUICOjg4AwNmzZ7Fu3ToAwPj4OJ544gncf//9iifMqoeISBmNlO3L\nbmby4BrNjK/6qa4GHn0UeOyx5Pf39wONjbHv01mwABgejn0nIhJNJtl5Jb5zl4hIZYQLfnb8RETK\nCBf8vKqHiEgZIYOfVQ8RUeaEC36lVY8kAdEokJub/bkREYlAuOBXuuIfH4+FfppvSiYiuu4IGfxK\nOn72+0SkdsIFv9Kqh1f0EJHaCRf82ah6GPxEpGZCBj+rHiKizAkZ/FzxExFlTrjgZ8dPRKSMcMGf\nqqrJzQUmJmJfmexPRHS9EzL45VbsGk3s/mg0s/2JiK53wgV/OlWNXN3DqoeI1E644E9nxS73Ai9X\n/ESkdkIGf6qOXu6STnb8RKR2wgU/qx4iImWEC35WPUREylyXwc+qh4hoekIF/8RE7HLNnBSz5oqf\niGh6QgV/uv08O34ioukJFfzp1jSseoiIppcy+N1uN0pKSmAymdDc3Jx0TGNjI0wmE6xWK4aGhhLu\ni0ajsNlsWLt2reLJplvTsOohIpqebPBHo1E0NDTA7XZjeHgYXV1dGBkZSRjjcrkwOjoKn8+H9vZ2\n1NfXJ9zf0tICi8UCTRY+65BVDxGRcrLBPzAwAKPRiKKiIuTn56O6uho9PT0JY3p7e1FTUwMAsNvt\nCIfDGBsbAwAEg0G4XC48/fTTkCRJ8WS54iciUk42AkOhEAwGQ3xbr9ejv78/5ZhQKAStVosXXngB\nO3fuxL///e9pH2Pr1q3xnx0OBxwOx7Rj2fETkRp5PB54PJ6sHU82+NOtZyav5iVJwptvvomFCxfC\nZrPJTvjK4E+FVQ8RqdHkRXFTU5Oi48lWPTqdDoFAIL4dCASg1+tlxwSDQeh0Ohw+fBi9vb1YvHgx\nNm7ciAMHDuCpp55SNFlWPUREyskGf1lZGXw+H/x+PyKRCLq7u+F0OhPGOJ1OdHZ2AgC8Xi8KCwux\naNEibNu2DYFAAKdPn8bevXtx3333xcdlilUPEZFysmvfvLw8tLa2orKyEtFoFLW1tTCbzWhrawMA\n1NXVoaqqCi6XC0ajEQUFBejo6Eh6rGxc1cMVPxGRchopG5fbZPrgGs2MrvYZHASefjr2Xc66dcAT\nTwDr10+9b+dOYGwMePnlGU6WiOgaMdPsnIzv3CUiUhnhgp9VDxGRMkIFPy/nJCJSTqjg54qfiEg5\n4YKfHT8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRLvi54iciUkao4GfHT0SknFDBz6qHiEg5\n4YKfVQ8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRKvhZ9RARKSdU8HPFT0SknHDBz46fiEgZ\n4YKfK34iImWECn52/EREygkV/Kx6iIiUEy74WfUQESkjVPCz6iEiUi5l8LvdbpSUlMBkMqG5uTnp\nmMbGRphMJlitVgwNDQEAvvzyS9jtdpSWlsJisWDLli2KJ8uqh4hIOdngj0ajaGhogNvtxvDwMLq6\nujAyMpIwxuVyYXR0FD6fD+3t7aivrwcAzJkzBwcPHsTRo0dx/PhxHDx4EIcOHVI0WVY9RETKyQb/\nwMAAjEYjioqKkJ+fj+rqavT09CSM6e3tRU1NDQDAbrcjHA5jbGwMADB37lwAQCQSQTQaxfz58xVN\nllUPEZFyshEYCoVgMBji23q9Hv39/SnHBINBaLVaRKNRrFy5EqdOnUJ9fT0sFsuUx9i6dWv8Z4fD\nAYfDMe18uOInIjXyeDzweDxZO55sBGo0mrQOIklS0v1yc3Nx9OhRfPbZZ6isrITH45kS7FcGfyrs\n+IlIjSYvipuamhQdT7bq0el0CAQC8e1AIAC9Xi87JhgMQqfTJYyZN28eHnroIRw5ckTRZFn1EBEp\nJxv8ZWVl8Pl88Pv9iEQi6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8XHH3+McDgMALh48SLefvtt\n2Gw2RZNl1UNEpJxsBObl5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0cH\nAOCjjz5CTU0NJiYmMDExgSeffBLl5eWKJsuqh4hIOY00uaC/mg+u0Ux5fUBORQXwn/8JrFkjP250\nFHjggdj3yXJyYuGfI9Rb14iILptpdk4mVPwp7fij0dh3hj4RqZlQEai06mHNQ0QkYPAreXGXL+wS\nEQkW/EqrHl7KSUQkWPBzxU9EpJxwwc+On4hIGaGCn1UPEZFyQgX/TKueyZe5suohIhIw+NOpanJy\nYl8TE5ntT0R0PRMu+NNdsSd7gZcrfiIiwYJ/Jh19sp6fHT8RkWDBP5OqJtmVPax6iIgEDH5WPURE\nyggV/Kx6iIiUEyr4ueInIlJOmOCXpNifVc7NTW88O34iouSECf6vVutpfv47qx4iomkIF/zpYtVD\nRJScUME/k5qGVQ8RUXJCBT9X/EREygkT/DPt59nxExElJ0zws+ohIsoOoYKfVQ8RkXIpg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaAgAEAgEcO+992LZsmVYvnw5du3apWiirHqIiLJDNvij0Sga\nGhrgdrsxPDyMrq4ujIyMJIxxuVwYHR2Fz+dDe3s76uvrAQD5+fl45ZVXcOLECXi9Xrz66qtT9p0J\nrviJiLJDNvgHBgZgNBpRVFSE/Px8VFdXo6enJ2FMb28vampqAAB2ux3hcBhjY2NYtGgRSktLAQA3\n3XQTzGYzzpw5k/FE2fETEWWH7Po3FArBYDDEt/V6Pfr7+1OOCQaD0Gq18dv8fj+GhoZgt9unPMbW\nrVvjPzscDjgcjqRzYdVDRGrl8Xjg8XiydjzZGNSk+fcRpEkfbnvlfufPn8eGDRvQ0tKCm266acq+\nVwa/HFY9RKRWkxfFTU1Nio4nW/XodDoEAoH4diAQgF6vlx0TDAah0+kAAJcuXcL69evxwx/+EI88\n8oiiibLqISLKDtngLysrg8/ng9/vRyQSQXd3N5xOZ8IYp9OJzs5OAIDX60VhYSG0Wi0kSUJtbS0s\nFguef/55xRPlip+IKDtkYzAvLw+tra2orKxENBpFbW0tzGYz2traAAB1dXWoqqqCy+WC0WhEQUEB\nOjo6AADvvfce3njjDaxYsQI2mw0AsH37djzwwAMZTTRbHf+NN2b08ERE142UUfrggw/iwQcfTLit\nrq4uYbu1tXXKfnfffTcmJiYUTu+ybFU9SV5mICJSFb5zl4hIZYQJfl7OSUSUHcIEP1f8RETZIVTw\n83JOIiLlhAl+Vj1ERNkhTPCz6iEiyg6hgp9VDxGRckIFP1f8RETKCRP87PiJiLJDmOBn1UNElB1C\nBT+rHiIi5YQJflY9RETZIUzwc8VPRJQdQgU/O34iIuWECX5WPURE2SFM8LPqISLKDqGCn1UPEZFy\nQgU/V/xERMoJE/zs+ImIskOY4GfVQ0SUHUIFP6seIiLlhAl+Vj1ERNkhTPBzxU9ElB0pg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaCh++49//GNotVrccccdiifKjp+IKDtkgz8ajaKhoQFutxvD\nw8Po6urCyMhIwhiXy4XR0VH4fD60t7ejvr4+ft+mTZvgdruzMlFWPURE2SEb/AMDAzAajSgqKkJ+\nfj6qq6vR09OTMKa3txc1NTUAALvdjnA4jLNnzwIA7rnnHnzjG9/IykRZ9RARZYdsDIZCIRgMhvi2\nXq9Hf39/yjGhUAiLFi1KawJbt26N/+xwOOBwOJKOY9VDRGrl8Xjg8XiydjzZ4NdoNGkdRJKkjPYD\nEoNfjtIVvyQB0SiQm5v+MYiIrgWTF8VNTU2Kjidb9eh0OgQCgfh2IBCAXq+XHRMMBqHT6RRNKhml\nHf/4eCz0Z/A7iYjouiQb/GVlZfD5fPD7/YhEIuju7obT6UwY43Q60dnZCQDwer0oLCyEVqvN+kSV\nVj2seYiIYmSDPy8vD62traisrITFYsFjjz0Gs9mMtrY2tLW1AQCqqqrw7W9/G0ajEXV1dfjDH/4Q\n33/jxo1YvXo1Tp48CYPBgI6OjownqrTq4Qu7REQxGmlyQX81H1yjmfL6wHRsNuD112Pf0/Hpp8Di\nxUA4HNs+dw5YsiR2OxGRyGaSncmo5p27XPETEcUIFfzs+ImIlBMm+JVe1cN37RIRxQgT/DOtanJz\ngYmJ2Fcm+xMRXa+ECv6ZVDUaTSzoo9HM9iciul4JFfwzXbFf+QIvV/xERDHCBH8mHf2VPT87fiKi\nGGGCP5Oq5sore1j1EBHFCBX8rHqIiJQTJvhZ9RARZYcwwc8VPxFRdggR/BMTscszc2Y4W3b8RERT\nCRH8mdY0rHqIiKYSIvgzrWlY9RARTSVM8GdS07DqISKaSpjg54qfiCg7hAh+dvxERNkjRPCz6iEi\nyp5ZXwNv2JB6zIULmQf/f/0XsGAB4PcDpaUzPwYR0fVm1oO/ujq9cXr9zI/d0gJ88MHl7XQ/r5eI\n6HomzIetExFRjGo+bJ2IiLKDwX+N8Hg8sz2FawbPxWU8F5fxXGRPyuB3u90oKSmByWRCc3Nz0jGN\njY0wmUywWq0YGhqa0b4Uw/+oL+O5uIzn4jKei+yRDf5oNIqGhga43W4MDw+jq6sLIyMjCWNcLhdG\nR0fh8/nQ3t6O+vr6tPclIqKrTzb4BwYGYDQaUVRUhPz8fFRXV6OnpydhTG9vL2pqagAAdrsd4XAY\nZ8+eTWtfIiK6+mQv5wyFQjAYDPFtvV6P/v7+lGNCoRDOnDmTcl8g9uo0xTQ1Nc32FK4ZPBeX8Vxc\nxnORHbLBn24oZ3pZES/lJCK6+mSDX6fTIRAIxLcDgQD0k95JNXlMMBiEXq/HpUuXUu5LRERXn2zH\nX1ZWBp/PB7/fj0gkgu7ubjidzoQxTqcTnZ2dAACv14vCwkJotdq09iUioqtPdsWfl5eH1tZWVFZW\nIhqNora2FmazGW1tbQCAuro6VFVVweVywWg0oqCgAB0dHbL7EhHRLJNmyb59+6Ti4mLJaDRKO3bs\nmK1pzIoPP/xQcjgcksVikZYtWya1tLRIkiRJn3zyibRmzRrJZDJJFRUV0qeffjrLM716xsfHpdLS\nUunhhx+WJEm95+LTTz+V1q9fL5WUlEhms1nyer2qPRfbtm2TLBaLtHz5cmnjxo3Sl19+qZpzsWnT\nJmnhwoXS8uXL47fJPfdt27ZJRqNRKi4ult56662Ux5+Vd+6q/Rr//Px8vPLKKzhx4gS8Xi9effVV\njIyMYMeOHaioqMDJkydRXl6OHTt2zPZUr5qWlhZYLJb4BQVqPRfPPfccqqqqMDIyguPHj6OkpESV\n58Lv9+O1117D4OAg/vGPfyAajWLv3r2qORebNm2C2+1OuG265z48PIzu7m4MDw/D7XZj8+bNmJiY\nkH+Ar+XXVQqHDx+WKisr49vbt2+Xtm/fPhtTuSZ873vfk95++22puLhYOnv2rCRJkvTRRx9JxcXF\nszyzqyMQCEjl5eXSgQMH4it+NZ6LcDgsLV68eMrtajwXn3zyibR06VLp3Llz0qVLl6SHH35Y2r9/\nv6rOxenTpxNW/NM9923btiW0JpWVldL7778ve+xZWfFPd+2/Gvn9fgwNDcFut2NsbAxarRYAoNVq\nMTY2NsuzuzpeeOEF7Ny5Ezk5l/9zVOO5OH36NBYsWIBNmzbhO9/5Dp555hlcuHBBledi/vz5ePHF\nF3Hbbbfh1ltvRWFhISoqKlR5Lr4y3XM/c+ZMwhWT6eTprAQ/37QVc/78eaxfvx4tLS24+eabE+7T\naDSqOE9vvvkmFi5cCJvNNu37OtRyLsbHxzE4OIjNmzdjcHAQBQUFU6oMtZyLU6dO4Xe/+x38fj/O\nnDmD8+fP44033kgYo5ZzkUyq557qvMxK8Kfz/oDr3aVLl7B+/Xo8+eSTeOSRRwDEfoufPXsWAPDR\nRx9h4cKFsznFq+Lw4cPo7e3F4sWLsXHjRhw4cABPPvmkKs+FXq+HXq/HqlWrAAAbNmzA4OAgFi1a\npLpzceTIEaxevRrf/OY3kZeXh3Xr1uH9999X5bn4ynT/JpK9l0qn08kea1aCX+3X+EuShNraWlgs\nFjz//PPx251OJ/bs2QMA2LNnT/wXwvVs27ZtCAQCOH36NPbu3Yv77rsPf/zjH1V5LhYtWgSDwYCT\nJ08CAPr6+rBs2TKsXbtWdeeipKQEXq8XFy9ehCRJ6Ovrg8ViUeW5+Mp0/yacTif27t2LSCSC06dP\nw+fz4c4775Q/WLZfkEiXy+WSli5dKi1ZskTatm3bbE1jVrz77ruSRqORrFarVFpaKpWWlkr79u2T\nPvnkE6m8vPy6v1RtOh6PR1q7dq0kSZJqz8XRo0elsrIyacWKFdKjjz4qhcNh1Z6L5ubm+OWcTz31\nlBSJRFRzLqqrq6VvfetbUn5+vqTX66XXX39d9rm/9NJL0pIlS6Ti4mLJ7XanPP6sfvQiERFdffwE\nLiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyvwf/46pxWPvViQAAAAASUVORK5CYII=\n",
-   1103 "text": [
-   1104 "<matplotlib.figure.Figure at 0x9d764cc>"
-   1105 ]
1097 } 1106 }
1098 ], 1107 ],
1099 "prompt_number": 27 1108 "prompt_number": 11
1100 }, 1109 },
1101 { 1110 {
1102 "cell_type": "code", 1111 "cell_type": "code",
1103 "collapsed": false, 1112 "collapsed": false,
1104 "input": [], 1113 "input": [],
1105 "language": "python", 1114 "language": "python",
1106 "metadata": {}, 1115 "metadata": {},
1107 "outputs": [] 1116 "outputs": []
1108 } 1117 }
1109 ], 1118 ],
1110 "metadata": {} 1119 "metadata": {}
1111 } 1120 }
1112 ] 1121 ]
1113 } 1122 }