Rev 3663 Rev 3667
Line 15... Line 15...
15 "=======\n", 15 "=======\n",
16 "\n", 16 "\n",
17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 modulovou stavebnici MLAB a jej\u00ed knihovnu [pymlab](https://github.com/MLAB-project/MLAB-I2c-modules).\n", 17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 modulovou stavebnici MLAB a jej\u00ed knihovnu [pymlab](https://github.com/MLAB-project/MLAB-I2c-modules).\n",
18 "Sn\u00edma\u010d je k po\u010d\u00edta\u010di p\u0159ipojen\u00fd p\u0159es rozhradn\u00ed USB a data jsou vy\u010d\u00edt\u00e1na p\u0159es [I\u00b2C](http://wiki.mlab.cz/doku.php?id=cs:i2c)\n", 18 "Sn\u00edma\u010d je k po\u010d\u00edta\u010di p\u0159ipojen\u00fd p\u0159es rozhradn\u00ed USB a data jsou vy\u010d\u00edt\u00e1na p\u0159es [I\u00b2C](http://wiki.mlab.cz/doku.php?id=cs:i2c)\n",
19 "\n", 19 "\n",
20 "Pou\u017eit\u00fd sn\u00edma\u010d [MPL3115A2](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPL3115A2) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n", 20 "Pou\u017eit\u00fd akcelerometr [MMA8451Q](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA8451Q) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n",
21 "\n", 21 "\n",
22 "* Tlakov\u00e9 rozli\u0161en\u00ed: 1,5 Pa\n", 22 "* \u00b12g/\u00b14g/\u00b18g dynamically selectable full-scale\n",
23 "* Relativn\u00ed p\u0159esnost: 0,1 kPa\n", 23 "* Output data rates (ODR) from 1.56 Hz to 800 Hz\n",
24 "* Absolutn\u00ed tlakov\u00e1 p\u0159esnost 0,4 kPa\n", 24 "* 99 \u03bcg/\u221aHz noise\n",
25 "\n", 25 "\n",
26 "Zprovozn\u011bn\u00ed demo k\u00f3du\n", 26 "Zprovozn\u011bn\u00ed demo k\u00f3du\n",
27 "---------------------\n", 27 "---------------------\n",
28 "\n", 28 "\n",
29 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n", 29 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n",
Line 47... Line 47...
47 "i2c-1\ti2c \ti915 gmbus vga \tI2C adapter\r\n", 47 "i2c-1\ti2c \ti915 gmbus vga \tI2C adapter\r\n",
48 "i2c-2\ti2c \ti915 gmbus panel \tI2C adapter\r\n", 48 "i2c-2\ti2c \ti915 gmbus panel \tI2C adapter\r\n",
49 "i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n", 49 "i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n",
50 "i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n", 50 "i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
51 "i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n", 51 "i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
52 "i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n", 52 "i2c-6\ti2c \tDPDDC-B \tI2C adapter\r\n",
53 "i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n", -  
54 "i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 005\tI2C adapter\r\n" 53 "i2c-7\ti2c \ti2c-tiny-usb at bus 001 device 013\tI2C adapter\r\n"
55 ] 54 ]
56 } 55 }
57 ], 56 ],
58 "prompt_number": 1 57 "prompt_number": 2
59 }, 58 },
60 { 59 {
61 "cell_type": "markdown", 60 "cell_type": "markdown",
62 "metadata": {}, 61 "metadata": {},
63 "source": [ 62 "source": [
Line 82... Line 81...
82 }, 81 },
83 { 82 {
84 "cell_type": "code", 83 "cell_type": "code",
85 "collapsed": false, 84 "collapsed": false,
86 "input": [ 85 "input": [
87 "port = 8" 86 "port = 7"
88 ], 87 ],
89 "language": "python", 88 "language": "python",
90 "metadata": {}, 89 "metadata": {},
91 "outputs": [], 90 "outputs": [],
92 "prompt_number": 2 91 "prompt_number": 2
Line 111... Line 110...
111 "import numpy as np" 110 "import numpy as np"
112 ], 111 ],
113 "language": "python", 112 "language": "python",
114 "metadata": {}, 113 "metadata": {},
115 "outputs": [], 114 "outputs": [],
116 "prompt_number": 3 115 "prompt_number": "*"
117 }, 116 },
118 { 117 {
119 "cell_type": "markdown", 118 "cell_type": "markdown",
120 "metadata": {}, 119 "metadata": {},
121 "source": [ 120 "source": [
Line 143... Line 142...
143 ")" 142 ")"
144 ], 143 ],
145 "language": "python", 144 "language": "python",
146 "metadata": {}, 145 "metadata": {},
147 "outputs": [], 146 "outputs": [],
148 "prompt_number": 8 147 "prompt_number": 30
149 }, 148 },
150 { 149 {
151 "cell_type": "markdown", 150 "cell_type": "markdown",
152 "metadata": {}, 151 "metadata": {},
153 "source": [ 152 "source": [
Line 171... Line 170...
171 "text": [ 170 "text": [
172 "WARNING:pymlab.sensors.iic:HID device does not exist, we will try SMBus directly...\n" 171 "WARNING:pymlab.sensors.iic:HID device does not exist, we will try SMBus directly...\n"
173 ] 172 ]
174 } 173 }
175 ], 174 ],
176 "prompt_number": 9 175 "prompt_number": "*"
177 }, 176 },
178 { 177 {
179 "cell_type": "markdown", 178 "cell_type": "markdown",
180 "metadata": {}, 179 "metadata": {},
181 "source": [ 180 "source": [
-   181 "\u010cten\u00ed dat z akcelerometru\n",
-   182 "-------------------------\n",
-   183 "\n",
182 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako acc." 184 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako acc."
183 ] 185 ]
184 }, 186 },
185 { 187 {
186 "cell_type": "code", 188 "cell_type": "code",
187 "collapsed": false, 189 "collapsed": false,
188 "input": [ 190 "input": [
189 "MEASUREMENTS = 1000\n", 191 "import sys\n",
190 "x = np.zeros(MEASUREMENTS)\n", 192 "import time\n",
191 "y = np.zeros(MEASUREMENTS)\n", -  
192 "z = np.zeros(MEASUREMENTS)\n", 193 "from IPython.display import clear_output\n",
193 "\n", 194 "\n",
-   195 "MEASUREMENTS = 1000\n",
-   196 "list_meas = []\n",
194 "# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n", 197 "# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
195 "\n", 198 "\n",
196 "for n in range(MEASUREMENTS):\n", 199 "for n in range(MEASUREMENTS):\n",
-   200 " clear_output()\n",
197 " (x[n], y[n], z[n]) = acc.axes()\n", 201 " (x, y, z) = acc.axes()\n",
-   202 " list_meas.append([x, y, z])\n",
198 " print( n, x[n], y[n], z[n])" 203 " print (n, list_meas[n])\n",
-   204 " sys.stdout.flush()"
199 ], 205 ],
200 "language": "python", 206 "language": "python",
201 "metadata": {}, 207 "metadata": {},
202 "outputs": [ 208 "outputs": [
203 { 209 {
204 "output_type": "stream", 210 "output_type": "stream",
205 "stream": "stdout", 211 "stream": "stdout",
206 "text": [ 212 "text": [
207 "(0, -0.81022499999999997, -0.54599999999999993, -0.26715)\n", -  
208 "(1, -0.83362499999999995, -0.52162500000000001, -0.26032499999999997)" -  
209 ] -  
210 }, -  
211 { -  
212 "output_type": "stream", -  
213 "stream": "stdout", -  
214 "text": [ -  
215 "\n", -  
216 "(2, -0.70297500000000002, -0.61327500000000001, -0.39487499999999998)" -  
217 ] -  
218 }, -  
219 { -  
220 "output_type": "stream", -  
221 "stream": "stdout", -  
222 "text": [ -  
223 "\n", -  
224 "(3, -0.83996249999999995, -0.58694999999999997, -0.35489999999999999)" -  
225 ] -  
226 }, -  
227 { -  
228 "output_type": "stream", -  
229 "stream": "stdout", -  
230 "text": [ -  
231 "\n", -  
232 "(4, -0.74246249999999991, -0.70199999999999996, -0.33052499999999996)" -  
233 ] -  
234 }, -  
235 { -  
236 "output_type": "stream", -  
237 "stream": "stdout", -  
238 "text": [ -  
239 "\n", -  
240 "(5, -0.51285000000000003, -0.83947499999999997, -0.30614999999999998)" -  
241 ] -  
242 }, -  
243 { -  
244 "output_type": "stream", -  
245 "stream": "stdout", -  
246 "text": [ -  
247 "\n", -  
248 "(6, -0.058987499999999998, -0.95647499999999996, -0.14235)" -  
249 ] -  
250 }, -  
251 { -  
252 "output_type": "stream", -  
253 "stream": "stdout", -  
254 "text": [ -  
255 "\n", -  
256 "(7, 0.25447500000000001, -0.84142499999999998, 0.011699999999999999)" -  
257 ] -  
258 }, -  
259 { -  
260 "output_type": "stream", -  
261 "stream": "stdout", -  
262 "text": [ -  
263 "\n", -  
264 "(8, 0.70199999999999996, -0.64203749999999993, -0.071175000000000002)" -  
265 ] -  
266 }, -  
267 { -  
268 "output_type": "stream", -  
269 "stream": "stdout", -  
270 "text": [ -  
271 "\n", -  
272 "(9, 0.90284999999999993, -0.16965, -0.047774999999999998)" -  
273 ] -  
274 }, -  
275 { -  
276 "output_type": "stream", -  
277 "stream": "stdout", -  
278 "text": [ -  
279 "\n", -  
280 "(10, 1.0125374999999999, 0.084824999999999998, -0.14624999999999999)" -  
281 ] -  
282 }, -  
283 { -  
284 "output_type": "stream", -  
285 "stream": "stdout", -  
286 "text": [ -  
287 "\n", -  
288 "(11, 0.92917499999999997, 0.244725, -0.1028625)" -  
289 ] -  
290 }, -  
291 { -  
292 "output_type": "stream", -  
293 "stream": "stdout", -  
294 "text": [ -  
295 "\n", -  
296 "(12, 0.80291249999999992, 0.59670000000000001, -0.44264999999999999)" -  
297 ] -  
298 }, -  
299 { -  
300 "output_type": "stream", -  
301 "stream": "stdout", -  
302 "text": [ -  
303 "\n", -  
304 "(13, 0.57329999999999992, 0.77171249999999991, -0.4914)" -  
305 ] -  
306 }, -  
307 { -  
308 "output_type": "stream", -  
309 "stream": "stdout", -  
310 "text": [ -  
311 "\n", -  
312 "(14, 0.35197499999999998, 0.84532499999999999, -0.48067499999999996)" -  
313 ] -  
314 }, -  
315 { -  
316 "output_type": "stream", -  
317 "stream": "stdout", -  
318 "text": [ -  
319 "\n", -  
320 "(15, 0.10237499999999999, 0.92527499999999996, -0.40121249999999997)" -  
321 ] -  
322 }, -  
323 { -  
324 "output_type": "stream", -  
325 "stream": "stdout", -  
326 "text": [ -  
327 "\n", -  
328 "(16, -0.086774999999999991, 0.90479999999999994, -0.312975)" -  
329 ] -  
330 }, -  
331 { -  
332 "output_type": "stream", -  
333 "stream": "stdout", -  
334 "text": [ -  
335 "\n", -  
336 "(17, -0.47872499999999996, 0.81461249999999996, -0.27689999999999998)" -  
337 ] -  
338 }, -  
339 { -  
340 "output_type": "stream", -  
341 "stream": "stdout", -  
342 "text": [ -  
343 "\n", -  
344 "(18, -0.77999999999999992, 0.53722499999999995, -0.31004999999999999)" -  
345 ] -  
346 }, -  
347 { -  
348 "output_type": "stream", -  
349 "stream": "stdout", -  
350 "text": [ -  
351 "\n", -  
352 "(19, -0.90674999999999994, 0.085800000000000001, -0.17354999999999998)" -  
353 ] -  
354 }, -  
355 { -  
356 "output_type": "stream", -  
357 "stream": "stdout", -  
358 "text": [ -  
359 "\n", -  
360 "(20, -0.98377499999999996, -0.36854999999999999, -0.24862499999999998)" -  
361 ] -  
362 }, -  
363 { -  
364 "output_type": "stream", -  
365 "stream": "stdout", -  
366 "text": [ -  
367 "\n", -  
368 "(21, -0.83460000000000001, -0.638625, -0.2457)" -  
369 ] -  
370 }, -  
371 { -  
372 "output_type": "stream", -  
373 "stream": "stdout", -  
374 "text": [ -  
375 "\n", -  
376 "(22, -0.55379999999999996, -0.81363750000000001, -0.2145)" -  
377 ] -  
378 }, -  
379 { -  
380 "output_type": "stream", -  
381 "stream": "stdout", -  
382 "text": [ -  
383 "\n", -  
384 "(23, -0.35148750000000001, -0.818025, -0.69712499999999999)" -  
385 ] -  
386 }, -  
387 { -  
388 "output_type": "stream", -  
389 "stream": "stdout", -  
390 "text": [ -  
391 "\n", -  
392 "(24, -0.33344999999999997, -0.30419999999999997, -0.96914999999999996)" -  
393 ] -  
394 }, -  
395 { -  
396 "output_type": "stream", -  
397 "stream": "stdout", -  
398 "text": [ -  
399 "\n", -  
400 "(25, -0.39097499999999996, 0.075075000000000003, -0.82289999999999996)" -  
401 ] -  
402 }, -  
403 { -  
404 "output_type": "stream", -  
405 "stream": "stdout", -  
406 "text": [ -  
407 "\n", -  
408 "(26, -0.80145, 0.252525, -0.74002499999999993)" -  
409 ] -  
410 }, -  
411 { -  
412 "output_type": "stream", -  
413 "stream": "stdout", -  
414 "text": [ -  
415 "\n", -  
416 "(27, -0.53576250000000003, 0.69029999999999991, -0.54794999999999994)" -  
417 ] -  
418 }, -  
419 { -  
420 "output_type": "stream", -  
421 "stream": "stdout", -  
422 "text": [ -  
423 "\n", -  
424 "(28, -0.16574999999999998, 0.9204, -0.48701249999999996)" -  
425 ] -  
426 }, -  
427 { -  
428 "output_type": "stream", -  
429 "stream": "stdout", -  
430 "text": [ -  
431 "\n", -  
432 "(29, 0.2588625, 0.83752499999999996, -0.40462499999999996)" -  
433 ] -  
434 }, -  
435 { -  
436 "output_type": "stream", -  
437 "stream": "stdout", -  
438 "text": [ -  
439 "\n", -  
440 "(30, 0.65617499999999995, 0.61522500000000002, -0.34709999999999996)" -  
441 ] -  
442 }, -  
443 { -  
444 "output_type": "stream", -  
445 "stream": "stdout", -  
446 "text": [ -  
447 "\n", -  
448 "(31, 0.69419999999999993, 0.18817499999999998, -0.61181249999999998)" -  
449 ] -  
450 }, -  
451 { -  
452 "output_type": "stream", -  
453 "stream": "stdout", -  
454 "text": [ -  
455 "\n", -  
456 "(32, 0.75562499999999999, -0.10237499999999999, -0.81509999999999994)" -  
457 ] -  
458 }, -  
459 { -  
460 "output_type": "stream", -  
461 "stream": "stdout", -  
462 "text": [ -  
463 "\n", -  
464 "(33, 0.43972499999999998, -0.27397499999999997, -0.88432499999999992)" -  
465 ] -  
466 }, -  
467 { -  
468 "output_type": "stream", -  
469 "stream": "stdout", -  
470 "text": [ -  
471 "\n", -  
472 "(34, 0.56940000000000002, -0.41827500000000001, -0.56940000000000002)" -  
473 ] -  
474 }, -  
475 { -  
476 "output_type": "stream", -  
477 "stream": "stdout", -  
478 "text": [ -  
479 "\n", -  
480 "(35, 0.43290000000000001, -0.70492499999999991, -0.59572499999999995)" -  
481 ] -  
482 }, -  
483 { -  
484 "output_type": "stream", -  
485 "stream": "stdout", -  
486 "text": [ -  
487 "\n", -  
488 "(36, 0.084824999999999998, -0.73904999999999998, -0.76439999999999997)" -  
489 ] -  
490 }, -  
491 { -  
492 "output_type": "stream", -  
493 "stream": "stdout", -  
494 "text": [ -  
495 "\n", -  
496 "(37, -0.27299999999999996, -0.54599999999999993, -0.82192500000000002)" -  
497 ] -  
498 }, -  
499 { -  
500 "output_type": "stream", -  
501 "stream": "stdout", -  
502 "text": [ -  
503 "\n", -  
504 "(38, -0.47969999999999996, -0.46507499999999996, -0.70784999999999998)" -  
505 ] -  
506 }, -  
507 { -  
508 "output_type": "stream", -  
509 "stream": "stdout", -  
510 "text": [ -  
511 "\n", -  
512 "(39, -0.53527499999999995, -0.33832499999999999, -0.79657499999999992)" -  
513 ] -  
514 }, -  
515 { -  
516 "output_type": "stream", -  
517 "stream": "stdout", -  
518 "text": [ -  
519 "\n", -  
520 "(40, -0.67079999999999995, -0.071175000000000002, -0.71954999999999991)" -  
521 ] -  
522 }, -  
523 { -  
524 "output_type": "stream", -  
525 "stream": "stdout", -  
526 "text": [ -  
527 "\n", -  
528 "(41, -0.76049999999999995, 0.21742499999999998, -0.70687499999999992)" -  
529 ] -  
530 }, -  
531 { -  
532 "output_type": "stream", -  
533 "stream": "stdout", -  
534 "text": [ -  
535 "\n", -  
536 "(42, -0.64934999999999998, 0.35392499999999999, -0.80047499999999994)" -  
537 ] -  
538 }, -  
539 { -  
540 "output_type": "stream", -  
541 "stream": "stdout", -  
542 "text": [ -  
543 "\n", -  
544 "(43, -0.57427499999999998, 0.357825, -0.83947499999999997)" -  
545 ] -  
546 }, -  
547 { -  
548 "output_type": "stream", -  
549 "stream": "stdout", -  
550 "text": [ -  
551 "\n", -  
552 "(44, -0.43338749999999998, 0.17257499999999998, -1.0208249999999999)" -  
553 ] -  
554 }, -  
555 { -  
556 "output_type": "stream", -  
557 "stream": "stdout", -  
558 "text": [ -  
559 "\n", -  
560 "(45, -0.063375000000000001, 0.110175, -1.1456249999999999)" -  
561 ] -  
562 }, -  
563 { -  
564 "output_type": "stream", -  
565 "stream": "stdout", -  
566 "text": [ -  
567 "\n", -  
568 "(46, 0.43290000000000001, 0.1794, -0.88139999999999996)" -  
569 ] -  
570 }, -  
571 { -  
572 "output_type": "stream", -  
573 "stream": "stdout", -  
574 "text": [ -  
575 "\n", -  
576 "(47, 0.45581249999999995, 0.14722499999999999, -0.96524999999999994)" -  
577 ] -  
578 }, -  
579 { -  
580 "output_type": "stream", -  
581 "stream": "stdout", -  
582 "text": [ -  
583 "\n", -  
584 "(48, 0.56745000000000001, 0.14527499999999999, -0.75074999999999992)" -  
585 ] -  
586 }, -  
587 { -  
588 "output_type": "stream", -  
589 "stream": "stdout", -  
590 "text": [ -  
591 "\n", -  
592 "(49, 0.73904999999999998, 0.034124999999999996, -0.61814999999999998)" -  
593 ] -  
594 }, -  
595 { -  
596 "output_type": "stream", -  
597 "stream": "stdout", -  
598 "text": [ -  
599 "\n", -  
600 "(50, 0.84483749999999991, -0.012674999999999999, -0.41144999999999998)" -  
601 ] -  
602 }, -  
603 { -  
604 "output_type": "stream", -  
605 "stream": "stdout", -  
606 "text": [ -  
607 "\n", -  
608 "(51, 0.92771249999999994, -0.10627499999999999, -0.15989999999999999)" -  
609 ] -  
610 }, -  
611 { -  
612 "output_type": "stream", -  
613 "stream": "stdout", -  
614 "text": [ -  
615 "\n", -  
616 "(52, 0.96232499999999999, -0.11943749999999999, 0.067275000000000001)" -  
617 ] -  
618 }, -  
619 { -  
620 "output_type": "stream", -  
621 "stream": "stdout", -  
622 "text": [ -  
623 "\n", -  
624 "(53, 0.92917499999999997, -0.207675, 0.47774999999999995)" -  
625 ] -  
626 }, -  
627 { -  
628 "output_type": "stream", -  
629 "stream": "stdout", -  
630 "text": [ -  
631 "\n", -  
632 "(54, 0.77317499999999995, -0.2535, 0.68835000000000002)" -  
633 ] -  
634 }, -  
635 { -  
636 "output_type": "stream", -  
637 "stream": "stdout", -  
638 "text": [ -  
639 "\n", -  
640 "(55, 0.57524999999999993, -0.23887499999999998, 0.83265)" -  
641 ] -  
642 }, -  
643 { -  
644 "output_type": "stream", -  
645 "stream": "stdout", -  
646 "text": [ -  
647 "\n", -  
648 "(56, 0.268125, -0.37829999999999997, 0.83362499999999995)" -  
649 ] -  
650 }, -  
651 { -  
652 "output_type": "stream", -  
653 "stream": "stdout", -  
654 "text": [ -  
655 "\n", -  
656 "(57, 0.02145, -0.66592499999999999, 0.66592499999999999)" -  
657 ] -  
658 }, -  
659 { -  
660 "output_type": "stream", -  
661 "stream": "stdout", -  
662 "text": [ -  
663 "\n", -  
664 "(58, -0.48067499999999996, -0.699075, 0.27689999999999998)" -  
665 ] -  
666 }, -  
667 { -  
668 "output_type": "stream", -  
669 "stream": "stdout", -  
670 "text": [ -  
671 "\n", -  
672 "(59, -0.79169999999999996, -0.62497499999999995, -0.0014624999999999998)" -  
673 ] -  
674 }, -  
675 { -  
676 "output_type": "stream", -  
677 "stream": "stdout", -  
678 "text": [ -  
679 "\n", -  
680 "(60, -0.70004999999999995, -0.64349999999999996, -0.27592499999999998)" -  
681 ] -  
682 }, -  
683 { -  
684 "output_type": "stream", -  
685 "stream": "stdout", -  
686 "text": [ -  
687 "\n", -  
688 "(61, -0.69322499999999998, -0.61522500000000002, -0.39779999999999999)" -  
689 ] -  
690 }, -  
691 { -  
692 "output_type": "stream", -  
693 "stream": "stdout", -  
694 "text": [ -  
695 "\n", -  
696 "(62, -0.67518749999999994, -0.62790000000000001, -0.548925)" -  
697 ] -  
698 }, -  
699 { -  
700 "output_type": "stream", -  
701 "stream": "stdout", -  
702 "text": [ -  
703 "\n", -  
704 "(63, -0.45434999999999998, -0.66494999999999993, -0.71954999999999991)" -  
705 ] -  
706 }, -  
707 { -  
708 "output_type": "stream", -  
709 "stream": "stdout", -  
710 "text": [ -  
711 "\n", -  
712 "(64, 0.39633750000000001, -0.50407499999999994, -0.50895000000000001)" -  
713 ] -  
714 }, -  
715 { -  
716 "output_type": "stream", -  
717 "stream": "stdout", -  
718 "text": [ -  
719 "\n", -  
720 "(65, 0.85409999999999997, -0.47092499999999998, 0.20865)" -  
721 ] -  
722 }, -  
723 { -  
724 "output_type": "stream", -  
725 "stream": "stdout", -  
726 "text": [ -  
727 "\n", -  
728 "(66, 0.62887499999999996, -0.065324999999999994, 0.58304999999999996)" -  
729 ] -  
730 }, -  
731 { -  
732 "output_type": "stream", -  
733 "stream": "stdout", -  
734 "text": [ -  
735 "\n", -  
736 "(67, 0.47969999999999996, 0.20085, 1.0110749999999999)" -  
737 ] -  
738 }, -  
739 { -  
740 "output_type": "stream", -  
741 "stream": "stdout", -  
742 "text": [ -  
743 "\n", -  
744 "(68, -0.10237499999999999, 0.73319999999999996, 0.50309999999999999)" -  
745 ] -  
746 }, -  
747 { -  
748 "output_type": "stream", -  
749 "stream": "stdout", -  
750 "text": [ -  
751 "\n", -  
752 "(69, -0.43679999999999997, 0.84776249999999997, 0.0195)" -  
753 ] -  
754 }, -  
755 { -  
756 "output_type": "stream", -  
757 "stream": "stdout", -  
758 "text": [ -  
759 "\n", -  
760 "(70, -0.54648750000000001, 0.79803749999999996, -0.5884125)" -  
761 ] -  
762 }, -  
763 { -  
764 "output_type": "stream", -  
765 "stream": "stdout", -  
766 "text": [ -  
767 "\n", -  
768 "(71, -0.21839999999999998, 0.43874999999999997, -0.98572499999999996)" -  
769 ] -  
770 }, -  
771 { -  
772 "output_type": "stream", -  
773 "stream": "stdout", -  
774 "text": [ -  
775 "\n", -  
776 "(72, -0.11505, 0.114075, -1.067625)" -  
777 ] -  
778 }, -  
779 { -  
780 "output_type": "stream", -  
781 "stream": "stdout", -  
782 "text": [ -  
783 "\n", -  
784 "(73, -0.099937499999999999, 0.085800000000000001, -1.0832249999999999)" -  
785 ] -  
786 }, -  
787 { -  
788 "output_type": "stream", -  
789 "stream": "stdout", -  
790 "text": [ -  
791 "\n", -  
792 "(74, 0.11505, 0.58109999999999995, -0.79998749999999996)" -  
793 ] -  
794 }, -  
795 { -  
796 "output_type": "stream", -  
797 "stream": "stdout", -  
798 "text": [ -  
799 "\n", -  
800 "(75, 0.28664999999999996, 0.818025, -0.19305)" -  
801 ] -  
802 }, -  
803 { -  
804 "output_type": "stream", -  
805 "stream": "stdout", -  
806 "text": [ -  
807 "\n", -  
808 "(76, 0.52844999999999998, 0.82094999999999996, -0.0277875)" -  
809 ] -  
810 }, -  
811 { -  
812 "output_type": "stream", -  
813 "stream": "stdout", -  
814 "text": [ -  
815 "\n", -  
816 "(77, 0.6157125, 0.8034, 0.25545000000000001)" -  
817 ] -  
818 }, -  
819 { -  
820 "output_type": "stream", -  
821 "stream": "stdout", -  
822 "text": [ -  
823 "\n", -  
824 "(78, 0.59572499999999995, 0.42217499999999997, 0.6552)" -  
825 ] -  
826 }, -  
827 { -  
828 "output_type": "stream", -  
829 "stream": "stdout", -  
830 "text": [ -  
831 "\n", -  
832 "(79, 0.56062499999999993, 0.27982499999999999, 0.81217499999999998)" -  
833 ] -  
834 }, -  
835 { -  
836 "output_type": "stream", -  
837 "stream": "stdout", -  
838 "text": [ -  
839 "\n", -  
840 "(80, 0.62107499999999993, 0.016574999999999999, 0.69224999999999992)" -  
841 ] -  
842 }, -  
843 { -  
844 "output_type": "stream", -  
845 "stream": "stdout", -  
846 "text": [ -  
847 "\n", -  
848 "(81, 0.67957499999999993, -0.21937499999999999, 0.50700000000000001)" -  
849 ] -  
850 }, -  
851 { -  
852 "output_type": "stream", -  
853 "stream": "stdout", -  
854 "text": [ -  
855 "\n", -  
856 "(82, 0.69224999999999992, -0.47189999999999999, 0.16087499999999999)" -  
857 ] -  
858 }, -  
859 { -  
860 "output_type": "stream", -  
861 "stream": "stdout", -  
862 "text": [ -  
863 "\n", -  
864 "(83, 0.70784999999999998, -0.64154999999999995, 0.20572499999999999)" -  
865 ] -  
866 }, -  
867 { -  
868 "output_type": "stream", -  
869 "stream": "stdout", -  
870 "text": [ -  
871 "\n", -  
872 "(84, 0.55769999999999997, -0.84824999999999995, 0.33929999999999999)" -  
873 ] -  
874 }, -  
875 { -  
876 "output_type": "stream", -  
877 "stream": "stdout", -  
878 "text": [ -  
879 "\n", -  
880 "(85, 0.071175000000000002, -0.94282499999999991, 0.33247499999999997)" -  
881 ] -  
882 }, -  
883 { -  
884 "output_type": "stream", -  
885 "stream": "stdout", -  
886 "text": [ -  
887 "\n", -  
888 "(86, -0.084824999999999998, -0.94672499999999993, 0.30809999999999998)" -  
889 ] -  
890 }, -  
891 { -  
892 "output_type": "stream", -  
893 "stream": "stdout", -  
894 "text": [ -  
895 "\n", -  
896 "(87, -0.1184625, -0.97792499999999993, -0.011699999999999999)" -  
897 ] -  
898 }, -  
899 { -  
900 "output_type": "stream", -  
901 "stream": "stdout", -  
902 "text": [ -  
903 "\n", -  
904 "(88, -0.18914999999999998, -0.92624999999999991, -0.52406249999999999)" -  
905 ] -  
906 }, -  
907 { -  
908 "output_type": "stream", -  
909 "stream": "stdout", -  
910 "text": [ -  
911 "\n", -  
912 "(89, 0.02145, -0.70882499999999993, -0.76244999999999996)" -  
913 ] -  
914 }, -  
915 { -  
916 "output_type": "stream", -  
917 "stream": "stdout", -  
918 "text": [ -  
919 "\n", -  
920 "(90, 0.1993875, -0.38414999999999999, -0.95647499999999996)" -  
921 ] -  
922 }, -  
923 { -  
924 "output_type": "stream", -  
925 "stream": "stdout", -  
926 "text": [ -  
927 "\n", -  
928 "(91, 0.30419999999999997, -0.051674999999999999, -1.026675)" -  
929 ] -  
930 }, -  
931 { -  
932 "output_type": "stream", -  
933 "stream": "stdout", -  
934 "text": [ -  
935 "\n", -  
936 "(92, 0.50212499999999993, -0.039, -0.92137499999999994)" -  
937 ] -  
938 }, -  
939 { -  
940 "output_type": "stream", -  
941 "stream": "stdout", -  
942 "text": [ -  
943 "\n", -  
944 "(93, 0.57573750000000001, -0.19305, -0.77999999999999992)" -  
945 ] -  
946 }, -  
947 { -  
948 "output_type": "stream", -  
949 "stream": "stdout", -  
950 "text": [ -  
951 "\n", -  
952 "(94, 0.52844999999999998, -0.62058749999999996, -0.38756249999999998)" -  
953 ] -  
954 }, -  
955 { -  
956 "output_type": "stream", -  
957 "stream": "stdout", -  
958 "text": [ -  
959 "\n", -  
960 "(95, 0.41388749999999996, -0.86580000000000001, 0.19109999999999999)" -  
961 ] -  
962 }, -  
963 { -  
964 "output_type": "stream", -  
965 "stream": "stdout", -  
966 "text": [ -  
967 "\n", -  
968 "(96, 0.48067499999999996, -0.624, 0.74197499999999994)" -  
969 ] -  
970 }, -  
971 { -  
972 "output_type": "stream", -  
973 "stream": "stdout", -  
974 "text": [ -  
975 "\n", -  
976 "(97, 0.445575, -0.12772500000000001, 0.83655000000000002)" -  
977 ] -  
978 }, -  
979 { -  
980 "output_type": "stream", -  
981 "stream": "stdout", -  
982 "text": [ -  
983 "\n", -  
984 "(98, 0.44264999999999999, 0.2145, 0.63082499999999997)" -  
985 ] -  
986 }, -  
987 { -  
988 "output_type": "stream", -  
989 "stream": "stdout", -  
990 "text": [ -  
991 "\n", -  
992 "(99, 0.89456249999999993, 0.19694999999999999, -0.097499999999999989)" -  
993 ] -  
994 }, -  
995 { -  
996 "output_type": "stream", -  
997 "stream": "stdout", -  
998 "text": [ -  
999 "\n", -  
1000 "(100, 0.85604999999999998, -0.039974999999999997, -0.72344999999999993)" -  
1001 ] -  
1002 }, -  
1003 { -  
1004 "output_type": "stream", -  
1005 "stream": "stdout", -  
1006 "text": [ -  
1007 "\n", -  
1008 "(101, 0.54794999999999994, -0.149175, -0.87749999999999995)" -  
1009 ] -  
1010 }, -  
1011 { -  
1012 "output_type": "stream", -  
1013 "stream": "stdout", -  
1014 "text": [ -  
1015 "\n", -  
1016 "(102, 0.31784999999999997, -0.3276, -0.79267500000000002)" -  
1017 ] -  
1018 }, -  
1019 { -  
1020 "output_type": "stream", -  
1021 "stream": "stdout", -  
1022 "text": [ -  
1023 "\n", -  
1024 "(103, 0.2598375, -0.64252500000000001, -0.72734999999999994)" -  
1025 ] -  
1026 }, -  
1027 { -  
1028 "output_type": "stream", -  
1029 "stream": "stdout", -  
1030 "text": [ -  
1031 "\n", -  
1032 "(104, 0.29493749999999996, -0.78487499999999999, -0.49627499999999997)" -  
1033 ] -  
1034 }, -  
1035 { -  
1036 "output_type": "stream", -  
1037 "stream": "stdout", -  
1038 "text": [ -  
1039 "\n", -  
1040 "(105, 0.25447500000000001, -0.88139999999999996, -0.27787499999999998)" -  
1041 ] -  
1042 }, -  
1043 { -  
1044 "output_type": "stream", -  
1045 "stream": "stdout", -  
1046 "text": [ -  
1047 "\n", -  
1048 "(106, 0.41876249999999998, -0.85458749999999994, -0.13747499999999999)" -  
1049 ] -  
1050 }, -  
1051 { -  
1052 "output_type": "stream", -  
1053 "stream": "stdout", -  
1054 "text": [ -  
1055 "\n", -  
1056 "(107, 0.62497499999999995, -0.70784999999999998, -0.11309999999999999)" -  
1057 ] -  
1058 }, -  
1059 { -  
1060 "output_type": "stream", -  
1061 "stream": "stdout", -  
1062 "text": [ -  
1063 "\n", -  
1064 "(108, 0.75172499999999998, -0.53039999999999998, -0.37732499999999997)" -  
1065 ] -  
1066 }, -  
1067 { -  
1068 "output_type": "stream", -  
1069 "stream": "stdout", -  
1070 "text": [ -  
1071 "\n", -  
1072 "(109, 0.77171249999999991, -0.25837499999999997, -0.72344999999999993)" -  
1073 ] -  
1074 }, -  
1075 { -  
1076 "output_type": "stream", -  
1077 "stream": "stdout", -  
1078 "text": [ -  
1079 "\n", -  
1080 "(110, 0.61522500000000002, -0.046799999999999994, -0.85312499999999991)" -  
1081 ] -  
1082 }, -  
1083 { -  
1084 "output_type": "stream", -  
1085 "stream": "stdout", -  
1086 "text": [ -  
1087 "\n", -  
1088 "(111, 0.36269999999999997, -0.049724999999999998, -0.995475)" -  
1089 ] -  
1090 }, -  
1091 { -  
1092 "output_type": "stream", -  
1093 "stream": "stdout", -  
1094 "text": [ -  
1095 "\n", -  
1096 "(112, 0.49627499999999997, -0.25496249999999998, -0.73514999999999997)" -  
1097 ] -  
1098 }, -  
1099 { -  
1100 "output_type": "stream", -  
1101 "stream": "stdout", -  
1102 "text": [ -  
1103 "\n", -  
1104 "(113, 0.79413749999999994, -0.35197499999999998, -0.10188749999999999)" -  
1105 ] -  
1106 }, -  
1107 { -  
1108 "output_type": "stream", -  
1109 "stream": "stdout", -  
1110 "text": [ -  
1111 "\n", -  
1112 "(114, 0.89407499999999995, -0.19548749999999998, 0.5655)" -  
1113 ] -  
1114 }, -  
1115 { -  
1116 "output_type": "stream", -  
1117 "stream": "stdout", -  
1118 "text": [ -  
1119 "\n", -  
1120 "(115, 0.46166249999999998, -0.141375, 1.0544624999999999)" -  
1121 ] -  
1122 }, -  
1123 { -  
1124 "output_type": "stream", -  
1125 "stream": "stdout", -  
1126 "text": [ -  
1127 "\n", -  
1128 "(116, -0.13747499999999999, 0.00097499999999999996, 0.80827499999999997)" -  
1129 ] -  
1130 }, -  
1131 { -  
1132 "output_type": "stream", -  
1133 "stream": "stdout", -  
1134 "text": [ -  
1135 "\n", -  
1136 "(117, -0.81119999999999992, -0.11699999999999999, 0.28664999999999996)" -  
1137 ] -  
1138 }, -  
1139 { -  
1140 "output_type": "stream", -  
1141 "stream": "stdout", -  
1142 "text": [ -  
1143 "\n", -  
1144 "(118, -0.91698749999999996, -0.31492500000000001, -0.04095)" -  
1145 ] -  
1146 }, -  
1147 { -  
1148 "output_type": "stream", -  
1149 "stream": "stdout", -  
1150 "text": [ -  
1151 "\n", -  
1152 "(119, -0.89017499999999994, -0.43874999999999997, -0.52064999999999995)" -  
1153 ] -  
1154 }, -  
1155 { -  
1156 "output_type": "stream", -  
1157 "stream": "stdout", -  
1158 "text": [ -  
1159 "\n", -  
1160 "(120, -0.61522500000000002, -0.42119999999999996, -0.83655000000000002)" -  
1161 ] -  
1162 }, -  
1163 { -  
1164 "output_type": "stream", -  
1165 "stream": "stdout", -  
1166 "text": [ -  
1167 "\n", -  
1168 "(121, -0.40413749999999998, 0.0077999999999999996, -1.0705499999999999)" -  
1169 ] -  
1170 }, -  
1171 { -  
1172 "output_type": "stream", -  
1173 "stream": "stdout", -  
1174 "text": [ -  
1175 "\n", -  
1176 "(122, -0.64496249999999999, 0.268125, -0.63472499999999998)" -  
1177 ] -  
1178 }, -  
1179 { -  
1180 "output_type": "stream", -  
1181 "stream": "stdout", -  
1182 "text": [ -  
1183 "\n", -  
1184 "(123, -0.72539999999999993, 0.236925, -0.52747500000000003)" -  
1185 ] -  
1186 }, -  
1187 { -  
1188 "output_type": "stream", -  
1189 "stream": "stdout", -  
1190 "text": [ -  
1191 "\n", -  
1192 "(124, -0.97109999999999996, 0.016574999999999999, -0.0068249999999999995)" -  
1193 ] -  
1194 }, -  
1195 { -  
1196 "output_type": "stream", -  
1197 "stream": "stdout", -  
1198 "text": [ -  
1199 "\n", -  
1200 "(125, -0.98085, -0.13747499999999999, 0.342225)" -  
1201 ] -  
1202 }, -  
1203 { -  
1204 "output_type": "stream", -  
1205 "stream": "stdout", -  
1206 "text": [ -  
1207 "\n", -  
1208 "(126, -0.78389999999999993, -0.162825, 0.77999999999999992)" -  
1209 ] -  
1210 }, -  
1211 { -  
1212 "output_type": "stream", -  
1213 "stream": "stdout", -  
1214 "text": [ -  
1215 "\n", -  
1216 "(127, -0.41096250000000001, 0.24862499999999998, 0.84824999999999995)" -  
1217 ] -  
1218 }, -  
1219 { -  
1220 "output_type": "stream", -  
1221 "stream": "stdout", -  
1222 "text": [ -  
1223 "\n", -  
1224 "(128, -0.30907499999999999, 0.77317499999999995, 0.076049999999999993)" -  
1225 ] -  
1226 }, -  
1227 { -  
1228 "output_type": "stream", -  
1229 "stream": "stdout", -  
1230 "text": [ -  
1231 "\n", -  
1232 "(129, -0.64154999999999995, 0.72052499999999997, -0.50895000000000001)" -  
1233 ] -  
1234 }, -  
1235 { -  
1236 "output_type": "stream", -  
1237 "stream": "stdout", -  
1238 "text": [ -  
1239 "\n", -  
1240 "(130, -0.39584999999999998, 0.22522499999999998, -1.0578749999999999)" -  
1241 ] -  
1242 }, -  
1243 { -  
1244 "output_type": "stream", -  
1245 "stream": "stdout", -  
1246 "text": [ -  
1247 "\n", -  
1248 "(131, -0.192075, -0.23497499999999999, -0.96817500000000001)" -  
1249 ] -  
1250 }, -  
1251 { -  
1252 "output_type": "stream", -  
1253 "stream": "stdout", -  
1254 "text": [ -  
1255 "\n", -  
1256 "(132, 0.27982499999999999, -0.48945, -0.81119999999999992)" -  
1257 ] -  
1258 }, -  
1259 { -  
1260 "output_type": "stream", -  
1261 "stream": "stdout", -  
1262 "text": [ -  
1263 "\n", -  
1264 "(133, 0.46799999999999997, -0.70687499999999992, -0.54307499999999997)" -  
1265 ] -  
1266 }, -  
1267 { -  
1268 "output_type": "stream", -  
1269 "stream": "stdout", -  
1270 "text": [ -  
1271 "\n", -  
1272 "(134, 0.53771249999999993, -0.77122499999999994, -0.050699999999999995)" -  
1273 ] -  
1274 }, -  
1275 { -  
1276 "output_type": "stream", -  
1277 "stream": "stdout", -  
1278 "text": [ -  
1279 "\n", -  
1280 "(135, 0.54794999999999994, -0.75659999999999994, 0.48359999999999997)" -  
1281 ] -  
1282 }, -  
1283 { -  
1284 "output_type": "stream", -  
1285 "stream": "stdout", -  
1286 "text": [ -  
1287 "\n", -  
1288 "(136, 0.30809999999999998, -0.52844999999999998, 0.77317499999999995)" -  
1289 ] -  
1290 }, -  
1291 { -  
1292 "output_type": "stream", -  
1293 "stream": "stdout", -  
1294 "text": [ -  
1295 "\n", -  
1296 "(137, -0.0068249999999999995, -0.083849999999999994, 0.94867499999999993)" -  
1297 ] -  
1298 }, -  
1299 { -  
1300 "output_type": "stream", -  
1301 "stream": "stdout", -  
1302 "text": [ -  
1303 "\n", -  
1304 "(138, -0.39487499999999998, 0.10725, 0.73709999999999998)" -  
1305 ] -  
1306 }, -  
1307 { -  
1308 "output_type": "stream", -  
1309 "stream": "stdout", -  
1310 "text": [ -  
1311 "\n", -  
1312 "(139, -0.58694999999999997, -0.24667499999999998, 0.6157125)" -  
1313 ] -  
1314 }, -  
1315 { -  
1316 "output_type": "stream", -  
1317 "stream": "stdout", -  
1318 "text": [ -  
1319 "\n", -  
1320 "(140, -0.75172499999999998, -0.48847499999999999, 0.34027499999999999)" -  
1321 ] -  
1322 }, -  
1323 { -  
1324 "output_type": "stream", -  
1325 "stream": "stdout", -  
1326 "text": [ -  
1327 "\n", -  
1328 "(141, -0.70589999999999997, -0.76829999999999998, -0.19499999999999998)" -  
1329 ] -  
1330 }, -  
1331 { -  
1332 "output_type": "stream", -  
1333 "stream": "stdout", -  
1334 "text": [ -  
1335 "\n", -  
1336 "(142, -0.17354999999999998, -0.82874999999999999, -0.44947499999999996)" -  
1337 ] -  
1338 }, -  
1339 { -  
1340 "output_type": "stream", -  
1341 "stream": "stdout", -  
1342 "text": [ -  
1343 "\n", -  
1344 "(143, 0.6157125, -0.58889999999999998, -0.24033749999999998)" -  
1345 ] -  
1346 }, -  
1347 { -  
1348 "output_type": "stream", -  
1349 "stream": "stdout", -  
1350 "text": [ -  
1351 "\n", -  
1352 "(144, 0.97792499999999993, 0.096525, 0.34027499999999999)" -  
1353 ] -  
1354 }, -  
1355 { -  
1356 "output_type": "stream", -  
1357 "stream": "stdout", -  
1358 "text": [ -  
1359 "\n", -  
1360 "(145, 0.61424999999999996, 0.70882499999999993, 0.45239999999999997)" -  
1361 ] -  
1362 }, -  
1363 { -  
1364 "output_type": "stream", -  
1365 "stream": "stdout", -  
1366 "text": [ -  
1367 "\n", -  
1368 "(146, 0.4099875, 0.818025, -0.52259999999999995)" -  
1369 ] -  
1370 }, -  
1371 { -  
1372 "output_type": "stream", -  
1373 "stream": "stdout", -  
1374 "text": [ -  
1375 "\n", -  
1376 "(147, 0.36172499999999996, 0.59816249999999993, -0.92917499999999997)" -  
1377 ] -  
1378 }, -  
1379 { -  
1380 "output_type": "stream", -  
1381 "stream": "stdout", -  
1382 "text": [ -  
1383 "\n", -  
1384 "(148, 0.055574999999999999, 0.36269999999999997, -1.0135125)" -  
1385 ] -  
1386 }, -  
1387 { -  
1388 "output_type": "stream", -  
1389 "stream": "stdout", -  
1390 "text": [ -  
1391 "\n", -  
1392 "(149, 0.10871249999999999, -0.26324999999999998, -1.0447124999999999)" -  
1393 ] -  
1394 }, -  
1395 { -  
1396 "output_type": "stream", -  
1397 "stream": "stdout", -  
1398 "text": [ -  
1399 "\n", -  
1400 "(150, -0.3943875, -0.199875, -0.78292499999999998)" -  
1401 ] -  
1402 }, -  
1403 { -  
1404 "output_type": "stream", -  
1405 "stream": "stdout", -  
1406 "text": [ -  
1407 "\n", -  
1408 "(151, -0.64154999999999995, -0.45337499999999997, -0.728325)" -  
1409 ] -  
1410 }, -  
1411 { -  
1412 "output_type": "stream", -  
1413 "stream": "stdout", -  
1414 "text": [ -  
1415 "\n", -  
1416 "(152, -0.75221249999999995, -0.39877499999999999, -0.35099999999999998)" -  
1417 ] -  
1418 }, -  
1419 { -  
1420 "output_type": "stream", -  
1421 "stream": "stdout", -  
1422 "text": [ -  
1423 "\n", -  
1424 "(153, -0.88529999999999998, -0.268125, -0.12675)" -  
1425 ] -  
1426 }, -  
1427 { -  
1428 "output_type": "stream", -  
1429 "stream": "stdout", -  
1430 "text": [ -  
1431 "\n", -  
1432 "(154, -0.91113749999999993, -0.37439999999999996, 0.41535)" -  
1433 ] -  
1434 }, -  
1435 { -  
1436 "output_type": "stream", -  
1437 "stream": "stdout", -  
1438 "text": [ -  
1439 "\n", -  
1440 "(155, -0.29786249999999997, -0.51674999999999993, 0.65812499999999996)" -  
1441 ] -  
1442 }, -  
1443 { -  
1444 "output_type": "stream", -  
1445 "stream": "stdout", -  
1446 "text": [ -  
1447 "\n", -  
1448 "(156, 0.46994999999999998, -0.73271249999999999, 0.37927499999999997)" -  
1449 ] -  
1450 }, -  
1451 { -  
1452 "output_type": "stream", -  
1453 "stream": "stdout", -  
1454 "text": [ -  
1455 "\n", -  
1456 "(157, 0.68640000000000001, -0.78779999999999994, 0.0058499999999999993)" -  
1457 ] -  
1458 }, -  
1459 { -  
1460 "output_type": "stream", -  
1461 "stream": "stdout", -  
1462 "text": [ -  
1463 "\n", -  
1464 "(158, 0.60839999999999994, -0.818025, -0.133575)" -  
1465 ] -  
1466 }, -  
1467 { -  
1468 "output_type": "stream", -  
1469 "stream": "stdout", -  
1470 "text": [ -  
1471 "\n", -  
1472 "(159, 0.39682499999999998, -0.85019999999999996, -0.17354999999999998)" -  
1473 ] -  
1474 }, -  
1475 { -  
1476 "output_type": "stream", -  
1477 "stream": "stdout", -  
1478 "text": [ -  
1479 "\n", -  
1480 "(160, 0.24862499999999998, -0.91747499999999993, -0.20865)" -  
1481 ] -  
1482 }, -  
1483 { -  
1484 "output_type": "stream", -  
1485 "stream": "stdout", -  
1486 "text": [ -  
1487 "\n", -  
1488 "(161, 0.21059999999999998, -0.88529999999999998, -0.39389999999999997)" -  
1489 ] -  
1490 }, -  
1491 { -  
1492 "output_type": "stream", -  
1493 "stream": "stdout", -  
1494 "text": [ -  
1495 "\n", -  
1496 "(162, 0.029249999999999998, -0.97792499999999993, 0.0)" -  
1497 ] -  
1498 }, -  
1499 { -  
1500 "output_type": "stream", -  
1501 "stream": "stdout", -  
1502 "text": [ -  
1503 "\n", -  
1504 "(163, -0.049724999999999998, -0.97841249999999991, 0.27007500000000001)" -  
1505 ] -  
1506 }, -  
1507 { -  
1508 "output_type": "stream", -  
1509 "stream": "stdout", -  
1510 "text": [ -  
1511 "\n", -  
1512 "(164, -0.11309999999999999, -0.96232499999999999, 0.416325)" -  
1513 ] -  
1514 }, -  
1515 { -  
1516 "output_type": "stream", -  
1517 "stream": "stdout", -  
1518 "text": [ -  
1519 "\n", -  
1520 "(165, 0.34173749999999997, -0.86385000000000001, -0.29152499999999998)" -  
1521 ] -  
1522 }, -  
1523 { -  
1524 "output_type": "stream", -  
1525 "stream": "stdout", -  
1526 "text": [ -  
1527 "\n", -  
1528 "(166, 0.37829999999999997, -0.74490000000000001, -0.29542499999999999)" -  
1529 ] -  
1530 }, -  
1531 { -  
1532 "output_type": "stream", -  
1533 "stream": "stdout", -  
1534 "text": [ -  
1535 "\n", -  
1536 "(167, 0.62692499999999995, -0.45727499999999999, -0.61278749999999993)" -  
1537 ] -  
1538 }, -  
1539 { -  
1540 "output_type": "stream", -  
1541 "stream": "stdout", -  
1542 "text": [ -  
1543 "\n", -  
1544 "(168, 0.5864625, 0.3276, -0.81607499999999999)" -  
1545 ] -  
1546 }, -  
1547 { -  
1548 "output_type": "stream", -  
1549 "stream": "stdout", -  
1550 "text": [ -  
1551 "\n", -  
1552 "(169, 0.01755, 0.85409999999999997, -0.59084999999999999)" -  
1553 ] -  
1554 }, -  
1555 { -  
1556 "output_type": "stream", -  
1557 "stream": "stdout", -  
1558 "text": [ -  
1559 "\n", -  
1560 "(170, 0.00975, 0.97207499999999991, -0.070199999999999999)" -  
1561 ] -  
1562 }, -  
1563 { -  
1564 "output_type": "stream", -  
1565 "stream": "stdout", -  
1566 "text": [ -  
1567 "\n", -  
1568 "(171, 0.023399999999999997, 0.995475, 0.03705)" -  
1569 ] -  
1570 }, -  
1571 { -  
1572 "output_type": "stream", -  
1573 "stream": "stdout", -  
1574 "text": [ -  
1575 "\n", -  
1576 "(172, 0.11748749999999999, 0.87944999999999995, 0.15746250000000001)" -  
1577 ] -  
1578 }, -  
1579 { -  
1580 "output_type": "stream", -  
1581 "stream": "stdout", -  
1582 "text": [ -  
1583 "\n", -  
1584 "(173, -0.004875, 0.94184999999999997, 0.16184999999999999)" -  
1585 ] -  
1586 }, -  
1587 { -  
1588 "output_type": "stream", -  
1589 "stream": "stdout", -  
1590 "text": [ -  
1591 "\n", -  
1592 "(174, -0.045824999999999998, 0.99157499999999998, 0.32077499999999998)" -  
1593 ] -  
1594 }, -  
1595 { -  
1596 "output_type": "stream", -  
1597 "stream": "stdout", -  
1598 "text": [ -  
1599 "\n", -  
1600 "(175, -0.012674999999999999, 1.0247249999999999, -0.11115)" -  
1601 ] -  
1602 }, -  
1603 { -  
1604 "output_type": "stream", -  
1605 "stream": "stdout", -  
1606 "text": [ -  
1607 "\n", -  
1608 "(176, -0.11651249999999999, 1.0880999999999998, 0.20085)" -  
1609 ] -  
1610 }, -  
1611 { -  
1612 "output_type": "stream", -  
1613 "stream": "stdout", -  
1614 "text": [ -  
1615 "\n", -  
1616 "(177, -0.30712499999999998, 0.81899999999999995, -0.49334999999999996)" -  
1617 ] -  
1618 }, -  
1619 { -  
1620 "output_type": "stream", -  
1621 "stream": "stdout", -  
1622 "text": [ -  
1623 "\n", -  
1624 "(178, 0.035587500000000001, 0.94574999999999998, -0.15356249999999999)" -  
1625 ] -  
1626 }, -  
1627 { -  
1628 "output_type": "stream", -  
1629 "stream": "stdout", -  
1630 "text": [ -  
1631 "\n", -  
1632 "(179, -0.1399125, 1.0569, -0.18427499999999999)" -  
1633 ] -  
1634 }, -  
1635 { -  
1636 "output_type": "stream", -  
1637 "stream": "stdout", -  
1638 "text": [ -  
1639 "\n", -  
1640 "(180, 0.11115, 0.81997500000000001, -0.65812499999999996)" -  
1641 ] -  
1642 }, -  
1643 { -  
1644 "output_type": "stream", -  
1645 "stream": "stdout", -  
1646 "text": [ -  
1647 "\n", -  
1648 "(181, 0.52308749999999993, 0.28470000000000001, -0.77415)" -  
1649 ] -  
1650 }, -  
1651 { -  
1652 "output_type": "stream", -  
1653 "stream": "stdout", -  
1654 "text": [ -  
1655 "\n", -  
1656 "(182, 0.74490000000000001, 0.066299999999999998, -0.70102500000000001)" -  
1657 ] -  
1658 }, -  
1659 { -  
1660 "output_type": "stream", -  
1661 "stream": "stdout", -  
1662 "text": [ -  
1663 "\n", -  
1664 "(183, 0.79949999999999999, -0.32955000000000001, -0.61814999999999998)" -  
1665 ] -  
1666 }, -  
1667 { -  
1668 "output_type": "stream", -  
1669 "stream": "stdout", -  
1670 "text": [ -  
1671 "\n", -  
1672 "(184, 0.65715000000000001, -0.33929999999999999, -0.59084999999999999)" -  
1673 ] -  
1674 }, -  
1675 { -  
1676 "output_type": "stream", -  
1677 "stream": "stdout", -  
1678 "text": [ -  
1679 "\n", -  
1680 "(185, 0.156, -0.73124999999999996, -0.24033749999999998)" -  
1681 ] -  
1682 }, -  
1683 { -  
1684 "output_type": "stream", -  
1685 "stream": "stdout", -  
1686 "text": [ -  
1687 "\n", -  
1688 "(186, -0.080437499999999995, -0.92478749999999998, 0.14624999999999999)" -  
1689 ] -  
1690 }, -  
1691 { -  
1692 "output_type": "stream", -  
1693 "stream": "stdout", -  
1694 "text": [ -  
1695 "\n", -  
1696 "(187, -0.89115, -0.31492500000000001, 0.070199999999999999)" -  
1697 ] -  
1698 }, -  
1699 { -  
1700 "output_type": "stream", -  
1701 "stream": "stdout", -  
1702 "text": [ -  
1703 "\n", -  
1704 "(188, -0.97694999999999999, 0.44069999999999998, 0.236925)" -  
1705 ] -  
1706 }, -  
1707 { -  
1708 "output_type": "stream", -  
1709 "stream": "stdout", -  
1710 "text": [ -  
1711 "\n", -  
1712 "(189, -0.71467499999999995, 0.80145, 0.1482)" -  
1713 ] -  
1714 }, -  
1715 { -  
1716 "output_type": "stream", -  
1717 "stream": "stdout", -  
1718 "text": [ -  
1719 "\n", -  
1720 "(190, -0.60060000000000002, 0.78097499999999997, 0.21742499999999998)" -  
1721 ] -  
1722 }, -  
1723 { -  
1724 "output_type": "stream", -  
1725 "stream": "stdout", -  
1726 "text": [ -  
1727 "\n", -  
1728 "(191, -0.268125, 1.0208249999999999, 0.07897499999999999)" -  
1729 ] -  
1730 }, -  
1731 { -  
1732 "output_type": "stream", -  
1733 "stream": "stdout", -  
1734 "text": [ -  
1735 "\n", -  
1736 "(192, -0.68201250000000002, 0.44167499999999998, 0.19305)" -  
1737 ] -  
1738 }, -  
1739 { -  
1740 "output_type": "stream", -  
1741 "stream": "stdout", -  
1742 "text": [ -  
1743 "\n", -  
1744 "(193, -0.87896249999999998, 0.14624999999999999, 0.092624999999999999)" -  
1745 ] -  
1746 }, -  
1747 { -  
1748 "output_type": "stream", -  
1749 "stream": "stdout", -  
1750 "text": [ -  
1751 "\n", -  
1752 "(194, -1.1163749999999999, -0.36659999999999998, -0.46604999999999996)" -  
1753 ] -  
1754 }, -  
1755 { -  
1756 "output_type": "stream", -  
1757 "stream": "stdout", -  
1758 "text": [ -  
1759 "\n", -  
1760 "(195, -0.21742499999999998, -0.50797499999999995, -0.79559999999999997)" -  
1761 ] -  
1762 }, -  
1763 { -  
1764 "output_type": "stream", -  
1765 "stream": "stdout", -  
1766 "text": [ -  
1767 "\n", -  
1768 "(196, 0.43436249999999998, -0.31395000000000001, -0.75269999999999992)" -  
1769 ] -  
1770 }, -  
1771 { -  
1772 "output_type": "stream", -  
1773 "stream": "stdout", -  
1774 "text": [ -  
1775 "\n", -  
1776 "(197, 0.63569999999999993, 0.070199999999999999, -0.57329999999999992)" -  
1777 ] -  
1778 }, -  
1779 { -  
1780 "output_type": "stream", -  
1781 "stream": "stdout", -  
1782 "text": [ -  
1783 "\n", -  
1784 "(198, 0.79949999999999999, 0.22424999999999998, -0.39584999999999998)" -  
1785 ] -  
1786 }, -  
1787 { -  
1788 "output_type": "stream", -  
1789 "stream": "stdout", -  
1790 "text": [ -  
1791 "\n", -  
1792 "(199, 0.92624999999999991, 0.2223, -0.38999999999999996)" -  
1793 ] -  
1794 }, -  
1795 { -  
1796 "output_type": "stream", -  
1797 "stream": "stdout", -  
1798 "text": [ -  
1799 "\n", -  
1800 "(200, 0.94964999999999999, 0.27884999999999999, -0.11992499999999999)" -  
1801 ] -  
1802 }, -  
1803 { -  
1804 "output_type": "stream", -  
1805 "stream": "stdout", -  
1806 "text": [ -  
1807 "\n", -  
1808 "(201, 0.98231249999999992, -0.25545000000000001, 0.40754999999999997)" -  
1809 ] -  
1810 }, -  
1811 { -  
1812 "output_type": "stream", -  
1813 "stream": "stdout", -  
1814 "text": [ -  
1815 "\n", -  
1816 "(202, 0.59767499999999996, -0.57622499999999999, 0.46312499999999995)" -  
1817 ] -  
1818 }, -  
1819 { -  
1820 "output_type": "stream", -  
1821 "stream": "stdout", -  
1822 "text": [ -  
1823 "\n", -  
1824 "(203, 0.076049999999999993, -0.88919999999999999, 0.51772499999999999)" -  
1825 ] -  
1826 }, -  
1827 { -  
1828 "output_type": "stream", -  
1829 "stream": "stdout", -  
1830 "text": [ -  
1831 "\n", -  
1832 "(204, -0.34514999999999996, -0.65032499999999993, 0.55769999999999997)" -  
1833 ] -  
1834 }, -  
1835 { -  
1836 "output_type": "stream", -  
1837 "stream": "stdout", -  
1838 "text": [ -  
1839 "\n", -  
1840 "(205, -0.71272499999999994, -0.42607499999999998, 0.54307499999999997)" -  
1841 ] -  
1842 }, -  
1843 { -  
1844 "output_type": "stream", -  
1845 "stream": "stdout", -  
1846 "text": [ -  
1847 "\n", -  
1848 "(206, -0.60254999999999992, -0.39633750000000001, 0.69614999999999994)" -  
1849 ] -  
1850 }, -  
1851 { -  
1852 "output_type": "stream", -  
1853 "stream": "stdout", -  
1854 "text": [ -  
1855 "\n", -  
1856 "(207, -0.71565000000000001, 0.004875, 0.63569999999999993)" -  
1857 ] -  
1858 }, -  
1859 { -  
1860 "output_type": "stream", -  
1861 "stream": "stdout", -  
1862 "text": [ -  
1863 "\n", -  
1864 "(208, -0.69371249999999995, 0.2442375, 0.64057500000000001)" -  
1865 ] -  
1866 }, -  
1867 { -  
1868 "output_type": "stream", -  
1869 "stream": "stdout", -  
1870 "text": [ -  
1871 "\n", -  
1872 "(209, -0.54210000000000003, 0.966225, 0.10237499999999999)" -  
1873 ] -  
1874 }, -  
1875 { -  
1876 "output_type": "stream", -  
1877 "stream": "stdout", -  
1878 "text": [ -  
1879 "\n", -  
1880 "(210, -0.48457499999999998, 0.98767499999999997, -0.27982499999999999)" -  
1881 ] -  
1882 }, -  
1883 { -  
1884 "output_type": "stream", -  
1885 "stream": "stdout", -  
1886 "text": [ -  
1887 "\n", -  
1888 "(211, -0.24862499999999998, 0.98085, -0.3339375)" -  
1889 ] -  
1890 }, -  
1891 { -  
1892 "output_type": "stream", -  
1893 "stream": "stdout", -  
1894 "text": [ -  
1895 "\n", -  
1896 "(212, -0.34320000000000001, 0.786825, -0.63277499999999998)" -  
1897 ] -  
1898 }, -  
1899 { -  
1900 "output_type": "stream", -  
1901 "stream": "stdout", -  
1902 "text": [ -  
1903 "\n", -  
1904 "(213, -0.1326, 0.74977499999999997, -0.81704999999999994)" -  
1905 ] -  
1906 }, -  
1907 { -  
1908 "output_type": "stream", -  
1909 "stream": "stdout", -  
1910 "text": [ -  
1911 "\n", -  
1912 "(214, 0.16769999999999999, 0.77805000000000002, -0.64544999999999997)" -  
1913 ] -  
1914 }, -  
1915 { -  
1916 "output_type": "stream", -  
1917 "stream": "stdout", -  
1918 "text": [ -  
1919 "\n", -  
1920 "(215, 0.11505, 0.96671249999999997, -0.39731249999999996)" -  
1921 ] -  
1922 }, -  
1923 { -  
1924 "output_type": "stream", -  
1925 "stream": "stdout", -  
1926 "text": [ -  
1927 "\n", -  
1928 "(216, 0.067762500000000003, 0.905775, -0.16672499999999998)" -  
1929 ] -  
1930 }, -  
1931 { -  
1932 "output_type": "stream", -  
1933 "stream": "stdout", -  
1934 "text": [ -  
1935 "\n", -  
1936 "(217, 0.75172499999999998, 0.40462499999999996, -0.268125)" -  
1937 ] -  
1938 }, -  
1939 { -  
1940 "output_type": "stream", -  
1941 "stream": "stdout", -  
1942 "text": [ -  
1943 "\n", -  
1944 "(218, 1.022775, -0.093599999999999989, 0.21839999999999998)" -  
1945 ] -  
1946 }, -  
1947 { -  
1948 "output_type": "stream", -  
1949 "stream": "stdout", -  
1950 "text": [ -  
1951 "\n", -  
1952 "(219, 1.0949249999999999, -0.31346249999999998, 0.08287499999999999)" -  
1953 ] -  
1954 }, -  
1955 { -  
1956 "output_type": "stream", -  
1957 "stream": "stdout", -  
1958 "text": [ -  
1959 "\n", -  
1960 "(220, 0.81753749999999992, -0.70053749999999992, -0.0024375)" -  
1961 ] -  
1962 }, -  
1963 { -  
1964 "output_type": "stream", -  
1965 "stream": "stdout", -  
1966 "text": [ -  
1967 "\n", -  
1968 "(221, 0.44264999999999999, -0.4758, -0.93794999999999995)" -  
1969 ] -  
1970 }, -  
1971 { -  
1972 "output_type": "stream", -  
1973 "stream": "stdout", -  
1974 "text": [ -  
1975 "\n", -  
1976 "(222, 0.20474999999999999, -0.19597499999999998, -0.98182499999999995)" -  
1977 ] -  
1978 }, -  
1979 { -  
1980 "output_type": "stream", -  
1981 "stream": "stdout", -  
1982 "text": [ -  
1983 "\n", -  
1984 "(223, 0.74538749999999998, -0.32272499999999998, 0.14332499999999998)" -  
1985 ] -  
1986 }, -  
1987 { -  
1988 "output_type": "stream", -  
1989 "stream": "stdout", -  
1990 "text": [ -  
1991 "\n", -  
1992 "(224, 0.38805000000000001, -0.43582499999999996, 0.91552499999999992)" -  
1993 ] -  
1994 }, -  
1995 { -  
1996 "output_type": "stream", -  
1997 "stream": "stdout", -  
1998 "text": [ -  
1999 "\n", -  
2000 "(225, -0.38024999999999998, -0.10237499999999999, 0.68835000000000002)" -  
2001 ] -  
2002 }, -  
2003 { -  
2004 "output_type": "stream", -  
2005 "stream": "stdout", -  
2006 "text": [ -  
2007 "\n", -  
2008 "(226, -0.58938749999999995, -0.20572499999999999, 0.67567499999999991)" -  
2009 ] -  
2010 }, -  
2011 { -  
2012 "output_type": "stream", -  
2013 "stream": "stdout", -  
2014 "text": [ -  
2015 "\n", -  
2016 "(227, -0.86580000000000001, -0.26910000000000001, 0.51187499999999997)" -  
2017 ] -  
2018 }, -  
2019 { -  
2020 "output_type": "stream", -  
2021 "stream": "stdout", -  
2022 "text": [ -  
2023 "\n", -  
2024 "(228, -0.69809999999999994, -0.16672499999999998, 0.64642499999999992)" -  
2025 ] -  
2026 }, -  
2027 { -  
2028 "output_type": "stream", -  
2029 "stream": "stdout", -  
2030 "text": [ -  
2031 "\n", -  
2032 "(229, -0.74392499999999995, -0.1633125, 0.64447500000000002)" -  
2033 ] -  
2034 }, -  
2035 { -  
2036 "output_type": "stream", -  
2037 "stream": "stdout", -  
2038 "text": [ -  
2039 "\n", -  
2040 "(230, -0.73758749999999995, -0.14429999999999998, 0.48847499999999999)" -  
2041 ] -  
2042 }, -  
2043 { -  
2044 "output_type": "stream", -  
2045 "stream": "stdout", -  
2046 "text": [ -  
2047 "\n", -  
2048 "(231, -0.83167499999999994, -0.25739999999999996, 0.31589999999999996)" -  
2049 ] -  
2050 }, -  
2051 { -  
2052 "output_type": "stream", -  
2053 "stream": "stdout", -  
2054 "text": [ -  
2055 "\n", -  
2056 "(232, -0.92332499999999995, -0.56745000000000001, 0.09018749999999999)" -  
2057 ] -  
2058 }, -  
2059 { -  
2060 "output_type": "stream", -  
2061 "stream": "stdout", -  
2062 "text": [ -  
2063 "\n", -  
2064 "(233, -0.84629999999999994, -0.57524999999999993, 0.046799999999999994)" -  
2065 ] -  
2066 }, -  
2067 { -  
2068 "output_type": "stream", -  
2069 "stream": "stdout", -  
2070 "text": [ -  
2071 "\n", -  
2072 "(234, -0.61717499999999992, -0.52162500000000001, -0.65812499999999996)" -  
2073 ] -  
2074 }, -  
2075 { -  
2076 "output_type": "stream", -  
2077 "stream": "stdout", -  
2078 "text": [ -  
2079 "\n", -  
2080 "(235, -0.31638749999999999, -0.52552500000000002, -0.90382499999999999)" -  
2081 ] -  
2082 }, -  
2083 { -  
2084 "output_type": "stream", -  
2085 "stream": "stdout", -  
2086 "text": [ -  
2087 "\n", -  
2088 "(236, -0.17647499999999999, -0.44703749999999998, -0.907725)" -  
2089 ] -  
2090 }, -  
2091 { -  
2092 "output_type": "stream", -  
2093 "stream": "stdout", -  
2094 "text": [ -  
2095 "\n", -  
2096 "(237, -0.20279999999999998, -0.40754999999999997, -0.9179624999999999)" -  
2097 ] -  
2098 }, -  
2099 { -  
2100 "output_type": "stream", -  
2101 "stream": "stdout", -  
2102 "text": [ -  
2103 "\n", -  
2104 "(238, -0.0019499999999999999, -0.31784999999999997, -0.95647499999999996)" -  
2105 ] -  
2106 }, -  
2107 { -  
2108 "output_type": "stream", -  
2109 "stream": "stdout", -  
2110 "text": [ -  
2111 "\n", -  
2112 "(239, 0.19597499999999998, -0.357825, -0.91552499999999992)" -  
2113 ] -  
2114 }, -  
2115 { -  
2116 "output_type": "stream", -  
2117 "stream": "stdout", -  
2118 "text": [ -  
2119 "\n", -  
2120 "(240, 0.68347499999999994, -0.29688749999999997, -0.38805000000000001)" -  
2121 ] -  
2122 }, -  
2123 { -  
2124 "output_type": "stream", -  
2125 "stream": "stdout", -  
2126 "text": [ -  
2127 "\n", -  
2128 "(241, 0.9579375, -0.23594999999999999, 0.28470000000000001)" -  
2129 ] -  
2130 }, -  
2131 { -  
2132 "output_type": "stream", -  
2133 "stream": "stdout", -  
2134 "text": [ -  
2135 "\n", -  
2136 "(242, 0.73758749999999995, -0.30712499999999998, 0.70882499999999993)" -  
2137 ] -  
2138 }, -  
2139 { -  
2140 "output_type": "stream", -  
2141 "stream": "stdout", -  
2142 "text": [ -  
2143 "\n", -  
2144 "(243, 0.40852499999999997, -0.33734999999999998, 0.92917499999999997)" -  
2145 ] -  
2146 }, -  
2147 { -  
2148 "output_type": "stream", -  
2149 "stream": "stdout", -  
2150 "text": [ -  
2151 "\n", -  
2152 "(244, 0.0112125, -0.29542499999999999, 0.91601250000000001)" -  
2153 ] -  
2154 }, -  
2155 { -  
2156 "output_type": "stream", -  
2157 "stream": "stdout", -  
2158 "text": [ -  
2159 "\n", -  
2160 "(245, -0.20572499999999999, -0.28762499999999996, 0.88237499999999991)" -  
2161 ] -  
2162 }, -  
2163 { -  
2164 "output_type": "stream", -  
2165 "stream": "stdout", -  
2166 "text": [ -  
2167 "\n", -  
2168 "(246, -0.21011249999999998, -0.29152499999999998, 0.93014999999999992)" -  
2169 ] -  
2170 }, -  
2171 { -  
2172 "output_type": "stream", -  
2173 "stream": "stdout", -  
2174 "text": [ -  
2175 "\n", -  
2176 "(247, 0.1272375, -0.50992499999999996, 0.58694999999999997)" -  
2177 ] -  
2178 }, -  
2179 { -  
2180 "output_type": "stream", -  
2181 "stream": "stdout", -  
2182 "text": [ -  
2183 "\n", -  
2184 "(248, 0.56940000000000002, -0.85751250000000001, -0.096525)" -  
2185 ] -  
2186 }, -  
2187 { -  
2188 "output_type": "stream", -  
2189 "stream": "stdout", -  
2190 "text": [ -  
2191 "\n", -  
2192 "(249, 0.35294999999999999, -0.80388749999999998, -0.49822499999999997)" -  
2193 ] -  
2194 }, -  
2195 { -  
2196 "output_type": "stream", -  
2197 "stream": "stdout", -  
2198 "text": [ -  
2199 "\n", -  
2200 "(250, -0.18719999999999998, -0.81217499999999998, -0.429975)" -  
2201 ] -  
2202 }, -  
2203 { -  
2204 "output_type": "stream", -  
2205 "stream": "stdout", -  
2206 "text": [ -  
2207 "\n", -  
2208 "(251, -0.38951249999999998, -0.82387499999999991, -0.2223)" -  
2209 ] -  
2210 }, -  
2211 { -  
2212 "output_type": "stream", -  
2213 "stream": "stdout", -  
2214 "text": [ -  
2215 "\n", -  
2216 "(252, -0.74295, -0.59377499999999994, 0.117975)" -  
2217 ] -  
2218 }, -  
2219 { -  
2220 "output_type": "stream", -  
2221 "stream": "stdout", -  
2222 "text": [ -  
2223 "\n", -  
2224 "(253, -0.75513750000000002, -0.28275, 0.74392499999999995)" -  
2225 ] -  
2226 }, -  
2227 { -  
2228 "output_type": "stream", -  
2229 "stream": "stdout", -  
2230 "text": [ -  
2231 "\n", -  
2232 "(254, -0.371475, -0.16087499999999999, 0.85702499999999993)" -  
2233 ] -  
2234 }, -  
2235 { -  
2236 "output_type": "stream", -  
2237 "stream": "stdout", -  
2238 "text": [ -  
2239 "\n", -  
2240 "(255, -0.082387500000000002, -0.81607499999999999, 0.31053749999999997)" -  
2241 ] -  
2242 }, -  
2243 { -  
2244 "output_type": "stream", -  
2245 "stream": "stdout", -  
2246 "text": [ -  
2247 "\n", -  
2248 "(256, -0.1184625, -0.77415, -0.82582499999999992)" -  
2249 ] -  
2250 }, -  
2251 { -  
2252 "output_type": "stream", -  
2253 "stream": "stdout", -  
2254 "text": [ -  
2255 "\n", -  
2256 "(257, -0.14624999999999999, -0.084824999999999998, -1.10565)" -  
2257 ] -  
2258 }, -  
2259 { -  
2260 "output_type": "stream", -  
2261 "stream": "stdout", -  
2262 "text": [ -  
2263 "\n", -  
2264 "(258, -0.098474999999999993, 0.21937499999999999, -1.0461749999999999)" -  
2265 ] -  
2266 }, -  
2267 { -  
2268 "output_type": "stream", -  
2269 "stream": "stdout", -  
2270 "text": [ -  
2271 "\n", -  
2272 "(259, -0.14429999999999998, 0.40462499999999996, -0.95452499999999996)" -  
2273 ] -  
2274 }, -  
2275 { -  
2276 "output_type": "stream", -  
2277 "stream": "stdout", -  
2278 "text": [ -  
2279 "\n", -  
2280 "(260, -0.27689999999999998, 0.48262499999999997, -0.93112499999999998)" -  
2281 ] -  
2282 }, -  
2283 { -  
2284 "output_type": "stream", -  
2285 "stream": "stdout", -  
2286 "text": [ -  
2287 "\n", -  
2288 "(261, -0.39194999999999997, -0.055574999999999999, -1.2002249999999999)" -  
2289 ] -  
2290 }, -  
2291 { -  
2292 "output_type": "stream", -  
2293 "stream": "stdout", -  
2294 "text": [ -  
2295 "\n", -  
2296 "(262, -0.45239999999999997, -0.48067499999999996, -0.68445)" -  
2297 ] -  
2298 }, -  
2299 { -  
2300 "output_type": "stream", -  
2301 "stream": "stdout", -  
2302 "text": [ -  
2303 "\n", -  
2304 "(263, -0.400725, -0.72929999999999995, -0.51772499999999999)" -  
2305 ] -  
2306 }, -  
2307 { -  
2308 "output_type": "stream", -  
2309 "stream": "stdout", -  
2310 "text": [ -  
2311 "\n", -  
2312 "(264, -0.24862499999999998, -0.95257499999999995, -0.14235)" -  
2313 ] -  
2314 }, -  
2315 { -  
2316 "output_type": "stream", -  
2317 "stream": "stdout", -  
2318 "text": [ -  
2319 "\n", -  
2320 "(265, -0.075562499999999991, -0.91552499999999992, 0.46166249999999998)" -  
2321 ] -  
2322 }, -  
2323 { -  
2324 "output_type": "stream", -  
2325 "stream": "stdout", -  
2326 "text": [ -  
2327 "\n", -  
2328 "(266, 0.083849999999999994, -0.63569999999999993, 0.76829999999999998)" -  
2329 ] -  
2330 }, -  
2331 { -  
2332 "output_type": "stream", -  
2333 "stream": "stdout", -  
2334 "text": [ -  
2335 "\n", -  
2336 "(267, 0.36269999999999997, -0.1330875, 0.87359999999999993)" -  
2337 ] -  
2338 }, -  
2339 { -  
2340 "output_type": "stream", -  
2341 "stream": "stdout", -  
2342 "text": [ -  
2343 "\n", -  
2344 "(268, 0.39633750000000001, 0.10968749999999999, 0.91162499999999991)" -  
2345 ] -  
2346 }, -  
2347 { -  
2348 "output_type": "stream", -  
2349 "stream": "stdout", -  
2350 "text": [ -  
2351 "\n", -  
2352 "(269, -0.022425, 0.114075, 0.92527499999999996)" -  
2353 ] -  
2354 }, -  
2355 { -  
2356 "output_type": "stream", -  
2357 "stream": "stdout", -  
2358 "text": [ -  
2359 "\n", -  
2360 "(270, -0.28859999999999997, -0.17647499999999999, 0.91162499999999991)" -  
2361 ] -  
2362 }, -  
2363 { -  
2364 "output_type": "stream", -  
2365 "stream": "stdout", -  
2366 "text": [ -  
2367 "\n", -  
2368 "(271, -0.29542499999999999, -0.61327500000000001, 0.65617499999999995)" -  
2369 ] -  
2370 }, -  
2371 { -  
2372 "output_type": "stream", -  
2373 "stream": "stdout", -  
2374 "text": [ -  
2375 "\n", -  
2376 "(272, -0.16184999999999999, -0.90382499999999999, 0.43338749999999998)" -  
2377 ] -  
2378 }, -  
2379 { -  
2380 "output_type": "stream", -  
2381 "stream": "stdout", -  
2382 "text": [ -  
2383 "\n", -  
2384 "(273, -0.011699999999999999, -0.93209999999999993, 0.33344999999999997)" -  
2385 ] -  
2386 }, -  
2387 { -  
2388 "output_type": "stream", -  
2389 "stream": "stdout", -  
2390 "text": [ -  
2391 "\n", -  
2392 "(274, 0.12918749999999998, -0.62887499999999996, 0.85019999999999996)" -  
2393 ] -  
2394 }, -  
2395 { -  
2396 "output_type": "stream", -  
2397 "stream": "stdout", -  
2398 "text": [ -  
2399 "\n", -  
2400 "(275, 0.2145, 0.26129999999999998, 0.88724999999999998)" -  
2401 ] -  
2402 }, -  
2403 { -  
2404 "output_type": "stream", -  
2405 "stream": "stdout", -  
2406 "text": [ -  
2407 "\n", -  
2408 "(276, -0.0077999999999999996, 0.73417499999999991, 0.58889999999999998)" -  
2409 ] -  
2410 }, -  
2411 { -  
2412 "output_type": "stream", -  
2413 "stream": "stdout", -  
2414 "text": [ -  
2415 "\n", -  
2416 "(277, -0.41827500000000001, 0.87067499999999998, 0.31979999999999997)" -  
2417 ] -  
2418 }, -  
2419 { -  
2420 "output_type": "stream", -  
2421 "stream": "stdout", -  
2422 "text": [ -  
2423 "\n", -  
2424 "(278, -0.7137, 0.6030375, 0.156975)" -  
2425 ] -  
2426 }, -  
2427 { -  
2428 "output_type": "stream", -  
2429 "stream": "stdout", -  
2430 "text": [ -  
2431 "\n", -  
2432 "(279, -0.92186249999999992, 0.077512499999999998, -0.2608125)" -  
2433 ] -  
2434 }, -  
2435 { -  
2436 "output_type": "stream", -  
2437 "stream": "stdout", -  
2438 "text": [ -  
2439 "\n", -  
2440 "(280, -0.89602499999999996, -0.36757499999999999, -0.67274999999999996)" -  
2441 ] -  
2442 }, -  
2443 { -  
2444 "output_type": "stream", -  
2445 "stream": "stdout", -  
2446 "text": [ -  
2447 "\n", -  
2448 "(281, -0.42217499999999997, -0.63667499999999999, -0.73612499999999992)" -  
2449 ] -  
2450 }, -  
2451 { -  
2452 "output_type": "stream", -  
2453 "stream": "stdout", -  
2454 "text": [ -  
2455 "\n", -  
2456 "(282, -0.078, -0.78292499999999998, -0.61376249999999999)" -  
2457 ] -  
2458 }, -  
2459 { -  
2460 "output_type": "stream", -  
2461 "stream": "stdout", -  
2462 "text": [ -  
2463 "\n", -  
2464 "(283, -0.024374999999999997, -0.84239999999999993, -0.44752500000000001)" -  
2465 ] -  
2466 }, -  
2467 { -  
2468 "output_type": "stream", -  
2469 "stream": "stdout", -  
2470 "text": [ -  
2471 "\n", -  
2472 "(284, 0.1486875, -0.88919999999999999, -0.21937499999999999)" -  
2473 ] -  
2474 }, -  
2475 { -  
2476 "output_type": "stream", -  
2477 "stream": "stdout", -  
2478 "text": [ -  
2479 "\n", -  
2480 "(285, -0.25447500000000001, -0.78292499999999998, 0.60644999999999993)" -  
2481 ] -  
2482 }, -  
2483 { -  
2484 "output_type": "stream", -  
2485 "stream": "stdout", -  
2486 "text": [ -  
2487 "\n", -  
2488 "(286, -0.33149999999999996, -0.0068249999999999995, 0.86872499999999997)" -  
2489 ] -  
2490 }, -  
2491 { -  
2492 "output_type": "stream", -  
2493 "stream": "stdout", -  
2494 "text": [ -  
2495 "\n", -  
2496 "(287, -0.70979999999999999, -0.095549999999999996, 0.49237499999999995)" -  
2497 ] -  
2498 }, -  
2499 { -  
2500 "output_type": "stream", -  
2501 "stream": "stdout", -  
2502 "text": [ -  
2503 "\n", -  
2504 "(288, -0.92819999999999991, -0.18914999999999998, 0.18914999999999998)" -  
2505 ] -  
2506 }, -  
2507 { -  
2508 "output_type": "stream", -  
2509 "stream": "stdout", -  
2510 "text": [ -  
2511 "\n", -  
2512 "(289, -0.95013749999999997, -0.26032499999999997, 0.022912499999999999)" -  
2513 ] -  
2514 }, -  
2515 { -  
2516 "output_type": "stream", -  
2517 "stream": "stdout", -  
2518 "text": [ -  
2519 "\n", -  
2520 "(290, -0.92332499999999995, -0.27689999999999998, -0.19012499999999999)" -  
2521 ] -  
2522 }, -  
2523 { -  
2524 "output_type": "stream", -  
2525 "stream": "stdout", -  
2526 "text": [ -  
2527 "\n", -  
2528 "(291, -0.88383749999999994, -0.192075, -0.71857499999999996)" -  
2529 ] -  
2530 }, -  
2531 { -  
2532 "output_type": "stream", -  
2533 "stream": "stdout", -  
2534 "text": [ -  
2535 "\n", -  
2536 "(292, -0.51577499999999998, -0.29249999999999998, -1.0042499999999999)" -  
2537 ] -  
2538 }, -  
2539 { -  
2540 "output_type": "stream", -  
2541 "stream": "stdout", -  
2542 "text": [ -  
2543 "\n", -  
2544 "(293, 0.34320000000000001, -0.13064999999999999, -0.57914999999999994)" -  
2545 ] -  
2546 }, -  
2547 { -  
2548 "output_type": "stream", -  
2549 "stream": "stdout", -  
2550 "text": [ -  
2551 "\n", -  
2552 "(294, 0.88432499999999992, -0.43777499999999997, -0.12869999999999998)" -  
2553 ] -  
2554 }, -  
2555 { -  
2556 "output_type": "stream", -  
2557 "stream": "stdout", -  
2558 "text": [ -  
2559 "\n", -  
2560 "(295, 0.87311249999999996, -0.3276, 0.18768749999999998)" -  
2561 ] -  
2562 }, -  
2563 { -  
2564 "output_type": "stream", -  
2565 "stream": "stdout", -  
2566 "text": [ -  
2567 "\n", -  
2568 "(296, 0.62887499999999996, -0.1794, 1.0490999999999999)" -  
2569 ] -  
2570 }, -  
2571 { -  
2572 "output_type": "stream", -  
2573 "stream": "stdout", -  
2574 "text": [ -  
2575 "\n", -  
2576 "(297, -0.15307499999999999, 0.20426249999999999, 0.78974999999999995)" -  
2577 ] -  
2578 }, -  
2579 { -  
2580 "output_type": "stream", -  
2581 "stream": "stdout", -  
2582 "text": [ -  
2583 "\n", -  
2584 "(298, -0.80437499999999995, 0.12869999999999998, 0.31784999999999997)" -  
2585 ] -  
2586 }, -  
2587 { -  
2588 "output_type": "stream", -  
2589 "stream": "stdout", -  
2590 "text": [ -  
2591 "\n", -  
2592 "(299, -0.907725, 0.034612499999999997, 0.16965)" -  
2593 ] -  
2594 }, -  
2595 { -  
2596 "output_type": "stream", -  
2597 "stream": "stdout", -  
2598 "text": [ -  
2599 "\n", -  
2600 "(300, -1.014, -0.30419999999999997, 0.098474999999999993)" -  
2601 ] -  
2602 }, -  
2603 { -  
2604 "output_type": "stream", -  
2605 "stream": "stdout", -  
2606 "text": [ -  
2607 "\n", -  
2608 "(301, -0.9764624999999999, -0.4017, -0.49432499999999996)" -  
2609 ] -  
2610 }, -  
2611 { -  
2612 "output_type": "stream", -  
2613 "stream": "stdout", -  
2614 "text": [ -  
2615 "\n", -  
2616 "(302, -0.53722499999999995, -0.52259999999999995, -0.93112499999999998)" -  
2617 ] -  
2618 }, -  
2619 { -  
2620 "output_type": "stream", -  
2621 "stream": "stdout", -  
2622 "text": [ -  
2623 "\n", -  
2624 "(303, 0.022912499999999999, -0.23204999999999998, -1.0237499999999999)" -  
2625 ] -  
2626 }, -  
2627 { -  
2628 "output_type": "stream", -  
2629 "stream": "stdout", -  
2630 "text": [ -  
2631 "\n", -  
2632 "(304, -0.252525, 0.117975, -0.82972499999999993)" -  
2633 ] -  
2634 }, -  
2635 { -  
2636 "output_type": "stream", -  
2637 "stream": "stdout", -  
2638 "text": [ -  
2639 "\n", -  
2640 "(305, -0.57427499999999998, 0.20865, -0.57427499999999998)" -  
2641 ] -  
2642 }, -  
2643 { -  
2644 "output_type": "stream", -  
2645 "stream": "stdout", -  
2646 "text": [ -  
2647 "\n", -  
2648 "(306, -0.91844999999999999, 0.00097499999999999996, -0.31979999999999997)" -  
2649 ] -  
2650 }, -  
2651 { -  
2652 "output_type": "stream", -  
2653 "stream": "stdout", -  
2654 "text": [ -  
2655 "\n", -  
2656 "(307, -0.94233749999999994, -0.37927499999999997, 0.28664999999999996)" -  
2657 ] -  
2658 }, -  
2659 { -  
2660 "output_type": "stream", -  
2661 "stream": "stdout", -  
2662 "text": [ -  
2663 "\n", -  
2664 "(308, -0.36659999999999998, -0.41924999999999996, 0.88871249999999991)" -  
2665 ] -  
2666 }, -  
2667 { -  
2668 "output_type": "stream", -  
2669 "stream": "stdout", -  
2670 "text": [ -  
2671 "\n", -  
2672 "(309, 0.46702499999999997, 0.084824999999999998, 0.69419999999999993)" -  
2673 ] -  
2674 }, -  
2675 { -  
2676 "output_type": "stream", -  
2677 "stream": "stdout", -  
2678 "text": [ -  
2679 "\n", -  
2680 "(310, 0.85312499999999991, 0.37439999999999996, 0.38024999999999998)" -  
2681 ] -  
2682 }, -  
2683 { -  
2684 "output_type": "stream", -  
2685 "stream": "stdout", -  
2686 "text": [ -  
2687 "\n", -  
2688 "(311, 0.80291249999999992, 0.42314999999999997, -0.48457499999999998)" -  
2689 ] -  
2690 }, -  
2691 { -  
2692 "output_type": "stream", -  
2693 "stream": "stdout", -  
2694 "text": [ -  
2695 "\n", -  
2696 "(312, 0.73173749999999993, 0.089700000000000002, -0.89017499999999994)" -  
2697 ] -  
2698 }, -  
2699 { -  
2700 "output_type": "stream", -  
2701 "stream": "stdout", -  
2702 "text": [ -  
2703 "\n", -  
2704 "(313, 0.36611250000000001, -0.79462499999999991, -0.68932499999999997)" -  
2705 ] -  
2706 }, -  
2707 { -  
2708 "output_type": "stream", -  
2709 "stream": "stdout", -  
2710 "text": [ -  
2711 "\n", -  
2712 "(314, -0.133575, -0.669825, -0.7137)" -  
2713 ] -  
2714 }, -  
2715 { -  
2716 "output_type": "stream", -  
2717 "stream": "stdout", -  
2718 "text": [ -  
2719 "\n", -  
2720 "(315, -0.4675125, -0.58499999999999996, -0.35489999999999999)" -  
2721 ] -  
2722 }, -  
2723 { -  
2724 "output_type": "stream", -  
2725 "stream": "stdout", -  
2726 "text": [ -  
2727 "\n", -  
2728 "(316, -0.96378749999999991, -0.33734999999999998, 0.58597500000000002)" -  
2729 ] -  
2730 }, -  
2731 { -  
2732 "output_type": "stream", -  
2733 "stream": "stdout", -  
2734 "text": [ -  
2735 "\n", -  
2736 "(317, -0.34612499999999996, 0.015599999999999999, 0.91893749999999996)" -  
2737 ] -  
2738 }, -  
2739 { -  
2740 "output_type": "stream", -  
2741 "stream": "stdout", -  
2742 "text": [ -  
2743 "\n", -  
2744 "(318, 0.30224999999999996, 0.59670000000000001, 0.46994999999999998)" -  
2745 ] -  
2746 }, -  
2747 { -  
2748 "output_type": "stream", -  
2749 "stream": "stdout", -  
2750 "text": [ -  
2751 "\n", -  
2752 "(319, 0.79949999999999999, 0.48262499999999997, -0.077024999999999996)" -  
2753 ] -  
2754 }, -  
2755 { -  
2756 "output_type": "stream", -  
2757 "stream": "stdout", -  
2758 "text": [ -  
2759 "\n", -  
2760 "(320, 0.97743749999999996, 0.30127499999999996, -0.29932500000000001)" -  
2761 ] -  
2762 }, -  
2763 { -  
2764 "output_type": "stream", -  
2765 "stream": "stdout", -  
2766 "text": [ -  
2767 "\n", -  
2768 "(321, 0.92673749999999999, 0.24959999999999999, -0.67469999999999997)" -  
2769 ] -  
2770 }, -  
2771 { -  
2772 "output_type": "stream", -  
2773 "stream": "stdout", -  
2774 "text": [ -  
2775 "\n", -  
2776 "(322, 0.74099999999999999, 0.1633125, -0.85507499999999992)" -  
2777 ] -  
2778 }, -  
2779 { -  
2780 "output_type": "stream", -  
2781 "stream": "stdout", -  
2782 "text": [ -  
2783 "\n", -  
2784 "(323, 0.24033749999999998, 0.30419999999999997, -1.02765)" -  
2785 ] -  
2786 }, -  
2787 { -  
2788 "output_type": "stream", -  
2789 "stream": "stdout", -  
2790 "text": [ -  
2791 "\n", -  
2792 "(324, -0.075075000000000003, 0.014624999999999999, -0.9993749999999999)" -  
2793 ] -  
2794 }, -  
2795 { -  
2796 "output_type": "stream", -  
2797 "stream": "stdout", -  
2798 "text": [ -  
2799 "\n", -  
2800 "(325, -0.51090000000000002, -0.01755, -0.88919999999999999)" -  
2801 ] -  
2802 }, -  
2803 { -  
2804 "output_type": "stream", -  
2805 "stream": "stdout", -  
2806 "text": [ -  
2807 "\n", -  
2808 "(326, -0.79559999999999997, -0.083849999999999994, -0.31687499999999996)" -  
2809 ] -  
2810 }, -  
2811 { -  
2812 "output_type": "stream", -  
2813 "stream": "stdout", -  
2814 "text": [ -  
2815 "\n", -  
2816 "(327, -0.94233749999999994, -0.49529999999999996, 0.3276)" -  
2817 ] -  
2818 }, -  
2819 { -  
2820 "output_type": "stream", -  
2821 "stream": "stdout", -  
2822 "text": [ -  
2823 "\n", -  
2824 "(328, -0.44655, -0.49334999999999996, 0.73417499999999991)" -  
2825 ] -  
2826 }, -  
2827 { -  
2828 "output_type": "stream", -  
2829 "stream": "stdout", -  
2830 "text": [ -  
2831 "\n", -  
2832 "(329, 0.40365000000000001, -0.50797499999999995, 0.42899999999999999)" -  
2833 ] -  
2834 }, -  
2835 { -  
2836 "output_type": "stream", -  
2837 "stream": "stdout", -  
2838 "text": [ -  
2839 "\n", -  
2840 "(330, 0.88237499999999991, -0.52357500000000001, 0.011699999999999999)" -  
2841 ] -  
2842 }, -  
2843 { -  
2844 "output_type": "stream", -  
2845 "stream": "stdout", -  
2846 "text": [ -  
2847 "\n", -  
2848 "(331, 0.89992499999999997, -0.30907499999999999, -0.47189999999999999)" -  
2849 ] -  
2850 }, -  
2851 { -  
2852 "output_type": "stream", -  
2853 "stream": "stdout", -  
2854 "text": [ -  
2855 "\n", -  
2856 "(332, 0.84337499999999999, -0.357825, -0.52552500000000002)" -  
2857 ] -  
2858 }, -  
2859 { -  
2860 "output_type": "stream", -  
2861 "stream": "stdout", -  
2862 "text": [ -  
2863 "\n", -  
2864 "(333, 0.44264999999999999, -0.50017499999999993, -0.53234999999999999)" -  
2865 ] -  
2866 }, -  
2867 { -  
2868 "output_type": "stream", -  
2869 "stream": "stdout", -  
2870 "text": [ -  
2871 "\n", -  
2872 "(334, 0.067762500000000003, -0.87847500000000001, -0.28957499999999997)" -  
2873 ] -  
2874 }, -  
2875 { -  
2876 "output_type": "stream", -  
2877 "stream": "stdout", -  
2878 "text": [ -  
2879 "\n", -  
2880 "(335, -0.16916249999999999, -0.9286875, -0.39292499999999997)" -  
2881 ] -  
2882 }, -  
2883 { -  
2884 "output_type": "stream", -  
2885 "stream": "stdout", -  
2886 "text": [ -  
2887 "\n", -  
2888 "(336, -0.15892499999999998, -0.94379999999999997, -0.355875)" -  
2889 ] -  
2890 }, -  
2891 { -  
2892 "output_type": "stream", -  
2893 "stream": "stdout", -  
2894 "text": [ -  
2895 "\n", -  
2896 "(337, 0.47969999999999996, -0.62790000000000001, 0.51285000000000003)" -  
2897 ] -  
2898 }, -  
2899 { -  
2900 "output_type": "stream", -  
2901 "stream": "stdout", -  
2902 "text": [ -  
2903 "\n", -  
2904 "(338, 0.67226249999999999, -0.12967499999999998, 0.83216249999999992)" -  
2905 ] -  
2906 }, -  
2907 { -  
2908 "output_type": "stream", -  
2909 "stream": "stdout", -  
2910 "text": [ -  
2911 "\n", -  
2912 "(339, 0.28859999999999997, 0.90674999999999994, 0.33149999999999996)" -  
2913 ] -  
2914 }, -  
2915 { -  
2916 "output_type": "stream", -  
2917 "stream": "stdout", -  
2918 "text": [ -  
2919 "\n", -  
2920 "(340, -0.40852499999999997, 0.87359999999999993, -0.047774999999999998)" -  
2921 ] -  
2922 }, -  
2923 { -  
2924 "output_type": "stream", -  
2925 "stream": "stdout", -  
2926 "text": [ -  
2927 "\n", -  
2928 "(341, -0.69809999999999994, 0.77171249999999991, -0.070199999999999999)" -  
2929 ] -  
2930 }, -  
2931 { -  
2932 "output_type": "stream", -  
2933 "stream": "stdout", -  
2934 "text": [ -  
2935 "\n", -  
2936 "(342, -0.69468750000000001, 0.68786249999999993, -0.099449999999999997)" -  
2937 ] -  
2938 }, -  
2939 { -  
2940 "output_type": "stream", -  
2941 "stream": "stdout", -  
2942 "text": [ -  
2943 "\n", -  
2944 "(343, -0.76439999999999997, 0.62887499999999996, -0.100425)" -  
2945 ] -  
2946 }, -  
2947 { -  
2948 "output_type": "stream", -  
2949 "stream": "stdout", -  
2950 "text": [ -  
2951 "\n", -  
2952 "(344, -0.83752499999999996, 0.59084999999999999, -0.093599999999999989)" -  
2953 ] -  
2954 }, -  
2955 { -  
2956 "output_type": "stream", -  
2957 "stream": "stdout", -  
2958 "text": [ -  
2959 "\n", -  
2960 "(345, -0.79657499999999992, 0.47872499999999996, -0.025349999999999998)" -  
2961 ] -  
2962 }, -  
2963 { -  
2964 "output_type": "stream", -  
2965 "stream": "stdout", -  
2966 "text": [ -  
2967 "\n", -  
2968 "(346, -0.98962499999999998, 0.3641625, 0.085800000000000001)" -  
2969 ] -  
2970 }, -  
2971 { -  
2972 "output_type": "stream", -  
2973 "stream": "stdout", -  
2974 "text": [ -  
2975 "\n", -  
2976 "(347, -1.0130250000000001, 0.34514999999999996, -0.047774999999999998)" -  
2977 ] -  
2978 }, -  
2979 { -  
2980 "output_type": "stream", -  
2981 "stream": "stdout", -  
2982 "text": [ -  
2983 "\n", -  
2984 "(348, -0.99157499999999998, -0.50212499999999993, -0.28762499999999996)" -  
2985 ] -  
2986 }, -  
2987 { -  
2988 "output_type": "stream", -  
2989 "stream": "stdout", -  
2990 "text": [ -  
2991 "\n", -  
2992 "(349, -0.44167499999999998, -0.70492499999999991, -0.76439999999999997)" -  
2993 ] -  
2994 }, -  
2995 { -  
2996 "output_type": "stream", -  
2997 "stream": "stdout", -  
2998 "text": [ -  
2999 "\n", -  
3000 "(350, 0.0024375, -0.33539999999999998, -0.94769999999999999)" -  
3001 ] -  
3002 }, -  
3003 { -  
3004 "output_type": "stream", -  
3005 "stream": "stdout", -  
3006 "text": [ -  
3007 "\n", -  
3008 "(351, 0.061912499999999995, -0.20231249999999998, -1.0725)" -  
3009 ] -  
3010 }, -  
3011 { -  
3012 "output_type": "stream", -  
3013 "stream": "stdout", -  
3014 "text": [ -  
3015 "\n", -  
3016 "(352, -0.11992499999999999, -0.056549999999999996, -0.96914999999999996)" -  
3017 ] -  
3018 }, -  
3019 { -  
3020 "output_type": "stream", -  
3021 "stream": "stdout", -  
3022 "text": [ -  
3023 "\n", -  
3024 "(353, -0.3349125, -0.355875, -0.81217499999999998)" -  
3025 ] -  
3026 }, -  
3027 { -  
3028 "output_type": "stream", -  
3029 "stream": "stdout", -  
3030 "text": [ -  
3031 "\n", -  
3032 "(354, -0.70882499999999993, -0.61619999999999997, -0.39487499999999998)" -  
3033 ] -  
3034 }, -  
3035 { -  
3036 "output_type": "stream", -  
3037 "stream": "stdout", -  
3038 "text": [ -  
3039 "\n", -  
3040 "(355, -0.89992499999999997, -0.40706249999999999, 0.052649999999999995)" -  
3041 ] -  
3042 }, -  
3043 { -  
3044 "output_type": "stream", -  
3045 "stream": "stdout", -  
3046 "text": [ -  
3047 "\n", -  
3048 "(356, -0.96037499999999998, 0.042900000000000001, 0.44069999999999998)" -  
3049 ] -  
3050 }, -  
3051 { -  
3052 "output_type": "stream", -  
3053 "stream": "stdout", -  
3054 "text": [ -  
3055 "\n", -  
3056 "(357, -0.75367499999999998, 0.63082499999999997, 0.48652499999999999)" -  
3057 ] -  
3058 }, -  
3059 { -  
3060 "output_type": "stream", -  
3061 "stream": "stdout", -  
3062 "text": [ -  
3063 "\n", -  
3064 "(358, -0.097499999999999989, 0.93599999999999994, 0.088724999999999998)" -  
3065 ] -  
3066 }, -  
3067 { -  
3068 "output_type": "stream", -  
3069 "stream": "stdout", -  
3070 "text": [ -  
3071 "\n", -  
3072 "(359, 0.2457, 0.89797499999999997, 0.35197499999999998)" -  
3073 ] -  
3074 }, -  
3075 { -  
3076 "output_type": "stream", -  
3077 "stream": "stdout", -  
3078 "text": [ -  
3079 "\n", -  
3080 "(360, 0.44752500000000001, 0.61034999999999995, 0.59182499999999993)" -  
3081 ] -  
3082 }, -  
3083 { -  
3084 "output_type": "stream", -  
3085 "stream": "stdout", -  
3086 "text": [ -  
3087 "\n", -  
3088 "(361, 0.57135000000000002, 0.170625, 0.81899999999999995)" -  
3089 ] -  
3090 }, -  
3091 { -  
3092 "output_type": "stream", -  
3093 "stream": "stdout", -  
3094 "text": [ -  
3095 "\n", -  
3096 "(362, 0.62497499999999995, -0.27884999999999999, 0.58109999999999995)" -  
3097 ] -  
3098 }, -  
3099 { -  
3100 "output_type": "stream", -  
3101 "stream": "stdout", -  
3102 "text": [ -  
3103 "\n", -  
3104 "(363, 0.62692499999999995, -0.62497499999999995, 0.24911249999999999)" -  
3105 ] -  
3106 }, -  
3107 { -  
3108 "output_type": "stream", -  
3109 "stream": "stdout", -  
3110 "text": [ -  
3111 "\n", -  
3112 "(364, 0.73514999999999997, -0.74587499999999995, -0.15209999999999999)" -  
3113 ] -  
3114 }, -  
3115 { -  
3116 "output_type": "stream", -  
3117 "stream": "stdout", -  
3118 "text": [ -  
3119 "\n", -  
3120 "(365, 0.56452499999999994, -0.68054999999999999, -0.58597500000000002)" -  
3121 ] -  
3122 }, -  
3123 { -  
3124 "output_type": "stream", -  
3125 "stream": "stdout", -  
3126 "text": [ -  
3127 "\n", -  
3128 "(366, 0.56842499999999996, -0.56891249999999993, -0.68542499999999995)" -  
3129 ] -  
3130 }, -  
3131 { -  
3132 "output_type": "stream", -  
3133 "stream": "stdout", -  
3134 "text": [ -  
3135 "\n", -  
3136 "(367, 0.37245, -0.37342500000000001, -1.2743249999999999)" -  
3137 ] -  
3138 }, -  
3139 { -  
3140 "output_type": "stream", -  
3141 "stream": "stdout", -  
3142 "text": [ -  
3143 "\n", -  
3144 "(368, 0.121875, -0.15015000000000001, -1.0105875)" -  
3145 ] -  
3146 }, -  
3147 { -  
3148 "output_type": "stream", -  
3149 "stream": "stdout", -  
3150 "text": [ -  
3151 "\n", -  
3152 "(369, 0.013649999999999999, 0.34514999999999996, -0.83947499999999997)" -  
3153 ] -  
3154 }, -  
3155 { -  
3156 "output_type": "stream", -  
3157 "stream": "stdout", -  
3158 "text": [ -  
3159 "\n", -  
3160 "(370, 0.53820000000000001, 0.59670000000000001, -0.44849999999999995)" -  
3161 ] -  
3162 }, -  
3163 { -  
3164 "output_type": "stream", -  
3165 "stream": "stdout", -  
3166 "text": [ -  
3167 "\n", -  
3168 "(371, 0.70589999999999997, 0.51187499999999997, 0.055574999999999999)" -  
3169 ] -  
3170 }, -  
3171 { -  
3172 "output_type": "stream", -  
3173 "stream": "stdout", -  
3174 "text": [ -  
3175 "\n", -  
3176 "(372, 0.6552, 0.3651375, 0.89992499999999997)" -  
3177 ] -  
3178 }, -  
3179 { -  
3180 "output_type": "stream", -  
3181 "stream": "stdout", -  
3182 "text": [ -  
3183 "\n", -  
3184 "(373, 0.1638, -0.125775, 1.0880999999999998)" -  
3185 ] -  
3186 }, -  
3187 { -  
3188 "output_type": "stream", -  
3189 "stream": "stdout", -  
3190 "text": [ -  
3191 "\n", -  
3192 "(374, -0.42509999999999998, -0.52601249999999999, 0.77902499999999997)" -  
3193 ] -  
3194 }, -  
3195 { -  
3196 "output_type": "stream", -  
3197 "stream": "stdout", -  
3198 "text": [ -  
3199 "\n", -  
3200 "(375, -0.68347499999999994, -0.76439999999999997, -0.091162499999999994)" -  
3201 ] -  
3202 }, -  
3203 { -  
3204 "output_type": "stream", -  
3205 "stream": "stdout", -  
3206 "text": [ -  
3207 "\n", -  
3208 "(376, -0.43582499999999996, -0.29347499999999999, -1.0062)" -  
3209 ] -  
3210 }, -  
3211 { -  
3212 "output_type": "stream", -  
3213 "stream": "stdout", -  
3214 "text": [ -  
3215 "\n", -  
3216 "(377, -0.15209999999999999, 0.21157499999999999, -0.97694999999999999)" -  
3217 ] -  
3218 }, -  
3219 { -  
3220 "output_type": "stream", -  
3221 "stream": "stdout", -  
3222 "text": [ -  
3223 "\n", -  
3224 "(378, -0.342225, 0.50895000000000001, -0.83460000000000001)" -  
3225 ] -  
3226 }, -  
3227 { -  
3228 "output_type": "stream", -  
3229 "stream": "stdout", -  
3230 "text": [ -  
3231 "\n", -  
3232 "(379, -0.52406249999999999, 0.67274999999999996, -0.56842499999999996)" -  
3233 ] -  
3234 }, -  
3235 { -  
3236 "output_type": "stream", -  
3237 "stream": "stdout", -  
3238 "text": [ -  
3239 "\n", -  
3240 "(380, -0.53381250000000002, 0.8555625, -0.11309999999999999)" -  
3241 ] -  
3242 }, -  
3243 { -  
3244 "output_type": "stream", -  
3245 "stream": "stdout", -  
3246 "text": [ -  
3247 "\n", -  
3248 "(381, -0.64008749999999992, 0.69224999999999992, 0.42509999999999998)" -  
3249 ] -  
3250 }, -  
3251 { -  
3252 "output_type": "stream", -  
3253 "stream": "stdout", -  
3254 "text": [ -  
3255 "\n", -  
3256 "(382, -0.476775, 0.757575, 0.40365000000000001)" -  
3257 ] -  
3258 }, -  
3259 { -  
3260 "output_type": "stream", -  
3261 "stream": "stdout", -  
3262 "text": [ -  
3263 "\n", -  
3264 "(383, -0.39584999999999998, 0.68493749999999998, -0.36269999999999997)" -  
3265 ] -  
3266 }, -  
3267 { -  
3268 "output_type": "stream", -  
3269 "stream": "stdout", -  
3270 "text": [ -  
3271 "\n", -  
3272 "(384, -0.76732499999999992, 0.22619999999999998, -0.89358749999999998)" -  
3273 ] -  
3274 }, -  
3275 { -  
3276 "output_type": "stream", -  
3277 "stream": "stdout", -  
3278 "text": [ -  
3279 "\n", -  
3280 "(385, -0.32857500000000001, -0.33637499999999998, -0.93989999999999996)" -  
3281 ] -  
3282 }, -  
3283 { -  
3284 "output_type": "stream", -  
3285 "stream": "stdout", -  
3286 "text": [ -  
3287 "\n", -  
3288 "(386, 0.21937499999999999, -0.74879999999999991, -0.36757499999999999)" -  
3289 ] -  
3290 }, -  
3291 { -  
3292 "output_type": "stream", -  
3293 "stream": "stdout", -  
3294 "text": [ -  
3295 "\n", -  
3296 "(387, 0.69517499999999999, -0.57914999999999994, 0.16672499999999998)" -  
3297 ] -  
3298 }, -  
3299 { -  
3300 "output_type": "stream", -  
3301 "stream": "stdout", -  
3302 "text": [ -  
3303 "\n", -  
3304 "(388, 0.69614999999999994, -0.71662499999999996, 0.50992499999999996)" -  
3305 ] -  
3306 }, -  
3307 { -  
3308 "output_type": "stream", -  
3309 "stream": "stdout", -  
3310 "text": [ -  
3311 "\n", -  
3312 "(389, 0.35148750000000001, -0.49627499999999997, 0.79267500000000002)" -  
3313 ] -  
3314 }, -  
3315 { -  
3316 "output_type": "stream", -  
3317 "stream": "stdout", -  
3318 "text": [ -  
3319 "\n", -  
3320 "(390, -0.33247499999999997, -0.53527499999999995, 0.64934999999999998)" -  
3321 ] -  
3322 }, -  
3323 { -  
3324 "output_type": "stream", -  
3325 "stream": "stdout", -  
3326 "text": [ -  
3327 "\n", -  
3328 "(391, -0.73271249999999999, -0.18525, 0.74782499999999996)" -  
3329 ] -  
3330 }, -  
3331 { -  
3332 "output_type": "stream", -  
3333 "stream": "stdout", -  
3334 "text": [ -  
3335 "\n", -  
3336 "(392, -0.35099999999999998, 0.18914999999999998, 0.90674999999999994)" -  
3337 ] -  
3338 }, -  
3339 { -  
3340 "output_type": "stream", -  
3341 "stream": "stdout", -  
3342 "text": [ -  
3343 "\n", -  
3344 "(393, -0.215475, 0.70297500000000002, 0.68152499999999994)" -  
3345 ] -  
3346 }, -  
3347 { -  
3348 "output_type": "stream", -  
3349 "stream": "stdout", -  
3350 "text": [ -  
3351 "\n", -  
3352 "(394, -0.252525, 0.82972499999999993, 0.27007500000000001)" -  
3353 ] -  
3354 }, -  
3355 { -  
3356 "output_type": "stream", -  
3357 "stream": "stdout", -  
3358 "text": [ -  
3359 "\n", -  
3360 "(395, -0.33539999999999998, 0.98621249999999994, -0.57427499999999998)" -  
3361 ] -  
3362 }, -  
3363 { -  
3364 "output_type": "stream", -  
3365 "stream": "stdout", -  
3366 "text": [ -  
3367 "\n", -  
3368 "(396, 0.027299999999999998, 0.68201250000000002, -0.73124999999999996)" -  
3369 ] -  
3370 }, -  
3371 { -  
3372 "output_type": "stream", -  
3373 "stream": "stdout", -  
3374 "text": [ -  
3375 "\n", -  
3376 "(397, 0.53039999999999998, 0.65812499999999996, -0.47384999999999999)" -  
3377 ] -  
3378 }, -  
3379 { -  
3380 "output_type": "stream", -  
3381 "stream": "stdout", -  
3382 "text": [ -  
3383 "\n", -  
3384 "(398, 0.91649999999999998, 0.52552500000000002, 0.1638)" -  
3385 ] -  
3386 }, -  
3387 { -  
3388 "output_type": "stream", -  
3389 "stream": "stdout", -  
3390 "text": [ -  
3391 "\n", -  
3392 "(399, -0.0063374999999999994, 0.66689999999999994, 0.57817499999999999)" -  
3393 ] -  
3394 }, -  
3395 { -  
3396 "output_type": "stream", -  
3397 "stream": "stdout", -  
3398 "text": [ -  
3399 "\n", -  
3400 "(400, -0.70833749999999995, 0.027299999999999998, 0.56257499999999994)" -  
3401 ] -  
3402 }, -  
3403 { -  
3404 "output_type": "stream", -  
3405 "stream": "stdout", -  
3406 "text": [ -  
3407 "\n", -  
3408 "(401, -0.63521249999999996, -0.34320000000000001, 0.83167499999999994)" -  
3409 ] -  
3410 }, -  
3411 { -  
3412 "output_type": "stream", -  
3413 "stream": "stdout", -  
3414 "text": [ -  
3415 "\n", -  
3416 "(402, -0.23984999999999998, -0.30127499999999996, 0.93599999999999994)" -  
3417 ] -  
3418 }, -  
3419 { -  
3420 "output_type": "stream", -  
3421 "stream": "stdout", -  
3422 "text": [ -  
3423 "\n", -  
3424 "(403, 0.35392499999999999, -0.035099999999999999, 0.76732499999999992)" -  
3425 ] -  
3426 }, -  
3427 { -  
3428 "output_type": "stream", -  
3429 "stream": "stdout", -  
3430 "text": [ -  
3431 "\n", -  
3432 "(404, 0.81899999999999995, -0.055574999999999999, 0.33344999999999997)" -  
3433 ] -  
3434 }, -  
3435 { -  
3436 "output_type": "stream", -  
3437 "stream": "stdout", -  
3438 "text": [ -  
3439 "\n", -  
3440 "(405, 0.85409999999999997, -0.74977499999999997, 0.31004999999999999)" -  
3441 ] -  
3442 }, -  
3443 { -  
3444 "output_type": "stream", -  
3445 "stream": "stdout", -  
3446 "text": [ -  
3447 "\n", -  
3448 "(406, 0.23497499999999999, -0.99059999999999993, -0.054599999999999996)" -  
3449 ] -  
3450 }, -  
3451 { -  
3452 "output_type": "stream", -  
3453 "stream": "stdout", -  
3454 "text": [ -  
3455 "\n", -  
3456 "(407, -0.33686250000000001, -0.83557499999999996, -0.28762499999999996)" -  
3457 ] -  
3458 }, -  
3459 { -  
3460 "output_type": "stream", -  
3461 "stream": "stdout", -  
3462 "text": [ -  
3463 "\n", -  
3464 "(408, -0.71808749999999999, -0.46994999999999998, -0.20474999999999999)" -  
3465 ] -  
3466 }, -  
3467 { -  
3468 "output_type": "stream", -  
3469 "stream": "stdout", -  
3470 "text": [ -  
3471 "\n", -  
3472 "(409, -0.40706249999999999, -0.164775, 0.93599999999999994)" -  
3473 ] -  
3474 }, -  
3475 { -  
3476 "output_type": "stream", -  
3477 "stream": "stdout", -  
3478 "text": [ -  
3479 "\n", -  
3480 "(410, 0.52162500000000001, 0.073124999999999996, 0.62985000000000002)" -  
3481 ] -  
3482 }, -  
3483 { -  
3484 "output_type": "stream", -  
3485 "stream": "stdout", -  
3486 "text": [ -  
3487 "\n", -  
3488 "(411, 0.85166249999999999, 0.26519999999999999, 0.13747499999999999)" -  
3489 ] -  
3490 }, -  
3491 { -  
3492 "output_type": "stream", -  
3493 "stream": "stdout", -  
3494 "text": [ -  
3495 "\n", -  
3496 "(412, 0.91113749999999993, 0.36074999999999996, -0.30907499999999999)" -  
3497 ] -  
3498 }, -  
3499 { -  
3500 "output_type": "stream", -  
3501 "stream": "stdout", -  
3502 "text": [ -  
3503 "\n", -  
3504 "(413, 0.69029999999999991, 0.26129999999999998, -0.77122499999999994)" -  
3505 ] -  
3506 }, -  
3507 { -  
3508 "output_type": "stream", -  
3509 "stream": "stdout", -  
3510 "text": [ -  
3511 "\n", -  
3512 "(414, 0.38902500000000001, 0.091649999999999995, -0.98182499999999995)" -  
3513 ] -  
3514 }, -  
3515 { -  
3516 "output_type": "stream", -  
3517 "stream": "stdout", -  
3518 "text": [ -  
3519 "\n", -  
3520 "(415, 0.13942499999999999, -0.10335, -1.077375)" -  
3521 ] -  
3522 }, -  
3523 { -  
3524 "output_type": "stream", -  
3525 "stream": "stdout", -  
3526 "text": [ -  
3527 "\n", -  
3528 "(416, 0.14429999999999998, -0.54697499999999999, -0.79998749999999996)" -  
3529 ] -  
3530 }, -  
3531 { -  
3532 "output_type": "stream", -  
3533 "stream": "stdout", -  
3534 "text": [ -  
3535 "\n", -  
3536 "(417, -0.37927499999999997, -0.90089999999999992, 0.053624999999999999)" -  
3537 ] -  
3538 }, -  
3539 { -  
3540 "output_type": "stream", -  
3541 "stream": "stdout", -  
3542 "text": [ -  
3543 "\n", -  
3544 "(418, -0.44264999999999999, -0.77366249999999992, 0.35489999999999999)" -  
3545 ] -  
3546 }, -  
3547 { -  
3548 "output_type": "stream", -  
3549 "stream": "stdout", -  
3550 "text": [ -  
3551 "\n", -  
3552 "(419, -0.41827500000000001, -0.64154999999999995, 0.580125)" -  
3553 ] -  
3554 }, -  
3555 { -  
3556 "output_type": "stream", -  
3557 "stream": "stdout", -  
3558 "text": [ -  
3559 "\n", -  
3560 "(420, -0.23497499999999999, -0.28664999999999996, 0.90479999999999994)" -  
3561 ] -  
3562 }, -  
3563 { -  
3564 "output_type": "stream", -  
3565 "stream": "stdout", -  
3566 "text": [ -  
3567 "\n", -  
3568 "(421, -0.26129999999999998, -0.058012499999999995, 0.9701249999999999)" -  
3569 ] -  
3570 }, -  
3571 { -  
3572 "output_type": "stream", -  
3573 "stream": "stdout", -  
3574 "text": [ -  
3575 "\n", -  
3576 "(422, -0.33344999999999997, 0.03705, 0.847275)" -  
3577 ] -  
3578 }, -  
3579 { -  
3580 "output_type": "stream", -  
3581 "stream": "stdout", -  
3582 "text": [ -  
3583 "\n", -  
3584 "(423, -0.59475, 0.090674999999999992, 0.46215000000000001)" -  
3585 ] -  
3586 }, -  
3587 { -  
3588 "output_type": "stream", -  
3589 "stream": "stdout", -  
3590 "text": [ -  
3591 "\n", -  
3592 "(424, -0.94038749999999993, -0.34320000000000001, -0.40949999999999998)" -  
3593 ] -  
3594 }, -  
3595 { -  
3596 "output_type": "stream", -  
3597 "stream": "stdout", -  
3598 "text": [ -  
3599 "\n", -  
3600 "(425, -0.580125, -0.35880000000000001, -0.93307499999999999)" -  
3601 ] -  
3602 }, -  
3603 { -  
3604 "output_type": "stream", -  
3605 "stream": "stdout", -  
3606 "text": [ -  
3607 "\n", -  
3608 "(426, 0.0014624999999999998, 0.012187499999999999, -0.9179624999999999)" -  
3609 ] -  
3610 }, -  
3611 { -  
3612 "output_type": "stream", -  
3613 "stream": "stdout", -  
3614 "text": [ -  
3615 "\n", -  
3616 "(427, 0.67079999999999995, 0.27689999999999998, -0.66202499999999997)" -  
3617 ] -  
3618 }, -  
3619 { -  
3620 "output_type": "stream", -  
3621 "stream": "stdout", -  
3622 "text": [ -  
3623 "\n", -  
3624 "(428, 1.0110749999999999, 0.064349999999999991, -0.18086249999999998)" -  
3625 ] -  
3626 }, -  
3627 { -  
3628 "output_type": "stream", -  
3629 "stream": "stdout", -  
3630 "text": [ -  
3631 "\n", -  
3632 "(429, 1.0159499999999999, -0.0297375, 0.59670000000000001)" -  
3633 ] -  
3634 }, -  
3635 { -  
3636 "output_type": "stream", -  
3637 "stream": "stdout", -  
3638 "text": [ -  
3639 "\n", -  
3640 "(430, 0.56452499999999994, 0.20865, 0.74879999999999991)" -  
3641 ] -  
3642 }, -  
3643 { -  
3644 "output_type": "stream", -  
3645 "stream": "stdout", -  
3646 "text": [ -  
3647 "\n", -  
3648 "(431, 0.21839999999999998, 0.37732499999999997, 0.80242499999999994)" -  
3649 ] -  
3650 }, -  
3651 { -  
3652 "output_type": "stream", -  
3653 "stream": "stdout", -  
3654 "text": [ -  
3655 "\n", -  
3656 "(432, 0.21742499999999998, 0.39194999999999997, 0.67713749999999995)" -  
3657 ] -  
3658 }, -  
3659 { -  
3660 "output_type": "stream", -  
3661 "stream": "stdout", -  
3662 "text": [ -  
3663 "\n", -  
3664 "(433, 0.17501249999999999, 0.519675, 0.85019999999999996)" -  
3665 ] -  
3666 }, -  
3667 { -  
3668 "output_type": "stream", -  
3669 "stream": "stdout", -  
3670 "text": [ -  
3671 "\n", -  
3672 "(434, 0.12967499999999998, 0.490425, 0.89163749999999997)" -  
3673 ] -  
3674 }, -  
3675 { -  
3676 "output_type": "stream", -  
3677 "stream": "stdout", -  
3678 "text": [ -  
3679 "\n", -  
3680 "(435, -0.51869999999999994, -0.74782499999999996, -0.050699999999999995)" -  
3681 ] -  
3682 }, -  
3683 { -  
3684 "output_type": "stream", -  
3685 "stream": "stdout", -  
3686 "text": [ -  
3687 "\n", -  
3688 "(436, -0.67177500000000001, -0.5572125, -0.43290000000000001)" -  
3689 ] -  
3690 }, -  
3691 { -  
3692 "output_type": "stream", -  
3693 "stream": "stdout", -  
3694 "text": [ -  
3695 "\n", -  
3696 "(437, -0.88334999999999997, -0.199875, -0.30907499999999999)" -  
3697 ] -  
3698 }, -  
3699 { -  
3700 "output_type": "stream", -  
3701 "stream": "stdout", -  
3702 "text": [ -  
3703 "\n", -  
3704 "(438, -0.847275, -0.24862499999999998, 0.63179999999999992)" -  
3705 ] -  
3706 }, -  
3707 { -  
3708 "output_type": "stream", -  
3709 "stream": "stdout", -  
3710 "text": [ -  
3711 "\n", -  
3712 "(439, -0.3943875, 0.054599999999999996, 0.91649999999999998)" -  
3713 ] -  
3714 }, -  
3715 { -  
3716 "output_type": "stream", -  
3717 "stream": "stdout", -  
3718 "text": [ -  
3719 "\n", -  
3720 "(440, 0.48067499999999996, 0.24959999999999999, 0.72637499999999999)" -  
3721 ] -  
3722 }, -  
3723 { -  
3724 "output_type": "stream", -  
3725 "stream": "stdout", -  
3726 "text": [ -  
3727 "\n", -  
3728 "(441, 0.82874999999999999, 0.41193749999999996, 0.28275)" -  
3729 ] -  
3730 }, -  
3731 { -  
3732 "output_type": "stream", -  
3733 "stream": "stdout", -  
3734 "text": [ -  
3735 "\n", -  
3736 "(442, 0.84922500000000001, -0.49237499999999995, -0.77317499999999995)" -  
3737 ] -  
3738 }, -  
3739 { -  
3740 "output_type": "stream", -  
3741 "stream": "stdout", -  
3742 "text": [ -  
3743 "\n", -  
3744 "(443, -0.066299999999999998, -0.70589999999999997, -0.88773749999999996)" -  
3745 ] -  
3746 }, -  
3747 { -  
3748 "output_type": "stream", -  
3749 "stream": "stdout", -  
3750 "text": [ -  
3751 "\n", -  
3752 "(444, -0.42119999999999996, -0.40559999999999996, -0.82631250000000001)" -  
3753 ] -  
3754 }, -  
3755 { -  
3756 "output_type": "stream", -  
3757 "stream": "stdout", -  
3758 "text": [ -  
3759 "\n", -  
3760 "(445, -0.33149999999999996, -0.44752500000000001, -0.62497499999999995)" -  
3761 ] -  
3762 }, -  
3763 { -  
3764 "output_type": "stream", -  
3765 "stream": "stdout", -  
3766 "text": [ -  
3767 "\n", -  
3768 "(446, -0.8619, -0.34709999999999996, 0.46994999999999998)" -  
3769 ] -  
3770 }, -  
3771 { -  
3772 "output_type": "stream", -  
3773 "stream": "stdout", -  
3774 "text": [ -  
3775 "\n", -  
3776 "(447, -0.43972499999999998, -0.046799999999999994, 0.93794999999999995)" -  
3777 ] -  
3778 }, -  
3779 { -  
3780 "output_type": "stream", -  
3781 "stream": "stdout", -  
3782 "text": [ -  
3783 "\n", -  
3784 "(448, 0.4173, 0.44996249999999999, 0.59377499999999994)" -  
3785 ] -  
3786 }, -  
3787 { -  
3788 "output_type": "stream", -  
3789 "stream": "stdout", -  
3790 "text": [ -  
3791 "\n", -  
3792 "(449, 0.51674999999999993, 0.59377499999999994, 0.416325)" -  
3793 ] -  
3794 }, -  
3795 { -  
3796 "output_type": "stream", -  
3797 "stream": "stdout", -  
3798 "text": [ -  
3799 "\n", -  
3800 "(450, 0.57135000000000002, 0.77902499999999997, 0.19889999999999999)" -  
3801 ] -  
3802 }, -  
3803 { -  
3804 "output_type": "stream", -  
3805 "stream": "stdout", -  
3806 "text": [ -  
3807 "\n", -  
3808 "(451, 0.27105000000000001, 0.83167499999999994, 0.58548749999999994)" -  
3809 ] -  
3810 }, -  
3811 { -  
3812 "output_type": "stream", -  
3813 "stream": "stdout", -  
3814 "text": [ -  
3815 "\n", -  
3816 "(452, -0.8536125, -0.24959999999999999, 0.18719999999999998)" -  
3817 ] -  
3818 }, -  
3819 { -  
3820 "output_type": "stream", -  
3821 "stream": "stdout", -  
3822 "text": [ -  
3823 "\n", -  
3824 "(453, -0.80681249999999993, -0.61132500000000001, -0.74587499999999995)" -  
3825 ] -  
3826 }, -  
3827 { -  
3828 "output_type": "stream", -  
3829 "stream": "stdout", -  
3830 "text": [ -  
3831 "\n", -  
3832 "(454, -0.192075, -0.39194999999999997, -0.91454999999999997)" -  
3833 ] -  
3834 }, -  
3835 { -  
3836 "output_type": "stream", -  
3837 "stream": "stdout", -  
3838 "text": [ -  
3839 "\n", -  
3840 "(455, -0.2379, -0.312, -1.0218)" -  
3841 ] -  
3842 }, -  
3843 { -  
3844 "output_type": "stream", -  
3845 "stream": "stdout", -  
3846 "text": [ -  
3847 "\n", -  
3848 "(456, -0.053624999999999999, -0.090674999999999992, -1.0919999999999999)" -  
3849 ] -  
3850 }, -  
3851 { -  
3852 "output_type": "stream", -  
3853 "stream": "stdout", -  
3854 "text": [ -  
3855 "\n", -  
3856 "(457, 0.59865000000000002, 0.19597499999999998, -0.44069999999999998)" -  
3857 ] -  
3858 }, -  
3859 { -  
3860 "output_type": "stream", -  
3861 "stream": "stdout", -  
3862 "text": [ -  
3863 "\n", -  
3864 "(458, 0.9325874999999999, 0.37732499999999997, 0.51869999999999994)" -  
3865 ] -  
3866 }, -  
3867 { -  
3868 "output_type": "stream", -  
3869 "stream": "stdout", -  
3870 "text": [ -  
3871 "\n", -  
3872 "(459, 0.55477500000000002, 0.023399999999999997, 0.966225)" -  
3873 ] -  
3874 }, -  
3875 { -  
3876 "output_type": "stream", -  
3877 "stream": "stdout", -  
3878 "text": [ -  
3879 "\n", -  
3880 "(460, -0.25447500000000001, -0.60254999999999992, 0.70736250000000001)" -  
3881 ] -  
3882 }, -  
3883 { -  
3884 "output_type": "stream", -  
3885 "stream": "stdout", -  
3886 "text": [ -  
3887 "\n", -  
3888 "(461, -0.42802499999999999, -1.0120499999999999, 0.1252875)" -  
3889 ] -  
3890 }, -  
3891 { -  
3892 "output_type": "stream", -  
3893 "stream": "stdout", -  
3894 "text": [ -  
3895 "\n", -  
3896 "(462, -0.61229999999999996, -0.85507499999999992, -0.192075)" -  
3897 ] -  
3898 }, -  
3899 { -  
3900 "output_type": "stream", -  
3901 "stream": "stdout", -  
3902 "text": [ -  
3903 "\n", -  
3904 "(463, -0.69761249999999997, -0.31395000000000001, -0.80827499999999997)" -  
3905 ] -  
3906 }, -  
3907 { -  
3908 "output_type": "stream", -  
3909 "stream": "stdout", -  
3910 "text": [ -  
3911 "\n", -  
3912 "(464, -0.60011249999999994, -0.43874999999999997, -0.42948749999999997)" -  
3913 ] -  
3914 }, -  
3915 { -  
3916 "output_type": "stream", -  
3917 "stream": "stdout", -  
3918 "text": [ -  
3919 "\n", -  
3920 "(465, -0.89602499999999996, 0.12041249999999999, 0.67713749999999995)" -  
3921 ] -  
3922 }, -  
3923 { -  
3924 "output_type": "stream", -  
3925 "stream": "stdout", -  
3926 "text": [ -  
3927 "\n", -  
3928 "(466, -0.0029249999999999996, 0.71272499999999994, 0.63179999999999992)" -  
3929 ] -  
3930 }, -  
3931 { -  
3932 "output_type": "stream", -  
3933 "stream": "stdout", -  
3934 "text": [ -  
3935 "\n", -  
3936 "(467, 0.66689999999999994, 0.31979999999999997, 0.58743749999999995)" -  
3937 ] -  
3938 }, -  
3939 { -  
3940 "output_type": "stream", -  
3941 "stream": "stdout", -  
3942 "text": [ -  
3943 "\n", -  
3944 "(468, 1.0725, -0.39194999999999997, -0.21157499999999999)" -  
3945 ] -  
3946 }, -  
3947 { -  
3948 "output_type": "stream", -  
3949 "stream": "stdout", -  
3950 "text": [ -  
3951 "\n", -  
3952 "(469, 0.46507499999999996, -0.71077499999999993, -0.79852499999999993)" -  
3953 ] -  
3954 }, -  
3955 { -  
3956 "output_type": "stream", -  
3957 "stream": "stdout", -  
3958 "text": [ -  
3959 "\n", -  
3960 "(470, 0.064349999999999991, -0.71760000000000002, -0.79462499999999991)" -  
3961 ] -  
3962 }, -  
3963 { -  
3964 "output_type": "stream", -  
3965 "stream": "stdout", -  
3966 "text": [ -  
3967 "\n", -  
3968 "(471, -0.022912499999999999, -0.62692499999999995, -0.757575)" -  
3969 ] -  
3970 }, -  
3971 { -  
3972 "output_type": "stream", -  
3973 "stream": "stdout", -  
3974 "text": [ -  
3975 "\n", -  
3976 "(472, -0.818025, -0.41924999999999996, 0.30809999999999998)" -  
3977 ] -  
3978 }, -  
3979 { -  
3980 "output_type": "stream", -  
3981 "stream": "stdout", -  
3982 "text": [ -  
3983 "\n", -  
3984 "(473, -0.69566249999999996, 0.11212499999999999, 0.83947499999999997)" -  
3985 ] -  
3986 }, -  
3987 { -  
3988 "output_type": "stream", -  
3989 "stream": "stdout", -  
3990 "text": [ -  
3991 "\n", -  
3992 "(474, -0.059475, 0.52357500000000001, 0.83947499999999997)" -  
3993 ] -  
3994 }, -  
3995 { -  
3996 "output_type": "stream", -  
3997 "stream": "stdout", -  
3998 "text": [ -  
3999 "\n", -  
4000 "(475, 0.83849999999999991, 0.41778749999999998, 0.26227499999999998)" -  
4001 ] -  
4002 }, -  
4003 { -  
4004 "output_type": "stream", -  
4005 "stream": "stdout", -  
4006 "text": [ -  
4007 "\n", -  
4008 "(476, 0.67518749999999994, 0.57086249999999994, -0.13942499999999999)" -  
4009 ] -  
4010 }, -  
4011 { -  
4012 "output_type": "stream", -  
4013 "stream": "stdout", -  
4014 "text": [ -  
4015 "\n", -  
4016 "(477, 0.76439999999999997, 0.53137499999999993, -0.010725)" -  
4017 ] -  
4018 }, -  
4019 { -  
4020 "output_type": "stream", -  
4021 "stream": "stdout", -  
4022 "text": [ -  
4023 "\n", -  
4024 "(478, 0.82094999999999996, 0.64739999999999998, -0.071175000000000002)" -  
4025 ] -  
4026 }, -  
4027 { -  
4028 "output_type": "stream", -  
4029 "stream": "stdout", -  
4030 "text": [ -  
4031 "\n", -  
4032 "(479, 0.73709999999999998, 0.15453749999999999, -0.77610000000000001)" -  
4033 ] -  
4034 }, -  
4035 { -  
4036 "output_type": "stream", -  
4037 "stream": "stdout", -  
4038 "text": [ -  
4039 "\n", -  
4040 "(480, 0.19499999999999998, -0.58792499999999992, -0.75854999999999995)" -  
4041 ] -  
4042 }, -  
4043 { -  
4044 "output_type": "stream", -  
4045 "stream": "stdout", -  
4046 "text": [ -  
4047 "\n", -  
4048 "(481, -0.43095, -0.59670000000000001, -0.49237499999999995)" -  
4049 ] -  
4050 }, -  
4051 { -  
4052 "output_type": "stream", -  
4053 "stream": "stdout", -  
4054 "text": [ -  
4055 "\n", -  
4056 "(482, -0.85994999999999999, -0.33442499999999997, -0.29347499999999999)" -  
4057 ] -  
4058 }, -  
4059 { -  
4060 "output_type": "stream", -  
4061 "stream": "stdout", -  
4062 "text": [ -  
4063 "\n", -  
4064 "(483, -0.89115, -0.42314999999999997, -0.091649999999999995)" -  
4065 ] -  
4066 }, -  
4067 { -  
4068 "output_type": "stream", -  
4069 "stream": "stdout", -  
4070 "text": [ -  
4071 "\n", -  
4072 "(484, -0.90236249999999996, -0.48847499999999999, 0.64837499999999992)" -  
4073 ] -  
4074 }, -  
4075 { -  
4076 "output_type": "stream", -  
4077 "stream": "stdout", -  
4078 "text": [ -  
4079 "\n", -  
4080 "(485, -0.054112500000000001, 0.074099999999999999, 0.87067499999999998)" -  
4081 ] -  
4082 }, -  
4083 { -  
4084 "output_type": "stream", -  
4085 "stream": "stdout", -  
4086 "text": [ -  
4087 "\n", -  
4088 "(486, 0.61327500000000001, 0.46068749999999997, 0.27007500000000001)" -  
4089 ] -  
4090 }, -  
4091 { -  
4092 "output_type": "stream", -  
4093 "stream": "stdout", -  
4094 "text": [ -  
4095 "\n", -  
4096 "(487, 0.43095, 0.97499999999999998, -0.078)" -  
4097 ] -  
4098 }, -  
4099 { -  
4100 "output_type": "stream", -  
4101 "stream": "stdout", -  
4102 "text": [ -  
4103 "\n", -  
4104 "(488, -0.46215000000000001, 0.72929999999999995, 0.018525)" -  
4105 ] -  
4106 }, -  
4107 { -  
4108 "output_type": "stream", -  
4109 "stream": "stdout", -  
4110 "text": [ -  
4111 "\n", -  
4112 "(489, -1.0334999999999999, -0.41339999999999999, -0.19305)" -  
4113 ] -  
4114 }, -  
4115 { -  
4116 "output_type": "stream", -  
4117 "stream": "stdout", -  
4118 "text": [ -  
4119 "\n", -  
4120 "(490, -0.63374999999999992, -0.76829999999999998, -0.64252500000000001)" -  
4121 ] -  
4122 }, -  
4123 { -  
4124 "output_type": "stream", -  
4125 "stream": "stdout", -  
4126 "text": [ -  
4127 "\n", -  
4128 "(491, -0.066299999999999998, -0.61181249999999998, -0.85848749999999996)" -  
4129 ] -  
4130 }, -  
4131 { -  
4132 "output_type": "stream", -  
4133 "stream": "stdout", -  
4134 "text": [ -  
4135 "\n", -  
4136 "(492, 0.371475, -0.281775, -0.86969999999999992)" -  
4137 ] -  
4138 }, -  
4139 { -  
4140 "output_type": "stream", -  
4141 "stream": "stdout", -  
4142 "text": [ -  
4143 "\n", -  
4144 "(493, 0.42217499999999997, -0.66251249999999995, -0.59182499999999993)" -  
4145 ] -  
4146 }, -  
4147 { -  
4148 "output_type": "stream", -  
4149 "stream": "stdout", -  
4150 "text": [ -  
4151 "\n", -  
4152 "(494, 0.62790000000000001, -0.6907875, 0.17257499999999998)" -  
4153 ] -  
4154 }, -  
4155 { -  
4156 "output_type": "stream", -  
4157 "stream": "stdout", -  
4158 "text": [ -  
4159 "\n", -  
4160 "(495, 0.78487499999999999, -0.56891249999999993, 0.41339999999999999)" -  
4161 ] -  
4162 }, -  
4163 { -  
4164 "output_type": "stream", -  
4165 "stream": "stdout", -  
4166 "text": [ -  
4167 "\n", -  
4168 "(496, 0.39877499999999999, -0.61717499999999992, 0.70297500000000002)" -  
4169 ] -  
4170 }, -  
4171 { -  
4172 "output_type": "stream", -  
4173 "stream": "stdout", -  
4174 "text": [ -  
4175 "\n", -  
4176 "(497, -0.18329999999999999, -0.164775, 1.005225)" 213 "(999, [0.038024999999999996, -0.00975, 0.966225])\n"
4177 ] -  
4178 }, -  
4179 { -  
4180 "output_type": "stream", -  
4181 "stream": "stdout", -  
4182 "text": [ -  
4183 "\n", -  
4184 "(498, 0.29542499999999999, 0.81022499999999997, 0.17354999999999998)" -  
4185 ] -  
4186 }, -  
4187 { -  
4188 "output_type": "stream", -  
4189 "stream": "stdout", -  
4190 "text": [ -  
4191 "\n", -  
4192 "(499, 0.54989999999999994, 0.757575, -0.64349999999999996)" -  
4193 ] -  
4194 }, -  
4195 { -  
4196 "output_type": "stream", -  
4197 "stream": "stdout", -  
4198 "text": [ -  
4199 "\n", -  
4200 "(500, 0.46312499999999995, 0.70979999999999999, -0.62497499999999995)" -  
4201 ] -  
4202 }, -  
4203 { -  
4204 "output_type": "stream", -  
4205 "stream": "stdout", -  
4206 "text": [ -  
4207 "\n", -  
4208 "(501, 0.76391249999999999, 0.18525, -0.39292499999999997)" -  
4209 ] -  
4210 }, -  
4211 { -  
4212 "output_type": "stream", -  
4213 "stream": "stdout", -  
4214 "text": [ -  
4215 "\n", -  
4216 "(502, 0.87554999999999994, -0.490425, -0.61327500000000001)" -  
4217 ] -  
4218 }, -  
4219 { -  
4220 "output_type": "stream", -  
4221 "stream": "stdout", -  
4222 "text": [ -  
4223 "\n", -  
4224 "(503, 0.039487499999999995, -0.84434999999999993, -0.39487499999999998)" -  
4225 ] -  
4226 }, -  
4227 { -  
4228 "output_type": "stream", -  
4229 "stream": "stdout", -  
4230 "text": [ -  
4231 "\n", -  
4232 "(504, -0.54063749999999999, -0.76634999999999998, -0.058499999999999996)" -  
4233 ] -  
4234 }, -  
4235 { -  
4236 "output_type": "stream", -  
4237 "stream": "stdout", -  
4238 "text": [ -  
4239 "\n", -  
4240 "(505, -0.89212499999999995, -0.33734999999999998, 0.121875)" -  
4241 ] -  
4242 }, -  
4243 { -  
4244 "output_type": "stream", -  
4245 "stream": "stdout", -  
4246 "text": [ -  
4247 "\n", -  
4248 "(506, -1.03545, -0.13162499999999999, 0.14722499999999999)" -  
4249 ] -  
4250 }, -  
4251 { -  
4252 "output_type": "stream", -  
4253 "stream": "stdout", -  
4254 "text": [ -  
4255 "\n", -  
4256 "(507, -0.96524999999999994, -0.23594999999999999, 0.155025)" -  
4257 ] -  
4258 }, -  
4259 { -  
4260 "output_type": "stream", -  
4261 "stream": "stdout", -  
4262 "text": [ -  
4263 "\n", -  
4264 "(508, -0.87847500000000001, -0.371475, 0.17452499999999999)" -  
4265 ] -  
4266 }, -  
4267 { -  
4268 "output_type": "stream", -  
4269 "stream": "stdout", -  
4270 "text": [ -  
4271 "\n", -  
4272 "(509, -0.91747499999999993, -0.385125, 0.18232499999999999)" -  
4273 ] -  
4274 }, -  
4275 { -  
4276 "output_type": "stream", -  
4277 "stream": "stdout", -  
4278 "text": [ -  
4279 "\n", -  
4280 "(510, -0.75074999999999992, -0.81217499999999998, -0.31395000000000001)" -  
4281 ] -  
4282 }, -  
4283 { -  
4284 "output_type": "stream", -  
4285 "stream": "stdout", -  
4286 "text": [ -  
4287 "\n", -  
4288 "(511, 0.058499999999999996, -0.85117500000000001, -0.41827500000000001)" -  
4289 ] -  
4290 }, -  
4291 { -  
4292 "output_type": "stream", -  
4293 "stream": "stdout", -  
4294 "text": [ -  
4295 "\n", -  
4296 "(512, 0.728325, -0.61229999999999996, -0.28275)" -  
4297 ] -  
4298 }, -  
4299 { -  
4300 "output_type": "stream", -  
4301 "stream": "stdout", -  
4302 "text": [ -  
4303 "\n", -  
4304 "(513, 0.96963749999999993, -0.0029249999999999996, -0.063375000000000001)" -  
4305 ] -  
4306 }, -  
4307 { -  
4308 "output_type": "stream", -  
4309 "stream": "stdout", -  
4310 "text": [ -  
4311 "\n", -  
4312 "(514, 0.905775, -0.0706875, 0.68542499999999995)" -  
4313 ] -  
4314 }, -  
4315 { -  
4316 "output_type": "stream", -  
4317 "stream": "stdout", -  
4318 "text": [ -  
4319 "\n", -  
4320 "(515, 0.474825, -0.39389999999999997, 0.84629999999999994)" -  
4321 ] -  
4322 }, -  
4323 { -  
4324 "output_type": "stream", -  
4325 "stream": "stdout", -  
4326 "text": [ -  
4327 "\n", -  
4328 "(516, -0.10237499999999999, -0.66592499999999999, 0.58987499999999993)" -  
4329 ] -  
4330 }, -  
4331 { -  
4332 "output_type": "stream", -  
4333 "stream": "stdout", -  
4334 "text": [ -  
4335 "\n", -  
4336 "(517, -0.46897499999999998, -0.66397499999999998, 0.29152499999999998)" -  
4337 ] -  
4338 }, -  
4339 { -  
4340 "output_type": "stream", -  
4341 "stream": "stdout", -  
4342 "text": [ -  
4343 "\n", -  
4344 "(518, -0.73368749999999994, -0.63569999999999993, 0.19597499999999998)" -  
4345 ] -  
4346 }, -  
4347 { -  
4348 "output_type": "stream", -  
4349 "stream": "stdout", -  
4350 "text": [ -  
4351 "\n", -  
4352 "(519, -0.71418749999999998, -0.64349999999999996, -0.013649999999999999)" -  
4353 ] -  
4354 }, -  
4355 { -  
4356 "output_type": "stream", -  
4357 "stream": "stdout", -  
4358 "text": [ -  
4359 "\n", -  
4360 "(520, -0.69419999999999993, -0.60742499999999999, -0.53625)" -  
4361 ] -  
4362 }, -  
4363 { -  
4364 "output_type": "stream", -  
4365 "stream": "stdout", -  
4366 "text": [ -  
4367 "\n", -  
4368 "(521, -0.026324999999999998, -0.85409999999999997, -0.56159999999999999)" -  
4369 ] -  
4370 }, -  
4371 { -  
4372 "output_type": "stream", -  
4373 "stream": "stdout", -  
4374 "text": [ -  
4375 "\n", -  
4376 "(522, 0.23204999999999998, -0.78584999999999994, -0.40657499999999996)" -  
4377 ] -  
4378 }, -  
4379 { -  
4380 "output_type": "stream", -  
4381 "stream": "stdout", -  
4382 "text": [ -  
4383 "\n", -  
4384 "(523, 0.53966249999999993, -0.61522500000000002, -0.476775)" -  
4385 ] -  
4386 }, -  
4387 { -  
4388 "output_type": "stream", -  
4389 "stream": "stdout", -  
4390 "text": [ -  
4391 "\n", -  
4392 "(524, 0.669825, -0.31979999999999997, -0.62009999999999998)" -  
4393 ] -  
4394 }, -  
4395 { -  
4396 "output_type": "stream", -  
4397 "stream": "stdout", -  
4398 "text": [ -  
4399 "\n", -  
4400 "(525, 0.85604999999999998, -0.13455, -0.32077499999999998)" -  
4401 ] -  
4402 }, -  
4403 { -  
4404 "output_type": "stream", -  
4405 "stream": "stdout", -  
4406 "text": [ -  
4407 "\n", -  
4408 "(526, 0.94282499999999991, -0.024374999999999997, 0.18427499999999999)" -  
4409 ] -  
4410 }, -  
4411 { -  
4412 "output_type": "stream", -  
4413 "stream": "stdout", -  
4414 "text": [ -  
4415 "\n", -  
4416 "(527, 0.83849999999999991, -0.11602499999999999, 0.72149999999999992)" -  
4417 ] -  
4418 }, -  
4419 { -  
4420 "output_type": "stream", -  
4421 "stream": "stdout", -  
4422 "text": [ -  
4423 "\n", -  
4424 "(528, -0.017062499999999998, -0.52747500000000003, 0.81119999999999992)" -  
4425 ] -  
4426 }, -  
4427 { -  
4428 "output_type": "stream", -  
4429 "stream": "stdout", -  
4430 "text": [ -  
4431 "\n", -  
4432 "(529, -0.35392499999999999, -0.70297500000000002, 0.36074999999999996)" -  
4433 ] -  
4434 }, -  
4435 { -  
4436 "output_type": "stream", -  
4437 "stream": "stdout", -  
4438 "text": [ -  
4439 "\n", -  
4440 "(530, -0.61961250000000001, -0.77024999999999999, -0.1794)" -  
4441 ] -  
4442 }, -  
4443 { -  
4444 "output_type": "stream", -  
4445 "stream": "stdout", -  
4446 "text": [ -  
4447 "\n", -  
4448 "(531, -0.4914, -0.58304999999999996, -0.786825)" -  
4449 ] -  
4450 }, -  
4451 { -  
4452 "output_type": "stream", -  
4453 "stream": "stdout", -  
4454 "text": [ -  
4455 "\n", -  
4456 "(532, -0.24667499999999998, -0.077024999999999996, -1.1339249999999998)" -  
4457 ] -  
4458 }, -  
4459 { -  
4460 "output_type": "stream", -  
4461 "stream": "stdout", -  
4462 "text": [ -  
4463 "\n", -  
4464 "(533, -0.51187499999999997, 0.17354999999999998, -0.66494999999999993)" -  
4465 ] -  
4466 }, -  
4467 { -  
4468 "output_type": "stream", -  
4469 "stream": "stdout", -  
4470 "text": [ -  
4471 "\n", -  
4472 "(534, -0.907725, 0.0068249999999999995, -0.25155)" -  
4473 ] -  
4474 }, -  
4475 { -  
4476 "output_type": "stream", -  
4477 "stream": "stdout", -  
4478 "text": [ -  
4479 "\n", -  
4480 "(535, -0.88822499999999993, -0.42412499999999997, 0.51479999999999992)" -  
4481 ] -  
4482 }, -  
4483 { -  
4484 "output_type": "stream", -  
4485 "stream": "stdout", -  
4486 "text": [ -  
4487 "\n", -  
4488 "(536, -0.38317499999999999, -0.215475, 0.95062499999999994)" -  
4489 ] -  
4490 }, -  
4491 { -  
4492 "output_type": "stream", -  
4493 "stream": "stdout", -  
4494 "text": [ -  
4495 "\n", -  
4496 "(537, 0.31882499999999997, -0.083849999999999994, 0.75854999999999995)" -  
4497 ] -  
4498 }, -  
4499 { -  
4500 "output_type": "stream", -  
4501 "stream": "stdout", -  
4502 "text": [ -  
4503 "\n", -  
4504 "(538, 0.81948749999999992, -0.22034999999999999, 0.27641250000000001)" -  
4505 ] -  
4506 }, -  
4507 { -  
4508 "output_type": "stream", -  
4509 "stream": "stdout", -  
4510 "text": [ -  
4511 "\n", -  
4512 "(539, 0.79657499999999992, -0.62107499999999993, -0.37927499999999997)" -  
4513 ] -  
4514 }, -  
4515 { -  
4516 "output_type": "stream", -  
4517 "stream": "stdout", -  
4518 "text": [ -  
4519 "\n", -  
4520 "(540, 0.53039999999999998, -0.53332499999999994, -0.72929999999999995)" -  
4521 ] -  
4522 }, -  
4523 { -  
4524 "output_type": "stream", -  
4525 "stream": "stdout", -  
4526 "text": [ -  
4527 "\n", -  
4528 "(541, 0.31882499999999997, -0.48262499999999997, -0.92917499999999997)" -  
4529 ] -  
4530 }, -  
4531 { -  
4532 "output_type": "stream", -  
4533 "stream": "stdout", -  
4534 "text": [ -  
4535 "\n", -  
4536 "(542, 0.21742499999999998, -0.51382499999999998, -0.98669999999999991)" -  
4537 ] -  
4538 }, -  
4539 { -  
4540 "output_type": "stream", -  
4541 "stream": "stdout", -  
4542 "text": [ -  
4543 "\n", -  
4544 "(543, -0.15112499999999998, -0.56940000000000002, -0.81217499999999998)" -  
4545 ] -  
4546 }, -  
4547 { -  
4548 "output_type": "stream", -  
4549 "stream": "stdout", -  
4550 "text": [ -  
4551 "\n", -  
4552 "(544, -0.68737499999999996, -0.2964, -0.1867125)" -  
4553 ] -  
4554 }, -  
4555 { -  
4556 "output_type": "stream", -  
4557 "stream": "stdout", -  
4558 "text": [ -  
4559 "\n", -  
4560 "(545, -1.0866374999999999, -0.30127499999999996, 0.355875)" -  
4561 ] -  
4562 }, -  
4563 { -  
4564 "output_type": "stream", -  
4565 "stream": "stdout", -  
4566 "text": [ -  
4567 "\n", -  
4568 "(546, -0.76781250000000001, -0.35977499999999996, 0.53039999999999998)" -  
4569 ] -  
4570 }, -  
4571 { -  
4572 "output_type": "stream", -  
4573 "stream": "stdout", -  
4574 "text": [ -  
4575 "\n", -  
4576 "(547, -0.58889999999999998, -0.41437499999999999, 0.78974999999999995)" -  
4577 ] -  
4578 }, -  
4579 { -  
4580 "output_type": "stream", -  
4581 "stream": "stdout", -  
4582 "text": [ -  
4583 "\n", -  
4584 "(548, -0.12918749999999998, -0.55379999999999996, 0.8555625)" -  
4585 ] -  
4586 }, -  
4587 { -  
4588 "output_type": "stream", -  
4589 "stream": "stdout", -  
4590 "text": [ -  
4591 "\n", -  
4592 "(549, -0.1482, -0.25447500000000001, 0.8034)" -  
4593 ] -  
4594 }, -  
4595 { -  
4596 "output_type": "stream", -  
4597 "stream": "stdout", -  
4598 "text": [ -  
4599 "\n", -  
4600 "(550, -0.476775, 0.110175, 0.93014999999999992)" -  
4601 ] -  
4602 }, -  
4603 { -  
4604 "output_type": "stream", -  
4605 "stream": "stdout", -  
4606 "text": [ -  
4607 "\n", -  
4608 "(551, -0.080924999999999997, 0.62692499999999995, 0.72734999999999994)" -  
4609 ] -  
4610 }, -  
4611 { -  
4612 "output_type": "stream", -  
4613 "stream": "stdout", -  
4614 "text": [ -  
4615 "\n", -  
4616 "(552, 0.31979999999999997, 0.81899999999999995, -0.077024999999999996)" -  
4617 ] -  
4618 }, -  
4619 { -  
4620 "output_type": "stream", -  
4621 "stream": "stdout", -  
4622 "text": [ -  
4623 "\n", -  
4624 "(553, 0.75659999999999994, 0.431925, 0.54746249999999996)" -  
4625 ] -  
4626 }, -  
4627 { -  
4628 "output_type": "stream", -  
4629 "stream": "stdout", -  
4630 "text": [ -  
4631 "\n", -  
4632 "(554, 0.59377499999999994, -0.10139999999999999, 0.66007499999999997)" -  
4633 ] -  
4634 }, -  
4635 { -  
4636 "output_type": "stream", -  
4637 "stream": "stdout", -  
4638 "text": [ -  
4639 "\n", -  
4640 "(555, 0.61473749999999994, -0.4602, 0.24667499999999998)" -  
4641 ] -  
4642 }, -  
4643 { -  
4644 "output_type": "stream", -  
4645 "stream": "stdout", -  
4646 "text": [ -  
4647 "\n", -  
4648 "(556, 0.58207500000000001, -0.81997500000000001, -0.62302499999999994)" -  
4649 ] -  
4650 }, -  
4651 { -  
4652 "output_type": "stream", -  
4653 "stream": "stdout", -  
4654 "text": [ -  
4655 "\n", -  
4656 "(557, 0.28567500000000001, -0.65958749999999999, -0.84434999999999993)" -  
4657 ] -  
4658 }, -  
4659 { -  
4660 "output_type": "stream", -  
4661 "stream": "stdout", -  
4662 "text": [ -  
4663 "\n", -  
4664 "(558, 0.2227875, 0.0092624999999999999, -0.94574999999999998)" -  
4665 ] -  
4666 }, -  
4667 { -  
4668 "output_type": "stream", -  
4669 "stream": "stdout", -  
4670 "text": [ -  
4671 "\n", -  
4672 "(559, 0.51382499999999998, 0.15794999999999998, -0.71467499999999995)" -  
4673 ] -  
4674 }, -  
4675 { -  
4676 "output_type": "stream", -  
4677 "stream": "stdout", -  
4678 "text": [ -  
4679 "\n", -  
4680 "(560, 0.89115, -0.40852499999999997, 0.20669999999999999)" -  
4681 ] -  
4682 }, -  
4683 { -  
4684 "output_type": "stream", -  
4685 "stream": "stdout", -  
4686 "text": [ -  
4687 "\n", -  
4688 "(561, 0.056549999999999996, -0.87944999999999995, 0.52064999999999995)" -  
4689 ] -  
4690 }, -  
4691 { -  
4692 "output_type": "stream", -  
4693 "stream": "stdout", -  
4694 "text": [ -  
4695 "\n", -  
4696 "(562, -0.4446, -0.71272499999999994, 0.34709999999999996)" -  
4697 ] -  
4698 }, -  
4699 { -  
4700 "output_type": "stream", -  
4701 "stream": "stdout", -  
4702 "text": [ -  
4703 "\n", -  
4704 "(563, -0.72734999999999994, -0.74490000000000001, -0.40559999999999996)" -  
4705 ] -  
4706 }, -  
4707 { -  
4708 "output_type": "stream", -  
4709 "stream": "stdout", -  
4710 "text": [ -  
4711 "\n", -  
4712 "(564, -0.54502499999999998, -0.28762499999999996, -0.93892500000000001)" -  
4713 ] -  
4714 }, -  
4715 { -  
4716 "output_type": "stream", -  
4717 "stream": "stdout", -  
4718 "text": [ -  
4719 "\n", -  
4720 "(565, -0.25155, -0.07897499999999999, -0.87847500000000001)" -  
4721 ] -  
4722 }, -  
4723 { -  
4724 "output_type": "stream", -  
4725 "stream": "stdout", -  
4726 "text": [ -  
4727 "\n", -  
4728 "(566, -0.34076249999999997, 0.26032499999999997, -0.98377499999999996)" -  
4729 ] -  
4730 }, -  
4731 { -  
4732 "output_type": "stream", -  
4733 "stream": "stdout", -  
4734 "text": [ -  
4735 "\n", -  
4736 "(567, -0.76927499999999993, 0.29249999999999998, -0.53527499999999995)" -  
4737 ] -  
4738 }, -  
4739 { -  
4740 "output_type": "stream", -  
4741 "stream": "stdout", -  
4742 "text": [ -  
4743 "\n", -  
4744 "(568, -0.84532499999999999, -0.50017499999999993, 0.14429999999999998)" -  
4745 ] -  
4746 }, -  
4747 { -  
4748 "output_type": "stream", -  
4749 "stream": "stdout", -  
4750 "text": [ -  
4751 "\n", -  
4752 "(569, -0.62351250000000003, -0.35538749999999997, 0.87944999999999995)" -  
4753 ] -  
4754 }, -  
4755 { -  
4756 "output_type": "stream", -  
4757 "stream": "stdout", -  
4758 "text": [ -  
4759 "\n", -  
4760 "(570, 0.24082499999999998, 0.2145, 0.66884999999999994)" -  
4761 ] -  
4762 }, -  
4763 { -  
4764 "output_type": "stream", -  
4765 "stream": "stdout", -  
4766 "text": [ -  
4767 "\n", -  
4768 "(571, 0.69419999999999993, 0.164775, 0.59475)" -  
4769 ] -  
4770 }, -  
4771 { -  
4772 "output_type": "stream", -  
4773 "stream": "stdout", -  
4774 "text": [ -  
4775 "\n", -  
4776 "(572, 0.91357499999999991, -0.42412499999999997, -0.45629999999999998)" -  
4777 ] -  
4778 }, -  
4779 { -  
4780 "output_type": "stream", -  
4781 "stream": "stdout", -  
4782 "text": [ -  
4783 "\n", -  
4784 "(573, 0.371475, -0.39877499999999999, -0.86677499999999996)" -  
4785 ] -  
4786 }, -  
4787 { -  
4788 "output_type": "stream", -  
4789 "stream": "stdout", -  
4790 "text": [ -  
4791 "\n", -  
4792 "(574, 0.22424999999999998, -0.20474999999999999, -0.97207499999999991)" -  
4793 ] -  
4794 }, -  
4795 { -  
4796 "output_type": "stream", -  
4797 "stream": "stdout", -  
4798 "text": [ -  
4799 "\n", -  
4800 "(575, 0.27933749999999996, 0.040462499999999998, -0.9516)" -  
4801 ] -  
4802 }, -  
4803 { -  
4804 "output_type": "stream", -  
4805 "stream": "stdout", -  
4806 "text": [ -  
4807 "\n", -  
4808 "(576, 0.44069999999999998, 0.2457, -1.0071749999999999)" -  
4809 ] -  
4810 }, -  
4811 { -  
4812 "output_type": "stream", -  
4813 "stream": "stdout", -  
4814 "text": [ -  
4815 "\n", -  
4816 "(577, -0.055574999999999999, 0.34466249999999998, -0.91991249999999991)" -  
4817 ] -  
4818 }, -  
4819 { -  
4820 "output_type": "stream", -  
4821 "stream": "stdout", -  
4822 "text": [ -  
4823 "\n", -  
4824 "(578, -0.63667499999999999, 0.038024999999999996, -0.65325)" -  
4825 ] -  
4826 }, -  
4827 { -  
4828 "output_type": "stream", -  
4829 "stream": "stdout", -  
4830 "text": [ -  
4831 "\n", -  
4832 "(579, -0.8701875, -0.21742499999999998, -0.37001249999999997)" -  
4833 ] -  
4834 }, -  
4835 { -  
4836 "output_type": "stream", -  
4837 "stream": "stdout", -  
4838 "text": [ -  
4839 "\n", -  
4840 "(580, -0.95842499999999997, -0.44362499999999999, 0.21254999999999999)" -  
4841 ] -  
4842 }, -  
4843 { -  
4844 "output_type": "stream", -  
4845 "stream": "stdout", -  
4846 "text": [ -  
4847 "\n", -  
4848 "(581, -0.54112499999999997, -0.548925, 0.71662499999999996)" -  
4849 ] -  
4850 }, -  
4851 { -  
4852 "output_type": "stream", -  
4853 "stream": "stdout", -  
4854 "text": [ -  
4855 "\n", -  
4856 "(582, -0.12772500000000001, -0.23399999999999999, 1.0062)" -  
4857 ] -  
4858 }, -  
4859 { -  
4860 "output_type": "stream", -  
4861 "stream": "stdout", -  
4862 "text": [ -  
4863 "\n", -  
4864 "(583, 0.0024375, -0.0307125, 0.99352499999999999)" -  
4865 ] -  
4866 }, -  
4867 { -  
4868 "output_type": "stream", -  
4869 "stream": "stdout", -  
4870 "text": [ -  
4871 "\n", -  
4872 "(584, -0.20865, 0.031199999999999999, 0.95842499999999997)" -  
4873 ] -  
4874 }, -  
4875 { -  
4876 "output_type": "stream", -  
4877 "stream": "stdout", -  
4878 "text": [ -  
4879 "\n", -  
4880 "(585, -0.27592499999999998, 0.26129999999999998, 0.83460000000000001)" -  
4881 ] -  
4882 }, -  
4883 { -  
4884 "output_type": "stream", -  
4885 "stream": "stdout", -  
4886 "text": [ -  
4887 "\n", -  
4888 "(586, -0.17647499999999999, 0.25155, 0.93307499999999999)" -  
4889 ] -  
4890 }, -  
4891 { -  
4892 "output_type": "stream", -  
4893 "stream": "stdout", -  
4894 "text": [ -  
4895 "\n", -  
4896 "(587, -0.15794999999999998, 0.192075, 0.96037499999999998)" -  
4897 ] -  
4898 }, -  
4899 { -  
4900 "output_type": "stream", -  
4901 "stream": "stdout", -  
4902 "text": [ -  
4903 "\n", -  
4904 "(588, -0.1555125, 0.19597499999999998, 0.94087499999999991)" -  
4905 ] -  
4906 }, -  
4907 { -  
4908 "output_type": "stream", -  
4909 "stream": "stdout", -  
4910 "text": [ -  
4911 "\n", -  
4912 "(589, -0.17257499999999998, 0.114075, 0.95842499999999997)" -  
4913 ] -  
4914 }, -  
4915 { -  
4916 "output_type": "stream", -  
4917 "stream": "stdout", -  
4918 "text": [ -  
4919 "\n", -  
4920 "(590, -0.2223, -0.23351249999999998, 0.79364999999999997)" -  
4921 ] -  
4922 }, -  
4923 { -  
4924 "output_type": "stream", -  
4925 "stream": "stdout", -  
4926 "text": [ -  
4927 "\n", -  
4928 "(591, -0.54697499999999999, -0.36952499999999999, 0.49822499999999997)" -  
4929 ] -  
4930 }, -  
4931 { -  
4932 "output_type": "stream", -  
4933 "stream": "stdout", -  
4934 "text": [ -  
4935 "\n", -  
4936 "(592, -0.62595000000000001, -0.788775, -0.125775)" -  
4937 ] -  
4938 }, -  
4939 { -  
4940 "output_type": "stream", -  
4941 "stream": "stdout", -  
4942 "text": [ -  
4943 "\n", -  
4944 "(593, -0.39389999999999997, -0.64642499999999992, -0.85702499999999993)" -  
4945 ] -  
4946 }, -  
4947 { -  
4948 "output_type": "stream", -  
4949 "stream": "stdout", -  
4950 "text": [ -  
4951 "\n", -  
4952 "(594, -0.24082499999999998, -0.28664999999999996, -0.91064999999999996)" -  
4953 ] -  
4954 }, -  
4955 { -  
4956 "output_type": "stream", -  
4957 "stream": "stdout", -  
4958 "text": [ -  
4959 "\n", -  
4960 "(595, -0.41583749999999997, -0.0195, -0.81509999999999994)" -  
4961 ] -  
4962 }, -  
4963 { -  
4964 "output_type": "stream", -  
4965 "stream": "stdout", -  
4966 "text": [ -  
4967 "\n", -  
4968 "(596, -0.79657499999999992, -0.48359999999999997, -0.25739999999999996)" -  
4969 ] -  
4970 }, -  
4971 { -  
4972 "output_type": "stream", -  
4973 "stream": "stdout", -  
4974 "text": [ -  
4975 "\n", -  
4976 "(597, -0.56159999999999999, -0.76927499999999993, 0.6907875)" -  
4977 ] -  
4978 }, -  
4979 { -  
4980 "output_type": "stream", -  
4981 "stream": "stdout", -  
4982 "text": [ -  
4983 "\n", -  
4984 "(598, -0.164775, -0.25593749999999998, 0.73612499999999992)" -  
4985 ] -  
4986 }, -  
4987 { -  
4988 "output_type": "stream", -  
4989 "stream": "stdout", -  
4990 "text": [ -  
4991 "\n", -  
4992 "(599, 0.4602, -0.23204999999999998, 0.73027500000000001)" -  
4993 ] -  
4994 }, -  
4995 { -  
4996 "output_type": "stream", -  
4997 "stream": "stdout", -  
4998 "text": [ -  
4999 "\n", -  
5000 "(600, 0.79949999999999999, -0.54648750000000001, 0.2535)" -  
5001 ] -  
5002 }, -  
5003 { -  
5004 "output_type": "stream", -  
5005 "stream": "stdout", -  
5006 "text": [ -  
5007 "\n", -  
5008 "(601, 0.81022499999999997, -0.35294999999999999, -0.72637499999999999)" -  
5009 ] -  
5010 }, -  
5011 { -  
5012 "output_type": "stream", -  
5013 "stream": "stdout", -  
5014 "text": [ -  
5015 "\n", -  
5016 "(602, 0.59084999999999999, 0.17354999999999998, -0.51674999999999993)" -  
5017 ] -  
5018 }, -  
5019 { -  
5020 "output_type": "stream", -  
5021 "stream": "stdout", -  
5022 "text": [ -  
5023 "\n", -  
5024 "(603, 0.95452499999999996, -0.178425, 0.30907499999999999)" -  
5025 ] -  
5026 }, -  
5027 { -  
5028 "output_type": "stream", -  
5029 "stream": "stdout", -  
5030 "text": [ -  
5031 "\n", -  
5032 "(604, 0.28518749999999998, -0.728325, 0.461175)" -  
5033 ] -  
5034 }, -  
5035 { -  
5036 "output_type": "stream", -  
5037 "stream": "stdout", -  
5038 "text": [ -  
5039 "\n", -  
5040 "(605, -0.61619999999999997, -0.79949999999999999, 0.049724999999999998)" -  
5041 ] -  
5042 }, -  
5043 { -  
5044 "output_type": "stream", -  
5045 "stream": "stdout", -  
5046 "text": [ -  
5047 "\n", -  
5048 "(606, -0.82289999999999996, -0.55477500000000002, -0.070199999999999999)" -  
5049 ] -  
5050 }, -  
5051 { -  
5052 "output_type": "stream", -  
5053 "stream": "stdout", -  
5054 "text": [ -  
5055 "\n", -  
5056 "(607, -0.50895000000000001, -0.91454999999999997, -0.100425)" -  
5057 ] -  
5058 }, -  
5059 { -  
5060 "output_type": "stream", -  
5061 "stream": "stdout", -  
5062 "text": [ -  
5063 "\n", -  
5064 "(608, -0.30517499999999997, -0.9701249999999999, -0.26715)" -  
5065 ] -  
5066 }, -  
5067 { -  
5068 "output_type": "stream", -  
5069 "stream": "stdout", -  
5070 "text": [ -  
5071 "\n", -  
5072 "(609, -0.58109999999999995, -0.68445, -0.207675)" -  
5073 ] -  
5074 }, -  
5075 { -  
5076 "output_type": "stream", -  
5077 "stream": "stdout", -  
5078 "text": [ -  
5079 "\n", -  
5080 "(610, -0.55769999999999997, -0.82972499999999993, 0.30809999999999998)" -  
5081 ] -  
5082 }, -  
5083 { -  
5084 "output_type": "stream", -  
5085 "stream": "stdout", -  
5086 "text": [ -  
5087 "\n", -  
5088 "(611, 0.26861249999999998, -0.20865, 0.27494999999999997)" -  
5089 ] -  
5090 }, -  
5091 { -  
5092 "output_type": "stream", -  
5093 "stream": "stdout", -  
5094 "text": [ -  
5095 "\n", -  
5096 "(612, 0.75269999999999992, -0.77024999999999999, -0.00097499999999999996)" -  
5097 ] -  
5098 }, -  
5099 { -  
5100 "output_type": "stream", -  
5101 "stream": "stdout", -  
5102 "text": [ -  
5103 "\n", -  
5104 "(613, 0.070199999999999999, -0.79364999999999997, -0.71174999999999999)" -  
5105 ] -  
5106 }, -  
5107 { -  
5108 "output_type": "stream", -  
5109 "stream": "stdout", -  
5110 "text": [ -  
5111 "\n", -  
5112 "(614, -0.42509999999999998, -0.16818749999999999, -0.91064999999999996)" -  
5113 ] -  
5114 }, -  
5115 { -  
5116 "output_type": "stream", -  
5117 "stream": "stdout", -  
5118 "text": [ -  
5119 "\n", -  
5120 "(615, -0.82582499999999992, -0.12967499999999998, -0.073124999999999996)" -  
5121 ] -  
5122 }, -  
5123 { -  
5124 "output_type": "stream", -  
5125 "stream": "stdout", -  
5126 "text": [ -  
5127 "\n", -  
5128 "(616, -0.51821249999999996, 0.50017499999999993, 0.51090000000000002)" -  
5129 ] -  
5130 }, -  
5131 { -  
5132 "output_type": "stream", -  
5133 "stream": "stdout", -  
5134 "text": [ -  
5135 "\n", -  
5136 "(617, 0.62351250000000003, 0.34027499999999999, 0.31589999999999996)" -  
5137 ] -  
5138 }, -  
5139 { -  
5140 "output_type": "stream", -  
5141 "stream": "stdout", -  
5142 "text": [ -  
5143 "\n", -  
5144 "(618, 0.88529999999999998, -0.757575, 0.075075000000000003)" -  
5145 ] -  
5146 }, -  
5147 { -  
5148 "output_type": "stream", -  
5149 "stream": "stdout", -  
5150 "text": [ -  
5151 "\n", -  
5152 "(619, -0.091649999999999995, -0.936975, -0.47872499999999996)" -  
5153 ] -  
5154 }, -  
5155 { -  
5156 "output_type": "stream", -  
5157 "stream": "stdout", -  
5158 "text": [ -  
5159 "\n", -  
5160 "(620, -0.48945, -0.19305, -0.84239999999999993)" -  
5161 ] -  
5162 }, -  
5163 { -  
5164 "output_type": "stream", -  
5165 "stream": "stdout", -  
5166 "text": [ -  
5167 "\n", -  
5168 "(621, -0.876525, 0.18914999999999998, 0.38122499999999998)" -  
5169 ] -  
5170 }, -  
5171 { -  
5172 "output_type": "stream", -  
5173 "stream": "stdout", -  
5174 "text": [ -  
5175 "\n", -  
5176 "(622, 0.37488749999999998, 0.63374999999999992, 0.11992499999999999)" -  
5177 ] -  
5178 }, -  
5179 { -  
5180 "output_type": "stream", -  
5181 "stream": "stdout", -  
5182 "text": [ -  
5183 "\n", -  
5184 "(623, 1.0237499999999999, -0.38024999999999998, 0.18037499999999998)" -  
5185 ] -  
5186 }, -  
5187 { -  
5188 "output_type": "stream", -  
5189 "stream": "stdout", -  
5190 "text": [ -  
5191 "\n", -  
5192 "(624, 0.2383875, -0.99449999999999994, -0.15356249999999999)" -  
5193 ] -  
5194 }, -  
5195 { -  
5196 "output_type": "stream", -  
5197 "stream": "stdout", -  
5198 "text": [ -  
5199 "\n", -  
5200 "(625, -0.83655000000000002, -0.61229999999999996, -0.14235)" -  
5201 ] -  
5202 }, -  
5203 { -  
5204 "output_type": "stream", -  
5205 "stream": "stdout", -  
5206 "text": [ -  
5207 "\n", -  
5208 "(626, -0.79559999999999997, 0.19305, 0.72539999999999993)" -  
5209 ] -  
5210 }, -  
5211 { -  
5212 "output_type": "stream", -  
5213 "stream": "stdout", -  
5214 "text": [ -  
5215 "\n", -  
5216 "(627, 0.13016249999999999, 0.80827499999999997, 0.012674999999999999)" -  
5217 ] -  
5218 }, -  
5219 { -  
5220 "output_type": "stream", -  
5221 "stream": "stdout", -  
5222 "text": [ -  
5223 "\n", -  
5224 "(628, 0.847275, 0.036562499999999998, 0.24082499999999998)" -  
5225 ] -  
5226 }, -  
5227 { -  
5228 "output_type": "stream", -  
5229 "stream": "stdout", -  
5230 "text": [ -  
5231 "\n", -  
5232 "(629, 0.52259999999999995, -0.94477499999999992, -0.0307125)" -  
5233 ] -  
5234 }, -  
5235 { -  
5236 "output_type": "stream", -  
5237 "stream": "stdout", -  
5238 "text": [ -  
5239 "\n", -  
5240 "(630, -0.70589999999999997, -0.39389999999999997, -0.85263749999999994)" -  
5241 ] -  
5242 }, -  
5243 { -  
5244 "output_type": "stream", -  
5245 "stream": "stdout", -  
5246 "text": [ -  
5247 "\n", -  
5248 "(631, -0.70004999999999995, -0.4528875, 0.26422499999999999)" -  
5249 ] -  
5250 }, -  
5251 { -  
5252 "output_type": "stream", -  
5253 "stream": "stdout", -  
5254 "text": [ -  
5255 "\n", -  
5256 "(632, -0.63472499999999998, 0.51285000000000003, 0.58987499999999993)" -  
5257 ] -  
5258 }, -  
5259 { -  
5260 "output_type": "stream", -  
5261 "stream": "stdout", -  
5262 "text": [ -  
5263 "\n", -  
5264 "(633, 0.50895000000000001, 0.81217499999999998, -0.10725)" -  
5265 ] -  
5266 }, -  
5267 { -  
5268 "output_type": "stream", -  
5269 "stream": "stdout", -  
5270 "text": [ -  
5271 "\n", -  
5272 "(634, 0.95647499999999996, -0.474825, 0.59279999999999999)" -  
5273 ] -  
5274 }, -  
5275 { -  
5276 "output_type": "stream", -  
5277 "stream": "stdout", -  
5278 "text": [ -  
5279 "\n", -  
5280 "(635, -0.23887499999999998, -1.0208249999999999, 0.141375)" -  
5281 ] -  
5282 }, -  
5283 { -  
5284 "output_type": "stream", -  
5285 "stream": "stdout", -  
5286 "text": [ -  
5287 "\n", -  
5288 "(636, -0.78097499999999997, -0.40559999999999996, -0.60449999999999993)" -  
5289 ] -  
5290 }, -  
5291 { -  
5292 "output_type": "stream", -  
5293 "stream": "stdout", -  
5294 "text": [ -  
5295 "\n", -  
5296 "(637, -1.022775, -0.12869999999999998, 0.46556249999999999)" -  
5297 ] -  
5298 }, -  
5299 { -  
5300 "output_type": "stream", -  
5301 "stream": "stdout", -  
5302 "text": [ -  
5303 "\n", -  
5304 "(638, -0.56842499999999996, 0.58889999999999998, 0.32077499999999998)" -  
5305 ] -  
5306 }, -  
5307 { -  
5308 "output_type": "stream", -  
5309 "stream": "stdout", -  
5310 "text": [ -  
5311 "\n", -  
5312 "(639, 0.52259999999999995, 0.71954999999999991, -0.07897499999999999)" -  
5313 ] -  
5314 }, -  
5315 { -  
5316 "output_type": "stream", -  
5317 "stream": "stdout", -  
5318 "text": [ -  
5319 "\n", -  
5320 "(640, 0.89115, -0.2145, 0.201825)" -  
5321 ] -  
5322 }, -  
5323 { -  
5324 "output_type": "stream", -  
5325 "stream": "stdout", -  
5326 "text": [ -  
5327 "\n", -  
5328 "(641, 0.6010875, -0.98572499999999996, 0.096525)" -  
5329 ] -  
5330 }, -  
5331 { -  
5332 "output_type": "stream", -  
5333 "stream": "stdout", -  
5334 "text": [ -  
5335 "\n", -  
5336 "(642, -0.215475, -0.99742500000000001, -0.229125)" -  
5337 ] -  
5338 }, -  
5339 { -  
5340 "output_type": "stream", -  
5341 "stream": "stdout", -  
5342 "text": [ -  
5343 "\n", -  
5344 "(643, -0.57914999999999994, -0.40949999999999998, -0.78487499999999999)" -  
5345 ] -  
5346 }, -  
5347 { -  
5348 "output_type": "stream", -  
5349 "stream": "stdout", -  
5350 "text": [ -  
5351 "\n", -  
5352 "(644, -0.68445, -0.25642500000000001, -0.039)" -  
5353 ] -  
5354 }, -  
5355 { -  
5356 "output_type": "stream", -  
5357 "stream": "stdout", -  
5358 "text": [ -  
5359 "\n", -  
5360 "(645, -0.8097375, 0.43777499999999997, 0.56745000000000001)" -  
5361 ] -  
5362 }, -  
5363 { -  
5364 "output_type": "stream", -  
5365 "stream": "stdout", -  
5366 "text": [ -  
5367 "\n", -  
5368 "(646, 0.75952500000000001, 0.37342500000000001, 0.40365000000000001)" -  
5369 ] -  
5370 }, -  
5371 { -  
5372 "output_type": "stream", -  
5373 "stream": "stdout", -  
5374 "text": [ -  
5375 "\n", -  
5376 "(647, 0.77463749999999998, -0.90187499999999998, 0.27202499999999996)" -  
5377 ] -  
5378 }, -  
5379 { -  
5380 "output_type": "stream", -  
5381 "stream": "stdout", -  
5382 "text": [ -  
5383 "\n", -  
5384 "(648, -0.079949999999999993, -0.91357499999999991, -0.54210000000000003)" -  
5385 ] -  
5386 }, -  
5387 { -  
5388 "output_type": "stream", -  
5389 "stream": "stdout", -  
5390 "text": [ -  
5391 "\n", -  
5392 "(649, -0.63959999999999995, -0.50651250000000003, -0.78584999999999994)" -  
5393 ] -  
5394 }, -  
5395 { -  
5396 "output_type": "stream", -  
5397 "stream": "stdout", -  
5398 "text": [ -  
5399 "\n", -  
5400 "(650, -0.667875, -0.24764999999999998, 0.33539999999999998)" -  
5401 ] -  
5402 }, -  
5403 { -  
5404 "output_type": "stream", -  
5405 "stream": "stdout", -  
5406 "text": [ -  
5407 "\n", -  
5408 "(651, -0.69517499999999999, 0.33344999999999997, 0.52113750000000003)" -  
5409 ] -  
5410 }, -  
5411 { -  
5412 "output_type": "stream", -  
5413 "stream": "stdout", -  
5414 "text": [ -  
5415 "\n", -  
5416 "(652, 0.40657499999999996, 0.33929999999999999, 0.44069999999999998)" -  
5417 ] -  
5418 }, -  
5419 { -  
5420 "output_type": "stream", -  
5421 "stream": "stdout", -  
5422 "text": [ -  
5423 "\n", -  
5424 "(653, 0.92478749999999998, -0.8536125, 0.052649999999999995)" -  
5425 ] -  
5426 }, -  
5427 { -  
5428 "output_type": "stream", -  
5429 "stream": "stdout", -  
5430 "text": [ -  
5431 "\n", -  
5432 "(654, 0.15015000000000001, -0.96134999999999993, -0.57037499999999997)" -  
5433 ] -  
5434 }, -  
5435 { -  
5436 "output_type": "stream", -  
5437 "stream": "stdout", -  
5438 "text": [ -  
5439 "\n", -  
5440 "(655, -0.77073749999999996, -0.24959999999999999, -1.0032749999999999)" -  
5441 ] -  
5442 }, -  
5443 { -  
5444 "output_type": "stream", -  
5445 "stream": "stdout", -  
5446 "text": [ -  
5447 "\n", -  
5448 "(656, -0.52893749999999995, -0.46604999999999996, -0.047774999999999998)" -  
5449 ] -  
5450 }, -  
5451 { -  
5452 "output_type": "stream", -  
5453 "stream": "stdout", -  
5454 "text": [ -  
5455 "\n", -  
5456 "(657, -0.66884999999999994, -0.3046875, 0.905775)" -  
5457 ] -  
5458 }, -  
5459 { -  
5460 "output_type": "stream", -  
5461 "stream": "stdout", -  
5462 "text": [ -  
5463 "\n", -  
5464 "(658, 0.47433749999999997, 0.54794999999999994, 0.25642500000000001)" -  
5465 ] -  
5466 }, -  
5467 { -  
5468 "output_type": "stream", -  
5469 "stream": "stdout", -  
5470 "text": [ -  
5471 "\n", -  
5472 "(659, 0.85117500000000001, -0.28567500000000001, 0.231075)" -  
5473 ] -  
5474 }, -  
5475 { -  
5476 "output_type": "stream", -  
5477 "stream": "stdout", -  
5478 "text": [ -  
5479 "\n", -  
5480 "(660, 0.45873749999999996, -0.96329999999999993, -0.54502499999999998)" -  
5481 ] -  
5482 }, -  
5483 { -  
5484 "output_type": "stream", -  
5485 "stream": "stdout", -  
5486 "text": [ -  
5487 "\n", -  
5488 "(661, -0.45922499999999999, -0.638625, -0.79706250000000001)" -  
5489 ] -  
5490 }, -  
5491 { -  
5492 "output_type": "stream", -  
5493 "stream": "stdout", -  
5494 "text": [ -  
5495 "\n", -  
5496 "(662, -0.27299999999999996, -0.37196249999999997, -0.9764624999999999)" -  
5497 ] -  
5498 }, -  
5499 { -  
5500 "output_type": "stream", -  
5501 "stream": "stdout", -  
5502 "text": [ -  
5503 "\n", -  
5504 "(663, -0.86677499999999996, 0.32955000000000001, 0.041924999999999997)" -  
5505 ] -  
5506 }, -  
5507 { -  
5508 "output_type": "stream", -  
5509 "stream": "stdout", -  
5510 "text": [ -  
5511 "\n", -  
5512 "(664, -0.36757499999999999, 0.84142499999999998, 0.24277499999999999)" -  
5513 ] -  
5514 }, -  
5515 { -  
5516 "output_type": "stream", -  
5517 "stream": "stdout", -  
5518 "text": [ -  
5519 "\n", -  
5520 "(665, 0.476775, 0.43582499999999996, 0.67079999999999995)" -  
5521 ] -  
5522 }, -  
5523 { -  
5524 "output_type": "stream", -  
5525 "stream": "stdout", -  
5526 "text": [ -  
5527 "\n", -  
5528 "(666, 0.5425875, -0.65032499999999993, 0.31979999999999997)" -  
5529 ] -  
5530 }, -  
5531 { -  
5532 "output_type": "stream", -  
5533 "stream": "stdout", -  
5534 "text": [ -  
5535 "\n", -  
5536 "(667, 0.2442375, -1.0997999999999999, -0.32467499999999999)" -  
5537 ] -  
5538 }, -  
5539 { -  
5540 "output_type": "stream", -  
5541 "stream": "stdout", -  
5542 "text": [ -  
5543 "\n", -  
5544 "(668, -0.68981249999999994, -0.32174999999999998, -0.29542499999999999)" -  
5545 ] -  
5546 }, -  
5547 { -  
5548 "output_type": "stream", -  
5549 "stream": "stdout", -  
5550 "text": [ -  
5551 "\n", -  
5552 "(669, -0.77902499999999997, -0.083849999999999994, -0.26617499999999999)" -  
5553 ] -  
5554 }, -  
5555 { -  
5556 "output_type": "stream", -  
5557 "stream": "stdout", -  
5558 "text": [ -  
5559 "\n", -  
5560 "(670, -0.91942499999999994, 0.342225, 0.72539999999999993)" -  
5561 ] -  
5562 }, -  
5563 { -  
5564 "output_type": "stream", -  
5565 "stream": "stdout", -  
5566 "text": [ -  
5567 "\n", -  
5568 "(671, 0.13649999999999998, 0.86969999999999992, 0.29347499999999999)" -  
5569 ] -  
5570 }, -  
5571 { -  
5572 "output_type": "stream", -  
5573 "stream": "stdout", -  
5574 "text": [ -  
5575 "\n", -  
5576 "(672, 0.41437499999999999, 0.92527499999999996, -0.51869999999999994)" -  
5577 ] -  
5578 }, -  
5579 { -  
5580 "output_type": "stream", -  
5581 "stream": "stdout", -  
5582 "text": [ -  
5583 "\n", -  
5584 "(673, 0.28567500000000001, 0.98377499999999996, -0.42509999999999998)" -  
5585 ] -  
5586 }, -  
5587 { -  
5588 "output_type": "stream", -  
5589 "stream": "stdout", -  
5590 "text": [ -  
5591 "\n", -  
5592 "(674, -0.26763749999999997, 0.30858749999999996, -0.83118749999999997)" -  
5593 ] -  
5594 }, -  
5595 { -  
5596 "output_type": "stream", -  
5597 "stream": "stdout", -  
5598 "text": [ -  
5599 "\n", -  
5600 "(675, -0.69176249999999995, -0.53137499999999993, -0.63569999999999993)" -  
5601 ] -  
5602 }, -  
5603 { -  
5604 "output_type": "stream", -  
5605 "stream": "stdout", -  
5606 "text": [ -  
5607 "\n", -  
5608 "(676, 0.1642875, -0.91064999999999996, -0.077024999999999996)" -  
5609 ] -  
5610 }, -  
5611 { -  
5612 "output_type": "stream", -  
5613 "stream": "stdout", -  
5614 "text": [ -  
5615 "\n", -  
5616 "(677, 0.49432499999999996, -0.88724999999999998, 0.062399999999999997)" -  
5617 ] -  
5618 }, -  
5619 { -  
5620 "output_type": "stream", -  
5621 "stream": "stdout", -  
5622 "text": [ -  
5623 "\n", -  
5624 "(678, 0.55818749999999995, -0.76537499999999992, 0.43874999999999997)" -  
5625 ] -  
5626 }, -  
5627 { -  
5628 "output_type": "stream", -  
5629 "stream": "stdout", -  
5630 "text": [ -  
5631 "\n", -  
5632 "(679, 0.58987499999999993, -0.79267500000000002, 0.18037499999999998)" -  
5633 ] -  
5634 }, -  
5635 { -  
5636 "output_type": "stream", -  
5637 "stream": "stdout", -  
5638 "text": [ -  
5639 "\n", -  
5640 "(680, 0.62497499999999995, -0.68883749999999999, -0.37732499999999997)" -  
5641 ] -  
5642 }, -  
5643 { -  
5644 "output_type": "stream", -  
5645 "stream": "stdout", -  
5646 "text": [ -  
5647 "\n", -  
5648 "(681, 0.68835000000000002, -0.68152499999999994, -0.31492500000000001)" -  
5649 ] -  
5650 }, -  
5651 { -  
5652 "output_type": "stream", -  
5653 "stream": "stdout", -  
5654 "text": [ -  
5655 "\n", -  
5656 "(682, 0.80924999999999991, -0.41144999999999998, -0.25447500000000001)" -  
5657 ] -  
5658 }, -  
5659 { -  
5660 "output_type": "stream", -  
5661 "stream": "stdout", -  
5662 "text": [ -  
5663 "\n", -  
5664 "(683, 0.88529999999999998, -0.35977499999999996, -0.11895)" -  
5665 ] -  
5666 }, -  
5667 { -  
5668 "output_type": "stream", -  
5669 "stream": "stdout", -  
5670 "text": [ -  
5671 "\n", -  
5672 "(684, 0.92576249999999993, -0.13747499999999999, 0.48798749999999996)" -  
5673 ] -  
5674 }, -  
5675 { -  
5676 "output_type": "stream", -  
5677 "stream": "stdout", -  
5678 "text": [ -  
5679 "\n", -  
5680 "(685, 0.56793749999999998, 0.10529999999999999, 0.95647499999999996)" -  
5681 ] -  
5682 }, -  
5683 { -  
5684 "output_type": "stream", -  
5685 "stream": "stdout", -  
5686 "text": [ -  
5687 "\n", -  
5688 "(686, 0.28226249999999997, 0.16038749999999999, 0.91357499999999991)" -  
5689 ] -  
5690 }, -  
5691 { -  
5692 "output_type": "stream", -  
5693 "stream": "stdout", -  
5694 "text": [ -  
5695 "\n", -  
5696 "(687, 0.19889999999999999, 0.192075, 0.936975)" -  
5697 ] -  
5698 }, -  
5699 { -  
5700 "output_type": "stream", -  
5701 "stream": "stdout", -  
5702 "text": [ -  
5703 "\n", -  
5704 "(688, 0.057525, 0.20328749999999998, 0.876525)" -  
5705 ] -  
5706 }, -  
5707 { -  
5708 "output_type": "stream", -  
5709 "stream": "stdout", -  
5710 "text": [ -  
5711 "\n", -  
5712 "(689, -0.51772499999999999, 0.074099999999999999, 0.74490000000000001)" -  
5713 ] -  
5714 }, -  
5715 { -  
5716 "output_type": "stream", -  
5717 "stream": "stdout", -  
5718 "text": [ -  
5719 "\n", -  
5720 "(690, -0.70589999999999997, -0.058499999999999996, 0.64593749999999994)" -  
5721 ] -  
5722 }, -  
5723 { -  
5724 "output_type": "stream", -  
5725 "stream": "stdout", -  
5726 "text": [ -  
5727 "\n", -  
5728 "(691, -0.82241249999999999, -0.22717499999999999, 0.20669999999999999)" -  
5729 ] -  
5730 }, -  
5731 { -  
5732 "output_type": "stream", -  
5733 "stream": "stdout", -  
5734 "text": [ -  
5735 "\n", -  
5736 "(692, -0.77268749999999997, -0.60644999999999993, -0.59182499999999993)" -  
5737 ] -  
5738 }, -  
5739 { -  
5740 "output_type": "stream", -  
5741 "stream": "stdout", -  
5742 "text": [ -  
5743 "\n", -  
5744 "(693, -0.37245, -0.41242499999999999, -0.94964999999999999)" -  
5745 ] -  
5746 }, -  
5747 { -  
5748 "output_type": "stream", -  
5749 "stream": "stdout", -  
5750 "text": [ -  
5751 "\n", -  
5752 "(694, -0.48262499999999997, -0.050699999999999995, -0.88237499999999991)" -  
5753 ] -  
5754 }, -  
5755 { -  
5756 "output_type": "stream", -  
5757 "stream": "stdout", -  
5758 "text": [ -  
5759 "\n", -  
5760 "(695, -0.50017499999999993, -0.13552500000000001, -0.72052499999999997)" -  
5761 ] -  
5762 }, -  
5763 { -  
5764 "output_type": "stream", -  
5765 "stream": "stdout", -  
5766 "text": [ -  
5767 "\n", -  
5768 "(696, -0.83655000000000002, -0.4914, 0.061912499999999995)" -  
5769 ] -  
5770 }, -  
5771 { -  
5772 "output_type": "stream", -  
5773 "stream": "stdout", -  
5774 "text": [ -  
5775 "\n", -  
5776 "(697, -0.86774999999999991, -0.3705, 0.66884999999999994)" -  
5777 ] -  
5778 }, -  
5779 { -  
5780 "output_type": "stream", -  
5781 "stream": "stdout", -  
5782 "text": [ -  
5783 "\n", -  
5784 "(698, -0.36757499999999999, 0.41144999999999998, 0.84873749999999992)" -  
5785 ] -  
5786 }, -  
5787 { -  
5788 "output_type": "stream", -  
5789 "stream": "stdout", -  
5790 "text": [ -  
5791 "\n", -  
5792 "(699, 0.36562499999999998, 0.59767499999999996, 0.57914999999999994)" -  
5793 ] -  
5794 }, -  
5795 { -  
5796 "output_type": "stream", -  
5797 "stream": "stdout", -  
5798 "text": [ -  
5799 "\n", -  
5800 "(700, 0.67567499999999991, 0.281775, 0.4528875)" -  
5801 ] -  
5802 }, -  
5803 { -  
5804 "output_type": "stream", -  
5805 "stream": "stdout", -  
5806 "text": [ -  
5807 "\n", -  
5808 "(701, 0.88432499999999992, -0.20085, 0.18037499999999998)" -  
5809 ] -  
5810 }, -  
5811 { -  
5812 "output_type": "stream", -  
5813 "stream": "stdout", -  
5814 "text": [ -  
5815 "\n", -  
5816 "(702, 0.85799999999999998, -0.56696249999999992, -0.43777499999999997)" -  
5817 ] -  
5818 }, -  
5819 { -  
5820 "output_type": "stream", -  
5821 "stream": "stdout", -  
5822 "text": [ -  
5823 "\n", -  
5824 "(703, 0.51869999999999994, -0.48603749999999996, -0.89115)" -  
5825 ] -  
5826 }, -  
5827 { -  
5828 "output_type": "stream", -  
5829 "stream": "stdout", -  
5830 "text": [ -  
5831 "\n", -  
5832 "(704, 0.23399999999999999, -0.094574999999999992, -1.0237499999999999)" -  
5833 ] -  
5834 }, -  
5835 { -  
5836 "output_type": "stream", -  
5837 "stream": "stdout", -  
5838 "text": [ -  
5839 "\n", -  
5840 "(705, 0.29054999999999997, 0.0038999999999999998, -1.0042499999999999)" -  
5841 ] -  
5842 }, -  
5843 { -  
5844 "output_type": "stream", -  
5845 "stream": "stdout", -  
5846 "text": [ -  
5847 "\n", -  
5848 "(706, 0.44655, 0.07897499999999999, -0.85312499999999991)" -  
5849 ] -  
5850 }, -  
5851 { -  
5852 "output_type": "stream", -  
5853 "stream": "stdout", -  
5854 "text": [ -  
5855 "\n", -  
5856 "(707, 0.76829999999999998, -0.032174999999999995, -0.42217499999999997)" -  
5857 ] -  
5858 }, -  
5859 { -  
5860 "output_type": "stream", -  
5861 "stream": "stdout", -  
5862 "text": [ -  
5863 "\n", -  
5864 "(708, 0.90674999999999994, -0.283725, -0.054599999999999996)" -  
5865 ] -  
5866 }, -  
5867 { -  
5868 "output_type": "stream", -  
5869 "stream": "stdout", -  
5870 "text": [ -  
5871 "\n", -  
5872 "(709, 0.91649999999999998, -0.35977499999999996, -0.024374999999999997)" -  
5873 ] -  
5874 }, -  
5875 { -  
5876 "output_type": "stream", -  
5877 "stream": "stdout", -  
5878 "text": [ -  
5879 "\n", -  
5880 "(710, 0.84191249999999995, -0.57914999999999994, -0.18719999999999998)" -  
5881 ] -  
5882 }, -  
5883 { -  
5884 "output_type": "stream", -  
5885 "stream": "stdout", -  
5886 "text": [ -  
5887 "\n", -  
5888 "(711, 0.30907499999999999, -1.0247249999999999, 0.072149999999999992)" -  
5889 ] -  
5890 }, -  
5891 { -  
5892 "output_type": "stream", -  
5893 "stream": "stdout", -  
5894 "text": [ -  
5895 "\n", -  
5896 "(712, -0.33247499999999997, -1.0101, -0.15209999999999999)" -  
5897 ] -  
5898 }, -  
5899 { -  
5900 "output_type": "stream", -  
5901 "stream": "stdout", -  
5902 "text": [ -  
5903 "\n", -  
5904 "(713, -0.46361249999999998, -1.1075999999999999, -0.23302499999999998)" -  
5905 ] -  
5906 }, -  
5907 { -  
5908 "output_type": "stream", -  
5909 "stream": "stdout", -  
5910 "text": [ -  
5911 "\n", -  
5912 "(714, -0.45483750000000001, -0.60449999999999993, -0.92771249999999994)" -  
5913 ] -  
5914 }, -  
5915 { -  
5916 "output_type": "stream", -  
5917 "stream": "stdout", -  
5918 "text": [ -  
5919 "\n", -  
5920 "(715, -0.03705, -0.43095, -0.83655000000000002)" -  
5921 ] -  
5922 }, -  
5923 { -  
5924 "output_type": "stream", -  
5925 "stream": "stdout", -  
5926 "text": [ -  
5927 "\n", -  
5928 "(716, -0.40559999999999996, -0.37586249999999999, -0.67957499999999993)" -  
5929 ] -  
5930 }, -  
5931 { -  
5932 "output_type": "stream", -  
5933 "stream": "stdout", -  
5934 "text": [ -  
5935 "\n", -  
5936 "(717, -0.91649999999999998, -0.28762499999999996, 0.044850000000000001)" -  
5937 ] -  
5938 }, -  
5939 { -  
5940 "output_type": "stream", -  
5941 "stream": "stdout", -  
5942 "text": [ -  
5943 "\n", -  
5944 "(718, -0.83655000000000002, 0.11895, 0.76634999999999998)" -  
5945 ] -  
5946 }, -  
5947 { -  
5948 "output_type": "stream", -  
5949 "stream": "stdout", -  
5950 "text": [ -  
5951 "\n", -  
5952 "(719, -0.014137499999999999, 0.70297500000000002, 0.5655)" -  
5953 ] -  
5954 }, -  
5955 { -  
5956 "output_type": "stream", -  
5957 "stream": "stdout", -  
5958 "text": [ -  
5959 "\n", -  
5960 "(720, 0.58402500000000002, 0.59133749999999996, 0.58694999999999997)" -  
5961 ] -  
5962 }, -  
5963 { -  
5964 "output_type": "stream", -  
5965 "stream": "stdout", -  
5966 "text": [ -  
5967 "\n", -  
5968 "(721, 0.87847500000000001, 0.056549999999999996, 0.162825)" -  
5969 ] -  
5970 }, -  
5971 { -  
5972 "output_type": "stream", -  
5973 "stream": "stdout", -  
5974 "text": [ -  
5975 "\n", -  
5976 "(722, 0.85604999999999998, -0.56842499999999996, -0.57427499999999998)" -  
5977 ] -  
5978 }, -  
5979 { -  
5980 "output_type": "stream", -  
5981 "stream": "stdout", -  
5982 "text": [ -  
5983 "\n", -  
5984 "(723, 0.23497499999999999, -0.67469999999999997, -0.78389999999999993)" -  
5985 ] -  
5986 }, -  
5987 { -  
5988 "output_type": "stream", -  
5989 "stream": "stdout", -  
5990 "text": [ -  
5991 "\n", -  
5992 "(724, 0.17647499999999999, -0.48945, -0.85848749999999996)" -  
5993 ] -  
5994 }, -  
5995 { -  
5996 "output_type": "stream", -  
5997 "stream": "stdout", -  
5998 "text": [ -  
5999 "\n", -  
6000 "(725, -0.19109999999999999, -0.43582499999999996, -0.89017499999999994)" -  
6001 ] -  
6002 }, -  
6003 { -  
6004 "output_type": "stream", -  
6005 "stream": "stdout", -  
6006 "text": [ -  
6007 "\n", -  
6008 "(726, -0.58597500000000002, -0.36854999999999999, -0.46994999999999998)" -  
6009 ] -  
6010 }, -  
6011 { -  
6012 "output_type": "stream", -  
6013 "stream": "stdout", -  
6014 "text": [ -  
6015 "\n", -  
6016 "(727, -0.96817500000000001, -0.33052499999999996, 0.077024999999999996)" -  
6017 ] -  
6018 }, -  
6019 { -  
6020 "output_type": "stream", -  
6021 "stream": "stdout", -  
6022 "text": [ -  
6023 "\n", -  
6024 "(728, -0.83849999999999991, -0.56062499999999993, 0.252525)" -  
6025 ] -  
6026 }, -  
6027 { -  
6028 "output_type": "stream", -  
6029 "stream": "stdout", -  
6030 "text": [ -  
6031 "\n", -  
6032 "(729, -0.71565000000000001, -0.60791249999999997, 0.58499999999999996)" -  
6033 ] -  
6034 }, -  
6035 { -  
6036 "output_type": "stream", -  
6037 "stream": "stdout", -  
6038 "text": [ -  
6039 "\n", -  
6040 "(730, -0.21937499999999999, -0.62692499999999995, 0.80924999999999991)" -  
6041 ] -  
6042 }, -  
6043 { -  
6044 "output_type": "stream", -  
6045 "stream": "stdout", -  
6046 "text": [ -  
6047 "\n", -  
6048 "(731, -0.49529999999999996, -0.26519999999999999, 0.95939999999999992)" -  
6049 ] -  
6050 }, -  
6051 { -  
6052 "output_type": "stream", -  
6053 "stream": "stdout", -  
6054 "text": [ -  
6055 "\n", -  
6056 "(732, -0.10725, 0.20279999999999998, 0.87164999999999992)" -  
6057 ] -  
6058 }, -  
6059 { -  
6060 "output_type": "stream", -  
6061 "stream": "stdout", -  
6062 "text": [ -  
6063 "\n", -  
6064 "(733, 0.44898749999999998, 0.56745000000000001, 0.44167499999999998)" -  
6065 ] -  
6066 }, -  
6067 { -  
6068 "output_type": "stream", -  
6069 "stream": "stdout", -  
6070 "text": [ -  
6071 "\n", -  
6072 "(734, 0.62546249999999992, 0.44849999999999995, 0.29152499999999998)" -  
6073 ] -  
6074 }, -  
6075 { -  
6076 "output_type": "stream", -  
6077 "stream": "stdout", -  
6078 "text": [ -  
6079 "\n", -  
6080 "(735, 0.89602499999999996, -0.54015000000000002, -0.37634999999999996)" -  
6081 ] -  
6082 }, -  
6083 { -  
6084 "output_type": "stream", -  
6085 "stream": "stdout", -  
6086 "text": [ -  
6087 "\n", -  
6088 "(736, 0.30956249999999996, -0.53917499999999996, -0.936975)" -  
6089 ] -  
6090 }, -  
6091 { -  
6092 "output_type": "stream", -  
6093 "stream": "stdout", -  
6094 "text": [ -  
6095 "\n", -  
6096 "(737, 0.10335, -0.064349999999999991, -0.89699999999999991)" -  
6097 ] -  
6098 }, -  
6099 { -  
6100 "output_type": "stream", -  
6101 "stream": "stdout", -  
6102 "text": [ -  
6103 "\n", -  
6104 "(738, 0.69224999999999992, -0.25934999999999997, -0.33247499999999997)" -  
6105 ] -  
6106 }, -  
6107 { -  
6108 "output_type": "stream", -  
6109 "stream": "stdout", -  
6110 "text": [ -  
6111 "\n", -  
6112 "(739, 0.75513750000000002, -0.65081250000000002, 0.27787499999999998)" -  
6113 ] -  
6114 }, -  
6115 { -  
6116 "output_type": "stream", -  
6117 "stream": "stdout", -  
6118 "text": [ -  
6119 "\n", -  
6120 "(740, 0.20962499999999998, -1.0437375, 0.0038999999999999998)" -  
6121 ] -  
6122 }, -  
6123 { -  
6124 "output_type": "stream", -  
6125 "stream": "stdout", -  
6126 "text": [ -  
6127 "\n", -  
6128 "(741, -0.223275, -0.87847500000000001, -0.14332499999999998)" -  
6129 ] -  
6130 }, -  
6131 { -  
6132 "output_type": "stream", -  
6133 "stream": "stdout", -  
6134 "text": [ -  
6135 "\n", -  
6136 "(742, -0.55623749999999994, -0.84044999999999992, -0.16574999999999998)" -  
6137 ] -  
6138 }, -  
6139 { -  
6140 "output_type": "stream", -  
6141 "stream": "stdout", -  
6142 "text": [ -  
6143 "\n", -  
6144 "(743, -0.70784999999999998, -0.70394999999999996, -0.23399999999999999)" -  
6145 ] -  
6146 }, -  
6147 { -  
6148 "output_type": "stream", -  
6149 "stream": "stdout", -  
6150 "text": [ -  
6151 "\n", -  
6152 "(744, -0.77999999999999992, -0.69127499999999997, -0.64057500000000001)" -  
6153 ] -  
6154 }, -  
6155 { -  
6156 "output_type": "stream", -  
6157 "stream": "stdout", -  
6158 "text": [ -  
6159 "\n", -  
6160 "(745, -0.55769999999999997, -0.49724999999999997, -0.63472499999999998)" -  
6161 ] -  
6162 }, -  
6163 { -  
6164 "output_type": "stream", -  
6165 "stream": "stdout", -  
6166 "text": [ -  
6167 "\n", -  
6168 "(746, -0.53137499999999993, -0.46604999999999996, -0.86092499999999994)" -  
6169 ] -  
6170 }, -  
6171 { -  
6172 "output_type": "stream", -  
6173 "stream": "stdout", -  
6174 "text": [ -  
6175 "\n", -  
6176 "(747, -0.47872499999999996, -0.49578749999999999, -0.78779999999999994)" -  
6177 ] -  
6178 }, -  
6179 { -  
6180 "output_type": "stream", -  
6181 "stream": "stdout", -  
6182 "text": [ -  
6183 "\n", -  
6184 "(748, -0.49237499999999995, -0.39389999999999997, -0.82289999999999996)" -  
6185 ] -  
6186 }, -  
6187 { -  
6188 "output_type": "stream", -  
6189 "stream": "stdout", -  
6190 "text": [ -  
6191 "\n", -  
6192 "(749, -0.48701249999999996, -0.36123749999999999, -0.99742500000000001)" -  
6193 ] -  
6194 }, -  
6195 { -  
6196 "output_type": "stream", -  
6197 "stream": "stdout", -  
6198 "text": [ -  
6199 "\n", -  
6200 "(750, -0.064349999999999991, -0.16136249999999999, -1.0295999999999998)" -  
6201 ] -  
6202 }, -  
6203 { -  
6204 "output_type": "stream", -  
6205 "stream": "stdout", -  
6206 "text": [ -  
6207 "\n", -  
6208 "(751, 0.40462499999999996, -0.27592499999999998, -0.77561249999999993)" -  
6209 ] -  
6210 }, -  
6211 { -  
6212 "output_type": "stream", -  
6213 "stream": "stdout", -  
6214 "text": [ -  
6215 "\n", -  
6216 "(752, 0.86336249999999992, -0.35880000000000001, 0.025349999999999998)" -  
6217 ] -  
6218 }, -  
6219 { -  
6220 "output_type": "stream", -  
6221 "stream": "stdout", -  
6222 "text": [ -  
6223 "\n", -  
6224 "(753, 0.68542499999999995, -0.49822499999999997, 0.53332499999999994)" -  
6225 ] -  
6226 }, -  
6227 { -  
6228 "output_type": "stream", -  
6229 "stream": "stdout", -  
6230 "text": [ -  
6231 "\n", -  
6232 "(754, 0.28762499999999996, -0.40949999999999998, 1.0071749999999999)" -  
6233 ] -  
6234 }, -  
6235 { -  
6236 "output_type": "stream", -  
6237 "stream": "stdout", -  
6238 "text": [ -  
6239 "\n", -  
6240 "(755, -0.15404999999999999, -0.45922499999999999, 0.83460000000000001)" -  
6241 ] -  
6242 }, -  
6243 { -  
6244 "output_type": "stream", -  
6245 "stream": "stdout", -  
6246 "text": [ -  
6247 "\n", -  
6248 "(756, -0.22863749999999999, -0.65032499999999993, 0.78487499999999999)" -  
6249 ] -  
6250 }, -  
6251 { -  
6252 "output_type": "stream", -  
6253 "stream": "stdout", -  
6254 "text": [ -  
6255 "\n", -  
6256 "(757, 0.046799999999999994, -0.82777499999999993, 0.20669999999999999)" -  
6257 ] -  
6258 }, -  
6259 { -  
6260 "output_type": "stream", -  
6261 "stream": "stdout", -  
6262 "text": [ -  
6263 "\n", -  
6264 "(758, 0.036074999999999996, -1.0588499999999998, 0.061425)" -  
6265 ] -  
6266 }, -  
6267 { -  
6268 "output_type": "stream", -  
6269 "stream": "stdout", -  
6270 "text": [ -  
6271 "\n", -  
6272 "(759, -0.070199999999999999, -0.97158749999999994, -0.075075000000000003)" -  
6273 ] -  
6274 }, -  
6275 { -  
6276 "output_type": "stream", -  
6277 "stream": "stdout", -  
6278 "text": [ -  
6279 "\n", -  
6280 "(760, -0.19597499999999998, -0.667875, -0.68542499999999995)" -  
6281 ] -  
6282 }, -  
6283 { -  
6284 "output_type": "stream", -  
6285 "stream": "stdout", -  
6286 "text": [ -  
6287 "\n", -  
6288 "(761, -0.33101249999999999, -0.64252500000000001, -0.54210000000000003)" -  
6289 ] -  
6290 }, -  
6291 { -  
6292 "output_type": "stream", -  
6293 "stream": "stdout", -  
6294 "text": [ -  
6295 "\n", -  
6296 "(762, -0.48749999999999999, -0.83557499999999996, -0.20085)" -  
6297 ] -  
6298 }, -  
6299 { -  
6300 "output_type": "stream", -  
6301 "stream": "stdout", -  
6302 "text": [ -  
6303 "\n", -  
6304 "(763, -0.52747500000000003, -0.81168750000000001, -0.063375000000000001)" -  
6305 ] -  
6306 }, -  
6307 { -  
6308 "output_type": "stream", -  
6309 "stream": "stdout", -  
6310 "text": [ -  
6311 "\n", -  
6312 "(764, -0.74879999999999991, -0.50407499999999994, -0.624)" -  
6313 ] -  
6314 }, -  
6315 { -  
6316 "output_type": "stream", -  
6317 "stream": "stdout", -  
6318 "text": [ -  
6319 "\n", -  
6320 "(765, -0.60254999999999992, 0.054599999999999996, -0.98767499999999997)" -  
6321 ] -  
6322 }, -  
6323 { -  
6324 "output_type": "stream", -  
6325 "stream": "stdout", -  
6326 "text": [ -  
6327 "\n", -  
6328 "(766, 0.068737499999999993, 0.29493749999999996, -1.0295999999999998)" -  
6329 ] -  
6330 }, -  
6331 { -  
6332 "output_type": "stream", -  
6333 "stream": "stdout", -  
6334 "text": [ -  
6335 "\n", -  
6336 "(767, 0.1701375, 0.2452125, -1.0807875)" -  
6337 ] -  
6338 }, -  
6339 { -  
6340 "output_type": "stream", -  
6341 "stream": "stdout", -  
6342 "text": [ -  
6343 "\n", -  
6344 "(768, 0.66592499999999999, -0.42119999999999996, -0.19305)" -  
6345 ] -  
6346 }, -  
6347 { -  
6348 "output_type": "stream", -  
6349 "stream": "stdout", -  
6350 "text": [ -  
6351 "\n", -  
6352 "(769, 0.57329999999999992, -0.75074999999999992, 0.40754999999999997)" -  
6353 ] -  
6354 }, -  
6355 { -  
6356 "output_type": "stream", -  
6357 "stream": "stdout", -  
6358 "text": [ -  
6359 "\n", -  
6360 "(770, 0.8931, -0.100425, -0.67567499999999991)" -  
6361 ] -  
6362 }, -  
6363 { -  
6364 "output_type": "stream", -  
6365 "stream": "stdout", -  
6366 "text": [ -  
6367 "\n", -  
6368 "(771, 0.18914999999999998, 0.45434999999999998, -0.99449999999999994)" -  
6369 ] -  
6370 }, -  
6371 { -  
6372 "output_type": "stream", -  
6373 "stream": "stdout", -  
6374 "text": [ -  
6375 "\n", -  
6376 "(772, -0.62643749999999998, -0.11992499999999999, -0.56940000000000002)" -  
6377 ] -  
6378 }, -  
6379 { -  
6380 "output_type": "stream", -  
6381 "stream": "stdout", -  
6382 "text": [ -  
6383 "\n", -  
6384 "(773, -0.76781250000000001, -0.52357500000000001, -0.21157499999999999)" -  
6385 ] -  
6386 }, -  
6387 { -  
6388 "output_type": "stream", -  
6389 "stream": "stdout", -  
6390 "text": [ -  
6391 "\n", -  
6392 "(774, -0.74002499999999993, -0.60693750000000002, 0.1408875)" -  
6393 ] -  
6394 }, -  
6395 { -  
6396 "output_type": "stream", -  
6397 "stream": "stdout", -  
6398 "text": [ -  
6399 "\n", -  
6400 "(775, -0.41339999999999999, -0.56745000000000001, 0.57329999999999992)" -  
6401 ] -  
6402 }, -  
6403 { -  
6404 "output_type": "stream", -  
6405 "stream": "stdout", -  
6406 "text": [ -  
6407 "\n", -  
6408 "(776, -0.16672499999999998, -0.66056249999999994, 0.69809999999999994)" -  
6409 ] -  
6410 }, -  
6411 { -  
6412 "output_type": "stream", -  
6413 "stream": "stdout", -  
6414 "text": [ -  
6415 "\n", -  
6416 "(777, 0.037537500000000001, -0.61619999999999997, 0.78779999999999994)" -  
6417 ] -  
6418 }, -  
6419 { -  
6420 "output_type": "stream", -  
6421 "stream": "stdout", -  
6422 "text": [ -  
6423 "\n", -  
6424 "(778, 0.099937499999999999, -0.53234999999999999, 0.8034)" -  
6425 ] -  
6426 }, -  
6427 { -  
6428 "output_type": "stream", -  
6429 "stream": "stdout", -  
6430 "text": [ -  
6431 "\n", -  
6432 "(779, 0.034124999999999996, -0.50017499999999993, 0.81119999999999992)" -  
6433 ] -  
6434 }, -  
6435 { -  
6436 "output_type": "stream", -  
6437 "stream": "stdout", -  
6438 "text": [ -  
6439 "\n", -  
6440 "(780, 0.12479999999999999, -0.37342500000000001, 0.75952500000000001)" -  
6441 ] -  
6442 }, -  
6443 { -  
6444 "output_type": "stream", -  
6445 "stream": "stdout", -  
6446 "text": [ -  
6447 "\n", -  
6448 "(781, 0.1326, -0.50505, 0.82192500000000002)" -  
6449 ] -  
6450 }, -  
6451 { -  
6452 "output_type": "stream", -  
6453 "stream": "stdout", -  
6454 "text": [ -  
6455 "\n", -  
6456 "(782, 0.16965, -0.41437499999999999, 0.94769999999999999)" -  
6457 ] -  
6458 }, -  
6459 { -  
6460 "output_type": "stream", -  
6461 "stream": "stdout", -  
6462 "text": [ -  
6463 "\n", -  
6464 "(783, 0.50553749999999997, 0.03705, 0.42802499999999999)" -  
6465 ] -  
6466 }, -  
6467 { -  
6468 "output_type": "stream", -  
6469 "stream": "stdout", -  
6470 "text": [ -  
6471 "\n", -  
6472 "(784, 0.95647499999999996, 0.46507499999999996, -0.092624999999999999)" -  
6473 ] -  
6474 }, -  
6475 { -  
6476 "output_type": "stream", -  
6477 "stream": "stdout", -  
6478 "text": [ -  
6479 "\n", -  
6480 "(785, 0.90674999999999994, 0.24959999999999999, -0.252525)" -  
6481 ] -  
6482 }, -  
6483 { -  
6484 "output_type": "stream", -  
6485 "stream": "stdout", -  
6486 "text": [ -  
6487 "\n", -  
6488 "(786, 0.80047499999999994, -0.14722499999999999, -0.82582499999999992)" -  
6489 ] -  
6490 }, -  
6491 { -  
6492 "output_type": "stream", -  
6493 "stream": "stdout", -  
6494 "text": [ -  
6495 "\n", -  
6496 "(787, 0.30127499999999996, -0.56159999999999999, -0.85799999999999998)" -  
6497 ] -  
6498 }, -  
6499 { -  
6500 "output_type": "stream", -  
6501 "stream": "stdout", -  
6502 "text": [ -  
6503 "\n", -  
6504 "(788, -0.110175, -0.66104999999999992, -0.77415)" -  
6505 ] -  
6506 }, -  
6507 { -  
6508 "output_type": "stream", -  
6509 "stream": "stdout", -  
6510 "text": [ -  
6511 "\n", -  
6512 "(789, -0.49919999999999998, -0.54404999999999992, -0.72052499999999997)" -  
6513 ] -  
6514 }, -  
6515 { -  
6516 "output_type": "stream", -  
6517 "stream": "stdout", -  
6518 "text": [ -  
6519 "\n", -  
6520 "(790, -0.67859999999999998, -0.2145, -0.86580000000000001)" -  
6521 ] -  
6522 }, -  
6523 { -  
6524 "output_type": "stream", -  
6525 "stream": "stdout", -  
6526 "text": [ -  
6527 "\n", -  
6528 "(791, -0.67859999999999998, -0.18525, -0.83655000000000002)" -  
6529 ] -  
6530 }, -  
6531 { -  
6532 "output_type": "stream", -  
6533 "stream": "stdout", -  
6534 "text": [ -  
6535 "\n", -  
6536 "(792, -0.63326249999999995, -0.20279999999999998, -0.7722)" -  
6537 ] -  
6538 }, -  
6539 { -  
6540 "output_type": "stream", -  
6541 "stream": "stdout", -  
6542 "text": [ -  
6543 "\n", -  
6544 "(793, -0.50212499999999993, -0.33344999999999997, -0.87457499999999999)" -  
6545 ] -  
6546 }, -  
6547 { -  
6548 "output_type": "stream", -  
6549 "stream": "stdout", -  
6550 "text": [ -  
6551 "\n", -  
6552 "(794, -0.72393750000000001, -0.10725, -0.66104999999999992)" -  
6553 ] -  
6554 }, -  
6555 { -  
6556 "output_type": "stream", -  
6557 "stream": "stdout", -  
6558 "text": [ -  
6559 "\n", -  
6560 "(795, -1.09005, -0.0307125, 0.53917499999999996)" -  
6561 ] -  
6562 }, -  
6563 { -  
6564 "output_type": "stream", -  
6565 "stream": "stdout", -  
6566 "text": [ -  
6567 "\n", -  
6568 "(796, -0.30419999999999997, 0.342225, 0.90382499999999999)" -  
6569 ] -  
6570 }, -  
6571 { -  
6572 "output_type": "stream", -  
6573 "stream": "stdout", -  
6574 "text": [ -  
6575 "\n", -  
6576 "(797, 0.57476249999999995, 0.31784999999999997, 0.357825)" -  
6577 ] -  
6578 }, -  
6579 { -  
6580 "output_type": "stream", -  
6581 "stream": "stdout", -  
6582 "text": [ -  
6583 "\n", -  
6584 "(798, 0.73709999999999998, -0.031199999999999999, 0.64837499999999992)" -  
6585 ] -  
6586 }, -  
6587 { -  
6588 "output_type": "stream", -  
6589 "stream": "stdout", -  
6590 "text": [ -  
6591 "\n", -  
6592 "(799, 0.46263749999999998, -0.60352499999999998, 0.45142499999999997)" -  
6593 ] -  
6594 }, -  
6595 { -  
6596 "output_type": "stream", -  
6597 "stream": "stdout", -  
6598 "text": [ -  
6599 "\n", -  
6600 "(800, 0.1482, -0.99449999999999994, 0.18427499999999999)" -  
6601 ] -  
6602 }, -  
6603 { -  
6604 "output_type": "stream", -  
6605 "stream": "stdout", -  
6606 "text": [ -  
6607 "\n", -  
6608 "(801, -0.26958749999999998, -0.67859999999999998, -0.86385000000000001)" -  
6609 ] -  
6610 }, -  
6611 { -  
6612 "output_type": "stream", -  
6613 "stream": "stdout", -  
6614 "text": [ -  
6615 "\n", -  
6616 "(802, -0.14673749999999999, -0.50212499999999993, -0.87359999999999993)" -  
6617 ] -  
6618 }, -  
6619 { -  
6620 "output_type": "stream", -  
6621 "stream": "stdout", -  
6622 "text": [ -  
6623 "\n", -  
6624 "(803, -0.53137499999999993, -0.2145, -0.82387499999999991)" -  
6625 ] -  
6626 }, -  
6627 { -  
6628 "output_type": "stream", -  
6629 "stream": "stdout", -  
6630 "text": [ -  
6631 "\n", -  
6632 "(804, -0.86580000000000001, 0.093599999999999989, -0.72052499999999997)" -  
6633 ] -  
6634 }, -  
6635 { -  
6636 "output_type": "stream", -  
6637 "stream": "stdout", -  
6638 "text": [ -  
6639 "\n", -  
6640 "(805, -0.33929999999999999, 0.38999999999999996, -1.022775)" -  
6641 ] -  
6642 }, -  
6643 { -  
6644 "output_type": "stream", -  
6645 "stream": "stdout", -  
6646 "text": [ -  
6647 "\n", -  
6648 "(806, 0.15892499999999998, 0.42314999999999997, -0.7722)" -  
6649 ] -  
6650 }, -  
6651 { -  
6652 "output_type": "stream", -  
6653 "stream": "stdout", -  
6654 "text": [ -  
6655 "\n", -  
6656 "(807, 0.72442499999999999, 0.33832499999999999, -0.312)" -  
6657 ] -  
6658 }, -  
6659 { -  
6660 "output_type": "stream", -  
6661 "stream": "stdout", -  
6662 "text": [ -  
6663 "\n", -  
6664 "(808, 0.97304999999999997, -0.33929999999999999, -0.37634999999999996)" -  
6665 ] -  
6666 }, -  
6667 { -  
6668 "output_type": "stream", -  
6669 "stream": "stdout", -  
6670 "text": [ -  
6671 "\n", -  
6672 "(809, 0.19109999999999999, -0.78584999999999994, -0.59670000000000001)" -  
6673 ] -  
6674 }, -  
6675 { -  
6676 "output_type": "stream", -  
6677 "stream": "stdout", -  
6678 "text": [ -  
6679 "\n", -  
6680 "(810, -0.040462499999999998, -0.86774999999999991, -0.41144999999999998)" -  
6681 ] -  
6682 }, -  
6683 { -  
6684 "output_type": "stream", -  
6685 "stream": "stdout", -  
6686 "text": [ -  
6687 "\n", -  
6688 "(811, -0.268125, -0.936975, -0.4173)" -  
6689 ] -  
6690 }, -  
6691 { -  
6692 "output_type": "stream", -  
6693 "stream": "stdout", -  
6694 "text": [ -  
6695 "\n", -  
6696 "(812, -0.38999999999999996, -0.82094999999999996, 0.018525)" -  
6697 ] -  
6698 }, -  
6699 { -  
6700 "output_type": "stream", -  
6701 "stream": "stdout", -  
6702 "text": [ -  
6703 "\n", -  
6704 "(813, -0.57622499999999999, -0.44947499999999996, 0.96134999999999993)" -  
6705 ] -  
6706 }, -  
6707 { -  
6708 "output_type": "stream", -  
6709 "stream": "stdout", -  
6710 "text": [ -  
6711 "\n", -  
6712 "(814, 0.079949999999999993, 0.268125, 0.79657499999999992)" -  
6713 ] -  
6714 }, -  
6715 { -  
6716 "output_type": "stream", -  
6717 "stream": "stdout", -  
6718 "text": [ -  
6719 "\n", -  
6720 "(815, 0.550875, 0.66007499999999997, 0.52601249999999999)" -  
6721 ] -  
6722 }, -  
6723 { -  
6724 "output_type": "stream", -  
6725 "stream": "stdout", -  
6726 "text": [ -  
6727 "\n", -  
6728 "(816, 0.35489999999999999, 0.81412499999999999, 0.41437499999999999)" -  
6729 ] -  
6730 }, -  
6731 { -  
6732 "output_type": "stream", -  
6733 "stream": "stdout", -  
6734 "text": [ -  
6735 "\n", -  
6736 "(817, 0.0038999999999999998, 0.84824999999999995, 0.66592499999999999)" -  
6737 ] -  
6738 }, -  
6739 { -  
6740 "output_type": "stream", -  
6741 "stream": "stdout", -  
6742 "text": [ -  
6743 "\n", -  
6744 "(818, 0.047774999999999998, 0.45922499999999999, 0.69273750000000001)" -  
6745 ] -  
6746 }, -  
6747 { -  
6748 "output_type": "stream", -  
6749 "stream": "stdout", -  
6750 "text": [ -  
6751 "\n", -  
6752 "(819, -0.34904999999999997, -0.46604999999999996, 0.38122499999999998)" -  
6753 ] -  
6754 }, -  
6755 { -  
6756 "output_type": "stream", -  
6757 "stream": "stdout", -  
6758 "text": [ -  
6759 "\n", -  
6760 "(820, -0.66007499999999997, -0.57135000000000002, -0.73953749999999996)" -  
6761 ] -  
6762 }, -  
6763 { -  
6764 "output_type": "stream", -  
6765 "stream": "stdout", -  
6766 "text": [ -  
6767 "\n", -  
6768 "(821, -0.29347499999999999, -0.46507499999999996, -0.98377499999999996)" -  
6769 ] -  
6770 }, -  
6771 { -  
6772 "output_type": "stream", -  
6773 "stream": "stdout", -  
6774 "text": [ -  
6775 "\n", -  
6776 "(822, -0.45922499999999999, -0.42704999999999999, -0.78389999999999993)" -  
6777 ] -  
6778 }, -  
6779 { -  
6780 "output_type": "stream", -  
6781 "stream": "stdout", -  
6782 "text": [ -  
6783 "\n", -  
6784 "(823, -0.33929999999999999, -0.54307499999999997, -0.65812499999999996)" -  
6785 ] -  
6786 }, -  
6787 { -  
6788 "output_type": "stream", -  
6789 "stream": "stdout", -  
6790 "text": [ -  
6791 "\n", -  
6792 "(824, -0.0316875, -0.35392499999999999, -0.89797499999999997)" -  
6793 ] -  
6794 }, -  
6795 { -  
6796 "output_type": "stream", -  
6797 "stream": "stdout", -  
6798 "text": [ -  
6799 "\n", -  
6800 "(825, 0.36123749999999999, -0.13747499999999999, -0.83069999999999999)" -  
6801 ] -  
6802 }, -  
6803 { -  
6804 "output_type": "stream", -  
6805 "stream": "stdout", -  
6806 "text": [ -  
6807 "\n", -  
6808 "(826, 0.86774999999999991, 0.12675, -0.045824999999999998)" -  
6809 ] -  
6810 }, -  
6811 { -  
6812 "output_type": "stream", -  
6813 "stream": "stdout", -  
6814 "text": [ -  
6815 "\n", -  
6816 "(827, 0.82728749999999995, 0.14332499999999998, 0.59572499999999995)" -  
6817 ] -  
6818 }, -  
6819 { -  
6820 "output_type": "stream", -  
6821 "stream": "stdout", -  
6822 "text": [ -  
6823 "\n", -  
6824 "(828, 0.67957499999999993, 0.033149999999999999, 0.72149999999999992)" -  
6825 ] -  
6826 }, -  
6827 { -  
6828 "output_type": "stream", -  
6829 "stream": "stdout", -  
6830 "text": [ -  
6831 "\n", -  
6832 "(829, 0.60352499999999998, -0.081412499999999999, 0.68640000000000001)" -  
6833 ] -  
6834 }, -  
6835 { -  
6836 "output_type": "stream", -  
6837 "stream": "stdout", -  
6838 "text": [ -  
6839 "\n", -  
6840 "(830, 0.60839999999999994, 0.16769999999999999, 0.86872499999999997)" -  
6841 ] -  
6842 }, -  
6843 { -  
6844 "output_type": "stream", -  
6845 "stream": "stdout", -  
6846 "text": [ -  
6847 "\n", -  
6848 "(831, 0.45629999999999998, 0.28421249999999998, 0.81119999999999992)" -  
6849 ] -  
6850 }, -  
6851 { -  
6852 "output_type": "stream", -  
6853 "stream": "stdout", -  
6854 "text": [ -  
6855 "\n", -  
6856 "(832, 0.461175, 0.20231249999999998, 0.8034)" -  
6857 ] -  
6858 }, -  
6859 { -  
6860 "output_type": "stream", -  
6861 "stream": "stdout", -  
6862 "text": [ -  
6863 "\n", -  
6864 "(833, 0.40754999999999997, 0.39974999999999999, 0.83069999999999999)" -  
6865 ] -  
6866 }, -  
6867 { -  
6868 "output_type": "stream", -  
6869 "stream": "stdout", -  
6870 "text": [ -  
6871 "\n", -  
6872 "(834, 0.41778749999999998, 0.096525, 0.81314999999999993)" -  
6873 ] -  
6874 }, -  
6875 { -  
6876 "output_type": "stream", -  
6877 "stream": "stdout", -  
6878 "text": [ -  
6879 "\n", -  
6880 "(835, 0.62009999999999998, -0.229125, 0.86872499999999997)" -  
6881 ] -  
6882 }, -  
6883 { -  
6884 "output_type": "stream", -  
6885 "stream": "stdout", -  
6886 "text": [ -  
6887 "\n", -  
6888 "(836, 0.19012499999999999, -0.638625, 0.37927499999999997)" -  
6889 ] -  
6890 }, -  
6891 { -  
6892 "output_type": "stream", -  
6893 "stream": "stdout", -  
6894 "text": [ -  
6895 "\n", -  
6896 "(837, -0.387075, -0.85702499999999993, -0.70053749999999992)" -  
6897 ] -  
6898 }, -  
6899 { -  
6900 "output_type": "stream", -  
6901 "stream": "stdout", -  
6902 "text": [ -  
6903 "\n", -  
6904 "(838, -0.26422499999999999, -0.74490000000000001, -0.85312499999999991)" -  
6905 ] -  
6906 }, -  
6907 { -  
6908 "output_type": "stream", -  
6909 "stream": "stdout", -  
6910 "text": [ -  
6911 "\n", -  
6912 "(839, 0.11115, -0.43679999999999997, -1.0003499999999999)" -  
6913 ] -  
6914 }, -  
6915 { -  
6916 "output_type": "stream", -  
6917 "stream": "stdout", -  
6918 "text": [ -  
6919 "\n", -  
6920 "(840, -0.4977375, -0.065324999999999994, -0.65422499999999995)" -  
6921 ] -  
6922 }, -  
6923 { -  
6924 "output_type": "stream", -  
6925 "stream": "stdout", -  
6926 "text": [ -  
6927 "\n", -  
6928 "(841, -0.96817500000000001, -0.054599999999999996, 0.74490000000000001)" -  
6929 ] -  
6930 }, -  
6931 { -  
6932 "output_type": "stream", -  
6933 "stream": "stdout", -  
6934 "text": [ -  
6935 "\n", -  
6936 "(842, -0.35685, 0.19109999999999999, 0.96524999999999994)" -  
6937 ] -  
6938 }, -  
6939 { -  
6940 "output_type": "stream", -  
6941 "stream": "stdout", -  
6942 "text": [ -  
6943 "\n", -  
6944 "(843, 0.33442499999999997, 0.27299999999999996, 0.68737499999999996)" -  
6945 ] -  
6946 }, -  
6947 { -  
6948 "output_type": "stream", -  
6949 "stream": "stdout", -  
6950 "text": [ -  
6951 "\n", -  
6952 "(844, 0.7366125, 0.114075, 0.39389999999999997)" -  
6953 ] -  
6954 }, -  
6955 { -  
6956 "output_type": "stream", -  
6957 "stream": "stdout", -  
6958 "text": [ -  
6959 "\n", -  
6960 "(845, 0.86238749999999997, -0.1482, 0.0068249999999999995)" -  
6961 ] -  
6962 }, -  
6963 { -  
6964 "output_type": "stream", -  
6965 "stream": "stdout", -  
6966 "text": [ -  
6967 "\n", -  
6968 "(846, 0.79657499999999992, -0.64739999999999998, -0.49724999999999997)" -  
6969 ] -  
6970 }, -  
6971 { -  
6972 "output_type": "stream", -  
6973 "stream": "stdout", -  
6974 "text": [ -  
6975 "\n", -  
6976 "(847, 0.244725, -0.81168750000000001, -0.5655)" -  
6977 ] -  
6978 }, -  
6979 { -  
6980 "output_type": "stream", -  
6981 "stream": "stdout", -  
6982 "text": [ -  
6983 "\n", -  
6984 "(848, 0.186225, -0.84873749999999992, -0.44947499999999996)" -  
6985 ] -  
6986 }, -  
6987 { -  
6988 "output_type": "stream", -  
6989 "stream": "stdout", -  
6990 "text": [ -  
6991 "\n", -  
6992 "(849, 0.15404999999999999, -0.92624999999999991, -0.53722499999999995)" -  
6993 ] -  
6994 }, -  
6995 { -  
6996 "output_type": "stream", -  
6997 "stream": "stdout", -  
6998 "text": [ -  
6999 "\n", -  
7000 "(850, 0.00975, -0.82777499999999993, -0.42509999999999998)" -  
7001 ] -  
7002 }, -  
7003 { -  
7004 "output_type": "stream", -  
7005 "stream": "stdout", -  
7006 "text": [ -  
7007 "\n", -  
7008 "(851, -0.33052499999999996, -0.79072500000000001, -0.076049999999999993)" -  
7009 ] -  
7010 }, -  
7011 { -  
7012 "output_type": "stream", -  
7013 "stream": "stdout", -  
7014 "text": [ -  
7015 "\n", -  
7016 "(852, -0.64301249999999999, -0.56159999999999999, 0.56257499999999994)" -  
7017 ] -  
7018 }, -  
7019 { -  
7020 "output_type": "stream", -  
7021 "stream": "stdout", -  
7022 "text": [ -  
7023 "\n", -  
7024 "(853, -0.61619999999999997, -0.48945, 0.39487499999999998)" -  
7025 ] -  
7026 }, -  
7027 { -  
7028 "output_type": "stream", -  
7029 "stream": "stdout", -  
7030 "text": [ -  
7031 "\n", -  
7032 "(854, -0.55379999999999996, -0.77902499999999997, -0.58304999999999996)" -  
7033 ] -  
7034 }, -  
7035 { -  
7036 "output_type": "stream", -  
7037 "stream": "stdout", -  
7038 "text": [ -  
7039 "\n", -  
7040 "(855, -0.17549999999999999, -0.76439999999999997, -0.73319999999999996)" -  
7041 ] -  
7042 }, -  
7043 { -  
7044 "output_type": "stream", -  
7045 "stream": "stdout", -  
7046 "text": [ -  
7047 "\n", -  
7048 "(856, 0.15258749999999999, -0.76049999999999995, -0.49822499999999997)" -  
7049 ] -  
7050 }, -  
7051 { -  
7052 "output_type": "stream", -  
7053 "stream": "stdout", -  
7054 "text": [ -  
7055 "\n", -  
7056 "(857, 0.59962499999999996, -0.61132500000000001, -0.055574999999999999)" -  
7057 ] -  
7058 }, -  
7059 { -  
7060 "output_type": "stream", -  
7061 "stream": "stdout", -  
7062 "text": [ -  
7063 "\n", -  
7064 "(858, 0.81412499999999999, -0.36172499999999996, 0.51869999999999994)" -  
7065 ] -  
7066 }, -  
7067 { -  
7068 "output_type": "stream", -  
7069 "stream": "stdout", -  
7070 "text": [ -  
7071 "\n", -  
7072 "(859, 0.57037499999999997, 0.066299999999999998, 0.88237499999999991)" -  
7073 ] -  
7074 }, -  
7075 { -  
7076 "output_type": "stream", -  
7077 "stream": "stdout", -  
7078 "text": [ -  
7079 "\n", -  
7080 "(860, 0.044362499999999999, 0.025837499999999999, 1.0198499999999999)" -  
7081 ] -  
7082 }, -  
7083 { -  
7084 "output_type": "stream", -  
7085 "stream": "stdout", -  
7086 "text": [ -  
7087 "\n", -  
7088 "(861, -0.2013375, 0.29249999999999998, 1.0476375)" -  
7089 ] -  
7090 }, -  
7091 { -  
7092 "output_type": "stream", -  
7093 "stream": "stdout", -  
7094 "text": [ -  
7095 "\n", -  
7096 "(862, -0.48798749999999996, -0.29152499999999998, 0.47092499999999998)" -  
7097 ] -  
7098 }, -  
7099 { -  
7100 "output_type": "stream", -  
7101 "stream": "stdout", -  
7102 "text": [ -  
7103 "\n", -  
7104 "(863, -0.75367499999999998, -0.56745000000000001, 0.059475)" -  
7105 ] -  
7106 }, -  
7107 { -  
7108 "output_type": "stream", -  
7109 "stream": "stdout", -  
7110 "text": [ -  
7111 "\n", -  
7112 "(864, -0.788775, -0.66884999999999994, 0.13552500000000001)" -  
7113 ] -  
7114 }, -  
7115 { -  
7116 "output_type": "stream", -  
7117 "stream": "stdout", -  
7118 "text": [ -  
7119 "\n", -  
7120 "(865, -0.89456249999999993, -0.50407499999999994, 0.050699999999999995)" -  
7121 ] -  
7122 }, -  
7123 { -  
7124 "output_type": "stream", -  
7125 "stream": "stdout", -  
7126 "text": [ -  
7127 "\n", -  
7128 "(866, -1.026675, -0.24862499999999998, 0.33637499999999998)" -  
7129 ] -  
7130 }, -  
7131 { -  
7132 "output_type": "stream", -  
7133 "stream": "stdout", -  
7134 "text": [ -  
7135 "\n", -  
7136 "(867, -0.65715000000000001, -0.24277499999999999, 0.79169999999999996)" -  
7137 ] -  
7138 }, -  
7139 { -  
7140 "output_type": "stream", -  
7141 "stream": "stdout", -  
7142 "text": [ -  
7143 "\n", -  
7144 "(868, -0.77512499999999995, -0.00975, 0.55964999999999998)" -  
7145 ] -  
7146 }, -  
7147 { -  
7148 "output_type": "stream", -  
7149 "stream": "stdout", -  
7150 "text": [ -  
7151 "\n", -  
7152 "(869, -0.8619, -0.11699999999999999, 0.5655)" -  
7153 ] -  
7154 }, -  
7155 { -  
7156 "output_type": "stream", -  
7157 "stream": "stdout", -  
7158 "text": [ -  
7159 "\n", -  
7160 "(870, -0.69566249999999996, -0.033149999999999999, 0.71662499999999996)" -  
7161 ] -  
7162 }, -  
7163 { -  
7164 "output_type": "stream", -  
7165 "stream": "stdout", -  
7166 "text": [ -  
7167 "\n", -  
7168 "(871, -0.63521249999999996, -0.081412499999999999, 0.72539999999999993)" -  
7169 ] -  
7170 }, -  
7171 { -  
7172 "output_type": "stream", -  
7173 "stream": "stdout", -  
7174 "text": [ -  
7175 "\n", -  
7176 "(872, -0.54210000000000003, -0.14235, 0.79169999999999996)" -  
7177 ] -  
7178 }, -  
7179 { -  
7180 "output_type": "stream", -  
7181 "stream": "stdout", -  
7182 "text": [ -  
7183 "\n", -  
7184 "(873, -0.55184999999999995, -0.28567500000000001, 0.81997500000000001)" -  
7185 ] -  
7186 }, -  
7187 { -  
7188 "output_type": "stream", -  
7189 "stream": "stdout", -  
7190 "text": [ -  
7191 "\n", -  
7192 "(874, -0.55672500000000003, -0.57329999999999992, 0.54404999999999992)" -  
7193 ] -  
7194 }, -  
7195 { -  
7196 "output_type": "stream", -  
7197 "stream": "stdout", -  
7198 "text": [ -  
7199 "\n", -  
7200 "(875, -0.72734999999999994, -0.41242499999999999, 0.31979999999999997)" -  
7201 ] -  
7202 }, -  
7203 { -  
7204 "output_type": "stream", -  
7205 "stream": "stdout", -  
7206 "text": [ -  
7207 "\n", -  
7208 "(876, -0.83362499999999995, -0.72734999999999994, 0.42509999999999998)" -  
7209 ] -  
7210 }, -  
7211 { -  
7212 "output_type": "stream", -  
7213 "stream": "stdout", -  
7214 "text": [ -  
7215 "\n", -  
7216 "(877, -0.67859999999999998, -0.22424999999999998, 0.79852499999999993)" -  
7217 ] -  
7218 }, -  
7219 { -  
7220 "output_type": "stream", -  
7221 "stream": "stdout", -  
7222 "text": [ -  
7223 "\n", -  
7224 "(878, -0.43679999999999997, 0.52649999999999997, 0.53039999999999998)" -  
7225 ] -  
7226 }, -  
7227 { -  
7228 "output_type": "stream", -  
7229 "stream": "stdout", -  
7230 "text": [ -  
7231 "\n", -  
7232 "(879, -0.16916249999999999, 1.0023, -0.015599999999999999)" -  
7233 ] -  
7234 }, -  
7235 { -  
7236 "output_type": "stream", -  
7237 "stream": "stdout", -  
7238 "text": [ -  
7239 "\n", -  
7240 "(880, -0.86433749999999998, 0.59182499999999993, 0.054599999999999996)" -  
7241 ] -  
7242 }, -  
7243 { -  
7244 "output_type": "stream", -  
7245 "stream": "stdout", -  
7246 "text": [ -  
7247 "\n", -  
7248 "(881, -0.94867499999999993, -0.20962499999999998, -0.27689999999999998)" -  
7249 ] -  
7250 }, -  
7251 { -  
7252 "output_type": "stream", -  
7253 "stream": "stdout", -  
7254 "text": [ -  
7255 "\n", -  
7256 "(882, -0.53478749999999997, -0.76049999999999995, -0.54015000000000002)" -  
7257 ] -  
7258 }, -  
7259 { -  
7260 "output_type": "stream", -  
7261 "stream": "stdout", -  
7262 "text": [ -  
7263 "\n", -  
7264 "(883, -0.22034999999999999, -0.54015000000000002, -0.82777499999999993)" -  
7265 ] -  
7266 }, -  
7267 { -  
7268 "output_type": "stream", -  
7269 "stream": "stdout", -  
7270 "text": [ -  
7271 "\n", -  
7272 "(884, -0.30322499999999997, -0.50017499999999993, -0.786825)" -  
7273 ] -  
7274 }, -  
7275 { -  
7276 "output_type": "stream", -  
7277 "stream": "stdout", -  
7278 "text": [ -  
7279 "\n", -  
7280 "(885, -0.58548749999999994, -0.70492499999999991, -0.0068249999999999995)" -  
7281 ] -  
7282 }, -  
7283 { -  
7284 "output_type": "stream", -  
7285 "stream": "stdout", -  
7286 "text": [ -  
7287 "\n", -  
7288 "(886, -0.22619999999999998, -0.66494999999999993, 0.86872499999999997)" -  
7289 ] -  
7290 }, -  
7291 { -  
7292 "output_type": "stream", -  
7293 "stream": "stdout", -  
7294 "text": [ -  
7295 "\n", -  
7296 "(887, 0.24764999999999998, 0.13016249999999999, 0.8555625)" -  
7297 ] -  
7298 }, -  
7299 { -  
7300 "output_type": "stream", -  
7301 "stream": "stdout", -  
7302 "text": [ -  
7303 "\n", -  
7304 "(888, 0.47628749999999997, 0.48701249999999996, 0.60254999999999992)" -  
7305 ] -  
7306 }, -  
7307 { -  
7308 "output_type": "stream", -  
7309 "stream": "stdout", -  
7310 "text": [ -  
7311 "\n", -  
7312 "(889, 0.46215000000000001, 0.80632499999999996, 0.33734999999999998)" -  
7313 ] -  
7314 }, -  
7315 { -  
7316 "output_type": "stream", -  
7317 "stream": "stdout", -  
7318 "text": [ -  
7319 "\n", -  
7320 "(890, 0.080437499999999995, 1.0115624999999999, 0.26715)" -  
7321 ] -  
7322 }, -  
7323 { -  
7324 "output_type": "stream", -  
7325 "stream": "stdout", -  
7326 "text": [ -  
7327 "\n", -  
7328 "(891, -0.21742499999999998, 0.935025, 0.10139999999999999)" -  
7329 ] -  
7330 }, -  
7331 { -  
7332 "output_type": "stream", -  
7333 "stream": "stdout", -  
7334 "text": [ -  
7335 "\n", -  
7336 "(892, -0.45337499999999997, 0.82484999999999997, 0.297375)" -  
7337 ] -  
7338 }, -  
7339 { -  
7340 "output_type": "stream", -  
7341 "stream": "stdout", -  
7342 "text": [ -  
7343 "\n", -  
7344 "(893, -0.92332499999999995, 0.058499999999999996, 0.16574999999999998)" -  
7345 ] -  
7346 }, -  
7347 { -  
7348 "output_type": "stream", -  
7349 "stream": "stdout", -  
7350 "text": [ -  
7351 "\n", -  
7352 "(894, -0.75854999999999995, -0.74879999999999991, -0.33637499999999998)" -  
7353 ] -  
7354 }, -  
7355 { -  
7356 "output_type": "stream", -  
7357 "stream": "stdout", -  
7358 "text": [ -  
7359 "\n", -  
7360 "(895, -0.36903749999999996, -0.85507499999999992, -0.43679999999999997)" -  
7361 ] -  
7362 }, -  
7363 { -  
7364 "output_type": "stream", -  
7365 "stream": "stdout", -  
7366 "text": [ -  
7367 "\n", -  
7368 "(896, -0.30809999999999998, -0.90382499999999999, -0.34612499999999996)" -  
7369 ] -  
7370 }, -  
7371 { -  
7372 "output_type": "stream", -  
7373 "stream": "stdout", -  
7374 "text": [ -  
7375 "\n", -  
7376 "(897, -0.43338749999999998, -0.93014999999999992, -0.15892499999999998)" -  
7377 ] -  
7378 }, -  
7379 { -  
7380 "output_type": "stream", -  
7381 "stream": "stdout", -  
7382 "text": [ -  
7383 "\n", -  
7384 "(898, -0.41535, -0.82582499999999992, -0.069224999999999995)" -  
7385 ] -  
7386 }, -  
7387 { -  
7388 "output_type": "stream", -  
7389 "stream": "stdout", -  
7390 "text": [ -  
7391 "\n", -  
7392 "(899, -0.43338749999999998, -0.91649999999999998, 0.039974999999999997)" -  
7393 ] -  
7394 }, -  
7395 { -  
7396 "output_type": "stream", -  
7397 "stream": "stdout", -  
7398 "text": [ -  
7399 "\n", -  
7400 "(900, -0.461175, -0.77512499999999995, 0.34320000000000001)" -  
7401 ] -  
7402 }, -  
7403 { -  
7404 "output_type": "stream", -  
7405 "stream": "stdout", -  
7406 "text": [ -  
7407 "\n", -  
7408 "(901, -0.48945, -0.75952500000000001, 0.39389999999999997)" -  
7409 ] -  
7410 }, -  
7411 { -  
7412 "output_type": "stream", -  
7413 "stream": "stdout", -  
7414 "text": [ -  
7415 "\n", -  
7416 "(902, -0.3797625, -0.77122499999999994, 0.55379999999999996)" -  
7417 ] -  
7418 }, -  
7419 { -  
7420 "output_type": "stream", -  
7421 "stream": "stdout", -  
7422 "text": [ -  
7423 "\n", -  
7424 "(903, 0.080437499999999995, -0.50309999999999999, 0.77268749999999997)" -  
7425 ] -  
7426 }, -  
7427 { -  
7428 "output_type": "stream", -  
7429 "stream": "stdout", -  
7430 "text": [ -  
7431 "\n", -  
7432 "(904, 0.56745000000000001, 0.62790000000000001, 0.164775)" -  
7433 ] -  
7434 }, -  
7435 { -  
7436 "output_type": "stream", -  
7437 "stream": "stdout", -  
7438 "text": [ -  
7439 "\n", -  
7440 "(905, 0.45922499999999999, 0.53820000000000001, -1.0208249999999999)" -  
7441 ] -  
7442 }, -  
7443 { -  
7444 "output_type": "stream", -  
7445 "stream": "stdout", -  
7446 "text": [ -  
7447 "\n", -  
7448 "(906, 0.41144999999999998, 0.43095, -0.70979999999999999)" -  
7449 ] -  
7450 }, -  
7451 { -  
7452 "output_type": "stream", -  
7453 "stream": "stdout", -  
7454 "text": [ -  
7455 "\n", -  
7456 "(907, 0.79559999999999997, 0.46604999999999996, 0.21157499999999999)" -  
7457 ] -  
7458 }, -  
7459 { -  
7460 "output_type": "stream", -  
7461 "stream": "stdout", -  
7462 "text": [ -  
7463 "\n", -  
7464 "(908, 0.50895000000000001, 0.014624999999999999, 0.99839999999999995)" -  
7465 ] -  
7466 }, -  
7467 { -  
7468 "output_type": "stream", -  
7469 "stream": "stdout", -  
7470 "text": [ -  
7471 "\n", -  
7472 "(909, -0.1993875, -0.56062499999999993, 0.71565000000000001)" -  
7473 ] -  
7474 }, -  
7475 { -  
7476 "output_type": "stream", -  
7477 "stream": "stdout", -  
7478 "text": [ -  
7479 "\n", -  
7480 "(910, -0.5572125, -0.67177500000000001, 0.45337499999999997)" -  
7481 ] -  
7482 }, -  
7483 { -  
7484 "output_type": "stream", -  
7485 "stream": "stdout", -  
7486 "text": [ -  
7487 "\n", -  
7488 "(911, -0.45727499999999999, -0.92819999999999991, 0.16769999999999999)" -  
7489 ] -  
7490 }, -  
7491 { -  
7492 "output_type": "stream", -  
7493 "stream": "stdout", -  
7494 "text": [ -  
7495 "\n", -  
7496 "(912, -0.095549999999999996, -0.87262499999999998, -0.2145)" -  
7497 ] -  
7498 }, -  
7499 { -  
7500 "output_type": "stream", -  
7501 "stream": "stdout", -  
7502 "text": [ -  
7503 "\n", -  
7504 "(913, 0.13064999999999999, -0.84337499999999999, -0.37098749999999997)" -  
7505 ] -  
7506 }, -  
7507 { -  
7508 "output_type": "stream", -  
7509 "stream": "stdout", -  
7510 "text": [ -  
7511 "\n", -  
7512 "(914, 0.35636249999999997, -0.85117500000000001, -0.30712499999999998)" -  
7513 ] -  
7514 }, -  
7515 { -  
7516 "output_type": "stream", -  
7517 "stream": "stdout", -  
7518 "text": [ -  
7519 "\n", -  
7520 "(915, 0.41827500000000001, -0.83849999999999991, -0.28567500000000001)" -  
7521 ] -  
7522 }, -  
7523 { -  
7524 "output_type": "stream", -  
7525 "stream": "stdout", -  
7526 "text": [ -  
7527 "\n", -  
7528 "(916, 0.60547499999999999, -0.58402500000000002, -0.461175)" -  
7529 ] -  
7530 }, -  
7531 { -  
7532 "output_type": "stream", -  
7533 "stream": "stdout", -  
7534 "text": [ -  
7535 "\n", -  
7536 "(917, 0.78731249999999997, -0.36708749999999996, -0.52649999999999997)" -  
7537 ] -  
7538 }, -  
7539 { -  
7540 "output_type": "stream", -  
7541 "stream": "stdout", -  
7542 "text": [ -  
7543 "\n", -  
7544 "(918, 0.69127499999999997, -0.098474999999999993, -0.86969999999999992)" -  
7545 ] -  
7546 }, -  
7547 { -  
7548 "output_type": "stream", -  
7549 "stream": "stdout", -  
7550 "text": [ -  
7551 "\n", -  
7552 "(919, 0.25155, -0.19792499999999999, -1.0373999999999999)" -  
7553 ] -  
7554 }, -  
7555 { -  
7556 "output_type": "stream", -  
7557 "stream": "stdout", -  
7558 "text": [ -  
7559 "\n", -  
7560 "(920, -0.053624999999999999, -0.52552500000000002, -0.83216249999999992)" -  
7561 ] -  
7562 }, -  
7563 { -  
7564 "output_type": "stream", -  
7565 "stream": "stdout", -  
7566 "text": [ -  
7567 "\n", -  
7568 "(921, -0.34904999999999997, -0.76829999999999998, -0.46994999999999998)" -  
7569 ] -  
7570 }, -  
7571 { -  
7572 "output_type": "stream", -  
7573 "stream": "stdout", -  
7574 "text": [ -  
7575 "\n", -  
7576 "(922, -0.2227875, -0.73856250000000001, -0.580125)" -  
7577 ] -  
7578 }, -  
7579 { -  
7580 "output_type": "stream", -  
7581 "stream": "stdout", -  
7582 "text": [ -  
7583 "\n", -  
7584 "(923, -0.35685, -0.78584999999999994, -0.281775)" -  
7585 ] -  
7586 }, -  
7587 { -  
7588 "output_type": "stream", -  
7589 "stream": "stdout", -  
7590 "text": [ -  
7591 "\n", -  
7592 "(924, -0.609375, -0.77024999999999999, 0.12675)" -  
7593 ] -  
7594 }, -  
7595 { -  
7596 "output_type": "stream", -  
7597 "stream": "stdout", -  
7598 "text": [ -  
7599 "\n", -  
7600 "(925, -0.61522500000000002, -0.297375, 0.96524999999999994)" -  
7601 ] -  
7602 }, -  
7603 { -  
7604 "output_type": "stream", -  
7605 "stream": "stdout", -  
7606 "text": [ -  
7607 "\n", -  
7608 "(926, -0.058012499999999995, 0.33442499999999997, 0.77463749999999998)" -  
7609 ] -  
7610 }, -  
7611 { -  
7612 "output_type": "stream", -  
7613 "stream": "stdout", -  
7614 "text": [ -  
7615 "\n", -  
7616 "(927, 0.31151249999999997, 0.77805000000000002, 0.46897499999999998)" -  
7617 ] -  
7618 }, -  
7619 { -  
7620 "output_type": "stream", -  
7621 "stream": "stdout", -  
7622 "text": [ -  
7623 "\n", -  
7624 "(928, 0.19012499999999999, 0.94087499999999991, 0.32955000000000001)" -  
7625 ] -  
7626 }, -  
7627 { -  
7628 "output_type": "stream", -  
7629 "stream": "stdout", -  
7630 "text": [ -  
7631 "\n", -  
7632 "(929, -0.11212499999999999, 0.76927499999999993, 0.31882499999999997)" -  
7633 ] -  
7634 }, -  
7635 { -  
7636 "output_type": "stream", -  
7637 "stream": "stdout", -  
7638 "text": [ -  
7639 "\n", -  
7640 "(930, -0.79657499999999992, -0.67664999999999997, -0.0316875)" -  
7641 ] -  
7642 }, -  
7643 { -  
7644 "output_type": "stream", -  
7645 "stream": "stdout", -  
7646 "text": [ -  
7647 "\n", -  
7648 "(931, -0.30907499999999999, -0.72101249999999995, -0.81899999999999995)" -  
7649 ] -  
7650 }, -  
7651 { -  
7652 "output_type": "stream", -  
7653 "stream": "stdout", -  
7654 "text": [ -  
7655 "\n", -  
7656 "(932, 0.281775, -0.024374999999999997, -0.98036249999999991)" -  
7657 ] -  
7658 }, -  
7659 { -  
7660 "output_type": "stream", -  
7661 "stream": "stdout", -  
7662 "text": [ -  
7663 "\n", -  
7664 "(933, -0.40511249999999999, 0.28762499999999996, -0.85799999999999998)" -  
7665 ] -  
7666 }, -  
7667 { -  
7668 "output_type": "stream", -  
7669 "stream": "stdout", -  
7670 "text": [ -  
7671 "\n", -  
7672 "(934, -0.67811250000000001, -0.64788749999999995, 0.33686250000000001)" -  
7673 ] -  
7674 }, -  
7675 { -  
7676 "output_type": "stream", -  
7677 "stream": "stdout", -  
7678 "text": [ -  
7679 "\n", -  
7680 "(935, -0.0068249999999999995, -0.1716, 0.98231249999999992)" -  
7681 ] -  
7682 }, -  
7683 { -  
7684 "output_type": "stream", -  
7685 "stream": "stdout", -  
7686 "text": [ -  
7687 "\n", -  
7688 "(936, 0.58889999999999998, 0.43777499999999997, 0.47287499999999999)" -  
7689 ] -  
7690 }, -  
7691 { -  
7692 "output_type": "stream", -  
7693 "stream": "stdout", -  
7694 "text": [ -  
7695 "\n", -  
7696 "(937, 0.49627499999999997, 0.81704999999999994, 0.21352499999999999)" -  
7697 ] -  
7698 }, -  
7699 { -  
7700 "output_type": "stream", -  
7701 "stream": "stdout", -  
7702 "text": [ -  
7703 "\n", -  
7704 "(938, 0.11895, 1.0656749999999999, 0.069224999999999995)" -  
7705 ] -  
7706 }, -  
7707 { -  
7708 "output_type": "stream", -  
7709 "stream": "stdout", -  
7710 "text": [ -  
7711 "\n", -  
7712 "(939, 0.12479999999999999, 0.9204, 0.548925)" -  
7713 ] -  
7714 }, -  
7715 { -  
7716 "output_type": "stream", -  
7717 "stream": "stdout", -  
7718 "text": [ -  
7719 "\n", -  
7720 "(940, 0.22522499999999998, 0.61717499999999992, 0.55136249999999998)" -  
7721 ] -  
7722 }, -  
7723 { -  
7724 "output_type": "stream", -  
7725 "stream": "stdout", -  
7726 "text": [ -  
7727 "\n", -  
7728 "(941, -0.19305, 0.64106249999999998, 0.50066250000000001)" -  
7729 ] -  
7730 }, -  
7731 { -  
7732 "output_type": "stream", -  
7733 "stream": "stdout", -  
7734 "text": [ -  
7735 "\n", -  
7736 "(942, -0.68835000000000002, 0.53527499999999995, -0.081900000000000001)" -  
7737 ] -  
7738 }, -  
7739 { -  
7740 "output_type": "stream", -  
7741 "stream": "stdout", -  
7742 "text": [ -  
7743 "\n", -  
7744 "(943, -0.85312499999999991, 0.010725, -1.2470250000000001)" -  
7745 ] -  
7746 }, -  
7747 { -  
7748 "output_type": "stream", -  
7749 "stream": "stdout", -  
7750 "text": [ -  
7751 "\n", -  
7752 "(944, 0.1993875, 0.40608749999999999, -0.818025)" -  
7753 ] -  
7754 }, -  
7755 { -  
7756 "output_type": "stream", -  
7757 "stream": "stdout", -  
7758 "text": [ -  
7759 "\n", -  
7760 "(945, 0.1794, 0.73027500000000001, -1.055925)" -  
7761 ] -  
7762 }, -  
7763 { -  
7764 "output_type": "stream", -  
7765 "stream": "stdout", -  
7766 "text": [ -  
7767 "\n", -  
7768 "(946, -0.69371249999999995, 0.31004999999999999, 0.114075)" -  
7769 ] -  
7770 }, -  
7771 { -  
7772 "output_type": "stream", -  
7773 "stream": "stdout", -  
7774 "text": [ -  
7775 "\n", -  
7776 "(947, -0.97792499999999993, -0.0068249999999999995, 0.83655000000000002)" -  
7777 ] -  
7778 }, -  
7779 { -  
7780 "output_type": "stream", -  
7781 "stream": "stdout", -  
7782 "text": [ -  
7783 "\n", -  
7784 "(948, -0.22424999999999998, -0.357825, 0.87262499999999998)" -  
7785 ] -  
7786 }, -  
7787 { -  
7788 "output_type": "stream", -  
7789 "stream": "stdout", -  
7790 "text": [ -  
7791 "\n", -  
7792 "(949, 0.62643749999999998, -0.4446, 0.24277499999999999)" -  
7793 ] -  
7794 }, -  
7795 { -  
7796 "output_type": "stream", -  
7797 "stream": "stdout", -  
7798 "text": [ -  
7799 "\n", -  
7800 "(950, 0.85897499999999993, -0.44752500000000001, 0.092624999999999999)" -  
7801 ] -  
7802 }, -  
7803 { -  
7804 "output_type": "stream", -  
7805 "stream": "stdout", -  
7806 "text": [ -  
7807 "\n", -  
7808 "(951, 0.91649999999999998, -0.30712499999999998, -0.4602)" -  
7809 ] -  
7810 }, -  
7811 { -  
7812 "output_type": "stream", -  
7813 "stream": "stdout", -  
7814 "text": [ -  
7815 "\n", -  
7816 "(952, 0.88286249999999999, -0.29152499999999998, -0.33149999999999996)" -  
7817 ] -  
7818 }, -  
7819 { -  
7820 "output_type": "stream", -  
7821 "stream": "stdout", -  
7822 "text": [ -  
7823 "\n", -  
7824 "(953, 0.96524999999999994, -0.34612499999999996, -0.62009999999999998)" -  
7825 ] -  
7826 }, -  
7827 { -  
7828 "output_type": "stream", -  
7829 "stream": "stdout", -  
7830 "text": [ -  
7831 "\n", -  
7832 "(954, 0.61912499999999993, -0.40413749999999998, -0.788775)" -  
7833 ] -  
7834 }, -  
7835 { -  
7836 "output_type": "stream", -  
7837 "stream": "stdout", -  
7838 "text": [ -  
7839 "\n", -  
7840 "(955, 0.50700000000000001, -0.199875, -0.91259999999999997)" -  
7841 ] -  
7842 }, -  
7843 { -  
7844 "output_type": "stream", -  
7845 "stream": "stdout", -  
7846 "text": [ -  
7847 "\n", -  
7848 "(956, 0.56988749999999999, -0.31492500000000001, -0.94672499999999993)" -  
7849 ] -  
7850 }, -  
7851 { -  
7852 "output_type": "stream", -  
7853 "stream": "stdout", -  
7854 "text": [ -  
7855 "\n", -  
7856 "(957, 0.04095, -0.77707499999999996, -0.490425)" -  
7857 ] -  
7858 }, -  
7859 { -  
7860 "output_type": "stream", -  
7861 "stream": "stdout", -  
7862 "text": [ -  
7863 "\n", -  
7864 "(958, -0.51285000000000003, -0.76732499999999992, 0.49383749999999998)" -  
7865 ] -  
7866 }, -  
7867 { -  
7868 "output_type": "stream", -  
7869 "stream": "stdout", -  
7870 "text": [ -  
7871 "\n", -  
7872 "(959, -0.34076249999999997, -0.53186250000000002, 0.81168750000000001)" -  
7873 ] -  
7874 }, -  
7875 { -  
7876 "output_type": "stream", -  
7877 "stream": "stdout", -  
7878 "text": [ -  
7879 "\n", -  
7880 "(960, -0.015599999999999999, -0.40413749999999998, 0.85507499999999992)" -  
7881 ] -  
7882 }, -  
7883 { -  
7884 "output_type": "stream", -  
7885 "stream": "stdout", -  
7886 "text": [ -  
7887 "\n", -  
7888 "(961, 0.063375000000000001, -0.54015000000000002, 0.76342500000000002)" -  
7889 ] -  
7890 }, -  
7891 { -  
7892 "output_type": "stream", -  
7893 "stream": "stdout", -  
7894 "text": [ -  
7895 "\n", -  
7896 "(962, 0.6552, -0.48457499999999998, 0.42802499999999999)" -  
7897 ] -  
7898 }, -  
7899 { -  
7900 "output_type": "stream", -  
7901 "stream": "stdout", -  
7902 "text": [ -  
7903 "\n", -  
7904 "(963, 1.0105875, -0.033149999999999999, 0.66689999999999994)" -  
7905 ] -  
7906 }, -  
7907 { -  
7908 "output_type": "stream", -  
7909 "stream": "stdout", -  
7910 "text": [ -  
7911 "\n", -  
7912 "(964, 0.41291249999999996, -0.48749999999999999, 0.64642499999999992)" -  
7913 ] -  
7914 }, -  
7915 { -  
7916 "output_type": "stream", -  
7917 "stream": "stdout", -  
7918 "text": [ -  
7919 "\n", -  
7920 "(965, -0.72052499999999997, -0.61424999999999996, 0.11115)" -  
7921 ] -  
7922 }, -  
7923 { -  
7924 "output_type": "stream", -  
7925 "stream": "stdout", -  
7926 "text": [ -  
7927 "\n", -  
7928 "(966, -0.53527499999999995, -0.48652499999999999, -0.93599999999999994)" -  
7929 ] -  
7930 }, -  
7931 { -  
7932 "output_type": "stream", -  
7933 "stream": "stdout", -  
7934 "text": [ -  
7935 "\n", -  
7936 "(967, -0.12089999999999999, 0.30712499999999998, -0.93892500000000001)" -  
7937 ] -  
7938 }, -  
7939 { -  
7940 "output_type": "stream", -  
7941 "stream": "stdout", -  
7942 "text": [ -  
7943 "\n", -  
7944 "(968, -0.82874999999999999, -0.26227499999999998, -0.43290000000000001)" -  
7945 ] -  
7946 }, -  
7947 { -  
7948 "output_type": "stream", -  
7949 "stream": "stdout", -  
7950 "text": [ -  
7951 "\n", -  
7952 "(969, -0.66592499999999999, -0.45142499999999997, 0.87067499999999998)" -  
7953 ] -  
7954 }, -  
7955 { -  
7956 "output_type": "stream", -  
7957 "stream": "stdout", -  
7958 "text": [ -  
7959 "\n", -  
7960 "(970, 0.223275, 0.23497499999999999, 0.52844999999999998)" -  
7961 ] -  
7962 }, -  
7963 { -  
7964 "output_type": "stream", -  
7965 "stream": "stdout", -  
7966 "text": [ -  
7967 "\n", -  
7968 "(971, 0.51285000000000003, 0.60060000000000002, 0.45044999999999996)" -  
7969 ] -  
7970 }, -  
7971 { -  
7972 "output_type": "stream", -  
7973 "stream": "stdout", -  
7974 "text": [ -  
7975 "\n", -  
7976 "(972, 0.57817499999999999, 0.82972499999999993, -0.156975)" -  
7977 ] -  
7978 }, -  
7979 { -  
7980 "output_type": "stream", -  
7981 "stream": "stdout", -  
7982 "text": [ -  
7983 "\n", -  
7984 "(973, 0.72344999999999993, 0.19548749999999998, -0.65227499999999994)" -  
7985 ] -  
7986 }, -  
7987 { -  
7988 "output_type": "stream", -  
7989 "stream": "stdout", -  
7990 "text": [ -  
7991 "\n", -  
7992 "(974, 0.55964999999999998, -0.8931, -0.48993749999999997)" -  
7993 ] -  
7994 }, -  
7995 { -  
7996 "output_type": "stream", -  
7997 "stream": "stdout", -  
7998 "text": [ -  
7999 "\n", -  
8000 "(975, -0.1716, -0.89894999999999992, -0.34514999999999996)" -  
8001 ] -  
8002 }, -  
8003 { -  
8004 "output_type": "stream", -  
8005 "stream": "stdout", -  
8006 "text": [ -  
8007 "\n", -  
8008 "(976, -0.2374125, -0.82484999999999997, -0.58109999999999995)" -  
8009 ] -  
8010 }, -  
8011 { -  
8012 "output_type": "stream", -  
8013 "stream": "stdout", -  
8014 "text": [ -  
8015 "\n", -  
8016 "(977, 0.1106625, -0.8097375, -0.62692499999999995)" -  
8017 ] -  
8018 }, -  
8019 { -  
8020 "output_type": "stream", -  
8021 "stream": "stdout", -  
8022 "text": [ -  
8023 "\n", -  
8024 "(978, 0.55184999999999995, -0.68932499999999997, 0.080924999999999997)" -  
8025 ] -  
8026 }, -  
8027 { -  
8028 "output_type": "stream", -  
8029 "stream": "stdout", -  
8030 "text": [ -  
8031 "\n", -  
8032 "(979, 0.57524999999999993, -0.13552500000000001, 1.005225)" -  
8033 ] -  
8034 }, -  
8035 { -  
8036 "output_type": "stream", -  
8037 "stream": "stdout", -  
8038 "text": [ -  
8039 "\n", -  
8040 "(980, -0.229125, 0.19792499999999999, 0.91942499999999994)" -  
8041 ] -  
8042 }, -  
8043 { -  
8044 "output_type": "stream", -  
8045 "stream": "stdout", -  
8046 "text": [ -  
8047 "\n", -  
8048 "(981, -0.59962499999999996, -0.17745, 0.17745)" -  
8049 ] 214 ]
-   215 }
-   216 ],
-   217 "prompt_number": 7
8050 }, 218 },
8051 { 219 {
8052 "output_type": "stream", 220 "cell_type": "code",
8053 "stream": "stdout", 221 "collapsed": false,
8054 "text": [ 222 "input": [
-   223 "np.savez(\"calibration_data_3Dset\", data=list_meas)"
8055 "\n", 224 ],
8056 "(982, -0.64837499999999992, -0.57719999999999994, -0.82289999999999996)" 225 "language": "python",
-   226 "metadata": {},
8057 ] 227 "outputs": [],
-   228 "prompt_number": 8
8058 }, 229 },
8059 { 230 {
8060 "output_type": "stream", 231 "cell_type": "markdown",
8061 "stream": "stdout", 232 "metadata": {},
8062 "text": [ 233 "source": [
-   234 "Kalibrace akcelerometru\n",
-   235 "-----------------------\n",
8063 "\n", 236 "\n",
8064 "(983, -0.014624999999999999, 0.034124999999999996, -1.1124749999999999)" 237 "Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. \n"
8065 ] 238 ]
8066 }, 239 },
8067 { 240 {
8068 "output_type": "stream", 241 "cell_type": "code",
8069 "stream": "stdout", 242 "collapsed": false,
8070 "text": [ 243 "input": [
-   244 "data = np.load('./calibration_data_set.npz')\n",
8071 "\n", 245 "x=data['x']\n",
8072 "(984, -0.52844999999999998, 0.07897499999999999, -0.57427499999999998)" 246 "y=data['y']\n",
-   247 "z=data['z']"
8073 ] 248 ],
-   249 "language": "python",
-   250 "metadata": {},
-   251 "outputs": [],
-   252 "prompt_number": 1
8074 }, 253 },
8075 { 254 {
8076 "output_type": "stream", 255 "cell_type": "code",
8077 "stream": "stdout", 256 "collapsed": false,
8078 "text": [ 257 "input": [
-   258 "from mpl_toolkits.mplot3d.axes3d import Axes3D\n",
8079 "\n", 259 "#%pylab qt\n",
-   260 "%pylab inline\n",
-   261 "fig = plt.figure()\n",
-   262 "ax = Axes3D(fig)\n",
8080 "(985, -0.61473749999999994, -0.72052499999999997, 0.37927499999999997)" 263 "p = ax.scatter(x, y, z)\n",
-   264 "#pyplot.show()\n"
8081 ] 265 ],
-   266 "language": "python",
8082 }, 267 "metadata": {},
-   268 "outputs": [
8083 { 269 {
8084 "output_type": "stream", 270 "output_type": "stream",
8085 "stream": "stdout", 271 "stream": "stdout",
8086 "text": [ 272 "text": [
8087 "\n", -  
8088 "(986, -0.38317499999999999, -0.096525, 0.99352499999999999)" 273 "Populating the interactive namespace from numpy and matplotlib\n"
8089 ] 274 ]
8090 }, 275 },
8091 { 276 {
-   277 "metadata": {},
8092 "output_type": "stream", 278 "output_type": "display_data",
8093 "stream": "stdout", 279 "png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNX6gN+Z7SW9NzoovXdpghV7QeQq/Cx4RVGv1y6I\nBcGG2NCr2HtDxAICKggivYcaIJQkhJBCdpPtOzO/P+Kum0YSCIGQeZ/HJw+PuztndmfOO+ec73yf\noCiKgoqKioqKShNBPN0NUFFRUVFRaUhU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU\n8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amo\nqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNCm0p7sBKiqnElmWcbvd+Hw+dDodGo0GjUaDKIoIgoAgCKe7iSoqKg2MKj6VsxJZlvH7/UiShKIo\nyLKM1+tFUZRysguIUBWiikrTQRWfyllFqPAABEFAFMXgf6EEhBh4bSgBEWq12uB7VSGqqJwdqOJT\nafQoioKiKPh8PmRZBignKUVRqnxfdSILCNHn8+H1ejEajcHXi6KoClFFpZGjik+l0RIqPKfTiSAI\nGI3GKiVUFzEFRBaYFtVoNMHjBUaIXq+33OtVIaqoNB5U8ak0OgIC8vv9wRFegFMpmppGiNUJUavV\nBtcPVSGqqJx+VPGpNBoqCi8gkFMlkcCorzavO54QPR5PpddXJcSKa5AqKiqnBlV8Kmc8iqIgSRKS\nJFUrvJokVTGasyGoSoiBNlYnxIoRphqNRh0dqqjUM6r4VM5YAsLz+/1BcdV1hOfz+XC5XPj9/nIj\nq9M17Rg4VnVCDJxvxfdUXD9UhaiicuKo4lM546hKeHWdBgwIT5ZljEYjOp0OKBtpBfb0BdYHQ0UY\nupevIamrEBVFKRdQU3ENUUVFpXpU8amcMZyM8ARBQJKkcsIzmUzo9XoAvF5vuQjNwPEC63CB/yqu\nHwaiRk+XVGorxMD35ff70Wq1lbLUqEJUUfkHVXwqp52THeEF3u/z+fD7/UHh1XYfX1Ub2wOf6fF4\ngp8dEGJ1U6YNSXVC9Hg8aDQa/H4/Pp+v3NpmYISoClGlqaOKT+W0oShKubRiJyK80BGeRqMhLCzs\npDvy0HW/wN7AwPFCR4hnohADba5K5kBQiKGoQlRpaqjiU2lwAsILrFmdjPAATCZTcJqyIfbxVTdC\nPJOFWNOUqSpElaaEKj6VBqMq4dWlE1UUBa/Xi9vtBsqEp9PpEASh0taA+qCu+/iON2Uaun4YmhHm\ndEaYBtoe+je07aAKUeXsRBWfyimnvoTncrkQBKGc8M5kjifE0ICawOgwEKl5urdcBNoe+je07aAK\nUaVxo4pP5ZQRmParD+GJoojFYkGr1Vabi7M2o7MzgdCN6qGoQlRRaRhU8anUOwHhlZaWIooiBoOh\nzsLzeDy43e4ahXc2UR9CDEyvno62h/4NbXtgTTawpSSAKkSV04UqPpV6o2ItvEAHXNuOrCrhBTae\nN2XqIkRFUYLf3+nelB9oe3V5TEMrawDB37q6PKaqEFXqC1V8KidNVcVfQzeA10RAeC6XC61Wi9Vq\nRaut26XZmKY664uqhOh0OoOb9qvalH8mRJgG2h44bmA7i0ajCQrR6/VWyq9aXR5TVYgqdUUVn8oJ\nUVPx19p+htvtxu12o9VqCQsLq7PwVCpTMUMNnNlbLkIFV1Oli9A9nwFChRg6ulWFqFIdai+jUifq\nIrzqRmGq8BqexrwHMbT9FVGFqHIiqL2NSq2oqvhrXTuRQCket9uNTqerV+GdiqnO0JRnZ2tn2RSE\nWBFViCqq+FSOy8kUfxUEIdhxhgovPDy80lScyplFbYVYcVN+aDDN6RTKyQgxtPyTKsSzE1V8KlVS\nH9XOAxvXbTbbaRee2nnVD6diU37gNQ3Z/oqECtHr9ZZ7fWj5J1WIZweq+FTKUR/FX2VZDq7hiaLY\nIMJrilGdVXG6pmVPZg9iYOr8dEZpnogQA1LU6/WqEBsZqvhUgPop/hoQnsfjQa/XYzKZkCRJndZs\nwtRGiJIkIUkSLpfrjMpSE2h/dUIMZKkJLRAcuG+qKg6sCvHMQRVfE6e+hOdyufB6vej1eiIiIhBF\nEa/XW65TUFEJECrEwMORTqer85RpQ02RVtX+0PMIEGh/xaTpoedbcWO+SsOjiq+JUh/CkyQJt9uN\n1+vFYDAEhXe6ON5U59kcmdnYqbiP73gjxIqVLoBKImnICNOKx6lqZBe4LkPz1oa+vrqN+SqnDlV8\nTYyTLf4KtRdeQ667qR3F2U1VQmxMWy5C/4a2H44vxNCAGlWI9YcqviZCIA2UJEnVRubVRGAdxufz\nnREjvLpwoh1GQN5qh3Pmcbr3IJ7sdVFXIQamewNCVBN7nziq+M5yQmvhOZ1ONBoNJpOpTp8RKjyj\n0YjZbK6V8Bo60rK6Y6mdQtPidAuxPtof+je0/UClJQpQK13UFVV8ZylVFX+t6+jM7/fjdruDwrNY\nLGfsjXSmtkulZhpqRF0XIYYmya6qysXpmAmoSYiBKFNViDWjiu8s42SrnUPZDeRyufD7/SclPHVv\nnUpj4EQ35Qf++v3+077lIvRvaPuh6uLAgbbq9fomKURVfGcJtal2XpOIQoVnMpmwWq2N7kZQ1+NU\n6ouaIkwDWxbqkqWmodsf+je0/YFRbSAyNkBTGSGq4mvkVFcLryoEQah0oUPZjet2u5EkCaPRWG/C\nU6M6VWpDY5sVCAgxIIlAAd2TSdvW0O0PPY8AxxshBs5106ZNdO7cmYiIiIZr8ClAFV8jpS7CCyW0\nk/H5fLhcLmRZrlfhnWlIkoTH4ym3XqNm0jizaIy/RcXZhZNJ23amCbFi+6FMiLNmzWLatGmq+FQa\nltAbB+q2hhcYgYUKz2QyodfrT8mNdrrX+EKjUbVabbk6gmdaJhCVs5czcVN+XZYEQoVos9mIjIys\nt3acLlTxNQLqq9p5YA3Q4XCcUuGdLgKiDaRQC41GDYR/B6jqKTywx7GiBGVZVoWoUon62Md3ujbl\nn2jbS0tLG/1oD1TxndHUl/ACI7zAxR4REdGgwmuogBNFUXA6nbXab1jbTidQLf54Ye0qJ4cakPQP\nZ/oeRFmWz4qk86r4zkDqqxZeQHhAcNN6oBNvCBrqOIERXuCY1WWUqamDrarTcTqdwbIzFTuc+lyj\nyc/PZ//+/URFRdGmTZsT/u5UiTQcDTmNX99CPJHrpLEFIR0PVXxnEPUlPK/Xi9vtBsqEp9PpEASh\n0nRfQ3GqOuPQqhAGgwFBEDAajfU+LRnagWi1/9wyxwtaqMsazYYNG5g06V0kqT2SdIirr27PxIm3\nqQJrBJzu3+hEhQhlkZo+n69OI8SzZZZDFd8ZQH0Ufw0Iz+VyIQhCOeEFOB3BJqdKeIG6f6E5Q0ML\nhTYE1QUthMqwpidwQRB45pnZ6HSTiIpqhyS5+f77hzj//B107NixQc9H5eyhpk35gT2IgYfs2sxe\nhEqzsaOK7zRSH6WBQoUniiIWiwWtVntGXaD1JduKhW7P1CTZVUWHVnwCD3Q4LpeLY8ecJCa2RpYV\nRNGAKLYmPz//NLW+YWnM02eNcVo58LAmCAI6nS44g3G82QtBEHj44YdJTk5Go9GQmZlJixYtarz3\nbr31VubPn098fDzp6elVvubee+/ll19+wWw289FHH9G9e/d6P+eqOPN6jSZAYP0tkAcTqPNitKIo\neDwebDYbHo8Hi8VCWFhYpVFeKI11xCfLMk6nE5vNhqIohIeHY7FYKt14p3v7xPEIPNRotdpgdXqL\nxUJMTAytWydQWPgroOB0ZiHLm0lMTMTpdAavkUCgzdlKYxNIY/8tqtuDqNPpMBgMwevTYrGg0+no\n06cPhYWF7N+/nyFDhhAeHk7v3r1ZtWpVtce45ZZbWLhwYbX/f8GCBezdu5c9e/Ywe/ZsJkyYUK/n\neDzUEV8DEjrCczqdiKJY50oJAeG53e7gCC+QOaImTpcYTvSYgSkZt9uNXq8nPDz8jIkoUxSFkpIS\ndDpdnX/DUARB4Nln7+fxx2eSlfUler2fKVPGcs455wT3d52pVQRUGp+w64oglOXzHDduHOnp6Yii\nyDvvvENxcTE7duygTZs21b530KBBHDhwoNr//+OPPzJu3DgA+vbtS3FxMXl5eSQkJNT3aVRCFV8D\nUN2UZl2EECo8jUZTJ+FV9VlnYmSnoihkZmZSUFBAVFQUcXFx6HS6ehHeiZ5vVe9zOBxMnfoa69Yd\nBPyMHj2U22+/6bjBK3/9tZWdO3dQUOAjIsLK2LEXM3jweQCkpKTw4YcvUVJSEpyqBsoF0sDxqwiE\nTq/6/f7gdNbZ3jGrnBgn0gfYbLbgHr7IyEgGDBhwUm3IyckhLS0t+O/U1FSys7NV8TV2ApUSTqba\neUB4LpcLrVaL1Wqt1CHWltPVCdZW8HPnzmfOnN0oShqCsITbbx/A8OFDan2c441oT+bcK37m7Nmf\nsWZNCklJTyFJLr74YirnnPMngwcPrvTeP/5YziuvLKOw0MqhQybM5qvo2DGZ559/l8jIcLp06QKU\nTXXXtDG4poCFwNqh3++vJMSK+w/PFBrjOhk03nYHOJH22+32es/aUvHeaqjvVBXfKaA2tfAEoeqE\n0aGf4Xa7cbvdaLVawsLCTlh4FY97MjetJEl16jxr8zpFUTh06BDffruJpKQHMBqt+HwlfPbZTPr3\n743ZbD6htlY8Rihut5s5c35g795c2rVL4brrrkSv19fqs7Zs2U9k5H8QBBGt1oIoDmLhwj/YuTMH\nq9XARRcNJjY2FoCvv15GVNTtZGV9iNV6Fz6fBrdbgyhezLp16UHxnQyh0aUejwej0Vgui01gytTh\ncLB//35EUaR169bB/YnqdGnT4kSXHux2e71mbUlJSSErKyv47+zsbFJSUurt84+HKr56pC618Kob\nnYQKT6fT1ZvwTpaioiJefHH2352+hQcfvImePXvU6r3V3Wiho1mbzYZen4TZHAaAwRCOLFtwOp31\nIr5QZFlmypSXWb8+DqNxCMuXr2b79leYOvWhWo3I09JiycnZjtNpxePxUFAwj9WrrRQUdMPrPcbq\n1e/x9NN3EB0d/Xe6Mz06nRGHIx9IRpYVFKUAq9VISUkJc+fO47vvfiU/v5iUlGbcf/8YBg48uWkk\nKC/E4uJipkx5nayscBTFy7nnyjz++F0YDIZy64cV9x+GXsNFRUXs3buXsLAwzj333CYtysY+4oO6\nj66Ki4vrVUxXXHEFs2bNYvTo0axevZrIyMgGmeYEVXz1Ql2EF6Ci+EIDOeprXas2x60tL7zwDunp\nXUhJeRyH4yBPP/0qb7+dSHJyco3Hq0jF9cqwsDBat26N1TqfoqJdREWdw9GjG4mPl4mKigLK1tXe\neOMjVqzYRkSEhXvvHUXfvn1O6NyysrLYtMlGUtLTCIKIovRh7dqJHDlypMbz2bt3L7LsY9euKXi9\nPRBFBVlOp23bV4mL6wbAwYN2tmzZyrBhQ7nssr68++5HREe3ICvrISCN0tJOtGlzmEGD7uPuu6ew\nfDmUlMSi0zmR5e489dQXvP12Aq1bt67xXKojMzOTP//ciCAIDBnSiwULlpGV1ZukpGtQFIUdOz5k\n0aIljBp1NVBzBYGMjAyeeOI9fL72yPJhRoxI5qGH7gr+vrm5uRQXF5OQkEB0dPQJt1vl1HOi0i4p\nKSE8PLzWr7/xxhtZtmwZBQUFpKWl8fTTTwej2P/9739z6aWXsmDBAtq0aYPFYuHDDz+sc5tOFFV8\nJ0Ftir9WR+hUVGBv2qkUXsXj1gW/38+WLQdJTZ2MIAhYrS2x2zuzb9++GkUB/4z4KgpPo9Fgt9vR\narVYLBYeeWQMb745h6ysYlq1imPChJuC38Ubb3zEkiXhJCW9jsuVy9NPv8qbb8bRsmXLOn8HZaMb\nDRD4rQRAPO7UM8D+/ft58MG3sNm6oyj90OkG06pVMoWFv7F9+wHat+/79zWgCZ7zZZddhNNZytSp\nH2AwDAFk7PaF3H//C+zatYutW73YbB5gJB5PBvv2fUKnTnewY8eOExbfvn37mD59LqJ4IaDw559f\nYzC4MJsHlZ2tIGA0diQ7ex2SJAUDYY5XQeDllz8D7iYmpguy7GPRoqcZMOAvevfuzeLFf/Ddd9vQ\naFIQxUPcc88ldOnSuVZtbawjp8ba7pOhrpUZvvzyyxpfM2vWrJNp0gmjiu8EOBnhBQhEepZN8Z1Z\nofoV0Wg0hIcbcTqzsFiaIcsSspxDeHjNm00Dog1MaQa2YOzcuYvp0z/B44lApyvmkUfG0LNnD158\n8YFgNYSioiIOHjxIfHw8q1fvJDFxBlqtibCwVths/dm9e3etxacoCrm5uTz77Cy2bNnNsWPF2O1P\nERd3LQ7HSrp1i2D58pV8881SAG68cQSjRl1T7jOWLl2F1zuSsLAw9HoXGs1lFBdnk5IymN27P6Kg\noBN+vx2rdT1duowPnn92dgEGw80UF3cDYjlyJIV77nmKhx66laNH9yOKbwPtAPD7MygpWYXVem3t\nf6AK/PbbOrTakSQklE1FHzki4vd/jt3+J2Fh7VAUiaNHv+H33/NZvTqDzp3TmDjxpuDoOpSAEPPz\ni4mN7YBGo0FRNGg07bDb7axevZpHHvkCv/8GoqNj6dy5P2+++QmvvPLPGqIaXXpmcaLSPhXBLacL\nVXx14ESLv1b8jMAIT1EUIiIiGlR4JzLiEwSBBx4Yw9SpL2OzdUWSshg2LLLGwIyA3H0+X7ktGE6n\nk+nTP0Gnu5fo6JaUlmbx/POv8P77bQgPD0cURebPX8yHHy4DorBYjqHR+HC5DqPTtfs7rD8Hi6Vn\nlcesyE8/LeCFFz4kI2MvojiWdu2eArZRXPwYPXs66dq1LfHx3Zk5cxWRkdMAeP315/H7fVx++aXB\nbSOiKAAy4eHtEcXP8Ho3YDCYkKQshgzRYzR+wcGDWXTu3CKYNFtRFFat2kRmZj8EoRk6nQW9vjeH\nDs37u63F6PVW3O4iFCUfjSaeFi1yGDhwYJ1+o1AkSUYU/7m1BUFLly5daN68mNWr78fjKcXjcdGu\n3XOEhaWxffti3njjM6ZMuafaz+zSpRVbtiwgIeEqvN58BGE9iYn/4rHHXsPnG0B4+DXY7YfYvHkf\nHTqU/caBAK7q0mGdiVl3mgKq+FTx1Yr6El4gobJerycsLIySkpIGH+Wd6Bpf3759+N//ksjMzCQ8\nvDPdunWr9jsITaOmKAp6vR6z2Rx8fWFhIR5PJNHRZaM1qzWNkpJ48vPzCQ8P5+DBg7z//kri4yej\n14dx7NgO4DUcjtcpKemHouTSvbuLfv36lTuu2+2moKCA2NhYwsLKgmTS09N59tnvMJufQ5Iewe//\nFzk5Nlq1GggMYcyYIQwcOJBHH30Rg+F6DIYkjhw5yp49rXjwwbd46aWvGDduOC6Xn6KiYrze/RQX\nm2jZciiZmU8RGxvF0KG96dBhBC+9tBit9hZ+/72QNWsm8cknL3Do0CEOHvSiKAsQxavw+UqR5c9I\nSmqBwWDgmmuG8PPPb2IwXIJWm0d09D5mznypUoTp3Lk/8Nprn+F2e7jsssE88si91UahDhvWnXXr\n5lNQIAIKPt8vXHDBlbRp0wabzcbGjRt5991CwsObA5CcfBHbty/E7/dXG0j1yCP/5sknXyMj4yd0\nOon//vd6dDoditIWvb4UScrDbG7BsWOLiYiQiI6ODoqt4vqh1+stl4Q9sKbYmKJL1anOxo0qvmoI\nbBY+mVp4UBb+73a7gxUEAvkla1pPOtOw2+1YrVYGDx58XOGFlkKyWCx4PJ5gZ+Zyudi+ffvfWWcK\ncToPYzYn43IdRRSPEhMTA0BeXh4aTWv0+jJ5RUV1oLTUzKuvjufAgQNYLGn06dOn3Ab+ffv2MWPG\nN3i9UWi1Jdx22zD69OnFjh07kOVhmEytEQQ/ogglJQ4UxY8k5WK1WvH7/Rw+nENm5la02liOHTuI\n378LrfY/FBXFMHXqhyQknEt4+CB8vl0MG7aI+PgURoyYSs+eZaPOUaPuwWJ5GIulw9/nYOe335Yg\nyyIxMf/i2LFPKSq6HUFIQKtNIDo6l44dOzJw4EASE99l9erZxMSE88ADk4mOjmbGjP+xY8chWrdO\npFevc3n22bmYzbMwGqOYO/c5zOb3eOCBuyp9/wAdOnTg4Yfh119XIwhw4YWX0bZtW6Bs43FiYiKS\nlI4sS4iiBocjm7Aww3EfwmJiYnjjjacpLS3FZDKh1Wo5cOAAolhC69ZXc+DAbEpLJTSaFdx332vl\nRnNVrR+G3l+hMwMVs9OotQ/rnxOVtsvlOqksRWcSqvgqcKqFFyAw8mroJ8e6jvgkSeKNNz5g8eId\ngMiAAc148MF/YzQag6+pKLzQyhA+n499+/bx2mtfsGjREmS5DTExEcTFHUWSpmOzNUMU87j//quC\nT5MJCQlI0ny8Xht6fQSFhVtJSDDTtm1b2rVrV6mNfr+fWbO+R6e7kbi45vh8Jbz//nu0bt2SqKgo\nBGElgqChefNbycyciEbTicLCIs4/P5HOnTuzbNlK9PpeWK0rKC524fVuRaNJIirqSuz2bcjyHcjy\nJozGVrjdwygs3MnLL08t14ayDjs0k44WSfKRmBiLLO+lX7932LHjdfLyVhIdncnMmdODoeGTJ/8H\nKItc/eOPP5g06SUKCoYRE3MXGRmrePvtR3E6/43RKJGWpkWv/z8++uh2iouLufTSYfTv37/Sd9Kh\nQwc6dOhQ5W/avn17hgxZy7JlMxHFZERxO7feOoQNGzaQnJxcZcBSevo2NmzYidVq4PzzzyM6Oprm\nzZtz5ZXtmTfvW5KSWiPLG5k4cUKNQTkFBQUcPHiQpKQk4uPjkWU5eD0F7onA3sNTUfuwPmjMI76T\nafvZMj2tiu9vKtbCgxMXnsvlwufzVSm8AKfrpqmr+BYsWMwvv7hJTZ0JiKxY8T7Nmv3A2LE3HFd4\nAex2O9Onf0ZGhhav9xZE8WZsNhswl8GDnYwZcwUxMTHlAiuaN2/Ov/89mNmzn2H//v3k5+fQrl0z\nlixZyvDh51dqY2lpKaWlOuLjU/F4vIiikVWrDjN8+I2kpqbQqpWO/fsfRKdLolUrB6NGGejRYySD\nBg36O1T/CKmpI2jR4jI2b57PihVFCEInJMmA11sEuLDbV3Ps2F/IcnMKCjbw66+/ccEFI4JtuOGG\n4bz88sv4/bfi8xViMs1n6NCpJCcns2zZJjZvnklSUjjnnNOKF1+8v1yqpsD3NHbsfWRmxpCb60an\n601UVBJHj/bE4YhHoylFllPZv/8gfv9KRNHEV1+1Z86cacycOZERI4YHg62KiopIT0/HaDTSvXv3\nSlOigiBw113jGDp0ByUlJWRmSjzxxPuIYmtkOZNHHrmRq666DEVRsNvtbN++g1mzVqLXD8fnO8ay\nZe8wdeoEIiMjufPOcQwYsJWjR4/SvPmEKh9MQvnjj2U8+OBMoBWStJ+xY4cTHZ2E2WzkvPN6kpSU\nVGN2moAQA0sPdal9qHJiNPak3BVp8uKrKLyA7E5GeEajEbPZXOPT0clmUWkIdu48hNk8AFEsG82E\nhZ3H9u0/BIWnKEqVwsvMzGTLli3k5ubidKbi8+Uiij3R6yPxeo+h0XQlL29htUluL7poONu27WT7\ndjepqa9QWmrjgQee4oMPIunRo/zGeavVitudy7x5c4EEcnO34nZvwmg0UFLSnJiYrUyaNBK9Xk/H\njteSmJhY7v1xcVb27j1MSko/Bg68hT179nHw4Ge4XIXIsoAg7MTh2ItGMwedzkB09K1MmnQ/5503\nkAMHDuB0Ohk4sB9Go5GFC7/FajVy662TadGiBQBTpz7Izp078Xg8tG17c5XZL7777nv27+9KRMTt\nHD36ELKcxt69BygpcWI0noMobsDnm4rX60RRVpCU9D4GQxdcrjY8+uh9JCV9j6JA+/Zx7NqVjdPZ\nFUUp5txz5/D6689UmqISBIGOHTtis9n4739fwWx+E4MhDa/3CC++eCdpaUk899y75OY6yMs7SseO\n0zl2LJySEj0HDkSzcuVKLr30UgRBoGvXrrW6llwuFw899BIazf8wGs+htHQVL700hfPPfwir1cjy\n5V/x2GM3VDniPN50aV2rj9cHZ/p9ezxOtO1n03RzkxVf4IYJdN6BjruuP6zf7w+WjjEajVgsljrv\n5WtI6nrMZs1iWbJkO4rSB0EQKC3dRkJCGA6HA5PJhF6vL3e+iqLwxx9/8Mgj7yBJQ3C79+FybaFZ\ns1EcObIAWe4KuPH5FtG9+/FHB0uWbCQqagomUwsAnM5RLFu2qpL4bDYbNpsDQdiBw5GO07kKUbwf\nUexHUdHTyLKO3bt306tXryo34I4YMYA9e74jO/swpaU2PJ4NdOnyIrt3P4uiXIUkdUJR0lAULVFR\n+YjiAYqL7bz33pfs3x+DKMYDi7jllr68+eallT5fq9XSuXP1+9oKCgqYO3cxBQUX4PeD1doBu/01\nHI7myPIGIiIiaNPmZYqKficn5zHgRgyGsohar3cnx46l0KXLW4iikZ9+ehyDoQXnnvs4iqKwffuL\nLFjwC9dee021x4ZYDIayEahen4jLlczjj7+Iy3UvcXEjyMt7kJUrd5GcfCFmc0sKCtYze/bnREVF\n0aVLFywWy3F/xwBFRUVIkhWz+RwAnM49iOJ1mExtSUlJIycHVqzYwKhRNe8NhdpXH69LsdWmQOB7\nqAs+n++Ek+KfiTQ58VWslBDIJFDbPI0B/H4/LpcLv99fZ+EFaAziu/LKS9m4cSbbtj2NLAukptq5\n6aYHiIiIqHS+e/fuZdKk11iyZBWiOI1zzjmfqCg9e/dOwOtdS1SUi4KCoURFmbn00sGMG3fjcY8d\nFmYmLy9B0dQvAAAgAElEQVQPk6ksMENR8rBaKy+u5+bmYjJ1Z9Cg0axYMRlBGIUgXIAgWFGUS8jP\nf4I5c/qwcOFW0tLm8/LLjwUFqCgKDoeD0aPPx+v1kpGRwa5d3YiKGopW+zY63X/xen9Dkl5EkhZT\nUPAtitIfUUzgvfd+Yty4uWg0OpzODnzzzdc8/XTldbU9e/aQkZFJWJiZPn16l1vPWrt2LZMnv8bh\nw4m43d+Tnd0OQRiGKE6iY8dNDBnSk0WL9mCzvY8g7OHKKy9g6dJfcTj6o9HE4Xa/R3z8HWi1FhQF\nZHkAXu/S4G8tiudw5EhZPsTS0lJsNhtxcXHB6z0hIQG9vgi7fT0mU0u83lwgC5tNS3z8MLKz36ak\nZC0ez5+UlgK0p7R0Hhs2JPDoo8tJS/uG119/olbZWmJjYzGZ3Dgca7FY+uDz5SNJfnJzj1BaWorZ\nLOP3lw/6UhSFxYuXsHjxJrRaDddeO4g+fXod9zi1SeZd3fph6LTp8e7nE5FHY8Zms9Upa8uZTpMR\nX3WlgeoqglDhmUwmrFbrCT8tng7x1RWdTsejj04gMzMTvV7POeecg8FgqPQ6l8vFgw++jMs1HkE4\nhNu9lvXrn8NotBIensT113ekZ8+eRERE0KJFiyqn+7Zv387y5eswm/VccskI/vvfsUyY8AJHj+4C\niklMXMU117xZ6X2RkZFIUg6gEBaWjNHow+s9iN8fi9f7JUbjTbRr9wCKonDw4Kf8/PNCxowZhdvt\n5uGHp7Jq1QEA+vZtxqOP3o1GM4esrE14vZE4nZ9jMrWlbdvbSE9/GI1mFnp9F2JjI8nPn8jSpS9h\nt5eNMOLicittCVi1ai2zZ69GkjqxffvH+P3TGDGiL48+OpHZsz/j00+XcPSoEUVph6KsAZ5CURRi\nY3sjywe49967ufnmY2RkZBAT04NevXqxfv16Zsz4AIfDRbNmHdi7t+Tv60jAbD6K230YWfYhSaXI\n8iK6dr2GhQsXM2PGVyhKJBERLl588QHatGmD1Wrl//7vEiZNugufLwy9/hivvHI/b775HZs2XYvd\nXoCi3AJIFBUtRFHmYDRejF5/CfHxrTl8+Gs+/XQO9913R43XksFg4I03pnDPPZMpKbEiihkIQiu2\nbu2AIGSj13/KhAkPlnvP0qV/8sEHu4mLuwWn08Mrr3zG5MkmOnbseNxjbdiwgd27dxMbG8vw4cNr\nzE7TlGofnmxJorOBs1581QkvQGAfUU0EKqZLkoTRaDwp4Z1Oanu+AcFLkoTZbKZnz57HPd8jR45Q\nUhJBXFwftFotJSUHgK/xeGzk5Y1n0yYfimIkNTWOc889t9L716xZy+TJXyAIlyPLdn766Vneemsy\nX3wxnT///AuTKZa+fZ8lMzOT4uLicpGDqampjBnTnU8/nUF0tAWj8VPCwwuQJBeKso2oqNGsXLkO\nUdRhNhs4evQoAB999AUrVoQTE/MtAKtWTeOHHxYycmQ3Zsy4D50uEVmegd9vxu8PJz4+ksjIweh0\nEUiSRH6+nt27S2jZcgoOxxEKCr5gxYrVDB16XrBtX331BzEx4/n998kcPdoRRZnAjz+uZf368RQX\nW9Drx6Mo6xHFK/D7t2A0zkaWd9KuXSfs9gc5fPgwnTp1Kne+ffr04ZtvyvKUulwuHn30BXbvfgZR\nNNO+/W5SUtJYs+YKdDoNEyZcR1paGrfc8hzh4a9iMCRw7NhqHnvsFb75ZhZHjx7l889XEx7+HILQ\nAq93I7Nmfc7IkT2ZNu1jFOUpBOEGwIeihOF0vo3R2IKEhHC0Wg0GQ1tyc/fWeD0F6NGjB7///hV5\neXm88MK7rF/fEb8/H1HUAP3YtGk7vXr9M6JbuXIHkZGXY7GUTX86nRewdu3244rvyy+/YebMhfj9\nw9BoljBo0ApmzHiy2u0agiDUufZh4IE19AG6sfQHJ1qSSBVfI6Am4QWoSQSBII5AyHV9Cu9MnOo8\n0RFtREQEslyAz1eMRhOBRvMv/P5iJEkHtGHOnGNs2BCDKG7nl19W8O67M8p1Nh9/vACz+d9ERnZG\nlv1s2bKK8eMfY8iQPowbdx0HDx5k/Pip+P1tkKRsbryxNxMn3hZs2zXXXEanTu04duwYkZGXs3Ll\nSr76agWFhZeza9dyFGU0BoNCYeEPHDoUj8/nY+3a7Wi111GWtxP0+hFs2/YdVmsYvXq9jtmciihG\nUFDwG8OH7yEzcz9//vkO4eH/we/PxGDYSmTkvfh8GSQnW4mPv5b09H/EpygKLpcPRSmloCAXg+ED\nfL4SLJYe5OauwGCIxmhsgVa7F0k6hKIcwe/fjdlsQJKKkOVs4uLiyn3POTk5/PDDXxQXu2jfPolL\nLhnMjBmT2LZtG36/H6t1BF9//Rvt20ej0XhIS0shJycHUeyIwVCW+T4qqh95ea9TWlpKdnY22dlR\nmM390eksKEprsrO/wOHwYTCYkSQDGo0eQdDi9xuJjRUxmf4iMfFCJMmNy7WAbt1al+tMy6YnF3Pg\nwAFatmzJBRdcUO4aMhqNNG/eHLfbT1RUP8zmcxFFkaNHf8Lh2FfufC0WA16vLeT6LMZiqTzjEMDr\n9fLKK59htX6BTheHokisWDGeLVu2VFobPh41TZe63e5y254qrh+eibUPT4bi4uKzZvM6nMXiA4JC\nO95cfFWV0APVFgLCqyqIoz44XVOdVR3zRIQXyKkJEB0dzd13X86sWY8CR5HlvUA3QAccRJaf5eBB\nLWZzL3744b/06DGbe+75ZwO2x+NDo7FQUlLKnj3vcPiwBo1mND/9ZGfdumcoKChEFJ8gJqYjkuTi\nyy/vZ9iw7XTq1Cn4GWlpaaSmpmI2l60NxsbGYbG0Y9++L5Gk1/H7s0lLu5nlyz9i2LDryc4upaTk\nL1JSXkCWu+J2/0JSUjiKosfvL8FoTESSZBTFS0SEmeeff5wHH3yGVasGEhZmZezYC8nLiyM1tSxn\naU7OcqKj/wn0EASB2FiFn356C5erBEWxodF40esj8fkkYDdlKdAiKC3NRq9vg0bzHyIi2lFSUsQD\nD1wfLNPi9XpZsOA3Pv74D8LDe9K585WsW7cTr/d3brhhJN27d0dRFKZNe4vDh/vRrNlAvN4SPv74\nHcaN64IkZeD329Fqwykp2U54eFkKuejoaHy+/QiCm6KiL7Dbl6Eoh9DrOxETk8jRo1/idusoS+T9\nHlde2ZuEhBTmzfu/vyuSFDNt2q+88spHTJlyNyNHXsKUKc8xZ04GPt956HSfc/31G3jmmccqXT8X\nXdSbadNexeW6EUFwExn5BYMHTyz3mquuGsrWrZ+TlZWPoniIitrA8OF3VntNls3KaNBqY//+DTRo\nNEk4HI7jXsu1JTBdKggCer0+OIqsWPswNEr8TJsuVUd8Z7H4AhdoTWIJlU9DCa+qYzcUFSMwf/nl\nV+bPX4tGI3DDDcMYMKB/jedbUFDAgw8+y/r16URGhjNt2v0MGTKY6667km7dOrJy5Uruvns6spwN\nOAEHoEWW26LXx6EoHfjgg5+58cZRxMbGYrPZKCjIYunSa5DlJGTZhkYzlejoTiQkJHD48G4KC/fS\nqlVZ4IhGY0IU2wanLKuiLDuOD0EQMRpHYjC0RFHeIypqENu3P09S0gdERIjY7R9x4MB4RLEter3C\nwoUaZs6cxMaNX5KTk4cse4iKWsFVV00iKiqK999/JSh8m83Giy9+xKFD+QiCSGzsQS69dFywDT/9\ntIDff89GltshCBIOx+3ExY3G6VxHr16xjB17B5MmPYHBUIrFEsagQQPp0mU0nTu3IiUlhZ07M5k2\n7SOMRi2SVEpGRiJ2+3V4PCIbNy6if/9RpKe/z/XX//MAsm9fPikpZdOgen0YgtAevV7P7bcP5r33\n7kGjSUWnO8Qzz9yFKIq0bNmSIUOSWbDgCjye9gjCTej1R/j5568ZP/5CnnvuPeBxBCESq/UKvv76\nWxYt+pgJE25hwoRHWLduBDExd+L1HuKJJ+5Blv18+eXvGI0LMZsjkOXb+fbbi7jjjptJTk7G4/GE\nbK2QKSpajceT+7cgsiqNKlq2bMn06bexeXM6Op2WHj0mHDeQJiwsjM6dm5Oe/h4REdfhdG5Fr0+n\nQ4cJx72mT5YT2W5xvNqHp5ITEZ864jvLCEx1huaWPNXCCz326ZrqlCSJ+fMXMXv2NuLixgE+Xnnl\nc6Kjo2jfvv1xP+OBB6aycWM3zObn2bNnNVdd9QBXXNGPl156gjZt2tCmTRsmTZpJfv4CBOFaFKU5\n8DWi+H94vcswGIowGttSWFiITqfjootuYvfu7kjSnYhiEYryBBaLiaysfBISEhBFDcnJERQV/U5M\nzAjc7sMoymZatbqy0rkFOpk2bdoQHv47hYUG9PoDOBxfEBPTjGPHJhMWloaiuMnJeRVJuhFIRaP5\nhebNv+TYse9ZsWINM2ZMZMOGTYiiwIABj5QrkBmQTEREBJMmjScjIwOAtm0vLBfa/8knCwgPf5zE\nxHNo1eoRMjImcM45n3PZZcMZO/YRjEYjw4YNxel0VooK/vXX5SxZ4iMlZQx2+2EWLXqHvn0vQ6dz\nERnZmeLiLIqK9mE0lk/2nJQUQXHxHmJiOiBJPmR5P1FRgxgwYADDhg2kqKiI1NTUcp3Yq68+ybJl\nl6HR3InRGEdS0iBcriJSU6MxmyWio9ciimVRvH7/UbZu3Yrb7ebPP1cQFvYvQMRgaIndPpi33voS\nlysCj0eDwVBKRIQVUYxi3rwfeeedr3C7/bRv34axY6/i/vtn4vF0QaNxkZDwEF7vJr7//mceeODe\ncr9rUlISSUlJtbm8EQSBmTOn8OSTM9m8+WaaNYvlqaeeDKbDa0hOJro0dMq0PvuhE+1vSkpKav0b\nNAbOavHVdMEERnhlazGuKjdin+r2NbT4Ak+edrudv/7aSXz89URElCWLdjqHs2bN1uOKT5IkNmzY\nRkTEK+zZk4Us90cUR7F+/TEeeuh5PvxwBqIoEhkZR2np/+H3b0SSrMjyfHS6HKKiuhIXNw69/i0S\nExN5+unXyMgoRqd7DJ/Piygew2C4FEn6HyUlIzh8eDPNmuUxadKTTJr0Krm5H6PReHjiiVuCG8QD\nBH5Pm81GWFgY06bdze+/r2DAAB1ZWQYMBid9+lzHk0++SU7OOwjCUwhCJyALSTJx8OBX6PXh2O2F\ntGrVihYtWgRzSTocjkrTVhqNBpPJRLdu3ar8rsp+27JOTxS1REb257rrZMaO/VfwNaIoYrVaK713\ny5YsEhOvQq+3EBaWBEQiSRJJSTKHD2/D4cimqOgIt98+uNz7xo27lLfe+p6cnNXIchEXXpgWDCaq\nLh1ZWFgYzZunIEmxGI3NAHC7SzCZUjCbLfj9OWg0kSiKB0XZyY4dkbz11ipKSi6juPgroqN3EB9/\nGw7HJmJjL8JqnYvD8SMu10D8/neR5QM89dRhIInw8JFs317Mffe9jCDMQKMZAGSRl/c4ERHnI0nl\n19s9Hg+bNm3C6/XStWvXWk23RUdH88Ybz9b4upPhZDawHy+6NHR0eCqnS9WpziZIxVRbAOHh4Q0+\n717bCMv6IDR3KJSNVsLCTOTklARf4/fbMZuPv59RFEXCw8Ow23cgy3FoNGb8/v3ExPyLvXvfpbi4\nmOjoaIYM6c3ixTYcjruRpHyMxv0kJbmA3ej1W7j55gv4888/WbduL0ZjArJciCDEIUk6jMYiTKaj\nmEzvMmDAcB5+eAqRkZHcdNMlTJv2P9xuL8uXr2Ho0EEYjUYURcHtdgfr/QVqG1osFm644SqA4Ki+\nTFg6xo17HFl2IAiH/u5wwvF6d+H3/8hff1mRJAm9Xh/seMoqEZTfFO31evH7/ezZswe32x1cYwx0\nSqNHj2D69MkUFY0AfERELGHYsOm1+r2sVj2FhTZMpkgMBisJCVqOHfuDtLSBiOJmmjXzcdttV5Oa\nmlrufSkpKUybNoEjR45gMplITk6u1XU9YcL1vPDCZByOa5HlLFJSdjB48B3MnKnj3ntvxu8fjKLs\nZOjQZixfvpfY2Nfo0UNmw4atFBa+ikbzK9HR+URGtmDAgBtZv/5zcnOfwuMBvf5W/P6+gJHCwhcw\nmax4PDG0adOFAwf2A2nIsoBO9ylXXPE/oEx4CxYsYOrU17DZrERFdSQ6ejbvv/9cpXRvZwuhQgxs\nFq9NdpqKew9r2n94Iv3c2VSZAUDz1FNPPXW6G3EqCeTzg3/K5TgcjmAQh8lkwu12YzKZGlx8kiQF\nO9hThSzLOJ1OnE4nWq0Wk8mEz+fDZDKRmBjBkiVfc+yYj+LidKKj1zJ+/PWYzeZqP08QBFq2TGD+\n/Gew2faiKN8RGWkiMfEqfL753HbbdWi1Wvr06cq33z5HXt7nSNJiEhLCmTJlPDExOnbtOsiaNSa2\nbw9j584VpKaOoLj4U6AYn+99BGElZvNFtG49hqNHD5KWpqeoqJCJE18FXkOnu43Nm3/Hbt9Kv349\nKS3bWY3BYEAQhHIJtAMEOo+ioiJycw+j1Xo4fHg5UVHdKCnZAryG0SiRkvIIbncGQ4a0JT4+HkmS\nguHuoR2NTqdDFEU+/vh7fv3VyfbtZlau/IvERC0Oh4PHHpvOnDm/4vVKGI1xmM353Hxzn3JbHY5H\nfHwY69b9TlGRi+LiHXTtCpdd1pbw8CMMHhzP6NFX4XA4+OSTBSxevI6jR/No2TIFRVGwWq1ER0cH\nH+bKqk8cxm63V5tKr0OH9rRvH4nFks6gQUYef/w+oqKiaNu2DSNHDqFLFw1jxozguuuuYN68DYSH\nX4PJZCIpKQFBWE+fPkYUpQOLFr3G7t252O1H8PudKEpPvN5L/858kwDk4fMdQhA20arVuL8luBmD\nYQ6ffvo83bt3Jy8vj3Hj/sOsWT9TUHAjbncKNttSioqi+eWXn+nduy0bN27liSfe4ssv51NSUkiX\nLh0adEN5oLxYQyyHhF53Wq0WnU6HTqcLToOGVrcIPIwFgmxCt13AP7Mide1zvvvuOy666KLTMmV8\nKmgSI77Q+nCiKGI2m4MdGTSOnJl1JbT+X8VySIGboV27drzwwm1s3LgFnU5L//73VRk4sHr1Gt58\n81tKSlyMGNGDO+64mR9/TGPixAdYu/YwxcWt2bTpeiZPHh2UTlZWFqWlRvT62L8zivTn7rtfJDZ2\nGLm5vdBoLiIsLIbWrZM4dOhFWrW6GLt9KRbLYSTpOjp0eBSTyYzb3ZMPPphOv34t8fmuIzy8bBrW\nbJ7IwoV3c//9dxIWFoZWq8Xj8ZR70KnI/v37ufrqOzh2rBOC4CAq6hAJCS9SULCH5OS3MZt743Su\nw+k8Um42oCry8/N5662v+O03J/HxV9KpUws0mi58++3HrF69lNzca3A4xgGLMZt3cO21s9iz52ty\nc3OJioqqMeQ9LS2NG27oxcGDB4mLi6Nr10HlOqvi4mLee+83dLoLCQ+PZ8OGdfh8v3PFFeWTeLtc\nLj76aB6ZmWW3eqtWfm655eoqHw4GDRpE3759K3WKrVu3Du4j9Pv9pKSI5OYuJDp6KG73VsLCsrHZ\nOpKZuQpF+Q+KcjN+fwHwEKLoQpYlQAPoATvQC41mHRs3DgUUjMZorrrqYiRJYPfu3Tz33Nts3OhA\nUe4A4pDl5cjyBUA3Skt9TJ78BS6XTGrqU5jNZr77bjZW64+MHl11Wrb65kxIOlGb6dKKtQ9DHwwk\nSarTdKnNZiuXSL6xc1aLT1EUPB5PUHgWi6Wc8AKcrm0Fp+K4oRXe9Xp9tdUhAvh8Pn77bS1HjhSz\nY0cmd999S7kR3549e5g06WNMpv9gMMTxzTcfIQifccMNVwCpREbeidcbj6JkMG/efO66azwajYYF\nCxaSl2fGaHwLRdGSlTUZRXHSqlUfCgoUjMYu7Nmzmk6d0oiPN3DJJcdYtMhOfn5rjhwROHToL1q2\nTKVt20Q8Hh+RkWGI4qHgje3xHCAtLapOaZTuuecJsrPHotWORVF8OJ1PMGZMHG3bNmPp0m84fPhF\nvF4jRmMikye/ykcfzSAmJib44KTVahFFEb/fzzffLMPh6EBYmAZBaMPWrfvo06ctWVlHKCiIw2K5\nHY/HiVbbl9zcofh8JRgM1qDwjreGIwgCixb9ybZtPjSaCIzGHFJSUtDr9cECr7m5uXi9LUlIKCsm\nm5p6Hunp/+Oyy8pPnf/55xr27k2jefNhAOzdu5Tly1dz4YVDy70uLy+P9977gdxcJ5GROm6/fWSl\nNVQoyzs6ffp/ef75d9i16zNiYszk5OSzZ48Nmy0TRemJyQQ+nw4YgkazCUX5AFlOQhR16HQJKMo6\nJKkXsbGTcTqXoSg6bLb2TJ26lEOH/sRm0+Nw2CmTZE8g4u9r1Y/XayY/vx0GgxejMR5Z9mE2D2bl\nynkNJr4AZ+KDck3RpYEKHh6Pp9K1d7zah2fbGt9ZnWxOEMrqwVksFsLDw6sNXDkbxBeY0rTZbCiK\nQkREBBaLpZL0Qo9ZUFDAXXc9S3r6BTgcjzF3rsKzz75W7vWbN2/B7x9OeHgHDIY4YmPHsWTJJg4f\nPszBg0Z0ur7ExvYjJmYMGRle1q9fD8ChQ0UIwuUoShiiGImiXA5oiIjohCCsxO/PorT0GFu3zkGr\n7cTcufkUFvYF7kevd+H12jhyJIvNm2dywQU9uPzyy0hN3URx8UPYbDPRap9lypS76/R97thxCK22\nP1qtFZ0uClnuwfr123j55afo1asIjaYNSUmv0b79pxQUXMvMme9SUlLCPfdMolevkfTpM5Kvv55D\nSUkJNpueli17I4oZyHIhXq9AZuZi2rdPQFFKEUUBrRZ8vmJk2U1+/i6SkyViY2PR6XTBCh4Wi6Vc\nUJXf72fXrl1s2OAnPn448fED2LDhCD17nk+PHhfSp88I9u3bh16vR5JswfN1u20YjZpKv/eRIyVY\nrc2D/7Zam5OX98+6riRJHD16lLfe+o5jx84nLe1hZPka3nrrZzZv3syyZcvYv39/uc9MTEzk1Vef\nZOHC92jZMgmv91+4XA6gBfATLpcDrdaFIHyBRpOK0dgRUfwWk+kQERFu9HoPongLXu8BnE4DLhds\n2rSCnTsjkOUbsVhGIAgJKEoykAb0AtwIApSU+MnL24YkFVNUlM6aNc+yZcuXrFu3MxhdW9W98c03\n33PrrZO4++6ng9doUyEgN61WG3x4C732AokkAnEPDocDp9OJ2+3ml19+YdGiRcFp1tqycOFCzj33\nXNq2bcsLL7xQ6f//8ccfRERE0L17d7p3786zz57aYKSKnNUjPkEQCAsLq9NevoakPo5bcYQXCOyo\nyLp169iwYTvR0Vb69+9LVFQU27Ztw+HojKJ0JjfXjdF4PUuX3lMuE7vZbEJRDgU/x+M5Slyciejo\naByOTMLDy6bFJOkIoihSUlLWqbZsmUJcXDF2ezZerx+jMYOICAMOx27S0rqyd+94NBpo3/56evT4\nD4sXL8du/4nw8AQSEu4lP38mWm0OzZpFcs01d6LRaPj229ksXboUl8vFgAFv1ljwtCJRUWZKSz9B\nUTpQtrdwLq1atcJgMNC8eVuSknoRFVUWsm00diE7exnTp7/G6tXNiY5+A58vj+efn0hqahIajQut\n1sCwYZewZs18bLat9OvXj1GjbmXHjp1s3PhfRLE/gjCXzp1T6d3bwYUXXhT8bbKyslizZg1hYWEM\nHTq0Uv5TozEJvV5HTs5OFi78AElaiMHQgcOHP2bMmDtZuvQHOnTYzLZtP6LRxCEIGYwZ07fSObdo\nEcvmzTuIiiqTn92+nRYtyjZ3b9myhTvueJTiYjelpRFcfXXZiCkiojm//25n2bJXMJl6oyif8/DD\n1zBy5MWVPj839xgQjyC0QK9/Fq/3FmAeUEj//h3RareQnBzD9de/w3PPfYDLtZ+cnAMoSgbFxQUo\nSmugFbm5a9FotuF22/+Wtw0oRhDmUtZNFaIoK/D5IoF9HDmyhoyMzQjCbYSH62jTJoUJE16ke/eW\ndOrUktGjrwlO53733Y/MnLkUu92K329jzZrn+eSTZ6ot1FsTjXlZJLTttdlukZGRwcKFC9m8eTNx\ncXF07tyZTp06MWrUKAYPHlzVIZAkiYkTJ/Lbb7+RkpJC7969ueKKKypFiw8ZMoQff/zx1JxoDZzV\n4qstjVF8ZdN9Htxu93GFB/DTT78wY8ZvaLUX4/dn8cMPLzF79nPo9Xpyc/fidjvRaqPw+w9iMOSV\nu6mHDBnCt98+SWbmGwhCLDrdUu6++xZSU1Pp2zeetWsfwmBoD+ynbdvkYK27W28dw2+/3Udu7lEk\nSSQ+fgsvvzyTRYtWkp9fwtVXX0p6ehzNmo0FIC0tlezsw0hSITpdCmFhBvr0uYw2bexERkYGA1eu\nu+66ar+TgwcP8v33vyLLGoYP70nv3v/kfBQEgQceuJXJk9+jpKQPoJCcbOKuu14EoGfPc/n555+Q\npCEIggGn8zt69TqHefN+x2r9AEHQoNcnY7dfwo4du7j88vP44YefUZQEunWL4uKLb6VHj7JSQR98\n8Cqff/4VmZlb6dZtJNdcc3W532b9+vX861/34vcPRRAOc845H/Hddx8GO+qy6dWN+Hxtyc3djqIM\nRKdr93e2kHFkZz+By+Xi6qsvoHPnvTgcDpKT+5GcnBwMmApMWQ0Y0Jvc3F9Yv342AP37J9K/f29c\nLhfjxz9KaekzWCz9sNunMG/eT9x22y24XCVkZGynfftXMJub4/HkMWPGRIYMOa/S1otBg7ry558/\nIQjD0OkSEISXaNbMjtE4nV9++bbctTRw4EByc3Ox2WxceOFNKMpAoDVQjCT1QJL+Qqe7Co8nEUWZ\nBazHbO6Az6fg821HpxtFXFwvXK4r8XqfITa2JRZLDyTpGOnpeRQWhuHx9GT16r2kpz/PSy9NQRRF\n5sz5lSNHjBgMdyKKYRw5MpO33/6E119/vvob7CylNtIOnS697777uPfee7n44ouZO3cu6enppKen\nB5Cv5wQAACAASURBVKvaVMXatWtp06ZNcKp89OjR/PDDD5XEdzrXSs968dVGLo1JfIHQfbfbjU6n\nq1Z4NpuNt9/+hD17DrNmzTpatfoAq7UVAIcOPc/atWv/3t+VgaJ8gyS1AxYTF9eM7Ozs4EVrtVp5\n881nWLZsGU6ni+7dHwiOtGbOnMzjj79OUVE+er2Fa67pGkwebDabSUiI4tChFciyRNu2nenSpQu9\ne/cGykrkTJr0FkeOrMfns5KTM5/k5GI8nnuw2yXatetEixYOxo+/ospAjIpkZWXx+OPv4vGMxGSK\n5K+/5vHoo14GDhwQfM2NN15PZGQEixat+btY7LU0a1a2b+3yy0eyd+8hPv74UkpK3KSl/T975x0e\nRdX98c/M9t2U3fQOoYQSINSEItKbUhQUlCoooOiLKGBBELALKhZA4VUEAQEFqdKb0glNegqBkARS\nN6TsZtvs/P5YshpBX8Dyvurv+zw8Dywzc+/Mnbnfe84953tCiIoajFYrkpOzhqCgQYiiD6J4Dr2+\nHjk5l0lI0FGrVgiBgfWqRLtptVoeffSRX+zr88+/id3+FlptD2RZ5uzZx1i5ciWDBw8GPAnbPXvW\nZNu29bhcqYjicVQqB6DC5UpGqdQwZ84GBAHat69LmzZtvNF6kiTdsH9z331d6drVE9VbKUWXmZmJ\n1eqDXt+OigobCsW92Gwz2b69mMhIF4GBBvR6j5Wo0YRSXu5HaWnpDcQ3ZMhDXLhwiXnzPsPpVBIa\n2giNZje9e7e/YYLV6/XUrFmT/fsPYDR2pqgoALe7GYLgwO0+hChG4HL5AYkIwnT0+vfRaHZRs6ad\nixeDMBqHIct2lMorqNXV0enc+Pj4UFamJDf3NAZDKEFBnVEo+nDkyEiys7OJiYmhrKwUWb4Xlcoz\n8SoUfbhw4ZP/+E79Ev7KFt+doDKxPiwsjLCwMLp06fKrx+fk5FRJOYmKiuLQoUNVjhEEgf3795OQ\nkEBkZCTvvPPOHVvgd4K/PfHdCv4KxHerhAceX/1TT71MSkoCev1grlxx4XDMoVmzmQiCCPh7gzXi\n41vgcsVisxUSEDAISdp1Q26hwWDgnntuLLAaHR3NvHnTr9fD0xEeHu6dED7+eCFnz9alevV5uFwO\njh2bwZIlK3j0UY+FV1hYSFlZPnv2PEdBQSlGYzNCQkbj47OaefNGU61aNQwGA1u2bMFsvkbLlole\n0rwZ9u49hM3WkfDwtqhUaq5d82H16m+qEJ8gCHTt2onTp1PYtGkvp0+fY9Kkx2nZsiWiKDJkyIMU\nFOjw8+uKj08Yc+Y8TXa2ndLSjRQUfEZISA3q1YNZs5KpqGiALBcTFyexdOncWxrDShQUFKFSNfT2\nyeVqQH5+YZVj4uPrUq9e3PXQ8wq++aYDCkVdXK4DtGs3jrCwR5Blia1bt2AynadBg/rePUK9Xl8l\noCE9PZ09e/agVqvp1q0bfn5++Pr64nYXUlFxEYslBLW6Bm53DhqNkdTUDMxmB0rlHjSauuTmbsfX\nN+Om5agUCgWvvvoSQ4f2Z+7cZRQWniMpqS5du95NdnY2kZGRNwmUsFCvXgf27j2CIFzE4yo9hce7\nHoROF4IkpWAwNMBkknn++drMn7+G7Ow1mEytMJtP4XQW0Lz54/zww0dYLHYgmZiYV1EqfZFl9/X3\n3IOOHZtx6tQZrNYkwIlKdYlatarxT8SdkLbFYvnVFKef41au37RpU7KystDr9WzatIn77rvvF/do\n/wj8P/Hx5yaS3wy/9jL+NDJVpVJ5Q/d/Denp6aSnQ0jIKARBIDz8Ga5cGYnZnIzbbcdgOETDhvcS\nFBREixZhJCdbiIi4i/LyU8TFuYmJicHtdrN9+07OnbtEVFQQPXv2uOnEV7mK/znOnbuMTjcYQRCx\n27Mwm4uYNy+Z4OAg2re/ixde+JBr17pQUHAKuz2EgoKj6HQR+PsP5MCBk7Ro0YJ+/UaQkhKD210b\nlWoqb789mvvv73NDW3DrEXZvv/0BS5Zko1bPIj8/h8cem8KqVR9Rp06d61UMGhAQEEtKyjayspSo\nVJ9Tt24IRUXriIxcjFYbSGnpE/j4DLpurY1n2bIVPPbYiFtqH6B16+Zs3vwRovgqknQVtfprEhOn\n3nCcKIqo1WreeecVBg06Tn5+PmlpbXA4uqJQKAElBkM8Fy+m06BB1dVy5f7NsWPHePjhp3A4eiKK\nBcybt5wNG5bicDjo1q0pX3/dFaczHre7BKOxAWfOFKHTPY+vbzFpaaOQZTUKRSQuVzwDB45h9erP\nbzoJ1q5dm1mzXqaoqIj589ezYEEabreFxo21DBhwb5VFWo0aMUREfE9EREPM5gzc7g1ERPhRUnIW\nu30jNtsJ1Oqz+PndhyDMo1GjfixY0JL3319IWtr7NGkSiFJZl5KSFOrX1xITI5CTU4vU1CNcu+bG\nat1P06Z+3uT+ESOGcvDgy1y6tAJR9CMk5CijRj1Wpf/nzp3jo4++orCwlMaNY3nyySG/GMX4V7b4\n7qSA7u0mr0dGRpKVleX9d1ZW1g1CC76+vt6/9+jRgzFjxmA2m2+poPHvgb898d3KC/rfIr7/pLBQ\nSXhKpfKWCK8SnhdbAjzFSWNiwrDZBIzGhURFhTFo0JOEhIQgCAITJ47m66/Xk5KygerVgxgw4CmU\nSiVz5ixg5cpc1Oq2OBxn2L9/BjNmTPpFK/PnqFMnmuPHv0etjuDChfdwOlsQHNyDDz88RGpqKuXl\nEaSnr8Nu74Us34cklXH58gvodPv59lsjQUE60tND8PN7F0EQsNs78coro36R+O66K4lVqz7k6lUt\nOp0Rm20tgwYlkpGRgcFgYMGCL/n22+84dy4Vf//NKJXVqagIp7y8OzNnfsR7772BVqvF7fYIX5eW\nXsXtboJSqUWtVhES0pny8s9wOgtQq5t5x8/tbkJWVsotPZNKvP32FMrKnmfv3rqoVGqmTHmGu+76\n5cR2QRC8JXVkeTdHjxZgNEYCYLMVYDIZfvHcl16aid3+JhpNTwCys59hzpy5bNqUTFlZWzSa7jgc\nJ0hMfJ+0tNNAHJJ0EqNxBDk5hfj4FBAc/AaCIJKVNZLvv/+e7t1vDHKpxLp132OxtMTPLwiFQsXR\no3uJjt7P4cOnuHq1mJYt69O3bx+GDSvGYllDcvJF/P3rExYWRqdOBhISqrF48Tfk5pbi75/Pq68+\nTbVqHuvs9dcnettxOBxcuXIFhUJBZGQkFouFZ5+dxoED29FoVISGNvUmal+6lEliYiMiIi7ToIGG\nLl3GEhsb671WQUEB06Z9gVI5EpOpOocPb8Ju/5zp08f958H8B+B2UxmaN29OWloaly5dIiIighUr\nVrBs2bIqx+Tl5XnnoMOHDyPL8p9GevAPIL5bgSiKv5r4/Efi58nzlYRns9lQKBS3RXiVqFWrFo0b\n+3DkyDuo1Yk4nd/xwAMtefPNlxAEgdLSUq+LVavVMmTIg1XOLy8vZ/Xqg0REzEWh0CLL7fnhh5dI\nSUn5VT+8LMssWbKcVat2odEoiIy8RlraBhyOloSHJxAfn4DD0Zhdu57D4QggP/8wsvwvIBKwIkmt\ncLtTCA4eyfLlH+J2J3ifi8tlIisrg7i4JNq0SeT991+r8jFGRUXx1lujWblyC6AkIqIOhw6VkJyc\nya5dK0lNzUWjeR27/Qny8lLw9fUHfBCEcnJzw/j009U8+eRD1Kt3nvPn1+N2W4Et+PndjyzLlJWt\np3nzmgQE+PLNN4tQqV7F7S5HqVxNYuJDtzU+/v7+LF36CU6n86Z5pb+GNm2akp6+iaysfEAiMrKE\nZs1udENXwmy+hkJR2/tvSYpjy5avKCsbidH4MDrdRSyWxeTknESW7YiiD2q1FrAjy0UoFCZv6S5Z\n9qegoIB9+/bjdErUqFGN8PBwr4KIIAhcvpzPjh07yM83I8sOIiNjOHr0EnZ7f9Tqluzdu5qcnHye\nfno0rVsncebMGTIzM/Hz8yMx8RHUajVDhgxBkqQbFlk2m43585ewe/cpDAYdo0b1om3bNgCcOnWW\nixdDgT7Y7cEsWrQKWf6Arl3b8eGH+zEYeuB0lnHkyFb69KlqsWZkZOB0xhMU5NkDjIi4nxMnxnjV\nWf5OuNPKDLdDfEqlktmzZ9OtWzckSeLRRx+lXr16zJs3D4DRo0ezcuVKPv74Y5RKJXq9nuXLl99W\nn34r/vbEd6sW338rwqiy7Z8Tno+Pz20TXiUUCgXvvTeVZctWkp6+l/j4mvTv3/eWX3hPkqsSUVR7\n+ygIOs6ePUthYSFxcXHe6M2fYuHCJcyYsRut9hlcLjOCMJOhQ9uyYUMAcXGNARm73YLB4Eu3bnHs\n378GQTgB1EeWBSCZ6Ogo4uLakpLyPYKwEYulPaIYQ1bWK6hUd+F0zmLr1vcZNWo8K1Z8WqX9atWq\n8fjjg1AoFLz77lrCwvqhVutJTd2P09kIg6EORuOLmM1TsFgGotGU4+t7jJYtl5KVtZLy8nIGDepF\neno6NlsY9etbWLZsCE6nD9Wq6Xj11TcwGAzk5r7I/v0tAImRIx++6f7nraAyZeQ/weFwcPz4SfLz\ny4iIMDFiRE9yc3MRBIGoqChSU1MZNWoimZkXqF69FgsWzKJOnToAdO7chmXLZuB2z8TtzketXoiP\nTwRWa3UAFAp/VCo3RqOCjh1b8s0367DbL5ORsRpRTKW83IBCYUKlMqHT7SMzM5IzZ2RE0QdB2MWQ\nIUlER0cjyzIlJSVs376ajIxITKbPEAQd6emP4ecnUrfucABcrgSWLXuA2Nhw7HY7zZo1o1u3bjeQ\n3LVr1zh16jwA8fFxBAcH8/nnK9iyRUV4+CwcDjMzZswiJCSIOnXqcPz4ebKyQvH37wiIqFR6Vq+e\niMWiwGR6CD8/j4WXlVXO4cPH6NWrh7ctvV6PJOV69wZttnx0OuUvjs9f3dX5ZwhU9+jRgx49elT5\nbfTo0d6/P/nkkzz55JM/P+1Pw9+e+G4F/03iA4+KQqWAssFguOUJ8deg0+kYMWLIDb8fPnyYvXuT\nCQkx0adPryq+doCrV6+yZ89BfH1tZGTMJiSkB2Vlpykq2s2sWUWoVNEolYt4992xJCQkVDl3xYpt\n6HST0ek8kZ2FhVnXBY/PkJX1NSpVKC7XRiZOvJdu3Tozd+5CsrPnIstf43aXolQK1K49DJfLjk4n\nMGvWc3zwwQdcvJiJRqPHZNqMKBrQaKazc2ctVq1aRatWrapUHKispAB+qNWelb1SqcfhUCHLVgyG\n3jidy/D3X0a9ekNo1GgxarUBWa7wJvhWVjNISEhg+PCBlJWVERMT452cFy78CIvFglKpvOm+5+8J\nt9vNtGmzWLEiD0nyo0YNNWPHNue++7oCnnIxffsO59q1qSiV3blwYR0PPDCCw4e3o9PpGD9+DKmp\nEzl4sDU6ncDLLz+DJMm8995nOJ01ASc6XTIREVb8/bX07Qs//HCZq1fvplatL7h06RQFBZNp2NDE\nsGFPkpwcTvXqnvyt4uIw9uw5wMiRdcnKyqJXr8FkZdXC5dKRl9cNo/HfaLWdcblWXt9KELDbr3Lh\nQgYjR85GEKqh0cxg+fIPadWqlfeeCwoKmDdvM3Z7AiDy/febGTWqC4cOpRIc/AJKpR6lUk9x8d2c\nPXueOnXqoNeL2O05XL6cd73CwwkiIgQcDtt/fMbx8fG0br2HffveQRSrIwhHGD/+1heKf3f83VRb\n4P+JD/jvEF+lDFZlPa7fi/B+DevXb+Ttt7cA3XC7c9i8eQrz57+BXq/HarXy3nufsHjxNpTKmkRH\nd8bhWIVen0ZoqEBZWWPCwt7G7YaiomNMnTqXNWvmVbm+RqPG7S7/yS9l6HRa3nzzabZt24PVWshd\nd/WmZcuW2O122ra9m7VrnUhSDC7XSbTaYyiVNq5cmUOfPnXp2bMnPXv2ZOPGjTzxxBIEwROtWFh4\nGpfLxYQJB1Cr32XZstk0bdrUO1EZjUb0+jKuXbuC0RjBXXfFsXXrO1itagThMpGR2Tz++BMcOaKk\nqCgVSUqja9ca3o+7oqKC556bzqZN21GrNTzzzGOMHOmxWLZv386UKe9TVlZK585teeONl24r4k2W\nZYqKitBoNDcsOm6GHTt2sGDBURSKjxBFI+fOrWbOnG/p0qUNBoOBffv2UVoaADyAR42qP2VlH3Px\n4kVq1arFypW7aNhwLElJYZSWniYsTE2nTndhNpewbFl/RFFkwoR+PPRQP6xWK/7+nejf/zzx8Y+j\nUvnQoEErMjMHER9/gZSUfMrLPekMOTnZ7NixE0laR0iIkh07DmA2D0Klegy3WwnMRhSXYDAo0elK\nyM//HPAjK+td3O7qaDTfIghqKiq28fjjL3LixC7v+B0+fAqHoxlms0BxcQkaTRj795/EaDRw9eoV\ntNrg6xGrV/D19YTNt2mThNU6HLvdBoQDZ7hy5QLduo3giy++wuHwuDr1+v0kJj5a5Rl7LOdAysrW\nIkn7eeihjrRp04pfwj/N4ispKSE4OPgP6tF/B3974vtfc3X+XDBboVCg1Wp/E+nJskxqaiqlpaVU\nq1aNkJCQmx73ySffYDK9jkoViiiKZGa+w4EDB+jYsSOvvvoBa9aA1foGCsVVMjO3Eh8/jsaNz1O/\nfgRnz+ZTXFzCuXOXkCQFbvcxDhw4UGWlPnbsQMaOfQWzeRiSVISf3zr69ZuDyWRi1KihVVy3ly5d\nwmhsyyOPJJCZmYVKlYhev51hwyIJCkogLi7Oe2ynTp2Ij1/EyZPDKCurhdP5JUbjNDSa0VRUbGbC\nhNfZuXOV93iNRsOgQe1ZsWIHWVkySUki998/hgMHfiAw0Jfhw5cQGBhIs2anKSoqJiSkUZXk2ldf\nfYeNG2W02mQkqYC33x5O7dqxBAUFMWbM68jyRygU1Vm1ahoXLjzBhAljSEpK8OYbZmdnM2vWPHJz\nzXTp0oqhQwciiiLFxcWMGjWBU6cykWU7w4bdx4svPktxcTFHjpzGbnfRsGGNKhqZ+/cfQpIS0Gg8\nOZgKRS/S0lZQXl6O3W4nLe3K9ZJOVgTBD0kyY7NdJSAggCtXrnD1qj/R0Z6K7P7+ERw4sJCOHdsw\nfvyTjB9f1dVUqXsaFORPXt4FjMamWK0WCgtPUlbWAq02nvPnV+BwKNiw4Rh2uxaNpiPPPvsxoaEK\nBKEnPj4GXK5SXK4aWK2L6dKlLePGfcRzz31Ifn4garWAw5GIIHgsZVFMJC/vKt9//z0JCQloNBrK\ny21s376X7OwwZLkabvcRJCmDSZNGMXnyZ1y50hxZNlO3bhF33fUw4JmcFQo7grAXQTCiVDZAFNuS\nk5PDhAnt2LfvMHq9mu7dh1UpKgzw7bebmTv3OEbjh8iymy+/fJs6dXbRqVNVwe+/A+7U1VmrVq0/\nqEf/Hfztie9W8GcQ389rAFYKZnvccr/tup988gXffpuJQhGJQvE1U6cOquKGdLlcrF27ifPnL+Hj\ns4qoqH5oteEIgh8Oh4OysjIOHryIr+8U7HYjWm0iVutJbLYi7HYntWvXxuVazfnz0SiV7RCE9fj4\n3M2LL85mw4aG3qTm9u3bMWeOyKZN32E0+jB48Dyio6OrBNNUwpNgrSQ6Oobo6BhcLgf5+cdp3br1\nDR+mRqNh/vx36dChJ2VlJ5DlCMrLl2Iw9EalakReXsENzyUiIoJx4wZit9u97sjevXtXuXbDhg1v\n+kx3705Gpfr4+j6WAZttEHv2HCI01ITD0RcfnySs1grc7pc4ebIn27eXsW3bLB54oAdRUVH07DmY\n4uKBCEJnDhz4mNzcfF544VmmTXuHH35ogMHwJW53GV98MYKaNb/i4kUXdnsTFAothw8f4pFHJG+K\nSFhYMEplMi7XAUQxGqdzJwZDEQsW7AF0ZGZeoW7dNqSm3oPb3RZB2E7nzm0JCwvj0qVLN9xbaWkJ\n77//IS6XRK9e93gFB36KCROGMXHiRxQUNKawMJWYGDVNmz6AQuGpgLFr1xs4HFH4+Q1FrW6J09ma\nkpLRiOJ8IBF/fzcOx0Iee6wXkyc/z8yZszl3LhNJygREJGkdTucoRDGaior5qNUGxo5dQlzcYj79\n9F0MBjeZmd+h0cwClLhcQezf/yU221Bef/1RcnJy0Omiadq0KRqNBofDwccfL8dmuxtB6ArsQ61u\niCwXY7U6adq0CU2bNrnpWAPs3HkUnW4wWq3HerTZHmbXrt2/SHx/VYvvTue4v1stPvgHEN/tWHx/\nxAv9c8L7vau8nzt3jm+/zSIiYgqiqKKs7CIzZ37A4sWNvG0sWrSCb74pwWR6jsuXs8jLm4pe3wqD\nYQ2xse9QUVGB1VqIwWAmP78Cu12Jy2XGZttNx44DiIuLY8SI1rzwwjRcrlh8fatRu/ZUysomk5+f\n761p6HA4SEpKol27dv/x/qpVq4bReIArV46h14dgNh+hc+e4XzxvzpwF2GyDMZmepaDgGpK0BLN5\nCqJoo0aNcDZs2EGDBjXZvn07fn5+dOnSBZPJ5LXCbuejDwoykZd3HpXKY3UKwnlCQqLw8/NDqUy+\nro/qwm6/gCBYmTv3X7jdRv797+W0bl2X0tJW6HTPACBJTVmwoCMvvPAsx46dRaP5GEEQUSj8cbnu\nZffuAwQHDycqqiGSJFFebuD77w95ia9///4sWPANOTlzcLmMqNXbaNNmOGFhfVEq1ZSVhRIQsJZe\nvR7FbL6ERtOK114bBXjyqSIjj5CdfQidLpTs7ANs2LAQh2MAbrcP8+c/wrJls0lKqqrxGR8fz8KF\n0zl//jwnTojYbB2v5w2C0ehHrVohZGXVQ6Npff3ZSoSFRZKUVJOlSz0u50ceGcDkyc+Tl5fHggUb\ngdno9QmUlLwNfE5FRRegAlH0IzZ2O0plJGfPTmHp0hU0a5aAv78SSToKgErVmNJSFe+++x0Gg53h\nw9vToEG8V7bv+PHjXL4cRFhYX3JzRQQhCat1FDExOlq1Glvl3mRZJiMjg7KyMqKioggKCsLf34DT\nmes9xunMxd9fh9lsJjMzE4PBQK1atf7Uen9/JP6M4Jb/dfztie9W8Ees3m6V8H6rtVlcXIxCEYMo\nelylPj7Vycmx43K5vFXDv/02mcjImURHq7HbD3Px4jEUijWEhXVj4sQ3KSoqIz/fQHHx05hMjXC7\n/YiISOGll56hVauWANx/fx8++2wrWu0UfH3jsVovolAUYTAYKC0trVLz7+rVq+Tk5FCzZk1MJtNN\n77G8vJy6dY2cPr0FkymaDh1iadXqRmWWtLQ0FixYwoYNu3C5XsRqLcftdiLL/litR4iNHUSfPoNZ\ns2YXY8c+jCx3QxTtzJjxb0aMGExpqURsbDA9e3a85SjZV155hkGDnsZm2w/kU716FgMHTkQURT77\n7GvOnRtEebkMHMFTOmcE0BmbbS3fffcNBkMMP0bB/3jv1apFkJd3AJWqJrIsIYqHCA4OwGwuJT39\nByRJRK0uplWrH2sBmkwmNm9ezpo1aygvtxId/TLnzlVHqfQ0EBfXDFk+RL16WmS5Ds2b1/S6SlUq\nFYMH38OhQ8cxm8+Smrobu/0RtNoXAbDba/Lmm3NZs8ZDfFlZWUyfPovMzKu0aBHPpEnjiIuLY9Gi\nveRe5wVZPs7o0Q9x6NBzWK3+CIIJhWImY8aMpl+/vrz22mQAL0mkpaWhUjXBar2GJK2koiIVQXie\nJk2akpr6EWp1JCpV1PVzEsnMPMDgwfUICCjh2jUZtTqJK1e+ICioGnFx47FaC1my5DNefDGKzz9f\nTmpqNnq9G0mqRsOG9dBoLpCXlw7k8vLL42nWrJn3WcqyzBdffM2OHYUoFKEoFJsZP74Pw4bdz8GD\nr5KXdxVZljCZ9nHXXSOYOHEOdnscklRAmzb7GTNmqDe1469Igne6sC8tLf1b1eKD/yc+L36vYrSV\nmokVFRW43W70ev2vWni/lfg8yb3rsFqvoNOFk5u7gzp1wqvsGSoUIm63A6VSh9XqwmSqT716QwkN\nbcPWrW0xmSYTG9sdf/9szObR9O4dw4kT8NRTU2nduhkzZkxhwYIvKSy8SkFBf/z9g4mIMDF58nB8\nfHzQ6XTeiWD27PnMnLkRlysQnS6Pjz9+mpYtW1bp84ULFxg9ejoWS1Nk2UatWgcYPrz3DSHte/bs\noXfvJ7DbI5FlK7L8CrAK8AGWIYrN0WhCMBpDOHNGprS0NWFhryKKbi5dGs78+QU0btyZQ4fOsX//\nTPr27UJ8fJ2b1vCr1LjU6XQkJCQwYsT9zJu3DFmGrl0fRKvVcvz4Kbp27cjRox/gKZUTBDiB1wAF\ngtABSdqGUrmVioq5iGIcgjCHRx7x5Em++uoEHn74ScrLt+N2m0lMNNK//wiee+5rfHwGo9H4UlBw\nAIejat9MJhPDh3uCa7Kzszl9+gckKQGFQoXZnEmDBrEMGnSP9x5+Cr1eT4cOnly33bt34MmZ9EAU\nwygrswKeya1//9EUFg5BqUzk0qVlXL78HIsXz+GRR9py6lQagiDQsOHdhISEsGrVPObO/QKLxcaA\nAeO4554e169ZlRAMBgNm8w7s9iwkSUaWr6LT3Ut0dANKSoaTkzMFWXYhyw5keT2NG7fGz8+PL754\nj8mT3yU9fQ5hYVruuWcBgiBiMIRQVOTLU09N5tKlRNTqR6moWE9FxQbU6mbExtbCaDxOu3a96dGj\nKxaLxatZeuHCBbZtKyA6+l8oFErKyrL45JPPef/95/n889fZv38/AG3bvsHMmYsQxcFERNRFlt3s\n3Tub1q1PeIUE/kn4f4vvL4hbJbLfY5+v0sJzu93odDrUavV/bP+3thsVFcWLL/blvffexGyWqV07\niBde+DFfRhAEBgxox8KFc9BqO1BRsR0fHyv+/sORZQm73YJe3wJBgMDAKFyu1qxbtxSt9t9oNPXY\nsWM2ffsOoaioFpGRWwkOliksnMY99wTQvXvXKmR15swZXnttIy7X8yiVMRQXH2HkyLc5duyra+i/\nNAAAIABJREFUKonAs2YtpKJiOMHBnpD8lJR3Wbt2PQMHVk0Ef/zxl7Hbn0OlGo4kZeNyDQBaA/4I\nQgvcbgtXruTidkuUlhajUAQBMi5XHk5nNGZzLGlpgeTlVSMlJRmNxsaRI1sZNqxrFfI7fz6VDRuO\n43QqCQ9XoVZbmDNnK7K8HEFQMX/+WK5eLSQk5D6+/HIzbvcHQNfrZ/cBvkYQHkKWnQiCk5kzX2bX\nrsPk5++jU6cOjBrlIa3Y2Fi2bFnGqVOn0Gq1NG7cmIsXL5KY2JbS0kwkyU1CQlvc7h9uOtYZGRmc\nO3eOqKhrXL36DaDHZKrgnns63NK7ct99XVi/fjpOZxyC4INC8QoPPOAhrBMnTlBaGovB4JHyUqvr\nc/hwEteuXSM0NPSGgJAGDRowd+6MX23P5XKxevV6ZPkuYAoKhYjLtRA/v10Iwn1ERfngcDgoLe0I\nSPTt25H+/T3VN2rUqMGXX87BYrHw4ovzcbs9BVTLyrJxOC5x+bKIyfQMgiBgMDSjsDCZ2rW3YbFs\nonPn2jz66L/QarVVNEvLy8sRxQjcbnC7nWi1YVy54qk7ZzAYaNu2LSaTCaVSSUFBqbeUkyCIiGJ1\nSktLgaqW07lz59i79wA6nZbu3bsSFBR0S2Px38CdLuwtFssN4uR/dfztiQ/++AoNd0J4P233t8ql\ntWyZxPLlLbDZbOh0uhva7tevN6Gh+zh+/DQmUxFnz/phtV6kpOQqvr4CknQIuAenswirdQ+C0Ba9\n3mMl+Pq+wMmT9YmM/BeZmUXXBYHbs3//l1VIr6Kigu3bt2Oz1cDXty0golRGUVIyj4yMDG8gyZUr\nV9i16yj5+e1RqU4THh6AUlmDgoKcKn32SFIV43Z3wG6XEMVAoDOQgUr1GSDgciWhUGjJzj5MZGQK\nZWXZSFIhLlcuknSS8PCHcbl80OkaY7EsJzCwBhaLiTNnUmnVylOyqKioiNWrTxMU1But1pfc3PNs\n2jQJl+tptNoGANhsE9m6dSp9+46gtLQAne5uLBYbguCDLLcE5iDLIAjraNKkOv369fvF8kn+/v5V\n5Mn0ej06nUxcXFdEUcG1a1fRanU3nLd27TrGjXsNUUzC7T5F//7tmTjxKYxG4y27cDt16sS775bw\nzjsv4HA4GDy4D6NHe0L71Wo1bneZd3KU5Qpk2XXH0cYWi4XBg8ewd+85HI5xKBROAgKMlJW1wGp9\nlStXvkah2M7cuS/RsGFDlErlTS1xg8HAwIGtmTt3BkplBP7+EgMHtmfSpGXYbBUoFApUKhGlUsML\nL4y+QROyUlFm+/YdfPjhYs6ft1KvXgwNG7YkN/d76tYNY9++gyxcuAtJ0hMU5OKZZwZSv34kx45t\nJyrqXux2M3CCmJiqCkfJycmMG/cRTmcfZLmEL7+cwBdfvPM/S36/xaP1V3Tt/hr+EcR3K7gT4nO5\nXFit1jsivN/S7s1QWVX5l9po2/Yu2ra9C0mS+Oqrb9i3byXh4SamTn2PadNmYzZ/idttpm/fBqxd\nW+D9SByOTDQakfz8fchyK7Taalit+7lw4QpZWVlER0ezdu0GXnnlE0pK7DgcLhyODNTqWjidZxFF\nG0ajkdTUVLZt28fmzQcpKzMhScm43T6kpS3Gx+c76tadXKXP69d/i9MpAYeAsOsSYscRRTeyvBtZ\n3oBeX8bzz9fju+8+xOm0UqeOzKVL9yCKCmrWDECtPkNxcR52ezYBAQY0Gh1OpxWn88dIWrPZDESh\n1XoKFvv6hmK3O3C7fyy+a7VeoKyskEWLDmO1alGpvkCrHYkkXQK+JSkpFJ1uHc2a1eXZZ2ff1jsQ\nERFBUlIWyckbEUVfJOky27Zt4dVXXyYoKJj33nuZFi1a8MwzU5Ck9QhCPWS5lK++6sjAgfff9iTb\nr19f+vXre8PvzZo1o25dgdOnxyPLiYjiNzz8cK9fXOm7XC4uX76My+UiNDT0BlfYJ598xuHD4bjd\nHYGDuFw9MJuvERi4m6SkGHr3ttOkyVOEh4f/qjXxzTdrmTp1Np7cvCPMmjWJ2rVrkZd3hLKyEchy\nR3x9j3L//dVRq9WcPHmSsLCwKik9+/bt47nnPkWpnIJOd5GjRydjsVSjY8dG9OlzN2+//S1BQS+g\n1RrJzz/GJ5+s4vnnR2C1LuXMmd2o1TKPPtqViIgIb+4twOzZy1EoxmMyeVz5eXkK1q/fyPDhQ29r\nTP6XUWkx/93wjyC+W7X4btXyqtzDkyQJrVbrLZL6R/Xt94RCoaBfvz707NkdX19fcnNzGT/+EUpK\nrtGqVSvCw8O5eHE0J048jstVG5VqA2+88TwvvTQbl8uGw6FBr79ATExvMjIycDgcTJu2EJ3uMyIj\nIygsfJmysiHodHcDGdxzTzzFxcW89NIibLZ7uHhRi832HT4+Zyko+Broi9XaghkzPiUpKckbNr1r\nVzIBAU9gNs/D5VoD5KHX59G7d1vS0z+ievUQxo1bwsiRz1FYOBCFojGy/DmdO0czb957zJmznBMn\nrJSUXCQzM5+YmBis1lIcjhPExrb0ErvBYMDtTsXptHPy5E4uXMhBp6uPKH6K1ZqHJKlwOj9Fq52I\nJNVHqXwZh2M8Pj4L0GhkJk58nMcff+zXHvmvQhAE2rdvSXx8AXa7nTFjPubYsQYolZ+Qk/MDQ4f+\ni6+/nockqVEqPbmGouiHKNYnLy/vt78Q16FSqVi69GMWLVpCZuZxmjW796YECR4Px+rVO8nM9EUU\n9ajVu+nfv2UVd+jZsxdxudqjVt8HZON09sblsqJS+TJ06Mt06eJxz/5aOs/Vq1eZOnUuSuUyVKoY\nbLaTPPvsaGRZgcXSCUGQEMV1SFI+RmM7HnxwIlANuMykSYNp2bIFGRkZLFu2AVl+DIMhEYMhEbU6\nmtDQz5g8eQxHjhwBaqHVeoI3goObkpOzAl9fX6ZOHYvdbvda1G63G0mSqCwRVlZmRaEweWsfCkIA\n5eVXf4fR+GNwpxZfpdX8d8I/gvhuBbdCQJWE53K50Ol03qKef3S7vwcyMjLYs+cgSqWCtm1bYTQa\nyczMZPr0L6ioaIEsa9i3bylTpjzGJ5+8zbfffkt6ejpxcUPo1asXGzceobi4JVptKCZTIwoKPsLP\nz4/09HQEoRkajcfFVL/+FDIy1tO6tZnExDaMGTOYGTPmYbH0oqAgFIvFF0kSkaTF6HTzgBr4+UF2\n9qesW7eeoUM9MmshIR4NyRo1VlNRcZyKiu/p1q2Azz5733tPmzZtoqSkLgbDGABkuSlbtjTG5XIx\nfHhvNmz4jkuXikhIUOPjo8NoPE2rVk0IDAz0Bj2YTCYSE31Zvfoj0tKMBAY2oX37/jRs2Am3eyvl\n5Wa2b++IUvkUTudxJEmLKFawZ88mwsLC0OludEveCYKDg3E4HBw9ehS1eiWCoESt7oQsdyItLY3A\nQAN5eV+jVj+AzXYCUTyA09n3pmLOdwq9Xs8TT4z6j8dlZGRw6ZKJatU86QzFxeHs3v0DAwZ09R7T\nsGFN1q9fD/RGrR6DJKWi1TaiceO7+eqrc5jN33D//T1/tZ2srCxEsTYqladYsFbbiNxcJQ5HU1Sq\n1xEEHyTpY2T5NMuX76dWreVotVHYbDlMnjwKi2UqUAOz+QfU6ppUpqJJUgm+vnpOnTrFl19u4MyZ\n8ygUtQgLS6SkJJ3AQL3XxftTSTqPW1WF1WpFrVbTq1cb5s6dC/wLSbqGKH5NixZjsFqtiKLoFagQ\nRfF/gjjuhPhcLtfv9n79L+H/ie86KsOUb4Y/gvD+CFRUVLB3714sFgsJCQne0ivnzp1j4sR5OBzd\nkWU7q1a9w5tvPsn69XuR5V5Uq9YMt1vm4sX1bN68k969u5OSkk9KSiTnzwvs2PEuw4Z145NPduJ2\nN6SgYDft2xtJSEjg5MmTSNJZJMmCQmHA5Uqhdu1oVq360eWXn1/I2bNZiGIT3G4FDsdJBOEqKpUC\nrdZJQEAQFks4paU/rv5Hj36ETZuGU1h4BdAQFLSHSZOqSqR5Psgfoxhl2QF4Pm4fHx/69OmIw+Hw\nWuVOp9Pbp58GPdx9dxI5OXlotbFERdVBo9EQFhZPcHAZzZvXYOfO0bjd2ajVidjtK4iNrValrM3v\nBZVKdX2v7TIKRY3roskXMZk68uWXn/Dww6O5evV5RFFgyJDpXLoUyKFDJ2jdutl/vvjvCJvNjkLx\n436cTudPWVnVUNQnnxzN+vUDOHGiDbIMKlVPatRoR0GBhbNnrWzd+hWfffYVs2e/4hXU/jmio6Nx\nu9NwOjNRqapRWnoEu/0KGk1zrNYLqFRNEIR6wCK02mpotZ7Fl0YTyaVLTnx8nsXHZyh+fscoLOzP\n1asyarUfGs2XdOkymLFjZwNDkOUW7Nw5mdq1q6NQFPLww1296UA3Q2U6w7BhA5HlL9mw4TW0Wg1P\nPjmapKQk3G631zp0uVxei7CSDCsJ8a9gSZWWlt507/Wvjn8E8d2pbJkkSVRUVOB0OtFqtX8I4f1e\nFl9FRQVPPz2dlJRwBCEUpXIGb731KM2bN2fp0o0IwiCiojzyYtnZSrZs+Q6LxYVGY8LhcF7XDNVw\n5MhesrIyOH06lNjYkQiCQH7+IY4ePcAnnzzLhQsX8PVNQJIktm3bRlRUFIMHJ7F06TAUiuqI4nne\neeeFKs9JpbIjSbtRKFqhVErI8g/odBJq9XxMpkm43WdQqVbStu0r3nNCQ0PZuHEpO3fuxOVy0a7d\n6BsqQrRp04bw8A/IypoGNEYQlvLQQ32QJMm7Kq/MLfz5M66cdERRvF6JviZpadcwGPSAQGnpJRo0\n8KFmzZq8/PITTJ/eGUnyIThYzYIFc/8QsQNBEHjllReYMqUfdntfVKpTNGqkokOHDqhUKlavXsTK\nlZnUrNkOhUKJ2y1x+vQGWrX6c5VEwsJCkeUjWK1RqNV68vJO0rp11ahPlUrF1q1fs2TJl2zYsIfs\nbCO+vuWcOnUFleoe1OoArlxR8vLL77Fo0QdYLBYCAgKq3Ed4eDgjRtzLBx/0weUKxGbLxs/vPmw2\nNbL8FpI0AElaTvPmJux2CYvlPAZDXcrLz+F0pmGzZeB0zkCv74jJ1J4OHU5Qt259und/ixUrNiMI\nwwgM7ERQEEhSCqdPL8HH5wHeeOM7tmzZz+LFc381uEcURUaMGMyIEYOr/K5QKLzWIVRdZLndblwu\nFw6Hw0ugf5Z1+GdVZvgr4B9BfLeCn+7x/ZzwDAbDH/Yy/l7E9/3333P+fCRRUR7FkNLSJnzwwb9Z\nvLg5FRVOVKofAwgUCj+s1gwaN65JcvIK7PYACgtzyc7eQ05OV6zWcqzWXYSHP4RO54fBEE129lou\nX77MunXfsX//ScrLVURF3Y8gfEW1ahb0+grc7pOMHPkgiYmJVfpWo0Ysfn5qYCMgYDJ1JDbWQqdO\ndVm16glycwvw81Mzd+4SXnstwiuIazKZ6Nev3y/es8FgYP36xcyePZ+srB0kJnbi/vt7I0kSfn5+\nt+WiiY6OQKHYxpEjpwgPj6J2bQWdOnVHqVQyYMADPPhgX8xmszeY5Kf5YT+ftH7LuzJkyEDq1KlF\ncnIywcE9uO+++7wTqKd2mc6rouJyOVAq/3yrITQ0lL5967Fjx07Ky10kJkbQsmXzG45TKBS0bt2K\ns2cL+f77xdjtHXG7tSgUa6hWbTpqdSzJyTOoWzcJQdBQs2YUS5bM9S5wDhw4RHKyRJs2M9mz5zVM\npvdp0OBuLl7MobDwbSIj/02fPq14/vmnOXbsOJMmvUxRkS9lZanIcggWS1NEMQCr9QPU6mQkqTtB\nQSHExsbidsvAj5GKV69+jULxKTpdW2TZzdGjD7Ft2zaUSjWbNx9Er9cwbNh91K5d+7YJ5KeLrJ/i\np2T4Z1iHd5J4///E9xfGrVp8lbk+lYSn1+v/8DDe30p8WVlZFBQUkJubhyD8aBFpteGUlnqSk7t3\nT2TGjOWIogZJsuF0fkObNn2pXbs28+atIjOzMWZzAApFAipVbcrLoygsXMSaNe/QuPFDWK2LsVpT\n2LTpIE5nP2R5JCpVGjpdFnp9Lb76ajuNG/8bcDFv3mvUqBFLhw7tvH3p1asHX3zxFBUVw66nJczj\nqadG0LlzJzZs2IlWOw5RvJudO9fzyCPjWLt20S2H6JtMJl544VnvvorL5cJgMNwwbr82cZw8eZKH\nHhqD09kIScqkefMQJk+eh1qt9hYo9vHxqRJ9+NNVvCRJOJ0eq7lycqkkwso/tzNpJSYm3rB4AI8F\nFB2dTlbWMVQqIw7HRTp1qn2TK/zxqFGjBjVq1PjF/y8oKCA5OZlNm85w6lQOstwHUWyP212O251P\nWdlmBKE6JSUVGI17EcVQ0tLe5amnJrFy5QIA1q49SEDAw/j4RKPRfAo0oKysnPr1a5GTE8/48V2I\ni4tj1KiXyMsrplmzOvTp04FRo17Hz28iFosOSSrH5SrBaByGIDzI2rV7yc9fREJCNTZs+BCrteJ6\nPb4CjEaPvq0giMhyHXbt+o4DB5xoNI/gcl3j4MG3+Pe/J/9ulQoEQfiftQ4rcbtFaP8q+EcQ339C\npeKFy+VCq9V63WN/Bn4L8S1cuJSPPlqHQhGDy5WCQqGmrKwJGk0o+flfcN99ng+5c+cO15OJFyKK\nMmPH9iE+Pp6UlBS02nb06DGCjRu/Ax4iJeUlVKqp13PYNnD8+E4CAwOpWXMkhYXnUasfpKQkB7W6\nHSkpg1EqjUhSXxSKQNRqDVbrA3z//dEqxBcTE8OSJe+yfPk6ysvP06fPWDp27MDx48cxmwPx8xuK\nLEsoFCPIyNhITk7OdUWaX0dl/qQsy16FnJKSkirP81ZW5888Mx2r9RW02l6IooujRweyfv36X7U2\nf+4qrYQkSaxZs4ZTp1KpXj2C+++/7wYS/Okq/uc4ffocBw6k43bLJCZWp3Hjht7jFAoF3bu34cKF\nDCyWa4SH165Si/B/BT/88AP/+tdbWCxxmM2XcDrTkaT3UCrbAhVIUhlW60yMRhGNpg8KhWfBplIN\n5+TJBd7reMZOgSCIREc3Iy3tc+z2PpjN6fj4/EBcXHsmTvwASRqDj08dkpPXc+XKcsCIWm3C17cN\nNlsyxcW1iYjogq9vdXx8Yli//lHi4++iUaM+pKSswGiUSUpqRkrKhzidz2C3n0el2khqai18fKZi\nMHjqM+bmFrJr157bKup8u/gjrcM7dXX+3QSq4R9OfG63m4qKChwOByqVCoVCcVu11X5P3O5LeeHC\nBT76aCN+fp+hUpmwWM5gtf4LH5/Z5OXlERioQ5YTSU1NJTo6mpYtW9C2bWuvvFhxcfF1gvB8YJGR\nQaSnZ+BwVKDRmNFofqBRo/fJy1uBRmNFrw/B7T6MJG3B4VhPUZE/KlUFouiP05mP2VxCWFgILlcO\nAQE+2Gw21qxZQ1GRmUaNGtKkSRNef/2lKveg0+mQJDNFRZ9TUPAusiyhVFZw4MABUlNTiYuLuykB\nVu7hSZL0i/mTK1Z8zbRp71NRYaVTp7v54IPXq6jH/BQ5OVdQqTy5WIKgxOlswdWrdxaWPnXqW3z1\nVTqSdA8KxT527TrMggUfAngnrspcsJ+7Si9dymTTpmxCQjojCCLbtu1Ho0kFJLKysqhduzY1atSg\nbl1PMIjT6eTZZyexePFiJElHrVrVmTFjEu3bt7+jvv9eePnlj5DllzAaE7BYCigtfRy3+31kuTXg\nwGBYw/DhXWjQoC6TJm24rnijwuE4QPXqPxJ5jx7NmD9/BQ5HDyIjm+FwfEBAwAWiooIZO3YcZrMZ\nmy2ekBCPxmto6EAuXlyLyaTAYlmC3e7E6UxHEDKoXt0j1eZwWCksLCUmph9arR8JCQPJzl7Eo482\nZdCgJ8nI+BBR1BEc7JkHZNn1kzuTUCj+O4ncv4d1eKe1+P7f4vuL4ueD/VPCqxRXdrvdv7lE0J32\n7U50QnNyclAo6qBSefKPDIZ4Kir8GDfuYaZPX4bNdj9bt0ps3foB48f3oXr16kRHR7N+/SaWLNlO\nRUUF997bAqPxEhkZy/H11WM0bsXlOo0gzKBu3X+h11dHpcpDo7Gg1YbhdG6ltHQrsvzYdU3S/dSs\nGUtR0Wby8goRBAPBwcfp2/c1HnpoFCdPmpCkeiiVr/HSSwMZMWJYlXuIi4ujfn0fNm+eBaxElv2Q\npJFMnLiLhg07o1TOYcqU/rRo4dk/stlsXLhwAY1GQ2Rk5C8GGx06dIgXXvgEpXIZWm0E27dP5cUX\nX+Pdd1+54ViApk0bsW/fZ2i1z+N256NSradRoxdveSwqUVRUxFdfbUWr/Q5RNCDLgzl8uCdnz56l\nYcOGVfYcb+YqPX8+E5WqFqKoQRRFfHzq8c47b7F9+z4UigQk6QgzZ77EgAEeBZEZM95nyZL92O01\ngcmcP1/AoEHPsHbtv2ne/MY9t5tBkiROnDhDZqYZo1FLixbxt1QgtxJut5t169aRnn6RWrVi6d27\nN7m5BZhMjRBFNVqt4rqm6rfYbAkoFG5q1qzOtGmTcbvdbNiwi4MHu6JQxKDXn+CDD+Z4r92u3V1o\nNBoOHNiDXq/i1Vff4vjx8xw9eok1a/bTsGEobncesiwhCAocjkL0ehXDh9/LvHlbMJs/Q5bzadky\nDJttE7m5NSkv30dsbDBarR+yLGOxWKiokDl79ixWayDR0TtQKHyxWr8lM3MadvvTQGN0umBCQk7S\nocPU/5lIzNu1DgHsdruXCG9l77C0tNQrev53wj+C+CrhKSdjw263V4n4g/+uQsGduDurV6+O230G\nuz0HjSaSkpL9BAYq2bbtELLcj8DANoDAqVNFTJgwn7p178JuP01paShRUVNRKmXWrFlIjRpWMjNX\n43IFEhRUzLvvvs7s2asoK9tAQcFC+vSpSWJiIx5/fAClpf7IcitgKaL4MHr9KGJj/WjUKBy1egP3\n3tuBu+8ewuHDhzlzRo3BMOe6+ktP3n77AYYPH1rlIxNFkS5d2rBnT30UiggE4ThWa1vKy+sSFdWH\nsrKWfPTRbBYtakZaWhpPPTWNoiItslzC8OHdeOqpkTd9lgcPHsbpfACdzlM8U6MZx3ffDfjFZ/n+\n+68ydOhTpKQsARxMmPA4d999922NB3C9uLAeQdBf74sSUfS/QTi6sp8/d5WaTH7Isg2lUoksu8nO\nPsXGjTsRxYO43cFIUioTJnSha9fOGI1GtmzZi90eAExAELoiyxVUVNhYsmT1LRPfvn1HOXYMjMbG\n5OUVk529hwEDOlXJX/slyLLMhAkvs359Dk5nB1SqNezde4yGDeM4dWolAQED0eks6HTJ9O07g+Dg\nKARBQqfbj0qlQpIk5s+fxZkzZygpKaFx4+lV9s8EQaBVq0RatfLsd65atZGdOyE8/BFKS4vZvPlr\nfHwukJzcG622GkFBLsaPf5CePbuTlNSEwsJCIiMjCQgIYOfO77h6NZ24uGacPh1CaupuLl6Uyc7O\nRKM5SFmZE0lKQqv1kL5G04LsbDMxMQ9TXFyE1bqBBx/sTFRUlLfiyv8qfsk6tFgs3nftVvcOr127\ndluuzs2bNzNu3DgkSeKxxx7j+eefv+GYsWPHsmnTJvR6PQsXLqRJk1+ulfhH4R9BfLIsY7Vab0p4\nlfizFVR+K2JiYpg27RGmTx+N1WrEx8fKO+9M4quvtgEqlEolxcXXKCqSiYxshSi2IS3tFJIUR61a\nwQiCA+X/sXfegVFUXRv/zc72zab3SkIIgYQeuiBFBQIiWEEFCwi8dhRFERtgF1HEgoKggoKACEoR\naSJSg0RqIJQE0usmm91sm53vj5CYQAIhiPq9vs9fLJly586d+9xz7jnPUfZl48YX6dbta0wmK+Xl\nx/j448UsXvw2p0+fxmAw0Lx5c7Zt24YoxiIIU4FI4C7c7jFYLEkUFlYQHd2CSZOeqYnGq6ioAMJq\nPh6lMhSz2YEkSRcErYSEhGAw7ESt9sBmc+F2G/DwqCIOvT6E/HwzJpOJl156j+LiO/HzG47LZWbB\ngsdISmpTpwJ8Nfz8fFAq99dY0U5nGmFhVZZxtXVVXacPIDAwkHXrllJaWoper6/zt8tBaGgocXH+\nHD36Omr1rTgc2wgMLKhT3f1iaNcunmPHtpCTUwkocDpT0OkScLkCkWUQxTgUCm/y8/NRqVT4+noC\nBUD1uHWhUDRe99XtdnPgQC5hYcNQKESMRn+yswspKCggIiLikudnZmbyww+70Gq3oNNpcbvvZfXq\nvnz99Zu8885C0tOXIgh2rr22BX5+/qjVKkpL99OvX9WCpHrSrS+Qpz6kpJwmNHQcarUBtdrI5s3H\nKCsLRa3uh8Oxg8DAfAYNuh6A6OjoOrmWyckDav7dqZOVV155n4ICM9HRXYmLe5MjR+bhdK5Bkh5F\nFH0xmd4GWlFcvJPKSgtK5TA++GADrVqt5YYb/v9VZq/+Fs+vFNOQdfjDDz+wfPlyNBoNBoOBqKgo\nWrRocdFIaUmSePjhh9m4cSNhYWF07tyZoUOH1hn/a9eu5cSJE6Snp7N7927+85//sGvXrqv34A3g\nX0F8UPWCLxbiXk18f0d15aaS7pAhg+jTpxcFBQUYjUbUajU33dSbvXu/obRUS2FhIS7XdxQWKsnN\ndWCxGLDbPyE7Oxwfn+6Ul2eiVPqSmnqK8vIKKipW4XTuZvr0t5g+/bkaAigtLUUQYlAqVbhchchy\nAIJQjEazlZEj7+Puu++u4x5LSkpCqZyN1boZtbo1lZUf0bNn53ojNQcPHszSpWvYtWs4VbXdjpKQ\n8C4Oh4Xs7G/o2TMWo9HIyZPZeHldB4BSaUSSupKRkVEv8Q0fPpyvvvqB9PT7kOUwlMqfeO21tzl2\nLJ21a1NxOBSEhWm56abeNe0WBAFfX9/Lfge1oVAoWLjwPZ5//k0OHHiImJhwZsz4CIPB0KjzPTw8\nGDnyOrKyspBlGVG8nW+++RpJ2o8odsDpXIfB4CA6Ohq1Ws2MGZO54YabsFgeQ5afQRCMYBDcAAAg\nAElEQVTMGI0fM2LE+9jt9kZFlQoCuN0SCkXVdyHLzosGdlVPkNUKJkqlD4KgPff8OkTRB71ez6JF\nsykvL0en01FWVsaWLSlYrS769YugY8d2l9mzVTAYNNhsJtRqA1ZrIWfOnMLbewEGgw9eXjeRkTGG\n9PR04uPjL3odvV5PZGQzunbtjJ9f1bHR0TehUh0mNfU6RNEfQUhHEK6nvLw3gqDC7d6GXj+ROXO+\noHfvHn9bLEBT0dD80pB12KdPH7RaLYsXL+bnn39m4cKF5ObmMmLECObPn1/vtfbs2UNsbGyNa3TE\niBGsWrWqDvGtXr2ae+6p2vLo2rWq+kd+fv4F1T+uNv4VxKdQKC45+fydfvumEp/L5UKWZXx9fWuC\nPLp06cKrr4qsXLmJgoJCiopKqay8B7X6FlyuNNzuUHbu/AAfnwXEx2uxWCopLDRRUfEJTucNyLKV\nDz5Yx/Llm5g9+zluvHEw7dq1QxQ/RKHogVrdEafzfXS6AFq0iKdnz54X7AlFRUXxxRdv88wzb1JU\nVELv3h2YOvX5ep9BpVKxaNHHbN++HZPJhEo1nK++Wkpx8Wf07duaxx4bj1KppHnzcI4f/wVf32Qk\nqRKFIoXw8JH19qVOp2PVqi/56aefqKiooFu30RiNRj76aDP+/kPOVWE4wrp1v3L77QMvu98vBl9f\nXz744PUmn6/T6WjR4o8Uhblz32L8+GG43Rq8vUUWL55b44ZMTExkz56fmT17Nnv3fkl4eBgTJrxL\nUlLSBWkW9UWVKhQKevSIYevWbeh0sdjtJYSHVzY4CR06dJQffzyAwwEtW/rQv39XfH1t5OZ+gkYz\nCLt9LaGhDmJiYhAEAS8vL8xmM1Onvs6WLb+i0WiYMuUhOnVq36S+ufXWa/jooxWUlbUnI2M3FRVl\nVFbKCEIBBkMBwcFV6jyNQVSUP3v3HsbXNw4As/kw9957G126dKCkpIRx46Zz8uTtWCyBKBStkaQ0\nfHwqkWXtP97VeTE0NrUrODiYYcOGsXz5cubOnUtwcDBms5mioqIGz8vOzq7jKQgPD2f37t2XPCYr\nK+t/xHc1cDklgv4/WHy1E+zrk1BLSupEUlInZFlm6NAx7NunwWQ6hCiG4unZ/1w9Pj9Gjw5i27Zd\nfP75s0hSCyAdUAPfUVR0hClT5hMY6E/Xrl35+OOpjBs3hZycYjw9WxIZ2Z3evTUkJCTU28bOnTuz\nadMyoIqgLxY4JIoiPXv2rBH+7t+//wWRmq+88iTjxj1HaekqJKmYO+7oVqe8z/nQarXceOONNb+P\nHTuGIETW7OEEBbXi9Ol9l3zff7cLfODAAaSn76e4uJiAgIALrObw8HDefLOqLp7L5cLpdF5wTG13\n1vlRpfHxseh0avLzs/D01NO6da96LfPc3FxWr04nKGgYarWe48d/Q6vdz5IlH/H00zM4duwL2reP\n4a23PqqzP/jCC2+yZYsvev1eJCmXl18eS3R0JN26dbvsby0+Pp7Jkz3JyMjgkUe+Q6Vqjtv9HbI8\nCLN5OeHhJ4mLi7voNRwOB+vWbeHgwTM4ncc5efIoarWB9u096d//djQaDT4+Pmg0Wtq1i2Pv3pO4\n3bloNAIaTTpRUYZL7nkdOHCAzZv3oFKJDB16XaPcxlcbV1J9vfp5jUbjRQOfGnv9+lSU/mr8K4gP\nLq9Cw19de6qxk2vtaNTGKMoIgsDIkYMoKDhEYWELBMEDu30DzZp1RKHQYbcXk5/vRKMRsVoF4Azw\nPBCEJJXjcAxn+/Y9dO3ald69e5OWtp29e/dy5EgaxcWFJCQkUFZWdlEXYWZmJqmpRwEX1157zQWT\nhtvtxmq1Nkji1YiOjmbVqnlkZGTg4eFBZGTkJfurNgwGA5J0vMatV16ej4/PhbUL/4lQq9WEhIQ0\n+fza7qxq1I4qjY5uRlRU5DnZuvotxMLCQhSKaDSaKs9JYGBrTp5cTXJyH7766uMG7719ewpa7dco\nFFoUimis1uHs2bOPbt26NartJpOJb7/dxKlTRYSFeXHbbdfRo0cPKiud+PjMxGpdjtP5PrKcxc03\n96kh3eoUpepv6/jx45SXl/Prr79x9Gg4fn7D8PQ8i0q1iYkThxIeHl4nX/Lmm69h2bIFJCb24tSp\nL5DlVSQlXcPUqRMvOj/s3ZvC1KlLUCpvQZIsbNz4NrNnT/pHkF9T4HA4GkwDOh9hYWGcPXu25vfZ\ns2cvqI94/jFZWVmEhYX9OY29DPxriK8xuJhQ9dXEpYivdjRqdfpFY8n59tuHk509l/nzJ1FSIuHj\n04ODB2Wczk8ICQlFFMMIDtZw6lQ6YAOOASpEUYkkZeDjU1cfs1WrVrzyygekpxsQhEKMxg/4+uvZ\n9YY8Hz9+nNmzN6FQdMFmK2Pv3q+YNOlOvL29m/RMer2e1q1bX/KZ6+vL8PBwunU7ya5d3yOKXqjV\nhQwffuH+4D8FtSfuq4GGEvBlWUaSpAtcpYIgYLPl4XRWqfWXlxfi73/pyhQBAX6cOnUUpTLs3L7l\nUQICGhfF53a7+eyz1eTltcPffyhnzpxi7txVTJp0N926dWTLlgV4er6AJGXjdo+kV69elJSU8OCD\nz7B37360Wi3Tpj2BxSKxZUspEMK+ffvo1asrRmMYRmMYZ89m1MjP1cbYsXcTHLyefft2csstXowY\n8R2+vr44nc4aNZ/6sGTJRvT6sXh7V7lzc3KcbNz4C/fdd2ejnvlqoSkWX/V31NjzkpKSSE9PJyMj\ng9DQUJYuXcrXX39d55ihQ4cyZ84cRowYwa5du/D29v7L3ZzwLyK+xlp8/yTiq677ZbPZGoxGvRSU\nSiVPPfUQDz54L1OmzGDZsn2oVGa8ve9g9+4jeHjsw9e3D3l5XXE6D+N0voxCcSOCkE94eA7Dh8+r\nc72vvlrK0aOx+Pi8hCAIlJV9w4wZ7zNv3kzKy8tJTU0lIyODmJgYdu5Mx2gcjLd3FHa7nbw8Jfv3\nH6B79y5UVlaiUqn+dJWci32k/fr1oHXrPOx2O35+HRsddPJXwmw2s3r1NjIzK9BqYejQJGJjm/9l\n9xcEoV5XaXx8PO3b53LgwBoEwYBWm0OvXlXu6drKNOfnhU2fPpF7751MZeVmIIdWrcwMGzasUW0x\nmUzk5EB4eFVqRlBQItnZBykqKmLmzJeZMOEpdu+OR61W8+KLT9C1a1dGj36IlJQEPDw+x+XKYPLk\nu2nTpjtt2rwKKDh0yMhvv60lNLQTgqDAajWxcuU61OrtdO4cT5s2CeTm5qLVahk6NJmbbrrcMj4S\nCsUfFpIgqHG5GibKvwpXsoXT2POUSiVz5sxhwIABSJLEmDFjaNWqFXPnVlVVGT9+PMnJyaxdu5bY\n2FgMBgMLFixoUpuuFP8a4msM/k7iq43ahKdSqS5bcLk+GAwGIiObERLSncLCOMrL/XE6A5CkncTF\nncTTczMmUyRabSJq9beMGjWQKVMWXFCSJCurEEFIrGmzWp1IVtZKSkpKeO65Oaxfb8dsFlAoFuHv\nb2fIkF5Adb+qKS0tZM2adaxcuQWNRsW4cbfTtWvXK3q2y0FgYOA/2r25du12srObExGRSGVlGcuX\n/8i4cT6Njji9GuNXEARUKhU33XQ9nTvn4HQ68fdPQq/X16tVWpsI27dvzw8/zCclJQWDoRN9+/at\ncUdeajKuOq4Sp9OGSqVFkpxIkrlmH27p0nk1lnFFRQUZGRns2fMbev37CIISlSoWq3UQ5eVnUCiq\nprqWLWNJTf2a7OxdWK3ZpKdvoLT0HrTacNat+xqjcSVBQb1IT09Bqz3LwIHduf/+UTWLpEu1eejQ\nHrzxxme43XfjclkRxe/p2/fhP+9l/MW43EXpoEGDGDRoUJ3/Gz9+fJ3fc+bMueJ2XSn+R3y18HcG\nMlTvudjtdmw2G6IoYjQaGy3WnJeXh8lkIiwsrMEN6MBAL7KzUzAab8TprMBiOYTVWkBCQhgvv1y1\nCvfy8qJz52kN+t27dm3LsmXLcLmuR5Y1FBfPR63O4rrrRpCT0x2XaxguVxscjl+wWD5h/fonGTz4\nA6zWMmR5J2VlPrz55lpE8XFkuZLdu6exaNErtG/ftEi/fwqsViuyLF+RFSnLMqdOlRAWVlWgVafz\nwu0Op7i4+JLEt2vXLl566UOKikro3LkNr7zy1BWnZ5wPQRAuGBfnu0prB9FUE6Kfnx+DBg2qsQgl\nSSIlJYUZM+ZQVFRKy5bNufba62nbNoKOHdvWEIvBYCA5uTWrVy9BoYjF7c6gX7+wmgoZULX/uWLF\ndzz77BsIgjfFxSY8Pffj6dn7nATeMfR6MJlO4+kZiU53lr59g7j22gJycrIpLh5EeHjV2M/I2EpB\nQQClpQGcPHkDkpTCqVMn2bPnaRYseK9R32K/fn1QKkXWrv0ejUbJiBHjiI2NvfLOv0I0xeKz2WyN\nEjL4/4h/DfE1Noz37yI+l8tFWVnZOakqj0YTHsCSJd8yf/4WRDEYjSaX1157sGYvLCMjg9OnT+Pj\n48OQIQN44YWPsVqnYTKlIQilqFSPsWlTOocPryEhoRXjxvW56GZzcvIgjh/P4MMPbyA/vxhZ9qOk\nJBKF4iySZMTt9kQUlQhCDG53CzIyVpObO5NWrVpz22038cwzb6NUPoWHR3X17jJWrFj3pxHfX/0O\nJUli27a9HD1ajiAItGzpwbXXdmmShS4IAt7eWioqCjEaA3G7JdzuInS6iwtRnzlzhieemI0oTsPH\npwUpKYt45pnX+eSTN2uOsVgsuFwuPDw8Ltk2SZIwmUyIooiXlxeCIFBeXs7bb7/PsWOZdOzYisce\n+0+9if7Vll5tnB9V+ssvvzBq1EQcjldwu0M4deoNysr2k5WlRZL206VLR6Bqn7NHj85ERYVSVFSE\nt3f7OlGbaWlp7N69m5de+hCNZjVKZQw63TuYTKNRq28DMujaVcfUqY+xYME35ORUEB8fypgxj+Pj\n48PWrVvZtCm/5np2uxWFwofTpwvQ6UbicAgYDB4cPvwBaWlpJCYmNioK+Npre3PttZev/HM10RTi\n+2+tzAD/IuJrDP7qSVOWZZxOJ3a7HVmW8fDwuGjhy/pw4sQJ5s//FX//N1GpjJSVHeKllz5k6dL3\n2LZtO6+/vhJZbo/bvY2BA4O5//5hzJv3A7LsBQylsnIpSqUXeXnZJCW9yquvTsNut3DdddfVO7EJ\ngsDEiQ9y+PAJfvmlC7m5XVAqY7HbXwDWA82QpCAEYQOyXIBSGUNxsZqICCOhoaEolSJVldKr+8B+\n1YV/XS4XqampWK1WEhMT65QXulIcPXqcw4dVhIdXuXeOHEnBzy+Ndu3qT/O4FG68sStLlmymvDwE\nl6uUbt28L4iMq4bZbObgwYNs374dl6sLnp6JOJ1OjMa72LdvCU6nE5VKxb59B0lNLQZUBARIXHdd\nUoMJ2BaLhe+/305BgQZZttOmjSc9enRg2LBRHD+eiNs9gp07l5Oa+jBfffVpoxeU1VGlhYWFvPfe\nIior70ahGIrbLSOK75Caeif9+z/M7t0/kZDQkhdeeIUvvvgCWYYbbhjIZ5/NqTMeFy5czKxZK7HZ\nWmIy6fH0/BmjMQYvrydQKj9jypQYwsN707t3b5RKJW+8EX/B5N+2bVt8fGaSl/cTGk0IgnASH59g\nSko8keUyJGknNlsMsmy+aEDLfyv+WyszwL+I+Br7gVaLuV5t1C6po1arcblcl016APn5+SgULVCp\nqtybXl6JZGdXYrFYeOedrxHFSUiSJ3q9yI8/vsPzzw/g88/Xo1A8iCyvA4bhcvnjcm3lu+9uRqns\nzJNPrqJly29YtGjOBXt8f9zXhFZbZaU5HA6gE4KQiSy/DLyFLLvQarug0eg4ebKIadPWsWrVPvr2\nTSQ19Q1MJhNudyU63ZeMHDmrib14aVRWVnLzzaM5cKAQp1ODRpPFnDmvXrAP0RAutRjKyyvHwyOm\nZnwZjREUFJxocnvDw8MZP34ARUVF6HTNL6g6X40zZ84wZMidnD2bjyQ5gUQiI+8CPJCkLATBTklJ\nCZIksW+flbCwPigUIgUFp9iz5zB9+nSu97o7dvxOcXFzQkPjcbvdpKb+gtn8IxkZLkRxFkqlgCwP\nYMeO9uTk5Fx2KPq+fUcRxWaIohWFQkSS3EhSGUqlBoXCfU4tZAlLlvwOnEYQdGzZcg9Tp85gxoyp\nNZVFZs36Cr1+GWq1BwUFBykvn4xePwhJykOnUzJy5MgLvqfz5wBfX19ef/0RvvlmHTk5u+jYMR6T\nqZCionXk5S1AlgOx243o9Tp27z5A27Zta2TWasPlcrFz504KC0uJigqjY8eO/7h95KZafA19///f\n8ffU2PiH4q+w+FwuF2azGYvFgkajwdPTs0mEV43w8HDc7qPY7cUAFBfvITTUiCAInDlTxL59xaSm\nlrJ790ny8hSYTCaaN29HSIgDWS4DRgM+QHMcDi9keTReXvM4diyBmTPf59ixY/UqVfTs2Rab7Ut8\nfLTI8mHgSyAbhWIgMBxRvBdZzgHKUKsfx8PjGfT6SWzalME77zzIoEF7ufnmNJYseYeWLavK7Miy\nzMGDB9mxYwdlZWX1Pu+lVt7nv8O5c+fx229elJevx2xeRWHhPdx990Q+/fTPiSbz9zdgseTV/LZY\n8vD1vbiclSRJZGZmkp6eTklJyQV/NxqNREdHN0h6AM8++ypnzpThds9HEPKBKM6ceQCb7TNgGsnJ\nD7J+/T7M5gqUysAaSTJv7xDy8ysavG5BQQWenlWuVYVCgUoVQnm5hbpThYI/ApYuD06nRNu2g9Hr\nNyBJr+F2L0SWx9Ct2xDKyn6hT582bN/+GzbbWAShSg7N6XyEHTt+QxRF3G43ubm5CEIgCoUvkI/B\ncAi324nZfBsKxf3MmTMDi8XCnj17OHTo0EUXs8HBwfTtm0Rqajpr1zrZvv0Mw4e3JzRUS0DA/cTG\n9qdfv7msX3+i3lJVbreb2bMX8O676Sxd6sNrr21nxYrvL7tfrjaaWovvf67OfwGuJvFdTG3lSu4b\nFRXFxImDee+9yciyF97eNqZNexyHw0FhYTZWawZu90BkuRyrdRPBwTcSGOiisrKMvDwXbvd+YBbQ\nBUjA6fwESMJsjmHZsi9JTw/Az6+Q559/gMDAwJr7Pv74BAoKXuGHH+5AqcxBpWqGILTA03MqlZXf\n4ufnid0ehyBYAANhYXr0+lDKyyOIjIzknXfqSoVJksS4cRPZuPEwohiETpfJypULavZ0Tp8+zejR\nj5CWdhh//yA++eQtevXqdcn+OXYsA7u9Dy6XDHgBg5GkH5k27U3uvnsEOt2lc9EuhoSElmRn7yQz\ncxMA4eFuoqLa1Ew0KSkpnDhxguDgYFq1aoW/vz+bNu3i5EktomgEUklOjmvQndkQjh8/hSwbgVxk\neRZwH6L4BF26mOne/WWCglqQk7MMvV6Hy5WD2x2NQiFSVpZHZGTDrt6QEE8OHcpEp2uDJLlwOLLo\n3Lkj4eGLOXVqCrLcH1FcTlJSfJMSj9u0ieb331MZM+YDdu5cism0m8GDh9K3b3eaNQsjJCSEyMgg\nlMo9yPKoc2ftJSIiFJVKhUqlokWLFhgMpZjN66isLEUUW+LnN5CePf3p319NcHAQw4dPwGqNQZIK\n6dUrhLfffrHBvc2XXvoQWZ6En197JMnGTz/9h4CAKFq27FtzTHm5L1arFR8fnzoEcvr0aXbvNhMV\nNRlBUOBy9WD58hcYPPj6Kx5bfzfKysr+5+r8/46/K7ilMWorV3rf5OQb6NWrO2VlZQQGBqJWq8nM\nzEStDkSW9wMbEEVPFAo/9u7dx2uvTWTatA85cmQ/TueTwDigP1COJH1Lbu4X2Gw7iI29h7Cw28nN\n/ZWFC7/j6afHAX+o6r/44iSee+5x0tLSmDjxTc6cycXpXMH11/egefNm7N79O0VFmYSF2QgMjMJu\nNyHL2fVGG65atYqffipEpdqIIGgwmZbw8MPPsWHDMtxuN7fdNoazZ+9Fp7sPk2kno0aNZ8eONZes\nQJ6UlMg33yxHlocAbuBrlMoOQB5ms/mKJyeVSkVyci9KS0vZsWMHzz77BpWVboKCvGnbtgVr1/6O\n05mA272L5OShJCd3oKAgkMjIqhQOqzWMbdt2cOedl0d8bdvGc+zYamA7EA88BuTRvn0ywcFxFBSc\nJDzcSEREBJ06mUhN3Ur1Hl/nzp1YufI7tm7dTXCwLxMmjMXHp6p6RY8e7Skr+5WzZ88gy046dvQl\nMzOTMWNuZ8eO/eTkfESHDvFMnjytSe68Zs2aceedbnbvPk5UVDeSkkbRqlVdUeknnniYtWtvoqBg\nEGBAo9nPa6+trPm7wWDg44+n88ADkygpaY2XVzEjR44kODiII0dm8+mniygouJ/Q0FsRRdi6dRKr\nV6+uiSytXXpHkiQKCkoJCmoLgChqUana4eGxj7y8zfj7d8dkOoCXV2G9Y83pdKJQeCAIinPn65Bl\nNXa7/R9FfP+z+OriX0N8jcGfSXxXorbSFJyvoxcSEoIglKLTXY9Wex0u135crpcoLbWRn19AixZR\nTJhwG++8swS3ux0KRQCy7IUs+1FRMZOoqEHExd0KgJdXC7KytgJVrlqr1Yrb7Uav16NSqejZsyfz\n5k3nuefmcPr0QdLTZQRhB3fe2Y6EhGG88caX5OcHIoqFjB/fv14XXmbmGez27qjVVeHTanVfMjLe\nAKCwsJDc3DK02rHn/nYN0IFDhw5dMBmd/w7vvXc0W7bsZMWKRGTZB1GMQansR2iof52w+CtBVc1B\nB08/PRO3ez4GQweyslZw5MhjaLX7EAR/ZPkEa9cOxN8/nMDAP+6r1XpQWNg4YeXauOaaDqxYUYjb\n/QZV+qrd0OlGo1YfJzv7LEFBIgMG9ASgU6c2xMdXRXUajUZmzfqA2bPX4XDchyge4rvvbmfjxm8x\nGo1otVqGDeuH2WzG5XIxatRDpKWJQBiiuIuvv/6ATp06XVF/xcTEEBMTU5O2cz58fX357rvFzJjx\nPmazSETEeAoLS4mJ+eOYNm3a8OWXc1i48BSxsYMRBIG0tFQWL16O1aoEWlFWlk7r1nHIcgeKiooR\nRfGCwqxbtvyC2WwnO/s/REffjcHQAkFI5ZlnxvD997+Snr6SiAh/HntsPHq9nsrKyjoEEhkZiY9P\nPvn5v+Dp2ZKioh0kJvr84wijqcQXFRV1lVr09+JfQ3x/lcXXFLWVq2FpqtVqbr21L19+ORu7/WO0\nWh/CwlojyzZefvl7VKpk7PZiNJqlwGoUighcrnJcro20aBFFYGAAkmRHFLUUF++id+9QKioqaly1\nGo2mpk8rKir48stfaN9+Oq1bV5CVlYLBcJARI15ArVYzd240x48fx9vbm+Dg4Ho/wtatW6HRzEaS\nxmCzqbHbF5CQ4E91OSlZtiJJmYhiFLJciSSdbBRxiaLIokWfMGLED0yc+DxFRSm0bu1kwYJ5f+pC\n5NixY0ACGk2Hc/0/CFl+AUmyIssSEIss6zh9Og9vbyXl5fHodJ4UFByldevAi167PsiyjJdXIuCN\nJEkoFK1RKETGjh2IQqFAp6urQ1o7Afv99+cCv6LVVi0a8vPvZOPGjQwfPhyoGo+enp58+eWXHD7s\nh0r12TnJsjU89dQrbN787ZV0VaOwZs0uIiMfIiCgBU5nJatXryAyMrSOZmlMTAyJicc5fnwjoujD\n2rVvIwgPoNFkYren4HAkk5d3AoNhK61a3V3jKq3uh61bf+GLL07Qps277Nv3O8eOvUtIiIkpU8bR\nvn17WrZsyS+//Ep5uRWTyURERMQF36ler+fFF8exYMFKsrI20adPOKNG3fePC25pCsrKyv5xBP5n\n4V9DfI3BlRDQlaitXK1agM888yhFRa9x+rQKQXCSlKQjN9eJl9c9eHhEI0kSAQHfUFFxnIqKcYCI\nt7eTFi1epqzsC3JzXwY0xMV5MHTo7YiiWK+rtri4GIcjgMDAqonU3z+Os2fnUlFRga+vL0ajkT17\nDvPbb8UoFAo6dw5izJg76gT13HDDDYwZs5933mmHw6FDENScOOHBtGmv8+KLz/LKK1N4/vlhSFJf\nBGE/N93U5bIqNw8YMIC9e6/B7XajVCpRKBS4XFW6k39GnwcFBSFJJxDFchQKTxSKLKAEt/s0ghCJ\n270Cnc4DWY4mKckPi+UAFRV2EhP96NLl8uvTXXPNNSiVo3A6r0elisPtfo3+/fuiVCovWkhXlmVc\nLhdKpee53xINldrJyyvE6WyLWl1dxLQdhYXFl93Wy4Usy2RnlxMeHnvuvjoUinBKS0vrEJ8oitx2\n2wBOnjyJzWZj3bpSLJZuaDSdsNufxO2ei9ns4KGH7mPXrt95770lhIT48uSTY4iKimLnzjS8vIbg\n4xPH4MEtOHs2lJ49D3HjjclYLBamTp3F6dMtUShC+PrrZTzySB7XXNPj3ELjjxqHQUFBPPPMhKve\nL1eCplp8/9vj+xegKQR0JWorte97JUhLS+Onn/YAMGBAt5qAEB8fHz76aAYZGRns3buPtWv3kpKS\nRlBQX1q3rqpOHRt7I4KwjN9/r0Cp1BMa2o7CwjTMZiePPnotcXFx+Pv7o9frG7SQjEYjslyEw2FF\nrdZTWVmKSlVZY2Vs3vwLO3eqad78SURRZNeuFUREbGXw4Ovr9MGwYYOYO3cVHh5LEMVoZLmcjz/u\nysMPj+O++0bRsWNbDh48SFjYAPr06YMgCJSUlJCamopOp6Nz584XLF4kScJqtSJJEhqNpub9nl+e\np/beT31J2JdCfHw89947gIULhyKKbYA9TJx4L59+ej82G+h03lx77dPExQUTHGygbdvEy7r++YiN\njaVHj9Z8//1IZNlNQkIcb7751SXPUygU3HjjYNaseQinsy8WyxTAxlNPrSMoKIj+/fvXHNu1axJq\n9TQk6VYUimBcrvfp0ePK3JyNgSzLZGT8zsqVt+Lh4UPv3nej0WTj7R19wbFKpeImqOIAACAASURB\nVLImKvimm67ngw+mUl5eiCTdBZSjVq8gJeUghw83Q69/ijNn0hg7dgpLl76Ph4cGh8N07koCCoUF\nX9+q7/fgwYOcPduMZs3uA8BiacPixTPp2bM7LpcLh8NR77g5X6v0n4KmEN//LL7/AjTW1QmNGySy\nLONwOKisrGyS2kp9927K4ExLS+Oll5ahUg0GYMeOJbz88oga8lOr1VRUVPDppzvR6SYgCJ+Tmvoi\nhYXXEhvbC6NxF6NH38UDD7xGZeXNHDpUgSCswN+/DwsW7Gfy5MB6Ky/Uhq+vL7fd1oFvvlmIKAYh\nCDnce2+fGqLZtm0fxcUJaDQ5RESE4+XVjpMnd1xwHbPZjFodiSxXF2L1Qan0oqKiAj8/P9q1a0e7\ndn9YR2lpadx223hstgTc7gI6dfLi00/fQaVS1Qkqqo6idbvduFyuOn1cTYTVFQmq1ferJ7VqAjx/\nlV8fnn12IsnJ/cjJySEu7gGaN29OcvIQNm4sICSkO5Jkx2LZTXh4iwav0VhMn/4669eXIQifIQjF\nnDo1m6VLl3P//fdc8txZs17B0/N1PvnkCeBzlMobsVp3MHr07aSmbicgIACA3r1789xzd/Pqq/2w\n2Zz07NmDN95464rbXo2GxvvcuZ+xd28FlZVPYTKV8PXXk3nttYcvGcj0xBMPsX79Jn777WZUqpvx\n9fVCENrw00/PkZj4MQqFGlGMJidnG8uWLeOmmwaSmvo5Z84UAU58fPZxww1VlltVbuofe+ZqtRdl\nZU4EQUCr1dZ8r7XHTX1apbUJ8e9CU71Y/7P4/kvQGFfmpUoTVautVLuGDAbDFeXhXU7b6sP69btQ\nq28kMLBqJZ6XJ/PTT7vrSDtt27YXWR7E2bOrMJvj0GiuIT9/DVFRn/Lqq9N4//3P0Gjup6KiN4Lg\ngyxH4uV1AH//Mfz445YaObFqN1l9z9urV3datmyOyWTCz68XBoOBH3/8iU2bfmXbttOYTP7k5IRy\n8GAafn6ZJCVdqCeamJiIRnMak2kJKlVfXK6viIoyNBg2//TTr2Iy/Qedri9KpQd79kzi22+/5ZZb\nbqGsrKxRe6y1y/NUo7ZVWJ03aLPZLpjUqt2ktSe188m5U6e2KBSHOHp0Bx4eSgYN6nDFGppWq5Xv\nvjuMy/UiotgTWbZis2WyZs3WRhGfVqvlvvtGsHjxj1RWDj3XDz0RxRYcP368hvgAxo69l/vvH43L\n5aq3LltZWRnr16+nsLCQli1bEhUVRUxMzBUtApct+wmN5g2MxlZIkpvy8hwKCgouOM7hcLB//wFK\nSiqIigpCpVISEhKCn18kXl5V9e+sVu9z79KK2Wzj5MmzuN0FzJp1kMzMIl59dRy//34AUVTTseND\nNe8mMTERvX4WRUVx6HQhFBevYujQDjVkXd+4gT/qS6ampuJyuYiLi8NgMNQhwdpRpX8lLvd+FRUV\n/7UJ7P8q4msMLkZAtdVWdDrdn1ov7WoEuPzyy3Y++WQJu3b9RmlpF0CNl9fziGIRnp7NsNk+5J13\n5vHDD3spL2+LKLrQ65WIYjNUqsMIggK3u6pNmZmZfPjhCvLzLYSFefLgg7deQEiBgYEEBgbidDp5\n+eX3OHAgkKNHIxBFJUrlTnJytuFyeVJcXMaqVTqSk/vj5+dXc763tzffffc5Dz74LJmZM+jYsTUf\nfrigwUk0Pf0UdnsZTudBoBhZjiAzMwu3231FFS3Or1XndDrR6/V1NCer3V3VqR3nr/Krx4VCoaBT\np7Z06tS2SW2pD5WVlRgM/sBJnM7PkOXjgA2DofHFTgMDA3G58pHlUwhCDLKcj8Nxot6IW4VCUS/p\nlZSUcN11w8nPj8PhMCKKcxk58imuuSaDYcP6N7n/NRo1bneV9qlSKSKKZrTauveXJInFi38gPT0A\njSaMt9+eyalTxxFFH0pKpiPLfmi13rjdb9CzZzypqRMoKemJIBRhMOgICPiWdesexNd3MYcP5+Dh\noSUsLKyG+AIDA5kxYywLFqymtNTKddfFcccdw7Db7Rdte0VFBc888zZnzgQiCCr8/H7gzTefxM/P\nr2YhVR1V+le5SpsaO1C90PtvxL+K+Jpak8/lclFZWYkkSeh0OtRq9Z8+OJtKfAMHdmPXrmXk58uA\njCSt4frrR7Bq1RpefHEVBQX9EMWuuFxzcDjikOV0DIYSYmNbcPKkid27QwkPf4pjx5YjSZG43bmo\nVJ/j79+dsrLV3HNPLyorK5k58xtk+RYiI2MpKjrMrFlLeO21R+u1/o4cOcKRI3oiIkaRkXEQnS6W\njIyb8fJ6AEGIpFWreEpK1rF69Truu+/uOue2atWKLVu+q/N/LpcLl8tVJ2jDZrPh6dmM3FwZt7sY\nWXYgij/TqtX9qFSqq/LBXkyAWZKkOuV5/qwVvtVqZdKkF/jxx00YDEamT5/EoEEDGTSoLQcPTkWW\n7wLGAotJS/v5ggCQhuDr68uMGS/w/PN9UCq7Ikn7ePTRcTRv3vjaf598Mp+8vF64XG+hUChxub5i\n+/ZlBAeP5ezZs5d0kUP9VsjEiaN4/PEplJXdDxTi47OWm2+eX+eYrKwsTpxQExXVj6ys/Rw7lgWs\nwNMzDJfrAyyWB2nduiPdu3fBak0kIMDO8uWLUKsjCAt7DqXSk4qKED78cA0Gw2u4XIX8+usTLFs2\np6YPmjdvzowZE2vuWb2ffzGsWrWOjIy2hIVVjeu8vB9YvHgVEyc+gCiKdaJK/8mu0r9LrP+vwr+K\n+BqD2gR0MbWVfwri4+N56aXb2LBhN4IgMGBA1f7eU0/NAiag17dEo/EGTLhcy1AoFtG69RDKypbi\n5WVDELqi04USGdmR3Nx3UamyGDiwC4mJerp374SnpweHDx/GavUlLKxqbyogIJGsrE2UlJTUWz3Z\n4XCgUBhQKlUEBnqQl1dwzmUYicHgh4eHJw5HMCbTsYs+myzLzJw5m3ff/QRJkrn22h58+uksjEYj\nFosFf/8oDh404XYnAWW43XKNNNdfhdoCzLXbXbs0T+0Vfn2u0oaQlZXFxIkvsX27DVHcgM1WzKOP\n3sOKFaH06BGDVuuD3f4SkIks7yIjo4j27a/h2Wef4PHHH7pk28eOvZdevbqTlpZGTMwTtGnTpuZv\nFRUVFBQUoFQqKSsrIzw8vCbJvRq5uSVIUhtABgQEoTXl5cUoFEaczkvnJjY0ufbr14+xYw+xbdvX\nRESE88wzn9Yh84qKClJSUigoyCMszElZWRaC0B6ocst5ez+MUvkJS5bMYeHCdRiNvYiO9iU1VSIr\nS8bpLEAQZMrKNhIQMB2DoUqhpbS0gDVrfuTRRx+8aLsv9s4KC82o1R1rfut0MeTlpdZ7jYZcpbXH\nTm2vQlMXUk21+P6pgTp/Bv5HfOehWs3BYrFcVG3laty3qaus+Ph44uPrql+4XBI6nQdlZVbAG1H0\nJDq6H2FhOfj5rSYhIYKKimt4661XgfbIsgWdzsXjj49iwoTRbN68mQkTnsVq9cFiycZgUNG/f1/8\n/Fpgt5cjCOYGqxzExcVhNK4iP38HERFhlJcvJSJCwGr9imbNJuNwZONwfE/37rde9LnWrFnDe++t\nR6ncgVrtzbZtTzNlyiu8996riKLI/v3bEYRZaDRdgEJcrijmzVvGDTdURYtu3bqVd99deE4O7Q6S\nkxsnTH2lqE2GtVf4tSe1S0WUpqefZPXqE+zYYcTlmoAs/45aPQC7/W62bt1GcvJAVConoMBuf/ic\nvNdY3O5Spk/vy/ffb+C2227kgQfuu6j127Jly5qoyGps3ryZRx55mYoKF+Xlpfj5tUanK2HOnJfq\nlNu5/vqefPvtTOz2fkiSDwrFmzRv3g6V6ixBQf2a1Hdut5uHHnqan38243L1Jy3tR9q02cC4cVXR\nlTk5OQwbNprcXDd2u4UdO9YzaNBkXK5taLU5OBwxVFb+QEiINwaDAbVaidlsA+DWW5NZuPAtzObZ\neHt70ayZBw5HbcUcNwpFw995YwikbdsYNmzYiNPZFoVCRXn5j3Ts2Hgr+lJlnZriKm0K8VVf/78V\n/yriu9SLrL3K0mq1V11t5fy2/ZnuheHDezFz5keUlnajsLAIjeZrmjXrwiuvTCE0NBSFQsGECZNR\nq+/Abh8AuHE43sbTU83UqbNZsWIL5eWjcbv7ABIlJf9h8eLhBAcnYjSqefLJ5AaLrnp5eTFjxn9Y\nsOA7Cgs389BD0SQnL+bbb9ewfv0MlEolkycPolu3i1de37nzN5zOO1Crq4ItlMoJbN/+QE3giodH\nJeXlW5DlU4ALpTIQSbJis9k4cOAAd931JE5nVS7ivn0v8OGHEgMHDvhbPuiGLMOGIkq3bj2Ep2dv\nPDwOUFISiNutxe3ORKk8hbd3AvHx8SQltWDPnpG43SnAV4iiAofDF1m+kYMHKzl5cjPZ2flMn/5c\no9tZUlLCI49Mx+l8jfLyF5DlFZSUaAgMLOSRR8axa9fampJGQ4YM4dSps8yc2R+brZLWrTty++1D\nGDSoW5ODIn777Te2bctCp/sOQVDhco1i5swbGDWqSld14sTnSE93IAiPIMs2srPf49Spedx///V8\n/vlN2GxeaDQyHTsmk5mZSf/+bfnii81UVLRFkiw88EBLRo58ED8/v3MFbCdTVDQWt7sYb+/FDBly\nZeLl/fv3JSenkGXLHkWWBYYM6cTNNw+5oms2tJBqrKu0KfNKeXn5n1q+65+GfxXxNYTayecKhQKt\nVttgvbKrhT+b+Fq1ikGlWkNg4G+ABp2uO926tSIi4o8AiDNnComJeRhRDEeWZcrLk9m2bR1O5zDs\n9g0olQOwWBSoVAHI8kCczlMUFeXQqtUDbNmylz598ut1dQKEhYUxdeof7jaLxcI994xg/Ph7G/0M\nERFBiOL+cx+5C5ttA/7+3jW5kuPG3cWMGauBSUApSuUPJCXdhV6vZ+HC5Tgck9BqbwbAbhf45JPP\nGDhwQBN68+rgYhGlsqxAqVRxyy2DWLBgPg5HIG73LiIicrn55ucBWLJkPnPnzuONN/Zgs/2KKCZj\nt1sQhBQ0midRKHry5ZedmTZtSqPJ/uzZs0AECoUeiEOhiAVyEMUEnE5PCgsL68hYPfrof3jkkQk1\nz1MfKioqsNvteHl51QlUqs8SMZvNiGIYglA1wYtiAIJQlWCv0+nYu/cYMB1RvAmoCjgrLl7JHXc8\ngc3WCX//jhiNQVRUFLBmzc889NDtjB+v4+TJM2g0Slq3HoLT6cRms9G8eTQxMREUF29ApVITFtab\nsrLyBvumMZaTIAiMHn0Hd911K7IsX1F066Xuc7Fo5PNdpUBNrnFj9g3Ly8v/ayM64V9GfPW5AM5X\nW6k9UP7qtl3ufd1uNytXruHHH39DrVZy55396NGjOwCpqWkEBo4lKKg/SqWI1ZrJ77/Pq3N+q1aR\nbN26AX//CUhSBWbzIrKznajVOXh5RZKfvxVBGIQkVSBJO1Cp7sDpXMbRo6BQRJOenl4v8e3fn8q2\nbalotUqSk68lIiKiSc83evQoli27k6NHr6es7ASyrODQIYHFi5dwzz138+STjyJJLj7//G1UKjUD\nB47g0UerggpEUYEsu2pdzYFCoWDDhg3k5eWRkJBA587116Q7H03NsWwKqie0pKQoNm/eR/PmbRkz\nZjCnTi2nV68e3HHHHTWakbIs88AD99O5c0fuvHMCDsdHOBwnUav7oVYPQZZLL/v+ISEhuN1nkGUF\ncBxZPgFocLkOotGU16nQUbvNDWHv3lS2bDmF06lCry9n9OiBdSJ5z0ebNm1QqV7FbF6DStUJp3Mp\nLVuG1OwvGo0elJaK58aSDKjw9fXFbneg0QTj41O1sNNqvbBYqgoeh4aGEhoaSllZGU8//SqHDuUB\nDiIivFAohmMwBKFUiqhU5ezefZR27aoicKvLZOXm5hIeHk58fDylpaVYLBb8/Pwu6g36O6IhG9o3\ntNvtuN3uGq3Sauvw/D3n2q7SplZmKCkp4Y477iAzM5NmzZrxzTff1HudZs2a1UReq1Qq9uzZ0+Tn\nbgoE+b89fKcWqv3j56ut6HS6mpWZzWZDkqQG3XhXC9UT2eVYmj/88CPz5p0gKOhOXC4rpaULePHF\nG4mJiWHlylUsXOgkMvIBBAEKCn6mQ4edzJgxCaj6GLKzs3nxxVkcOVJKbu5JZLkDGk17LJbfiI0N\nJyNjMyaTEkFwIQhJiGI4np4OPDxG4O+/hJkze9G1a1135e7de3jzzZ/QagfjclnQaNbz+uv/wdvb\nG0EQGq1YX50PZTabufbaoRQXP4XBMBJZzgKGs379fBISqqqcS5KEzWZDp9Phcrmw2+0cO3aMYcPG\nYrM9iSBoUKlep1OnOA4elHG52qNQbGDSpNuZMGHMJdtisVjQ6XR/mdsbqibdw4fTOHYsF71eRdeu\nCRfk/9WOKC0oKGD79u288MKbWCxjUSjaoFB8xKhRrZg+feplkfayZd/y/PPvY7frMJky8PFpicFg\nYs6cl+vs8V0KeXl5LFiQQnp6AZs3f4HT6cbfX83kyY/QoUM8kZHhF/SrLMs8+uhTfPXVOtxuNx4e\nWlatmk/HjlUBI4sWfc2TT36Jw/EkUIle/xZLl75CbGws77+/EW/vQWg0nmRnbyMpyULnzm0JCAjA\nYDDw0ksz2bQpmICAMUhSBamp96JWxxEdPYW8vG8oKFhFixYy7733DB07dmT+/MUsXvw7gtAGt/s3\nwsJs5OTIKBRqOnQI5KWXJv7l80RTUL2Y12g0Nf93vqu0ehyVl5czbtw4mjVrhtlsZsaMGcTFxTXa\ncn366afx9/fn6aef5o033qC0tJTXX3/9guOio6PZt2/fFee0NhX/OuKzWCw1ait6vf6CF2q323E6\nnX+5f7sphPvMM7MoKLgVT89oZFkmK2sr/fuf4L77RiBJEpMmvcapU4GAB0bjAd555wnUajWTJ0/j\n+PFcvLx8eOyxEahUCu6//1NUqvdRKg2UlBzE5ZpMq1aBtGzpy6ZNB7Ba9YiiF97eD2I2HyA+fi+r\nVn1ygTtkypR3yc0dird3VQL92bPrueOOCoYMGdAoYq9thVcrvzRv3gmt9mTN5C1JjzBzZjduu+22\nC853OBzY7XaMRiMpKSl8/PEiTKYS1GpPfvrpEIKwEtDhdhcAA9izZ80la+H9HcRXH1wuF5mZmXh4\neDQYTXv27FlmzfqE3Nxi+vRJ4t5776pZxVev7iVJ4v3357Jp024CA3154YXHadGirppMTk4OWVlZ\neHh4IMsy4eHhl5SvOnLkCGlpaURGRpKUlMTx48d5993trF27AaVyPpWVKuz22bRqdZr+/YfQr58X\n11zTraZfMzMzWbRoEZ9++jNG4xpE0RuLZSFt265nxYqqdAZZllm6dDlffPEDKpXIo4/eVSOzdvLk\nSRYvXk9aWiZgQRTD8fVtjkKRzS23dOattxbhcr2GVhuKxVLB3r0folCsRBA8kaRAlMrRREXJeHp+\nxYwZ9/Dcc1/i5zcbpdJAdvYyjh9fS/fu76HTeZCbO4/hwx088sjYP+HNXl3Y7XYEQag3F7M2ZFmm\nsrKSn3/+mc2bN7Njxw4qKyvJyckhISGBX375pQ551of4+Hh+/vlngoKCyMvLo0+fPqSlpV1wXHR0\nNCkpKRe1/q8m/lWuzmrf/sXUVq5GInljcDn3lSSJvLw8ZNlBZWUhen34uTyyEoKCfGusqnfffZ59\n+/bhcrlITByGQqGgb9+RZGUl4HR6I0lnOHhwJiNGJCJJIXh7h2M2m7Faw5FlD/LyPImKknnxxQd4\n883luFw6CgunIMue5OeH8dBDU5k79/UaMjObzaSk7CY3N5OwsC60bDmSxlbqrpaAs1qtdUS+q6oz\neGCx7Eat7obbbUaW9xMZeftFrwWQlJTEK69E8OGHmygq0iEINmw2DWq1FpUqBofDk2XLfmLixPsa\n1e9/J7Kzsxk69E7y8yuRpDLuvPNW3n57xgWWXHh4OHPmvFHn/86PKH3uuRmsWJEDTObw4TRSUkaz\nYcM3hIWF1ZBQtXsQqtxXR48eJSAggOjoaH7//XcsFgsJCQk1LsjPP1/Myy9/iCD0RJY/4J57bmD8\n+HvIy9uPyzUIUfRCkhxoNPeSkzMKT8+ubN/+Pb16Vbnmf/75Z8aNm4rF0gGzWcTheI6AgPfRaody\n/PicmmcRBIERI25jxIgLFz16vZ6SEgmt9npSU/ej1fbG4fBg584iVqx4BUEwERS0k7CwYZw4kYVC\nkU9AwCMUFQkoFFvw8grHzy8Uq7WYXbv2IIr+KJVVC9HKykIEoReSpEAQFHh69uHw4fkXtOGfiOp0\niEtBEAT0ej2DBg3CZDLRtm1bHnzwQcxmM0eOHLkk6QHk5/+x7x8UFER+fn6D97ruuusQRZHx48fz\nwAMPXN5DXSH+VcRXPaFezO3zdxFfY2Gz2fjww684csROWZmNkyffIjT0dpRKF8HBh+nf/3Ggihyz\ns7MJCgoiKioKlUrFp59+Tm7uNTidRpzOYchyBCbTVr777jNUqhAslu8pLAwEjqJSCXh5LWDHjkH8\n/vuPyPL15OVtw+2uwMOjHxUVzdiy5VeSk2+nuNiKh4cBrVbJmTOdMJlakZu7naysX2jXzo/u3cch\nCEJNDbTz4XQ6sVqtCIJwgci3IAjMm/cOo0ePxe1ugcuVyT33DL7AxVr7+NrIzs4GWhIbG4UgvIos\n/4rL1Q34Bj+/QMrLpf9j77zDoyi7Nv6b2b6b3fReCAkkEHrvvYuAiOCLiiIIiA1FBeyiL2IXRVRQ\nQUQFCwKC9N4lVCGUAAmm97a9zXx/hKyhY/fT976uXEDYmeeZeWafM+ec+5z791iWPxz33vs42dnD\ngCeAKr78cgCdOy/3SQldDbVZgbIss2zZKpTKfYhiENAJh+NHNm/ezLBhw3w5ohqafGpqKnfccT+Q\niNudSUSEP2ZzIKIYilZ7hsWL5xAREcFzz72GIGxCFOOQ5Uo++aQ7I0cOpWPHBPbt243bPRxQYLXu\nwWZz8eqr79O4cSbTpo1CEAQefvh5vN65qNWNEYRybLbx2O0bkeUKUlLir+se7d59CJerEyaTEYPB\ngywns23bGgyGsXi9EkZjAtnZ01Eq9+JwZBATUx+1ujGVlaU4ncEYDCWYTMlYreVERoZjNKZTVraL\ngIB2eDylKBQlaDTVOWSr9Qjx8aHXmNH/X9TUbkJ1E/ra37c+ffpQUFBwyTEzZsy44N9XqwPctWsX\nkZGRFBcX06dPHxo0aECXLl1+xyu4Ov5Vhu96ij7/7h7f+vVbOXo0lMjIfoSHi4jiFzRqdJLOndvR\nqtUj+Pv7Y7PZeO65Nzl61I0giCQnC/z3v5MpLa1CqYzE5TqLKPZEEEqBQGy2xjRuXElBwVpkOReF\nQklo6HjASXl5PlVVkXg83yNJPYD2WCyReL198HhEDh9eQlLSWsrLV5Ob+yENG04lMFAiN7c52dm3\n0Llz5yu+KdZWTqgRtb3c+rRv354uXdqyYcNeBEHg6NHjpKamEhkZec0wpUajweMpwGhsw623Psfn\nnz+Nx2MlKqoFnTvfR2Ki9TpW569HWloasjznfJ2ZPzbbINLSTlyX4bsYoqhAln+WIRIEu69etXbe\n0OVyMWbMJGy291GpeuJ0FnLqVDciIl5Dre5CZeXXPP74DN555wUUikAEIe78+f0RhHoUFhYyadID\nHDkyif37x2O1qpDldLTaNxCESk6e3M7q1au54YYbKC8vRa9vjiCo0Otd2GzRuFxPER6u4803371g\n/jabjVWrVlFcXE6rVs1o0aIFR48eJTPzLBCGwRCGLG/Bbk8C9EhSPgqFSGDgUBSK+UyZ0pKPPiog\nPPx+lMoQ/PzsnDixD70+mfz8NKKiDtG//4u0adOGF198n59+epvmzcNRqQTOnJmCUmkgJqaK8eOf\n+A0r+ufh10oSXSm0vWHDhiseVxPijIiIID8//7JkKMDXkCA0NJShQ4eyb9++/xm+vxJX80z+6HGv\nZfjcbjenT+eh1bZHrdagUIhERHQgNHQ/PXv+XDC8dOlKjhyJJSZmDAAnTnzG4sXL6NChGYsWfUJZ\nmRZZPoEsZ6HV5uN2nyY2tj49e9bh229Pk5+fgE7XhezssXg8nfB6C5Gkh4EsoBmgwu3OxuMR0ema\nolD4oVbXBQLOF/67MZslZDmIVavCOHRoFCtXLvKFRGsrJ2i12mt2xJkz50O2bRMRhB243RJbtz5K\ndvZ7DB58IwMGFNChQ+srHpuUlERCwgn27n0PhwO6dWtLWFgcfn6hxMQUM3jwDde7RH8pEhISOHx4\nDTAeWXai020mMfHK4d4rQRAE7r//bmbPvgu7fRyynEZAwA+0afOg7w3d4XCQn5+PwWCgrKwUtbrH\neYNoQpbb43KdRqVqikrVgqysNwkJCcHPz0tp6bdoNEPxePagVp+gQYMGqFQqPvlkNgcOHOC22yZg\ns01BqXShVCbidA4nLe0kN954I02aNOXYsbnodPfj51eMVrufN954hL59+16Q93Y6nYwd+yjHj8ci\ny0kIwrvIcgYORwxerwOF4iv69HmH+PhojhyZgSTlY7H4oVLFc/bsBAIDi+nXrx8REdG89dab2O3+\nGI3FzJz5H2TZg8FgoE+fF/D398ff358FC17zGQ673U5GRgZFRUWYTCZfA/O/O/5MLb7BgwezcOFC\npk6dysKFC7npppsu+UzNy25NB6b169fz3HPP/eKxfgv+2mz9n4zrWfxfW/D5W3E1w+fxeDCbzVit\nVurVi8TpPIUogixLmM1p1K174VvVuXNF6PVNfRuZwdCMzMwiunbtwpNP9sNk2oMo3otW+xVu99fA\nTRw/3p916w7xwQfTufFGDR7PjchyHvHxTyIIaiAc8AcOAG4k6SQKxUH0+mpShFbbCKXyLDbbQvLy\ntgKL0evbYzS+QHFxMtu3b/clzysrK4HqQveLlcIvh/37T+B0DkYQjEiS5ctsQQAAIABJREFUFoXi\nLsrKXCiVbdm48TRW689e28X3UaFQIEkeLBY1bncsfn7JDBiQwqOP9mPcuGH/b4p033//VYKCXker\n7Y5a3YIePUIZMeKXGz6ARx55gOefH0ZS0ue0aFHMHXe8zZo1JykqKmLPnj20bNmDXr3upGHDTjgc\nEpWVX2CzOfB6i4AdVFTMIisrntzc5siyE1EUWbBgFuHhL+N0JqDXj2fevJcJCgryFVS3bduWxo2b\nolKp0esHoFI1RK3eSd261V7i3Lmvkpy8Fru9IYIwhNdfn8zQoUMvIXvt3LmTU6cCCAp6kZCQO6ms\nfILsbBCElcjy95jN7Th9+r+0b1/JRx/dS5MmQSgU/RDF25DlrkRENMBut5OcXA9RLCc7+xDZ2eco\nKqrgzjtHMnz4LZds+DXPp0KhID39HAsXHmbOnAymTVvAwYOHftUa/N3xa7X4pk2bxoYNG0hKSmLz\n5s1MmzYNqCZLDRxYLZ1WUFBAly5daN68Oe3atePGG2+kb9++v+v8r4V/ncd3vSHFP6tuqwaXm9fl\neoUOGNCL3NwvOXTobUCmbdtgevUaeMFxDRrEsn37XgIDWyJJbsrLN6LTuXjssRl4PDLvv/8sixev\nYOvWXSgUvWjR4i70+gCKitSsWbODuXNfJzMzk+HDXyQoKAaPZyC5uTOQpGEoFKcRhBUEBsZQr145\nBQUryc4+gMVyCoNBplWr/WzYsB+9fiL+/vefv4ca3G43brcbs9lMenomGRklBATo6NGjzSU9IC9G\nQkIkkrQbUeyPLAvAXvz8opAkAYVCh9PpvCIbNisri8OHXTRrdjcg4Hbb2LDhfeLjY8jM/ImAABOh\noaGIoohGo7mgf+bFNPu/EvXr12f//q0cP34cg8FA48aNf/Hz6XA4sNvtBAQEkJTUiGHDOhERUd2u\nrLQ0m71705gyZRo22wdYLC+d9/LjEIRxuN0z0Wgs+PmFUFGRBOwDLBQUDOKbb5YyatQd7N+/GbPZ\njFarRZIkX/1YTY5x5sxp3HbbfdhsK/B6i+nSJZ6bb65uMBAVFcXatV9ek0FbzVAM9l27y2VAljU4\nHHZcLgVeb1+Ki+cTFGSkfv16BAQkcsMNd2Oz2TAam1NRUU5qaipffLGKY8eaExX1ELLs4KuvHqNZ\ns4307dsXr9fLoUOHqKyspH79+sTFVRvnY8eO8fbbSzEaexIb2xKdrh9z577Lu+82/l2kyf4o/Jke\nX1BQEBs3brzk91FRUXz//fdATfTi0v6lfyb+dYbvWqjxkv5KwydJEg6HA6fTiUaj8dXAQbWw7MSJ\nd1BWVoYgCAQGBl4yz5tuGkh6+nusXj2K3NwKZFngyJFSAgLGEBPTmLVrX0Svj0evfwSLpZQzZ2Zi\nsw3DbM7gxImPUam8TJkymVatgtm37xUCAjpRUuLB5ZqBIISg01XSv39D3njjDRYsWMSsWbuIifkA\nPz8dZ87MYMCAduzdewyX6xBe73GMxh9ISvoP99//FPv2ncDplOjTZywJCclkZq5h4sSbrlrmMHny\nfaxaNYycnGGAhFZroW7dJ3E6C4mLc1/2zbQmV+VwOBCEavV4i8XK999v4Ny5VWzfvpn+/Sfx008b\nEEWJyMhQOneuQ9++3WqVTXh9a1Jzvt9a0lBUVMTq1avxer307dv3gk4614LJZKJ9+/a/atw333yX\nWbM+AJQ0adKQ+++/B1H8mZyhUCgpKSnD7TagVHbA6z0B3IkgVKDVvogsn2Pw4GZs3vwCgjAZUdQi\nijqczjHs2LGPUaPuQBCES8pbajNKExISWLt2CcePH0ev19OwYUOfxFNN/v1a5TwtWrRAo/mYqqpN\naLVJKBTzUKk0OJ1eFAol8B1JST05fNhM9+4O1GonglBBaGjU+VrXEyxf7mDfvmJcrp4UFpYSERGC\nLHfn5MkMevXy8tJLs9m5044gxGK1fsHIka3p0aM7zz8/j6yszuh0CWRkLKBjx1vxejVYrda/tWDr\nrzV813oh/f+Mf1Wo83rxVxBcasasCQXKsoy/vz96vf6Sh1YQBIKDgwkKCrrsA61SqRg//jbq1q1H\nvXqTcTon4PE8Q3l5AVlZesrK1Nhsd1Ov3hAUij4UFpqpqtqGKB5Eo5nJ66+vZ+XKlcya9QLjxgUR\nETGX4GA/+vXbT9++m2nUaDZKpR6TycSRI+cIDX2UiIhW+PmloFDcSUxMAg8+2IQGDWbRvfs+li79\nkHnzvuTo0VbAUvT6pWzZsg6v101lZRQ5OTmXXIPFYuHgwYMcPHgQtVrNtm3LmTq1B0OHJtGlSzO0\n2uVkZ38LuCgrK7vkPtYU5kZFReHvX0R+/hE+/XQh6ekZOJ2DyM7ux2efPUl5eTNstpsIDx/N9u0u\njh8/hUajQa1WI4oiHk9195cawofb7cblcvkaBf+SfHBOTg49egzh2WdP8vzzWfTsOZRTp6oVKv7I\nfNGGDRuYPXsVSuUPqFSnOHq0BQsXLsbtPn6evFSE2fwj7do1BCrwek8gihHATsCNWh0DnCAoKAR/\n/1AEYTeiWH2f1erdxMdfWQapxttTqVRoNBrCw8MxGo1MnvwizZt3Z9iwsZw7dw6bzYbNZsNut+N0\nOn339+LvYWRkJB9++AJJSV+g002iceOzKJXZ2O2tcDpbkZiopEOHcQiCEoVCwSOPDMdsfpP8/Pcp\nKHgBWS7C4+lMaGgiopiO3a7AbrcCB4iPj+LQoUPs3GknPPwZ8vPbkZFxOzNmrGbkyEmUlXXCz68z\nGk0HlMoxHDz4GSaT429dxP5r9zGHw3GBDNg/DYrnn3/++b96En8mLvdluhhOpxOVSvWnFSzXdJJx\nu90IgoCfnx8ajeY3eZznzp3jhx88nDplRJJCcbtjEYQTCEIyLtdGTKb+1K1bBz8/FdnZy1GpCtHp\nemKzLcLhyCA19QdGjRpBt26dcTgsnDnTCn//puep7kqczo2MGDGALVt2kZERiF5fHTKzWPbQtKmZ\niRPHcPvtN3PLLYMJCQnhhRfewWB4DptNQqkMx+UqJSKiCoNBQ4sWQRd0cCgvL2fmzE/Ytk1k//4q\nDhzYQseOTenZsyuDB/dGrYbS0jrExt5CcbGRAwfW0bp1Mmq12sdGdLlceL1eFAoFjRrFcfToKnbs\nWIJCMQRRHIFS2ROHYxHR0T1RqwOJjQ1CltXodDnExIRRWlqKLMu+vq01z0MN3b/Gk6nt0dT2Di+3\ndi+88CqpqR1QKl9CFPvicGg5fXohlZUCW7YcIysri7i4sF+04UiSxIwZrzN+/GQ++GAhSqVM27YX\nkn2WLl3Grl3NUKt7n59XPSoq3uWll+6nqiodrbaQrl3rkJycRGJiLOvX349KZcLpnIfR+CMazQq6\ndw8iJcWfhIRQ0tJmoVRuQ6WaS1xcPnPmvHFdNV5QXed1883jqar6L1rti+Tl2di1azZ9+nRl2rSZ\nzJmziGPH0mjVqgmiKPrWsfb9DQsL45ZbbgCcrF9fSVjYQgQBJCmYNm1uQZbziY8vp0uXNsTGxtCt\nWxNSUlSsW/ctx465OHu2PlVVFnS6jTid24Bv6N7dn/vuu4fTp0+zezfYbLH89JMDjaYjkrQRtbot\npaXQvHk3SkvPUVV1mvLyxYCBLVu20axZvb+th+R2u697fWrw+eefM2bMmD816vVn4n+hzsvgz/L4\nZFn2qbrXPGC/l+ZfYGAgkpQHBOHnF0tl5XokKROP5zB6fQnwDRkZfZCkHLTaY4ji05jNryPLDYHu\n5ORsZujQu9mxYyXNmzcCPsHhaIdKFURZ2Vfcckt1u7CJE29j796nKCzMQ5ZdGI3rGTly5iXKFmFh\nweTnHycgoBmlpSV4vYex2ZKJiRF9OZQarF27nfLyNsTHV9Obs7K2sWHDToYPr+5yv2vXaWJjJ6JU\nqjEaI8jKyiEjI4OUlBSguu6otjisyWRixIg+fPTRIgShPy6XEq/XBpgxmzOIjIxBo9Fis2WTl5fN\n22+XoVD4ERzsYsSIHj5DdDnJmIuNX43nVvNnTehcEARKSiqBjrWOjiE93Uzfvp2JjQ2nuPgsK1bs\nZNSoG677GZgzZx7z5u1FklYiSTZmzhyFXq9h9OjRvnNER0eiVm9Blr0IggK3ezN6vYqCggIGDepy\nwVg33ngDrVu3JCMjA61WS2VlJSEhIRfkFO+9dwS7du1Co9HQrVu3X2Sojx07hiQ1R6vtgSxLGAzj\nOHduLv/5z72Ul49Bo2nPmjVfk5//DIsXz/Xdy8vp061f/wNq9T1oNNFERU0mP/9tCgvnM3TocPr0\nGezrlxkWFsbq1Ws4e7Yeen1/nE4lbndvBEFB//5VjB07kJYtWyKKIvXq1UMUV5CTE4PVasRme53A\nQH/Cwm4kPX0yXm9nEhJ07Nu3lOTk+6hTZzRlZft5/vn3WLDglb+dYvmvCXP+1fnsPwP/OsN3PQ/B\nn2H4PB4PNpsNSZJ8HkVFRcXvlluMiori1lubkZu7mtOnN+PvX4nHcxY4iMkkkJu7BklKRacz06tX\nQzZtegZZjgbeQRTVqNWjOXSoB6mpqbRp04apUwt5992pVFW5GDCgNRMnVndaSEpKYtGimaxfvxGl\nUsHAgbOJianuAPPRR1/y44/niIwM4L77hvP88zNxOJri9Z4iNraKTp2a07hxFFVVVYSEhPjmXlFh\nQ6//mamq14dRXp4LVK+NUini9TpRKlVIkozX67jEKF0sAdSgQQMGDOjMmjW3I8s3IAhrSEgIJCkp\nEz8/PRkZBwkJKaGoKIK6dYeg0WgpLs5k7dq9jBx5ZR2/mjGvJERb83eAPn06smXLbLzelgiCFlF8\nnfr1u2AyVXe6CA1NJCfnMHa7/bp7tn733RY8nidQKsOw2cbj8biZMuUtdu8+wpw5r6JWqxk+fDjf\nfruew4cH4PXqMJu3kp3djIED76Fz5yZ8+eWCC+YfERFBRETEFccMDg5m8ODB1zW/ixEYGIjXm4ko\nugAlXm8+Ho8Zs7khRuNdAKhUT/Ljj90pKSkhNDT0kraCNfc0KMgPt/un80LEarTaADp1SmbAgO6+\nYv2a71JeXhGS1Aw/v34IwlYcjt243d/z7LOLLhC5jY2NZejQJjz99PNIUhAKRTxWaxllZV/Tr189\nwsPXk5tbSEyMjoSE6vkGBbUmP38hFRUVf1kLrt8bVys+/yfgX2f4rgd/pOG7mKlZO6T5e4/brVsH\n9Holx44dY/9+C/v3J6HTNeX48SUoFJ8QHByNx5PNyZPTGDv2Bt5/PxulUofXK+F06pBlAxMnvsxb\nbz1Mv369iYmJxOv10qhRI7Rarc94h4aGMm7cWF8BerVy+kccPhxPSMgIzpw5Q3b21zz22Ejef381\noaGdKS3N4L33fqJ9+xgMhi+ZNGkg8fHxADRpEs++fbswGqMBqKraTZMmDX3XNWhQKxYvXopG0wyn\ns5g6dcqoV+/qdGhRFPnggzf44ovFHDlykpSUPtxxx+2+/peyLGM2m1m3TkaSqkPPfn4R5OTs9DET\nr3cjqN0ppQayLHPbbf+huLiM994bhNfr5eabBxAUVB+n04FSqcbpNKNUuq/ZU7E2goJMSNI57Pat\neL0RwBwUCiebN0/jo48+4b77xqNWq/nyy4/Zu3cvEyY8Rmnpm1it4wAXO3f2YsmSJdx+++3XPWZN\neU210Ov1zxWqySn9+qWwdu0teL0tUCq3MGbMLXz11XGfRyrLNmTZecG5c3Nzefnl98jKKqJNmwZM\nnjyRSZPu5sCBKVRUZAIugoP3ctddb/j06WrIYQqFghYtGqNUzkOSbkKv7wls5oYb2l9g9KC63+jy\n5buIiHgWjaY1OTlFuFy7MBiW89JLcwkODqagoIDx49/G47GgUhmx2XLQaBx/y9KYX/Mi7XK5/jA5\npb8L/tlX9yvxRxi+i4u2L6fq/nuMW1BQwMmTJ6mqqmLhwvWYzZF4vSXY7XkkJb1FRsZyFIo4BCEa\nt1tCpYrA6TTRo0cPPvzwCZzOr4HWwGpUKhk/vxeYPn0GoaFfkJYGKpWOOnXMzJr1DEaj8RLjDdVK\nE4cP5xEd/RiCIKDVtiUvbz/Ll+8mMnIKguCivDwBrzcRSVKh0TTkm2+2MWFCMM8//xp79x5BrRbw\nek/j729ixIhWtG/fFuB84auBZs0EzOa9NG2aRLt2wy/YJD0eDxaLBaPReIHxUSgUjBp1B6NG/ZxX\n9Xg81K1bF41GQ35+PirVIRSK6jxmSUk6YWEGLBaL7/jaP7/UGCqVSh599CEeffQhoHoOu3ensm3b\nekQxGMjnxhsb+0LgtcOkV8o3P/30Q6Sm3klZmQlZfglRdGAyheB2D+HgwTW+zymVSjp37kxFRSlQ\nU7SvxmbrSUZG5nVdA1Q/X198sZmqKjUqlYNhw9rSoEHSdR8vCAKzZs1g48aN5OTk0Lz5DJo2bUp6\n+kPs3/8IstweQVhJx44pzJ79IevWbcdqdVJWVoZefy9a7d2cOfMlOTnP8cEHr/HNN++yfft2FAoF\nPXuOJigoiP379zNt2huUl1tITIzm5ZenkJycTL9+8axc2RFRVNGxYyuefXbmBYzSPXt+4J13tpOV\n5UdZmQej0U6LFimUlZ2jf//uGI1GBEEgJiaGu+/uzIIFTyGKdRCEMzzxxO2/OI/2Z+DXGL5fW8P3\n/wn/OsP3Z4c6a6sNqNXqq6q6/9Zxjx07xqOPvoPL1ZwzZ1ai0dxFu3a3I8sudu4cg1q9H4MhAoXC\njtu9AlnugcOxm4CAXPbvP4lG0weX6yNk+R1AicfTgPz8TVitx0hNjQeSEIRQiorCePnld5g9+/I5\njWoiiBe324xabUKWJQoKzpCVdQRRPINaXYhO1wiFQoPH40avD6eqys699z7G7t1RqFRvYrf/QGHh\ne2zZspTw8HAfU3PTpp3s2mXl+PGfKCrKJD8/h65dO/nGTk9PZ968NdhsKvz9PUyceNMFOURZlvF4\nPD7RYYPB4LuGqKgoevcuYsuW7wAdwcFuhgzphslkuiBn6HK5KCws5L33FlBQUEGXLs25667bLyDA\nXA8EQaBTp7bUq1d4nhLfgMDAwAtYqTVh0prSitqaaaIo0qRJEzZuXMqECZM5enQHRmMPFAoRj2c7\nSUmXlko0atSE1NQP8XqfA8rR67+ladOp1zVfSZJYsmQzXm9PYmJisdsr+eqr5UyaFP6LNkpRFOnV\nqxdOp9MX0v3447dYsuQrMjNPUlhoIjMzmjVrvsfjmYxanYLN9hVu9w8EBDyAVpvCzp3dqaqqIjIy\nkltvvdV37n379jF8+GO43QkYDC04ezaee+55FJOpPpLUlsaNI2jbVsW0adUiybVV7xct2oC//wRa\ntChkx463qKqykp0tEBi4nOHDL2xPNnz4ENq1a0FJSQkxMcOv2Jrr/yOu1q7sn4J/neG7Hvwehq/G\no7Db7ReoDfyR47766gIE4QHCw1ty5sxhrNYGlJQUExYWRlhYZyorPycgYDQGgxqL5QO83vcIChKZ\nP/8V3n77S0SxK2r1BFyuEOAwgpBBQcFyJMmB19sU6I8kbcHpPMamTU6+/vp7br11kG+jl2WZtWvX\ns3fvj4SHy/z006uoVB2xWI5SUnKMmJhxFBbm4XDUpbJyBRER7dHrW7B//+e0bFnJrl1H0Os/oKLC\nhiTdQlHRJqZPf5PXXnsWjaa6Xio1NZ/ly78hJycMSerK0aOfY7FMQanUcPLkOSorlXTqNJPY2DjK\nyzN4773lvPjiRFQqlS/MXMPWvFzRcZs2zUlJqY/L5bqgYXZNDlGlUmE2m7nttvsoKOiPLHdh585P\nyMjI4qmnHvV1Kqn9cy1jeLHE0MUeXm3ttJoXqfz8fGRZJjIykri4OD77bC7Dh99DQcFQvF43jRrp\nuO++Sw3a/PnvMHDgCAoLP8bjqeTOO8dcd77ObrdTUSESE1NtUHU6f8rKwqioqLiujVKWZV599U0W\nL/4OlUrHmDG3cO+9YxEEAY1Gw113jaKsrIxx497EYGiDIBSh1f4HpzMfmIjdfguSVEn1tiVdEo6r\nqqri6afn4nY/hlY7HIdjK5K0jry8Ujp3nkVQUDKyLJGaOoO0tDSfxl/N/fV4vGg0OgyG5jRvPp60\ntHk0aABPP/0YiYmJOJ3OC8aLi4u7hJj1d8P/PL7L419n+K7X4/u1/TprwlQ2mw1RFC9RG7jWuL/F\n8BUXV2Iw1APAzy+O4uI0XK4I3G4zJtNp7rvvdvLyShDFLtSpE0VAQACJiYlERUXRuPEPrF37I7Kc\niEZjwOnchiwrMRqLqayMQJbHAXUQhK7Ick9CQpqwe3c5nTvn+hpFz5//GXPm/IBSORSPx5/AwLWM\nHt2I/HwlK1feTFDQrej1mygoOERV1U6Skx0sXz4HjSaWs2ehqqoMrzcfSYpAodAgy06KiiL54YcD\ndO3aEUEQyM4+S36+C4ViHkqliMczkIULmxEU9ABwG2bzJuz2QwwfHkdgYAI5OToqKirw8/Pz0brV\navVVnwODwXDV2qzt27dTWlofjeY/WCzbkaRBLFgwiwcfHEdUVJTPM6yRwaptDGVZZteuanHW4GA9\nvXu3u4AQIUkSBw/+SFpaHlqtkm7dmhIREeEzhna7nW++2UxeXnVTg6Cgo9x6ay8CAgJYtuwTTpw4\ngVqtpkmTJqjV6kuK7mNiYjh4cAdZWVmYTKbrJmPU1HXp9R7M5iKMxjBcLhtQitHY8rrO8fDDU/j0\n0w0IQgfgGK+88hVhYSEMG/ZzP8dqNqwKlcqELBcgyxIKhQpByMPlKsFs3oAgrGbkyAGXEICys7OR\npEREMQYQUKt743AsRZLcmEx1ARAEEVGsJl/VoMaD7tOnBd988zVVVY1JT88AZEpKDJw+fc6nV1ij\n5VmjXlFbufzviF9r+P7OBfm/B/51hu968GsNUA3Zo0Zw9UpqA38U2rRJZu3aOZSXV2G15uLxLMNq\n3UBJiYZmzYJZtuwHlEoFd97Zn169uuPxeKiqqmLdui2YzR7i4/dz8uRO3G4DWm0Adesa6dKlCx9/\nfAjwIMsnARlRdNGy5a2IYj4ulwuo/oJ9+OG3BAYuRKWq3kxLSgoJCgokNjaG+fM/wWzuSlRUV/z8\n4vDzK6S0tIiwsJcxGjsiy17Ky2/Dar0FQXgAr/cQEREi0dFdOXx4N7m5PxEZGUlYmIjXa0ShAEly\nU919X4VW+wAAdnsGubm5WCwWRNGBKFb61tLPz+9X12bm5+djsVioW7d6A5UksFp3IIo3oFQa8Xh+\nZMmSbTz88K2oVKoLvMnaYdLvvttIaqqGoKDO5OWVkJHxHRMnDkWr1TJ//kI2bNiDxxNA//5PYLFI\nfPHFHkaP7uarczxw4Ci5udHExbVFFEVyc39k797DdO7cGpPJROfOnS9glcLPpRVOp5O3357Ljh2H\niIwM5umnH7qm4SstLeWTT74nP9+O0SjSu3cK27evxmwOQpYrGDQo5bpUtAsLC1m8eB2wAUFIRJZz\nqKzsw/LlG2ndugUqlYrIyEiCg4Np1MjEjz9mEhiopbh4FKLYhMDAbbRu3ZrY2MO0atWLm2++tPmx\nn58fWq2V2Fg/srP3AgJe7yG6d29GUdFKIiJuwmbLQhQPUa/epUryw4bdiNP5DTNmzCQkpC91685A\nrQ7i44+n0KtXVxQKBXq93ud917zc1LxcXGwQ/67G8Fr4n8f3L4Uoir/I46str6PT6a7pUVwJv9Xj\nu+eeW1m69EEsluFoNH1ISCihYcNUevduzdy5xwgOfhCHw8XMmXPw89PTqlVL1qzZzMaNLkJCbqFl\nyy7Ur7+EhAQdOp0/7do15Z13vsFg8MdiWYIsd0SWVxEVFYDX6yI9/Rs+/vg4gwb1om3btni9EqL4\nc02XIGipqqpiypQZZGRY8Xju5Phxf5o3D+Hll5/i9tsfQa9vfP6zCgICOtGwoZvs7A3ExnakadNp\nbN36FMuXn0Wp7I0grKJfvziMxjSqqj5CpWoPfIJarUUQ/M/n7NpTWfkUeXlqtNpSRo/uSnBw8K+u\nr5IkiUmTnmDp0jUoFCYiIzUsXPgufn5HqKyMRKVqhyyvpE2bzthsTiwWyyVvy7U3xbS0YurVG3ve\nW4skKyufrKwsXnnlXbZudWC3D0IUt5CXN4mHH/6CvLxEcnNzCQoKwm63s3r1Lo4d8+PkyUxSUpqi\nUvlRUXHuika9JownSRKPP/4cq1d7UKme5ezZ4wwffi+rVi0kPDz8sgQaWZaZP38VFRUdiYtLwWwu\nYPXqZTz0UDUr1WAwXPcGWVBQgFIZi9sdcX69Y5CkIE6fzuP113cjSQ6aNdOQmXmSJUs2YLdbiYwM\nZ9Cg+jRq5KZt20nXlK2Ji4tj8OAGrFjxFRpNJC7XfsaOvZNhw4bw1lsLOHhwPAEBep555j9ER0df\ncrxCoaBDh1bUr59JWNgjvt8LQgBms9nXOrDGuNW+T7XrOGu6ztSwe2sbxD/bGP7P47s8/nWG7/ck\nt/xSeZ3fa9wroaKiguTkGwgPv/O8bptAbm4q27YdwWS6Db2+Ojdjsw1h587DtG7dip07TxEd/Qhq\ntRGdLgKLJYuePU107dqVxYu/Zs+eLJTKV1CrP0MQ5uHv76Fly2jWrp2GKN7BTz9FsGzZy7z11n0M\nHdqdb76ZgV7/H5zOsxiNB9m0KZvTp0NQqT5CoajC630Bh6OQlJQUWrduzO7dnxMYOAGXKx9R3Mjj\njz9OdnYJu3adoaTkY86cScVk2ohSGYYk2Vm/fjDvvfcS8+YtISvrM1q1akJ6egKnT49DFLshitvo\n378ODz/cnOjoaEJCQn7TmixdupRly04gCIeQJAM//fQKzzzzKl999SF33/06TucmGjSoT7t2jbFa\nV121/q6a2Qkejwu1WocggCC4sVgsbNt2EIXiICoVSNJIsrO7kJl5GFm24XLpsNvtrFmzA7u9CWp1\nNKIYxYED60lMFOjdO+mqhKma0P2aNVswGPYiinq02hbY7ftJTU1We+mkAAAgAElEQVRl4MCBFxTf\nQ7WxtlqtFBV5iY2taQwQQVVVJFarlYSEBADOnDlDaWkpycnJV90s69Spg9FYjt2+A0nqgCynAtnU\nr/8OMTE3IMte5s17hnPn1qBWf44gRFJQ8BYqVRWPPjr5utZKEATGjbuD9u2PUlJSQlxcN+rVqw79\nT5/+yHX1Wo2MjESvL6Ki4gj+/k0pK0slIMBKSEiIr33d5catCWXXePoXq97XhL1rG87aYdI/yiBe\nr/p6bVRVVREVFfWHzOfvgn+d4bseXMsA1WZqajSaqzI1f89xrwWj0YjXW4AsewA1DkcJSqWTwMAA\nMjNLfZ/zeEoxGrXnv7AiLpcVWVYhCCIqlReNRkNGRgazZ3+Ov39nXC4rYWGvY7GsJClpDW3bxnP4\ncEOCgycBYLMl8tZbr7Ny5XxCQr5gx44PCQsL4KGHXmbEiPuRpDFIUgAKRV1keSJFRc8AMHPmEzz4\n4NMcOfIlSqXMM89MoE2bNrRpAzfdJJGfn8/atdVGD0AUdSgUcRiNRpYuXQDA/v2HmDdvM06nhYqK\nFfTuHcWMGa9ctlzkYpw8eZKDBw8SEhLC6dPnmD9/6fnNczgjRw6nsrKS1NTDOBwD0Wr9zs9hBGlp\nS0hOTuaDDyaxYkUasmzHbF7DiBHtr1rXJooi/fs3Y9mylWg0KbhcRdSrZycsLAlRVFGd25JxONwI\ngobi4uOYTHmcOVMHk8lEenoh9esPQaMp5MyZ41itVpKTBZo0aXjFN/vTp09TWFiMyeR3PpJhRRRr\njLPFV45S2zOsKbxXqVQolQ7M5hL0+kC8Xjdnz+7lkUcWo9OZ8Hgq2bv3BCpVLApFFl9/PZ8WLVpc\n9toDAgL4+ONXGTduChYLKJV2unS5kfj46vZqTqeb4mI/BKETKlX1OdzuiezYMeyqa3gxBEGgadOm\nV7z/14LBYOC//53If/87j7w8MzExgTz11APnBY09v7mWs7bQb02YtGZuF3uGf1Wo9H+szn8gfovH\n92uYmr90br9FBDc+Pp5Bg+qxcuUriGI8spzGpEk3ERcXzZEjb5GTU4AsuwgK2sOQIU/h9XoZNKg1\nixZ9jsHQBY+njLCwsyxefIRTpzycPFmJVnsUg8GGw7EWWT7OkCFd8XoF4OeQpij643K5zzfHvovx\n46t/f/r0abKyCvF6nUiSG0E4iSieJCkpFlmWCQwM5NNPZ2O3VyuA176XoigSHh5ORISW3NxFaLXD\nKCpah9e7jXnzqmupQkJC+OSTLYSGjqV3byMej5Xy8vk+evrVsHLlKh54YDqy3Ben8yBudy5hYSsR\nBAUzZz7EmjX7qV+/D6dOFaFUnkKWJyIIGiRpLfXqVXs7TZs2pk6dWMxmM/7+/hiNxmuuUdu2rQgK\n8icrqwCTyY+mTdujVCpJTo4iLW0qMBylch2hoWYyM78jNTULQUhCkp5i5MhRKJVl5ObmsmvXdtzu\nI0RGhjF06I0olcpL2KTbtu1m1ao8lMokCgr2Y7GYqaoajFI5moCAbBIScunatTrXJQgCFouFKVOm\ns2nTToxGIy++OJk77+zJggVfU1ERy6FDKzl48ByS1AtZLkKWf0SjmY4sj8TtXs6YMQ9z6NC2K157\n586dOXJkKyUlJfj7+7Ns2ToWL/6OjAwTbrcDp/M4guDxGXGvN+Oy99Tj8ZCbm+trev17G4j69evz\nySev4nb/3EygJnT5W1C7DKWG8HbxC4fH47mgLVttz/DX5A3/TEmi/08Q5H9DY7aLUPNgXQmyLFNe\nXu5L2l/M1NTr9X9IZ4OaRtW/pQOELMucOHGC0tJS4uLiqFOnDlDNePvhh1SUSgUdOrTH6XSyefMO\nHA43MTGh2O0yJpOOM2d+YsUKmTNnzlBe3gynsxydbg9xcd0JCtrCF1+8Tnl5OcOHT0aSpqJSheJ0\nzuKhh9oxceLYC+YyZcp/Wb06lNzcLTgcA5HlEvz8FrFjx+cIgoDL5aJu3bpUVlayYcNe7HY3bdok\n0bJlc985srKyeOCBZ9i1aw8eTyA6XVNstiMolVbuuONGrNY6xMbei1KpRBRFcnIW8OSTPXxM0yvd\no/r1W2G3L0ahaIrZXIHbPYyIiKlotX0pKFhKePjn3HXXQjweB0uWDKO01IxKFYqfXymrVn3h6zJz\nMbKystiy5SAej0T79sk0atTI9381uWCdTnfJ81NRUcHTT8/kyJGTJCfH07dvJx588F3s9q0Igg5Z\n3oVWO4IBA0by3XcFQL3zigfHmTixMU888YiPcOH1erFarcyYsYSIiLG43V7effcjHA47anUYbvca\nQkLOsm/fZoKCgrDZbDz55H9ZsuQ77HYtQUFvoVCEAPfy7beziY6OJi0tjZEjZ1FRMRVB6IwspwMf\noFA40enmIstOvN5IsrNP+zZruLKX5Xa7WbXqex56aDYeT18EQcLr/Q6FQoPXm4Isx6LRrGbhwun0\n7NmTsrIyMjIykCSJOXMWc/asE0my0b9/E5566mEEQaC0tBSFQnFdZJtfipq0xp+lxHBxLWftOs5f\nwii12Wy+7jXXiwkTJjB9+nQfk/WfiH+dx/dLUFPsXFP7ZTAY/lDByd+jflAQBF+z5tqIjY0lJiYG\nu93O2bNnefbZd3E6u6NUxqJUbuPpp4fSsmULdu6cxblzVZSVdTivXJ2Nx2NDr1/LO+88R1hYGOHh\n4cyfP5233lqI2Wzjppu6c/fdd1wyZmWlDZOpNUFB/Sgv34LFUkjv3t356qvV7NxZgkLhj59fFoGB\n0Wg0A1Gr/Th4cAtjxrhp164NUE1YmDv3ZXr0uBu3ezSlpakolXuRpHOsWvU6ycl7CQwcSFBQIpWV\nWWi1Zdfc+DweDxUV5chyIoLgRJJEIBmPp5jCwqLzzNDTvP/+Ddx116f07TuegQND0Ol0FBYWsnv3\nbsxmM02aNLngvHl5ecyevQ6VqgcKhYoff9zGuHEyjRs3pqioiGXLdlNVpUCtdjFkSGvi4+v4jg0I\nCODdd1/x/Xv+/Pm43c0RhBpZqo7Y7WbS09OAvmi1A5EkB263hk2bdjBmTHURfEhICP7+/ng8HtRq\nP3Q6P7Kz04EolEo9anVbtNr7cTqbUlVVhclk4qGHnmDNGi8Wy1dADiUlk4iMXIXTeTN79+5l/Pjx\nhISEYDbrEAQDgqAEEpFlB16vC0EAj+dLEhIaoFKpfBt1dnY2u3fvQRAEIiOj8HrVhIUZady4+vnc\ntGkfev0UDIYeCIIKu70XwcEvUq+egL9/Cffc8z6NGzfm+PHjTJ06G6czmXPn9uP1GkhJWQB4Wb36\naVJSlrNnTxqHDhUCHvr3b8Kjj078XaMxf4U+55V6lP7RjNJ/uhYf/M/wXRY1D43ZbEaSpN/E1Pyl\n4/4RDnjtEG1aWhpjxz5JSUkoSuWnNG06hvDwO1iy5DtatmxBXFwQJSV7UCj6oVQakGU3KlUAbrfM\nc899itGoZNKkEbRp04YvvmhzwTgnT55kzpzPqKqyMXBgJwYM6EBq6nyMxikYDCk4HF8BsWzc6CIq\n6gkqK9NIS1uMUqnn1ltbIAigVhvYsGGlz/AB51823NhsR4DhgB5B0KDR3Ia//xeoVCvIzgajUeKB\nBwZfs8FzUVER/v7RlJe/hyg+iigew+v9DqtVwm4/jCDsRKVahtm8kRUrnmTAgI60atWPKVNeZPdu\nF7LcEFF8gRdeuJMhQwb5znv48Anc7mYYDAaUSg0BAb3YsWMXKSkpLF++G6+3A9HRUdhsFSxbtpHx\n40Mu8SBqogtJSUnI8ivAWWQ5EUl6nYCAWCAElao+CkUyCgXY7SvweBzMnr0NQQhGqdzFXXd1IT4+\nnsREHWfO7OH06QKs1iMIQh00mhCgGEmyotfrzzNF1yKKRxFFkKRmwA7s9s2oVGcxmarVJEJDQ1Gr\n87HbtwECspwN7EKtLkCpbEVAgJNFixb5XgzT09MZN246FksfLJaTCMIhbr99NApFJTk52+jRoz1G\now4oRqGoDqs5HIU4nRri4gahVBb71nHmzI+RpIcIDW1BRsZBbLZPsVgOYDS2QZY78P77H1BZ2ZT4\n+FkoFBpWr55Jw4brGDToBv5JuFLe8GqM0pr/+yXG8H85vn8ormZgakIaUN3fUKfT/b+tx4HqsG6N\n7JFer2fKlFdxu/+LUtkGhcLGkSN3061bDE5nNWOtX7/uvPrqpxQVvYUkZaLTBWK3b0Cl6kRMzKNY\nrTm88soHvP125AVtms6dO8eoUVNxOMajUoVz4MBcHnywPe3b61iz5k5KSwsICOjD2rWleL27sVoD\nsdsTsFgSsdkqycvLJSQk9DxDtvoLXJPkDw4O5sYbO7Fo0Q4kKRJIxGBQIIrpJCfX4bnnHsBqtWIw\nGHyhtbS0NNatO4THI9GlSwPat2/jW8fS0lJ69nyI3buXkp//DhpNAO3adUSlymL37hD8/L7E4QjB\n6+1ISckcRo9+imPHjrFnjwV//w8RBAUu181Mn34ngwYN9I1ZVVXBkSOH0OubAxYCA91ERQnY7Xaq\nqkQfU06vD6CiIojKykqf4du3bx/vvrsQp9PNqFGD6d+/P/fcM4IPP2yLLItoNPWJjx+K11uFRrMe\nt7sSWVaiUm0gMXEQUVEjUChUWCzFLF68nCeeGM0ddwziwQef5tChdBQKCY/nEFVVuZhMm3n88ft8\n66fT6XE4CjAY6mKxWJDlDDye/SQn6+jduzdOp5PAwEAmT+7Pa68txu3eCpwBsjAYwrj33ht47LHJ\nF8gTzZv3FS7XWEJCOuBy7cDhCODMmRL69+/F8ePLaNmykjFj/sP69Q9QUVGJJCmx2z8iMfFORLEu\nBkN7vvzyOx57LJaCglJCQqpDxn5+fpjNkWRnn8Dp1GKzLUWnM6BS1cXhmEWDBg+iUnXmxIkjDPr5\nneQfi2sxSj0ej69h9/UySiXp0q44/zT8s6/uF0CSJBwOh6+juyiKf4qXVxu/p8d3OdmjsrIyKiu9\nBAV1xmotQZKCkOX65Od/xt13DwEgOjqawYO7s3evErM5HaezFIWigJYtq/Mo1dp+ieTk5BAWFoYs\ny+zZs5fXXnuf3NyuxMb2R6PRUFGhZ/r0UURGdsXp7IQoRgNujMZXyM4ehSi6iYy8AY/HhEKxhIMH\nN9KmTSus1m3cfHMzHA4HXq+XGtHXp556hMTEKN544xMcjh/x8zMSGZnH/ffP9rUSy8zMRBRFnE4n\nH310AJcrluLiAnbsWMWkSVZ69+4BQFBQEDqdhVGjPkMUVZSXZ+Lvv5mEBCM//rgMpTIUo1GH3f49\nPXq0IympPpmZGQhCDIJQ/batUkVjNnsuEPnMz7eiVCYgy40QBIGMjI8YN64LWq0WtdqN1VqOwRCI\n1VrFiRN7WLcug549e1JUVMSwYRNwOp8ANOzaNZ3589W89NKz9OrVk9mzvyMoaATNmjUjKysHhWIx\n4eEWBKGcDh1uoqwsBYWietPz8wslK6t6wzMYDKSlpRMYOAelMgmbbTlW62cMG9aSCRPGYLPZ0Ov1\nPP30Izz77O243Xei1x/H3/8kzz03mSFDhvjEfd1uN/ffP4GmTVN48cU3OXWqLrAFs7mE2bOH07Zt\na/r2/Vkho6LCilodBsiAiMejZevWTRw+fIp69Qq4557OxMTEsGrVJ6xYsZKVKzdw+nR70tPrcerU\nl3Ts2J6AAAVms5mUlHjS0tYQGjqYOnUM5OWtwWIxAUvRaIKBUQhCQ5zODAoLNyGKPxEX9/v2zvyz\nQ52/BbXrB51OJzqdDrgwVFoTJq3pKiSKIkeOHPnVpJavv/6a559/npMnT5KamuprB3cx1q5dy8MP\nP4zX6+Wee+5h6tTr6xP7e+NfafhqP8BXYmp6PJ4/JOx4rXn91jFr1xbWUNWtVivp6emo1Wr0ehmP\nJ43o6BSKi88iy/u4++6xDBjQB6gu4n322QeZN28Jp07lUqdOAseOKXE6i1Aqo/B6XUhSLv7+1Y2h\nt2/fyaxZuyguTsFuF8jIyMNo1FBRsQmbTcJsjsDrzUGhOIrdHk1AQA6CIFNRkY3bvYg6dfxp3348\neXkf0KqVgVatupCSkuK7jhrPb+/e/VRVQWJiPRwOA+DCaPTjzTcXEh0dgM2mxGqNRZI8VFSkUlgY\nzY8/HsPjaYEg6HjttW9o06Yl/v7+xMTEcPPNySxf/hHgj7+/mYYNI9i9+whxcZWcO9cWlcpE/fpG\nnnnmdUpLS2nUqBFK5Rwslr3odI2orFxIq1YNL+jIb7fDgAG9zjNZZVSq9gQFBaFQKLjpprZ8++0m\niosNfPbZh1gsIlu3NuDll2+jQYM6OByPodXehSCAy6XnnXcW0rdvX7p2bcfOnTnExnahoKCAHTtS\nKSrKwN8/jRdemEadOnV4++3V2Gxl6PVBFBYeJy7O6Hv7V6mUSJIFQRAxGG7G6z1KQcFJbrllKiUl\npSQlGXnoobF8+ukLbN26i7CweowaNR2TyXTJsyXLMgMGDGDKlBnI8geIYiSCEIndPpHvvltPt27d\nADh79iwNG0Zw+PB8lMrHcbmyKSn5Dj+/3lRU+HHgwBa+/XYl48ffTUxMDH379mbVqkKCg+9EqYxF\nFHuwa9ejjBzZFpPJxNSp43n22bfJzFyGKLpo0MBEXNyLpKevwOW6FZstH7d7BXa7ldLSQwwY0IjB\ng0f/pu/RPwm1Zc+uxihdtmwZK1asoLi4mG7dutGiRQtatmxJv379rqrPCNCkSROWLVvGhAkTrvgZ\nr9fLAw88wMaNG4mOjqZNmzYMHjyYhg0bXvGYPwr/SsMH1YteEwZUKBSX9NT8o/JtV8NvGfNKtYXZ\n2dk888z7VFXF4PWW06lTS7Zvn4rXG01AQC4PPjiGu+6644KXAX9/fx5//OcH+MCBg7z22hxKSupg\ns51gwIB6vgLm77/fR0DASLzeKrzex3A6dVitemA+SuWTqNUjcTjK8Hhew+U6QG5uOiASF6fCaGyE\nKBZQVXWY0aNvZMCAXrhcLo4ePYrJZCIsLAyTycSXX37Hpk0uzp6NIi9vIBERNtzuluzdu5zMzGIk\n6ScMhoaMHNkNlUpFRkY5e/YsR6t9i/9j77zDq6jyN/6ZmdtLei+EEnoLHQlNmiAqRVAUCyLYRRFF\nWN1FXUSwoYiIgggioggICApLVRABSYDQSSAhCen19jYzvz9CsoCoqOi6P/d9Hp48udzMzL1zzrzn\nfMv7Go1JuFw5ZGcf4ciRI6Sm1hB2796ptGvXCpfLxXff7eXpp99HUcahqnFYre8zceJtiKKVjz/O\nAASSk7XMmTOFF154jZKScrp0acY//vHkRTuB+vXDOXMmnzZt2uDzuSgqOlIXoqtXL5EePUoYO3Yi\neXmVGI03YTROxePpw8GDjyMIN/HvWyDVjQOj0UhEhMjZsxksWbIJj6czgtCRAweyefnld/jkkwWM\nHt2F+fPfw24P0LJlLLfe+m/R6YkTxzB58hM4HA8CxWg0n1JWdgeFhd0pLxfIzFzLzp2TeO21J3j+\n+Wd/dnxKkkRwcBD5+btQ1WgEIQaN5hRRUaG43W4mTXqOHTuO4PPJ6PXVWK2FiGIxFktDQkLCCAS0\nKMokli59mfHja1zia2T+QnC7XVRUZKCqASyWUho1snDDDWOprKyiW7cUlix5lujoaCZMmIHbbSI+\nvguHDy/BZivHau2CKOaTmAg7d35HSkofWrVqzltvTb+sSssvxX/Tjq8WP3fNl1pevfTSS7z44osM\nGjSIadOmkZ6ezqZNm2jcuPHPEl+zZs1+9nr27dtHcnJyXUX0qFGjWLt27f+I74+C3++vE6n9sUrN\n/xbiu5TAL+0tnDfvE5zOYcTGXoOiyGRlzWHWrInExsYSGRmJ0Wj82XN26NCeRx9188wz7xAIxLNu\n3SGioz9n1KjhiKJAIODl9Gkv9erNJz//fny+UlQ1gCDEEAgUoqqgqjJe7yl8vhEEBUUTCOwmOHgH\ndnseLVsmoNNFMHHikyxbthm/34hG4+PBB4fxt789xY4dWSQlTeLUqX2EhralqupTSkqOEgi0wmbL\nR1GqsNmkOgfs8PD6+P0V6HTleDyg1Raj0QRx+vRpCgsL0Wg09O7dm5CQEIKDg3nnnRVoNC9hMLSn\npORFiooCPPvsBkQxn/Hj36V+/c7s3r2UzMxDTJkyDp9PYN++YpYuTSM5+SjDhvVFr9dz4409WbFi\nC/n5RxBFH0OHptQZnRYXFzNmzCRKSh5DVdvidq9AUSYSFvYCoqjF738Jh0ML6DEYXuDBB6fVjYnb\nb+/Ps8++ic93DkmKxGAYgkbTgF27muNyuZg/fzGff74TjSaafftKuP76rnVVeTffPIzQ0GC++GIb\nQUEm7PabOXCgE5WVIjpdd0TRgqJYmDZtNp06tScuLu4nK5fPnTtH27a9OH58A4pyAI3mHFFRZ3no\noU2sX/8l69en4/V2AVKx2T4lMrKSe+65kfff1+PztcHlEpHl78nPd7F06UruumskSUlJFBR8jdfb\nmZiYDthsX6HVunjppeXo9S9hsTTi668XoijvMmfOdB59dCTTpy9Eq22F378HnW4MQUHNiIlJJS3t\nnwQHjyQo6A6OHl3M+PGTWbduSV1O63/4adT6WPbt25e+ffte1WOfO3eOxMR/W2UlJCSwd+/eq3qO\nK8VfkviA83mXH8/h/SeIrxZXurqs7S2EHyfw/PwKgoObnz8u2GyRpKWlM2bM3URHR2O323/2c6qq\nyltvrcBimUJISAp+v50FC/5GSkoLhgzpxowZS3G7GwN+FEXCYJiL17sRWV5PIGBBEGxI0jY0mqmo\nalNMppYEAtEYjRVotVY2bEjntdc2U1WVC/wNURyOJOUzb95dREQEU1xcTGiom+joYE6dyiUQqFH6\n0GorCQq6FkWRKSpagdfrRhRBry+kWbMoKio2odV2RaNRcbm+45VXis/3jHmIilrCp5/OJyoqCp/P\njyhacLu/o7p6O7AJVTUgywdYtuxprrvuYT7//H0kKZUlS94iNtbIuHFLkSQNmZl72Lnze/r1647V\namXs2KG4XC50Ot1F9yMtLQ2frwMWyzDc7ipU9Rm83g54va+SmpqCICRy9OgaFCVAixa9aNfu372M\nUVFRjBjRi02bFiCKdyOKWhSlDEFQ2bp1K2vWnESj+RpRNFFZuYKHH36GLVtW1v19nz596NOnDwCv\nvPIWX3zxPX5/T6ACVT2B359Nbm4evXuPITJSw6efvlcnxn0pPvvsaxo0GMukSQ9w9OhhHI5tvPTS\n80RERLB37wE8niAkac55MYaBnDzZkSFDrmflyomcOVONJCWh0XxCp05TWbduE337dkOr1ZKcnExR\n0dc4HJ9Tr14SqtqE4uJEwsLaAmCx3MvatT1wOg3UqxfG1KkjzvcqJlG//ki0WiN5eXkIQjN0ukRE\nUYPVOpYzZ97FZrOdVzW6WJLtcvqkF6Kqqgqn00lkZCRwZeIXfyZc7eb1/v37U1RU9IPXZ8yYwY1X\nUEn0Z/r+/pLEp9Ppfnb195/a8dWe96cGyS8RxW7Vqh7fffc10dHX8/3331Na+g07djTl2LH5/OMf\nd/zAC+5S5Ofns3XrDo4cySYuLp6ysjIMBiPQhIKCArp168bQocc5d+4Tysv9mExj0enaIAh6AoGF\n+Hy3YbU2AaJxuaJQ1TAqK3ORJD95eTvQajXIcnPcbh2wCBiOqkr4fIlAJ2bPXole35i0tGfo3fs2\nLJYDVFdvQq/3otMNBBKQ5SLCw/Nwu9dQXGzlppuace21Y1i4cCdVVbuRpFKsVj+FhY8TGjoSVVUp\nKnqT995bwoQJ9zNsWG/mzZuG19sKRWmNKEoYjQa83muw2Yr4/POZ+P0TUJQq/P44srI+Izc3nQYN\nOhMWlkxe3rcX3cNLWxRqlWRkuQSDwUBYmJXy8uMoSgkJCQcoKYkjIuIaxo2bdt5x4RBHj2ZdFKLr\n1asXjRvP58SJCchye3S6T3n00fHk5+fj93dHq60p/dfr+5OT88Jl72VxcTHl5QZCQ09RUnKWQEBC\np8vF7T6HTvc1Wm0TCguXcN99T7F588of/L2qqpSVOYmPj0MURaKi+pKf/2+7pbi4CEBLjQZpzTjW\n6YyEhITw1lvTeOyxt7FYQkhKeoWwsJacO7cLqGkbCg01ER9/FyZTLIGAi8OHn0QQclEUGRDIzv4e\nt9vEwYO9KCry4HBsZcaMR+jf/zibNn2K0diT8vIzqOoOtNo7EATw+8+i0wmEhobWXeOF+pm196YW\nF5LhmjVf8tFHuxCEYMLCXEydek/d7v2/BVfbi2/z5s2/6Xri4+PJy8ur+z0vL+8nhSZ+T/wlie/3\n9uT7Lfipa/s1otgPPHA7VVXz2bVrLWVlNjp2vItGjW6kvPwwS5Z8ydNPj60jeL/ff9EuJTs7m0cf\nfRWHoy+FhQJnz64mNLQvgpBJRMReYmN788or89m5s4KIiEFUVW3G691HUFB3Gjdug8s1htzcDJo1\nm8yBA1NRlOUIwoNYrSY8npWkpsZRUNCGzMxsfL4aGxk4jqq2RJbtCMJRDIbROJ3lOBx72LJlIlOn\n3sXIkW+zcOEq9u6NwO8/iigW0K1bDyZPvrdOwSUvL4/Ro6vxer2kpAxm2rS5lJc3BITzuapG2Gx7\nCQoK4qGHxmMyGVm2bC12ez4Wy0QMhki83k8wmy3YbE5Ah053D7JcjseznZ0716PTJQDFqGohW7Zs\noWnTpheFcmrzrn6/n+7du9O69SccOvQwqppCVNQqwsKaUlHRA4dD4ujRM1RVbeKmmwahKF602oub\nr/V6PWvXLuXDD5eSl3eGbt0eYPDgwWzbtg2tdjaK8hCiGIzXu5o2bZpcdiycPHkarbYrd989lkOH\ntrNt2w7s9uNotUMIDa0RczYYbuXEiX/W/Y0sy5SVlWG1WjGZTDRqFE5u7lFiYlrj8dhQ1VzCwpJx\nuVyMGXMXCxZ8Rnn5TOAaNJq1dO3ajKioKEJCQujWrQUlJU2lsCwAACAASURBVK0wGMLIy1tLYqLK\n9OmLqK42Y7OVIwivEBnZEUUp4oEHbuCLLzaTnj4Ruz0Ku301VuuN+HxxnDlTjSxXU1paSmpqG5Yv\nf4Py8s1IkkpCgguP5yn8/lYIwjfMmPFkXe7+0h3e5fRJFUXh+PHjLF6cTnT0NHQ6K6Wle3jzzWXM\nmvXUT861/w+4GpZEP7Zh6NixI5mZmeTk5BAXF8enn37K8uXLf9O5fi3+ksR3JRBF8aLV4B+JSwfO\nhZWnOp3uF4liBwcHM2PGZJYv/4xVq4Jp0KCmqddojKa62oUgCOTk5PDyyx+Ql1dBbGwwf//7/SQn\nJ7N8+Xp8vpGEh3fDbA4iEFiA2/0NZrMGs9lLQUEBy5alodWORhD8hIa2QRB2EhS0BJstEqdzHUFB\nCnv2TEGWBwB7EYSHcTiCaNSoPtdffz0ffPAdBgOoakNgKHAv0BbIRBDs5OefAnoDDyAIa9m58zi3\n367lscfuYs2azWRnnyIpKYzhw++o01Xcty+NxYu/RxCaIMvnEIRM+vbtyNGjC9Bo4hEEBVVdRq9e\ntyIIAjqdjvvuG8t9941lwYIPmDHjBmQ5jLg4P2+88TJjxryA3Z6AIAThdpcjy4mkpx/l2LHHadTI\njc0WjEZTDLzNG29MpEePHnVq/BqNps4yaPnyd1m5ciUFBSUEBV3P3LnfERQ0HaPxLGVlmzh4cBfN\nm5sJDz9FSsoQZFmmsLAQRVGIiYnBbDbz4IMPXHR/+/Tpw5gx+/nggx5IUiixsQrz5i38wTg4d+4c\nR44cIy9PIiIimQ4dBtKwYQvKynSsWpUGeAATXu+OOof1vLw87rnnCfLz7QiCi6efvp/hw29g+fJN\n5OXtR6PxM2xYuzoJv5iYGHbuXMvUqTM4c+YbOnduxbRpcxGEGof1Z54Zz7JlX5CXt4+UlFgyMmQ8\nnhHEx7clMtJGfv5M7rorgebN+xMdHc2NN17H2rVrmTlzEdXVfZGkm7HZ9mM0NqCg4DRlZWUsW7aF\ntm1fJCQkGVEUyMlZSu/eVURFRdGixbCfLJy4tLijdq6Vl5ej0bRAp7OiqhAW1oHs7MV1ItUXNoP/\nmfOGf6T7+ueff86ECRMoKytj8ODBtGvXjq+++oqCggLGjx/Phg0b0Gg0zJ07l+uuuw5Zlrn33nv/\nI4Ut8D/i+1H8p3J8F573Qo3Qy1We/pJjduyYwpo1n+FwtEWvD6Gk5EuGDk3G6/Uybdp83O47SUjo\nRGXlIZ55Zh6LFv0Th8OLRhOM3+9Ho0kmPHwCYWFb6Nx5ImVlc9iwYSeqOoTg4BtQFB8FBUdQ1SCS\nkvKxWnOpqurHgQM7MZun4XCYEYSnkaRpWK0NcbvX07lzZ6zWYCZM+DtQD7AAsUAUkICiVADH0Ghm\no6o5KEoCVVUOsrOz6dixI3feORyoCZW99tp80tJOEhlpxW5XaNjw74SGxqAoMmvXPkd8vB27fQeF\nhT3Q6yWefvpeBg8eVPcdqarKunXr2bfvOIMH92P48P6kpqai1+sZMWIQa9ceo7Q0A1UVMZlaExo6\nEJ8vm6NHP6Nly8+RJD0ez0kmT57AunXN+OSTz8jLK6V9++bccssIoCavfMcdNdJuO3fuxOvdBGzH\naOxMRMQgKipG0LNnR3r3HoLZbGbx4tVkZWkQBC0xMbu4554bfyDaLAgC06Y9zQMPjMFms1GvXr2L\nWiygpr1gwYJd+P1tyc09zLlzs+nQYQAazUkefHA0iuLl88/7Igj1MJkyeeedeQA88siz5ObeQlDQ\nnQQCRcyceScpKS25//6R2O12ZFlGp9NhNBrrCCA+Pp4PP3z7suMwPDycCRPGADXRhTvu+DuJiTVO\nCjpdEDpda0wmU134XavVEhkZS3z8XVRVRePxVKAo8ZSVvYBGU8Dddz+Pw1FKz55DURSZQEBFUYKp\nVy+Ivn371imX/BKnA0EQiImJQVF2oyheRNFAeflBkpKiMBgMF+0SgToNzQu99v4sZPhHClQPGzaM\nYcOG/eD1uLg4NmzYUPf7oEGDGDRo0A/e90fjL0l8V9OT72qj9rwXurlfDY3QJk2a8MQT/Vi8eAFV\nVV6uv74lt9xyEzk5OVRVmYmP7wxAWFgKRUXh5Ofn06dPe3bv/gSzeTyKkkUgsJ5GjW6nquoEMTEq\nJlMoJpMep7MAlysNhyOC+vXvpWPHfqxb90+SkzsSCGxGq41HklQ0GhVFCcNi8ZGYGENa2kG2bcsg\nMbE+mZn7CAQUVPU6oB9QAuiBJwkEVqDTxaLV6nE6czCb+9V9LlVVmTTpefbuTURVJ7F377f4/e8S\nG7ubLl1aY7N9w7ffHsDtTkaSWhET0x+Nxs++fWkXjYNlyz5h5sxNaDQPEAgUsW/fbFatakxiYiJj\nxw7G4djMiRNBHDpUjskUhMXSF7t9DaqajCjW2PpotclUVLgYP34SR47Eoygt+OCDN5k69XX69Utl\n+vTJxMTEUFVVxXPPzaasTEWW30GjmUZERGd6927L0KE3cPToUWbO/IgTJzw0adKZzp0HUVJygm3b\n9jBkSP/L3t/o6Oi6YqWlSz+muLiSa65JoU+fPvzrX+lYLP0JDa1HXFwK6enriI9PZ/jwwcTHx/Pa\na9MZN+44lZWVNG/enLCwMFRV5dixkwQFLQVAo4lBVXtx7NgxmjSpCaVaLBY0Gs0P5lNFRQXHjx9H\nFEVatWp1WYcFrVZLTEwQFRXHCA9vid/vRFWziIzscNH7ZFmhYcMGlJaWUVGhpbw8Da+3Ekn6EJst\nHkXZxI4dkxgy5DPc7nL0+gM0b34bUKNaVBu1udS54qfIsFmzZowa1Zzly59FFEMJDbUxefL9F83B\nHwuT1lzzxYLS8Ochw5+DzWa7SJHp/yuk55577rn/9EX8J/BzYczaNoELZZj+CHi9XgKBAB6PB4PB\ngNlsvmpiuwkJCdxwQy+GDetDu3atkSQJv9/PmjWbMBh6IEkGfD47DsdabrmlDy1aNCcmRiUnZzUR\nEUeIinLhch0gOPgUjz46mogIKydOHEWSLJSW7kCvj+O6664hLCyS7OwiPJ5CdDorFRWH8fsj0GjO\nYjR+TpMmrYmJKWfXLjeKMgynsxF5ed8gig1QVT+qGocotkRV/QjCVmAnsryXQOAbwsPtjBlzc93D\ntLq6mhkzPiAoaDaFhSCKqbhce3A4FE6cyCE/fxUazWuoaj8kaTiVlY/jcuWRmZlBUlIkrVu3JCPj\nMI8/Pgu3+zkslvZYrSlUV1cSHX2W9u3bERERQdu28VitOezduwSj8V4kKRiXawGBwNc4HFn4/YX4\nfMeJiTlNdraK0TifsrIZ+P0jcbvvprhYZcuWNxg58gbeeus9tm+PJyxsHorSD7+/goYN97F8+btU\nVFTw6qvrcTgGoapDqary4HB8T716bVGULDp0qAkNffHFlzzyyAu8995y8vPz6Nq1Az6fj9GjH+bL\nL80cOdKYjRuXYzQ6cTpBVZuj05nRaLSAh549Q2nVqiWnTp3ihRdeZ+vW74iPj6J9+5Q6Uli1agPV\n1Q3QaOphs5Vjt8/GYoHWrRuTmZnJffc9w9tvLyYrK4vU1E5otVoKCwv55z+XsGdPKPv3O9i//190\n7tzisvOoefNEdu/+mPLyQzgcm7nzzk507tzxoveYTAbS079Fq1Wx2bZTWfk9Wm07TKbxeL1+FCUK\nh2MelZXfEBWVyeTJo2jatCkajQadTlf3r1YBKBAI4PV68fl8dbqWl+6M/H4/DRvWo2/fNvTv34xR\nowYTERFx0XVdGCaVJAmNRlOXX659vZYMLyVI+GP6AmtDs7/k+bF9+3YaNGhA06ZNf8cr+8/jfzu+\nn3jPH7njU1W1TqlEq9USEhLyh5T/BgcHM25cfxYufAFBaIYsn+See3rWhZsGDuzPwIH9UVWVBQs+\nZtu2EjyeGGbO/Iynnx7Bffe1ZOPG7Wg054iO7kFiYiKKopCQoKG6Og2NpgmiuA1J+giNRkNUVI0t\nznffVaAovYiMdNGiRXuSk0eTmbkCaIogrEeSqtFoduD3q8AkJCkCs/lbFKWcL77Ywf333w7UClgH\n8PlsqKoGu92NKGrR60V8vs14vRATE0NBgQOv14eqNkQQnkEUs3jyyRksXrwGjSaSQCAYRTFRWuoi\nKkoAFC78+hMSEhgz5i7q1Utg2rTpVFdXExKiIgiDqKxsg822g+joozz22FSmTPkCWT5LIACieD+K\nko/F0o2ion9x6tQpsrLyEYQbkCSJiIhw3O4+hIUdx2QycezYMRSlOdHR9SkuriQoqCfnzs0iPv4I\nHTrUPHzT0tJ48cU1WK2vEhQUzvr1b2AyLaRt2yZkZ8cQFlZj9Ov392LOnFuZO/cFVq/+GuiJz+dE\nFA/SuPFAcnNzGTHiIVyu+5GkGL77bi52u4MxY2rCsW+88Q/uuedpysuTcLnyaN68HcHB9/LqqyvZ\nuXMHWu2r6HRJrFnzEllZD3LbbTeTmZmDz9efevVqRMbz8rawY8duhg79oWB0/fr1eeONJykpKcFi\nsRAeHn7R/9tsNmbMmMvq1eux2yPRajsjywqCcBDwEgj48fmyCAtrRseOb+BwLPhBmO5Cgrpwx3ah\ny0HtzrCWjFRVRa/XExcX94udDi7XL3gp+dUuumt/XphnvJo7w1/rvv7/3ZkB/qLEBz9PbH8U8V0q\nmabT6S4bPvo9cd11fWnZsinFxcXExqaSnJz8g/ccO3aMrVsrSEychChK2GzZzJu3hLlzn2HQoH6U\nlJTw9ttryclx4/fb6dDBT2lpfTZuzEWnC8XnCyMQMJGbq+H0aRFZ1qHRuDAYwjlwIIv4+EQ6dWrL\nxo3H8fkkfL48goKaU1zcD42mBVFRTRHF7pSW3kJVVTMURSEtLY2KigoGDGjLV19NwefrhKqeQK+3\nYjKNwGTy4XCsR1W/Jzi4JcXFmxEEN6pahSh+jMv1ACdOxKKq/yIhIZL8/BdQlLspKTlHdPRXDBgw\nj4KCArZv344oivTt25c+ffpw7bXXcuzYMUaNeoH4+NdJTNQgy3fhcIykcePGhIcXk5e3FFnOQ1XP\nodFocLlsaDQOQkND6d69HV9//SkVFe1xu2UCgflERNh5662ldOjQCJ/vHLGx/WnQwMWpU1sQhDM0\na5bEkSMuNm78nqKi0/j912Iw1AMgOPgutm2bQnr6Ic6dy6K8/BFiYx9Er29IIBCgS5cOCEI63377\nBVFRJgYOvJaYmBjeeeddHI6bCAm5EwCvN4GFCyfWEV9KSgpffPE+kya9TGLiTBIS2iMIIhkZVjye\njgQHdyAQKMPp1LNrV0NMpghOnlxPs2at6saNThdOdXXZj449o9FY5xl5KaZPn8O2bUbc7ubodAsJ\nBArRau8kELgfn28kPp8JrbaQ1NSXCQpqgM3WgczMzCsqka8lKK1WWxfdqS1Gqi1sq/XtvDRM+mvI\nEPhRV4Va7z24mAwvV3zze+Ov4MwAf2Hi+zn8EcRXW7giCEJd4UptXu/3Ru3Eq+kvk4mOjiYuLg5J\nkvD5fD+Y4DabDUlKRBRrJq/VmkR+vr3uGEFBQTzwwA2UlJRgMpmIiIjgzjv/iV7fDkXxotd3wm7P\nRpbjEUU7BkMRHs+3FBfLWCwuKiuXcvZsExQlHrPZT48eIzhxYjPl5T50ugBVVTkoSiGSVEaXLk2Y\nO/cDtm1zAo0AIzffnEBZ2Qk+/XQjknQdgvAZkZG9CA3dTUzMhxQUFON0FmOxTMFgqKCoqAuS1BOj\n0YjH04KiogcZPPgR0tJWkpTkZ9asN/B4PNx22wRstl7Y7ekIwmxGj76eCRPGoSgKkqSnVrRaFLUI\ngha9Xs+KFe9yyy0TcDjCCASeRqcbSHX1BgYOrDEGvuOOUSxduo4jR/oTCEiEhKRgNKZy5kw9wsNL\n6dhRZN++9xHFCJo1O84999zJunV7KC3tRlhYSwoL11FW9hWxsXciCBIeTw4lJbkUFQ1DFO/G5XKT\nkzOViIj6DBnSk/LycmbNepsTJ86i0aiEhj5KXFzceScGEb8/B0WxI8vVyLJStwhzu92EhYXRpEkL\nzOZGCELtA9yDKJYCYLfvxu9vg8ViJCGhF1VVCseOLSM2tjOK4sft/pqUlB4AZGRk8Pe/v0Z+fjGt\nWzdh1qxnfrKP9LvvDmE2P4UglCJJ4SiKD4OhGo/HSuPGIZSUnKJNm1eIiup4fjwXYTb/tLTWpZBl\nuc6NxWKx/CAseKn/ncfjuSpk+HMWQ5fmDGv/5peQ4a8tbvnfju8vjNoB83vE4mvNbWVZrnNOuFBI\n9vdG7QpTVVU0Gg1Wq7XutVpPr0sneE3z7laczp6YTFEUFGynRYv4ugeHJElERUXVNfnWSMKpOJ3l\nCEI9ZNlxXiw5GFARhAiMxp7AesrLDwHdqa5+iIgIM273v8jM/Jj4+Ciqqo5SUjIP6IAgbCEkxEtZ\nWTE7dpSgKHdRXFyNJMXy/feLWLXqNcaOHcWECS/gdhuB3cya9QQDBvRHlmUyMjJ48MEXqKw0oCiR\nhIdr8XgUHI5KFKWcc+eOMHhwBx5+eAgRERE88MCTnD0bgtv9MaraH1G8h48/3k9e3ossWvQ6jRvr\nOXFiNnp9bzyeLbRqZSUpKQlJkujatQe9e48lO3sLpaWnEYRmjB3bDUEQsNvttGlzPY0a9WTfvmL8\nfgvZ2Z8THHycqCg9U6aMoU+fU7hcLuLiuuB0OikqMp2XnVNp0+YWcnM3UVg4Ga22HjrdTlRVR1zc\nY4SEeMnJycNmM1Kv3lGuu+5JJkz4O4cP98BsXowoljJ16kheeuk9/H4jFRWnqK4+hSR1w+f7FI+n\nmN6972T06P488MA96HQ6RoxIZcmS1YhiSwKBUrp2NXDkSDqHDzdGlv2I4m0kJw9CUVQSEpIICrLg\n872LJAmMG9eV8PAwxox5iLVr96AoUVgs7bHbGzJmzETee28WR44cwWg0oigK8+evxO32MmJEX8LC\ngikqCiBJxQQC21HVOEymAzRqZGT+/EnY7Q5eemkV3367H5crn5YtK2nR4vYrngO1uT6DwXDRHLwQ\nF+4Ma3Gp/53X6z2/EPpzkeEf2c7w34a/LPFdyY7uSlRUfgkudU74sQb032vHd+EkunSiCIJQl6C/\n8HpryTAyMpLx43vw/vsvU1Ii0KRJJHffPQK3213Xx3UhjEYjMTEK6emrcTjMqGonVDUCVd2I0WhF\nlquA4whCJQZDCwKBoeh0KZSXH6NBg2swmXYQGdmJpKQY7HYngqASFTUJvd7Hp5++T0FBHPn5xWg0\nDRAELwUF+eTn59OuXTvmzPkHjz32EtXVJp57biGVlXZuvXU47dq1Y/36BRw4cIDp09/l9OnPgDbo\n9Wto0OA2/P5KBg3qUVfIsGvXfjyeVFRVRFVnIsvZCEILsrJmkJOTw8KFr/L66+9y4sQ7tGiRxMSJ\nL9c9tBo0COfYsZO0aDECWfaRl/dh3e7GZDIhCC7sdht2u56goDbAXvLyBJo0KUEUxYtEf4uLixEE\nD5IkotVKSJJKp05NGTq0KaIo0rz53xg//u94PEUYjbGEhh6isvIcZ88O4vHHl5OX9w16/Uw8Hi+C\nEMDhCCCKszAaWyOK3+D3TweaoNMNRa8PEBJyBx999Hfatv2OXr16kZLShtDQYPLy8rFYYpk5cw2q\nOgpRHIyqpgMfcPJkDJWV2cTFnWDq1MHExUXjdDpRVZX77nue/ft1BALLEMXmuFyvoNdLZGZWcvPN\nDwN9cDozKCvLJC7uTbTaIF599VVuvTWZL798k+joZAoLn0Snc9O6dUdeeeVl6tevj8/nIzJyFRUV\ndgTByqlTdqZOnc6bb874yR1R7cJTFMW6HstfgloyvHDMX7pw/L3JsPZ8l6rQ1Ob1fm3EyuVy/UB5\n6P8j/rLEdyW4WuHOH3NO+LFzXm3FmAsJD648gX7pard3756kpl6Dw+Gom8SKotT1GWo0mrrX33pr\nEfn5TZAkJ4LQA3Ch0ewjEMgGfISHR9OggYaCAhs63QPk5e0E+qOqFmy29VgsAYqL3VRW5qLTXYtO\ndwuKYsPhWMzp09nk5BxFVfsjCDKCsJugoCC+/PJLdu8+xpYte4D+iOIQFGUnTz75Pnq9xNChNTu5\n/v37k5KSQr9+t1NVtQ2zOYjk5K6oalHd/ZZlmcpKG7I8EJhHTWuFFZ0ugKoGEEWR4OBgnn9+8mW/\nu44dG7N//2ccP/4NFovEDTc0pUWLFkAN8Y0c2Ynp09eg1zfCZvua8PAIwsKiiY01/uBYUVFR9O4d\nz9ati5CkpsjyUW66qTW33DK07v4+8cSdvPLKVCoqepKd/RZm80KiotpRXb2ZQOAgOt0ZtNruuN3H\nUZQwXK4kKipcBAJdgHAkKQhIxu//Ho8nC4cjhE2bttGzZ08EQSApKYmkpCQ8Hg9paYeRpNnUeFa2\nxe3egM+3hoKCOCTJy9KlZUBb/H4jJ0+uxeeLxGC4GY9Hg6pqUNVBuN1L8PuLCAmZRUTEjdjtr+D1\ndkeWmxEUFIqqTiQt7XVWrHiNw4cPYzZfR9euXetECgDOnj1LWVk0Z8/6qag4A7QlO3sjMTGv88wz\nT152HtQq6fzULu/X4HILx9+TDH9MhaaW/Px+/0Xnv9B09ufm/39L68VvwV+W+P6Iys6fc074Pc55\n6fl/DeH92LF8Pl+dsWWtWe+F5pYOh4PTp0/jdrvZuPEIcXGzych4iECgD/AmcD2RkckkJWUTH7+H\nN998mkmTpnPsmEJkZBylpXciy0XExQXj99enrKwxqhqL2z0HWdbjcm3G46nGYrkFr3chsBxRNCMI\n4bjdEcyd+ynFxQp+fwegEHiDkJDX8PlyWLToK/r0ubbOZ66oqIji4hK83ok4HGY2bJhIp05tiY+f\niizLfPHFRgQhGINBwOOJBp5BFFshikdJSQm+bAFQLRYsWMLbb29AFJvj929hypQ7uemm6y56T/fu\nXbn33kLWrSsjOvoGrNYEqqoOER+vsHbtZrKzy4iLC2bgwO4EBQVx990jad06neLicuLiOpKS8m8R\na0EQGDFiGA0bJrFnzz5efz2Y+PiO5xdRLgyGgcBkvN5OKMpBRLGIQMANJAHFgBtVzUSWQ/B4MsjM\nrMbvD2HjxmwaNlzGuHF31J2ruLgYp9OFz5eNLMciCBpU1YHJNBmDIYGoqDC2bBlFSkp70tM/xOPR\nIss7sVgaYjA0we3ORJa3o6p7iIgwExRU074gSQZU1UkgUFvkUYnJpCMhIeFHi1UkSSIvL5OKimq0\n2oUIQhA+X2cWL57OPffcXud4D/82Zr5QSef3xn+CDAE8Hg+1BtS1TfyX0ye9NEz6nxLl/0/gL0t8\nV4LfQkJX4pxwtc95IS5c/f0S5YrLoTapL4riD/oKa0MxZWVlPP74DEpKwvH5KiktPYnBUI7DYUUQ\n9lLjdtCXiopv6devLx5PJRUVFbz44pM88sg0CgpkDIZq7r57GAUFPtzukRw+XILLVZ/Q0OvRaF6m\nqkpL/fpLKSn5COgPFCMI16LRePF6V1NWZsbvjwe6AJXAfmy2dzGbbWi1TamqqqK8vJyPP97AqlUb\ncLuHIIojURQBRdHi8y0jPDwcp9NJWloO3btP5NtvX0Wv743T+SWiuBqzOZ7Y2P44HA6Cg4Pr7lXt\n95uXl8e8eWuxWD5CownF58vntdfG0KpV87pc1oABA7BYLNx00/WUl68mMzMDu/0oSUkuSkoEsrIS\nkKSmnDxZQG7uah57bDRarZaOHTteemsAKC0txe1206pVK1JSUti8eR/Z2csJDh6BqtrQavMZMOB1\n9u+fR0lJOIJQgNM5Go0mBVEswGC4Dkn6Hr8/G48nF4NhAtHRJhITRRYvnkH//j1ISko6r5CzgjZt\nxnLgwNN4vT3xevcDZahqFElJMYCELMukpa1Bq12NwWDAbl+N2z0Dg+E0Ol0VFstJYmMjqK72cvbs\nXBo1mkZw8DUUFt6NzydSVhaJTvcJjzzyQ23MI0eOsH//USwWA717p2I2l6CqOlRVQVGyMRgikeVw\nbDYbcXFxF7UJGY3G3ywE8VvxS8iwtkfw0sb7H4Pf768rTLowjfJT+qQXkqHf76e6uvoPrSj/T+F/\nxPcT+DUk9EucE67WOS/ET+XxfilkWa5bPRoMhp9ss5gzZwnFxQOJjh6CqsoUFj7BkSOTgesQhC9R\n1QIkKR3woddrqa4uZffu3ZhMZv7xj4frvPFCQ0OZMmUORqOZ1NS2VFZWUliYyM03P8rs2ZtQlGz8\n/qbAIARhIZJ0EEFIJzw8ksLCUmAikAKIwFMoymoUJYQ9e7J56ql8KislTp++htLSQchyJpKUgSR1\nQpKM510naqr7goONhIc3Z9iwN8jO/hfp6RKRka9jMjVi06YdwAIaN67Hxo3pSJLArbf2ZsCAazl4\n8CCyHAposdt3I8suHA43d9wxFUW5EUE4zcKFq/nkk3kEBQUxbtxICgsLUVUVk8nE9OmrOHs2m+rq\nYEAhK+sIw4bl0qhRo8ve60WLlrNq1X4EIYiYGC8zZjzOvHkv8tRTMzh8+F3i4yMZPz6VlStnUVra\nEllujSDEoKqVyLILg6EFUElCQhBdusSyd28oERENyMt7h337cpHlAOPGTWHp0tlUVVXhciXQpctd\nREd35euvV2Gz5Z9fXO1GkizY7V9hNrtxOHoiiuGAA6u1D07nNIzGQkJDNZSXJyBJrxAbqyEz8z5y\ncnoSGRnOrFmP4vX68HiKGTDgeVq3bn3R5929ew+vvbYVrbYvgUAFW7e+zYMP3sLDD78BfIVe3wu/\nfz+RkRUkJCRcRARWq/VP+0D/OTKsba34MTIELiqW+ylZwx8Lkx49epQnnniCbt26/X4f9E+Evyzx\nXW2HBkVR8Hg8eL3eK3ZO+LFz/hriu9phzdpciF6vvyLyPnu2FKu1HQCCIJGQ0B+D4T0qKxdhMo1G\no7Fgt+8DAhQWFuJ2n2DFinBEMQpYycSJ/ejYsQM2u39jIQAAIABJREFUm43u3Zvw2WefERraF1mu\nJj7+LP3738XKlZvZvv01AoFWgICqRqDTNcFkKqR5cwNlZcX4fAFqhrXt/E83fv/1mM19+PrrxXi9\nrZCkALJcAgjI8jIUxYnf/ywaTVO2b9+OIAjUrx/EyZOr8fs74/OVAZ0QxU643dlUVtp5//2PaNdu\nHHp9H9zuEmbP3sK//rULt7sR5eUBioruQacbhixLuFw6YmJuIzLyXmS5kjNnXmbdui+4447RaDSa\nOkcHp9NJbm4W1dXDCA3tjaqqZGcXMXv221RUlHPiRCFms5WHHrqV2267hfT0dFasyCI29hU0GiNF\nRZuZPXsxM2c+zUcfvXVRYVZ2dgU5OS1Q1Swk6TFU1Ybff4hA4CsSEkJISAjh0UfvwGZ7j+PH36e0\n1Isovo7BUEZFRRrTp8/hoYfuwOcrw+/3YbMFo9XeQUiIEVG8hsrKxeTkfMTYsUNJTp7AxIkL8HpP\nYjJFoiiHUZQwrrvuC9LTX6aysg3l5VYaN65Pw4av06zZp8yfP73uWv1+P06ns+5BX4tPPtlGaOgY\nrNb658ech9DQIJ599g7eeONNXK5XqV8/mg8+mIEgCHg8np8lgj8rfgkZAufzrbq6913psycQCDBn\nzhy2bt3KokWL6uTo/r/jv29E/IG4krj3b3FOuBx+KfFdbcK7nKvAlaBFi0Q2b96G0Xg3iuJBVb9j\n8uSH+OCDVWzfvh1ZbogkfUVMjJVz58KoqtKRmjoavT4Ep7Mjr732FDfckEtIiIn+/a/FbDbx/fdb\nMZu1DBhwI3q9nupqO6oahapakKTP0WpbIYrf0KaNyKuvTuStt5by0Udf4vWWIYouVHUvkIokJeJ2\n70Cn64PdvhVRjAb6AnuBxajqFsDIN99k8s03zxMT04GoqHCuucZIv34KGRlGzpypIhBI59y5D1GU\ngfj9SezZ8zU6XRaC0BSv9ygVFZFce+04mjb1k5aWiar6CAkxo9XeitN5GvgIt7sCj8fG5s3fMWrU\nrRc92MxmM/HxwRQVebDZinA68zh3zs7y5Xb8/sbodHbq1ZvESy/NJyYmEofDAaSg0dTsVMPDu5CV\n9Xnd8WoffrIsU79+JIHAIRRFQJIao6o70ekaExOjpWvXpiiKj/T040yZci8PPfQMstwfi6Wa+vWT\nACN5ef+icePGdOuWxldfzSA7243T6UEUOxAcPICIiIYIwgu0bNmY4cNvoKLCybx5DyBJsXi9p2jQ\n4O7zhVImBKESh8PFsWOZeL0HSUiorLvWvXv3MXPmUrxeLdHRWp5//mHq1atp1Pf5ZESxRlavpofS\ngCwrTJjwAI8+ej+BQKBu0SZJ0vnq2T/nLu/X4EIyrA3h1kZjgJ/dGV76XWRmZvL4448zcOBANm/e\n/F+5QPi1+MtqdQI/u5urnUiXywvUkkRNE3CNkLTBYPjNE+2XaIRemsf7LaRXm/xXFKWueOWXfJa2\nbZtz+PBacnI+w+lcy4gRzRk5chjDhw+mbVsrSUnleDwxpKS8jUbTj5ycAIHAEaKjO3Lu3DYyMg5i\nsw0gPb2KtLS1jBt3G9de24VOndoSFhZGRkYGixYdx2h8C6u1G4rSGFmey0031WPRolfJy8sjOFiP\nTncWSdqLVvsNOl0zAoGpaLXDCQS8QAZe71kE4SlU1QREABuBF4G7keUvkOVxeL31cTi+x+WSGDEi\nla5du7Jx4xecPr0OVZ2GJLVEFI/i8/nR6+djNPbE42lGRcU7HDtWTFFRJooSScOGbRkx4nqcThd5\neR+jKNcgijciCD6io8OIjnbToMHFqiV6PWRnnyUyMoaMjN1UV1cTCPRFEIaiqjpE8TB6fT+02v20\nb9+KHTu+w2y+BlHUUFb2LU2alJOcnMDBgwcpLS2loqKCjIwMmjdP5vjxL8nLO0Yg4EIQFDQaK8HB\nB2jatDt2eymHDq1mz54iPB4bgYCNhg1vRavVU1W1ms6doU+f7ixZspw9ew7hdFZSXb2LQMCG17sf\nVf2e+vU74/efJTW1LR06tGXo0Gu5/voUhgzpz9696eh0rQkKakBm5rO4XBX4fMeR5dV4PAHatEnE\nYNDz1FPzMZn+Rnj4bVRUhLBnzwcMGdIPQRCori5h8eLnOXRoJUePLkavP86jj47BarXWRVxqw32/\nNMXw34TaHbEkSZjN5joy1GprBBT0en1dWkJRlLrFrN/vZ8qUKRw/fpwNGzYwf/583n77bW6++ea/\nRCXnhfjrUPyvwI+FOi90TqidZFfznFeyy7xaebzaB0YgEPhNJd5BQUHMmfM8ZWVl6HS6izQT+/Wr\ncVPYt8+PXh9KWJgeo7ERxcWr8HorOHLkfWJjnyEmpisAublz2L9/P6mpqaxb9xX79p3E4SjGaIzH\n4ajAaEwiNLQ91dV6hg3rx9tvL2b58nQqK1UEoYqbb26J1dqBr7/uyPHjDtzuXCASr/cgJpOE338K\nVfWhqiIQhyAMRFVnA+OBO9FotMhyNIWFS3C73URHR/Pgg0N54olXEcVgNBoDktSGkpIjBAJVeL0O\nJMmC1ythsTyD1/sBgcBWTp3SsXx5Cap6mODgSqqqTiGKdpKTY4mKasbZs5k/+B579epGWVk17733\nCqWlR1HVG4HuKEoNUXs83+J2H2fVqmJWrdqDXi9QWnorMTGtiYpy0b17KuPGzcHlao7Xexaf7wQN\nGtyIqu7k7ruHM2BAPnPnfoLdHowsKzidHSkoOElu7lISE28gIWEkERGVlJXdQ1HRSAyGEJo0MfHk\nk9NYu3YtW7d6CQ3dQHFxFYKwAlnegqJcA6wiJKQf0dE1rQKBQICIiAhCQ0NRVZX77y/nww+n4/X6\nadYsmPz8AhwOFZ3udkpKDjN79gdMnfoAitIYsznx/JhqytmzFZSXlxMREUFGxkkEoR8WyygEwUF1\n9T85c+YMYWFheL3eKw7L/7fiwhTETxXq/FjvnyzLNGzYkM2bN5OZmUlZWRm33HIL7du356233vqB\nVur/Z/xlie/XtDPU9qzVDrxfuiu60uuqrby69NhXO6xZq1yh0+muSvJfFMUftTQJCQlBVb9HVWvK\nrJs3N1BYWEAg8BJhYTJNmlxoSGnC4XDwwQefsHJlKVbrjVRXH8Vmm0tQUFccjkJ8vs106hRLy5bN\nmTlzDR5PP6KibicQsLNy5WTGjTPi928jJeVhzpwpoLr6Y1JTY4iOjmfjxj2UlUXj9+8DilDVU4AT\naAqUo9XGEwgYEYRyGjZsCMAtt9zA7t3fsnHjAkJC7kOWo6msfIfw8EwsluYUFq7B74/H5XoeWe6M\nKPZHlrdQWlpKUlIL8vOj0esrCQ29B7e7mv37VzNs2MVVml6vlxUrVvPNN99z4sQO9PpmBAKZQDmB\nQA6K8h5OZxYQg6I0JDz8CXy+UmJjdzF8eAyjRt3MNdfcTknJfahqA9zuCCyWcFq0uAardTTLlj3D\nk08O5ppr9ISEDCcraz+FhekUFLxDfHwkDRrU9AUaDKE0bz6GUaNUUlJSCAkJwev1cvr0WRSlG4Kg\nwePxYTYPxutdRXh4OzyeTPz+zxg9+gU0Gg1Op5MDBw6g1Wpp3749/fv35dpre1FcXMzTTz/PsWOV\nBAUtQZLCcbszOXFi8vmxfZZAwEVu7hdkZX2FqlYzceJLzJo1ifT0kyQkzEGnq5ElKy6+ngMHMmjb\ntu1VdTH5M+LCdoxfM1dVVWX58uWsWbOGN954gy5duhAIBDh+/DhpaWl1bT5/Ffxlie9KcCEJud3u\nulXl7+mc8GNKLn+GPN5vQfv27enR4xC7dr2CJIUREpLN66+/TIMGDZg/fwmrVy8kJGQo5eUnycn5\niFdfrceZM2fo0GEOISGtCAlphc93DIvlE1RVS/v2jXnqqTmcO3cOhwOMxl6IogatNhRJ6kxoqMpt\nt6l89tmTxMSojB7dmoceeva8Hc1Mli37HEEYhqpGAFOAMGAPkiQgy0FI0lwmT76tTsVFFEVeffWf\nJCa+x/btLxASYuGxxybw4YdvUl5eQZs2oZw61ZDKSgWT6V5crqlI0t8wmeLR6w3nm7cX43AcRxBU\nkpJk2rUbw6FDhygtLSM8PIxly9azYoULWe6FzSYB36LVBuP1DgGcSBKYzSMxm1tjtydhs3mxWuMw\nmXqTk7OHjIwMiop8mM03oapevF47TmcZfr8TjcaMw6Hjs89Wcu6clRMnTmC3NwJaYLNNoGFDA1VV\nmYSHt0CW/ShKDvXr9+LAgcMsWrQZVTWiqkXAARSlxlg3EFhLfHwbmjQxU1JSweTJY4iPjyc/P5/R\nox+jujoZRXHRuPEilix5k/z8fMaOnUpurh+XS8bj+Q6rNRmdrpSoqKZIksSIEa15//3xZGer6HQP\n0bp1C8rLDzBr1kLi4iI4efIwOl0MsuxHVTOIj++A2Wz+y+/yfgrFxcU89thjJCcns23bNozGmpyw\nRqOhdevWP6ie/Svgf8T3M5BlmaqqKrRa7RU1oF8NXCiVdjX78Wp1NWtDtH9kMlsURR599B4GDcrC\n7XaTlDS0Lhx67723Y7WuYefOhZw4sZ8mTZ4mJmYQWVmfcujQe/To8ToajQmTKZKpU3uTmpp60XGD\ng50UFR0kJCQWp7MAk6mY+PiW9OnTk1tvHYJer8dkMgE1D5IzZ3LR6e5Fku7F6SwBDiEI09BqmwP/\nJCkpkSZNYtFodLjd7roHhU6n46mnHuGpC9rL7rrrLqDG9HTq1Bl88MEuvN5dSJIXg8GNIAQoL69G\nUbYgSTeh1d5OIJBGSclMVq/+km++8aCqjaio+JLMzDQEYS4hIclAX6qq7sbn+w5BeAVBaI1Gs55A\nYD2q2gZRtKMo9fD7S/D5yjhyJIOzZ7OQJD9+/3o0mmv/r70zj4uyXP//+5mFZVhFEQUsLAmXREFB\nT9bP6hwr1/RY2mLHFssyF1qOeyWtWqZWLtn32zHtdLSyPFIClfh1qRxwyeVY7mKAiuK4AAOz//6w\nmTMzbAPMwMDc79er1yvhAe7neeZ5rvu67+v6fIDTWCxqiovN/PxzOhUVv3PiRH+02qtYLB9y/fX/\npKLi/2jXbiAGQz6BgV9QVBSL2VzC3Xd3QiaT8dFHuQQHz0ahCOXq1R1ER3/I+fNDCAlRoNNpiI19\nEp1uNcOGxdjuy4IFK7h48QHCw8dhsVg4fPg1/vnPdWzbto/Cws5UVLRFLj+DyVSBTneMxMQ2tGlT\nQZcuXejZsycmk5aPP5aIje2Nv78/ZnMqR46sZvHiF3jmmXQuXtyC2XyBW24JYdiwYa026Fml1eRy\neYOzvK+//pqlS5fy9ttv21R4BD4c+Or6AFgb0M1mM6GhoU0aJKx7i/YOCt6wj9dYZDJZteXSSqWS\nhx++nwEDUnj2WRlRUYMBiI+/hd9++5aiokwUCjMdO56id++HHX523779tGnjz9Gjb6HVZhMVpeL2\n24Po168Pfn5+VbIBSZLQ6SzIZAWYzTogFOiITBaPSrWMq1cHcOyYhhMnLKjVOWzdupcPPniVgICA\nWu+Bn58f77zzMu3avU9Gxr+RpG6cPLkIP7+h6PXlSFIBMtk8wA+Z7Eb8/G7m229/ISpqNnv2nKKi\n4lbOn99FQMBZ/P3jCA2NoLLSjMHQk5CQOwkPD+PixccwGr8kIECJVptDZeWPtGkTyH/+kwV0QqHw\no7LSH4XiYyQpl4CAoygUhzh+vILKyikEBNxEZeVyQkJuRqP5nsuXJxAd/f+47rqHgEUsXDiVoqIi\ngoKCiI2NJTs7m+PHw9Bq8wEZISEh3HhjB774YhmVlZXo9XpOnz5NeHgvevfubbs+BQXn8ffvZbve\nktSL33/fy9mzJWi1evz83kWpvIBW+y4WywFksg6kp8+yLbf17duXL7/cQECAHLlcQUnJPq6/PoqY\nmBg++WQ+R48eRaVSkZR0rX3Gue2hpeOOLO/ixYu8+OKLhIeHs3nzZptxs+AaPhv4oPpCEvsG9ICA\nACoqKpo06FnHY12KbIw3n73MmLc38YJ1H7AEnU6Dv38EHTqEUF5uYMCA41x3XQdGjZrhIKB7zebm\nc4KDZ9OnD5w9u5DRo2OYNOkpQkNDazzX4cMHceLERioq5gBtADVK5WTKyzdhsYQSHLwVMHL16qvs\n2pXP/v376d69u61owKpJ6lwiLpPJmDlzGrfcsp1vv/2eoKAILJadxMYGsmmThEIBRmMxUELbtnJA\nxd69p1AqkygtLcNiCaa8fD16vYHAwF8JDi7FbJYTERGCJCkIDdWi0Wjo2dPAlSuhREefAy6TnT2I\ntm1fx2KpRJLeR6dbS1ycheTk7lgs8fzyy2COHAnBzy8eo/FB4N8EBHQgNvYmrr9+GCUlXzB6dC9C\nQkIcxLEPHfoNjeYEoaHPI5P5o9F8Tdu2Fxz2cauTbuvXrwfHjn1BQEBXzOZKYCMpKfdgNBo5cOD/\ngEokqSP+/o/TseMqpk+/x2FC1Lt3b+6//z+sX/935PIIgoMvMG3aRFvP43XXXWfrZdPpdJhMJoeC\nDnvZr5aGfZbXkG0Ii8VCdnY2CxYsID09nXvuucern/nmwqcDnz32zgnWBnTr3l5TYL+P5+/vb3uo\ntVqtTQneVR0/i8VisxaqTmbMWwkPD2fSpGEsW/YKknQTFstxZs9+kBEjBld7/I4du5GkEQQHd/vD\nU/BFTpxY5WCrYrFY+P77HPbsOUJkZCj33TeMZ599jMpKHRkZP1BcXIgkxRMcvBONZit6/cNIUtAf\nL9IhVFQssS1zO3uzWcV/qyppSPz88xUCA+disZg5fnwZgwZ15ttvX8Bs/guSdJSzZ3eQmPhnjh49\nQmDgTVy6pCY0tBt6/S7gVSTpEq+9lsbu3QfIzn4YszkZmSyHmTMn0K9fLCrVTSQmJvLMM/NQKm9B\nkuRIUhB+frcSFraFzZv/hb+/P/Pnv8+uXWeJiIhBozmNxXIKuEqnTidISJBjMi1mzJgejBt3X5Xr\nazAoiYiIQKudB7RDqTxMx451V/6lpU3kzJlX2bLlz0iSmUceGc699w7nz3++g927f+GXXx5GkgYT\nGXmV7t1LSU1Ndfh5SZJ48slHGDLkTjQaDe3btyciIsIh87EXT7fXi3UOhvbPTV2SX82JO7K8q1ev\nMmvWLIxGI9nZ2URERHhgpK0Dnw989s4J1TWg11Rh6e4x2O/j2bdH1CVqa32wrft/zjJjza1NWF+G\nDbubxMRunDlzho4d76nRnRtApfLDYCjBaDQhl8swm68SHOzobrB69VrWrDlJQMA96PWn+OmnN1i2\nLJ25c59jzpw0zGYz+/fvp6ysjI0b/diwIYCKihMoFFHo9buIiSmlW7duNZaI279wrc3DX321BaXy\nb/j5deD06X9y5YqRs2dPoFQmoNcHI5MNQ6vtxJ49GYSFneXKlV+Bc1RU6AHo2PFmOnUqY+zYvzJu\n3FhycnIoKiqiS5eZJCYm2sr2f/vtNyRJh0x2lPLyI8jl4Wi1W7jjji74+/sD8OijY9i+fRZmcyGV\nlZfQ6TaRlHQzr776OjfffDO1ER8fS5s2lcTFjcVsrqS01J8+fXR13sPAwEA++OAtysvLUSgUtrGE\nhoaSk/M1mZlZ/PLLUaKi2jFmzATb/qv9dTUYDISEhBAREVFnf6wr96a2iUpzB8PG2iRZLBZ27NjB\nyy+/zPTp0xk9enSzn5O349OBT6/X2xpBqytc8fSHx5V+vLp88vR6vU1t3fo7lUolQUFBLXKpB+C6\n666zqXVUh3UJ9/bbB7Bx4wKKiw1IUgj+/t/xxBOTbMeZzWbWrt1CVNQylMoQ4BaKis6wb98+BgwY\nYHthJicnA3DjjTdy9Og8jh07SXn5JTp1Osnatctq9Cer6YUbFBSAwXCVo0c/QK8fBAyhtPTfVFb+\nB3//J/5QHAnn4sVvmDPnXj79NIdz50qRyWYTFtaVS5e+Ijx8A/7+/pSWliKXy4mMjCQuLs72Yvyf\n/1nNkiUbsFjiKS1dR3j4Sfz9ZfTqVc7ChQts4+nQoQOffrqQnTt3YrHE8ac/TbJVqtbFvfcOY8+e\nt9my5SUkSUGPHuE89dTLLv0sUO11kySJoUOHMHTokGp/xrryYnUXaOg2Q0sIhq6a4daGVqvllVde\n4dy5c3zzzTe1OtoL/otPBz6z2Vync4J9haW7aGx7gr1PnvXh0el0DmoNpaWlXjm7bSzWJVy4FiA/\n/vgNtm7dRmVlJX/6099tfXdWrhlz/vdjLknKGgUCYmJiWLPmbQ4cOIBCoSA5OdlW0ekqkiTxyCMj\n2LYtnbKyGJTKziiV+URH38WhQ3no9XuwWKKQpOX4+QXSqVMsDz74/zh71kB5eTAGw2kiIpIJDt7C\nxYsXmTr1dc6di0cm8yc8/HuWLJmOTCbjvffWERi4HoWiLQEB+ZSWjmbp0vn079+/yue5bdu2DBs2\nrF7nAVZlIxkqVXtATmCgn8cmU/ZtNn5+fh6RG/OmYGitJWhMlrdr1y5mzpzJpEmTGDduXIud6DYH\nPh34VCqVQ7ZUHd7qjwf/XSKRJIng4OAaH2ij0Whbhmus71dzUVNlatu2bRk9+q/V/oxMJuPeewfw\n1VeLCQkZRmVlPhERR0lMHFft8QBt2rRh4MCBjRpr9+7dWbz4eZ5+eikhIVeIi0tCqZRx+PBZTKZH\n/thDvBGj8QqdO3dGp9MRHLydG254FLlcyZkzPxAS4sfq1es4d+5PxMaOQ5KguPg71qz5mmHDbkcu\nj0ahuLbf5ucXR2DgjbRv377GSVx5eTlff53BmTMakpIS+Mtf7qzz8/fvf29i9+5I4uKuZXnHjn3G\np59+xaRJj9breuzfv5/PPvsWk8nM/fcPon///g7ft7bZAE2+H93UwdAdWZ5Op+Ott97i0KFDrF+/\nvka/wvrw+OOPs2nTJtq3b8/BgwerPWbq1KlkZWWhUqn45JNPbFW1LRGfDnyuYM2gGvswurMfz7oc\nZLU+qq7y0/6Btldtt98vrKysxGKxVCkA8KaZY2MrU59+ejyRkRnk5m4gKiqM8eNnNYlKRb9+/Zg6\n9SQbNnzD5cs90Gp3ERMTiVK5mnPnLmI0+mEyvcrChR/yxhuzGDLkEN9//yJnzugoKzsM9GH16izC\nwyf8YfJbSnl5IKdOFRMXF4ef31nKy38mKOgWysu3o1JdJDo6mvXrN7J5816Cg/157LF76dGjBzqd\njrS0Vzly5Cb8/HqzadP3nDpVxMSJ42s9h/z88wQGptiud3BwEidOfFWv63Dw4EEmTlyAxfIkkqRk\nx47lLF5sYsCAAQ731pvkxmqT/KrJJsj6DNU2kWxslgfXKpmff/55HnnkEebPn++2Z/Wxxx5jypQp\ntr5UZzIzMzl+/DjHjh0jNzeXZ555BrVa7Za/3Rz4dOBz5SFrrDOxO3U1nWXG6rscVJ/9wtrK9psK\n+4y2oZmAXC5nzJhRjBnjgQHWwaOPPkCvXr9w9uw5/PxuIT29AEkKQqPxIySkI3p9BAcORPGvf21g\n5swpdOy4mmXLfqFXrwz8/SM4fvxrCgpWUl7emcLCMozGLzl3bj/btu3ggw9e5rnnXubSpXLatQth\nxYr5bNr0PStX/kZY2KPo9Zd48cXlLF/+IhcvXuT48VA6dnwaSZIwGlNZu/YJHn/8oVqX+W+6KYbN\nm9WYzSlIkpzS0p1061a/7GL9+mxMpvG0a3cPAJcvK/jss2/p37+/LctrKvWgxlCXTVBtbuqSJKHX\n6xuV5RkMBpYsWcKOHTtYs2ZNtW0kjeG2224jPz+/xu9nZGQwfvy1iVK/fv24fPkyxcXFLXZP0acD\nnyt4iz+ep2TG7PcL7cdd0zKPKzPbxuItDfeNRZIkW+EMwG+/5bN06WyMxluBI8TFDSAy8k4OHFhN\neXk5MpmCkJBBBARcK0Pv1Ok2DIb/4fffp6BQdCMm5nbatHmR+fPT+O671Wze/DlXr14lMDAQuVzO\nG2+sIjz8RYKCrgckzpwpIC9vN9df3wlJ+q+urEzmh8VyrQK4tsA3bNg9/PrrcnbsSAPk9OnTloce\nmlrva2CPxcIf4tjlLfregmvB0LqqAtiutTVTdPW8jxw5QlpaGsOHD+e7775rltakoqIim28kQGxs\nLIWFhSLwtVaa0x8PHIs5mkJmrK5lnppmttbl1sa8xFpaw319mTJlAlrtJb74YhexsY/Rrt2fOHPm\n3/TsGUpAQADduiUgSRsxGO5CoQjm0qUckpO7oFSG06bNa7ZrUVKiRKfTERERQVBQkO3+BAT4UVZW\njtFoAiwYjVexWPyIj48nIuJTiov/jUqVQGlpJoMG9a7T+kqpVDJ79lQuXLiAxWKhffv29b4fo0ff\nTXb2m1y8qECSFBiNHzF27BMtIstrCPa9g9d0YY34+/sjl8sxm821ZobOwdBkMvHhhx/yzTffsGLF\nCnr06NGMZ0aV92BLfjZ9OvA1xKGhNty9j+ctWU9tM1uj0WjLRoEGq2e4Y1nT25EkibS0qVy6tJj9\n+7MpKtpMdPQlnn56OkqlkpSUFB5//BSrV0/BYvGja9cIpkx5iscem0dFxXFUqnguXdpMhw6BDrZP\n1vszYcJw5s1bjk43HKNRQ1RUHgMHziYgIID585/jH/9Yz/nzPzJ0aBf+9rcxtuX3unrkanLccIWe\nPXuycuVMPv10IwaDiTFjJjlorbZG7It1agrwNU0mt2/fzrZt2+jSpQvr16/nrrvuIicnp9n7cWNi\nYigoKLD9u7CwkJiYmGYcUeOQLO4qWWyBWE0aa8Ne1LkmnPfxGpv12O/jecL6yBNYG/3tH2ZXKuG8\nKcA3BSaTidLSUk6ePIlCoeCmm26qknmVl5dTWVlJREQEkiTx448/MWfOe2i1EBMTwuLFc+ncuXO1\nv//AgQP8+OMegoMDGDz4L0RGRtq+Z7+Ebf0PGj5ZcQWDwWCT/QsMDGzV97axxTpms5lDhw7x0Ucf\nsWvXLkpKStBqtSQnJ/PAAw/w1FNPeXD0kJ+PSZepAAAbqElEQVSfz/Dhw6ut6szMzGTp0qVkZmai\nVqtJS0tr0cUtPh34rB/U2rC6OlfXjOvufTx7nb7AwMAWvxTkvF9oNBptSzzWczMYDCiVSp94KVon\nNA15KZpMJsrLy926/Gs/WbFOVNwl9WU/oWlqJ5DmwD7Ls+651pezZ88ybdo0unfvzquvXhNGLykp\nYc+ePcjlcpuhsyd48MEH2bZtGyUlJURFRZGenm5LCiZOnAjA5MmTyc7OJigoiFWrVjnsX7c0ROCr\nI/DpdDoMBgPBwcEOP+fOfTx7uyBre0JrxX5WbP815yrSlh707bHPeupyeWhunCcr1v9c7WGzL8RS\nKpV1yo21dNzRkmGxWPjyyy9ZsWIFCxcu5NZbb23V18wbaL1vWDfhvMfn7n08a2D1pj4mT1HTsmZt\nLRXOeqQtCev5Wvstm3ufxhXqauiuTQwBsOnE+kKWZzab0Wq1QMMb7y9cuMALL7xAVFQUOTk5DhNs\ngefw6YwPcMg8qsM6Ww8JCXHrPp599aK/v79XZwGNxfl868oCrEtw9stvzlmHQqHwWtUZ+/NtSfu0\n9cG5odtoNNomg0qlssUpA9UH+6y2MVnepk2bWLhwIa+//jqDBg1qddfJm2ndUzIXcKVq02p1Yn3x\nNgbrA9OS7IIaQ0OqNa0TC2eXCms5uL1yhrdJsDWn/FZTYt0HlCQJg8GATCazFem4q9LXG7GqJl0T\nI2/Y/b18+TIzZsxALpfz/fffO1ToCpoGn8/49Hp9tYHPfnnHunxjfdE2ZC/K2S6oMQazLYGmqNas\nrooUmudFa++n5gvVqa7ubTVHJakncBbRbkgWb7FY2Lp1K+np6cyePZt77723VX9GvBmfD3wGg8FW\npAL/bdKsbh+vpoe4tgo4+xeiL+zj1XdZ09043yOj0eiWKsXaaEnFK+7AXnOyvtXHNVWSerOTiLNV\nUkOyvPLycl566SU0Gg3Lli1zaDMRND0i8NkFvvr249VUAedcrm/tYWrtL0T7Zc2GlnS7m7qqFBsj\nwWb/Qmzt1bjgHmeBmn5vYypJPYW7sjy1Ws3s2bOZOnUqDz30kNcEdF9GBL4/tCjd2Y/nXK4Pjks7\nrW2Zs6U1oTsXZljvf3VVpDWV7Htb8UpZWRkff/wF+/adIioqjKee+msVb8LGYN9j2hRZrfOervM9\n8vSerjuyvMrKSt544w2OHj3KypUriY6Odvs4BQ2jdacgdWA2m9m/fz9lZWW2GWZjHmjrw6LT6QgI\nCCAkJITQ0FCCg4NthRo6nY6rV69SWlqKVqtFp9PZllVbGtYMoKysDJlMRkhISItYyrUuffr7+6NS\nqWz3yRrA9Ho9ZWVllJaW2lRUDAaDrdK0rKwMg8FAUFCQ1/SpffDBGrZvb0tg4CyKiobwyiv/QKPR\nNPr3WiwWKioq0Gq1BAQEoFKpmmTlwtpW4XyPrEHXaDSi1Wq5evUqZWVlVFRU2FphGvssWe+/XC6v\n4nPpKr/88gtDhw4lISGBjRs3ui3oZWdn07VrV+Lj41mwYEGV72/dupWwsDCSkpJISkri9ddfd8vf\nbW207rUZF/j888/Jy8vDbDaTmJhI3759SU1N5frrr3f5AXeWGXNW16jNAaG6vqi6Mg5vwJoBtJbq\nVGsZvv09st+L0ul0tp4tuVyOUqm0HdPc90iv17NnTz6xsVOQJBlt2/aiqGgvJ0+eJCIiosG/137v\n0hsEwz2tGWvfd9nQPkSDwcDChQtRq9V89tlnbs26TSYTkydPZvPmzcTExJCSksKIESPo1q2bw3ED\nBw4kIyPDbX+3NeLTgU8mk/HOO+/YAte+ffvYuXMnr732GqdPnyYiIoKUlBRSU1NJTk6u8vBbl2Lq\naxdUm0msNRB6ky+ePfbLmjWZ4LYGrJMO67lZ92r9/Pxs98pbWioUCgVKpYROd5mAgIg/xnexTveF\nmnBHAGgq6usxWVMwtAZ5pVJJcHBwg+7f4cOHSUtLY9SoUWRnZ7t9MpiXl0eXLl2Ii4sD4IEHHmDj\nxo1VAl9LXD1qarz3E92ESJJEQEAA/fv3p3///sC1D09xcTFqtZrt27ezaNEitFotCQkJpKSkEB4e\nznvvvcfcuXMZOHBgo18Ozg+wcxO3vS+ecztFU7xknfe1vCED8DTO+zzV3WNvcLWXyWRMmDCY5cvf\nB/piNv9Ov36KKi/EunCWG2toAGhuqlthsX+WrNsL1uPMZrNNLrAh6jomk4lly5aRlZXFypUr633d\nXaU6T7zc3FyHYyRJ4ueff6ZXr17ExMSwcOFCunfv7pHxtGRE4KsBSZLo0KEDI0eOZOTIkcC15b1t\n27bx8ssvs3//fgYOHMj777/PTz/9REpKCikpKbRt29YtL4uamrirszLx9Eu2tS1r1kV9nO7rm3F4\nKnv/859vJyamA6dO5RMW1oPU1NR63SdXgnxLpaZnSa/X28QkZDKZrUWjPpWkJ0+eZNq0adx5553k\n5OR49Lq58nlJTk6moKAAlUpFVlYWI0eO5OjRox4bU0ul9Xy6mwBJknj22WcZPnw4mZmZhIaGcuXK\nFfLy8ti5cyf/+Mc/uHjxInFxcbYl0p49ezo8cI39+3W9ZI1Go9vKwH1lWdMe+yDfULPU+rrau0uC\nrWvXrnTt2rVeP+OcydcW5FsL1oIdo9FIUFCQwypLXepAGo2Gdu3aIZPJWLVqFevWrWPZsmX07t3b\n4+N29sQrKCggNjbW4ZiQkBDb/w8ePJhJkyah0WgatdfbGvH5dob6otVqa/XmM5vNnDhxgp07d5Kb\nm8uBAweQyWT06tXLFgxjY2M99nKpzQrIuZ2ipjF4Y7m+p2nqlgxXyvXd4WpfG+6w0mlp2O/luVKR\n69z68sQTT7BlyxYiIyOJjIxkypQp3HLLLXTu3Nnjz4jRaCQhIYGcnByio6NJTU1l7dq1DkurxcXF\ntG/fHkmSyMvLY8yYMeTn53t0XC0REfg8jMViQavVsnfvXtRqNbm5uRQVFREVFWULhL179/boTLsu\naS/7KlL7jCcgIKDVvwy9yUanOkUTcL+8V2O9AVsi9lleQ5dyzWYz69atY82aNdx///2UlZWxa9cu\ndu3axZw5c3j66ac9MHJHsrKySEtLswXhWbNmsXLlSuCab96yZctYsWIFCoUClUrFokWLbHULgv8i\nAl8zYLFYKCwsRK1Wo1ar2bt3L3q9nh49etj2Crt06eKxgoiaZKOs+Pn52RT2W/MLsSX4IDpn741V\nNGmM3FhLxdrz1xgX+PPnz/P8888TGxvL/Pnzq6z6mM1mn7iWrQUR+LwEg8HA/v37bVnh8ePHCQsL\no0+fPqSmptK3b1/Cw8M9IvRs3eS3BjvnpbfWZhDbkjOe2uS9aqv29TURbXA854ZWbFosFjIyMli8\neDFvvfUWd955Z6u/br6ACHxeisVi4eLFi+Tm5qJWq8nLy+PKlSvEx8fblki7d+/eqCylrmXNhohy\nezv259xaMp66JNisajRyubzVnHNduCPLu3TpEn//+98JDAxk0aJFhIWFeWCkguZABL4WhMlk4siR\nI+zcuRO1Ws2vv/6Kv78/SUlJpKamkpKSQlRUVJ0PeUOrNWsT5W7OBm5XcD7nluCG3his98naswaO\nwgkt1dW+LtyV5eXk5PD666/z0ksvMWzYsFZ3nXwdEfhaMBaLhbKyMnbv3m2rIi0uLiY2Nta2V9i7\nd29bVaZOp6OgoID27du7rVqzOidu8B6/NW8qXmlKnKsXgTpd7VtiBm+PO4S0S0tLmTt3LuXl5bz/\n/vu0a9fOAyMVNDci8LUyzGYzp0+ftgXCffv2YTabadu2LQcPHmTgwIEsWbLEo4UcdRVkuKNnzRV8\nsVzfXm6sroIdZ83YpnZAcBfuyvJ+/vln5s6dy3PPPcfYsWO9+pwFjUMEvlZOQUEBzz33HD/99BP3\n3Xcf58+f5/fff69Th9Sd1PWCdbcod0suXmko7spsvcnV3hXckeVVVFTw6quvcvr0aVasWEHHjh09\nMFKBNyECXyvn008/5dixY8ycOdNWgm2vQ6pWq9m9e7eDDmlqaioJCQkezZBq61lrjKyX9eXfVL5x\n3oA7vOPq+v1N7WpfF86muA1VR9qzZw/Tp0/nySef5NFHH/WJz4tABD4HvvzyS+bNm8fhw4fZtWsX\nycnJ1R6XnZ1tayKdMGECM2bMaOKRuh+j0cihQ4ds7RS//fYbwcHB9OnTh759+5KSkkK7du08mhXW\ntAfliii3rxWvQPMp7HjS1d4V3NGLqNfrefvtt9mzZw8rV660OR4IfAMR+Ow4fPgwMpmMiRMn8u67\n71Yb+EwmEwkJCQ6eWM6yQa0Bi8XioEOal5dHSUkJnTt39ogOaU1jqK5M3zkQWgW7fUVeDbxv/7Ku\nlgp3SLA5Z3kN7UU8dOiQbR/v2WefdVuW58qEeOrUqWRlZaFSqfjkk09ISkpyy98W1A/vk6poRlwR\n+HXVE6ulI0kS4eHh3HXXXdx1112Aow7punXrmD17NnK5nMTERI/okNYlym1fqm99qVrbK1pr8PPW\n/UtPm8TaZ3kNFQ83Go188MEHbN68mY8//piEhIR6/47axleXSWxmZibHjx/n2LFj5Obm8swzz6BW\nq902BoHriMBXT1zxxGqtyGQy4uPjiY+P529/+5tN/3Dv3r3s3LmTOXPmOOiQpqSkkJSU5FYdUuvy\nmVV829p4bw2I1Snqe1rsualwh3NEU1KTx6S9rVZdLRXuyvKOHTtGWload999Nz/88IPbq5pdmRBn\nZGQwfvx4APr168fly5cpLi4mKirKrWMR1I3PBb5BgwZx7ty5Kl9/8803GT58eJ0/39Jfnu5EkiRU\nKhW33nort956K+CoQ/rdd9/x1ltvuVWH1NqfVpvjvf2yW3WZRktr3m4tcmPWyUdtlk32ExfrMnZj\nfCDNZjP/+7//y1dffcWyZctITEx092kBrk2IqzumsLBQBL5mwOcC3w8//NCon3fFE8uXkSSJTp06\n0alTJ+6//37AUYf03XffbZAOaX2MUu0zDX9//yqZhrXPramKMRqDfbl+S8jy6ou9mowVs9lsy/Ks\n2XxZWVm9dWMLCgqYMmUKqamp5OTkeHQ/2tXPjXNJhbd93nwFnwt8rlJTzU/fvn05duwY+fn5REdH\n8/nnn7N27domHl3LQqlU0rdvX/r27cvkyZOxWCxoNBpyc3PZuXMny5cvd9AhTUlJoXv37iiVSoxG\nI1u3biU1NbXBRqm1ZRpGo9HBzd45K2xOxRmrjY6vVKmCY9FOSEiI7fq74mpvMpnw9/fHbDbzr3/9\ni1WrVrFkyRL69evn8XG7MiF2PqawsJCYmBiPj01QFVHVaceGDRuYOnUqJSUlhIWFkZSURFZWFmfO\nnOHJJ59k06ZNQPWeWILGUZ0OqU6n48qVK7Rr1441a9YQHR3tcXNY53YKaHxvYX2pr1lqa8C+NcOV\nop3qWipuueUWFAoFfn5+REZG8tprr5GSktIkkwZXTGIzMzNZunQpmZmZqNVq0tLSRHFLMyECn8Dr\nKC0tZc6cOXz++edMmDABlUpFXl4e58+ft1XMOeuQeoKGWgA1lPrIjbUm3NGaYbFYWL9+PWvXruXm\nm29Go9GQl5fHqVOn+OKLLxg6dKi7h12FukxiASZPnkx2djZBQUGsWrWqxl5hgWcRgU/gdZSUlJCe\nns68efNo27at7etms5nff//dlhVadUgTExNtTfZxcXEeXZ70hCi3vdyYL/Ui1jfLqwmNRsMLL7xA\neHg477zzDqGhobbvlZaW2opjBAIrIvC1YDQaDWPHjuX06dPExcXxxRdfEB4eXuW4uLg4QkNDkcvl\nKJVK8vLymmG07sda6r5v3z6bKPfp06ebVIcUGifK7Wm5MW/FbDaj1WqBxmV53333HfPnz2fevHkM\nHjzYJyYMgsYjAl8LZvr06bRr147p06ezYMECLl26xPz586sc17lzZ/bs2UNEREQzjLJp8RYdUldc\nDwwGA3q9XmR5DTjvq1evMmvWLAwGA++//75PfLYF7kMEvhZM165d2bZtG1FRUZw7d47bb7+dw4cP\nVzmuc+fO7N6922HZ0JcwGo38+uuvtqywqXVIwVHFxNn1wNp60ZJ6CxuCNbu1WCyNyvJ27NjByy+/\nzPTp0xk9enSrvmYCzyACXwumTZs2XLp0Cbj2QoiIiLD9254bbriBsLAw5HI5EydO5Mknn2zqoXoV\nzaVDaq9C4ufnh1KpbDah56bEXXuYWq2WefPmcebMGVasWCEavwUNRgQ+L6cmpZk33niD8ePHOwS6\niIgINBpNlWPPnj1Lx44duXDhAoMGDeKDDz7gtttu8+i4Wxr2OqS5ubkcOHDArTqk9nJjNTkK1Cb0\nXJ/GbW/CXXuYeXl5zJw5k0mTJjFu3LgWdQ0E3ocIfC2Yrl27snXrVjp06MDZs2e54447ql3qtCc9\nPZ3g4GBeeOGFJhply8RZhzQ3N7dBOqSNlRvzRi88V3BXlqfT6Zg/fz4HDx5k5cqVDpJfAkFDEYGv\nBTN9+nTatm3LjBkzmD9/PpcvX65S3KLVajGZTISEhFBeXs5dd93FK6+8YnNcELiOvQ6pWq1m7969\nteqQ7t69m/j4eFsjujuyFOfeQqtYd3XtFM0VDN2V5R08eJDnnnuOcePG8fTTT4ssT+A2ROBrwWg0\nGsaMGcPvv//u0M5grzRz8uRJ/vrXvwLXltsefvhhoTTjRux1SNVqNSdOnEClUmEymTh+/DgZGRkk\nJCQ0SeGMfRUpOPYWWh0qPIm7sjyj0cjixYvZvn07H374IfHx8R4YrcCXEYFPIHAj69evZ8qUKaSk\npNCzZ092795dow6pJ3Fup6hPb2FD/541y2uM6syRI0dIS0tj2LBhPP/88x5pO/H1/leBCHwCgdsw\nmUw89NBDTJkyxWbTZP26sw6pv78/SUlJpKamkpKSQlRUlMezQqsod3UO6Y0R5bZqizYmyzOZTKxc\nuZKMjAyWL1/OzTffXO/f4Sqi/1UgAp+gycjOzrZpGU6YMIEZM2ZUOWbq1KlkZWWhUqn45JNPSEpK\naoaRehaLxUJZWRm7d++2Fc40tQ6pdRyNEeV2l7Zofn4+06ZNY8CAAcyZM8fj2bDofxWIwCdoEkwm\nEwkJCWzevNn2gq9NvT43N5dp06b5jHq9t+iQuirKbW3PaIyDhNlsZs2aNfzzn//kvffeIyUlxQNn\nVRXR/yrwDfl3QbOTl5dHly5diIuLA+CBBx5g48aNDoEvIyOD8ePHA9CvXz8uX75McXGxTzQqy2Qy\n4uLiiIuL48EHH6yiQ/r66697XIe0OlNY58KZyspKm1elUqlEoVBgsVjqPYazZ88ybdo0unXrxpYt\nWwgICHDLOViprf/VHqtXY3X89NNPDv2vXbt2Ff2vrQQR+ARNQlFRkUMPVmxsLLm5uXUeU1hY6BOB\nzxlJkggICKB///70798fcNQh3b59O4sWLfK4Dqm9m73BYMBoNNoCntUp3blwprYlUqt90IoVK3jn\nnXe49dZbPbKc+8MPP9T4PesSp7X/tX379tUe17FjRwAiIyMZNWoUeXl5IvC1EkTgEzQJrr7cnFfe\nva0xuzmRJIkOHTowcuRIRo4cCTjqkC5fvtwjOqT2bvAqlarKXp6zKLder3conPnxxx+56aabUKlU\nvPjii0RGRvLDDz8QEhLSqOvRUEaMGMHq1auZMWMGq1evtl1Le5z7X7///nteeeWVZhitwBOIwCdo\nEmJiYigoKLD9u6CggNjY2FqPKSwsJCYmpsnG2BJRKBQkJiaSmJjIxIkTq+iQrlq1qlE6pPZu8DUt\nq9ovkVp/r70o9+rVq/nxxx/RarX06tWL5ORk9uzZQ0pKSrP45M2cOZMxY8bw8ccf29oZAIf+13Pn\nzlXpfxWiD60HUdwiaBKMRiMJCQnk5OQQHR1NampqrcUtarWatLQ0nylu8SQN0SG17uUZDAYCAwMb\nXGl55coVW/XuCy+8wOHDh8nNzUWtVvP8889z3333ueUcBYL6IAKfoMnIysqytTM88cQTzJo1i5Ur\nVwIwceJEACZPnkx2djZBQUGsWrWK5OTk5hxyq6QuHdKgoCAWLVrEmjVrSElJadAyqcViYevWraSn\npzNr1ixGjhwplq0FXoMIfAKBAIvFwtGjR5k2bRo7d+7kjjvu4MKFCzXqkNZGeXk5L730EhqNhmXL\nlhEZGdkEZyAQuI4IfAKBALhW9NGmTRuWLFlCmzZtqtUhDQsLo0+fPqSmptK3b1/Cw8NtmZzFYkGt\nVjN79mymTp3KQw89JLI8gVciAp9AUAd1Kc5s3bqVe++9lxtuuAGA0aNHM3fu3OYYaqO4evUqoaGh\nNX7fYrGg0WjIzc21GfhadUiTkpL4z3/+w/nz51m5cqUoShJ4NSLwCQS14IrizNatW1m0aBEZGRnN\nONLmwapDmp2dTX5+PkuWLBH2QQKvR7QzCAS14IriDFTtP/QV5HI53bt3p3v37s09FIHAZcTUTCCo\nherUZIqKihyOkSSJn3/+mV69ejFkyBB+/fXXph6mQCCoByLjEwhqwZXijOTkZAoKClCpVGRlZTFy\n5EiOHj3aBKMTCAQNQWR8AkEtuKI4ExISgkqlAmDw4MEYDAY0Gk2TjlMgELiOCHwCQS307duXY8eO\nkZ+fj16v5/PPP2fEiBEOxxQXF9v2+PLy8mxWN4L68eWXX9KjRw/kcjl79+6t8bjs7Gy6du1KfHw8\nCxYsaMIRCloLYqlTIKgFhULB0qVLufvuu22KM926dXNQnLG6DSgUClQqFevWrWvmUbdMevbsyYYN\nG2wqPtVhMpmYPHmyQ5XtiBEjqhQbCQS1IdoZBAKBV3HHHXfw7rvvVitXt3PnTtLT08nOzgZg/vz5\nwDXhaYHAVcRSp0AgaDG4UmUrENSFWOoUCARNRk3O6G+++SbDhw+v8+eFBJrAHYjAJxC0Uh5//HE2\nbdpE+/btOXjwYLXHTJ06laysLFQqFZ988glJSUkeHVNtzuiu4EqVrUBQF2KpUyBopTz22GO2vbDq\nyMzM5Pjx4xw7doyPPvqIZ555pglHVzs1lR64UmUrENSFCHwCQSvltttuo02bNjV+PyMjg/HjxwPQ\nr18/Ll++THFxcVMNrwobNmygU6dOqNVqhg4dyuDBg4FrzuhDhw4FHKtsu3fvztixY0VFp6DeiKVO\ngcBHqa5QpLCwkKioqGYZz6hRoxg1alSVr0dHR7Np0ybbvwcPHmwLigJBQxAZn0DgwzgvKYriEYEv\nIAKfQOCjOBeKFBYWCh89gU8gAp9A4KOMGDGCNWvWAKBWqwkPD2+2ZU6BoCkRe3wCQSvlwQcfZNu2\nbZSUlNCpUyfS09MxGAzANam1IUOGkJmZSZcuXQgKCmLVqlXNPGKBoGkQkmUCgUAg8CnEUqdAIBAI\nfAoR+AQCgUDgU4jAJxAIBAKfQgQ+gUAgEPgUIvAJBAKBwKcQgU8gEAgEPsX/B5KYXLk3/yC5AAAA\nAElFTkSuQmCC\n",
8094 "text": [ 280 "text": [
8095 "\n", -  
8096 "(987, 0.2457, 0.55672500000000003, 0.59670000000000001)" 281 "<matplotlib.figure.Figure at 0xb5c440c>"
8097 ] 282 ]
-   283 }
-   284 ],
-   285 "prompt_number": 4
8098 }, 286 },
8099 { 287 {
8100 "output_type": "stream", 288 "cell_type": "code",
8101 "stream": "stdout", 289 "collapsed": false,
8102 "text": [ 290 "input": [
-   291 "import scipy\n",
-   292 "from scipy import optimize\n",
-   293 "import calibration_utils\n",
8103 "\n", 294 "\n",
-   295 "sensor_ref = 9.81\n",
-   296 "sensor_res = 10\n",
-   297 "noise_window = 20\n",
8104 "(988, 0.3495375, 0.90041249999999995, 0.26422499999999999)" 298 "noise_threshold = 40"
8105 ] 299 ],
-   300 "language": "python",
-   301 "metadata": {},
-   302 "outputs": [],
-   303 "prompt_number": 19
8106 }, 304 },
8107 { 305 {
8108 "output_type": "stream", 306 "cell_type": "code",
8109 "stream": "stdout", 307 "collapsed": false,
8110 "text": [ 308 "input": [
-   309 "measurements = np.array(list_meas)"
8111 "\n", 310 ],
8112 "(989, 0.069224999999999995, 1.0203374999999999, 0.22132499999999999)" 311 "language": "python",
-   312 "metadata": {},
8113 ] 313 "outputs": [],
-   314 "prompt_number": 20
8114 }, 315 },
8115 { 316 {
8116 "output_type": "stream", 317 "cell_type": "code",
8117 "stream": "stdout", 318 "collapsed": false,
8118 "text": [ 319 "input": [
-   320 "meas_median=scipy.median(scipy.array([scipy.linalg.norm(v) for v in measurements]))\n",
-   321 "noise_threshold = meas_median * 0.1\n",
8119 "\n", 322 "print noise_threshold\n",
-   323 "flt_meas, flt_idx = calibration_utils.filter_meas(measurements, noise_window, noise_threshold)\n",
8120 "(990, -0.4080375, 0.86628749999999999, 0.114075)" 324 "print(\"remaining \"+str(len(flt_meas))+\" after filtering\")"
8121 ] 325 ],
-   326 "language": "python",
8122 }, 327 "metadata": {},
-   328 "outputs": [
8123 { 329 {
8124 "output_type": "stream", 330 "output_type": "stream",
8125 "stream": "stdout", 331 "stream": "stdout",
8126 "text": [ 332 "text": [
8127 "\n", 333 "0.0973014827316\n",
8128 "(991, -0.85117500000000001, 0.43338749999999998, 0.024374999999999997)" 334 "remaining 703 after filtering"
8129 ] 335 ]
8130 }, 336 },
8131 { 337 {
8132 "output_type": "stream", 338 "output_type": "stream",
8133 "stream": "stdout", 339 "stream": "stdout",
8134 "text": [ 340 "text": [
8135 "\n", 341 "\n"
8136 "(992, -0.85507499999999992, -0.64544999999999997, -0.50017499999999993)" -  
8137 ] 342 ]
-   343 }
-   344 ],
-   345 "prompt_number": 21
8138 }, 346 },
8139 { 347 {
8140 "output_type": "stream", 348 "cell_type": "code",
8141 "stream": "stdout", 349 "collapsed": false,
8142 "text": [ 350 "input": [
-   351 " p0 = calibration_utils.get_min_max_guess(flt_meas, sensor_ref)\n",
-   352 " cp0, np0 = calibration_utils.scale_measurements(flt_meas, p0)\n",
-   353 " print(\"initial guess : avg \"+str(np0.mean())+\" std \"+str(np0.std()))\n",
8143 "\n", 354 "\n",
-   355 " def err_func(p, meas, y):\n",
8144 "(993, -0.29152499999999998, -0.45922499999999999, -0.99449999999999994)" 356 " cp, np = calibration_utils.scale_measurements(meas, p)\n",
-   357 " err = y*scipy.ones(len(meas)) - np\n",
-   358 " return err"
8145 ] 359 ],
-   360 "language": "python",
8146 }, 361 "metadata": {},
-   362 "outputs": [
8147 { 363 {
8148 "output_type": "stream", 364 "output_type": "stream",
8149 "stream": "stdout", 365 "stream": "stdout",
8150 "text": [ 366 "text": [
8151 "\n", -  
8152 "(994, -0.18427499999999999, 0.48359999999999997, -0.89212499999999995)" 367 "initial guess : avg 9.55977014083 std 0.17596103611\n"
8153 ] 368 ]
-   369 }
-   370 ],
-   371 "prompt_number": 22
8154 }, 372 },
8155 { 373 {
8156 "output_type": "stream", 374 "cell_type": "code",
8157 "stream": "stdout", 375 "collapsed": false,
8158 "text": [ 376 "input": [
-   377 " p1, cov, info, msg, success = optimize.leastsq(err_func, p0[:], args=(flt_meas, sensor_ref), full_output=1)\n",
-   378 " if not success in [1, 2, 3, 4]:\n",
-   379 " print(\"Optimization error: \", msg)\n",
-   380 " print(\"Please try to provide a clean logfile.\")\n",
-   381 " sys.exit(1)\n",
8159 "\n", 382 "\n",
-   383 " cp1, np1 = calibration_utils.scale_measurements(flt_meas, p1)\n",
8160 "(995, -0.19597499999999998, 0.47921249999999999, -0.93599999999999994)" 384 " print(\"optimized guess : avg \"+str(np1.mean())+\" std \"+str(np1.std()))"
8161 ] 385 ],
-   386 "language": "python",
8162 }, 387 "metadata": {},
-   388 "outputs": [
8163 { 389 {
8164 "output_type": "stream", 390 "output_type": "stream",
8165 "stream": "stdout", 391 "stream": "stdout",
8166 "text": [ 392 "text": [
8167 "\n", -  
8168 "(996, -0.36367499999999997, 0.67079999999999995, -0.66251249999999995)" 393 "optimized guess : avg 9.80797237599 std 0.141020849641\n"
8169 ] 394 ]
-   395 }
-   396 ],
-   397 "prompt_number": 23
8170 }, 398 },
8171 { 399 {
8172 "output_type": "stream", 400 "cell_type": "code",
8173 "stream": "stdout", 401 "collapsed": false,
8174 "text": [ 402 "input": [
8175 "\n", 403 "#%pylab qt\n",
-   404 "%pylab inline\n",
8176 "(997, -0.28079999999999999, 0.86872499999999997, 0.03705)" 405 "calibration_utils.plot_results(True, measurements, flt_idx, flt_meas, cp0, np0, cp1, np1, sensor_ref)"
8177 ] 406 ],
-   407 "language": "python",
8178 }, 408 "metadata": {},
-   409 "outputs": [
8179 { 410 {
8180 "output_type": "stream", 411 "output_type": "stream",
8181 "stream": "stdout", 412 "stream": "stdout",
8182 "text": [ 413 "text": [
8183 "\n", -  
8184 "(998, -0.40365000000000001, 0.81119999999999992, 0.33296249999999999)" 414 "Populating the interactive namespace from numpy and matplotlib\n"
8185 ] 415 ]
8186 }, 416 },
8187 { 417 {
-   418 "metadata": {},
8188 "output_type": "stream", 419 "output_type": "display_data",
8189 "stream": "stdout", 420 "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEVCAYAAADzUNLBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FFXXwH+bTW+kEHoJRUoglISWQkiQJhGQKkEERBGk\nBJUXg/gJARQQX0BUmiiIqBQFQUAhKImRjoD4olQJUgNJSCG97P3+mJ3NZrObxoYAzu955tmdmTvn\nnntn5p659aiEEAIFBQUFBYVSsKhqBRQUFBQUHg0Ug6GgoKCgUCYUg6GgoKCgUCYUg6GgoKCgUCYU\ng6GgoKCgUCYUg6GgoKCgUCYsq1oBBQVzYGFhQevWrVGr1ahUKjIzM3F2dmblypX4+vpWtXoKCo8F\nKmUehsLjgIWFBYmJibi5uemOLV68mK1bt3Lo0KEq1ExB4fFBaZJSeGzQ//bJz8/nn3/+wd3dHYDb\nt2/zzDPP4O/vT+PGjQkJCSEhIYFly5bx/PPPA5CXl4ezszPr1q0D4ODBg3Tu3LlYPCtXrqRdu3Z0\n6tSJoKAgzp49C8CNGzcYNGgQHTp0oG3btixYsACAK1eu0KRJE8LDw+ncuTNPPPEEW7ZsAeDcuXME\nBATQoUMHfH19WblypU6XKVOm0KpVK9q0acO4ceNIT08HwNPTk+HDh+Pl5cX27dtN6qOgYHaEgsJj\ngEqlEt7e3qJt27aiTp06onHjxmLq1KkiISFBCCHEsmXLxKJFi3Th+/btKxYvXiz++ecfUbNmTSGE\nENHR0aJ27dpixIgRQgghpk+fLt5///0i8eTn5wsbGxsRHx8vhBBiw4YNYs2aNUIIIUJCQsTOnTuF\nEEJkZWWJkJAQsWXLFhEXFydUKpXYvXu3EEKIrVu3ioYNGwohhBg7dqxYuHChEEKI+Ph4ERYWJjQa\njZg1a5YYMmSIyM/PFxqNRowdO1ZMmDBBCCGEp6eneOedd0rVR0HB3CgGQ+GxQKVSiaSkJCGEEKdO\nnRK1atUSmzZtKhImNjZWLF68WEyYMEE0aNBAzJ07VwghhK+vrzh+/LiYMWOG+PDDD0WdOnWEEEI0\nb95cXL58uVhcI0eOFI0aNRKTJ08W33//vSgoKBDp6enCwsJCtGvXTrc98cQT4q233hJxcXHC2tpa\nd/3ly5eFk5OTEEKIXbt2CTc3NzFo0CCxYsUKcefOHSGEEJ06dRI//fST7ppTp07pjIynp6f45Zdf\nStRHQaEyUJqkFB472rVrx9KlS3nppZf4559/AIiIiGD27NnUrFmT8ePH06tXL10T1qBBg9i9ezdR\nUVEMHTqUBg0asGnTJuzs7GjUqFEx+Rs2bGDXrl00bdqU9957j0GDBqHRaAA4fPgwp06d4tSpUxw6\ndIg333wTAGtra931KpVKF3doaCgXL15k2LBhnDp1Cm9vby5fvoxGoynSxFZQUEBeXp5u39HRsUR9\nFBQqA8VgKDyWDB8+HD8/P1599VUAoqKiePXVV3nuuefw8PBg37595OfnAzBw4EC+/vprNBoNtWrV\nolevXrzxxhsMHTq0mNzExEQaNGiAm5sbU6dOZd68efzxxx84OTnRpUsXFi9eDEBqaipdu3bl+++/\nL1HPESNGsHnzZp599lmWL1+Os7Mz165do3fv3qxatYr8/Hw0Gg3Lly+nV69eZdZHQaFSqOIajoKC\nWbCwsNA1ScmcP39e2NjYiKioKLFt2zbxxBNPiM6dO4t+/fqJadOm6foqhJCan6ZNmyaEEOLAgQPC\nwsJCnDt3zmhcq1evFl5eXsLX11d07txZ/Pzzz0IIIa5cuSKefvpp4e3tLZo3by7mzJkjhBAiLi5O\n1wRluH/27FkREBAg2rZtK3x8fERERIQQQuoDmTRpkmjVqpVo3ry5GDVqlEhNTRVCSE1SJ06cKFUf\nBQVzowyrVVBQUFAoE1XSJHX06FFCQkKKHV+6dCmtW7cmJCSEkJAQLly4UAXaKSgoKCgY44HP9F60\naBFffvllkU47mZMnT7Jhwwbat2//oNVSUFBQUCiFB17DaNq0Kdu2bcNYS9iJEyeYP38+Xbt2ZeHC\nhQ9aNQUFBQWFEnjgBmPQoEFYWhqv2ISFhbF69Wr279/PgQMH2L179wPWTkFBQUHBFA/V4oNTp07F\n2dkZkMannzp1itDQ0CJhmjZtyt9//10V6ikoKCg8sjRp0oRLly7dl4yHZh5Gamoq3t7eZGRkIIRg\n//79dOjQoVi4v//+GyHNUP/Xb7Nnz65yHR6WTckLJS+UvCh5M8eHdpXVMFQqFQAbN24kPT2dcePG\nsXDhQkJCQrCxsaFHjx706dOnqtRTUFBQUDCgSgyGp6enbsnpsLAw3fGwsLAi+woKCgoKDw8PTZOU\nQvkJDg6uahUeGpS8KETJi0KUvDAvj9xMb/2F2xQUFBQUyoY5yk6lhqGgoKCgUCYeqqVBdu7cSadO\nnfD39+fTTz+tAs0eH2J376Z3rVp0VKlK3IJVKp5WqRikUjGsdm1iyzn3JXb3bgY3aUI/KytCtPI6\nqVQ8pVLhp93kOHqrVPSwsaGPnR0DrKwY4ejIRB+fcsepoKBQNTzwJin9pUH0fS3n5eXh5eXFb7/9\nhr29PQEBAezatYsaNWoUVVhpkiqV2N27eWfYMHIyM0sM5wE0B97VOzbe0ZHnNm0iyGD+i6l4Phg5\nEveUFBKBTCBLK/MKoAYcATvgKqAB3LVbbaQRF/nAPy4ujPvyS4JCQ/n5Z6heHdq2LVeS75vY3bt5\n98UXuXf7Nnl6upVGdaR0yzmtf538X/510IZzL+EaY9eZOiYfdwFSAButTEHR0SzGrjOM1wHp6zFd\n73rDuI3paiiPUs4b08GYjg5AHpBrRK6xPJDTbm/wq19SOFA0f8pyf40hy1HrHZP119fTEFNpLS1/\n9fU2dVx+DhyAbGtr+r75JhMjI4uEN0fZ+cBHSclLg8h+lGXOnj1L06ZNqVatGgCBgYHExsYyZMiQ\nB63iI8nZhLP8mfAn7nbufPPeHGwyM7Ep5ZoWwDsGx1anp/Pqf+fj0qE+ni6eONs4F7vu7l04eBC+\nf/tDNCkpuAF/IxmGaoAbcB3pJVYDt5GMhSNSAVvTIN63UlJYPOFtAq6E0qMHNG8O586VPw8qRGYm\nsdHRvDNsGBaZmVgBzkiGz7qUS5sBiUiFtT1S+lP1/mcj5UcWUBcpT9qWcA3a/Sy966z1wrgbCesM\nxAENgbvaY3Z6Osqy9K+Tr5WPeQBp2n07iqdDXw9T+SLHaRiPsfj0j2UDOdq0ZWtlewDJSAWhk/a4\nMKGDnTZMEtAAiNf+XjfIBw+9YyWlozRkOW56x+Q8lv+XlD/G7m1J+etB4X011OOOXno8gVXyydxc\nxs2dywooZjTulwduMAYNGsSVK1eKHU9LS9MZCwAnJydSU1MfoGaPLlv+3MKz3z4LQFDDIBxunaF4\nMV8cUzf/4vXfefbbZ7G0sOTQ2EM42TgBcOECfPMNrF4N165BN3KoAfyF9NJaIxmIv5BeCg3Sy26j\n3WyRvmANGxvfBZ66cQV5xRgXlzImvKKkpcH778OPP8KJE0Q5OWGjNRZW2jRYlUGMbChdtdcU6P23\n18qQN6E9V9I1GFwj6yCHwSBsAZLhqa6NL0dPBnr/DePA4JhA+qp1N6KTvh4l5YsV0r02jMdYfPrH\nLLTHnQzisdWeK6Cw9iPHY5g+O20YNZIBlfNa//nWP1bW+2sMWY7+x5isk6YEufr3Vz9+KxP/ZfTv\nqz4uFNZy7NEzFlrWCMHwhQuZOGYMzJ0L1hUxj8V5aJYGqVatGvfu3dPt37t3D1dXV6NhI/WsZnBw\n8L9+6Nznv3/Oh30+ZHKnyahUKv5vY29OX4oq9TpTVWefJl3ZNfFHBm8ZzPLjy5kROAOAl1+Wzi9Z\nIhmP05/akB0nvawFSM0HGqT9DKSX3Eb7K5AKFFO2oEY12LEeBgwAg1ZI8zNkCOzbp9u1vHcPBwq/\nYjWUrXNPNpT6X4/yf1tApSczA8mIlnQNeuHlX/0whmGzkAoMB+1/Bz0ZMtZGrjOMN6MEnfT1KClf\nBNIzYBiPsfj0j8kFvpxf8nFH7X6WwTl9feR9Oe1ZSAZDzmt99I+V9f4aQ5aj0TsmP9+iBLkavbD6\n8eunxzBtUPS+6pMOuo9CWxNxpuTkECm7GK5Vy0So8vHQGIwWLVpw8eJFkpOTcXBwIDY2lunTpxsN\nG2nmatajzPnE8xy5foQvB32pmz3fKzycYwcOlNqHcQ54i6J9GC87OjJyyhRUKhVj24/lo2Mf6QzG\n5csQEwONG0thY9uGM2/Az+QVFFAd6WXK125tgOMUtkFbIbVJm6ozOjZuRP/+0kf/kiXlz4dycfUq\nbNokGQ61mvzu3cmIjtadll/q0pANZYZ231bvv6CwjwKkr8CMUq4xhRzGMKwtksGQjbMpnY3FoX/M\nXqtvaTqVli8lpcWUDmiP6+eXnd5/W4rmozFkvey0suS81kf/WFnvrzFkOfqGwdAYmNJRDlue+E2F\ndUNqqoLifRsyLm5uRO7ZA/XrQ61azFGpTIQsO1U2rFZ/aZA1a9ZgZWXFkiVL6N27N/7+/rz44ovU\nrl27qtR7ZDhz5wxdG3bFza6wVTUoNJT/27IF25o1dZ2rxrZ/gINAP2AQMKxWLUbqdXi3qN6C84nn\nAcjIgIQEaNiQIvEM/L//I1krT4VUg0hEepgbIn0JpWrPa5Cq1+MM0vCyoyPPzp0LSPIvXzZP3pgk\nKQlCQkAtNRT0mjaNHHt7UoB72i0HqV2/pE1u8/fS7qfr/U/VypFlpmnPlXRNml54/evkMIZh05EK\nLy8DnVP0tntGrjMWb64JnfT1KClfUkzEYyo++ZicF6l68aQhfWnLulvrnUsxCCfvy3p5Gfzqb/Kx\nst5fU5uc3/J7lGNED8Ptnl5Yw3tlKm0l6ZpE0WdtAkV5SaUiaMoU6NjRbLULKMMoqdOnT5ORkYGF\nhQUzZ85k5syZ9OjRw2wKlBdllFRR3ol9h/TcdBb2ML//kHxNPg0/aMjAFgPhXm2i583kzzPFv1Lk\nEUa5t2+Ti1RlT6aw+SkVqdahRjIqNkhf2jYqFY6NG/PismU6I1VQAM7OEB8PTk5mTxJoNGBjA1lZ\noLfMfuzu3bz93HNYp6aSCtRBag64a0oOUhNbc6CWNj37gNZII8CikdIrd+gmAT5IRrpaCdfIfQmp\n2nDyyLPWWnka7bVyWHugJZKRlkc5JWhlq5C+0FO0YeTr5OYjOd492nMNkL5c9XXaR+Goriygvjbd\nhvki9zU0QRrUIMejf14/nbIO9bTxOgAHkAxXrlYOSB3MtSkcPJGlp0+uVoaVVq8b2nQmUzgaT44r\nF+ioPbavhHSUhiynQKubPBIwAeneyKPmjOWPG9I7kYDUD5Kl/a+fv/ppk+NrinRf7xrI86bwnqq1\nMu2BHGtrnqqkUVKlGgw/Pz+WL1/OrFmzeOutt3jjjTf49ddf7yvS+0ExGEV5bttz9Grci9HtRleK\n/M9//5wXdrwAwJMX/uCnr7wrJR59mjaFPXukX7OTnAyNGkFKitHTsbt3s++jj7hz/Tqp8fHUql0b\np7p16TllitGhxhEjRnB882YcNBqsgUwXFxo3boyHkxMFtrb0nDIFgH0ffcS5s2fJvnmTuwUFWAmh\nGyhgeE3tLl24deRIER3SraywUanIz8kpolftLl3YsWoV6tu3dc0xzpaWpNvaYunoSP69e1jm5FCg\nVmNjbU39hg116ZH1Umdn879r10i8fh3H3FzsgWRra+rWr0+jevW4npaGjUqFh5NTkf9y+uR8id29\nmy/efpuMK1ewBhwbNeLZuXOLnJfj088bY9ecOX6c3YsXY5mVRa4Q5Fla4mJtjYOVFTmurri7uBTJ\nr583bCD36lXS8/Ol0VcWFthqNFSzsUE4OhI0ebKkw8cfY5ufT0JBAdVr1qRRvXrF0lEaKyIjif34\nY7KzskjLzkatVmMvBAVqNXkWFjip1ThYWRlNv5zWzNxcLC0sqN+woe7emsrfM8eP6/TOtrQkaPJk\nJkZGGs3PktLwQAxGSEgIP/74IwMGDGDv3r2EhIQQrdfe+6BRDEZROq7pyId9PsSvvl+lyNcIDdvO\nbmPuN9tomPcUO995vvSL7hMfH1izBnx9K0H4pUvQuzcoPlUU/mU8kKVBVCoVo0aNom/fvmzZsgUr\nq4oOSFOoDG6n36aWo/naKA2xUFkwxGsIuck1cahxp9Li0adaNai0EdVJSeDuXknCFRQeb0o1GJs3\nb2bMmDGEh4fj4eHBpk2bKhyZRqNhwoQJ+Pv7ExISUsyhx9KlS2ndujUhISGEhIRw4cKFCsf1b0AI\nQUJmAh4OHpUWh0YD330H50/UxM79wRgMZ2dpqkSloBgMBYUKU+qw2pycHBo2bMiFCxfYsGEDrq6u\nuLm5lXaZUbZv305ubi6HDh3i6NGjTJs2je3bt+vOnzx5kg0bNtC+ffsKyf+3kZGXgQoVDlbGRmqb\nh6lTITYWHF1qoLE/X2nx6OPsrNQwFBQeRkqtYYwYMYI7d+4wc+ZMevbsyWuvvVbhyA4ePKjzote5\nc2d+++23IudPnDjB/Pnz6dq1KwsXmn/Uz+NGQoZUu1CZYXy1KY4elWZ2b1xTg8SsB9ckpdQwFBQe\nPkqtYVhYWNC1a1feffddwsLC7msV2bS0NJydCxetUKvVaDQaLCwkuxUWFsakSZNwcnJi4MCB7N69\nm1Ajvf7KTG+JhMwEPOwrrzkqNxd+/12a96OmJrfTb1daXPooNQwFhfsnJiaGmJgYs8os1WDk5eUR\nERFBUFAQ0dHR5ObmlnaJSZydnYss/6FvLACmTp2qMyihoaGcOnWqVIPxb0auYVQWX34JeXnSvJ/8\nezW4k/HgahhJSZUkPCkJWrWqJOEKCg8Phh/Tc+bMuW+ZpTZJrVu3jiZNmhAREUFCQgLr16+vcGQB\nAQH88MMPABw5coQ2bdrozqWmpuLt7U1GRgZCCPbv30+HDh0qHNe/gcquYaSnw4QJ0oToGg6SwXgQ\nQ5ors4aRczMJ4abUMBQUKkKpBuPWrVu0atWKo0ePUrNmTa5fv17hyAYOHIitrS0BAQFMmzaNpUuX\n6pYGqVatGgsXLiQkJISgoCBat26t6+9QME5CRuUajLQ0kMc32FnZYWlhSXpueqXFJ1NZfRhXL+Vi\ns2ML3/xcsUEbCgr/dkptklq5cqVuwseff/6Jp6cnQUFBFYpMpVKxcuXKIseaNWum+x8WFkZYWFiF\nZP8bqewhtWlpRZv73e3dScpK0i13XllUVg0j5fcrNAAO3PVimPnFKyg89pRqMPTnXeTm5jJ06NBK\nVUih7CRkJtDcvXmlyU9LK1yZFqC6fXUSMxPxdPGstDhBqmGYWLnjvshIyOR32nIuvZ75hSso/Aso\n12q1eXl5XK70pUQVykpld3qnpUlf+zLudu4kZVZWb3QhvjN6kHHD/BYjIyETja09tx/MYC8FhceO\nUmsYtWrV0o3zz8vL49VXX610pcpLxIgRRG/caHRd+LL4un1UuZNxp1L7MJKSinq/q+NUh2tp14qF\ni929m6gPP8QyJ4d8Gxvq+Plx8/Bh3X6v8PBiC7ClX7mCjRA4NGrE8HnzChdNEwL7Qz9jY3UFIdph\nzikmWUmZWDnbExcH9+6VvhqunK6EGzdIiY+ndu3aONapUyQ9FcUwz4zJLEuYyoj3YZRtbj3uV9eq\nSKv87ty6cAHLnBwcbGxwadas6PtTyZS6+KA50Wg0TJw4kT/++AMbGxs+/fRTmjRpoju/c+dO5s2b\nh6WlJWPHjuWll14qrrDBAloRI0awb+NGo24hwcBgIC0J3X/27DIZDX1DZOiUXvYkZwc42tjg7uVV\n5hsny7XXyrRCWiLZ1sICe09PXvrwwzLJqb24NsfHHaeec+U0sbRuDV99BW3bSvsLDywkKTOJ93u9\nrwuzIjKSne+8Q2pBAXlIyy67I/lpyDOQJy9n3RTQ95E02dWVYRs2SGm+exfc3enlfIQNFzpTs2Zh\nuBWRkXw5fz55eYaSCynpA2HTiO9pd3wNYz12MmNuAhHng+hYpyNfDPxCt7y5ZWoqgqLuQgv09rOQ\nls829bwZ6mLo1bBAq58V0vOTQ6FrziykZcqrIz1XGqR8NHQgJLs7tUfy6+yC9PykI/m01l/qOlNP\n35LujSn045L9bFdDWmVX9uEgyzZcvrysFFDo0lb+1ZddHgooXLpcXkbcWD4YW2rdVftf/37o32s5\njJ32mBvwp8H1hnGZCzmP9H2ZW2nTaIN0//O0ulia+DB+IKvVHj58mHXr1pGfn49Go+HWrVvs3bu3\nQpFt27aNXbt2sXbtWo4ePcqCBQt0S4Pk5eXh5eXFb7/9hr29PQEBAezatYsaBv46VSoVW7YIXFzA\n0RGm+qtMuoUs5hwdyXnPeWtb5uzJwt0d9Eb2FiFixAj2b9xYYnockG6UNVoj4uLCuC+/JKh3b3j6\naRgzBoYPB+DI9SN0rNORmSOf58jGjTpH965IBUM8hS9xda3cdJWKNsOH897XXxeLOysvC5f3XMic\nmYnaovijKfuouFtK+0uRNNSqxeRPP9UZK1dXuHgRqleXwkb9HcXE3RNZ3nc53Ty7sWvbRj4a8RKq\nAo2ugJB9eDtqf28iFYxywSlXaeVCPQ/oDZxo48U7B36i9j9J4O3N9NY/0ntpH2TXKysiI9lcyjhy\nY/f7JcBH+4HwUcAm+uV/x2t1NlOj7yp+V63jbMJZvm/9NREDn6FWQQEp2rxI0eoo+5KoSEFoaDDk\ngkqN5EtBjkMuwMtS6OoX+hkU+njQL/gq6uuhpLiyke6XKX8P9xOHA5LfDk+kQri8+WxKblkNmJzO\nFCQ/KKb8fZT0IVRRY1lW9POpGpJjpbt6+t7THneg0FmZ/oexEGBhcf8Go9QmqVdeeYWIiAi+/fZb\nvL29adCgQYUjK2lpkLNnz9K0aVOqVZM87wYGBhIbG8uQIUOKyRl9vCVOma3Jz1PTqYREGHWODvTN\nzWb4F1NIzEzg5RZv069zK/74A/z9JVcJtWtDrLYGYAoPJOc5+u5Nx6ek8FnE26R8D/337oWaNWH4\ncK6lXsPvMz/WP7OeM99swRmp0MhGcqhjWLAkajeE4OjGjTy9caP0RadSMWjWLK4GZvPewfdoWb2l\nSWPxzrBh5GRmli8N8fGMHz4cNm2iTUAoublFR0l1b9SdtrXaMmDTAFztXKm3Mh6nAulhheIOcWTH\nPNlIhbBs2D0pel9eBs79+Rd1ltRh6TE3XgXaNEjht9+QDMa1a+ydNw+97hSjGLvfnwID3nmH5/Id\nuHdGg3OIPdWrw7ZbS1j05BLG3ujH6y/3w6VA+qLUIBUIttrf6kgFwRFM+6s2hp1euvX1qw0cQrr/\nchzyF618vqS4NHrX1EEqxPTDq5HSkaOVdz/ox6XW/maYSbZ+HFZIz4sb5c9nU5QlL/V1yEPya24q\n7/TzwnC97vLEVVHkfAKp9mWhp68Fkktkww/j9XPeY9KcSJo2lTxmmoNSDUb16tUJCwtj7969REZG\n0rdv3wpHVtLSIGlpaTpjAeDk5ESqibGVqlNX8fVshJ2lHYlIN8sYppyj2wMzxzdl6Z7/sWrnYVbN\nbUW9evDmm9rz9hBEyZnTAnjH4NhqYNifp+ny5wtcqBFIs/PSYn2fnPgEb+v6jN4+miEF0lf3Va0e\n7kg33dD5Oxgp0IVg9Jw5/NgNJr0xiSW9Cxt29u6FGTOkfofW2R+Sn5lZqi/kf5AM09MU1pImp6fz\nwYSPGOB2jmda9UelekIX3tLCkq3DtnI7/TZHrh9h5QcjySRd93LZU1hzOIJUoNnppU2NVOswLNQ/\nAfoWwKGc52kXtYHMVs1p5pHMqDchbs4XvJ7/HtYaTalVfFP327qggGrvvsFUWzcc6g7HsdpdErNv\nMbbrUzAbqqcUNgHZGJH5F5RqrAyRm1aMyXIpHrxCcdkbCS/7gDZMhzmoLNkWSF/HFclnU1TkvlU0\nfRV9RsqLvl9we6QPEvm/sQ/jzmRjEejINWsNVmoruHX/OpRqMNRqNWfOnCErK4tz585x7VrxTs+y\nUtLSINWqVSty7t69e7i6uhqVk7Gv0Fw+tdqCDBPVLFOVrzw7O6Z2mUpcYjy5ze/w3wHSjOZvNmSx\nfY8dLmcP8/5rJWeOqXPWKgtqiATCxM/8fLQN+atWknjgI/74KpX8dZ/hL17EDslQ2Go3Ux5GjBml\n9UDoSRs+7vtxkeOzZsHIkeDlBV+Oucg1Sv8KNFpLAqxy/mb0H3vp2/d/EDcbMjNhwwb4+WfYtIma\nTZow4I8cvk7ML6K7LZLxk18eOX7ZYGgw/QXmCPgt2MD23g1p0boLnRdPJNf6P1hlS2Yvg9LbhE3d\n70zg5vp91BndU+rpbroHfgrm2FE1nX6QCgi5T0oguTaVf7OQDGB5sdVer48syzAOw/MloX9NhpHw\nGso59LGMcQntZi7Z+nEIpK96c665XJ77JqezpLwzvFcVjauiyPkEko62FN4PUx9KDYDtP1ykQBSQ\nV5BHY7fGJkKWnVINxuLFi/nrr7+YMmUKzz33HGPHjq1wZAEBAezcuZOhQ4cWWxqkRYsWXLx4keTk\nZBwcHIiNjWX69OmlymwzfDhHTPQ15CE5R9e3vi8Cvd94AwDP6jWJU8dhbw8Lh53kiw2+8FpLOHuW\nTEouoAw7M2WqtW9Dwq6jnPa2hGHDsHxlIisBJkzActp03JEyXe4wFxivXYDpm+OBtdQ3snMntG5N\nQTsfJp3IYeTVPVi0bMHnd+KoZuJafUzVkoYnXIJOnfD4YT00NlgKpmlTySXe+fPUFoJ4vVNZ2l/5\n5TGsBVtg+qUrcHSEW7fY+fNUVMk1aAFYhfaGAQOgf3+y6tRBk51dYnqM3e+XgCxbW+oMC4TRQK9e\nuKoP8FbDdnTsCPwA+bVdyY1L1nVu5+n9Fmh/y9uBKTDeWa3f3CXHYXi+pLj0r7FG8v2t/5zInbrm\nQD8uK6QC1Vyy9eOQfWHfxHwdxeW5b3I6S8o7w3tV0bgqipxPcnyyn3L5vzFy7eyo7WSq/aVilGow\nnJyc6NyI0eAUAAAgAElEQVS5MyqVim3btmFlZUVeXl6FPO8NHDiQffv2ERAQAEjrVG3cuJH09HTG\njRvHkiVL6N27NxqNhhdffJHatUtP7Htff00EGB1Wm4n0QvXFuHN0D3sPjt44CkCdVbNg1Cjo0AHU\nauwmTSIJ0zfjHPAWRb/Ox6jVjJ07F7calqSmQv5Xmxk/3B4/h+a81GsGzJtHtRo1QAgKKF6gGmLK\nKGXfuwebN0s7x46hPnaMUQD9xkHz5tT+3/+IT0wsRbrpm1/LzQ3WrYN9+6TaxcyZ0omoKDh8GDp3\nhk6dcBw+nIyoKN11BUjVZPnlsUYaxaNGyke1djNmxJ+cNg0cHXGzc+N8dVepl06PoRERrCul07vY\n/UZ6qYZERICtLeTng1pNWtQP1HSQhl/tCtuFqk06q0aOJS0zEzskw6f/m4ppo26KPG1e6KdCllXN\nIA7D8yXFpX+NPHDCxsT5+0VfllwzNJds/ThA6nBOx/QHRUXklvW+Gd7zksLcb1wVRb9mnoX0fKmQ\nnvnSPozNSakGo1+/fly7do0WLVpw4cIF7O3tyc/PZ9GiRTz/fPn8O5e2NMjTTz/N008/XS6ZIBkN\njIwkKg1nG+fCtZHi4mD+fGnYlBBM/fVXPtizh9spKRhbn1du/++HZP1zHByI2LxZN8LIzQ0SE+Hw\nzaNMGTxVuqh6dTLUasjPxxVoTGEHqDHDZMwojQaCwsLg888lo3HnDvznP9LJqVOhVSsco6KKFOSm\nMGWQnDp2lNq2vLygoACGDpVWImzXDnr21IXrFR7OsQMHyMmUvqXlfoBkpJfHg8IHPQOpc9wJaShg\nP6RCPR1oHRamM+L2VvZk5BY3pfL5r+bPR2iH1eZROGDA2BBWrK0ZoD+8UC19A6Zmp9LMXXruQpuF\nQjNw3OLIsvBwrl2+jBrpRbQ0+C0P8nX5Ro4lGcjONzhfUlz61/xD4agYYeT8/aIvS/6vouxDcssT\nRxqS4cvAPKOMynPfDO+1sbwry7nyPiPlQT//DfdL+zA2J6UajEaNGrF//36qV69OcnIyL730Ep98\n8glPPfVUuQ3Gw4aDtYNUOAkBV65Aw4bSCZWKoI0bYfdu9n30EersbApsbek5ZUqZJ8i4usLVOylc\nS7tG6xqtdce9hg7lyMaNupejKdIQy0woZpgMjdI9lYqBs2YVPgja/D+4I5Ff24czo5VUIzMsyE1h\nzCC97OjIyClTCg+o1VIzlBGCQkP5vy1bdMN3DR9iuUCzQBo+XMfKCnX9+ri7uODh5GQ0Tx2sHUjI\nSDAa38TISLO8BGm5aTjbFO2iDAoNrZJJZgoKjxKlGoz4+Hiqawfiu7q6Eh8fj7u7O2p1ZbbYPRgc\nrBykGsaFC+DhIS1ipMf9FCIuLvDDpV341/fH0qIwm/Wb0BKRvrhVgJu1NU2aNcOpbt1yGSaAb30X\noD/a2bAgN4WhQTKch1EWgkJDCYqPLz1gGbG3sicjz0xjAE2QllPcYCgoKJROqQbD19eX4cOH4+fn\nx+HDh2nfvj2bN2+mpv4U3DKQlZXFyJEjSUhIwMnJifXr1+sMkczUqVM5ePAgTk5OqFQqtm/fXmQY\nrrlxsHaQCqejR8HPz6yyXVzg4K2fGNal+DySijahmeLuXam1SB9zF+QPCgcrBzLzKrNyLzVJKQZD\nQaH8lDpKbsWKFYSFhZGdnc3zzz/Pxx9/TLt27fi6nAXeypUradu2LbGxsYwaNYp33jEcnwMnT54k\nKiqK6Oho9u/fX6nGAqTCKSM3A06fLl7i3icuLhCfeZ2GLg3NKtcYSUmFfisedXRGvBJJy0mjmk1Z\nxpEpKCjoY9Jg7Ny5E4DVq1cTHx+Pi4sL169f55NPPqF58+bY25dvrqf+LO8+ffrw008/FTmv0Wi4\nePEi48aNIzAwkHXr1pU3LeXG0dpRKpxOnza9RkgFcXGBOznXKm2dJ30SEh4fg2Gq09ucKE1SCgoV\nw2ST1N270moqt27d0q1WW1Y+++wzPvjggyLHatasqasxGJvFnZmZSXh4OK+//jr5+fmEhITQoUMH\nvL29yxV3edB1ev/xR+EKe2aimosgueA69Z3rm1WuIRkZ8NdfZle/ynggTVI5SpOUgkJFMGkwunTp\nwoULFyrkAe/FF1/kxRdfLHJs8ODBupnc9+7dw8Wl6AIJ9vb2hIeHY2srzVvs3r07p0+fNmowIvVG\nyhg6Oi8PdpZ22GXmIrKyUJVhzkd5sKmWjEWOVaV7p7twQVr/ytGxUqN5YLjYupCcnVxp8jVCQ3pu\numIwFB57YmJiiImJMatMkwZj/PjxJmsW0dHR5Y4oICCAH374gY4dO/Ljjz8Wc/N6/vx5wsLCOHny\nJAUFBRw4cIAxY8YYlRVppvHFKpUK71xX8uu6YmVOxwtAgeN17DMqvznq2jW4j/UgHzpqONQwOazW\nHGTkZmBnaWd00UYFhccJw4/pOaVMfC0LJg2GuS3TK6+8wujRo+natSs2Nja6TvOlS5fStGlT+vXr\nx6hRo/Dz88PKyooxY8bQsmVLs+pgjFY51ciq6WZyPaeKIuxuY51by8xSi3P1KtSv3FavB4qHgwcJ\nmQlohAYLlblXLlKaoxQU7geTBmPw4MFs3bqV2rVrF6tp3Lx5s9wR2dnZsWXLlmLHX3vtNd3/119/\nnddff73csu+Hpll2pFZ3MvtKkxrbu5BV+T3Rj1sNw1ptjaO1I8lZybjbu5d+QTlJyU7BxdbUerEK\nCgolYdJgbN26FYBVq1axbt06srULv5W3A/xhp9E9NYnudpj7I73A+i4i88EYjEocF1Al1HSoyZ2M\nO5ViMJKzknG1M74KsoKCQsmUOnFv+vTpfPLJJ7pO6sfNYNRNFdxqoKa9meXmqu+Sf6/yDcY//zxe\nTVIg9WPcybhDSw/zN0kmZyfjaqsYDAWFilCqwWjdunWFRyE9Cngk53DQLpOKu4UyTo5FMrlp5ZsN\nX140GjhzRvK9/TghG4zKYMCmAbqFBxUUFMpHqb2KAwYMoEuXLrzwwgu88MIL9+UPA+C7777jueee\nM3puzZo1dOzYET8/P3bv3n1f8ZQVt8QMPkuIMvvY/5S8W2QnVm6nd1ycNEHQ3fwtN1VKDYca3Eo3\ng3swE1xIulBpshUUHmdKrWEsW7aMiIgInfvU+2mSmjp1KlFRUbRvX7wBKD4+no8++ogTJ06QlZVF\nYGAgPXv2xNq6MleZB6eENOwbNeN84nna1y6qV8SIEUb9bMg4IHmKs6b4wn3xmTcgrR7Z2ZIrhooQ\nMWIEf33zDQ5CkKFS4TV0qLQOlZZ//pHmYDxutK/VntirscWOr4iM5Mv588nLM73AtiWFbmKzra3p\nq7fMc75GWpw6bmqc+ZVWUPgXUKrBqF27Ns8++6xZIgsICGDgwIGsXr262Lljx44REBCAlZUVVlZW\nNG3alD/++IMOHTqUKrekgr2kAoQ7d1BZWPBE4w5EX4kuYjAiRozgyMaNJl2KFnNvGh/P+OHDYdMm\ngkJDuZZ2jWqquiQlQd26ZddXJhvoAkwHorTpOL1xIy/cuMG6X34BHr8RUjLdPLsxN3YuQgjdB8qK\nyEi2zJmDFaZd2toBnug5ksnNZdzcuaxAWho96u8o3O3c8XTxrNwEKCg8ppRqMGxtbenTpw/t2rVD\npVKhUqmYP39+idcYWxrk888/Z9iwYSbnd9y7d09XiwHjy4cYo6SCvbQChP/9D7y9eSMwgie/eJID\nVw+gtlCjERoyN39X4lBbo+5N09MZPHsiW1T9yC3IxTarEePHw65dZdNXn+rA88BeivqreCE2ll92\n7abb06FcvPh41jCecHsCFSr6b+pPHcc6CAQ3lnxBaXPm7SnqdQxgjRCELlnIsXZXWH96PXOD51aS\n1goKjz9l8rgH5WuKMrY0SGk4Ozvrlg4ByYC4uhofzRI5frzkbtPSktjNm6luNJTpAmT4smVMHD4c\nIiOhTRva1GzDuUnniPgpgobVGtKgWgN2812JHTymMs5VY0U953rsHbmXVq9bceMaqFTg7Ax16kDD\nc9+Uac6HA1LN4l2D4+uATv0+4mrNUG7fltx6P26oVCr+2+u/rPt9HT61fQC4p9lQqic2Uy1/Thpo\nWV0acdWnaR/zKaqg8BBTGUuDqIQQ5vCIWGZiYmJYvXo1GzduLHL89u3b9OzZk+PHj5OdnU2XLl04\nffp0sT4MlUqFkMeROjsz/M8/TcZlC3xu5PgYlYrP5WS/9RYYWWq9n5WVZJRM0JbiNQyAt3v3Zt6e\nPYC0KGB+Pvz9t7R6emIi/LeLJSqNKVfzhWQAvkCkkXOzunbj5a9jOHMGnnwSKuBe/ZHj2erVyUxK\nKjGMPbDZyPHh7u5sSkystNnjCgqPAiqVivst7kutYZgbuVlLRn9pkPDwcLp27YpGo2H+/PmmO7yv\nXtX9zSihYDeVNdlubnDypOR5qKFxfxWyK1VTlMW9qZeX9CuvnN6oEWRaqCTH16XgBZw2cU7Y21Kv\nHtSr/KWqHhq6TZ7MljlzSqxl5AETKFqrfEmlImjyZADFWCgo3CcPvIZxvxhaSblPwBjF+jCQChAf\nfb/YJVCWUVJOlM+9aUn66tOMQofz+p5BZjZpQp9ly/6V/qdXREby1fz55JYySsoVqbaRY23NU/qD\nHBQU/sWYo4bxyBsMKH2U1MNWgJRllBRIHd8Cyed3dQ8PPH18yu3vW0FBQQEUg6GgoKCgUEbMUXYq\njboKCgoKCmXigRuMkpYGmTp1Kh06dCAkJITu3buTlpb2gLV7tDD3kLlHGSUvClHyohAlL8zLAzUY\nU6dOZebMmSarRSdPniQqKoro6Gj279+v8wGuYBzlZShEyYtClLwoRMkL8/JADUZAQAArV640ajA0\nGg0XL15k3LhxBAYGsm7dOiMSFBQUFBSqikoxGJ999hne3t5FthMnTjBs2DCT12RmZhIeHs5XX33F\nnj17WLFiBf/73/8qQz0FBQUFhYogHjDR0dFi+PDhxY4XFBSIe/fu6fbfeOMNsWHDhmLhmjRpIpBG\nmyqbsimbsilbGbcmTZrcd/n90IySOn/+PIGBgWg0GvLy8jhw4AC+vr7Fwl26dAkhxAPZVCoV3t7e\ntGvXTreNGzcOIQTt2rUjNTW1zLJSUlIICQl5YLrfz3bjxg38/f3NJm/NmjWsWLECIQSrVq1i4cKF\nVZ5GZXs8tu+//57w8HCEEOzatYtZs2aVW0ZoaCiff/55laelsrdLly7ddzn9UC0NMmrUKPz8/LCy\nsmLMmDG0bGl+F53lJSYmBje34q5WT506VS45ycnJHD9+3FxqVSp16tTh4MGDZpN34MABvLWOx8eP\nH282uQoK/fr10y2Qevz4ce7evVtuGYZlkkIJCAWTqFQqkZiYaPJcUlKSWLdunQgMDBQ+Pj6ie/fu\nIj4+XvTs2VP4+PgIHx8f8fbbbwshhAgODhZqtVq0b99eFBQUFJF1/vx50aNHD+Hn5ycaNmwoBgwY\nILKzs3XxRERECF9fX9GiRQuxbds2IYQQ69atEz169BC9evUSXl5eokePHuLmzZtCCCG6desmBg0a\nJLy8vMTHH38srl27Jp5++mnh7e0tWrduLd5//30hhBD79+8X1atXFzdu3BAFBQUiODhYzJs3T8TF\nxQkHBwchhBCzZ88WI0eOFP7+/sLT01M8++yz4rPPPhNBQUGifv36YuPGjUIIIeLj48WAAQOEn5+f\naNSokQgODhZ37twR27ZtE25ubqJu3bpi+fLlYvbs2WLy5MlCCCHOnDkjgoODRZs2bUTbtm3FF198\nIYSQmi39/f3F888/L9q3by+8vLxEdHS0uW6rQiURHR0tunTpIgYPHixatGghfHx8xM6dO0XPnj1F\ngwYNxGuvvSY0Go0IDw8XnTt3Fl5eXqJly5bi4MGDQggh7ty5I0JDQ0XLli1FYGCgGDx4sIiMjBRC\nCGFjYyMiIyNFQECAaNSokfjggw+EENJ78PTTT4ujR4+KmjVrCg8PD/HWW2/pjsvo79+4cUP06NFD\ntGrVSvTp00d06NBBrF+/XgghxF9//SV69eolfH19Rbt27cTatWsfZBY+9CgGowRUKpXw9vYW7dq1\n020JCQm6c7LBcHNz0/W/zJ07V0yYMEEIIURGRoYYPny4SEtLE1euXBGOjo5G45k+fbr46quvhBBC\n5OXliTZt2ugMg0qlEvPmzRNCCPHHH38IFxcXkZCQINatWyccHBzE+fPnhRBCzJgxQwwZMkQIIRmn\nl156SSc/KChILF26VAghRGpqqmjbtq3YtGmTEEKIt956S/Tt21fMmTNHPPXUU0IIIeLi4nS6zp49\nWzRq1EikpaWJrKws4ebmJv7zn/8IIYTYsWOHaNasmRBCiGXLlolFixbp4uzbt69YvHixEEKIMWPG\n6P5HRkaKKVOmiPz8fNG4cWPx3XffCSGEuHnzpqhXr544fPiwiI6OFpaWluL06dNCCCEWL14sunXr\nVvYbp1AlyPft999/F0II8dRTTwl/f3+Rl5cnEhMThbW1tTh48KAYNmyY7poFCxaIfv36CSGEGD58\nuJgxY4YQQohbt26JOnXqiDlz5gghpPdg+fLlQgghTpw4IWxtbUV2dnYRQyA/W0IIowZDjueZZ54R\ns2bNEkIIcfnyZeHk5CTWr18v8vLyhJeXlzh58qQQQoiUlBTRsmVLceTIkcrJsEeQh6YPozQ0Gg0T\nJkzA39+fkJAQ/v777wcSb0xMDKdOndJt1asX977Rpk0bHB0dAXjqqafYunUroaGhrF69moULF+Lk\n5IQQwmQc7733Hu7u7rz//vtMmDCBmzdvkp6eTl5eHkIIfvjhBzp37syVK1do2rQpXbt2ZcGCBXh4\nePDEE08A4OjoyLZt2/Dz8yMpKYmuXbsCkJGRwaFDh5g0aRIg+R0ZM2YMP/74IwBz5swhMTGRlStX\n8uWXXxrVr2fPnjg5OWFra0udOnXo00fyKdG4cWNdE0B4eDhdunRhyZIlvPLKK5w5c4aMjAydDDn9\nQtueeuHCBXJycnjmmWcAybPj4MGD2bNnDyqVioYNG9JGu8xv+/btdfHcuXOH+vXrc+HCBS5dukRg\nYCBBQUFMnDhRF0dV+IZ/0CxYsAB/f386duzI+vXrH5q8aNSoEW3btgWgSZMmdO/eHUtLS9zd3XF2\ndsbFxYV58+axcuVKpk+fztatW3XPyY8//sjLL78MQK1atRgyZEgR2QMGDACk5yEnJ4fMzEw0Gg2n\nT58mMDCQtWvXcvfuXS5dusS7777LoUOHiuTFP//8Q8eOHdm5cycNtK4qGzVqRM+ePQG4cOECly9f\nZuzYsbRv357g4GBycnL4/fffKz3f7oejR48SEhICUK7nICsri8GDBxMUFERoaCiJiYmlxvXIGIzt\n27eTm5vLoUOHWLhwIdOmTatqlXTIxgKgQ4cOxMXF8fLLL3PlyhU6derE4cOHS7x++PDhrFmzBk9P\nT15//XV8fHwQQvDVV18BsHfvXvbs2cOkSZO4fPkyo0aNYubMmahUKnbs2EF8fDxffPEFzs7O7N27\nl8uXL2OrdSSu0Wh0hbRMQUGBzi92SkoK8fHxqNVqLly4YFQ/w2XmrYw44IiIiGD27NnUrFmT8ePH\n06tXryJxym3E8q9GU3yN94KCAvK1S9Xb2dkVuVYIQV5eHuPHj8fBwQEhBK+//jrz588nNjYWIYQu\nLz766CMOHTrE3r17efPNN8nNzS0x/x81YmJiOHz4MIcOHSImJobLly8zbdq0hyIvbGxsiuxbWhbt\nJv3pp58IDQ3FwsKCZ555hgkTJuieE0tLyyLPhYVF0eJJfibkZ0gIwZ9//kl+fj4HDhygW7duHDly\nhGnTpjF06FD8/Px0eZGQkEBcXByHDh3CwcGBRYsW6fJC1lGj0eDi4lLkA/HgwYOMHj3ajDlkXhYt\nWsS4cePIyckBKNc7sXLlStq2bUtsbCyjRo3iHSN+gQx5ZAzGwYMHdV+2nTt35rfffqtijYwzY8YM\n5s2bx4ABA/jggw9o1aoVFy9exNLSkoIC446ToqKimDVrFkOHDgWkL4aCggKGDh2KSqXiiy++QKPR\noNFoSElJ0X05JCQksH37do4fP46trS39+/fH2dkZOzs7rly5Akiubrt06cLy5csBSE1NZcOGDfTq\n1QuAsWPHMnr0aNauXctzzz1X4eVYoqKiePXVV3nuuefw8PBg3759uvRaWlrqXk65cGjevDnW1tZ8\n9913ANy8eZNt27bRs2dPk7Wx6dOn88orr1C7dm1AWhkgKCgIkGp2P/30E8ePH9f5hnd2dtb5hn+c\niIqKwtvbm2eeeYZ+/frRv39/Tpw48dDnhRCCnTt30q9fP8aPH4+vry/fffed7iMhNDSUzz77DICk\npCS2b99eame0lZUV+fn5CCF0ck6cOEFgYCBnzpyhR48eREVF8c033+Dm5oaVlRV9+vRBCMEff/zB\n9evX+fnnnwHpmbS1tdV9qF27do22bduWe4DLg6Rp06Zs27ZN986U553QL1P79OnDTz/9VGp8D3yU\nVEVJS0srslSIWq1Go9EU+woxJyU9rPpfzPrhXnvtNUaPHo23tzc2Nja0a9eOsLAw1Go1Pj4+eHl5\ncfDgwSLuZ+fPn8/AgQOpWbMmDRo0YPDgwVy6dAkHBwdAGmU0Y8YM3N3dcXV11fk+r1GjBnv37mXf\nvn04Ojrq/Kir1WoyMzN18r/66ismTZrEunXryM3NZeTIkYwePZrly5dz48YNtm3bhlqtpnfv3owf\nP56FCxeaTJ+pfJg1axb/+c9/mD9/PjVq1GDIkCG6YXxPPfUUk7VOjGR5lpaWbN++nfDwcCIjI8nP\nz2f27Nl069aNmJiYYnGmpKTg4eFBr169WLBgQbFak+wDPi0trUK+4R8lEhISuHbtGrt27eLy5cv0\n69fvockLw/umv29hYcGyZct4/vnnad++Pa6urgwYMIDFixcD0ojJl156iTZt2uDu7k7Dhg2xt7cv\nUW6zZs3QaDS0aNGC+Ph4rK2tycrKonfv3nTr1o3JkyeTn5+Pv78/ycnJACxfvpz27dszePBgmjdv\nrmtCs7KyYseOHUydOpVFixaRl5fHvHnz8PPzq5zMMgODBg3SfRwC5XoO9MvUMj8bld9NUjJHjhwR\nwcHBQgghLl68KAICAkTXrl3FK6+8IjQajS7c66+/LrZs2aLbr1ev3gPXtSpQqVSibdu2Yt26dUKI\nwnSvW7dO+Pj4iMmTJ4vvv/9eTJw4UXfNwIEDxYkTJ6pC3UojKChIdOvWTQQHBwsXFxfRqVMnYWVl\npTu/ffv2Ks2LnJwc8fzzzws/Pz8RFBSk6/iV+frrr0X79u2Fn5+fWLJkyX3FNWPGDN0gAiGEaNOm\njW5UmxBVnxcVZcWKFeLw4cNCCCGys7NFp06dxJ49e0q85t133xUzZ84UQghx7do10bRpU+Hh4aE7\n/6jmRXmIi4sTXbp0EUIULRdLSvtvv/0mBg0aJI4dOyaEkDr4W7duXWpcVdokVZb2N5mAgAB++OEH\nAI4cOaLrEH2cuX37NkIIZs2axZgxYwCpw++XX35BpVKRkJBAUFAQnTp14tdffyUnJ4fU1FTOnj1L\n69atq1Z5M/PLL78QExNDdHQ07dq144svvqBPnz788ssvgNRhWpV5sWbNGuzt7Tl06BBr1qxh7Nix\nunNJSUnMnDmT/fv3c/DgQXbs2HFfzRyBgYHs0fqNv3nzJpmZmTz55JMPTV5UFC8vL6ZMmYKPjw++\nvr6EhobSu3fvEq/JyMjQfSW7urqSn5+ve0fg0c2LilKetOuXqXLYUjGrqSsnW7duFRcvXtRZx7p1\n6+rO7dixQ0yaNEm3r9FoxIQJE4S/v7/w9/fXDSd9nAkPDxe1a9cWwcHBuu306dOiW7duws/PT7z4\n4ou6WtiaNWtEx44dha+vr25I7uNKcHCwOH/+vLhw4cJDkxcTJ07UDREWQoiaNWuK1NRUIYQQR48e\nFQMGDNCdi4iI0M0jqChvvPGGLo1RUVEPVV48SJKTk8UzzzwjAgMDRefOncXGjRv/dXkRFxcn/Pz8\nhBCiXGnPzMwUQ4cOFYGBgeLJJ58Ut2/fLjWuKve4d+XKFcLCwjh8+DB169blxo0bAOzfv59169ax\nYcOGqlRPQaFMrFmzhqNHj/Lpp59y5MgRAgICuH79OrVr1yY5OZlOnTpx8OBBHB0d6datG4MGDeLN\nN9+sarUVFMrFQ9Xprd+Bfe/ePVxcXIqFadq06QObg6Hw76NJkyYVWnNn7NixnD17lq5duxIQEECz\nZs10S8q4urqydOlSBg8ejLu7Oz4+Pkbn8yjPtkJlUtFnW5+HymDI7W/dunXjxx9/5MknnywW5u+/\n/yaaaLPE9zmfM4YxiqzHRFawCL5vWRVdU+jYsWN0796dJUuW8Ntvv3Hs2DHdnIT8/Hx+++03XTty\nt27diIiIKCbj77//LnGCZ3mIjIwkMjJSkaXI0mGO9bIeCoMhJ2Tx4sWMGzeO3NxcvLy8is30lKlo\nwdByeUu2DtuKl4cXADGRMays+QtbvimA6Lkmryv2Dk+eDNp5DQD4+xNz7RrBdc9DSAgsWFA0/KhR\n8MUXRY/5+sKJE0WPubpCcjIxQLD1RijrJKv69eHaNaOnYoBgn/9Bx46werV0cOhQ+OYb6NoVfv0V\nunSBK1cgPr7EaGJatiT47PqiB52cJNn79xcee+MNSE2FzEywtYU//5TC7d1bVC+0sho0gIAASEkB\n7Qz0YnTvDg4OsHMnWFmBvz9oO/di2rQhOGZpibpXNs2bN+fZZ59l/vz52NnZsWbNGjZu3Eh6ejrj\nxo1DrVbj6+uLWq1mwoQJNG7cuEr1VVCoCFVuMDw9PTl06BAATzzxRKW6VBRCoKKolbXAAivrfOKT\n4PffpbLr9m1ITIRLl6Syz4ggGDwYFi0CtRoaNoTISGkDyRjk5EC/fnDxIvj4wIQJ0nV//w1JSTBu\nHEwsu9sAACAASURBVBw4IBWEsbGQnw+9e0NUFHz7LXz8MVy9Cj/9BLVqQefOktHp1k0yJJ07g42N\nVAgHBsKSJfDKK5LSTk7g4SHFtWMHLFwo6RUWJhW6HToUpmXPHileIWDtWujZE2rUkAzic89Jug0Y\nIMn65hspg+rXh0OHJDk9e4KlJXz1FTz5JNy5A+3amb4JsbFS3ixdCq+9BnfvwsCBIM8m37kT7Owk\no1CvHjg7w+nTEBws5fW2bVK+WltLNyo5GTZtkoxtFeLm5sa+ffuKHGvSpInu/9tvv83bb7/9oNVS\nUDAvldNvX3ncj8rNPmomziWc0+1HR0eL4SveEc1fmWk0fFKSEC4uRk5MmCDEihVFDplzNVVFVtXJ\nqspXwpxxP6z5q8iqOlnmeL6qfJRUeZHXFaoIT3z0BLtH7KaZezPdsbAV8zn11z3OfbygWPiUFPD0\nlH6LMH48tG8v1RoUHivu5/l6UHF/+y1ERxdtFZVZvBhq1oSRIytBQYVHGnM824/MWlLmQBhpklJh\ngeTBsDgqFRhZI09qvqnEJUkUHj6Cg4M5f/68yfO5ubmMGjUKf39/unXrxunTp4uc/+677+jYsSOd\nOnVi1apV96XLmjWwYkXhfkqK1GL49tvwn/+AMlpXobL4V5V6AoGFyiDJQoXKwphVkGyCUYOs0UjW\nROFfQ2lrapU00xukVQz27dvHwYMHWbx4scl1e65dg7w8CA01/uwdOyZ1cwH8/LM0VqF7d2jaFOTF\nRrULFQPSuINbt6T/BQXSZjx9IE8+z8kpPh7DHKSmSl16JVEeR48FBdJ4isrkwIHiefbPP3D9evnk\n6C33VIRjx0yOV+HECRMfrFXIv8pgaITGyEuv1DAUitK/f3969epF27Zti9UGUlNTGTJkCN27d6d7\n9+6cOXMGgL/++os+ffoQExPD1KlT+fPPP2nVqhXz588H4O7du+zYsYOsrCwyMjKYOHEiIM29GD16\ntG6Bu5s34bvv4IcfICOjeGGlv1J+jx7QqFFhQS9z6ZL07KpU8PTTUKeOdDwoCLSLFHP0qDQ+QR8f\nH8m4rFghjWe4cEEay2CMkydNfEyVwMCB0KyZ6fNXrkjjN/QHB968Cf/9b9Fwp05Jce/cCeVZ3ePk\nyXKpC0gDCQ0H7nl5FR3XsWqVZORNkZ8v3aesrMJjQsD27dLYFXlMCsDlyxAXB59/Lt0DU4MGq4p/\nVR+G5weexIyJwdPFU3dsxMf/5dTFW5xdtrhY+MxMqF5d+i3CCy9IT5LBV6TCo49KpcLPz083Z6JN\nmzYcPnyYYcOGsWrVKtauXUujRo2YMGECFy9eZOzYsfz666+6md4jR47khRde4OrVq1y4cAFfX19S\nUlLw9/fnzJkzuLi44Ovri6urK2vXrsXKyoq4uDhq1aol+RmJrOocUHjYELPNU0Sbow+jyofVPkg0\nQlOsDwNhASqlhqFQSLdu3VCr1djb29O6dWsuX76sO3fmzBmio6PZvHkzgG7JbHmmd3h4OLa2tjRr\n1ox69ephZ2fH1atXOXv2LBs2bKBfv350796dFO1ICnd3d+rVq1cYeeRsPU2CsbcPJjNT6rdo0UL6\nTikPLVvC2bPSR4+9vTQaOSdHerbffhuysyXZ8sAOlUqquezbB0OGSB3sMnJZo19J1y9/VCppBLjc\nBCZz8aJUs/DwgIQE6ZroaKkpTb7+11+lGhDAxIlSbaRHD2lK08yZxeP54Qdwc5OmEOmf8/SUmoz+\n7/+k9MmjtWWdk5NBfwGJixdh/nzpi75uXbhxQ5LXvbukI0g1vq++kvJy7lxpBHdKitQMqD9x2lDH\nbdukdJw9K9VK7t0DR0dJRr9+Uo0OYPRoaYT8J58Uv39adzEVIiYmxuzTFP5VBkMgjDRJqUBVgT4M\nxWA8tsjOuTIzMzl79qzODS5AixYtGDlyJGFhYdy4cYOvv/4aKJzp3b9/fxYsWEBeXp5upnd2djZq\ntZqEhAQsLCzIzc0t5oGwkMgie9nZaOVLU3dKo04dqRlHRn5+tW4lihX227YVHQUohGQs9K+VycmR\nCraSKOtcU8Nk67f8rVghFdw9ehQemzZNml4kT3WKj5f6eUCaBnXokFTgyx9477wjzVPds0fSW58X\nX4Tnn5em9qxZIxkLKEzvuXPF9f32WymeuXOlQr/YyEktN29KekBhf40sV9Zt9mxp08eYsbhfgoOD\nCQ4O1u3PmTPnvmX+q0o9IYx1eleghqF0ej/WpKWl0bNnT4KCgpg9e7ZuTSiVSsVbb73Fli1bCAkJ\noX///rRs2RKQZnovW7aMyZMnc/r0ad1M76ysLJo1a8aoUaMIDw/H1dWV5ORknREqbbkG+flbs6bw\n2BNPSPMxjeHlVXLa8vOLGoLyLF1VNv86ZTtX3tdnyRJ4//3Cff0+lKtX4a+/il+TkCDVEtauLRrv\n2rUwfXpxHWRDe/ascf3k+Erq8NY/FxEB69cX3sOHrQO7Ijx0NQyf/2fvuuOjqLr2M7ubHtIDBKSF\nEAhCCiAJCYSEjoD0jkiVJk3EgtIsfFbAglIliIq+0gRe8Q0lCNI7UkNAei9pJNmUPd8fN7M7uzvb\nd5MNzJPf/nZn5t4zdyZ37pnTmzRRV4cKDQ1Vl2y0B8RUUhxklksYkkrqqUbz5s3x9ddfa+1L4/UT\ngLqsrBCGIr0HDhwIAJg/fz7mz5+v1++WUBwA0KMHM4Yag1jp9cBA4NdfmUpIaAjWXfhKSjSGbEMl\nnF1dmaSg2zc7myUBMAb+eWnenGXQGTpU/5jYuHQhdtwcJiPmcSSmQhNjMKbOY476X7dNSgoL2TLW\nvyK9ezoVwygolb+FD6c9IaqSIuMqKUnCePZgjyRt1mLYMOMMY/Nm8f0jR7LMLDz4VGXnzum3NZWw\n1NubZWzRXeDMeUPm+xw+zHTz1jIMsXtg7b9FjGGYoiW2uBMxCc3Sfk+ThOFUr8knT55EXl4eOnbs\niLZt2+LgwYN2pW+NSkqSMJ49fPXVVxb3MRa4d/fuXSQnJ6s//v7+WGpAad29O5MQDCUo5fX2uhDG\nL1y+rJXnUQ+mFktDC5u1C5610oKlNM1pyz/P/OMr9nwbkzBycoyfyxCjMXTMFJztvdSpJAwvLy9M\nnz4dI0eOxMWLF9G5c2ekp6dr1cmwBeJeUoYlDP6fRaTzj5MkDAk6EAbupaenY+DAgThaGv1WpUoV\ntdS8f/9+zJw5E6ONWLD/+YfNucJC5sHDw9VVe9rNm8feeGfN0n5/qVPH+FjFpm6zZiwv5Ny52gZo\nISyRMCw9Zg6E4zb38TMkJVnz+BJpnBDMPZ/wnE+DhOFUDCM8PBxhYWEAWObawMBA3L59G9V5t4NS\nCPPD63oCGIN4pLfhwD1AY/iWy4V9JAnjaYG9XA/5wD2AzeObN28iOztbXW8aYBLupEmT8PPPP5tU\ne3EcszEIGYZu2A+fAmTWLMuS9epO3XffZTRcXdk8NxQNbmi/EI4yelvbR7efLsMwJP2ISSUqlelF\n394Mw9neS52KYaxcuRKnTp3CokWLcOvWLWRnZyMkJESvnbUFRcQjvQ1LGIABw7fkVvvUwF6uh9HR\n0diyZQt69OiBAwcO4P79+3jy5IkWw9i8eTMaNWqk5aZrDBzH4hM8PZmxuUoV8XZ372rcZs2ly+Pc\nOSA0VDtewRaVlCMZhrUwZsMwNF5DqiVLGQaRaZWUszEFY3AqhjFy5EgMHz4ciaURPCtXrrSbOgoQ\nTz5ozIYBGHiAJJWUBB0YK9HK46effsKUKVOM0rFGejbluaQL4dRt0ED7mEHPQFjPMMQWZ2tUSsb6\nGDsmXELMUUkZs2GYkrLEGEZ5qaSe+sA9hUKB1atXO4y+oeSDgIUShqSSkqADYyVaeRw5ckSdM8oQ\n7FWO0xhMLa62MAxjbeypktJzdjQi2YippIw9vsbGZotKqqyTMDkicM+pGIajIaaSIknCkGAHmCrR\nev/+fXV8UXnDFMMwtMBZK2HY4iUkhDVGb9225rjV6towhH2tkRJ0I70rMp4phiGukrLChiFJGBJ0\nYKpEa3BwMI5Zky7VATA2dQ3GHsH6BY/vJ1TnmPv4mMskzD2mq5Iyx4YhZHiWqqSE53wajN7P1Kpn\ni5eUFiSjt4QKDHMlDF3YKmEIF9uy8pLSdYm31YbhCJWUszEFY3imVj0xlZSx1CCAgQdIUklJqMCw\nlmFY61Yr9obtLF5SlsBWhmGob0UqMPFMMQyxSG8iDiSppCTYCFMlWg8fPozExES0atUKAwYMQKG5\naV0dAHM9inRhq4RhK8Ow1oYhhK7R29JIb2tUUvay4TgDnqlVz1A9DM4alZQkYUgQwFiJViLCq6++\nipSUFOzZswdt27bFv//+W25jdZSHEODYSGdjY7Onl5Sxc1gThyHZMCooDCUflCQMCbbCUKQ3AKSn\npyMwMBDz589HUlISMjMzUb9+/XIba3lJGMbGYM7CaA+3WnO9pMTgKJVURfKeeqZWPYPJByUJQ4KN\n4CO9AWhFegPAgwcPsG/fPkycOBHbt2/Hjh07HJaR2Rw4kmFY2s9adY1Y2nZD7azxkhKDo1RS5jI7\nZ4BTudWqVCqMHz8ep06dgpubG5YvX67lmmgzfRGVFElutRLsAGOR3oGBgQgLC1NLFZ06dcKRI0eQ\nnJysR8faPGmWwBkkDKFdQytPm5G+BrNHmxibNV5Shtxqy1rCsMXu8dRHem/cuBGFhYXYt28fDh48\niGnTpmGjSGJ83qtVL4usCYippDhLA/f4WVP6ZPH1keVy4xNfiOJiQKFz5wsKAHd38/obomEKtuhv\nxc4PWHcd1oxdt39+PsufZO49dzSMRXqHhoYiNzcXly5dQt26dbFnzx6MGjVKlI4zRHobgjleUmKL\nn9g+cxmGEMKFXJemuQxDN725JXCUW62jVFJPfaT33r171Xrg2NhYdW1lXcjlQEgIKzbfpAmr2xsQ\nwCY0n0RNDGIqqRy6hwuy9QCAzj91xtKuS1HDtwYAYFbaLIyI/ACVQ/RfbX7f7Y/ih0CfPmzb35+V\nkKxUiaWlzs5mxebz81k1tHv3GIn8fGDqVODrr1lR+YcPWfuXXwa++Qbw9QWCgliq6cqVWZvHjxlj\nCgwE8vJYPeExY1ipSYUCePKEPQBKJbsvxcUa90g3N3Y8L4/1qV+fnbuggLV3d9cITMXF4jWbCwrY\nvZbJgPBwVtZz9GjAwwP45BM2roAAVsVs2jTgzTfZPpWKpdouKdHUelYo2LUuWsRqJOfmsnF4e7Nj\n9+4BwcFsvDdusPspl7N7KZOx+/fyy5qxzZ8PREUBbdoY/r+XBUxFeq9YsQKDBg0CESEhIQGdO3cu\nt7HevWv4mHAhtSbSWwz29ByyNArd2jgMQ5HetqikrHGrdTbPKqsYhkqlsmtSQB666aDlcrnouZov\niQdKXKB4chNRS6Lwv8oeaOJ7CTk5QDPvs3irsxw9P92M9efW44uOX6j7EfQjvQuJ6Zm5uRw8C4Ho\nm9HwcvHC3UfXISMgfweQM2ISPJLjUFClFrzcSzDp42r4ZnYokjvkAe3nQJH2KSpXBviXxnbtWD3h\nSpUALy9W4ezSJVZ0np80mzaxBd/NjS2Q/v6spCUAJCQAV66whbpSJfabR7t2mkX922/ZQrp9u6Zf\nlSpAUZHmLdzNTSMQ+fuzhXvWLPZ27urK6jTzD4irqzjDzctj7YqLGWN49Ijtz88HJk0C4uLYNp8x\n9dNP2XdkpIaRK5Xsw0sWEyZo6HfowMaVn8/GERTEGKlCwc7p4sKYU0EB8Ndfmn5+fsDOncDrr7P+\nLi76Y7cFlsxzU5HeycnJdi8IZgpDhgA//qi//6OPDPcpKxuGNekyhNK+bj9jC7k9bRhlrZJyNoO4\nVQyjXbt22Llzp73HAh8fH+QISloZemCrHasCd4U7XLNVGJqxHlfdRuPXrE44jhjMVL6B5y9cRJtl\nLaFQAakn1mJE4hRMiWNZQjt35lCtGltUvbyAh8emYFQrL5zLmYi/l5XgXqvauOeuQqNtmuLAPt8v\nBL4XDKDeH4hZOBpni84AT+6iw7AzAIDgmyEIqeICzvMRuPzH+OvqX4iuGo3AInfkXfaGvLESBUVP\nENr7HmQB9RDhGYgnhU+gIhWieufg4QPAW+EP32AlQpU5yC3MRR2/UNxJVaJq7UeICKkLeDyAUlWE\nBp1voEZQBNwUbqiX+BD1gkPhFfgIHMfhSUEWcgtzcS3rGhoENYC3qzfkMjl6jvNBljILhSWFcJW7\nQiFTwEtVDD93P7jJ3XDh4QXczruPAI8APMp/hMKSQgR4BMDXzRfPufvBXeGOxwWPUZB1G9XP1URA\nsBJVQ4Cqfr6Qy+SQc3KMnAzcy32Aq1c4PFe7EF4uXpBxMihLlNh4fiOaV2+OVk/qgkrkkHlmQVYQ\nhGp1CDnKHHAcBze5G9zkbqihcMPt3NsoVhVDWayEj7sfguSuCGvmipoN76IAmQCATE6GkAgvZNz8\nGRG1tbPDmgNjel5HzfOygiUqTh7GGMZLLzFGbgqPH2t+FxZqpEshzGEYKhV7TnlwnGbbEoYhRHQ0\n+zYVh2GODUOs1K01KqmnXsIgB11FQkICNm/ejL59++LAgQOIjIwUbbdh8QYAwIEzqYj8T2eEX16K\n6tWBixeBbW/vQoedC6H8kB/jNQCvA3gddz2B9/ooEfOCG4qKgMICFV703oeXvhivpl3ZLQCVo2OQ\nP/INcFu3YnTRBjxexN68lUqmHnlj51aceViAaQ2m4XHBY4T6h0LOyXGj+g34ufvB29Ubh28dxrbL\n2xBXPQ5uCjcktmUp27MKspDxKAP5xfloENQAfu5+KFYV42rmVeTUykG1StWQX5QPAPB29QbHcWhT\nJx/H7xxHVJUoeLp44sz9MwjxDkGL51rA08UT3i5/IyI4HAEeASgqYU9UoGcgLjy4gKreVSHjZFDI\nFLiZcxNVvKogtzAXLnIXuCvc4SZ3Q7YyG8oSJQI8AsBxHKp6V8WDvAdIf5iO8MBwVPWuCiJCbmEu\nVKTCn8o/8fKAlgjwCICHwgOPC9gKUVBcAA4cMgsy0bq2O1zlrvB198W9J/cQ6BGIx/mPkVw7GR4u\nHriedR0xIckoKC5AsaoYHDiUUAm8XLzAcRwKSwrRvHpzyDgZ7uTegYvMBcoSJVoO8MPtnNtQyBTw\ncPFAYUkh6sfWR+3qHlbNOWN6XkvmeWFhIUaNGoWMjAy4uLjgq6++QlRUlPr4ggULsGLFCgQHBwMA\nlixZgvDwcKvGbC7E1IumIHwbT0/XP37jhvG+REx9aWwMly9rpFJjKqKpUwHdarmvvMK+dRmEUml8\nXIb2ffml6fbCBd8RuaSeegmjZcuW9h4HAKBnz57Ytm0bEhISALB6GMbAEUElYxID/49KqfIc6j7W\n/q/ti/DGlIRcHFoOLP3BHfgBQO3aGl3PuHHstWj1arXOxANAZvcu2LxwC1b7sWa8ysXVlTCw8UC8\n1vw1g2MbHjMcX3T4Ah4u1i1kluCV6Fccfg4hpidMt6rf8Jjhdh6JY2HJPDdWohUAjh07htWrVyMm\nJsYRQxWFNVpjYZ8zZ0y3P3QIaN5ce9/Uqcb7CN8Djb1979ihvX3rFsALg0I1LcDUlWKLa2EhcPq0\n/n5LnGV4JmFKJXXtmv65iEzbaxzlJeUIWMUwPvjgA3uPAwDAcRy+++47s9vLwEGl84+/Wi0UEe90\nwzlZJJvx69cjnuPQZMtYYPkSTcMuXZi1tEEDJqdWqqQ/HnBQkf5/UzRiXARlwSwkOA6WzHNTJVqP\nHj2KefPm4c6dO+jSpQvefvtth4xZCGsWG1NMRlfqiI1lThWvv645X2qqcRql4SkAgJ9/BqpWBXQy\nqQAQZ1i8SmzrVu39v/7KHE10sW4dcPy4/n5j92b6dODECc32woXsW6kEunc33C8pCdAN4Bcyss8/\nZ/ZKXaxfb5jmqFFA796Gj5c1nMpLylLISD/kjpOpUCyXAx98qLV/cdfFaFP7LSxdG4CwoEygenWT\nvp0yTgYSCeoTDQCU8EzDVInWgQMHYsKECahUqRJ69uyJ//73v+jSpUu5jllsoTLEMEaMYE4affvq\nH/Pysn4M48ZZ31eI7ds1zh9CiDELgKmvDUHILAAmRfHIzzfcTyzby5EjGib766+G+xpCZqblfRyJ\nis0wwIH0ZEtisRUiuCavA/IBUMu8QjYcZ0TCcLYQTAnlClMlWidPnqxmHl26dMHx48dFGYY9A/dM\nSRjt2unvM8QwXnuNMQxnhIuLtnHc2fDee9b39bBBSfHUB+5ZCo6IVVgVQqYCDKiLLA3QlnEyUcOn\naF0NCc80jAXuZWVlITIyEmfPnoWnpyd27tyJkSNHitIpi8A9HmLvPIaej+hooHFj4J9/HDceaxf+\nsmYWH3/MNNk9ejj+XGJM3Vw4InCvQq96MoKeDYOgKs0PpQ9LU0DZasOQ8Oygfv36+PLLLxEfH4+3\n3npLHbi3bNky+Pr64uOPP0ZycjISExPRqFEjtb3DkTAlYRjzHuLRr59mv67+vn17cbohIeaNTxfm\nenXpLtTm5nH8z3+0t3nm2KmTuG0BAFq31t/31luaaxe6EBuDSBYYLYhlQBo61Do1liNRwSUMfYbB\nccSKIonAKglDsmFIMAOmAvcGDhyIgQMHlvWwjMIchhEVpVlodZ8dQy9ftmprOY4Z0w8cED8uDI1R\nqYDx44ELF9j2Z58xo7UYGjfW3pbLWX+FggW83r+vfTw/n8We8OjVC+BzRvKqIkGcsShGjQKWL2cm\nU0MgArp1Y8G9wmKeoaG2qaQcgQq96skI+iopTsUSCorAYgmD40RVUipINgwJzg9rJAxhn02bmDMh\nz/fKKt+mSgWEhRk+3qiR5rfuNeiqp3STFwphqmSsbo6r9u01WQ74mBNT92TpUvYt4oQJoVaSP789\nikQ5EhWbYYATYRiGjd7WSBhiKilJwpCgC1MV93i8+uqreOedd8p4dOIwZ0GKitJENItJGHwAnikM\nG6b5vWGD6fa6zI7P2QawlCcAkyx0YcyeYayGhjn2HGvclDmOSSm1ahkfjzMyBzFU6FVPzK0WnApk\nwL4gFPfMAQdOVCWlIpXEMCRowVjFPR5LlizB6dOny0w6tUbCMAZzVVKm0K2bdf148N7wn3yif2x4\naWyomD3EGoYhliJEF7/8AgwaZHi8v/8u7npsiGHwbrzOWEHBCYdkPgzaMOxl9DbmVisZvSUIYKzi\nHgDs27cPhw4dwpgxYxyWWkcXtjIM3eP2Yhi2LoR8kkkxOjVqMNuHmLHa0ip7hlKE6KJ/f+MBfZac\nEwBeeMH48fKEUzEMIkL16tWRnJyM5ORkzJgxw2h7Mbda5iVlH7daninoPuCSW60EXRiruHf79m28\n//77+Oabb8qMWZiD8pIwjJVANacPL2EYepZjY8WPWVOW1dzx2coEzWFYzgCn8pK6dOkSmjZtik2b\nNpnVnqUG0SmIxBEM8UFrJAxAPy26FLgnQRfGAvfWrl2LBw8e4MUXX8SdO3eQl5eHiIgIDB06VI9O\nWQbu2cowyktlYophGEJ5MgxTNhJHMIynPnDv6NGjuHnzJtq0aQMPDw8sWLDAaEZPTiViYeDsJ2EA\nguA9rapdkoQhQRvGAvcmTpyIiRMnAgBWrVqF8+fPizILoPwD94zBXhKGNTAmYdhDaDNH6rG3hGHK\n6G3r/X2qKu6tWLECC/msXqX49ttvMWPGDPTu3Rt79+7FkCFDcEiYyEUHYskHwZHdAvcATfCeHBof\nO8mGIUEXpiruCeHMRm9LF0VHadiM0S0vCcMYbC0VLKmkTGDkyJF66RHy8/OhKJ0NCQkJuHXrlmhf\n/i0s88YlNC9WobbwoCMkDEg2jKcV9hLbTQXu8XiFL+jgBDDFMBxl9LYVPMOw+OXPCoYhVg9cDLZK\nGM7oESUGp1JJvf/++wgICMD06dNx8uRJ1KxZU7QdzzCuH0hF4eZftI7ZMzUIIO4pJdkwnh44Qmx3\nFjirW601EFtcxYLdLKEhrMUhGb3Ng1MxjLfffhtDhgzBH3/8AYVCgZSUFKPtmVut+UZvm2wYWnQk\nCUOC88Pe6iJnkTDMeYZNLcB8WhBTNCuyDcMRcCqG4evri82bN5vdngXu6SzmRlRSttgwtOhINgwJ\nOjBVonXdunX45JNPwHEcBg8ejEmTJjl8TBWNYZg7XmsZhhByuX69cFOQGIaTMQxLwUE8cM+QSkqy\nYUhwFIyVaC0pKcE777yDo0ePwsvLCw0bNsSQIUO06mVUBJSlhKG7OOtKB7bSFF5LeamkLA2cdAZU\n6FXPUHpzeyUfBMQTEEo2DAm6MBbpLZfLcf78eVSqVAn3799HSUkJXF1dHT4me0sYulOeT8BXFrBH\n3iVDDMNcmpKEUcEZBieardZ+yQcB8QSEkg1Dgi6MRXoDgEwmw/r16xETE4Pk5GR4enqW11DNhikv\nqfKCteMw5gFmaxyGKanHGmnCGRlGxVZJEUEk05N9JQyRBISSDUOCLkyVaAWAXr16oWfPnhg2bBh+\n+OEHDBOmcC1FWUZ6WwpbIr3tORZ7qKSsYYYVTcJ46iO9LYWYDcNY4J7dJAzJhiFBB8YivbOzs9Gt\nWzds27YNrq6u8PLygtzAqleWkd5isGRRLMs3YGPqJDGYGpszqKRMnV+K9LYzDJdolWwYEsoWpiK9\nhwwZgsTERLi4uCAqKgpD+KIODoQ1b/WOYhi2LsjmuMBaQt9clZShMejCmlxSptKrO+MSU6EZBssl\npT3LHBGHIdkwJJiCqUjv0aNH66UIKUsEBQH16gH791tP4+FD7e2y9JKyVMIQg3DBF449PBwwUO/K\noXEYhsZjbF95o0KvemK5pIhTgfT0VAySDUPCswThAte+PfD885b1DwnR3tZdVDkOSEgA3N2tG58l\nSEoCqlZlvw0tzgIfAy3wz7zYG31uLqsDXh4qKb6uh3A8QkgMQwcbNmzA4MGD1dsHDhxAXFwc0iPx\nwQAAIABJREFUWrZsiffff99kf45I34YBcRsG/88W/hPMMQgZSg2iK2HY07gk0So/WtbCVInWNWvW\nqOf2uHHjHF4XQ3hP2rdnC/tnn2mOJyQY719YCMTEaNPi34ibNmXSSvv2wPz5gIGUb6LYtm2X3r43\n3jDcPjSUfY8frzkP/wzz44qLY0xL6HgmfM6nTGHfRMCPP7LfPHPx8mK5qTIz9celC2P/Mr7C37vv\nAt26Gac1dy67vx4emn2BgfrtGjZ0jrktRLkxjMmTJ2PGjBlaD864ceOwZs0a/P333zh48CBOnDhh\nlIZYxT2WfFCcYXCc5QxDNDWIiNHbWRdAiVbZwFiJ1vz8fMycORO7du3C33//jaysLLULrqOwa9cu\nzJ4NrF4NpKYCEyYAfn5M/VKnDvCf/4j3i4sDIiK03375+ztmDFsQjxwB0tM15VC9vYEmTTSSxoQJ\nwKhRwJtvssp3778P9O7NGMzffzNaX37JzrFiBdCzJ+v31VcaJjVsGPDyy8Dp0xqvKD7u47nntMf1\nyitAfr72dfTpA7Rpw37Pnw9Ur84kpm7d2GfSJOCjjzTtQ0J2afVv2ZJ9v/wyMHo00K4d0LmzwdsN\nvgrDhx8CTZowWnl5muP8WNauBWbNYtc+bBjw3nuafn//rWlPxPo4w9wWotxsGAkJCejZsyeWLFkC\ngHmSKJVK1KlTBwDQsWNHbN++HdHR0fqd164FfH3hsvdvqIiw+uRqnLp7CvWD6mPjvc9RdGs4Dhxg\nYmJxMXDpEitkb1URd3BYcXwFfN184a5wR7GqGLuu7MLs1rNtuXwJTxkMBe75+PjA3d0d+/fvh3vp\nilpcXAwP4eulgxAaqnlD53H6NFt4FQae/Pr1gbNnxY8lJIhLJi4uQGlQu1F07QrwTmCTJrEPD/7Z\nHDWKfXfsyD4Ae4aFqFqVtTfmUPbKK+zD48YNzW+x+mzNmgFiPHz4cA1jNAY3N+P2jvr19ffVqwd8\n8AH77eFhWupzBjicYYjVvUhJSUG/fv20uCf/cPGoVKkSLl++LEqTCwpiP5Lasc9jAK41gGwALdcD\nLYEWBRraqFH6SQY4wW5cuYK5pjh4058xUwVA+AbTOg3JVwBcEfQ1h5a5kGhZRYtsiFmwFXzgXo8e\nPbQC93x8fMBxHIKDgwEAX3/9NZ48eYJ27dqVyziFkoMECRaDyhFpaWk0YMAAIiLKysqihg0bqo8t\nXLiQPv/8c70+devWJQDSR/o45FO3bl2r5nJxcTFNnTqVWrZsSW+99RY1aNCACgoK1MdLSkpo2rRp\n1L17d8rPzxelIc1t6ePIj7VzWwin8ZLy8fGBq6srLl++DCJCamoqEhMT9dplZGSAiKSPmZ9Dhw5h\n7Nix5T6OivLJyMiwav7ygXt79uxBnz59EBISog7cA4AxY8ZAqVRiw4YNatWUNLdt/2zatAmTJk0C\nEWHLli2YNWuWxTS6dOmClJSUcr8WR3+sndtClGscBsdxWgFwixcvxuDBg1FSUoKOHTvihRdeKMfR\nPR04c+YMbggVuBIcAmOBe82aNcP333+PxMREtCm1fk6ePBk9evQo51FXfHTr1g3dunUDABw+fBiP\nHj2ymIbuOiTBCEiC3ZCTk0N9+vSh6OhoatKkCY0ePZpUKhUREW3atIliY2MpJiaGEhISaP/+/URE\nNHv2bOrduzclJiZSeHg49e3bl7Kzs4mIaPPmzRQfH0/NmjWjmjVr0syZM4mIqfIiIyMpPj6eoqOj\nSalU0qRJkyg2NpYaNmxIERERtHfvXrp+/TrVqFGDfH19acSIEUbHoYuPPvqImjdvTpGRkVS3bl3a\nsGEDERENGzaM+vXrR0REp0+fpsqVK9O5c+eIiOjDDz+kJk2aUHR0NPXo0YNu3bpFRETr1q2jJk2a\nULNmzSg2NpZ2797tiNsvoZyRlpZGcXFx1Lt3b2rQoAE1adKENm/eTO3bt6eaNWvS1KlTSaVSic5V\nIqJ79+5Rly5dKCIiglq2bEm9e/emOXPmEBGRm5sbzZkzhxISEqhOnTq0cOFCIiJauXIlde3alQ4e\nPEhVqlSh4OBgevfdd9X7eQi3b968Se3ataPnn3+eOnXqRM2aNaNVq1YREdHZs2epQ4cO1LRpU4qO\njqbvv/++LG+h00NiGHbEDz/8QJ06dSIiprMePXo0Xbp0idLT06lx48b06NEjImILbUhICD158oRm\nz55N1apVo7t375JKpaJBgwbRG2+8QUREycnJlJGRQURskisUCnr48CGlpaWRXC6na9euERHR/v37\n1Ys4EdH//d//Ubdu3YiIKCUlRf2gGBuHEFeuXKG2bduqdfBr1qyhxo0bExHRkydPqH79+pSSkkKN\nGjWiNWvWEBHRqlWraMCAAVRcXExEREuWLKEXX3yRiJhu/uDBg0RElJqaSh988IF9brgEp0JaWhop\nFAo6ceIEERF17tyZ4uPjqaioiB48eECurq60d+9eg3N1wIAB9PbbbxMR0e3bt6latWo0d+5cIiLi\nOI4WLVpERERHjx4ld3d3Kigo0GIEc+bMoYkTJxIRiTIM/jw9evSgWbNmERHR5cuXqVKlSrRq1Soq\nKiqihg0b0rFjx4iIKDMzkyIiIujAgQOOuWEVEBWGYZSUlNCYMWOoRYsWlJSUpF5IzcGBAwcoKSmJ\niIguXrxICQkJ1KpVKxo3bpxaAli6dCk1a9aM4uLiaMuWLXo0CgsLaciQIdSqVStq3rw5bdq0SY/W\n5cuXqUaNGhQeHk7Vq1enyMhI2rJlCy1atIiCgoIoOjpa/fH09KTo6GiqWbMmDRkyRE2rcePGFBAQ\nQCqVinJzc2nUqFFUrVo1CgwMJJlMRteuXaO0tDSqXbu21vj27dtHfn5+NGLECGrcuDH5+vpSq1at\nKDk5Wf3gDBo0iBQKBXl6elJoaChFR0fTc889R6dOnVLTiYmJoaSkJIqLi6OEhAQaM2YM+fj4kLu7\nu/p+HT9+nORyOQUFBanvV9++fal27drq62vcuDEFBgZSixYtKCQkhPz8/Khfv35Uv359SkhIsOje\np6SkUFJSEiUlJVFsbCy5u7vTkSNHrPo/lpSU0PDhw9V9z58/b/WcsAfKe14TmTe3zaGXlpZG9erV\nU9/fkJAQGjNmjJqWQqGg/v370/nz5+nbb7+lDh06kKenJ/n4+NCWLVvI19eXLl++rKY3adIkmjt3\nLt29e5cA0O7du+nixYsUHx9PAGjEiBH0/fffU9euXWnp0qUUEhJCVapUoS1btogyDB8fH0pKSiK5\nXE59+/ZVjyswMJDatGlDp0+fJnd3d6pRowZ5eHiQp6cnVa1alRYvXqx3z+bNm0ctWrSgZs2aUUpK\nitX3v6LN7QrDMNatW0fDhw8nIvagdO/e3ax+n3zyCTVu3JhatGhBRETdunWjv/76i4iIxo4dSxs2\nbKDbt29T48aNqbCwkLKysqhx48akVCq16KxcuZKmTp1KRESPHj2iGjVq0EsvvaRH6+rVq1S7dm16\n4403qGrVqlSzZk1asGAB9e/fX01r48aN1L9/fyopKaFhw4ZRaGiomlZqaioFBgbSL7/8QnXq1KHg\n4GDauHEjnT17ljiOo4sXL1JaWho1atRIi56XlxdVqVKFfv75Z4qKiqLo6GgiIkpKSqJmzZrR7du3\nKSQkhPr27at1jVevXqWSkhIiIsrPz6eYmBg6evQoPffcc7RgwQJq0aIFffrpp1S7dm31NX733Xek\nUCgoJiaGHjx4QI0bN6aePXtqPVipqanUvn17IiLKzc2liRMnUmRkpFodNmbMGLPvvRATJkygZcuW\nid57c2ht3bpV/Ya7bds26tWrl9W07IHyntdE5s9tU/TS0tKoZs2aNHLkSCIi6tmzJ9WvX19NKygo\nSM1IPvnkEwoNDaUlS5ZQq1at1C8YQoY5ZcoUmjVrFvXo0YMA0IEDB9TXyXEcDRs2jCZOnEjt27en\nxo0b03vvvUdjxoyhxo0b0/Lly6lLly5qWt988w35+PgQEZGPjw9lZGSoafXr14+Sk5Np4cKFVLly\nZa1rbNCgAWVlZWndr7S0NLW0kpubS7NmzbLLHKoIc9tpvKRMYe/everAqNjYWBw5csSsfmFhYVi/\nfj2ICABw7NgxtfdV586dsX37dhw+fBgJCQlwcXGBj48PwsLCcOrUKS06ffv2VacrUalUcHFx0aO1\ncOFCDB06FJ06dcJnn32GTp06wcvLC9WqVUNqaiouXLgAAHBzc0NqaioKCgrw+PFj3L9/H4cPH0bL\nli2xbNkytGvXDhs2bMDjx4/Ro0cPdO/eHUePHgUR4cyZM3rXOGfOHHTs2BERERF4/vnn1dXdACAm\nJgb37t3D4cOH0apVK2zfvh23b99GWFgYFi9ejOjoaCiVSgDAyZMnkZeXh0GDBkGpVCIuLg5Xr15F\nRkYGSkpK0LlzZ6xfvx7vvPMOevXqhYiICHz00UcICwtDREQEli1bhpycHADA7NmzkZGRge7duyMo\nKAgJCQl4+PAh1qxZg3PnzqFDhw5m33seR44cwdmzZzFq1CgcPXrUqv+jh4cHsrKyQETIysqCq6ur\n1bTsgfKe14B5c9tcej4+PlrBuO7u7ur7S0TIzc1F5cqVERERgTZt2mBTaRRdWFgY4uLisGLFCgDA\nw4cPsXHjRqSmpmLcuHFq+sJxtWvXDmfOnEFmZiYSEhLU3mdhYWHIzc3F6dOnoVQqUVxcjDVr1qid\nadzd3TFnzhwcO3YMoaGh2LFjByIjI3H+/HkAQHBwMFxcXJCVlYV///0Xa9eu1brG1NRUNG7cGD16\n9EC3bt3w0ksv2TyHKsrcrjAMQzewTy6XQ2Us33ApevXqBYUgrJV/wAAWHJiVlYXs7Gz4+vrq7RfC\ny8sL3t7eyMnJQd++ffHhhx9qnb9SpUoICQmBUqnEb7/9hhdeeAE5OTmIiopCYGAgli5digEDBiA6\nOhozZ87E5s2bMX78ePz555+oVasWHj58iIiICPj6+mL48OFQKBSIiorCb7/9hlatWuH06dMIDAzE\nhQsXtLw6UlJS0Lp1a1y5cgVHjhzBq6++Cjc3N1y5cgUA0LRpUzx8+BAffPAB6tSpox7Hrl27sGjR\nImzevFkddezl5YXp06dj9+7dqFWrFhITE/HgwQNER0cjMzMTCoUCW7duxYsvvog6depg0aJF+O23\n35CdnY3k5GR07doVcXFxaNSoEW7cuIFatWph3bp1+OKLLzB06FDcu3cP/fr1w8qVK+Hv72/2vecx\nb948zJ4926b/Y0JCAgoKCtCgQQOMGTNG7ZJpDS17oLznNWDe3DaXHsdxkMvlGDZsGPbs2YOoqCj1\n2GQyGSZPnozr169j4sSJSE1NRfv27XHlyhVUqlQJI0eOxPnz5xEZGYk+ffrAzc0Nfn5+6NChg/oa\neVocx8Hb2xv5+fkoLi6Gr68v2rZti02bNuHcuXOIiIhA69at0aBBAyQmJqJhw4YICwvD//73P2za\ntAnr16/H3bt3MWLECERFRcHDwwO5ubmYMmUKMjIyEBUVhY4dOyImJga1atXSusb79+/j6NGjWLt2\nLRYvXoxBgwbZPIcqytwuV4Zx8OBBJCcnAwCOHz+O5557DsnJyUhOTsZ/dJLd+Pj4qN9eAfYmJLMi\nRaSwT3Z2Nvz8/PRo5+TkwN/fX6/v9evX0aZNGwwdOhQDBw7UoxUUFIQZM2agf//+OHz4MNauXQul\nUgl/f3/06dMHx48fx4kTJ9QcPiUlBa+99hquXLkCb29vXLhwAcuWLUNBQQH8/f0xbdo0DBo0CHv2\n7MHHH3+MxMREtGvXDq1bt1a/EaxcuRInTpyAj48PFAoFiAj5+fm4du0aAMDb2xvDhw/HzJkzkZOT\nox5HUlIS1qxZgwRBPoLw8HAMHjwYlStXxuHDhxEdHQ2VSoVx48YhOzsbRUVFGDBgAAYMGICcnBz4\n+fnh+vXr8PHxQUBAAObMmYMzZ87g9OnTGDx4MLp16waFQoHx48ejQYMGcHV1xeHDhzFgwACL731m\nZibS09PRunVrm/6Pn376KRISEnDhwgWcOHECQ4cORVFRkcW0hHM3IyMDLVu2RGJiIsaPH6/1kAJA\nUVERXn75ZSQmJiI2NhabN29WH3OGeQ2Yntvm0EtKSlLPy5SUFFy7dg27du1CQUEBAODevXsICAjA\noEGD8PXXX6Nr166YPHkyrl27hpycHBw6dAhvvvkmTp06hT///BO3bt3CzZs3kZycDD8/P0yePBn3\n798HAJSUlABgL0Rz585FTk4O4uLicOvWLURERCAoKAirVq3Cv//+i3379uGbb77BgQMHADBJ7vnS\n1L2pqanYsWMH4uLi4Ofnh0aNGqFr1644efIkzp49i5CQEL17FhQUhA4dOkChUCA8PBzu7u5aC25F\nn9vGUG4M49NPP8Xo0aPV6pCjR4/i9ddfR1paGtLS0tCvXz+t9gkJCfjjjz8AsKy2kZGRVp03JiYG\nf/31FwBg69atSExMRPPmzbFnzx4olUpkZWXh3LlzaNSokVa/u3fvokOHDvj000/VpTWtpbV69Wr8\n3//9HwDA1dUVHMehWbNmVtH666+/sGvXLqSlpSE6Oho//PADOnXqZBWtlStXYtq0aQCAW7duIScn\nBx06dLCKVsuWLfHnn3+qaeXl5aFt27ZW0QKA3bt3o23btjb/H/l0HQDg7++P4uJii2npzt3XX38d\n8+bNw+7du0FE+P3337XO+dNPPyE4OBi7d+/Gn3/+iddee019rLznNeC4ue3h4QG5XG723G7bti0m\nTpyIJk2aoGnTpnjjjTdw6tQpaW6X4dw2CbMsHQ7AunXr6OLFixQXF0dEzCDTpk0bSkxMpJEjR1JO\nTo5We5VKRWPHjqX4+HiKj4+nCxcumH2uf//9V20cTE9Pp9atW1OLFi1o5MiRaq+BZcuW0QsvvEBN\nmzal9evX69GYNGkShYSEqD0akpKS6OTJk1bRysvLo379+lFiYiK1aNGCNm3aZPW4hEhKSqILFy5Y\nTauoqEjtLdOqVSvav3+/TeN688031W1SU1NtovXZZ5/Rl19+qd62ltbjx4+pR48e1LJlS4qNjaU1\na9ZYTEt37lavXl197Pfff6cJEyZonTM3N1c9nx88eEChoaHqY+U9r4mkuS3NbeP3XgiOSEd+LkNc\nuXIFAwcOxP79+5GSkoKoqCjExMRg3rx5ePz4MT4TJvCXIMGJIJy71atXx82bNwEAO3fuxMqVK7F6\n9Wq9Pjk5OejevTteffVVDBgwoKyHLEGCzXCaEq09e/ZUG2J69OiBScLcxwKEhYXh0qVLZTk0Cc8Q\n6tata3HOHaHOmbft6OL69evo1asXJkyYYJBZSHNbgiNhzdzWhdN4SXXq1AmHDx8GAOzYsQPNmjUT\nbXfp0iW7JeOaPXu2REuipfWxZsEW0xMLIWYjkOa2RKusadnjZaTcJQzePXTx4sWYMGECXFxcEBIS\ngqVLl5bzyCRIMA5+7n7xxRcYPXo0CgsL0bBhQ/Tp0wcA8Morr+DDDz/EF198gaysLLz//vvqeIet\nW7cazForQYKzolwZRu3atbFv3z4AQFRUFP4W1iiUIMGJIZy79erVEy2luWrVKgDAwoUL9YqISZBQ\nEeE0KqnyQJIdK7RJtJ4OWpbAklgMsT6OhLPeX4lW+dGyB8rVS8oacBxn8GGUIMFWmDu/Pv30U/z4\n44/w9vbGvn378NJLL+GNN95AYmIixo0bh44dO+rVu9DtY+25HY2iIuDSJaBBA/vSzcsDMjOBatUM\ntzl7FmjY0Dx6KhVw9SpQp459xieGY8eA6GhAGEt56xbbrlrVfDqPHwNisXHnzwOBgUBpBV+9Y/Xr\nsxrs9oA95tczLWFIkGAtzMnlZKqPs2LJEiAiAjh5EvjmG/E2x48Dll5Gv35A9eqGj58/Dzz/PGNY\nPK5cAd59V7vdwYOMWfzxBxAaav759++3aLgAgKZNgf/9T3tfo0ZATIxm+//+DyiN4RRFcTEQEACU\nBrwDYPdu6VJ2nz/8ULP/3Dl2Hz77jB3TPXd5Q2IYEiRYAWO5nLy9vUVz8+j2cUYUFwN81ogPPwQm\nTgReew345RdNm7lzgSZNAJ0US9i2TXxRLioC3n8fKHWCBMDO8frr2u3Gj2ffwlRaa9YA8+Zpt4uL\nA3bsAEpToGlh715AJ9AeADB4MBAfD2Rn6x978gQYOJCdp2dPtu/33wHes7+wkDGuu3fZdm4ucOcO\nsGEDMH8+MGMGEBWlT5cHX/CyNJsJACZtjRnDfmdlMQbi78+kq4gI4M032bH8fMN0ywPOPXslSKgg\nMCcWwxzMmTNH/TspKclmHfbt28C1a0BsLPD554BCAUyZApw+zd72ddUkrq5ASAj7zfPARYvYhw8f\n4Yd4/bp23w4dmHrlwQPt/VeuALNna6tdjhwBFixgCy4ALFsGpKWx33XrAm+9xZgVj7w8pprhmURx\nMeDtrTnm6cl+DxzIxhUcDJw4wa6F44Cff9ZcU0kJUylxHDtnnz7Ao0fA7t1M3UQEfPUVsHOn5vx1\n6gCRkUzq8vEBHj5kizof1lCaiBoAcPkyu4bt24G2bTWLPs8IX3gBGDpU+x4FBDB1nT2xa9cuUWcM\nW1DuDOPgwYN4++23kZaWhoyMDAwbNgwymQyNGjXCokWLpFq7EioE+FiM1q1bY+vWrVq5gSyBkGHY\nA6NGMdUNETB9uoZhNG7MJAhddQ8RWzTFIFyYDUFMTcU/wsJjuo+1cF27eZMt1kKGER3NFtXS/IE4\ndgx47z3228uLbQvVRPfvM4b4yy/6DEyhYCqftm2BrVsZswA01y1kFMJx8wv6w4f618jj9Gl2bwHg\nzz+ZVMMzCp7OkSPsI4QhZmHL8qf7wjF37lzriZWiXFVSliZxkyDB2SCMxZg9ezbi4+NRXFysFYtx\nXedVvDxegni7gNB4a0zvDugvVroLrxj4RfH0aY36h99njGGYwsWLjCaPO3fEx6Yr9dy4waQC3fHN\nm8fUamIQJHLVghlZ5/Hkieb3558Do0dr+hnqX5HeictVwuCNgC+//DIAfcNhamqqnqeJBAnOAkti\nMcT6lAV4BlG5MvsWLk6GjNZubuLMxBSDEdLk37KF57CEYWzcqL9P2MeSRVbsmgsLze8vhKWG/hs3\nTDOMioRyZRi9evVSF/oBzDMc2htEzDXv33+ZrrFWLWacS0xkD86FC0CbNjqd0tOZ32F2NtC9O7OQ\nVanCLHRvvskUmNnZQEoK+37nHUAuZ30LC5l1sEsX9iqzbh3wyitsVu/Zw5SlmzcDY8eyfTt3MlcN\nvuDJjz8CP/wAfPIJaz9xImv3++9A+/bAoUNAUhLzTywqYha69HTm2hEcDNSuzRTbv/wCJCSwNj4+\n7An/6Scmy7/0EpP/L15kszw6mil7i4uZf+CdO+y6w8OZ5S88nN28yEhm9WzdmrnRbNjAFN6//87c\nWf74gymnZTLm6uLjw87n7g40b86Oh4Uxenfvsmu5dYspou/eBTp3ZjQzMth97dKFuZG8+ipTDEvQ\nA88weJWHUsmmBGB68dM9LjTamtsHME8lZQ6s6UMkzjCM0TJ0jEhz74ydTxe2MAxnkz7K3YYhhLmG\nQ2sNg1/s+wJpV9Lg4eKBvKI8EBFu31PixLfTgYxOBvvpTYKPPwZWrhRvvHQp0Lcv8Ntvmn0bNmh8\nBk+dYk9tcrLGyjd8uD6dlSuZhW/3brbdrJm24nPbNvY9ebKGafGoVs2wIjo8nDEQXfTvD/z6K/s9\ndap4XyHefJMxmX/+0ezz82Mr00svAaWlN/HVV8wNhMe33zJGqfsyMGoUsHw5++3uru2DaAgpKex7\n+XKmWA4IMN1HB9YaBi2xvalUKowfPx6nTp2Cm5sbli9fjrp161p8TmsgVovpiy/YtyGGYWiRMmfB\nM/cN3NaF0FoJg78Ga5mPUOUkBrF7JDEMB8Fcw2HS3CTNxlxgF3aZRb9p6Z84DNPYpfdPG1r6MYDf\nAGC8ZvtY6bfArRBpADDLMI3DOtvGSj3/DgBTNNsGeAUAQIRXAAB+BYCxRjqK4B+dbd5wtwkASpmO\nrpB4wwCt5QAwmP02g1foIfAUkijJ4m7WGAaFAXiAxvbGB+39/vvvWqrUjRs3orCwEPv27cPBgwcx\nbdo0bBTTudgZL73EhFVdiNkUzIG1EobYsbJcCG2VMIT3y9Q9MCZhOHn4jVlwCoZhKombLqxZGAAg\nYlEE1vdbj4jgCPW+Ad99gKMnCpG++AMUFTG3QiKmqXn8mPlE814Uaowfz6SFCRPET6QrB/MoLtbs\nl8s17YSzWNiXiKmwXFzYq6LYbDdGw9A4DI1V+LukhI2xuJi5lQjbC8/Fty8q0rQzdk6erqHVw9g1\nAuzps6KEqT1hqe1t79696NSJSbCxsbE4ousi4yCIMQtAc/vKWsKwp0rKWobDX4OpeyAGaxkGv08y\netsB5hgO7QUVqSDjtBcbjmRQKFTgOMYsAKh/u7oa+CerVBqbhBgMzQDdoC2+naEngeOYIcUYXWM0\nzJmJhs7NX5/YmMXouriYPpeQrqGxGbtGoNyZBWC57S07O1tdOhMA5HK51bW77QExmwJgmiE4kw1D\nt78xesLbrMswTJ1HCCLT98jeNgxnQ7kzjLKEGMMAZIBM/D8pfKnXJlT+b7kSnAembG8+Pj7IEfhq\nGmMW9g7cE4Oht2vdhc1ShiLWR7jPngzDEsnAUhuGMYZhi0qqrG0YT2XgXllCRSp9H3iSATDMMAxK\nGBLDkFAKU7a3hIQEbN68GX379sWBAwcQGRlpkJa9A/fEYGgR4hdDQ4uxrQxD2L+svKR0+9miklKp\nLGcYQqmkrCUMRwTuPVMMg4j0JQzijEoYEsOQYAjmFFD66KOP0LNnT2zbtg0JCQkAgJWGPOzKCIam\nLr8YGlrYzFFJifXlF1Fh/7K0YVgjYYjFj5ijkjLmJSUZvSsYDKmkOE78PykxDAmGYGlnUmZyAAAg\nAElEQVTQ3nfffVdWQzMJUzYMQ4uitRIG388Yw7DF3GZJP3MkjLJWSVUko/czteqpSAUO2v8djmQA\nJ0kYEmxDYWEhhg4divj4eLRu3RonhfkoAKxZswZNmjRBfHw8FixYUE6jZDC0WOpKGLoLmbVGb3MY\nhjlv3/ZUSTnKhiHWR4rDqKAgiKmkJIYhwXYsW7YMnp6e2LdvH9LT0zFw4EAcPXoUAPDw4UPMmDED\nx48fh6+vL5KTk5GUlIQYYba8MoQhCUN3MbSX0VtswbS3DcMQw9H1LLc1cM8RXlIVSVXldAyjSZMm\n8C1NgxEaGooVK1bYjbaoSkpiGBLsgLNnz6pjLcLDw3Hz5k21O+2lS5cQFRWl9p6Ki4vD7t27nY5h\nWKOf14Uxo7fYGCyBMZWUsbHZMzWIpSopjrOPqs9Z4FSrXkFpOoi0tDSkpaXZlVkARrykJIYhwUZE\nR0djy5YtAIADBw7g/v37eFKaR6JevXo4c+YM7t27h7y8POzYsQN5eXnlNlZzJQxd2KqSMre9NTCX\nYVgTh2GJ0duYl5Qt3mfOAqeSME6ePIm8vDx07NgRxcXFmDdvHmJjY+1GX9xLyjDDEAuABiAxDAl6\nGDFiBM6dO4dWrVohISEB4eHhCCjNbeXv748FCxagd+/eCAwMRJMmTRAUFCRKp7ziMFJTTdfwtlUl\nJdbOVAysOfQB48zMXm61jjJ6GxuDFIdhBF5eXpg+fTpGjhyJixcvonPnzkhPT9cLcrL2obJUJQVo\nREqtSa1SOZ81SoJVsNdDdejQIbRp0wbz58/HkSNHcOjQIbiVRukXFxfjyJEj2LNnD5RKJVq3bo23\n3npLlE5ZxmEIF6qOHVkyYGOwVsIwFZthLsMwpt6xVMKwRiWlG4ch1s6a5IOOksCe+jiM8PBwhIWF\nAWBifGBgIG7fvo3qOpXjrX2oRFODwDjD4NVSWpOaSJIwnhLY66GqX78++vfvj3nz5sHDwwPLli3D\nmjVrkJubi9GjR0Mul6Np06aQy+UYO3YsQkNDTdLct4/NvZYttfcXF7PUXWI1rc2BobfrrVu1t60x\neovBlIRhLoQMwxJ1mj29pKxRSZm6VmM0nU1d5VQMY+XKlTh16hQWLVqEW7duITs7GyF8gWE7QMyt\n1pSEIZoeRFJJSdBBQEAAtvEp50shTGE+c+ZMzJw50yKaCQls8apTB1i9mpX7BIC5c1l5VX5e3r/P\nEmWGh7M+9esD339vmK5Qwli1ipUhMQfTpgHt2plux9ew5uEIhqHLIMxlGAsX6u8zBUPZai9eNNxW\nCFskDGdjGE616o0cORLZ2dlITEzEgAEDsHLlSrsmaBNzqyUzGIbeP01iGBJ0YCoOY8OGDXjhhRfQ\nvHlzLF682Gy6QUHA5cuasiiZmYxZAMB//8tKmFSuzJgExzGpRLcmtS74WtlEwKJFwH/+I95uwwbt\n7fR08VIqurh6VfM7NBTQNUPeuKHZZ2xB/OwzYMYMzTbHaUq16DIIY+VThMyBD7LnH19DITHChV8o\n1TgivXlZOAXYC04lYSgUCqxevdph9EVtGCqJYUiwHcbiMABWM+P48ePw8vJCw4YNMXDgQLX7uBC8\ng8Xt22z7/n32/c47bLHy9NS07dpVfCzFxcD8+abHTMSqS1oC3QXsv/9lhQ8BTUqN1q01x//9V59G\no0aa38YWS10p6dYtJhEBwJkz2sfy89l160KpBP7+W3+/JRKGMMeWsfGuW8fqhQlhTuCeMabgbBKG\nUzEMR8NSt1pAYhgSzIOxOAwAcHFxQWZmJmQyGYhIfx6W4sABoFIlTU1sId57z7yx3LzJ1EemsGiR\nefSE+N//tLe7dmXnE5oZ790zTkOY/X3yZCAwUFwqOn9efx/vjcxLXDxefRU4fVq//fz5TF1nCTp0\n0N5+7TX2rVTqHxNCrHxPQYFm/YiNFWcA69YZpvnZZ0Dv3sbHW5awimGUZy5/W2DIrZYMZKsFJIbx\nrMDWOc3HYfTo0UMrDoNnGNOmTUPTpk3h5eWF3r17a9XHECI+tZSRzLF6KA7FW/nQG1v1Zfr7zIU6\nDaOFxR7F8BX0x2GIV4iYHwxCt36aJTgKoN9ZAHMM5cQ2joMAAOfRS1nFMNq1a4edphSlTghr3Gol\nhvFswNY5bSwO49q1a/jmm29w9epVeHp6YsiQIVi7dq14Rck5s1G1KnDnDgAklX7KBvPmsfPqqlUA\nZpeoVavMhiKhFP7+AGZb19cRcRhWrXrkbJYYMyHGMIg4iWFIsHlO83EYe/bsQZ8+fRASEqKOwygo\nKIBcLoebmxtkMhkqV66MzMxMA5Tm4M6dOWCvykmiLTIzxfX1ANCmjeVjDw8HduxgdpLmzcXb1KwJ\nvPuu9r7SqrR6sNax0cvLuna6RSHtiaZN9ff99hv7HwDAgAHm0TEVFGkIxrzdTCEpKQlz5sxRf+wB\nq1a9lrqO4RUEBrPVGhH5JIbxbMDWOV2/fn18+eWXiI+Px1tvvaWOw1i2bBnCw8PxyiuvID4+Hq1a\ntUJWVhaGDRtmkuZLL2lvT5rEvn199YPd+vdnRuGffjJ/zC+8AAwaxLykeEaja1oRMgndcwqrBwth\nj6yyxhAervn9n/8AgwdrtuPiDPc7d057m49j6dpV2xDPY+1aoFRI1EKfPoC3N/ttykencmX2LUaf\nx5YtwIsvst+//qrZP2cOICgN7xSwatX74IMP7D0OAEyPPHbsWMTHxyM5ORmXLl2yK33JrVaCIdg6\np/k4jH379mHHjh2oW7cuBg4ciNGjRwMApk6disOHD2PPnj1YuXIlFAZei4ULREEBkJYGHDrEPGm+\n/NKwR839++zNvmpVtoB+8w0wYYLxMe/cyRhMVJRmn5D+xx9ru8TqTnlHJTu4elWbCehCUE4dfftq\nBzB27264re54Cws1+8WupVs37e1FizSxF3I5M6abkm54w31goP4x/t526aK5t/36GR6vM8CpvKQ2\nbtyIwsJC7Nu3DwcPHsS0adOwceNGvXa9ezP/9Lt3mQsf75ttCoZsGIVcNgCgoLgA7gp39SFlsRLt\nVevh238V4EosvPbBA+Cff3Bt9AfgrgNvvskmZe/eGm+G4mLmildSonkrk8uZl0VJCTB9OvDFF0w/\nWVTE9s+aBXz0EeNFHh5M5PX1ZW8yJSWsjYsL8OgRa/POOywIqaSETTaOY7Q4jp1LLmfHXFzYePLz\nWYBWcLDmbYaPGC4qYm+LRICrq/59Uyo146xWjT0oP//MvHn4QC4/P/YwffMNuyfBwUBODuDjw9oH\nBbHtSpWA4cOBr79mD1ulSkB2NjuvQsHO4+LCvnNy2H7+emQywN0d+PRTdu3vvccW2Bo1NG9y5YXC\nwkKMGjUKGRkZcHFxwVdffYWo0pX47t27GCDQXZw4cQKffPIJXn31VT06c+cC/JRv1AgwlvXml1/Y\n/3jwYPa/4fHjj+zbFMMw9c7z/PPs7Zv3TBJjGLGxwMGDxukAbGH/7Tf2+5NPAAOZUQAw9ZcuevfW\neBN9+CG7ttIChlooKtLeFtpdjCUVFFucdYN2ZTKgNBEFADbnTcHfn310klUAYJ5w/L0TO7/EMExg\n7969atfE2NhYHDlyRLRdrbZ/QpmvQKXKLjj77n58/3o6mta4h6LHuYgKuI5r00ah2rgp+DfzXzQM\nbqjuJ+ZWe0f1Dy7LUvHr6V8x7fsBGNP9fTQMbgj/JypMWtkPpx8CWVx3yOs8hyeBNeFZ+Bgr/aZj\n7OB4BAYBD/LvAk+q4MABxggAoG5dtvjl57MP70vv68sW+5wcoFMn4MkT9pYTFARcv655oAICGGMQ\nQ2gokJvLXBf//JNN2gcP2DGFgh3nXfkKCtikc3dnv/lxBAezbxcX1kehYIs2z2x0oVQyV0iVijGA\nvDxtHXqdOozBZWayB2z9es2xypUZTY4DHj7ULGzPP69pExzM+hUUsG9vb3aPqlRh/QoKNEzx+nVN\nvw8/BH74Abh2jS0UjtRlm4KxOIwqVaogLS0NALB//37MnDlTLXnoIjIS2LwZaNGi1OBpBP37s+/l\ny8VtF6bMMqYWJL4//wZvi4QhtDu88YZxhiEG4blcXNj3n3/qtxs8mL18eXmx58sQDcB0fQ7dZ8FQ\nTMT337P/mW6gI49Hj9iLlC6E5xTe2x07gLZtJYZhEkK/dQCQy+Wi7o5/Kd6Ff7A/Hrvfx9H8U5jv\nPgPfX4/Cv6iDNwvfw5XlM/DrgRnIdQVmVOkD//bd0LS4MhrdBaKiOAQFsgCokhLgxp2eGPvcXCjX\nD8CNU8C9VfPwyLUYDe4Ug3fr9kvbCKRpzi8LvoixP34Ole9lLDm6BJ+3/xwcx+HEQR/UCVWhakgJ\nSqgE/z7+F77uvsjNcsWO7XL06lMIZYkSOcoc1PKrhUqulfCk6AnknBweLh44fEyJYhSgYUOghFTI\nLHgMT4UXvp7vjdgWRWjeoDp8Qxh3uJN7ByGVQsCBwx87clHvOX/Uq18Md4UbHuQ9QH5xPh7kPUD9\nwPqQy+Rwk7tBLpMjW5kNIoKr3BVymRx5RXmQcTIoZApkFmQivygfCpkCKmJPR6BnILxdveEic0EJ\nlSBbmQ25ygsrUgpRIzQXEc+rUDeEKXrlMvaEFRSW4H878tEqqRAeCg/IZXIUlRRh55WdiKkagzsX\nq0Gh8kaloBw8uCdHXCyHJ0VPIONkaglPIVOgRFUCFalQQqXfqhL8+LMKyR2ewM1TCXeFO5QlSqz/\nzQ03705CreoGlOplAFNxGAAzrE+aNAk///yzwTgMwHBAniEYcu6yhmEY62MuwzC10BnL1WROH55h\niElIoaEsqG/qVJaB19xxidEytyrg8OGMQRliGIZgqL6HNY4LZQWnYhg+Pj7IyclRbxvyje92iykX\nr9/LwFaX0xj78CMMHw6sWgz8OG4vJv76D4b8w7deC3y6FoXVquKfW8Duzp/AL7o2iguK4XduP1xq\nqFCDlTFAVsfWqNy5JyrXr4+VJUfRtrA6uhyaAtU8jepHJgMm/vE11p1bi1ZurRDoEYiz989CIVNA\nUacItyDH3btylKhKsPz4crSq2QqV3CohuWsEnhS5wk3uhjtP7uBq1lV4u3rD29UbuYW5UMgUcK3i\nCjeZAgdu3oeMk8HXzRc+boVoM/Q0bufcxqF8H3he98SN7BsoKC5AeGA4PBQeyA3JQLrMC49vBUNZ\nrISbwg0+rj64lnUND/MfwlXuChWpkK3MRqBHIPKK8uCh8ACB4CJzgVwmR35xPh7mPYRCpkCARwDu\nPbmHG9k3EB4YDhknQ7GqWM1ELj66iIbtG8Lf3R9Z4PDX1X8gl8m1PI1c6+XjyC05PF088Sj/Efzc\n/fC/jP+BAwd3//O4mnUVYbIwKIOU+O/FYsg4GbxdvaEsUarPJ+fkkMvkkEHGvjkZotvJcbuwAA+z\nHkLGyUAgJHapBS//HACWMwx7uR6aisMAgM2bN6NRo0aoV6+ezeezByxd2HXfuK3Jx2RpPzEYYxgA\n0LCh5Soec8ZkjKFZkqJd7JySSsoKJCQkYPPmzejbty8OHDiAyMhI0Xa8i9jBf/5Ew5Rf4Omp8S44\nFR6Dha3rY8pfFwAAqv37MPrUR/j+9n9Bc4DEre8AW8Gsg7m5LKPb1q1AeDh8BRlEh6MTMgsycf3C\nFHCctrqDoMKMVjPwWvPXjF7PZx0+g5+7GYrOZwTfd7fBR9BBsFe2WmNxGDx++uknTJkyxSgde9bD\nsFUlpYuyMnqbAv8sGluky5phWOMDY4ph2OpX89TXw+jZsye2bduGhFJr1ko+U5gByMBBpXOjC9zd\nsKhVBKbsPAvIZJABWBG3BcmnfsT7a9ZjxNvj8Zz/E8YoeGW+IfqcTP1WLYSo8VwEErN4dmCsHgaP\nI0eOoEWLFkbp2LMehqMZhqEFzV4lWQ31NyVhmEPD3GPCa7GFYZhiYI6QMJ76ehgcx+G7774zu72M\nANK5qxxXGmuh8x8cEjkEYcVDMKglgDCYBVsZhoRnB6bqYdy/f1802WB5wtkkDHNjJ3kJw14Mw9zy\nNsYSAUoqqQoAGbFks9o7VSzdhwgsLZQnMQwJ5sJUPYzg4GAcO3asrIdlFJbaMMQYhqOSPujSFY6F\nZxiWSgzCfbzbubH2psYkhCNUUs7IMCr0qicj6KmkwBlmGJYWyuPASQxDglkwVQ/j8OHDSExMRKtW\nrTBgwAAU8lFjDkR5eUk5Gtbq9nUZhqFjhuBIo7c5XlrOgAq96slI34bBcWRUwrBksvFeOHp0JIYh\nQQfCOIxly5ZhxIgR6mNEhFdffRUpKSnYs2cP2rZti3/FCkXYGfa2YYgtsuWxqNkjyYI1zM/eEoap\n80sMw86QE0AWSBjWMAxJwpBgDgzFYQBAeno6AgMDMX/+fCQlJSEzMxP169cvz+ECsI8Nw54qKXNV\nTOa8zZuSnsxlGPYyeotBUkmVMZhKSlfEUMHQZdmTYejVBpfwTIOPwwCgFYcBAA8ePMC+ffswceJE\nbN++HTt27FBHfjsS1izmxuIlytLo7Yi3eUMMw1BqEF3YYvQuDy8pR8CpjN5EhOeeew7hpekoW7Ro\ngXnz5hlsb8iGwTlYwhBLYijh2YaxOIzAwECEhYWppYpOnTrhyJEjSE5O1qNTlnEYlsIWhmHrWOwt\nYei9Zz6FRu+nPg7j0qVLaNq0KTZt2mRWe0uN3pYyDD59g25JTUklJUEXxuIwQkNDkZubi0uXLqFu\n3brYs2cPRo0aJUrHnnEY9kZFMnqLLe5CCcHcmBJTNHk4o1vtUx+HcfToUdy8eRNt2rSBh4cHFixY\noJY2xMAROZRhAMxTikBaKiiJYUjQhak4jBUrVmDQoEEgIiQkJKBz584OH5O9JQxbUoPYuvgZW+zN\nhbNJGKbSpUgqKQFWrFiBhQsXau379ttvMWPGDPTu3Rt79+7FkCFDcOjQIYM0ZFYYvS029JWqpYQM\nQmIYEnRhKg4jOTkZB83JA25H2FMNBGjqRxg6biuM2TCE2/Y2evv5aVK4WzImIayRMEwxQYlhCDBy\n5EiMHDlSa19+fr66sExCQgJu3bol2pcX2zNvXELzIhVqCw/aMQ4DELdjSAzj6YEj9LwVGcJFUbfa\n3J492tsyGSu+ZOSdzm5o2pSl/zf2DAuLJQnBe3OJvdFfvszKC5hT2c6Y0dsaCUPIZCqKhOFUq977\n77+vljpOnjyJmmKVVAB1jdppo15Gc1ddxap9VVISw3i6Ya+6x6YC9xYsWIBGjRohOTkZycnJSE9P\nt3HkjsWjR9rV9gDNghkdzRhF587Ad98Bd+6YT5evySLE2LGG2/MFkN58UxOZrbuQxsWxAmDCYklC\nTJvGvomAJUvY71KPZ9Spw4p42aqSci+tu/bRR4CYeUpI//PP2X3w9NTsE/7mIawZ4yxwKhvG22+/\njSFDhuCPP/6AQqFASkqK0faONnoDEsOQYB6MFVACgGPHjmH16tWIiYkpszEJF7hXXmFFr0zV/E5O\nBnr1Ei/eNHcu0LMnOy5EcDAwbhyQkcHSdvTsCdy4wYpnXb/OikFVrcre5IOCWJ9ffmH1sKdNY4Wy\nFi8Gfv9dU0Rs+nTGmKZOZVU1AY2k8OiRdlW+V15hHyHGjmUlawHgs89Yka2aNYGhQxmDq1xZu6jT\n+PGscFFcHHDgAMArP6ZOZVUPHzzQLp+qi/BwxnhmzGDbZ8+y8ro8evQAJk8Gtm8HEhM1tJs2Zb+n\nTWP9eTgq5cr/t3fuQVHXXx9/rwoKyi11upg1DAqEYl5AbgtySbDh4RK/ZEASVpdRyEEGe9CymZis\nwbCmSH9OKk2AWTzOLyVzvCGxYGp4obAhYNci0B4RewIXkkBgz/PHutuuIC7fBZaV85r5zsDuft7f\ns989y+Hz+X7OOcYiIhqrpg2MSCTS9l1oPl8C5b/+C67N/yyuJu3+N77/pQ6Kj3b3GzttmtpZNA3c\nDWFa9jTc/O+bmGb5z6Co/4nC2oVrEeUaNchIxhzR9a+hsGHDBixfvhzR99Y2nnjiCSgUCm0/DDc3\nN8ybNw83b95EeHg4Xn/99WE794NISlJ3JNT8nJKi/uOtwby++YyxDId/mfW/yeoZhv4FoOHeJTXA\nReYZBnM/gyXuAUB8fDz27t2LsrIynD17FseOHRtxm3x91f8cNTWpe6B7e6tnA1OmPHi9n2EGY0wt\nSQ0V0QBLUsNZSwp48JLUYC02mfHHwxoopaena2cb4eHh+PHHHxEeHt5PZzgT99avVx+6XL2q7icx\n0Jo582jxyCfuDZUJROjr93d75O9hEHGmN6PPYIl7SqUSCxYsQG1tLaytrVFWVtZvh6CGkU7cG2Mt\nOZgR5JFP3BsqIlX/xD0SqQZokqHGmDwMPR1ekmLu42GJe++99x6CgoIwefJkvPDCC9pChQxjTph1\nwBhwlxQeXHyQ8zCYkeJhiXvx8fGIj48fbbMYZlgx6V+94uJiJCQkaH+vrKyEt7c3xGIxtm3b9tDx\nD7zpPcgMQzdgGLK+Z2jAGM61QtYynZZQHpaHoWHdunV44403RtyesXp9Wct0WsOByQJGeno6tm7d\nqrcDKTU1FUVFRTh79iwuXLiA6urqQTVENEB7I5EKNMA9DM1pdJekDPkwNLWkdOGA8ehqCWWwBkoa\n9u7di5qamlHZMDFWry9rmU5rODDZkpSfnx9eeukl7L2Xetne3o7u7m44OjoCAMLCwlBaWoqFCxf2\nH7x3L2BtjcmXKtEHwpmmM2juaMbMqTNx/vZ/cON/Q3DunHo20denTtppaRFm5wTRBBy/ehyPT30c\nBILdZDtU36zmJSlGjwc1UNLsjDp//jwuXryI9evXo76+3pSmMoxgRjxgDFRksKCgALGxsXrRU/fL\nBQA2NjZoaGgYUFOk6VY2ezYQsxL4TQXgceD/ACz9EFgKiHv+0cZT9w4ZINJ5GI2NePthEXzJl5Aq\nASg1D/QBXocR1AigUWesIVqGwlqCtMiILajGosnDiI6O1svDsLW1RXNzM7Zt24bi4mIcPHjQZDYy\njNGQCZHJZBQXF0dEREqlktzc3LTP5ebm0gcffNBvjJOTEwHgg48ROZycnAT5cm9vL2VkZJBYLKYt\nW7aQq6srdXV1ERHRzp07acmSJRQYGEiurq70zDPPUGFhIfs2H6N6CPVtXcbMLilbW1tYWlqioaEB\njo6OKCkpGXBP+i+//DL6xjHMQxgsDyMtLQ1paWkAgMLCQtTX1yMxMbGfBvs2M9YxacAQiUR6NwD3\n7NmDhIQE9PX1ISwsDJ6enia0jmEM52F5GLpwlQDGXDG74oMMwzCMaTCbrT4qlQopKSnw9fVFUFAQ\nfv31V4PHXrhwAUFBQQDU036xWIyAgAC8+uqr2m29eXl58PT0hI+Pz4CF4Xp6erB69WoEBATAy8sL\nR48eFazV19eHtWvXQiwWw9/fHz///LNgLQ23bt3C7NmzoVAojNJavHixtmeDVCo1Smv79u3w9fWF\np6cnCgsLBWsVFhZqbfL29oaVlRWqqqoEaalUKu21DwgIgFwuN/raG4Op/Rpg32bfHoJvG30XZJQ4\ndOgQrVmzhoiIKisrKSoqyqBxOTk55O7uTj4+PkREFBERQRUVFURElJKSQsXFxdTc3Ezu7u509+5d\nUiqV5O7uTt3d3Xo6+fn5lJGRQUREra2tNHv2bIqMjBSk9fXXX5NUKiUiovLycoqMjBSsRUR09+5d\nio6OJhcXF6qvrxf8Hv/++29atGiR3mNCtWQyGUVERBAR0V9//UVvvfWWUe9Rw4YNGygvL0+w1okT\nJyg2NpaIiE6fPk0xMTHDYpdQTO3XROzbQ9Uaz75tNjOMc+fOafe5e3l54fLlywaNmzNnDg4fPqyN\nrD/88AMC7nUwefHFF1FaWopLly7Bz88PFhYWsLW1xZw5c/DTTz/p6axcuVKbfa5SqWBhYSFYKyoq\nSpt/0tjYCAcHB1RVVQnSAoDMzEykpqbiyXsdY4TadeXKFXR2diIsLAwhISGorKwUrFVSUgJ3d3dE\nR0cjIiICkZGRRr1HALh8+TJqa2uRnJwsWMvKygpKpRJEBKVSCUtLS6PtMgZT+zXAvj1UrfHs22YT\nMO7P05g4cSJUgzXZvUdMTIy2TzgAvcxyGxsbKJVKtLe3w06njKfmcV2mTp2KadOmoaOjAytXrsS7\n776rd/6haGnsl0gkSE9PR0JCgmC7CgoKMHPmTISGhmrfnzHvMTMzE6dOndJuQNBlKFp//PEHqqqq\n8NVXX2HPnj1YtWqVYLs0ZGdnIysrS/s+hWj5+fmhq6sLrq6uWL9+PTZu3Gi0XcZgar8G2LeHqjWe\nfdtsAoatrS06Ojq0v6tUKkwQ0Hldd0x7ezvs7e37aXd0dMBhgB6V169fR3BwMBITExEfH2+UFqD+\nQsjlciQnJ6Orq0uQVn5+Pk6fPo2goCBUV1cjKSkJf+g0Th6KlrOzs/aLNHfuXEyfPh0tOinyQ9Ga\nMWMGQkNDMWnSJDg7O2PKlCl6TjnU63X79m0oFAosu9evU+i137FjB/z8/CCXy1FdXY3ExET09PQI\ntstYxoJfA+zb7NuG+bbZBAw/Pz8cP34cgLpI4YIFCwTpLFq0CBUVFQCAEydOICAgAEuXLsV3332H\n7u5uKJVK1NXVYf78+XrjWlpaEBoaih07dkAikRil9fnnn2P79u0A1NPIiRMnwsPDQ5BWRUUFysvL\nIZPJsHDhQuzfvx8rVqwQpJWfn4/XXnsNAHDjxg10dHQgNDRUkJZYLMbJkye1Wp2dnQgJCRGkBQBn\nzpxBSEiI0Z+jJvsaABwcHNDb2ytYazgwtV8D7NtD1RrXvm3QnY4xgEqlopSUFPL19SVfX1+Sy+UG\nj/3tt9+0NwcVCgUtW7aMfHx8SCqVkkqlIiKivLw88vT0pCVLltDhw4f7aWzcuJGefPJJCgwM1B5X\nrlwRpNXZ2UmxsbEUEBBAPj4+9M033wi2S5fAwECSy+WCtXp6euiVV14hf39/8hUkPwEAAAStSURB\nVPf3p++//94ouzZv3qx9TUlJiVFa77//Pn388cfa34VqtbW1UXR0NInFYvLy8qKioqJhufZCMbVf\nE7Fvs28b7tuch8EwDMMYhNksSTEMwzCmhQMGwzAMYxAcMBiGYRiD4IDBMAzDGAQHDIZhGMYgOGAw\nDMMwBsEBw4wJDAyEXC4f9fNKJBJUVVWN+nmZ8QH79diFA4YZc38DqtE8L8OMFOzXY5cx06L1UUOh\nUGDNmjWwsLCASqXCl19+iaeeegrr1q3D77//jubmZkRGRuKdd96BRCKBpaUlmpqa0N3djbi4OBw9\nehTXrl3DkSNHcO3aNXz44Yfo6upCS0sLUlNTkZKSoj2XUqmEVCpFa2srAGDnzp16qf7l5eXIycnB\n5MmT0dDQgLi4OGzduhUSiQTx8fEICwvDyZMncfDgQeTn52POnDnw8/ODQqFASEgIlEolLl68CBcX\nF+zfvx+Auh9AW1sbiAh5eXlwcnLCrl27UFRUBJFIhLi4OKSlpUEikaC1tRV//vknjh07Bnt7+9H9\nIJhhhf16nPu1wTnhzJDYvXs3bdq0iXp6eqisrIxqamqosbGRPv30UyJS1+efMWMGERFJJBLKzs4m\nInXN+i1bthARUVZWFuXm5lJ5eTn5+PhQb28v3blzh5ycnOjWrVsUGBhI9fX1tHnzZvrkk0+ISF1W\nQCwW69kik8nIzc2N+vr66M6dO2RnZ6c976lTp4hIXUtf05dh0qRJdP36derp6SEbGxuqq6sjIiJH\nR0e6ffs2SSQS2rdvHxERHT9+nGJiYqi2tpbEYjGpVCrq7e2l4OBgksvlJJFIKDc3d8SuMzO6sF+P\nb7/mGcYIIZVKkZOTgxUrVsDOzg7Z2dlwcHDApUuXIJPJYGtri+7ubu3rFy9eDACwt7fHc889B0Bd\nQExT6XPZsmWYOHEirK2tMX/+fDQ0NGjH1tTUQCaT4eDBgwCAtra2fva4u7tjwoQJsLa2hpWVVb/n\nSad09PTp0/H0008DUJeFdnV1BQDY2dnp2QMA3t7eyMzMRE1NDZqamhAcHAxAXYHz6tWrANT9rplH\nA/br8e3XfA9jhDhy5Aj8/f1RWlqKl19+GTk5OSgsLIS9vT0OHDiATZs2obOzc8CxNEB5L01jnc7O\nTtTV1WHu3Lna51xdXZGRkQGZTIYDBw4gKSmp3/iB1menTJmCGzduAFA3phnstfdTWVkJQF1p8/nn\nn4eLiwvmzZsHmUwGmUyG1atXayuv8trwowP79fj2a55hjBAeHh5ISkqCpaUlVCoVPvroI1haWmLV\nqlWoqqrCs88+Cw8PD61j6zrfQD+3t7dj+fLlaGtrQ1ZWFh577DHt82+++SakUin27duH9vZ2vP32\n23q23H8TUfNzcnIy1q5diy+++ALOzs7axx9mCwB8++23KCgogIWFBT777DPMmjULISEhEIvF6Orq\ngre3N2bNmtVvHGPesF+Pb7/marVmQHl5OQ4dOoRdu3aZ2hSGGTbYr80PXpIyA0y1zZBhRhL2a/OD\nZxgMwzCMQfAMg2EYhjEIDhgMwzCMQXDAYBiGYQyCAwbDMAxjEBwwGIZhGIPggMEwDMMYxP8D50Ez\nctAxpREAAAAASUVORK5CYII=\n",
8190 "text": [ 421 "text": [
8191 "\n", -  
8192 "(999, -0.51528750000000001, 0.53039999999999998, 0.71662499999999996)" 422 "<matplotlib.figure.Figure at 0x7f7113c306d0>"
8193 ] 423 ]
-   424 }
-   425 ],
-   426 "prompt_number": 26
8194 }, 427 },
8195 { 428 {
8196 "output_type": "stream", 429 "cell_type": "markdown",
8197 "stream": "stdout", 430 "metadata": {},
8198 "text": [ 431 "source": [
-   432 "\u010cten\u00ed dat z gyroskopu\n",
-   433 "---------------------\n",
8199 "\n" 434 "\n"
8200 ] 435 ]
8201 } -  
8202 ], -  
8203 "prompt_number": 72 -  
8204 }, 436 },
8205 { 437 {
8206 "cell_type": "code", 438 "cell_type": "code",
8207 "collapsed": false, 439 "collapsed": false,
8208 "input": [ 440 "input": [
-   441 "cfg = config.Config(\n",
-   442 " i2c = {\n",
-   443 " \"port\": port,\n",
-   444 " },\n",
-   445 "\n",
-   446 "\tbus = [\n",
-   447 "\t\t{\n",
-   448 " \"type\": \"i2chub\",\n",
-   449 " \"address\": 0x72,\n",
-   450 " \n",
-   451 " \"children\": [\n",
-   452 " {\"name\": \"gyro\", \"type\": \"imu01_gyro\", \"channel\": 0, }\n",
-   453 " ],\n",
-   454 "\t\t},\n",
-   455 "\t],\n",
-   456 ")\n",
-   457 "\n",
-   458 "cfg.initialize()\n",
8209 "np.savez(\"calibration_data_set\", x=x, y=y, z=z)" 459 "#acc = cfg.get_device(\"acc\")\n",
-   460 "gyro = cfg.get_device(\"gyro\")\n",
-   461 "sys.stdout.write(\" MLAB accelerometer sensor IMU01A module example \\r\\n\")\n",
-   462 "time.sleep(0.5)\n",
-   463 "gyro.route()"
8210 ], 464 ],
8211 "language": "python", 465 "language": "python",
8212 "metadata": {}, 466 "metadata": {},
8213 "outputs": [], 467 "outputs": [],
8214 "prompt_number": 73 468 "prompt_number": "*"
8215 }, -  
8216 { -  
8217 "cell_type": "markdown", -  
8218 "metadata": {}, -  
8219 "source": [ -  
8220 "Nam\u011b\u0159en\u00e1 data m\u016f\u017eeme tak\u00e9 z\u00edskat z p\u0159edem ulo\u017een\u00e9ho souboru. V n\u00e1sleduj\u00edc\u00edm bloku je otev\u0159en soubor s referen\u010dn\u00edmi daty, kter\u00fd se nach\u00e1z\u00ed v dokumenta\u010dn\u00ed slo\u017ece mudulu IMU01A. " -  
8221 ] -  
8222 }, 469 },
8223 { 470 {
8224 "cell_type": "code", 471 "cell_type": "code",
8225 "collapsed": false, 472 "collapsed": false,
8226 "input": [ 473 "input": [
-   474 "import sys\n",
-   475 "import time\n",
8227 "data = np.load('./calibration_data_set.npz')\n", 476 "from IPython.display import clear_output\n",
8228 "x=data['x']\n", 477 "\n",
-   478 "MEASUREMENTS = 100\n",
8229 "y=data['y']\n", 479 "list_meas = []\n",
-   480 "# acc.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
8230 "z=data['z']" 481 "\n",
-   482 "for n in range(MEASUREMENTS):\n",
-   483 " clear_output()\n",
-   484 " (x, y, z) = gyro.axes()\n",
-   485 " list_meas.append([x, y, z])\n",
-   486 " print (n, list_meas[n])\n",
-   487 " sys.stdout.flush()"
8231 ], 488 ],
8232 "language": "python", 489 "language": "python",
8233 "metadata": {}, 490 "metadata": {},
8234 "outputs": [], 491 "outputs": [],
8235 "prompt_number": 1 492 "prompt_number": "*"
8236 }, 493 },
8237 { 494 {
8238 "cell_type": "code", 495 "cell_type": "code",
8239 "collapsed": false, 496 "collapsed": false,
8240 "input": [ 497 "input": [
8241 "from mpl_toolkits.mplot3d.axes3d import Axes3D\n", 498 "measurements = np.array(list_meas)\n",
8242 "#%pylab qt\n", 499 "\n",
8243 "%pylab inline\n", 500 "%pylab qt\n",
8244 "fig = plt.figure()\n", 501 "plt.subplot(1, 1, 1)\n",
-   502 "plt.plot(measurements[:, 0])\n",
8245 "ax = Axes3D(fig)\n", 503 "plt.plot(measurements[:, 1])\n",
8246 "p = ax.scatter(x, y, z)\n", 504 "plt.plot(measurements[:, 2])\n",
-   505 "plt.xlabel('sample number')\n",
8247 "#pyplot.show()\n" 506 "plt.ylabel('ADC')\n",
-   507 "plt.title('Raw sensors')"
8248 ], 508 ],
8249 "language": "python", 509 "language": "python",
8250 "metadata": {}, 510 "metadata": {},
8251 "outputs": [ 511 "outputs": [
8252 { 512 {
Line 8256... Line 516...
8256 "Populating the interactive namespace from numpy and matplotlib\n" 516 "Populating the interactive namespace from numpy and matplotlib\n"
8257 ] 517 ]
8258 }, 518 },
8259 { 519 {
8260 "metadata": {}, 520 "metadata": {},
8261 "output_type": "display_data", 521 "output_type": "pyout",
8262 "png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNX6gN+Z7SW9NzoovXdpghV7QeQq/Cx4RVGv1y6I\nBcGG2NCr2HtDxAICKggivYcaIJQkhJBCdpPtOzO/P+Kum0YSCIGQeZ/HJw+PuztndmfOO+ec73yf\noCiKgoqKioqKShNBPN0NUFFRUVFRaUhU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU\n8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amo\nqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKioNClU8amoqKio\nNCm0p7sBKiqnElmWcbvd+Hw+dDodGo0GjUaDKIoIgoAgCKe7iSoqKg2MKj6VsxJZlvH7/UiShKIo\nyLKM1+tFUZRysguIUBWiikrTQRWfyllFqPAABEFAFMXgf6EEhBh4bSgBEWq12uB7VSGqqJwdqOJT\nafQoioKiKPh8PmRZBignKUVRqnxfdSILCNHn8+H1ejEajcHXi6KoClFFpZGjik+l0RIqPKfTiSAI\nGI3GKiVUFzEFRBaYFtVoNMHjBUaIXq+33OtVIaqoNB5U8ak0OgIC8vv9wRFegFMpmppGiNUJUavV\nBtcPVSGqqJx+VPGpNBoqCi8gkFMlkcCorzavO54QPR5PpddXJcSKa5AqKiqnBlV8Kmc8iqIgSRKS\nJFUrvJokVTGasyGoSoiBNlYnxIoRphqNRh0dqqjUM6r4VM5YAsLz+/1BcdV1hOfz+XC5XPj9/nIj\nq9M17Rg4VnVCDJxvxfdUXD9UhaiicuKo4lM546hKeHWdBgwIT5ZljEYjOp0OKBtpBfb0BdYHQ0UY\nupevIamrEBVFKRdQU3ENUUVFpXpU8amcMZyM8ARBQJKkcsIzmUzo9XoAvF5vuQjNwPEC63CB/yqu\nHwaiRk+XVGorxMD35ff70Wq1lbLUqEJUUfkHVXwqp52THeEF3u/z+fD7/UHh1XYfX1Ub2wOf6fF4\ngp8dEGJ1U6YNSXVC9Hg8aDQa/H4/Pp+v3NpmYISoClGlqaOKT+W0oShKubRiJyK80BGeRqMhLCzs\npDvy0HW/wN7AwPFCR4hnohADba5K5kBQiKGoQlRpaqjiU2lwAsILrFmdjPAATCZTcJqyIfbxVTdC\nPJOFWNOUqSpElaaEKj6VBqMq4dWlE1UUBa/Xi9vtBsqEp9PpEASh0taA+qCu+/iON2Uaun4YmhHm\ndEaYBtoe+je07aAKUeXsRBWfyimnvoTncrkQBKGc8M5kjifE0ICawOgwEKl5urdcBNoe+je07aAK\nUaVxo4pP5ZQRmParD+GJoojFYkGr1Vabi7M2o7MzgdCN6qGoQlRRaRhU8anUOwHhlZaWIooiBoOh\nzsLzeDy43e4ahXc2UR9CDEyvno62h/4NbXtgTTawpSSAKkSV04UqPpV6o2ItvEAHXNuOrCrhBTae\nN2XqIkRFUYLf3+nelB9oe3V5TEMrawDB37q6PKaqEFXqC1V8KidNVcVfQzeA10RAeC6XC61Wi9Vq\nRaut26XZmKY664uqhOh0OoOb9qvalH8mRJgG2h44bmA7i0ajCQrR6/VWyq9aXR5TVYgqdUUVn8oJ\nUVPx19p+htvtxu12o9VqCQsLq7PwVCpTMUMNnNlbLkIFV1Oli9A9nwFChRg6ulWFqFIdai+jUifq\nIrzqRmGq8BqexrwHMbT9FVGFqHIiqL2NSq2oqvhrXTuRQCket9uNTqerV+GdiqnO0JRnZ2tn2RSE\nWBFViCqq+FSOy8kUfxUEIdhxhgovPDy80lScyplFbYVYcVN+aDDN6RTKyQgxtPyTKsSzE1V8KlVS\nH9XOAxvXbTbbaRee2nnVD6diU37gNQ3Z/oqECtHr9ZZ7fWj5J1WIZweq+FTKUR/FX2VZDq7hiaLY\nIMJrilGdVXG6pmVPZg9iYOr8dEZpnogQA1LU6/WqEBsZqvhUgPop/hoQnsfjQa/XYzKZkCRJndZs\nwtRGiJIkIUkSLpfrjMpSE2h/dUIMZKkJLRAcuG+qKg6sCvHMQRVfE6e+hOdyufB6vej1eiIiIhBF\nEa/XW65TUFEJECrEwMORTqer85RpQ02RVtX+0PMIEGh/xaTpoedbcWO+SsOjiq+JUh/CkyQJt9uN\n1+vFYDAEhXe6ON5U59kcmdnYqbiP73gjxIqVLoBKImnICNOKx6lqZBe4LkPz1oa+vrqN+SqnDlV8\nTYyTLf4KtRdeQ667qR3F2U1VQmxMWy5C/4a2H44vxNCAGlWI9YcqviZCIA2UJEnVRubVRGAdxufz\nnREjvLpwoh1GQN5qh3Pmcbr3IJ7sdVFXIQamewNCVBN7nziq+M5yQmvhOZ1ONBoNJpOpTp8RKjyj\n0YjZbK6V8Bo60rK6Y6mdQtPidAuxPtof+je0/UClJQpQK13UFVV8ZylVFX+t6+jM7/fjdruDwrNY\nLGfsjXSmtkulZhpqRF0XIYYmya6qysXpmAmoSYiBKFNViDWjiu8s42SrnUPZDeRyufD7/SclPHVv\nnUpj4EQ35Qf++v3+077lIvRvaPuh6uLAgbbq9fomKURVfGcJtal2XpOIQoVnMpmwWq2N7kZQ1+NU\n6ouaIkwDWxbqkqWmodsf+je0/YFRbSAyNkBTGSGq4mvkVFcLryoEQah0oUPZjet2u5EkCaPRWG/C\nU6M6VWpDY5sVCAgxIIlAAd2TSdvW0O0PPY8AxxshBs5106ZNdO7cmYiIiIZr8ClAFV8jpS7CCyW0\nk/H5fLhcLmRZrlfhnWlIkoTH4ym3XqNm0jizaIy/RcXZhZNJ23amCbFi+6FMiLNmzWLatGmq+FQa\nltAbB+q2hhcYgYUKz2QyodfrT8mNdrrX+EKjUbVabbk6gmdaJhCVs5czcVN+XZYEQoVos9mIjIys\nt3acLlTxNQLqq9p5YA3Q4XCcUuGdLgKiDaRQC41GDYR/B6jqKTywx7GiBGVZVoWoUon62Md3ujbl\nn2jbS0tLG/1oD1TxndHUl/ACI7zAxR4REdGgwmuogBNFUXA6nbXab1jbTidQLf54Ye0qJ4cakPQP\nZ/oeRFmWz4qk86r4zkDqqxZeQHhAcNN6oBNvCBrqOIERXuCY1WWUqamDrarTcTqdwbIzFTuc+lyj\nyc/PZ//+/URFRdGmTZsT/u5UiTQcDTmNX99CPJHrpLEFIR0PVXxnEPUlPK/Xi9vtBsqEp9PpEASh\n0nRfQ3GqOuPQqhAGgwFBEDAajfU+LRnagWi1/9wyxwtaqMsazYYNG5g06V0kqT2SdIirr27PxIm3\nqQJrBJzu3+hEhQhlkZo+n69OI8SzZZZDFd8ZQH0Ufw0Iz+VyIQhCOeEFOB3BJqdKeIG6f6E5Q0ML\nhTYE1QUthMqwpidwQRB45pnZ6HSTiIpqhyS5+f77hzj//B107NixQc9H5eyhpk35gT2IgYfs2sxe\nhEqzsaOK7zRSH6WBQoUniiIWiwWtVntGXaD1JduKhW7P1CTZVUWHVnwCD3Q4LpeLY8ecJCa2RpYV\nRNGAKLYmPz//NLW+YWnM02eNcVo58LAmCAI6nS44g3G82QtBEHj44YdJTk5Go9GQmZlJixYtarz3\nbr31VubPn098fDzp6elVvubee+/ll19+wWw289FHH9G9e/d6P+eqOPN6jSZAYP0tkAcTqPNitKIo\neDwebDYbHo8Hi8VCWFhYpVFeKI11xCfLMk6nE5vNhqIohIeHY7FYKt14p3v7xPEIPNRotdpgdXqL\nxUJMTAytWydQWPgroOB0ZiHLm0lMTMTpdAavkUCgzdlKYxNIY/8tqtuDqNPpMBgMwevTYrGg0+no\n06cPhYWF7N+/nyFDhhAeHk7v3r1ZtWpVtce45ZZbWLhwYbX/f8GCBezdu5c9e/Ywe/ZsJkyYUK/n\neDzUEV8DEjrCczqdiKJY50oJAeG53e7gCC+QOaImTpcYTvSYgSkZt9uNXq8nPDz8jIkoUxSFkpIS\ndDpdnX/DUARB4Nln7+fxx2eSlfUler2fKVPGcs455wT3d52pVQRUGp+w64oglOXzHDduHOnp6Yii\nyDvvvENxcTE7duygTZs21b530KBBHDhwoNr//+OPPzJu3DgA+vbtS3FxMXl5eSQkJNT3aVRCFV8D\nUN2UZl2EECo8jUZTJ+FV9VlnYmSnoihkZmZSUFBAVFQUcXFx6HS6ehHeiZ5vVe9zOBxMnfoa69Yd\nBPyMHj2U22+/6bjBK3/9tZWdO3dQUOAjIsLK2LEXM3jweQCkpKTw4YcvUVJSEpyqBsoF0sDxqwiE\nTq/6/f7gdNbZ3jGrnBgn0gfYbLbgHr7IyEgGDBhwUm3IyckhLS0t+O/U1FSys7NV8TV2ApUSTqba\neUB4LpcLrVaL1Wqt1CHWltPVCdZW8HPnzmfOnN0oShqCsITbbx/A8OFDan2c441oT+bcK37m7Nmf\nsWZNCklJTyFJLr74YirnnPMngwcPrvTeP/5YziuvLKOw0MqhQybM5qvo2DGZ559/l8jIcLp06QKU\nTXXXtDG4poCFwNqh3++vJMSK+w/PFBrjOhk03nYHOJH22+32es/aUvHeaqjvVBXfKaA2tfAEoeqE\n0aGf4Xa7cbvdaLVawsLCTlh4FY97MjetJEl16jxr8zpFUTh06BDffruJpKQHMBqt+HwlfPbZTPr3\n743ZbD6htlY8Rihut5s5c35g795c2rVL4brrrkSv19fqs7Zs2U9k5H8QBBGt1oIoDmLhwj/YuTMH\nq9XARRcNJjY2FoCvv15GVNTtZGV9iNV6Fz6fBrdbgyhezLp16UHxnQyh0aUejwej0Vgui01gytTh\ncLB//35EUaR169bB/YnqdGnT4kSXHux2e71mbUlJSSErKyv47+zsbFJSUurt84+HKr56pC618Kob\nnYQKT6fT1ZvwTpaioiJefHH2352+hQcfvImePXvU6r3V3Wiho1mbzYZen4TZHAaAwRCOLFtwOp31\nIr5QZFlmypSXWb8+DqNxCMuXr2b79leYOvWhWo3I09JiycnZjtNpxePxUFAwj9WrrRQUdMPrPcbq\n1e/x9NN3EB0d/Xe6Mz06nRGHIx9IRpYVFKUAq9VISUkJc+fO47vvfiU/v5iUlGbcf/8YBg48uWkk\nKC/E4uJipkx5nayscBTFy7nnyjz++F0YDIZy64cV9x+GXsNFRUXs3buXsLAwzj333CYtysY+4oO6\nj66Ki4vrVUxXXHEFs2bNYvTo0axevZrIyMgGmeYEVXz1Ql2EF6Ci+EIDOeprXas2x60tL7zwDunp\nXUhJeRyH4yBPP/0qb7+dSHJyco3Hq0jF9cqwsDBat26N1TqfoqJdREWdw9GjG4mPl4mKigLK1tXe\neOMjVqzYRkSEhXvvHUXfvn1O6NyysrLYtMlGUtLTCIKIovRh7dqJHDlypMbz2bt3L7LsY9euKXi9\nPRBFBVlOp23bV4mL6wbAwYN2tmzZyrBhQ7nssr68++5HREe3ICvrISCN0tJOtGlzmEGD7uPuu6ew\nfDmUlMSi0zmR5e489dQXvP12Aq1bt67xXKojMzOTP//ciCAIDBnSiwULlpGV1ZukpGtQFIUdOz5k\n0aIljBp1NVBzBYGMjAyeeOI9fL72yPJhRoxI5qGH7gr+vrm5uRQXF5OQkEB0dPQJt1vl1HOi0i4p\nKSE8PLzWr7/xxhtZtmwZBQUFpKWl8fTTTwej2P/9739z6aWXsmDBAtq0aYPFYuHDDz+sc5tOFFV8\nJ0Ftir9WR+hUVGBv2qkUXsXj1gW/38+WLQdJTZ2MIAhYrS2x2zuzb9++GkUB/4z4KgpPo9Fgt9vR\narVYLBYeeWQMb745h6ysYlq1imPChJuC38Ubb3zEkiXhJCW9jsuVy9NPv8qbb8bRsmXLOn8HZaMb\nDRD4rQRAPO7UM8D+/ft58MG3sNm6oyj90OkG06pVMoWFv7F9+wHat+/79zWgCZ7zZZddhNNZytSp\nH2AwDAFk7PaF3H//C+zatYutW73YbB5gJB5PBvv2fUKnTnewY8eOExbfvn37mD59LqJ4IaDw559f\nYzC4MJsHlZ2tIGA0diQ7ex2SJAUDYY5XQeDllz8D7iYmpguy7GPRoqcZMOAvevfuzeLFf/Ddd9vQ\naFIQxUPcc88ldOnSuVZtbawjp8ba7pOhrpUZvvzyyxpfM2vWrJNp0gmjiu8EOBnhBQhEepZN8Z1Z\nofoV0Wg0hIcbcTqzsFiaIcsSspxDeHjNm00Dog1MaQa2YOzcuYvp0z/B44lApyvmkUfG0LNnD158\n8YFgNYSioiIOHjxIfHw8q1fvJDFxBlqtibCwVths/dm9e3etxacoCrm5uTz77Cy2bNnNsWPF2O1P\nERd3LQ7HSrp1i2D58pV8881SAG68cQSjRl1T7jOWLl2F1zuSsLAw9HoXGs1lFBdnk5IymN27P6Kg\noBN+vx2rdT1duowPnn92dgEGw80UF3cDYjlyJIV77nmKhx66laNH9yOKbwPtAPD7MygpWYXVem3t\nf6AK/PbbOrTakSQklE1FHzki4vd/jt3+J2Fh7VAUiaNHv+H33/NZvTqDzp3TmDjxpuDoOpSAEPPz\ni4mN7YBGo0FRNGg07bDb7axevZpHHvkCv/8GoqNj6dy5P2+++QmvvPLPGqIaXXpmcaLSPhXBLacL\nVXx14ESLv1b8jMAIT1EUIiIiGlR4JzLiEwSBBx4Yw9SpL2OzdUWSshg2LLLGwIyA3H0+X7ktGE6n\nk+nTP0Gnu5fo6JaUlmbx/POv8P77bQgPD0cURebPX8yHHy4DorBYjqHR+HC5DqPTtfs7rD8Hi6Vn\nlcesyE8/LeCFFz4kI2MvojiWdu2eArZRXPwYPXs66dq1LfHx3Zk5cxWRkdMAeP315/H7fVx++aXB\nbSOiKAAy4eHtEcXP8Ho3YDCYkKQshgzRYzR+wcGDWXTu3CKYNFtRFFat2kRmZj8EoRk6nQW9vjeH\nDs37u63F6PVW3O4iFCUfjSaeFi1yGDhwYJ1+o1AkSUYU/7m1BUFLly5daN68mNWr78fjKcXjcdGu\n3XOEhaWxffti3njjM6ZMuafaz+zSpRVbtiwgIeEqvN58BGE9iYn/4rHHXsPnG0B4+DXY7YfYvHkf\nHTqU/caBAK7q0mGdiVl3mgKq+FTx1Yr6El4gobJerycsLIySkpIGH+Wd6Bpf3759+N//ksjMzCQ8\nvDPdunWr9jsITaOmKAp6vR6z2Rx8fWFhIR5PJNHRZaM1qzWNkpJ48vPzCQ8P5+DBg7z//kri4yej\n14dx7NgO4DUcjtcpKemHouTSvbuLfv36lTuu2+2moKCA2NhYwsLKgmTS09N59tnvMJufQ5Iewe//\nFzk5Nlq1GggMYcyYIQwcOJBHH30Rg+F6DIYkjhw5yp49rXjwwbd46aWvGDduOC6Xn6KiYrze/RQX\nm2jZciiZmU8RGxvF0KG96dBhBC+9tBit9hZ+/72QNWsm8cknL3Do0CEOHvSiKAsQxavw+UqR5c9I\nSmqBwWDgmmuG8PPPb2IwXIJWm0d09D5mznypUoTp3Lk/8Nprn+F2e7jsssE88si91UahDhvWnXXr\n5lNQIAIKPt8vXHDBlbRp0wabzcbGjRt5991CwsObA5CcfBHbty/E7/dXG0j1yCP/5sknXyMj4yd0\nOon//vd6dDoditIWvb4UScrDbG7BsWOLiYiQiI6ODoqt4vqh1+stl4Q9sKbYmKJL1anOxo0qvmoI\nbBY+mVp4UBb+73a7gxUEAvkla1pPOtOw2+1YrVYGDx58XOGFlkKyWCx4PJ5gZ+Zyudi+ffvfWWcK\ncToPYzYn43IdRRSPEhMTA0BeXh4aTWv0+jJ5RUV1oLTUzKuvjufAgQNYLGn06dOn3Ab+ffv2MWPG\nN3i9UWi1Jdx22zD69OnFjh07kOVhmEytEQQ/ogglJQ4UxY8k5WK1WvH7/Rw+nENm5la02liOHTuI\n378LrfY/FBXFMHXqhyQknEt4+CB8vl0MG7aI+PgURoyYSs+eZaPOUaPuwWJ5GIulw9/nYOe335Yg\nyyIxMf/i2LFPKSq6HUFIQKtNIDo6l44dOzJw4EASE99l9erZxMSE88ADk4mOjmbGjP+xY8chWrdO\npFevc3n22bmYzbMwGqOYO/c5zOb3eOCBuyp9/wAdOnTg4Yfh119XIwhw4YWX0bZtW6Bs43FiYiKS\nlI4sS4iiBocjm7Aww3EfwmJiYnjjjacpLS3FZDKh1Wo5cOAAolhC69ZXc+DAbEpLJTSaFdx332vl\nRnNVrR+G3l+hMwMVs9OotQ/rnxOVtsvlOqksRWcSqvgqcKqFFyAw8mroJ8e6jvgkSeKNNz5g8eId\ngMiAAc148MF/YzQag6+pKLzQyhA+n499+/bx2mtfsGjREmS5DTExEcTFHUWSpmOzNUMU87j//quC\nT5MJCQlI0ny8Xht6fQSFhVtJSDDTtm1b2rVrV6mNfr+fWbO+R6e7kbi45vh8Jbz//nu0bt2SqKgo\nBGElgqChefNbycyciEbTicLCIs4/P5HOnTuzbNlK9PpeWK0rKC524fVuRaNJIirqSuz2bcjyHcjy\nJozGVrjdwygs3MnLL08t14ayDjs0k44WSfKRmBiLLO+lX7932LHjdfLyVhIdncnMmdODoeGTJ/8H\nKItc/eOPP5g06SUKCoYRE3MXGRmrePvtR3E6/43RKJGWpkWv/z8++uh2iouLufTSYfTv37/Sd9Kh\nQwc6dOhQ5W/avn17hgxZy7JlMxHFZERxO7feOoQNGzaQnJxcZcBSevo2NmzYidVq4PzzzyM6Oprm\nzZtz5ZXtmTfvW5KSWiPLG5k4cUKNQTkFBQUcPHiQpKQk4uPjkWU5eD0F7onA3sNTUfuwPmjMI76T\nafvZMj2tiu9vKtbCgxMXnsvlwufzVSm8AKfrpqmr+BYsWMwvv7hJTZ0JiKxY8T7Nmv3A2LE3HFd4\nAex2O9Onf0ZGhhav9xZE8WZsNhswl8GDnYwZcwUxMTHlAiuaN2/Ov/89mNmzn2H//v3k5+fQrl0z\nlixZyvDh51dqY2lpKaWlOuLjU/F4vIiikVWrDjN8+I2kpqbQqpWO/fsfRKdLolUrB6NGGejRYySD\nBg36O1T/CKmpI2jR4jI2b57PihVFCEInJMmA11sEuLDbV3Ps2F/IcnMKCjbw66+/ccEFI4JtuOGG\n4bz88sv4/bfi8xViMs1n6NCpJCcns2zZJjZvnklSUjjnnNOKF1+8v1yqpsD3NHbsfWRmxpCb60an\n601UVBJHj/bE4YhHoylFllPZv/8gfv9KRNHEV1+1Z86cacycOZERI4YHg62KiopIT0/HaDTSvXv3\nSlOigiBw113jGDp0ByUlJWRmSjzxxPuIYmtkOZNHHrmRq666DEVRsNvtbN++g1mzVqLXD8fnO8ay\nZe8wdeoEIiMjufPOcQwYsJWjR4/SvPmEKh9MQvnjj2U8+OBMoBWStJ+xY4cTHZ2E2WzkvPN6kpSU\nVGN2moAQA0sPdal9qHJiNPak3BVp8uKrKLyA7E5GeEajEbPZXOPT0clmUWkIdu48hNk8AFEsG82E\nhZ3H9u0/BIWnKEqVwsvMzGTLli3k5ubidKbi8+Uiij3R6yPxeo+h0XQlL29htUluL7poONu27WT7\ndjepqa9QWmrjgQee4oMPIunRo/zGeavVitudy7x5c4EEcnO34nZvwmg0UFLSnJiYrUyaNBK9Xk/H\njteSmJhY7v1xcVb27j1MSko/Bg68hT179nHw4Ge4XIXIsoAg7MTh2ItGMwedzkB09K1MmnQ/5503\nkAMHDuB0Ohk4sB9Go5GFC7/FajVy662TadGiBQBTpz7Izp078Xg8tG17c5XZL7777nv27+9KRMTt\nHD36ELKcxt69BygpcWI0noMobsDnm4rX60RRVpCU9D4GQxdcrjY8+uh9JCV9j6JA+/Zx7NqVjdPZ\nFUUp5txz5/D6689UmqISBIGOHTtis9n4739fwWx+E4MhDa/3CC++eCdpaUk899y75OY6yMs7SseO\n0zl2LJySEj0HDkSzcuVKLr30UgRBoGvXrrW6llwuFw899BIazf8wGs+htHQVL700hfPPfwir1cjy\n5V/x2GM3VDniPN50aV2rj9cHZ/p9ezxOtO1n03RzkxVf4IYJdN6BjruuP6zf7w+WjjEajVgsljrv\n5WtI6nrMZs1iWbJkO4rSB0EQKC3dRkJCGA6HA5PJhF6vL3e+iqLwxx9/8Mgj7yBJQ3C79+FybaFZ\ns1EcObIAWe4KuPH5FtG9+/FHB0uWbCQqagomUwsAnM5RLFu2qpL4bDYbNpsDQdiBw5GO07kKUbwf\nUexHUdHTyLKO3bt306tXryo34I4YMYA9e74jO/swpaU2PJ4NdOnyIrt3P4uiXIUkdUJR0lAULVFR\n+YjiAYqL7bz33pfs3x+DKMYDi7jllr68+eallT5fq9XSuXP1+9oKCgqYO3cxBQUX4PeD1doBu/01\nHI7myPIGIiIiaNPmZYqKficn5zHgRgyGsohar3cnx46l0KXLW4iikZ9+ehyDoQXnnvs4iqKwffuL\nLFjwC9dee021x4ZYDIayEahen4jLlczjj7+Iy3UvcXEjyMt7kJUrd5GcfCFmc0sKCtYze/bnREVF\n0aVLFywWy3F/xwBFRUVIkhWz+RwAnM49iOJ1mExtSUlJIycHVqzYwKhRNe8NhdpXH69LsdWmQOB7\nqAs+n++Ek+KfiTQ58VWslBDIJFDbPI0B/H4/LpcLv99fZ+EFaAziu/LKS9m4cSbbtj2NLAukptq5\n6aYHiIiIqHS+e/fuZdKk11iyZBWiOI1zzjmfqCg9e/dOwOtdS1SUi4KCoURFmbn00sGMG3fjcY8d\nFmYmLy9B0dQvAAAgAElEQVQPk6ksMENR8rBaKy+u5+bmYjJ1Z9Cg0axYMRlBGIUgXIAgWFGUS8jP\nf4I5c/qwcOFW0tLm8/LLjwUFqCgKDoeD0aPPx+v1kpGRwa5d3YiKGopW+zY63X/xen9Dkl5EkhZT\nUPAtitIfUUzgvfd+Yty4uWg0OpzODnzzzdc8/XTldbU9e/aQkZFJWJiZPn16l1vPWrt2LZMnv8bh\nw4m43d+Tnd0OQRiGKE6iY8dNDBnSk0WL9mCzvY8g7OHKKy9g6dJfcTj6o9HE4Xa/R3z8HWi1FhQF\nZHkAXu/S4G8tiudw5EhZPsTS0lJsNhtxcXHB6z0hIQG9vgi7fT0mU0u83lwgC5tNS3z8MLKz36ak\nZC0ez5+UlgK0p7R0Hhs2JPDoo8tJS/uG119/olbZWmJjYzGZ3Dgca7FY+uDz5SNJfnJzj1BaWorZ\nLOP3lw/6UhSFxYuXsHjxJrRaDddeO4g+fXod9zi1SeZd3fph6LTp8e7nE5FHY8Zms9Upa8uZTpMR\nX3WlgeoqglDhmUwmrFbrCT8tng7x1RWdTsejj04gMzMTvV7POeecg8FgqPQ6l8vFgw++jMs1HkE4\nhNu9lvXrn8NotBIensT113ekZ8+eRERE0KJFiyqn+7Zv387y5eswm/VccskI/vvfsUyY8AJHj+4C\niklMXMU117xZ6X2RkZFIUg6gEBaWjNHow+s9iN8fi9f7JUbjTbRr9wCKonDw4Kf8/PNCxowZhdvt\n5uGHp7Jq1QEA+vZtxqOP3o1GM4esrE14vZE4nZ9jMrWlbdvbSE9/GI1mFnp9F2JjI8nPn8jSpS9h\nt5eNMOLicittCVi1ai2zZ69GkjqxffvH+P3TGDGiL48+OpHZsz/j00+XcPSoEUVph6KsAZ5CURRi\nY3sjywe49967ufnmY2RkZBAT04NevXqxfv16Zsz4AIfDRbNmHdi7t+Tv60jAbD6K230YWfYhSaXI\n8iK6dr2GhQsXM2PGVyhKJBERLl588QHatGmD1Wrl//7vEiZNugufLwy9/hivvHI/b775HZs2XYvd\nXoCi3AJIFBUtRFHmYDRejF5/CfHxrTl8+Gs+/XQO9913R43XksFg4I03pnDPPZMpKbEiihkIQiu2\nbu2AIGSj13/KhAkPlnvP0qV/8sEHu4mLuwWn08Mrr3zG5MkmOnbseNxjbdiwgd27dxMbG8vw4cNr\nzE7TlGofnmxJorOBs1581QkvQGAfUU0EKqZLkoTRaDwp4Z1Oanu+AcFLkoTZbKZnz57HPd8jR45Q\nUhJBXFwftFotJSUHgK/xeGzk5Y1n0yYfimIkNTWOc889t9L716xZy+TJXyAIlyPLdn766Vneemsy\nX3wxnT///AuTKZa+fZ8lMzOT4uLicpGDqampjBnTnU8/nUF0tAWj8VPCwwuQJBeKso2oqNGsXLkO\nUdRhNhs4evQoAB999AUrVoQTE/MtAKtWTeOHHxYycmQ3Zsy4D50uEVmegd9vxu8PJz4+ksjIweh0\nEUiSRH6+nt27S2jZcgoOxxEKCr5gxYrVDB16XrBtX331BzEx4/n998kcPdoRRZnAjz+uZf368RQX\nW9Drx6Mo6xHFK/D7t2A0zkaWd9KuXSfs9gc5fPgwnTp1Kne+ffr04ZtvyvKUulwuHn30BXbvfgZR\nNNO+/W5SUtJYs+YKdDoNEyZcR1paGrfc8hzh4a9iMCRw7NhqHnvsFb75ZhZHjx7l889XEx7+HILQ\nAq93I7Nmfc7IkT2ZNu1jFOUpBOEGwIeihOF0vo3R2IKEhHC0Wg0GQ1tyc/fWeD0F6NGjB7///hV5\neXm88MK7rF/fEb8/H1HUAP3YtGk7vXr9M6JbuXIHkZGXY7GUTX86nRewdu3244rvyy+/YebMhfj9\nw9BoljBo0ApmzHiy2u0agiDUufZh4IE19AG6sfQHJ1qSSBVfI6Am4QWoSQSBII5AyHV9Cu9MnOo8\n0RFtREQEslyAz1eMRhOBRvMv/P5iJEkHtGHOnGNs2BCDKG7nl19W8O67M8p1Nh9/vACz+d9ERnZG\nlv1s2bKK8eMfY8iQPowbdx0HDx5k/Pip+P1tkKRsbryxNxMn3hZs2zXXXEanTu04duwYkZGXs3Ll\nSr76agWFhZeza9dyFGU0BoNCYeEPHDoUj8/nY+3a7Wi111GWtxP0+hFs2/YdVmsYvXq9jtmciihG\nUFDwG8OH7yEzcz9//vkO4eH/we/PxGDYSmTkvfh8GSQnW4mPv5b09H/EpygKLpcPRSmloCAXg+ED\nfL4SLJYe5OauwGCIxmhsgVa7F0k6hKIcwe/fjdlsQJKKkOVs4uLiyn3POTk5/PDDXxQXu2jfPolL\nLhnMjBmT2LZtG36/H6t1BF9//Rvt20ej0XhIS0shJycHUeyIwVCW+T4qqh95ea9TWlpKdnY22dlR\nmM390eksKEprsrO/wOHwYTCYkSQDGo0eQdDi9xuJjRUxmf4iMfFCJMmNy7WAbt1al+tMy6YnF3Pg\nwAFatmzJBRdcUO4aMhqNNG/eHLfbT1RUP8zmcxFFkaNHf8Lh2FfufC0WA16vLeT6LMZiqTzjEMDr\n9fLKK59htX6BTheHokisWDGeLVu2VFobPh41TZe63e5y254qrh+eibUPT4bi4uKzZvM6nMXiA4JC\nO95cfFWV0APVFgLCqyqIoz44XVOdVR3zRIQXyKkJEB0dzd13X86sWY8CR5HlvUA3QAccRJaf5eBB\nLWZzL3744b/06DGbe+75ZwO2x+NDo7FQUlLKnj3vcPiwBo1mND/9ZGfdumcoKChEFJ8gJqYjkuTi\nyy/vZ9iw7XTq1Cn4GWlpaaSmpmI2l60NxsbGYbG0Y9++L5Gk1/H7s0lLu5nlyz9i2LDryc4upaTk\nL1JSXkCWu+J2/0JSUjiKosfvL8FoTESSZBTFS0SEmeeff5wHH3yGVasGEhZmZezYC8nLiyM1tSxn\naU7OcqKj/wn0EASB2FiFn356C5erBEWxodF40esj8fkkYDdlKdAiKC3NRq9vg0bzHyIi2lFSUsQD\nD1wfLNPi9XpZsOA3Pv74D8LDe9K585WsW7cTr/d3brhhJN27d0dRFKZNe4vDh/vRrNlAvN4SPv74\nHcaN64IkZeD329Fqwykp2U54eFkKuejoaHy+/QiCm6KiL7Dbl6Eoh9DrOxETk8jRo1/idusoS+T9\nHlde2ZuEhBTmzfu/vyuSFDNt2q+88spHTJlyNyNHXsKUKc8xZ04GPt956HSfc/31G3jmmccqXT8X\nXdSbadNexeW6EUFwExn5BYMHTyz3mquuGsrWrZ+TlZWPoniIitrA8OF3VntNls3KaNBqY//+DTRo\nNEk4HI7jXsu1JTBdKggCer0+OIqsWPswNEr8TJsuVUd8Z7H4AhdoTWIJlU9DCa+qYzcUFSMwf/nl\nV+bPX4tGI3DDDcMYMKB/jedbUFDAgw8+y/r16URGhjNt2v0MGTKY6667km7dOrJy5Uruvns6spwN\nOAEHoEWW26LXx6EoHfjgg5+58cZRxMbGYrPZKCjIYunSa5DlJGTZhkYzlejoTiQkJHD48G4KC/fS\nqlVZ4IhGY0IU2wanLKuiLDuOD0EQMRpHYjC0RFHeIypqENu3P09S0gdERIjY7R9x4MB4RLEter3C\nwoUaZs6cxMaNX5KTk4cse4iKWsFVV00iKiqK999/JSh8m83Giy9+xKFD+QiCSGzsQS69dFywDT/9\ntIDff89GltshCBIOx+3ExY3G6VxHr16xjB17B5MmPYHBUIrFEsagQQPp0mU0nTu3IiUlhZ07M5k2\n7SOMRi2SVEpGRiJ2+3V4PCIbNy6if/9RpKe/z/XX//MAsm9fPikpZdOgen0YgtAevV7P7bcP5r33\n7kGjSUWnO8Qzz9yFKIq0bNmSIUOSWbDgCjye9gjCTej1R/j5568ZP/5CnnvuPeBxBCESq/UKvv76\nWxYt+pgJE25hwoRHWLduBDExd+L1HuKJJ+5Blv18+eXvGI0LMZsjkOXb+fbbi7jjjptJTk7G4/GE\nbK2QKSpajceT+7cgsiqNKlq2bMn06bexeXM6Op2WHj0mHDeQJiwsjM6dm5Oe/h4REdfhdG5Fr0+n\nQ4cJx72mT5YT2W5xvNqHp5ITEZ864jvLCEx1huaWPNXCCz326ZrqlCSJ+fMXMXv2NuLixgE+Xnnl\nc6Kjo2jfvv1xP+OBB6aycWM3zObn2bNnNVdd9QBXXNGPl156gjZt2tCmTRsmTZpJfv4CBOFaFKU5\n8DWi+H94vcswGIowGttSWFiITqfjootuYvfu7kjSnYhiEYryBBaLiaysfBISEhBFDcnJERQV/U5M\nzAjc7sMoymZatbqy0rkFOpk2bdoQHv47hYUG9PoDOBxfEBPTjGPHJhMWloaiuMnJeRVJuhFIRaP5\nhebNv+TYse9ZsWINM2ZMZMOGTYiiwIABj5QrkBmQTEREBJMmjScjIwOAtm0vLBfa/8knCwgPf5zE\nxHNo1eoRMjImcM45n3PZZcMZO/YRjEYjw4YNxel0VooK/vXX5SxZ4iMlZQx2+2EWLXqHvn0vQ6dz\nERnZmeLiLIqK9mE0lk/2nJQUQXHxHmJiOiBJPmR5P1FRgxgwYADDhg2kqKiI1NTUcp3Yq68+ybJl\nl6HR3InRGEdS0iBcriJSU6MxmyWio9ciimVRvH7/UbZu3Yrb7ebPP1cQFvYvQMRgaIndPpi33voS\nlysCj0eDwVBKRIQVUYxi3rwfeeedr3C7/bRv34axY6/i/vtn4vF0QaNxkZDwEF7vJr7//mceeODe\ncr9rUlISSUlJtbm8EQSBmTOn8OSTM9m8+WaaNYvlqaeeDKbDa0hOJro0dMq0PvuhE+1vSkpKav0b\nNAbOavHVdMEERnhlazGuKjdin+r2NbT4Ak+edrudv/7aSXz89URElCWLdjqHs2bN1uOKT5IkNmzY\nRkTEK+zZk4Us90cUR7F+/TEeeuh5PvxwBqIoEhkZR2np/+H3b0SSrMjyfHS6HKKiuhIXNw69/i0S\nExN5+unXyMgoRqd7DJ/Piygew2C4FEn6HyUlIzh8eDPNmuUxadKTTJr0Krm5H6PReHjiiVuCG8QD\nBH5Pm81GWFgY06bdze+/r2DAAB1ZWQYMBid9+lzHk0++SU7OOwjCUwhCJyALSTJx8OBX6PXh2O2F\ntGrVihYtWgRzSTocjkrTVhqNBpPJRLdu3ar8rsp+27JOTxS1REb257rrZMaO/VfwNaIoYrVaK713\ny5YsEhOvQq+3EBaWBEQiSRJJSTKHD2/D4cimqOgIt98+uNz7xo27lLfe+p6cnNXIchEXXpgWDCaq\nLh1ZWFgYzZunIEmxGI3NAHC7SzCZUjCbLfj9OWg0kSiKB0XZyY4dkbz11ipKSi6juPgroqN3EB9/\nGw7HJmJjL8JqnYvD8SMu10D8/neR5QM89dRhIInw8JFs317Mffe9jCDMQKMZAGSRl/c4ERHnI0nl\n19s9Hg+bNm3C6/XStWvXWk23RUdH88Ybz9b4upPhZDawHy+6NHR0eCqnS9WpziZIxVRbAOHh4Q0+\n717bCMv6IDR3KJSNVsLCTOTklARf4/fbMZuPv59RFEXCw8Ow23cgy3FoNGb8/v3ExPyLvXvfpbi4\nmOjoaIYM6c3ixTYcjruRpHyMxv0kJbmA3ej1W7j55gv4888/WbduL0ZjArJciCDEIUk6jMYiTKaj\nmEzvMmDAcB5+eAqRkZHcdNMlTJv2P9xuL8uXr2Ho0EEYjUYURcHtdgfr/QVqG1osFm644SqA4Ki+\nTFg6xo17HFl2IAiH/u5wwvF6d+H3/8hff1mRJAm9Xh/seMoqEZTfFO31evH7/ezZswe32x1cYwx0\nSqNHj2D69MkUFY0AfERELGHYsOm1+r2sVj2FhTZMpkgMBisJCVqOHfuDtLSBiOJmmjXzcdttV5Oa\nmlrufSkpKUybNoEjR45gMplITk6u1XU9YcL1vPDCZByOa5HlLFJSdjB48B3MnKnj3ntvxu8fjKLs\nZOjQZixfvpfY2Nfo0UNmw4atFBa+ikbzK9HR+URGtmDAgBtZv/5zcnOfwuMBvf5W/P6+gJHCwhcw\nmax4PDG0adOFAwf2A2nIsoBO9ylXXPE/oEx4CxYsYOrU17DZrERFdSQ6ejbvv/9cpXRvZwuhQgxs\nFq9NdpqKew9r2n94Iv3c2VSZAUDz1FNPPXW6G3EqCeTzg3/K5TgcjmAQh8lkwu12YzKZGlx8kiQF\nO9hThSzLOJ1OnE4nWq0Wk8mEz+fDZDKRmBjBkiVfc+yYj+LidKKj1zJ+/PWYzeZqP08QBFq2TGD+\n/Gew2faiKN8RGWkiMfEqfL753HbbdWi1Wvr06cq33z5HXt7nSNJiEhLCmTJlPDExOnbtOsiaNSa2\nbw9j584VpKaOoLj4U6AYn+99BGElZvNFtG49hqNHD5KWpqeoqJCJE18FXkOnu43Nm3/Hbt9Kv349\nKS3bWY3BYEAQhHIJtAMEOo+ioiJycw+j1Xo4fHg5UVHdKCnZAryG0SiRkvIIbncGQ4a0JT4+HkmS\nguHuoR2NTqdDFEU+/vh7fv3VyfbtZlau/IvERC0Oh4PHHpvOnDm/4vVKGI1xmM353Hxzn3JbHY5H\nfHwY69b9TlGRi+LiHXTtCpdd1pbw8CMMHhzP6NFX4XA4+OSTBSxevI6jR/No2TIFRVGwWq1ER0cH\nH+bKqk8cxm63V5tKr0OH9rRvH4nFks6gQUYef/w+oqKiaNu2DSNHDqFLFw1jxozguuuuYN68DYSH\nX4PJZCIpKQFBWE+fPkYUpQOLFr3G7t252O1H8PudKEpPvN5L/858kwDk4fMdQhA20arVuL8luBmD\nYQ6ffvo83bt3Jy8vj3Hj/sOsWT9TUHAjbncKNttSioqi+eWXn+nduy0bN27liSfe4ssv51NSUkiX\nLh0adEN5oLxYQyyHhF53Wq0WnU6HTqcLToOGVrcIPIwFgmxCt13AP7Mide1zvvvuOy666KLTMmV8\nKmgSI77Q+nCiKGI2m4MdGTSOnJl1JbT+X8VySIGboV27drzwwm1s3LgFnU5L//73VRk4sHr1Gt58\n81tKSlyMGNGDO+64mR9/TGPixAdYu/YwxcWt2bTpeiZPHh2UTlZWFqWlRvT62L8zivTn7rtfJDZ2\nGLm5vdBoLiIsLIbWrZM4dOhFWrW6GLt9KRbLYSTpOjp0eBSTyYzb3ZMPPphOv34t8fmuIzy8bBrW\nbJ7IwoV3c//9dxIWFoZWq8Xj8ZR70KnI/v37ufrqOzh2rBOC4CAq6hAJCS9SULCH5OS3MZt743Su\nw+k8Um42oCry8/N5662v+O03J/HxV9KpUws0mi58++3HrF69lNzca3A4xgGLMZt3cO21s9iz52ty\nc3OJioqqMeQ9LS2NG27oxcGDB4mLi6Nr10HlOqvi4mLee+83dLoLCQ+PZ8OGdfh8v3PFFeWTeLtc\nLj76aB6ZmWW3eqtWfm655eoqHw4GDRpE3759K3WKrVu3Du4j9Pv9pKSI5OYuJDp6KG73VsLCsrHZ\nOpKZuQpF+Q+KcjN+fwHwEKLoQpYlQAPoATvQC41mHRs3DgUUjMZorrrqYiRJYPfu3Tz33Nts3OhA\nUe4A4pDl5cjyBUA3Skt9TJ78BS6XTGrqU5jNZr77bjZW64+MHl11Wrb65kxIOlGb6dKKtQ9DHwwk\nSarTdKnNZiuXSL6xc1aLT1EUPB5PUHgWi6Wc8AKcrm0Fp+K4oRXe9Xp9tdUhAvh8Pn77bS1HjhSz\nY0cmd999S7kR3549e5g06WNMpv9gMMTxzTcfIQifccMNVwCpREbeidcbj6JkMG/efO66azwajYYF\nCxaSl2fGaHwLRdGSlTUZRXHSqlUfCgoUjMYu7Nmzmk6d0oiPN3DJJcdYtMhOfn5rjhwROHToL1q2\nTKVt20Q8Hh+RkWGI4qHgje3xHCAtLapOaZTuuecJsrPHotWORVF8OJ1PMGZMHG3bNmPp0m84fPhF\nvF4jRmMikye/ykcfzSAmJib44KTVahFFEb/fzzffLMPh6EBYmAZBaMPWrfvo06ctWVlHKCiIw2K5\nHY/HiVbbl9zcofh8JRgM1qDwjreGIwgCixb9ybZtPjSaCIzGHFJSUtDr9cECr7m5uXi9LUlIKCsm\nm5p6Hunp/+Oyy8pPnf/55xr27k2jefNhAOzdu5Tly1dz4YVDy70uLy+P9977gdxcJ5GROm6/fWSl\nNVQoyzs6ffp/ef75d9i16zNiYszk5OSzZ48Nmy0TRemJyQQ+nw4YgkazCUX5AFlOQhR16HQJKMo6\nJKkXsbGTcTqXoSg6bLb2TJ26lEOH/sRm0+Nw2CmTZE8g4u9r1Y/XayY/vx0GgxejMR5Z9mE2D2bl\nynkNJr4AZ+KDck3RpYEKHh6Pp9K1d7zah2fbGt9ZnWxOEMrqwVksFsLDw6sNXDkbxBeY0rTZbCiK\nQkREBBaLpZL0Qo9ZUFDAXXc9S3r6BTgcjzF3rsKzz75W7vWbN2/B7x9OeHgHDIY4YmPHsWTJJg4f\nPszBg0Z0ur7ExvYjJmYMGRle1q9fD8ChQ0UIwuUoShiiGImiXA5oiIjohCCsxO/PorT0GFu3zkGr\n7cTcufkUFvYF7kevd+H12jhyJIvNm2dywQU9uPzyy0hN3URx8UPYbDPRap9lypS76/R97thxCK22\nP1qtFZ0uClnuwfr123j55afo1asIjaYNSUmv0b79pxQUXMvMme9SUlLCPfdMolevkfTpM5Kvv55D\nSUkJNpueli17I4oZyHIhXq9AZuZi2rdPQFFKEUUBrRZ8vmJk2U1+/i6SkyViY2PR6XTBCh4Wi6Vc\nUJXf72fXrl1s2OAnPn448fED2LDhCD17nk+PHhfSp88I9u3bh16vR5JswfN1u20YjZpKv/eRIyVY\nrc2D/7Zam5OX98+6riRJHD16lLfe+o5jx84nLe1hZPka3nrrZzZv3syyZcvYv39/uc9MTEzk1Vef\nZOHC92jZMgmv91+4XA6gBfATLpcDrdaFIHyBRpOK0dgRUfwWk+kQERFu9HoPongLXu8BnE4DLhds\n2rSCnTsjkOUbsVhGIAgJKEoykAb0AtwIApSU+MnL24YkFVNUlM6aNc+yZcuXrFu3MxhdW9W98c03\n33PrrZO4++6ng9doUyEgN61WG3x4C732AokkAnEPDocDp9OJ2+3ml19+YdGiRcFp1tqycOFCzj33\nXNq2bcsLL7xQ6f//8ccfRERE0L17d7p3786zz57aYKSKnNUjPkEQCAsLq9NevoakPo5bcYQXCOyo\nyLp169iwYTvR0Vb69+9LVFQU27Ztw+HojKJ0JjfXjdF4PUuX3lMuE7vZbEJRDgU/x+M5Slyciejo\naByOTMLDy6bFJOkIoihSUlLWqbZsmUJcXDF2ezZerx+jMYOICAMOx27S0rqyd+94NBpo3/56evT4\nD4sXL8du/4nw8AQSEu4lP38mWm0OzZpFcs01d6LRaPj229ksXboUl8vFgAFv1ljwtCJRUWZKSz9B\nUTpQtrdwLq1atcJgMNC8eVuSknoRFVUWsm00diE7exnTp7/G6tXNiY5+A58vj+efn0hqahIajQut\n1sCwYZewZs18bLat9OvXj1GjbmXHjp1s3PhfRLE/gjCXzp1T6d3bwYUXXhT8bbKyslizZg1hYWEM\nHTq0Uv5TozEJvV5HTs5OFi78AElaiMHQgcOHP2bMmDtZuvQHOnTYzLZtP6LRxCEIGYwZ07fSObdo\nEcvmzTuIiiqTn92+nRYtyjZ3b9myhTvueJTiYjelpRFcfXXZiCkiojm//25n2bJXMJl6oyif8/DD\n1zBy5MWVPj839xgQjyC0QK9/Fq/3FmAeUEj//h3RareQnBzD9de/w3PPfYDLtZ+cnAMoSgbFxQUo\nSmugFbm5a9FotuF22/+Wtw0oRhDmUtZNFaIoK/D5IoF9HDmyhoyMzQjCbYSH62jTJoUJE16ke/eW\ndOrUktGjrwlO53733Y/MnLkUu92K329jzZrn+eSTZ6ot1FsTjXlZJLTttdlukZGRwcKFC9m8eTNx\ncXF07tyZTp06MWrUKAYPHlzVIZAkiYkTJ/Lbb7+RkpJC7969ueKKKypFiw8ZMoQff/zx1JxoDZzV\n4qstjVF8ZdN9Htxu93GFB/DTT78wY8ZvaLUX4/dn8cMPLzF79nPo9Xpyc/fidjvRaqPw+w9iMOSV\nu6mHDBnCt98+SWbmGwhCLDrdUu6++xZSU1Pp2zeetWsfwmBoD+ynbdvkYK27W28dw2+/3Udu7lEk\nSSQ+fgsvvzyTRYtWkp9fwtVXX0p6ehzNmo0FIC0tlezsw0hSITpdCmFhBvr0uYw2bexERkYGA1eu\nu+66ar+TgwcP8v33vyLLGoYP70nv3v/kfBQEgQceuJXJk9+jpKQPoJCcbOKuu14EoGfPc/n555+Q\npCEIggGn8zt69TqHefN+x2r9AEHQoNcnY7dfwo4du7j88vP44YefUZQEunWL4uKLb6VHj7JSQR98\n8Cqff/4VmZlb6dZtJNdcc3W532b9+vX861/34vcPRRAOc845H/Hddx8GO+qy6dWN+Hxtyc3djqIM\nRKdr93e2kHFkZz+By+Xi6qsvoHPnvTgcDpKT+5GcnBwMmApMWQ0Y0Jvc3F9Yv342AP37J9K/f29c\nLhfjxz9KaekzWCz9sNunMG/eT9x22y24XCVkZGynfftXMJub4/HkMWPGRIYMOa/S1otBg7ry558/\nIQjD0OkSEISXaNbMjtE4nV9++bbctTRw4EByc3Ox2WxceOFNKMpAoDVQjCT1QJL+Qqe7Co8nEUWZ\nBazHbO6Az6fg821HpxtFXFwvXK4r8XqfITa2JRZLDyTpGOnpeRQWhuHx9GT16r2kpz/PSy9NQRRF\n5sz5lSNHjBgMdyKKYRw5MpO33/6E119/vvob7CylNtIOnS697777uPfee7n44ouZO3cu6enppKen\nB5Cv5wQAACAASURBVKvaVMXatWtp06ZNcKp89OjR/PDDD5XEdzrXSs968dVGLo1JfIHQfbfbjU6n\nq1Z4NpuNt9/+hD17DrNmzTpatfoAq7UVAIcOPc/atWv/3t+VgaJ8gyS1AxYTF9eM7Ozs4EVrtVp5\n881nWLZsGU6ni+7dHwiOtGbOnMzjj79OUVE+er2Fa67pGkwebDabSUiI4tChFciyRNu2nenSpQu9\ne/cGykrkTJr0FkeOrMfns5KTM5/k5GI8nnuw2yXatetEixYOxo+/ospAjIpkZWXx+OPv4vGMxGSK\n5K+/5vHoo14GDhwQfM2NN15PZGQEixat+btY7LU0a1a2b+3yy0eyd+8hPv74UkpK3KSl/T975x0e\nRdX98c/M9t2U3fQOoYQSINSEItKbUhQUlCoooOiLKGBBELALKhZA4VUEAQEFqdKb0glNegqBkARS\nN6TsZtvs/P5YshpBX8Dyvurv+zw8Dywzc+/Mnbnfe84953tCiIoajFYrkpOzhqCgQYiiD6J4Dr2+\nHjk5l0lI0FGrVgiBgfWqRLtptVoeffSRX+zr88+/id3+FlptD2RZ5uzZx1i5ciWDBw8GPAnbPXvW\nZNu29bhcqYjicVQqB6DC5UpGqdQwZ84GBAHat69LmzZtvNF6kiTdsH9z331d6drVE9VbKUWXmZmJ\n1eqDXt+OigobCsW92Gwz2b69mMhIF4GBBvR6j5Wo0YRSXu5HaWnpDcQ3ZMhDXLhwiXnzPsPpVBIa\n2giNZje9e7e/YYLV6/XUrFmT/fsPYDR2pqgoALe7GYLgwO0+hChG4HL5AYkIwnT0+vfRaHZRs6ad\nixeDMBqHIct2lMorqNXV0enc+Pj4UFamJDf3NAZDKEFBnVEo+nDkyEiys7OJiYmhrKwUWb4Xlcoz\n8SoUfbhw4ZP/+E79Ev7KFt+doDKxPiwsjLCwMLp06fKrx+fk5FRJOYmKiuLQoUNVjhEEgf3795OQ\nkEBkZCTvvPPOHVvgd4K/PfHdCv4KxHerhAceX/1TT71MSkoCev1grlxx4XDMoVmzmQiCCPh7gzXi\n41vgcsVisxUSEDAISdp1Q26hwWDgnntuLLAaHR3NvHnTr9fD0xEeHu6dED7+eCFnz9alevV5uFwO\njh2bwZIlK3j0UY+FV1hYSFlZPnv2PEdBQSlGYzNCQkbj47OaefNGU61aNQwGA1u2bMFsvkbLlole\n0rwZ9u49hM3WkfDwtqhUaq5d82H16m+qEJ8gCHTt2onTp1PYtGkvp0+fY9Kkx2nZsiWiKDJkyIMU\nFOjw8+uKj08Yc+Y8TXa2ndLSjRQUfEZISA3q1YNZs5KpqGiALBcTFyexdOncWxrDShQUFKFSNfT2\nyeVqQH5+YZVj4uPrUq9e3PXQ8wq++aYDCkVdXK4DtGs3jrCwR5Blia1bt2AynadBg/rePUK9Xl8l\noCE9PZ09e/agVqvp1q0bfn5++Pr64nYXUlFxEYslBLW6Bm53DhqNkdTUDMxmB0rlHjSauuTmbsfX\nN+Om5agUCgWvvvoSQ4f2Z+7cZRQWniMpqS5du95NdnY2kZGRNwmUsFCvXgf27j2CIFzE4yo9hce7\nHoROF4IkpWAwNMBkknn++drMn7+G7Ow1mEytMJtP4XQW0Lz54/zww0dYLHYgmZiYV1EqfZFl9/X3\n3IOOHZtx6tQZrNYkwIlKdYlatarxT8SdkLbFYvnVFKef41au37RpU7KystDr9WzatIn77rvvF/do\n/wj8P/Hx5yaS3wy/9jL+NDJVpVJ5Q/d/Denp6aSnQ0jIKARBIDz8Ga5cGYnZnIzbbcdgOETDhvcS\nFBREixZhJCdbiIi4i/LyU8TFuYmJicHtdrN9+07OnbtEVFQQPXv2uOnEV7mK/znOnbuMTjcYQRCx\n27Mwm4uYNy+Z4OAg2re/ixde+JBr17pQUHAKuz2EgoKj6HQR+PsP5MCBk7Ro0YJ+/UaQkhKD210b\nlWoqb789mvvv73NDW3DrEXZvv/0BS5Zko1bPIj8/h8cem8KqVR9Rp06d61UMGhAQEEtKyjayspSo\nVJ9Tt24IRUXriIxcjFYbSGnpE/j4DLpurY1n2bIVPPbYiFtqH6B16+Zs3vwRovgqknQVtfprEhOn\n3nCcKIqo1WreeecVBg06Tn5+PmlpbXA4uqJQKAElBkM8Fy+m06BB1dVy5f7NsWPHePjhp3A4eiKK\nBcybt5wNG5bicDjo1q0pX3/dFaczHre7BKOxAWfOFKHTPY+vbzFpaaOQZTUKRSQuVzwDB45h9erP\nbzoJ1q5dm1mzXqaoqIj589ezYEEabreFxo21DBhwb5VFWo0aMUREfE9EREPM5gzc7g1ERPhRUnIW\nu30jNtsJ1Oqz+PndhyDMo1GjfixY0JL3319IWtr7NGkSiFJZl5KSFOrX1xITI5CTU4vU1CNcu+bG\nat1P06Z+3uT+ESOGcvDgy1y6tAJR9CMk5CijRj1Wpf/nzp3jo4++orCwlMaNY3nyySG/GMX4V7b4\n7qSA7u0mr0dGRpKVleX9d1ZW1g1CC76+vt6/9+jRgzFjxmA2m2+poPHvgb898d3KC/rfIr7/pLBQ\nSXhKpfKWCK8SnhdbAjzFSWNiwrDZBIzGhURFhTFo0JOEhIQgCAITJ47m66/Xk5KygerVgxgw4CmU\nSiVz5ixg5cpc1Oq2OBxn2L9/BjNmTPpFK/PnqFMnmuPHv0etjuDChfdwOlsQHNyDDz88RGpqKuXl\nEaSnr8Nu74Us34cklXH58gvodPv59lsjQUE60tND8PN7F0EQsNs78coro36R+O66K4lVqz7k6lUt\nOp0Rm20tgwYlkpGRgcFgYMGCL/n22+84dy4Vf//NKJXVqagIp7y8OzNnfsR7772BVqvF7fYIX5eW\nXsXtboJSqUWtVhES0pny8s9wOgtQq5t5x8/tbkJWVsotPZNKvP32FMrKnmfv3rqoVGqmTHmGu+76\n5cR2QRC8JXVkeTdHjxZgNEYCYLMVYDIZfvHcl16aid3+JhpNTwCys59hzpy5bNqUTFlZWzSa7jgc\nJ0hMfJ+0tNNAHJJ0EqNxBDk5hfj4FBAc/AaCIJKVNZLvv/+e7t1vDHKpxLp132OxtMTPLwiFQsXR\no3uJjt7P4cOnuHq1mJYt69O3bx+GDSvGYllDcvJF/P3rExYWRqdOBhISqrF48Tfk5pbi75/Pq68+\nTbVqHuvs9dcnettxOBxcuXIFhUJBZGQkFouFZ5+dxoED29FoVISGNvUmal+6lEliYiMiIi7ToIGG\nLl3GEhsb671WQUEB06Z9gVI5EpOpOocPb8Ju/5zp08f958H8B+B2UxmaN29OWloaly5dIiIighUr\nVrBs2bIqx+Tl5XnnoMOHDyPL8p9GevAPIL5bgSiKv5r4/Efi58nzlYRns9lQKBS3RXiVqFWrFo0b\n+3DkyDuo1Yk4nd/xwAMtefPNlxAEgdLSUq+LVavVMmTIg1XOLy8vZ/Xqg0REzEWh0CLL7fnhh5dI\nSUn5VT+8LMssWbKcVat2odEoiIy8RlraBhyOloSHJxAfn4DD0Zhdu57D4QggP/8wsvwvIBKwIkmt\ncLtTCA4eyfLlH+J2J3ifi8tlIisrg7i4JNq0SeT991+r8jFGRUXx1lujWblyC6AkIqIOhw6VkJyc\nya5dK0lNzUWjeR27/Qny8lLw9fUHfBCEcnJzw/j009U8+eRD1Kt3nvPn1+N2W4Et+PndjyzLlJWt\np3nzmgQE+PLNN4tQqV7F7S5HqVxNYuJDtzU+/v7+LF36CU6n86Z5pb+GNm2akp6+iaysfEAiMrKE\nZs1udENXwmy+hkJR2/tvSYpjy5avKCsbidH4MDrdRSyWxeTknESW7YiiD2q1FrAjy0UoFCZv6S5Z\n9qegoIB9+/bjdErUqFGN8PBwr4KIIAhcvpzPjh07yM83I8sOIiNjOHr0EnZ7f9Tqluzdu5qcnHye\nfno0rVsncebMGTIzM/Hz8yMx8RHUajVDhgxBkqQbFlk2m43585ewe/cpDAYdo0b1om3bNgCcOnWW\nixdDgT7Y7cEsWrQKWf6Arl3b8eGH+zEYeuB0lnHkyFb69KlqsWZkZOB0xhMU5NkDjIi4nxMnxnjV\nWf5OuNPKDLdDfEqlktmzZ9OtWzckSeLRRx+lXr16zJs3D4DRo0ezcuVKPv74Y5RKJXq9nuXLl99W\nn34r/vbEd6sW338rwqiy7Z8Tno+Pz20TXiUUCgXvvTeVZctWkp6+l/j4mvTv3/eWX3hPkqsSUVR7\n+ygIOs6ePUthYSFxcXHe6M2fYuHCJcyYsRut9hlcLjOCMJOhQ9uyYUMAcXGNARm73YLB4Eu3bnHs\n378GQTgB1EeWBSCZ6Ogo4uLakpLyPYKwEYulPaIYQ1bWK6hUd+F0zmLr1vcZNWo8K1Z8WqX9atWq\n8fjjg1AoFLz77lrCwvqhVutJTd2P09kIg6EORuOLmM1TsFgGotGU4+t7jJYtl5KVtZLy8nIGDepF\neno6NlsY9etbWLZsCE6nD9Wq6Xj11TcwGAzk5r7I/v0tAImRIx++6f7nraAyZeQ/weFwcPz4SfLz\ny4iIMDFiRE9yc3MRBIGoqChSU1MZNWoimZkXqF69FgsWzKJOnToAdO7chmXLZuB2z8TtzketXoiP\nTwRWa3UAFAp/VCo3RqOCjh1b8s0367DbL5ORsRpRTKW83IBCYUKlMqHT7SMzM5IzZ2RE0QdB2MWQ\nIUlER0cjyzIlJSVs376ajIxITKbPEAQd6emP4ecnUrfucABcrgSWLXuA2Nhw7HY7zZo1o1u3bjeQ\n3LVr1zh16jwA8fFxBAcH8/nnK9iyRUV4+CwcDjMzZswiJCSIOnXqcPz4ebKyQvH37wiIqFR6Vq+e\niMWiwGR6CD8/j4WXlVXO4cPH6NWrh7ctvV6PJOV69wZttnx0OuUvjs9f3dX5ZwhU9+jRgx49elT5\nbfTo0d6/P/nkkzz55JM/P+1Pw9+e+G4F/03iA4+KQqWAssFguOUJ8deg0+kYMWLIDb8fPnyYvXuT\nCQkx0adPryq+doCrV6+yZ89BfH1tZGTMJiSkB2Vlpykq2s2sWUWoVNEolYt4992xJCQkVDl3xYpt\n6HST0ek8kZ2FhVnXBY/PkJX1NSpVKC7XRiZOvJdu3Tozd+5CsrPnIstf43aXolQK1K49DJfLjk4n\nMGvWc3zwwQdcvJiJRqPHZNqMKBrQaKazc2ctVq1aRatWrapUHKispAB+qNWelb1SqcfhUCHLVgyG\n3jidy/D3X0a9ekNo1GgxarUBWa7wJvhWVjNISEhg+PCBlJWVERMT452cFy78CIvFglKpvOm+5+8J\nt9vNtGmzWLEiD0nyo0YNNWPHNue++7oCnnIxffsO59q1qSiV3blwYR0PPDCCw4e3o9PpGD9+DKmp\nEzl4sDU6ncDLLz+DJMm8995nOJ01ASc6XTIREVb8/bX07Qs//HCZq1fvplatL7h06RQFBZNp2NDE\nsGFPkpwcTvXqnvyt4uIw9uw5wMiRdcnKyqJXr8FkZdXC5dKRl9cNo/HfaLWdcblWXt9KELDbr3Lh\nQgYjR85GEKqh0cxg+fIPadWqlfeeCwoKmDdvM3Z7AiDy/febGTWqC4cOpRIc/AJKpR6lUk9x8d2c\nPXueOnXqoNeL2O05XL6cd73CwwkiIgQcDtt/fMbx8fG0br2HffveQRSrIwhHGD/+1heKf3f83VRb\n4P+JD/jvEF+lDFZlPa7fi/B+DevXb+Ttt7cA3XC7c9i8eQrz57+BXq/HarXy3nufsHjxNpTKmkRH\nd8bhWIVen0ZoqEBZWWPCwt7G7YaiomNMnTqXNWvmVbm+RqPG7S7/yS9l6HRa3nzzabZt24PVWshd\nd/WmZcuW2O122ra9m7VrnUhSDC7XSbTaYyiVNq5cmUOfPnXp2bMnPXv2ZOPGjTzxxBIEwROtWFh4\nGpfLxYQJB1Cr32XZstk0bdrUO1EZjUb0+jKuXbuC0RjBXXfFsXXrO1itagThMpGR2Tz++BMcOaKk\nqCgVSUqja9ca3o+7oqKC556bzqZN21GrNTzzzGOMHOmxWLZv386UKe9TVlZK585teeONl24r4k2W\nZYqKitBoNDcsOm6GHTt2sGDBURSKjxBFI+fOrWbOnG/p0qUNBoOBffv2UVoaADyAR42qP2VlH3Px\n4kVq1arFypW7aNhwLElJYZSWniYsTE2nTndhNpewbFl/RFFkwoR+PPRQP6xWK/7+nejf/zzx8Y+j\nUvnQoEErMjMHER9/gZSUfMrLPekMOTnZ7NixE0laR0iIkh07DmA2D0Klegy3WwnMRhSXYDAo0elK\nyM//HPAjK+td3O7qaDTfIghqKiq28fjjL3LixC7v+B0+fAqHoxlms0BxcQkaTRj795/EaDRw9eoV\ntNrg6xGrV/D19YTNt2mThNU6HLvdBoQDZ7hy5QLduo3giy++wuHwuDr1+v0kJj5a5Rl7LOdAysrW\nIkn7eeihjrRp04pfwj/N4ispKSE4OPgP6tF/B3974vtfc3X+XDBboVCg1Wp/E+nJskxqaiqlpaVU\nq1aNkJCQmx73ySffYDK9jkoViiiKZGa+w4EDB+jYsSOvvvoBa9aA1foGCsVVMjO3Eh8/jsaNz1O/\nfgRnz+ZTXFzCuXOXkCQFbvcxDhw4UGWlPnbsQMaOfQWzeRiSVISf3zr69ZuDyWRi1KihVVy3ly5d\nwmhsyyOPJJCZmYVKlYhev51hwyIJCkogLi7Oe2ynTp2Ij1/EyZPDKCurhdP5JUbjNDSa0VRUbGbC\nhNfZuXOV93iNRsOgQe1ZsWIHWVkySUki998/hgMHfiAw0Jfhw5cQGBhIs2anKSoqJiSkUZXk2ldf\nfYeNG2W02mQkqYC33x5O7dqxBAUFMWbM68jyRygU1Vm1ahoXLjzBhAljSEpK8OYbZmdnM2vWPHJz\nzXTp0oqhQwciiiLFxcWMGjWBU6cykWU7w4bdx4svPktxcTFHjpzGbnfRsGGNKhqZ+/cfQpIS0Gg8\nOZgKRS/S0lZQXl6O3W4nLe3K9ZJOVgTBD0kyY7NdJSAggCtXrnD1qj/R0Z6K7P7+ERw4sJCOHdsw\nfvyTjB9f1dVUqXsaFORPXt4FjMamWK0WCgtPUlbWAq02nvPnV+BwKNiw4Rh2uxaNpiPPPvsxoaEK\nBKEnPj4GXK5SXK4aWK2L6dKlLePGfcRzz31Ifn4garWAw5GIIHgsZVFMJC/vKt9//z0JCQloNBrK\ny21s376X7OwwZLkabvcRJCmDSZNGMXnyZ1y50hxZNlO3bhF33fUw4JmcFQo7grAXQTCiVDZAFNuS\nk5PDhAnt2LfvMHq9mu7dh1UpKgzw7bebmTv3OEbjh8iymy+/fJs6dXbRqVNVwe+/A+7U1VmrVq0/\nqEf/Hfztie9W8GcQ389rAFYKZnvccr/tup988gXffpuJQhGJQvE1U6cOquKGdLlcrF27ifPnL+Hj\ns4qoqH5oteEIgh8Oh4OysjIOHryIr+8U7HYjWm0iVutJbLYi7HYntWvXxuVazfnz0SiV7RCE9fj4\n3M2LL85mw4aG3qTm9u3bMWeOyKZN32E0+jB48Dyio6OrBNNUwpNgrSQ6Oobo6BhcLgf5+cdp3br1\nDR+mRqNh/vx36dChJ2VlJ5DlCMrLl2Iw9EalakReXsENzyUiIoJx4wZit9u97sjevXtXuXbDhg1v\n+kx3705Gpfr4+j6WAZttEHv2HCI01ITD0RcfnySs1grc7pc4ebIn27eXsW3bLB54oAdRUVH07DmY\n4uKBCEJnDhz4mNzcfF544VmmTXuHH35ogMHwJW53GV98MYKaNb/i4kUXdnsTFAothw8f4pFHJG+K\nSFhYMEplMi7XAUQxGqdzJwZDEQsW7AF0ZGZeoW7dNqSm3oPb3RZB2E7nzm0JCwvj0qVLN9xbaWkJ\n77//IS6XRK9e93gFB36KCROGMXHiRxQUNKawMJWYGDVNmz6AQuGpgLFr1xs4HFH4+Q1FrW6J09ma\nkpLRiOJ8IBF/fzcOx0Iee6wXkyc/z8yZszl3LhNJygREJGkdTucoRDGaior5qNUGxo5dQlzcYj79\n9F0MBjeZmd+h0cwClLhcQezf/yU221Bef/1RcnJy0Omiadq0KRqNBofDwccfL8dmuxtB6ArsQ61u\niCwXY7U6adq0CU2bNrnpWAPs3HkUnW4wWq3HerTZHmbXrt2/SHx/VYvvTue4v1stPvgHEN/tWHx/\nxAv9c8L7vau8nzt3jm+/zSIiYgqiqKKs7CIzZ37A4sWNvG0sWrSCb74pwWR6jsuXs8jLm4pe3wqD\nYQ2xse9QUVGB1VqIwWAmP78Cu12Jy2XGZttNx44DiIuLY8SI1rzwwjRcrlh8fatRu/ZUysomk5+f\n761p6HA4SEpKol27dv/x/qpVq4bReIArV46h14dgNh+hc+e4XzxvzpwF2GyDMZmepaDgGpK0BLN5\nCqJoo0aNcDZs2EGDBjXZvn07fn5+dOnSBZPJ5LXCbuejDwoykZd3HpXKY3UKwnlCQqLw8/NDqUy+\nro/qwm6/gCBYmTv3X7jdRv797+W0bl2X0tJW6HTPACBJTVmwoCMvvPAsx46dRaP5GEEQUSj8cbnu\nZffuAwQHDycqqiGSJFFebuD77w95ia9///4sWPANOTlzcLmMqNXbaNNmOGFhfVEq1ZSVhRIQsJZe\nvR7FbL6ERtOK114bBXjyqSIjj5CdfQidLpTs7ANs2LAQh2MAbrcP8+c/wrJls0lKqqrxGR8fz8KF\n0zl//jwnTojYbB2v5w2C0ehHrVohZGXVQ6Npff3ZSoSFRZKUVJOlSz0u50ceGcDkyc+Tl5fHggUb\ngdno9QmUlLwNfE5FRRegAlH0IzZ2O0plJGfPTmHp0hU0a5aAv78SSToKgErVmNJSFe+++x0Gg53h\nw9vToEG8V7bv+PHjXL4cRFhYX3JzRQQhCat1FDExOlq1Glvl3mRZJiMjg7KyMqKioggKCsLf34DT\nmes9xunMxd9fh9lsJjMzE4PBQK1atf7Uen9/JP6M4Jb/dfztie9W8Ees3m6V8H6rtVlcXIxCEYMo\nelylPj7Vycmx43K5vFXDv/02mcjImURHq7HbD3Px4jEUijWEhXVj4sQ3KSoqIz/fQHHx05hMjXC7\n/YiISOGll56hVauWANx/fx8++2wrWu0UfH3jsVovolAUYTAYKC0trVLz7+rVq+Tk5FCzZk1MJtNN\n77G8vJy6dY2cPr0FkymaDh1iadXqRmWWtLQ0FixYwoYNu3C5XsRqLcftdiLL/litR4iNHUSfPoNZ\ns2YXY8c+jCx3QxTtzJjxb0aMGExpqURsbDA9e3a85SjZV155hkGDnsZm2w/kU716FgMHTkQURT77\n7GvOnRtEebkMHMFTOmcE0BmbbS3fffcNBkMMP0bB/3jv1apFkJd3AJWqJrIsIYqHCA4OwGwuJT39\nByRJRK0uplWrH2sBmkwmNm9ezpo1aygvtxId/TLnzlVHqfQ0EBfXDFk+RL16WmS5Ds2b1/S6SlUq\nFYMH38OhQ8cxm8+Smrobu/0RtNoXAbDba/Lmm3NZs8ZDfFlZWUyfPovMzKu0aBHPpEnjiIuLY9Gi\nveRe5wVZPs7o0Q9x6NBzWK3+CIIJhWImY8aMpl+/vrz22mQAL0mkpaWhUjXBar2GJK2koiIVQXie\nJk2akpr6EWp1JCpV1PVzEsnMPMDgwfUICCjh2jUZtTqJK1e+ICioGnFx47FaC1my5DNefDGKzz9f\nTmpqNnq9G0mqRsOG9dBoLpCXlw7k8vLL42nWrJn3WcqyzBdffM2OHYUoFKEoFJsZP74Pw4bdz8GD\nr5KXdxVZljCZ9nHXXSOYOHEOdnscklRAmzb7GTNmqDe1469Igne6sC8tLf1b1eKD/yc+L36vYrSV\nmokVFRW43W70ev2vWni/lfg8yb3rsFqvoNOFk5u7gzp1wqvsGSoUIm63A6VSh9XqwmSqT716QwkN\nbcPWrW0xmSYTG9sdf/9szObR9O4dw4kT8NRTU2nduhkzZkxhwYIvKSy8SkFBf/z9g4mIMDF58nB8\nfHzQ6XTeiWD27PnMnLkRlysQnS6Pjz9+mpYtW1bp84ULFxg9ejoWS1Nk2UatWgcYPrz3DSHte/bs\noXfvJ7DbI5FlK7L8CrAK8AGWIYrN0WhCMBpDOHNGprS0NWFhryKKbi5dGs78+QU0btyZQ4fOsX//\nTPr27UJ8fJ2b1vCr1LjU6XQkJCQwYsT9zJu3DFmGrl0fRKvVcvz4Kbp27cjRox/gKZUTBDiB1wAF\ngtABSdqGUrmVioq5iGIcgjCHRx7x5Em++uoEHn74ScrLt+N2m0lMNNK//wiee+5rfHwGo9H4UlBw\nAIejat9MJhPDh3uCa7Kzszl9+gckKQGFQoXZnEmDBrEMGnSP9x5+Cr1eT4cOnly33bt34MmZ9EAU\nwygrswKeya1//9EUFg5BqUzk0qVlXL78HIsXz+GRR9py6lQagiDQsOHdhISEsGrVPObO/QKLxcaA\nAeO4554e169ZlRAMBgNm8w7s9iwkSUaWr6LT3Ut0dANKSoaTkzMFWXYhyw5keT2NG7fGz8+PL754\nj8mT3yU9fQ5hYVruuWcBgiBiMIRQVOTLU09N5tKlRNTqR6moWE9FxQbU6mbExtbCaDxOu3a96dGj\nKxaLxatZeuHCBbZtKyA6+l8oFErKyrL45JPPef/95/n889fZv38/AG3bvsHMmYsQxcFERNRFlt3s\n3Tub1q1PeIUE/kn4f4vvL4hbJbLfY5+v0sJzu93odDrUavV/bP+3thsVFcWLL/blvffexGyWqV07\niBde+DFfRhAEBgxox8KFc9BqO1BRsR0fHyv+/sORZQm73YJe3wJBgMDAKFyu1qxbtxSt9t9oNPXY\nsWM2ffsOoaioFpGRWwkOliksnMY99wTQvXvXKmR15swZXnttIy7X8yiVMRQXH2HkyLc5duyra+i/\nNAAAIABJREFUKonAs2YtpKJiOMHBnpD8lJR3Wbt2PQMHVk0Ef/zxl7Hbn0OlGo4kZeNyDQBaA/4I\nQgvcbgtXruTidkuUlhajUAQBMi5XHk5nNGZzLGlpgeTlVSMlJRmNxsaRI1sZNqxrFfI7fz6VDRuO\n43QqCQ9XoVZbmDNnK7K8HEFQMX/+WK5eLSQk5D6+/HIzbvcHQNfrZ/cBvkYQHkKWnQiCk5kzX2bX\nrsPk5++jU6cOjBrlIa3Y2Fi2bFnGqVOn0Gq1NG7cmIsXL5KY2JbS0kwkyU1CQlvc7h9uOtYZGRmc\nO3eOqKhrXL36DaDHZKrgnns63NK7ct99XVi/fjpOZxyC4INC8QoPPOAhrBMnTlBaGovB4JHyUqvr\nc/hwEteuXSM0NPSGgJAGDRowd+6MX23P5XKxevV6ZPkuYAoKhYjLtRA/v10Iwn1ERfngcDgoLe0I\nSPTt25H+/T3VN2rUqMGXX87BYrHw4ovzcbs9BVTLyrJxOC5x+bKIyfQMgiBgMDSjsDCZ2rW3YbFs\nonPn2jz66L/QarVVNEvLy8sRxQjcbnC7nWi1YVy54qk7ZzAYaNu2LSaTCaVSSUFBqbeUkyCIiGJ1\nSktLgaqW07lz59i79wA6nZbu3bsSFBR0S2Px38CdLuwtFssN4uR/dfztiQ/++AoNd0J4P233t8ql\ntWyZxPLlLbDZbOh0uhva7tevN6Gh+zh+/DQmUxFnz/phtV6kpOQqvr4CknQIuAenswirdQ+C0Ba9\n3mMl+Pq+wMmT9YmM/BeZmUXXBYHbs3//l1VIr6Kigu3bt2Oz1cDXty0golRGUVIyj4yMDG8gyZUr\nV9i16yj5+e1RqU4THh6AUlmDgoKcKn32SFIV43Z3wG6XEMVAoDOQgUr1GSDgciWhUGjJzj5MZGQK\nZWXZSFIhLlcuknSS8PCHcbl80OkaY7EsJzCwBhaLiTNnUmnVylOyqKioiNWrTxMU1But1pfc3PNs\n2jQJl+tptNoGANhsE9m6dSp9+46gtLQAne5uLBYbguCDLLcE5iDLIAjraNKkOv369fvF8kn+/v5V\n5Mn0ej06nUxcXFdEUcG1a1fRanU3nLd27TrGjXsNUUzC7T5F//7tmTjxKYxG4y27cDt16sS775bw\nzjsv4HA4GDy4D6NHe0L71Wo1bneZd3KU5Qpk2XXH0cYWi4XBg8ewd+85HI5xKBROAgKMlJW1wGp9\nlStXvkah2M7cuS/RsGFDlErlTS1xg8HAwIGtmTt3BkplBP7+EgMHtmfSpGXYbBUoFApUKhGlUsML\nL4y+QROyUlFm+/YdfPjhYs6ft1KvXgwNG7YkN/d76tYNY9++gyxcuAtJ0hMU5OKZZwZSv34kx45t\nJyrqXux2M3CCmJiqCkfJycmMG/cRTmcfZLmEL7+cwBdfvPM/S36/xaP1V3Tt/hr+EcR3K7gT4nO5\nXFit1jsivN/S7s1QWVX5l9po2/Yu2ra9C0mS+Oqrb9i3byXh4SamTn2PadNmYzZ/idttpm/fBqxd\nW+D9SByOTDQakfz8fchyK7Taalit+7lw4QpZWVlER0ezdu0GXnnlE0pK7DgcLhyODNTqWjidZxFF\nG0ajkdTUVLZt28fmzQcpKzMhScm43T6kpS3Gx+c76tadXKXP69d/i9MpAYeAsOsSYscRRTeyvBtZ\n3oBeX8bzz9fju+8+xOm0UqeOzKVL9yCKCmrWDECtPkNxcR52ezYBAQY0Gh1OpxWn88dIWrPZDESh\n1XoKFvv6hmK3O3C7fyy+a7VeoKyskEWLDmO1alGpvkCrHYkkXQK+JSkpFJ1uHc2a1eXZZ2ff1jsQ\nERFBUlIWyckbEUVfJOky27Zt4dVXXyYoKJj33nuZFi1a8MwzU5Ck9QhCPWS5lK++6sjAgfff9iTb\nr19f+vXre8PvzZo1o25dgdOnxyPLiYjiNzz8cK9fXOm7XC4uX76My+UiNDT0BlfYJ598xuHD4bjd\nHYGDuFw9MJuvERi4m6SkGHr3ttOkyVOEh4f/qjXxzTdrmTp1Np7cvCPMmjWJ2rVrkZd3hLKyEchy\nR3x9j3L//dVRq9WcPHmSsLCwKik9+/bt47nnPkWpnIJOd5GjRydjsVSjY8dG9OlzN2+//S1BQS+g\n1RrJzz/GJ5+s4vnnR2C1LuXMmd2o1TKPPtqViIgIb+4twOzZy1EoxmMyeVz5eXkK1q/fyPDhQ29r\nTP6XUWkx/93wjyC+W7X4btXyqtzDkyQJrVbrLZL6R/Xt94RCoaBfvz707NkdX19fcnNzGT/+EUpK\nrtGqVSvCw8O5eHE0J048jstVG5VqA2+88TwvvTQbl8uGw6FBr79ATExvMjIycDgcTJu2EJ3uMyIj\nIygsfJmysiHodHcDGdxzTzzFxcW89NIibLZ7uHhRi832HT4+Zyko+Broi9XaghkzPiUpKckbNr1r\nVzIBAU9gNs/D5VoD5KHX59G7d1vS0z+ievUQxo1bwsiRz1FYOBCFojGy/DmdO0czb957zJmznBMn\nrJSUXCQzM5+YmBis1lIcjhPExrb0ErvBYMDtTsXptHPy5E4uXMhBp6uPKH6K1ZqHJKlwOj9Fq52I\nJNVHqXwZh2M8Pj4L0GhkJk58nMcff+zXHvmvQhAE2rdvSXx8AXa7nTFjPubYsQYolZ+Qk/MDQ4f+\ni6+/nockqVEqPbmGouiHKNYnLy/vt78Q16FSqVi69GMWLVpCZuZxmjW796YECR4Px+rVO8nM9EUU\n9ajVu+nfv2UVd+jZsxdxudqjVt8HZON09sblsqJS+TJ06Mt06eJxz/5aOs/Vq1eZOnUuSuUyVKoY\nbLaTPPvsaGRZgcXSCUGQEMV1SFI+RmM7HnxwIlANuMykSYNp2bIFGRkZLFu2AVl+DIMhEYMhEbU6\nmtDQz5g8eQxHjhwBaqHVeoI3goObkpOzAl9fX6ZOHYvdbvda1G63G0mSqCwRVlZmRaEweWsfCkIA\n5eVXf4fR+GNwpxZfpdX8d8I/gvhuBbdCQJWE53K50Ol03qKef3S7vwcyMjLYs+cgSqWCtm1bYTQa\nyczMZPr0L6ioaIEsa9i3bylTpjzGJ5+8zbfffkt6ejpxcUPo1asXGzceobi4JVptKCZTIwoKPsLP\nz4/09HQEoRkajcfFVL/+FDIy1tO6tZnExDaMGTOYGTPmYbH0oqAgFIvFF0kSkaTF6HTzgBr4+UF2\n9qesW7eeoUM9MmshIR4NyRo1VlNRcZyKiu/p1q2Azz5733tPmzZtoqSkLgbDGABkuSlbtjTG5XIx\nfHhvNmz4jkuXikhIUOPjo8NoPE2rVk0IDAz0Bj2YTCYSE31Zvfoj0tKMBAY2oX37/jRs2Am3eyvl\n5Wa2b++IUvkUTudxJEmLKFawZ88mwsLC0OludEveCYKDg3E4HBw9ehS1eiWCoESt7oQsdyItLY3A\nQAN5eV+jVj+AzXYCUTyA09n3pmLOdwq9Xs8TT4z6j8dlZGRw6ZKJatU86QzFxeHs3v0DAwZ09R7T\nsGFN1q9fD/RGrR6DJKWi1TaiceO7+eqrc5jN33D//T1/tZ2srCxEsTYqladYsFbbiNxcJQ5HU1Sq\n1xEEHyTpY2T5NMuX76dWreVotVHYbDlMnjwKi2UqUAOz+QfU6ppUpqJJUgm+vnpOnTrFl19u4MyZ\n8ygUtQgLS6SkJJ3AQL3XxftTSTqPW1WF1WpFrVbTq1cb5s6dC/wLSbqGKH5NixZjsFqtiKLoFagQ\nRfF/gjjuhPhcLtfv9n79L+H/ie86KsOUb4Y/gvD+CFRUVLB3714sFgsJCQne0ivnzp1j4sR5OBzd\nkWU7q1a9w5tvPsn69XuR5V5Uq9YMt1vm4sX1bN68k969u5OSkk9KSiTnzwvs2PEuw4Z145NPduJ2\nN6SgYDft2xtJSEjg5MmTSNJZJMmCQmHA5Uqhdu1oVq360eWXn1/I2bNZiGIT3G4FDsdJBOEqKpUC\nrdZJQEAQFks4paU/rv5Hj36ETZuGU1h4BdAQFLSHSZOqSqR5Psgfoxhl2QF4Pm4fHx/69OmIw+Hw\nWuVOp9Pbp58GPdx9dxI5OXlotbFERdVBo9EQFhZPcHAZzZvXYOfO0bjd2ajVidjtK4iNrValrM3v\nBZVKdX2v7TIKRY3roskXMZk68uWXn/Dww6O5evV5RFFgyJDpXLoUyKFDJ2jdutl/vvjvCJvNjkLx\n436cTudPWVnVUNQnnxzN+vUDOHGiDbIMKlVPatRoR0GBhbNnrWzd+hWfffYVs2e/4hXU/jmio6Nx\nu9NwOjNRqapRWnoEu/0KGk1zrNYLqFRNEIR6wCK02mpotZ7Fl0YTyaVLTnx8nsXHZyh+fscoLOzP\n1asyarUfGs2XdOkymLFjZwNDkOUW7Nw5mdq1q6NQFPLww1296UA3Q2U6w7BhA5HlL9mw4TW0Wg1P\nPjmapKQk3G631zp0uVxei7CSDCsJ8a9gSZWWlt507/Wvjn8E8d2pbJkkSVRUVOB0OtFqtX8I4f1e\nFl9FRQVPPz2dlJRwBCEUpXIGb731KM2bN2fp0o0IwiCiojzyYtnZSrZs+Q6LxYVGY8LhcF7XDNVw\n5MhesrIyOH06lNjYkQiCQH7+IY4ePcAnnzzLhQsX8PVNQJIktm3bRlRUFIMHJ7F06TAUiuqI4nne\neeeFKs9JpbIjSbtRKFqhVErI8g/odBJq9XxMpkm43WdQqVbStu0r3nNCQ0PZuHEpO3fuxOVy0a7d\n6BsqQrRp04bw8A/IypoGNEYQlvLQQ32QJMm7Kq/MLfz5M66cdERRvF6JviZpadcwGPSAQGnpJRo0\n8KFmzZq8/PITTJ/eGUnyIThYzYIFc/8QsQNBEHjllReYMqUfdntfVKpTNGqkokOHDqhUKlavXsTK\nlZnUrNkOhUKJ2y1x+vQGWrX6c5VEwsJCkeUjWK1RqNV68vJO0rp11ahPlUrF1q1fs2TJl2zYsIfs\nbCO+vuWcOnUFleoe1OoArlxR8vLL77Fo0QdYLBYCAgKq3Ed4eDgjRtzLBx/0weUKxGbLxs/vPmw2\nNbL8FpI0AElaTvPmJux2CYvlPAZDXcrLz+F0pmGzZeB0zkCv74jJ1J4OHU5Qt259und/ixUrNiMI\nwwgM7ERQEEhSCqdPL8HH5wHeeOM7tmzZz+LFc381uEcURUaMGMyIEYOr/K5QKLzWIVRdZLndblwu\nFw6Hw0ugf5Z1+GdVZvgr4B9BfLeCn+7x/ZzwDAbDH/Yy/l7E9/3333P+fCRRUR7FkNLSJnzwwb9Z\nvLg5FRVOVKofAwgUCj+s1gwaN65JcvIK7PYACgtzyc7eQ05OV6zWcqzWXYSHP4RO54fBEE129lou\nX77MunXfsX//ScrLVURF3Y8gfEW1ahb0+grc7pOMHPkgiYmJVfpWo0Ysfn5qYCMgYDJ1JDbWQqdO\ndVm16glycwvw81Mzd+4SXnstwiuIazKZ6Nev3y/es8FgYP36xcyePZ+srB0kJnbi/vt7I0kSfn5+\nt+WiiY6OQKHYxpEjpwgPj6J2bQWdOnVHqVQyYMADPPhgX8xmszeY5Kf5YT+ftH7LuzJkyEDq1KlF\ncnIywcE9uO+++7wTqKd2mc6rouJyOVAq/3yrITQ0lL5967Fjx07Ky10kJkbQsmXzG45TKBS0bt2K\ns2cL+f77xdjtHXG7tSgUa6hWbTpqdSzJyTOoWzcJQdBQs2YUS5bM9S5wDhw4RHKyRJs2M9mz5zVM\npvdp0OBuLl7MobDwbSIj/02fPq14/vmnOXbsOJMmvUxRkS9lZanIcggWS1NEMQCr9QPU6mQkqTtB\nQSHExsbidsvAj5GKV69+jULxKTpdW2TZzdGjD7Ft2zaUSjWbNx9Er9cwbNh91K5d+7YJ5KeLrJ/i\np2T4Z1iHd5J4///E9xfGrVp8lbk+lYSn1+v/8DDe30p8WVlZFBQUkJubhyD8aBFpteGUlnqSk7t3\nT2TGjOWIogZJsuF0fkObNn2pXbs28+atIjOzMWZzAApFAipVbcrLoygsXMSaNe/QuPFDWK2LsVpT\n2LTpIE5nP2R5JCpVGjpdFnp9Lb76ajuNG/8bcDFv3mvUqBFLhw7tvH3p1asHX3zxFBUVw66nJczj\nqadG0LlzJzZs2IlWOw5RvJudO9fzyCPjWLt20S2H6JtMJl544VnvvorL5cJgMNwwbr82cZw8eZKH\nHhqD09kIScqkefMQJk+eh1qt9hYo9vHxqRJ9+NNVvCRJOJ0eq7lycqkkwso/tzNpJSYm3rB4AI8F\nFB2dTlbWMVQqIw7HRTp1qn2TK/zxqFGjBjVq1PjF/y8oKCA5OZlNm85w6lQOstwHUWyP212O251P\nWdlmBKE6JSUVGI17EcVQ0tLe5amnJrFy5QIA1q49SEDAw/j4RKPRfAo0oKysnPr1a5GTE8/48V2I\ni4tj1KiXyMsrplmzOvTp04FRo17Hz28iFosOSSrH5SrBaByGIDzI2rV7yc9fREJCNTZs+BCrteJ6\nPb4CjEaPvq0giMhyHXbt+o4DB5xoNI/gcl3j4MG3+Pe/J/9ulQoEQfiftQ4rcbtFaP8q+EcQ339C\npeKFy+VCq9V63WN/Bn4L8S1cuJSPPlqHQhGDy5WCQqGmrKwJGk0o+flfcN99ng+5c+cO15OJFyKK\nMmPH9iE+Pp6UlBS02nb06DGCjRu/Ax4iJeUlVKqp13PYNnD8+E4CAwOpWXMkhYXnUasfpKQkB7W6\nHSkpg1EqjUhSXxSKQNRqDVbrA3z//dEqxBcTE8OSJe+yfPk6ysvP06fPWDp27MDx48cxmwPx8xuK\nLEsoFCPIyNhITk7OdUWaX0dl/qQsy16FnJKSkirP81ZW5888Mx2r9RW02l6IooujRweyfv36X7U2\nf+4qrYQkSaxZs4ZTp1KpXj2C+++/7wYS/Okq/uc4ffocBw6k43bLJCZWp3Hjht7jFAoF3bu34cKF\nDCyWa4SH165Si/B/BT/88AP/+tdbWCxxmM2XcDrTkaT3UCrbAhVIUhlW60yMRhGNpg8KhWfBplIN\n5+TJBd7reMZOgSCIREc3Iy3tc+z2PpjN6fj4/EBcXHsmTvwASRqDj08dkpPXc+XKcsCIWm3C17cN\nNlsyxcW1iYjogq9vdXx8Yli//lHi4++iUaM+pKSswGiUSUpqRkrKhzidz2C3n0el2khqai18fKZi\nMHjqM+bmFrJr157bKup8u/gjrcM7dXX+3QSq4R9OfG63m4qKChwOByqVCoVCcVu11X5P3O5LeeHC\nBT76aCN+fp+hUpmwWM5gtf4LH5/Z5OXlERioQ5YTSU1NJTo6mpYtW9C2bWuvvFhxcfF1gvB8YJGR\nQaSnZ+BwVKDRmNFofqBRo/fJy1uBRmNFrw/B7T6MJG3B4VhPUZE/KlUFouiP05mP2VxCWFgILlcO\nAQE+2Gw21qxZQ1GRmUaNGtKkSRNef/2lKveg0+mQJDNFRZ9TUPAusiyhVFZw4MABUlNTiYuLuykB\nVu7hSZL0i/mTK1Z8zbRp71NRYaVTp7v54IPXq6jH/BQ5OVdQqTy5WIKgxOlswdWrdxaWPnXqW3z1\nVTqSdA8KxT527TrMggUfAngnrspcsJ+7Si9dymTTpmxCQjojCCLbtu1Ho0kFJLKysqhduzY1atSg\nbl1PMIjT6eTZZyexePFiJElHrVrVmTFjEu3bt7+jvv9eePnlj5DllzAaE7BYCigtfRy3+31kuTXg\nwGBYw/DhXWjQoC6TJm24rnijwuE4QPXqPxJ5jx7NmD9/BQ5HDyIjm+FwfEBAwAWiooIZO3YcZrMZ\nmy2ekBCPxmto6EAuXlyLyaTAYlmC3e7E6UxHEDKoXt0j1eZwWCksLCUmph9arR8JCQPJzl7Eo482\nZdCgJ8nI+BBR1BEc7JkHZNn1kzuTUCj+O4ncv4d1eKe1+P7f4vuL4ueD/VPCqxRXdrvdv7lE0J32\n7U50QnNyclAo6qBSefKPDIZ4Kir8GDfuYaZPX4bNdj9bt0ps3foB48f3oXr16kRHR7N+/SaWLNlO\nRUUF997bAqPxEhkZy/H11WM0bsXlOo0gzKBu3X+h11dHpcpDo7Gg1YbhdG6ltHQrsvzYdU3S/dSs\nGUtR0Wby8goRBAPBwcfp2/c1HnpoFCdPmpCkeiiVr/HSSwMZMWJYlXuIi4ujfn0fNm+eBaxElv2Q\npJFMnLiLhg07o1TOYcqU/rRo4dk/stlsXLhwAY1GQ2Rk5C8GGx06dIgXXvgEpXIZWm0E27dP5cUX\nX+Pdd1+54ViApk0bsW/fZ2i1z+N256NSradRoxdveSwqUVRUxFdfbUWr/Q5RNCDLgzl8uCdnz56l\nYcOGVfYcb+YqPX8+E5WqFqKoQRRFfHzq8c47b7F9+z4UigQk6QgzZ77EgAEeBZEZM95nyZL92O01\ngcmcP1/AoEHPsHbtv2ne/MY9t5tBkiROnDhDZqYZo1FLixbxt1QgtxJut5t169aRnn6RWrVi6d27\nN7m5BZhMjRBFNVqt4rqm6rfYbAkoFG5q1qzOtGmTcbvdbNiwi4MHu6JQxKDXn+CDD+Z4r92u3V1o\nNBoOHNiDXq/i1Vff4vjx8xw9eok1a/bTsGEobncesiwhCAocjkL0ehXDh9/LvHlbMJs/Q5bzadky\nDJttE7m5NSkv30dsbDBarR+yLGOxWKiokDl79ixWayDR0TtQKHyxWr8lM3MadvvTQGN0umBCQk7S\nocPU/5lIzNu1DgHsdruXCG9l77C0tNQrev53wj+C+CrhKSdjw263V4n4g/+uQsGduDurV6+O230G\nuz0HjSaSkpL9BAYq2bbtELLcj8DANoDAqVNFTJgwn7p178JuP01paShRUVNRKmXWrFlIjRpWMjNX\n43IFEhRUzLvvvs7s2asoK9tAQcFC+vSpSWJiIx5/fAClpf7IcitgKaL4MHr9KGJj/WjUKBy1egP3\n3tuBu+8ewuHDhzlzRo3BMOe6+ktP3n77AYYPH1rlIxNFkS5d2rBnT30UiggE4ThWa1vKy+sSFdWH\nsrKWfPTRbBYtakZaWhpPPTWNoiItslzC8OHdeOqpkTd9lgcPHsbpfACdzlM8U6MZx3ffDfjFZ/n+\n+68ydOhTpKQsARxMmPA4d999922NB3C9uLAeQdBf74sSUfS/QTi6sp8/d5WaTH7Isg2lUoksu8nO\nPsXGjTsRxYO43cFIUioTJnSha9fOGI1GtmzZi90eAExAELoiyxVUVNhYsmT1LRPfvn1HOXYMjMbG\n5OUVk529hwEDOlXJX/slyLLMhAkvs359Dk5nB1SqNezde4yGDeM4dWolAQED0eks6HTJ9O07g+Dg\nKARBQqfbj0qlQpIk5s+fxZkzZygpKaFx4+lV9s8EQaBVq0RatfLsd65atZGdOyE8/BFKS4vZvPlr\nfHwukJzcG622GkFBLsaPf5CePbuTlNSEwsJCIiMjCQgIYOfO77h6NZ24uGacPh1CaupuLl6Uyc7O\nRKM5SFmZE0lKQqv1kL5G04LsbDMxMQ9TXFyE1bqBBx/sTFRUlLfiyv8qfsk6tFgs3nftVvcOr127\ndluuzs2bNzNu3DgkSeKxxx7j+eefv+GYsWPHsmnTJvR6PQsXLqRJk1+ulfhH4R9BfLIsY7Vab0p4\nlfizFVR+K2JiYpg27RGmTx+N1WrEx8fKO+9M4quvtgEqlEolxcXXKCqSiYxshSi2IS3tFJIUR61a\nwQiCA+X/sXfegVFUXRv/zc72zab3SkIIgYQeuiBFBQIiWEEFCwi8dhRFERtgF1HEgoKggoKACEoR\naSJSg0RqIJQE0usmm91sm53vj5CYQAIhiPq9vs9fLJly586d+9xz7jnPUfZl48YX6dbta0wmK+Xl\nx/j448UsXvw2p0+fxmAw0Lx5c7Zt24YoxiIIU4FI4C7c7jFYLEkUFlYQHd2CSZOeqYnGq6ioAMJq\nPh6lMhSz2YEkSRcErYSEhGAw7ESt9sBmc+F2G/DwqCIOvT6E/HwzJpOJl156j+LiO/HzG47LZWbB\ngsdISmpTpwJ8Nfz8fFAq99dY0U5nGmFhVZZxtXVVXacPIDAwkHXrllJaWoper6/zt8tBaGgocXH+\nHD36Omr1rTgc2wgMLKhT3f1iaNcunmPHtpCTUwkocDpT0OkScLkCkWUQxTgUCm/y8/NRqVT4+noC\nBUD1uHWhUDRe99XtdnPgQC5hYcNQKESMRn+yswspKCggIiLikudnZmbyww+70Gq3oNNpcbvvZfXq\nvnz99Zu8885C0tOXIgh2rr22BX5+/qjVKkpL99OvX9WCpHrSrS+Qpz6kpJwmNHQcarUBtdrI5s3H\nKCsLRa3uh8Oxg8DAfAYNuh6A6OjoOrmWyckDav7dqZOVV155n4ICM9HRXYmLe5MjR+bhdK5Bkh5F\nFH0xmd4GWlFcvJPKSgtK5TA++GADrVqt5YYb/v9VZq/+Fs+vFNOQdfjDDz+wfPlyNBoNBoOBqKgo\nWrRocdFIaUmSePjhh9m4cSNhYWF07tyZoUOH1hn/a9eu5cSJE6Snp7N7927+85//sGvXrqv34A3g\nX0F8UPWCLxbiXk18f0d15aaS7pAhg+jTpxcFBQUYjUbUajU33dSbvXu/obRUS2FhIS7XdxQWKsnN\ndWCxGLDbPyE7Oxwfn+6Ul2eiVPqSmnqK8vIKKipW4XTuZvr0t5g+/bkaAigtLUUQYlAqVbhchchy\nAIJQjEazlZEj7+Puu++u4x5LSkpCqZyN1boZtbo1lZUf0bNn53ojNQcPHszSpWvYtWs4VbXdjpKQ\n8C4Oh4Xs7G/o2TMWo9HIyZPZeHldB4BSaUSSupKRkVEv8Q0fPpyvvvqB9PT7kOUwlMqfeO21tzl2\nLJ21a1NxOBSEhWm56abeNe0WBAFfX9/Lfge1oVAoWLjwPZ5//k0OHHiImJhwZsz4CIPB0KjzPTw8\nGDnyOrKyspBlGVG8nW+++RpJ2o8odsDpXIfB4CA6Ohq1Ws2MGZO54YabsFgeQ5afQRCMYBDcAAAg\nAElEQVTMGI0fM2LE+9jt9kZFlQoCuN0SCkXVdyHLzosGdlVPkNUKJkqlD4KgPff8OkTRB71ez6JF\nsykvL0en01FWVsaWLSlYrS769YugY8d2l9mzVTAYNNhsJtRqA1ZrIWfOnMLbewEGgw9eXjeRkTGG\n9PR04uPjL3odvV5PZGQzunbtjJ9f1bHR0TehUh0mNfU6RNEfQUhHEK6nvLw3gqDC7d6GXj+ROXO+\noHfvHn9bLEBT0dD80pB12KdPH7RaLYsXL+bnn39m4cKF5ObmMmLECObPn1/vtfbs2UNsbGyNa3TE\niBGsWrWqDvGtXr2ae+6p2vLo2rWq+kd+fv4F1T+uNv4VxKdQKC45+fydfvumEp/L5UKWZXx9fWuC\nPLp06cKrr4qsXLmJgoJCiopKqay8B7X6FlyuNNzuUHbu/AAfnwXEx2uxWCopLDRRUfEJTucNyLKV\nDz5Yx/Llm5g9+zluvHEw7dq1QxQ/RKHogVrdEafzfXS6AFq0iKdnz54X7AlFRUXxxRdv88wzb1JU\nVELv3h2YOvX5ep9BpVKxaNHHbN++HZPJhEo1nK++Wkpx8Wf07duaxx4bj1KppHnzcI4f/wVf32Qk\nqRKFIoXw8JH19qVOp2PVqi/56aefqKiooFu30RiNRj76aDP+/kPOVWE4wrp1v3L77QMvu98vBl9f\nXz744PUmn6/T6WjR4o8Uhblz32L8+GG43Rq8vUUWL55b44ZMTExkz56fmT17Nnv3fkl4eBgTJrxL\nUlLSBWkW9UWVKhQKevSIYevWbeh0sdjtJYSHVzY4CR06dJQffzyAwwEtW/rQv39XfH1t5OZ+gkYz\nCLt9LaGhDmJiYhAEAS8vL8xmM1Onvs6WLb+i0WiYMuUhOnVq36S+ufXWa/jooxWUlbUnI2M3FRVl\nVFbKCEIBBkMBwcFV6jyNQVSUP3v3HsbXNw4As/kw9957G126dKCkpIRx46Zz8uTtWCyBKBStkaQ0\nfHwqkWXtP97VeTE0NrUrODiYYcOGsXz5cubOnUtwcDBms5mioqIGz8vOzq7jKQgPD2f37t2XPCYr\nK+t/xHc1cDklgv4/WHy1E+zrk1BLSupEUlInZFlm6NAx7NunwWQ6hCiG4unZ/1w9Pj9Gjw5i27Zd\nfP75s0hSCyAdUAPfUVR0hClT5hMY6E/Xrl35+OOpjBs3hZycYjw9WxIZ2Z3evTUkJCTU28bOnTuz\nadMyoIqgLxY4JIoiPXv2rBH+7t+//wWRmq+88iTjxj1HaekqJKmYO+7oVqe8z/nQarXceOONNb+P\nHTuGIETW7OEEBbXi9Ol9l3zff7cLfODAAaSn76e4uJiAgIALrObw8HDefLOqLp7L5cLpdF5wTG13\n1vlRpfHxseh0avLzs/D01NO6da96LfPc3FxWr04nKGgYarWe48d/Q6vdz5IlH/H00zM4duwL2reP\n4a23PqqzP/jCC2+yZYsvev1eJCmXl18eS3R0JN26dbvsby0+Pp7Jkz3JyMjgkUe+Q6Vqjtv9HbI8\nCLN5OeHhJ4mLi7voNRwOB+vWbeHgwTM4ncc5efIoarWB9u096d//djQaDT4+Pmg0Wtq1i2Pv3pO4\n3bloNAIaTTpRUYZL7nkdOHCAzZv3oFKJDB16XaPcxlcbV1J9vfp5jUbjRQOfGnv9+lSU/mr8K4gP\nLq9Cw19de6qxk2vtaNTGKMoIgsDIkYMoKDhEYWELBMEDu30DzZp1RKHQYbcXk5/vRKMRsVoF4Azw\nPBCEJJXjcAxn+/Y9dO3ald69e5OWtp29e/dy5EgaxcWFJCQkUFZWdlEXYWZmJqmpRwEX1157zQWT\nhtvtxmq1Nkji1YiOjmbVqnlkZGTg4eFBZGTkJfurNgwGA5J0vMatV16ej4/PhbUL/4lQq9WEhIQ0\n+fza7qxq1I4qjY5uRlRU5DnZuvotxMLCQhSKaDSaKs9JYGBrTp5cTXJyH7766uMG7719ewpa7dco\nFFoUimis1uHs2bOPbt26NartJpOJb7/dxKlTRYSFeXHbbdfRo0cPKiud+PjMxGpdjtP5PrKcxc03\n96kh3eoUpepv6/jx45SXl/Prr79x9Gg4fn7D8PQ8i0q1iYkThxIeHl4nX/Lmm69h2bIFJCb24tSp\nL5DlVSQlXcPUqRMvOj/s3ZvC1KlLUCpvQZIsbNz4NrNnT/pHkF9T4HA4GkwDOh9hYWGcPXu25vfZ\ns2cvqI94/jFZWVmEhYX9OY29DPxriK8xuJhQ9dXEpYivdjRqdfpFY8n59tuHk509l/nzJ1FSIuHj\n04ODB2Wczk8ICQlFFMMIDtZw6lQ6YAOOASpEUYkkZeDjU1cfs1WrVrzyygekpxsQhEKMxg/4+uvZ\n9YY8Hz9+nNmzN6FQdMFmK2Pv3q+YNOlOvL29m/RMer2e1q1bX/KZ6+vL8PBwunU7ya5d3yOKXqjV\nhQwffuH+4D8FtSfuq4GGEvBlWUaSpAtcpYIgYLPl4XRWqfWXlxfi73/pyhQBAX6cOnUUpTLs3L7l\nUQICGhfF53a7+eyz1eTltcPffyhnzpxi7txVTJp0N926dWTLlgV4er6AJGXjdo+kV69elJSU8OCD\nz7B37360Wi3Tpj2BxSKxZUspEMK+ffvo1asrRmMYRmMYZ89m1MjP1cbYsXcTHLyefft2csstXowY\n8R2+vr44nc4aNZ/6sGTJRvT6sXh7V7lzc3KcbNz4C/fdd2ejnvlqoSkWX/V31NjzkpKSSE9PJyMj\ng9DQUJYuXcrXX39d55ihQ4cyZ84cRowYwa5du/D29v7L3ZzwLyK+xlp8/yTiq677ZbPZGoxGvRSU\nSiVPPfUQDz54L1OmzGDZsn2oVGa8ve9g9+4jeHjsw9e3D3l5XXE6D+N0voxCcSOCkE94eA7Dh8+r\nc72vvlrK0aOx+Pi8hCAIlJV9w4wZ7zNv3kzKy8tJTU0lIyODmJgYdu5Mx2gcjLd3FHa7nbw8Jfv3\nH6B79y5UVlaiUqn+dJWci32k/fr1oHXrPOx2O35+HRsddPJXwmw2s3r1NjIzK9BqYejQJGJjm/9l\n9xcEoV5XaXx8PO3b53LgwBoEwYBWm0OvXlXu6drKNOfnhU2fPpF7751MZeVmIIdWrcwMGzasUW0x\nmUzk5EB4eFVqRlBQItnZBykqKmLmzJeZMOEpdu+OR61W8+KLT9C1a1dGj36IlJQEPDw+x+XKYPLk\nu2nTpjtt2rwKKDh0yMhvv60lNLQTgqDAajWxcuU61OrtdO4cT5s2CeTm5qLVahk6NJmbbrrcMj4S\nCsUfFpIgqHG5GibKvwpXsoXT2POUSiVz5sxhwIABSJLEmDFjaNWqFXPnVlVVGT9+PMnJyaxdu5bY\n2FgMBgMLFixoUpuuFP8a4msM/k7iq43ahKdSqS5bcLk+GAwGIiObERLSncLCOMrL/XE6A5CkncTF\nncTTczMmUyRabSJq9beMGjWQKVMWXFCSJCurEEFIrGmzWp1IVtZKSkpKeO65Oaxfb8dsFlAoFuHv\nb2fIkF5Adb+qKS0tZM2adaxcuQWNRsW4cbfTtWvXK3q2y0FgYOA/2r25du12srObExGRSGVlGcuX\n/8i4cT6Njji9GuNXEARUKhU33XQ9nTvn4HQ68fdPQq/X16tVWpsI27dvzw8/zCclJQWDoRN9+/at\ncUdeajKuOq4Sp9OGSqVFkpxIkrlmH27p0nk1lnFFRQUZGRns2fMbev37CIISlSoWq3UQ5eVnUCiq\nprqWLWNJTf2a7OxdWK3ZpKdvoLT0HrTacNat+xqjcSVBQb1IT09Bqz3LwIHduf/+UTWLpEu1eejQ\nHrzxxme43XfjclkRxe/p2/fhP+9l/MW43EXpoEGDGDRoUJ3/Gz9+fJ3fc+bMueJ2XSn+R3y18HcG\nMlTvudjtdmw2G6IoYjQaGy3WnJeXh8lkIiwsrMEN6MBAL7KzUzAab8TprMBiOYTVWkBCQhgvv1y1\nCvfy8qJz52kN+t27dm3LsmXLcLmuR5Y1FBfPR63O4rrrRpCT0x2XaxguVxscjl+wWD5h/fonGTz4\nA6zWMmR5J2VlPrz55lpE8XFkuZLdu6exaNErtG/ftEi/fwqsViuyLF+RFSnLMqdOlRAWVlWgVafz\nwu0Op7i4+JLEt2vXLl566UOKikro3LkNr7zy1BWnZ5wPQRAuGBfnu0prB9FUE6Kfnx+DBg2qsQgl\nSSIlJYUZM+ZQVFRKy5bNufba62nbNoKOHdvWEIvBYCA5uTWrVy9BoYjF7c6gX7+wmgoZULX/uWLF\ndzz77BsIgjfFxSY8Pffj6dn7nATeMfR6MJlO4+kZiU53lr59g7j22gJycrIpLh5EeHjV2M/I2EpB\nQQClpQGcPHkDkpTCqVMn2bPnaRYseK9R32K/fn1QKkXWrv0ejUbJiBHjiI2NvfLOv0I0xeKz2WyN\nEjL4/4h/DfE1Noz37yI+l8tFWVnZOakqj0YTHsCSJd8yf/4WRDEYjSaX1157sGYvLCMjg9OnT+Pj\n48OQIQN44YWPsVqnYTKlIQilqFSPsWlTOocPryEhoRXjxvW56GZzcvIgjh/P4MMPbyA/vxhZ9qOk\nJBKF4iySZMTt9kQUlQhCDG53CzIyVpObO5NWrVpz22038cwzb6NUPoWHR3X17jJWrFj3pxHfX/0O\nJUli27a9HD1ajiAItGzpwbXXdmmShS4IAt7eWioqCjEaA3G7JdzuInS6iwtRnzlzhieemI0oTsPH\npwUpKYt45pnX+eSTN2uOsVgsuFwuPDw8Ltk2SZIwmUyIooiXlxeCIFBeXs7bb7/PsWOZdOzYisce\n+0+9if7Vll5tnB9V+ssvvzBq1EQcjldwu0M4deoNysr2k5WlRZL206VLR6Bqn7NHj85ERYVSVFSE\nt3f7OlGbaWlp7N69m5de+hCNZjVKZQw63TuYTKNRq28DMujaVcfUqY+xYME35ORUEB8fypgxj+Pj\n48PWrVvZtCm/5np2uxWFwofTpwvQ6UbicAgYDB4cPvwBaWlpJCYmNioK+Npre3PttZev/HM10RTi\n+2+tzAD/IuJrDP7qSVOWZZxOJ3a7HVmW8fDwuGjhy/pw4sQJ5s//FX//N1GpjJSVHeKllz5k6dL3\n2LZtO6+/vhJZbo/bvY2BA4O5//5hzJv3A7LsBQylsnIpSqUXeXnZJCW9yquvTsNut3DdddfVO7EJ\ngsDEiQ9y+PAJfvmlC7m5XVAqY7HbXwDWA82QpCAEYQOyXIBSGUNxsZqICCOhoaEolSJVldKr+8B+\n1YV/XS4XqampWK1WEhMT65QXulIcPXqcw4dVhIdXuXeOHEnBzy+Ndu3qT/O4FG68sStLlmymvDwE\nl6uUbt28L4iMq4bZbObgwYNs374dl6sLnp6JOJ1OjMa72LdvCU6nE5VKxb59B0lNLQZUBARIXHdd\nUoMJ2BaLhe+/305BgQZZttOmjSc9enRg2LBRHD+eiNs9gp07l5Oa+jBfffVpoxeU1VGlhYWFvPfe\nIior70ahGIrbLSOK75Caeif9+z/M7t0/kZDQkhdeeIUvvvgCWYYbbhjIZ5/NqTMeFy5czKxZK7HZ\nWmIy6fH0/BmjMQYvrydQKj9jypQYwsN707t3b5RKJW+8EX/B5N+2bVt8fGaSl/cTGk0IgnASH59g\nSko8keUyJGknNlsMsmy+aEDLfyv+WyszwL+I+Br7gVaLuV5t1C6po1arcblcl016APn5+SgULVCp\nqtybXl6JZGdXYrFYeOedrxHFSUiSJ3q9yI8/vsPzzw/g88/Xo1A8iCyvA4bhcvnjcm3lu+9uRqns\nzJNPrqJly29YtGjOBXt8f9zXhFZbZaU5HA6gE4KQiSy/DLyFLLvQarug0eg4ebKIadPWsWrVPvr2\nTSQ19Q1MJhNudyU63ZeMHDmrib14aVRWVnLzzaM5cKAQp1ODRpPFnDmvXrAP0RAutRjKyyvHwyOm\nZnwZjREUFJxocnvDw8MZP34ARUVF6HTNL6g6X40zZ84wZMidnD2bjyQ5gUQiI+8CPJCkLATBTklJ\nCZIksW+flbCwPigUIgUFp9iz5zB9+nSu97o7dvxOcXFzQkPjcbvdpKb+gtn8IxkZLkRxFkqlgCwP\nYMeO9uTk5Fx2KPq+fUcRxWaIohWFQkSS3EhSGUqlBoXCfU4tZAlLlvwOnEYQdGzZcg9Tp85gxoyp\nNZVFZs36Cr1+GWq1BwUFBykvn4xePwhJykOnUzJy5MgLvqfz5wBfX19ef/0RvvlmHTk5u+jYMR6T\nqZCionXk5S1AlgOx243o9Tp27z5A27Zta2TWasPlcrFz504KC0uJigqjY8eO/7h95KZafA19///f\n8ffU2PiH4q+w+FwuF2azGYvFgkajwdPTs0mEV43w8HDc7qPY7cUAFBfvITTUiCAInDlTxL59xaSm\nlrJ790ny8hSYTCaaN29HSIgDWS4DRgM+QHMcDi9keTReXvM4diyBmTPf59ixY/UqVfTs2Rab7Ut8\nfLTI8mHgSyAbhWIgMBxRvBdZzgHKUKsfx8PjGfT6SWzalME77zzIoEF7ufnmNJYseYeWLavK7Miy\nzMGDB9mxYwdlZWX1Pu+lVt7nv8O5c+fx229elJevx2xeRWHhPdx990Q+/fTPiSbz9zdgseTV/LZY\n8vD1vbiclSRJZGZmkp6eTklJyQV/NxqNREdHN0h6AM8++ypnzpThds9HEPKBKM6ceQCb7TNgGsnJ\nD7J+/T7M5gqUysAaSTJv7xDy8ysavG5BQQWenlWuVYVCgUoVQnm5hbpThYI/ApYuD06nRNu2g9Hr\nNyBJr+F2L0SWx9Ct2xDKyn6hT582bN/+GzbbWAShSg7N6XyEHTt+QxRF3G43ubm5CEIgCoUvkI/B\ncAi324nZfBsKxf3MmTMDi8XCnj17OHTo0EUXs8HBwfTtm0Rqajpr1zrZvv0Mw4e3JzRUS0DA/cTG\n9qdfv7msX3+i3lJVbreb2bMX8O676Sxd6sNrr21nxYrvL7tfrjaaWovvf67OfwGuJvFdTG3lSu4b\nFRXFxImDee+9yciyF97eNqZNexyHw0FhYTZWawZu90BkuRyrdRPBwTcSGOiisrKMvDwXbvd+YBbQ\nBUjA6fwESMJsjmHZsi9JTw/Az6+Q559/gMDAwJr7Pv74BAoKXuGHH+5AqcxBpWqGILTA03MqlZXf\n4ufnid0ehyBYAANhYXr0+lDKyyOIjIzknXfqSoVJksS4cRPZuPEwohiETpfJypULavZ0Tp8+zejR\nj5CWdhh//yA++eQtevXqdcn+OXYsA7u9Dy6XDHgBg5GkH5k27U3uvnsEOt2lc9EuhoSElmRn7yQz\ncxMA4eFuoqLa1Ew0KSkpnDhxguDgYFq1aoW/vz+bNu3i5EktomgEUklOjmvQndkQjh8/hSwbgVxk\neRZwH6L4BF26mOne/WWCglqQk7MMvV6Hy5WD2x2NQiFSVpZHZGTDrt6QEE8OHcpEp2uDJLlwOLLo\n3Lkj4eGLOXVqCrLcH1FcTlJSfJMSj9u0ieb331MZM+YDdu5cism0m8GDh9K3b3eaNQsjJCSEyMgg\nlMo9yPKoc2ftJSIiFJVKhUqlokWLFhgMpZjN66isLEUUW+LnN5CePf3p319NcHAQw4dPwGqNQZIK\n6dUrhLfffrHBvc2XXvoQWZ6En197JMnGTz/9h4CAKFq27FtzTHm5L1arFR8fnzoEcvr0aXbvNhMV\nNRlBUOBy9WD58hcYPPj6Kx5bfzfKysr+5+r8/46/K7ilMWorV3rf5OQb6NWrO2VlZQQGBqJWq8nM\nzEStDkSW9wMbEEVPFAo/9u7dx2uvTWTatA85cmQ/TueTwDigP1COJH1Lbu4X2Gw7iI29h7Cw28nN\n/ZWFC7/j6afHAX+o6r/44iSee+5x0tLSmDjxTc6cycXpXMH11/egefNm7N79O0VFmYSF2QgMjMJu\nNyHL2fVGG65atYqffipEpdqIIGgwmZbw8MPPsWHDMtxuN7fdNoazZ+9Fp7sPk2kno0aNZ8eONZes\nQJ6UlMg33yxHlocAbuBrlMoOQB5ms/mKJyeVSkVyci9KS0vZsWMHzz77BpWVboKCvGnbtgVr1/6O\n05mA272L5OShJCd3oKAgkMjIqhQOqzWMbdt2cOedl0d8bdvGc+zYamA7EA88BuTRvn0ywcFxFBSc\nJDzcSEREBJ06mUhN3Ur1Hl/nzp1YufI7tm7dTXCwLxMmjMXHp6p6RY8e7Skr+5WzZ88gy046dvQl\nMzOTMWNuZ8eO/eTkfESHDvFMnjytSe68Zs2aceedbnbvPk5UVDeSkkbRqlVdUeknnniYtWtvoqBg\nEGBAo9nPa6+trPm7wWDg44+n88ADkygpaY2XVzEjR44kODiII0dm8+mniygouJ/Q0FsRRdi6dRKr\nV6+uiSytXXpHkiQKCkoJCmoLgChqUana4eGxj7y8zfj7d8dkOoCXV2G9Y83pdKJQeCAIinPn65Bl\nNXa7/R9FfP+z+OriX0N8jcGfSXxXorbSFJyvoxcSEoIglKLTXY9Wex0u135crpcoLbWRn19AixZR\nTJhwG++8swS3ux0KRQCy7IUs+1FRMZOoqEHExd0KgJdXC7KytgJVrlqr1Yrb7Uav16NSqejZsyfz\n5k3nuefmcPr0QdLTZQRhB3fe2Y6EhGG88caX5OcHIoqFjB/fv14XXmbmGez27qjVVeHTanVfMjLe\nAKCwsJDc3DK02rHn/nYN0IFDhw5dMBmd/w7vvXc0W7bsZMWKRGTZB1GMQansR2iof52w+CtBVc1B\nB08/PRO3ez4GQweyslZw5MhjaLX7EAR/ZPkEa9cOxN8/nMDAP+6r1XpQWNg4YeXauOaaDqxYUYjb\n/QZV+qrd0OlGo1YfJzv7LEFBIgMG9ASgU6c2xMdXRXUajUZmzfqA2bPX4XDchyge4rvvbmfjxm8x\nGo1otVqGDeuH2WzG5XIxatRDpKWJQBiiuIuvv/6ATp06XVF/xcTEEBMTU5O2cz58fX357rvFzJjx\nPmazSETEeAoLS4mJ+eOYNm3a8OWXc1i48BSxsYMRBIG0tFQWL16O1aoEWlFWlk7r1nHIcgeKiooR\nRfGCwqxbtvyC2WwnO/s/REffjcHQAkFI5ZlnxvD997+Snr6SiAh/HntsPHq9nsrKyjoEEhkZiY9P\nPvn5v+Dp2ZKioh0kJvr84wijqcQXFRV1lVr09+JfQ3x/lcXXFLWVq2FpqtVqbr21L19+ORu7/WO0\nWh/CwlojyzZefvl7VKpk7PZiNJqlwGoUighcrnJcro20aBFFYGAAkmRHFLUUF++id+9QKioqaly1\nGo2mpk8rKir48stfaN9+Oq1bV5CVlYLBcJARI15ArVYzd240x48fx9vbm+Dg4Ho/wtatW6HRzEaS\nxmCzqbHbF5CQ4E91OSlZtiJJmYhiFLJciSSdbBRxiaLIokWfMGLED0yc+DxFRSm0bu1kwYJ5f+pC\n5NixY0ACGk2Hc/0/CFl+AUmyIssSEIss6zh9Og9vbyXl5fHodJ4UFByldevAi167PsiyjJdXIuCN\nJEkoFK1RKETGjh2IQqFAp6urQ1o7Afv99+cCv6LVVi0a8vPvZOPGjQwfPhyoGo+enp58+eWXHD7s\nh0r12TnJsjU89dQrbN787ZV0VaOwZs0uIiMfIiCgBU5nJatXryAyMrSOZmlMTAyJicc5fnwjoujD\n2rVvIwgPoNFkYren4HAkk5d3AoNhK61a3V3jKq3uh61bf+GLL07Qps277Nv3O8eOvUtIiIkpU8bR\nvn17WrZsyS+//Ep5uRWTyURERMQF36ler+fFF8exYMFKsrI20adPOKNG3fePC25pCsrKyv5xBP5n\n4V9DfI3BlRDQlaitXK1agM888yhFRa9x+rQKQXCSlKQjN9eJl9c9eHhEI0kSAQHfUFFxnIqKcYCI\nt7eTFi1epqzsC3JzXwY0xMV5MHTo7YiiWK+rtri4GIcjgMDAqonU3z+Os2fnUlFRga+vL0ajkT17\nDvPbb8UoFAo6dw5izJg76gT13HDDDYwZs5933mmHw6FDENScOOHBtGmv8+KLz/LKK1N4/vlhSFJf\nBGE/N93U5bIqNw8YMIC9e6/B7XajVCpRKBS4XFW6k39GnwcFBSFJJxDFchQKTxSKLKAEt/s0ghCJ\n270Cnc4DWY4mKckPi+UAFRV2EhP96NLl8uvTXXPNNSiVo3A6r0elisPtfo3+/fuiVCovWkhXlmVc\nLhdKpee53xINldrJyyvE6WyLWl1dxLQdhYXFl93Wy4Usy2RnlxMeHnvuvjoUinBKS0vrEJ8oitx2\n2wBOnjyJzWZj3bpSLJZuaDSdsNufxO2ei9ns4KGH7mPXrt95770lhIT48uSTY4iKimLnzjS8vIbg\n4xPH4MEtOHs2lJ49D3HjjclYLBamTp3F6dMtUShC+PrrZTzySB7XXNPj3ELjjxqHQUFBPPPMhKve\nL1eCplp8/9vj+xegKQR0JWorte97JUhLS+Onn/YAMGBAt5qAEB8fHz76aAYZGRns3buPtWv3kpKS\nRlBQX1q3rqpOHRt7I4KwjN9/r0Cp1BMa2o7CwjTMZiePPnotcXFx+Pv7o9frG7SQjEYjslyEw2FF\nrdZTWVmKSlVZY2Vs3vwLO3eqad78SURRZNeuFUREbGXw4Ovr9MGwYYOYO3cVHh5LEMVoZLmcjz/u\nysMPj+O++0bRsWNbDh48SFjYAPr06YMgCJSUlJCamopOp6Nz584XLF4kScJqtSJJEhqNpub9nl+e\np/beT31J2JdCfHw89947gIULhyKKbYA9TJx4L59+ej82G+h03lx77dPExQUTHGygbdvEy7r++YiN\njaVHj9Z8//1IZNlNQkIcb7751SXPUygU3HjjYNaseQinsy8WyxTAxlNPrSMoKIj+/fvXHNu1axJq\n9TQk6VYUimBcrvfp0ePK3JyNgSzLZGT8zsqVt+Lh4UPv3nej0WTj7R19wbFKpeImqOIAACAASURB\nVLImKvimm67ngw+mUl5eiCTdBZSjVq8gJeUghw83Q69/ijNn0hg7dgpLl76Ph4cGh8N07koCCoUF\nX9+q7/fgwYOcPduMZs3uA8BiacPixTPp2bM7LpcLh8NR77g5X6v0n4KmEN//LL7/AjTW1QmNGySy\nLONwOKisrGyS2kp9927K4ExLS+Oll5ahUg0GYMeOJbz88oga8lOr1VRUVPDppzvR6SYgCJ+Tmvoi\nhYXXEhvbC6NxF6NH38UDD7xGZeXNHDpUgSCswN+/DwsW7Gfy5MB6Ky/Uhq+vL7fd1oFvvlmIKAYh\nCDnce2+fGqLZtm0fxcUJaDQ5RESE4+XVjpMnd1xwHbPZjFodiSxXF2L1Qan0oqKiAj8/P9q1a0e7\ndn9YR2lpadx223hstgTc7gI6dfLi00/fQaVS1Qkqqo6idbvduFyuOn1cTYTVFQmq1ferJ7VqAjx/\nlV8fnn12IsnJ/cjJySEu7gGaN29OcvIQNm4sICSkO5Jkx2LZTXh4iwav0VhMn/4669eXIQifIQjF\nnDo1m6VLl3P//fdc8txZs17B0/N1PvnkCeBzlMobsVp3MHr07aSmbicgIACA3r1789xzd/Pqq/2w\n2Zz07NmDN95464rbXo2GxvvcuZ+xd28FlZVPYTKV8PXXk3nttYcvGcj0xBMPsX79Jn777WZUqpvx\n9fVCENrw00/PkZj4MQqFGlGMJidnG8uWLeOmmwaSmvo5Z84UAU58fPZxww1VlltVbuofe+ZqtRdl\nZU4EQUCr1dZ8r7XHTX1apbUJ8e9CU71Y/7P4/kvQGFfmpUoTVautVLuGDAbDFeXhXU7b6sP69btQ\nq28kMLBqJZ6XJ/PTT7vrSDtt27YXWR7E2bOrMJvj0GiuIT9/DVFRn/Lqq9N4//3P0Gjup6KiN4Lg\ngyxH4uV1AH//Mfz445YaObFqN1l9z9urV3datmyOyWTCz68XBoOBH3/8iU2bfmXbttOYTP7k5IRy\n8GAafn6ZJCVdqCeamJiIRnMak2kJKlVfXK6viIoyNBg2//TTr2Iy/Qedri9KpQd79kzi22+/5ZZb\nbqGsrKxRe6y1y/NUo7ZVWJ03aLPZLpjUqt2ktSe188m5U6e2KBSHOHp0Bx4eSgYN6nDFGppWq5Xv\nvjuMy/UiotgTWbZis2WyZs3WRhGfVqvlvvtGsHjxj1RWDj3XDz0RxRYcP368hvgAxo69l/vvH43L\n5aq3LltZWRnr16+nsLCQli1bEhUVRUxMzBUtApct+wmN5g2MxlZIkpvy8hwKCgouOM7hcLB//wFK\nSiqIigpCpVISEhKCn18kXl5V9e+sVu9z79KK2Wzj5MmzuN0FzJp1kMzMIl59dRy//34AUVTTseND\nNe8mMTERvX4WRUVx6HQhFBevYujQDjVkXd+4gT/qS6ampuJyuYiLi8NgMNQhwdpRpX8lLvd+FRUV\n/7UJ7P8q4msMLkZAtdVWdDrdn1ov7WoEuPzyy3Y++WQJu3b9RmlpF0CNl9fziGIRnp7NsNk+5J13\n5vHDD3spL2+LKLrQ65WIYjNUqsMIggK3u6pNmZmZfPjhCvLzLYSFefLgg7deQEiBgYEEBgbidDp5\n+eX3OHAgkKNHIxBFJUrlTnJytuFyeVJcXMaqVTqSk/vj5+dXc763tzffffc5Dz74LJmZM+jYsTUf\nfrigwUk0Pf0UdnsZTudBoBhZjiAzMwu3231FFS3Or1XndDrR6/V1NCer3V3VqR3nr/Krx4VCoaBT\np7Z06tS2SW2pD5WVlRgM/sBJnM7PkOXjgA2DofHFTgMDA3G58pHlUwhCDLKcj8Nxot6IW4VCUS/p\nlZSUcN11w8nPj8PhMCKKcxk58imuuSaDYcP6N7n/NRo1bneV9qlSKSKKZrTauveXJInFi38gPT0A\njSaMt9+eyalTxxFFH0pKpiPLfmi13rjdb9CzZzypqRMoKemJIBRhMOgICPiWdesexNd3MYcP5+Dh\noSUsLKyG+AIDA5kxYywLFqymtNTKddfFcccdw7Db7Rdte0VFBc888zZnzgQiCCr8/H7gzTefxM/P\nr2YhVR1V+le5SpsaO1C90PtvxL+K+Jpak8/lclFZWYkkSeh0OtRq9Z8+OJtKfAMHdmPXrmXk58uA\njCSt4frrR7Bq1RpefHEVBQX9EMWuuFxzcDjikOV0DIYSYmNbcPKkid27QwkPf4pjx5YjSZG43bmo\nVJ/j79+dsrLV3HNPLyorK5k58xtk+RYiI2MpKjrMrFlLeO21R+u1/o4cOcKRI3oiIkaRkXEQnS6W\njIyb8fJ6AEGIpFWreEpK1rF69Truu+/uOue2atWKLVu+q/N/LpcLl8tVJ2jDZrPh6dmM3FwZt7sY\nWXYgij/TqtX9qFSqq/LBXkyAWZKkOuV5/qwVvtVqZdKkF/jxx00YDEamT5/EoEEDGTSoLQcPTkWW\n7wLGAotJS/v5ggCQhuDr68uMGS/w/PN9UCq7Ikn7ePTRcTRv3vjaf598Mp+8vF64XG+hUChxub5i\n+/ZlBAeP5ezZs5d0kUP9VsjEiaN4/PEplJXdDxTi47OWm2+eX+eYrKwsTpxQExXVj6ys/Rw7lgWs\nwNMzDJfrAyyWB2nduiPdu3fBak0kIMDO8uWLUKsjCAt7DqXSk4qKED78cA0Gw2u4XIX8+usTLFs2\np6YPmjdvzowZE2vuWb2ffzGsWrWOjIy2hIVVjeu8vB9YvHgVEyc+gCiKdaJK/8mu0r9LrP+vwr+K\n+BqD2gR0MbWVfwri4+N56aXb2LBhN4IgMGBA1f7eU0/NAiag17dEo/EGTLhcy1AoFtG69RDKypbi\n5WVDELqi04USGdmR3Nx3UamyGDiwC4mJerp374SnpweHDx/GavUlLKxqbyogIJGsrE2UlJTUWz3Z\n4XCgUBhQKlUEBnqQl1dwzmUYicHgh4eHJw5HMCbTsYs+myzLzJw5m3ff/QRJkrn22h58+uksjEYj\nFosFf/8oDh404XYnAWW43XKNNNdfhdoCzLXbXbs0T+0Vfn2u0oaQlZXFxIkvsX27DVHcgM1WzKOP\n3sOKFaH06BGDVuuD3f4SkIks7yIjo4j27a/h2Wef4PHHH7pk28eOvZdevbqTlpZGTMwTtGnTpuZv\nFRUVFBQUoFQqKSsrIzw8vCbJvRq5uSVIUhtABgQEoTXl5cUoFEaczkvnJjY0ufbr14+xYw+xbdvX\nRESE88wzn9Yh84qKClJSUigoyCMszElZWRaC0B6ocst5ez+MUvkJS5bMYeHCdRiNvYiO9iU1VSIr\nS8bpLEAQZMrKNhIQMB2DoUqhpbS0gDVrfuTRRx+8aLsv9s4KC82o1R1rfut0MeTlpdZ7jYZcpbXH\nTm2vQlMXUk21+P6pgTp/Bv5HfOehWs3BYrFcVG3laty3qaus+Ph44uPrql+4XBI6nQdlZVbAG1H0\nJDq6H2FhOfj5rSYhIYKKimt4661XgfbIsgWdzsXjj49iwoTRbN68mQkTnsVq9cFiycZgUNG/f1/8\n/Fpgt5cjCOYGqxzExcVhNK4iP38HERFhlJcvJSJCwGr9imbNJuNwZONwfE/37rde9LnWrFnDe++t\nR6ncgVrtzbZtTzNlyiu8996riKLI/v3bEYRZaDRdgEJcrijmzVvGDTdURYtu3bqVd99deE4O7Q6S\nkxsnTH2lqE2GtVf4tSe1S0WUpqefZPXqE+zYYcTlmoAs/45aPQC7/W62bt1GcvJAVConoMBuf/ic\nvNdY3O5Spk/vy/ffb+C2227kgQfuu6j127Jly5qoyGps3ryZRx55mYoKF+Xlpfj5tUanK2HOnJfq\nlNu5/vqefPvtTOz2fkiSDwrFmzRv3g6V6ixBQf2a1Hdut5uHHnqan38243L1Jy3tR9q02cC4cVXR\nlTk5OQwbNprcXDd2u4UdO9YzaNBkXK5taLU5OBwxVFb+QEiINwaDAbVaidlsA+DWW5NZuPAtzObZ\neHt70ayZBw5HbcUcNwpFw995YwikbdsYNmzYiNPZFoVCRXn5j3Ts2Hgr+lJlnZriKm0K8VVf/78V\n/yriu9SLrL3K0mq1V11t5fy2/ZnuheHDezFz5keUlnajsLAIjeZrmjXrwiuvTCE0NBSFQsGECZNR\nq+/Abh8AuHE43sbTU83UqbNZsWIL5eWjcbv7ABIlJf9h8eLhBAcnYjSqefLJ5AaLrnp5eTFjxn9Y\nsOA7Cgs389BD0SQnL+bbb9ewfv0MlEolkycPolu3i1de37nzN5zOO1Crq4ItlMoJbN/+QE3giodH\nJeXlW5DlU4ALpTIQSbJis9k4cOAAd931JE5nVS7ivn0v8OGHEgMHDvhbPuiGLMOGIkq3bj2Ep2dv\nPDwOUFISiNutxe3ORKk8hbd3AvHx8SQltWDPnpG43SnAV4iiAofDF1m+kYMHKzl5cjPZ2flMn/5c\no9tZUlLCI49Mx+l8jfLyF5DlFZSUaAgMLOSRR8axa9fampJGQ4YM4dSps8yc2R+brZLWrTty++1D\nGDSoW5ODIn777Te2bctCp/sOQVDhco1i5swbGDWqSld14sTnSE93IAiPIMs2srPf49Spedx///V8\n/vlN2GxeaDQyHTsmk5mZSf/+bfnii81UVLRFkiw88EBLRo58ED8/v3MFbCdTVDQWt7sYb+/FDBly\nZeLl/fv3JSenkGXLHkWWBYYM6cTNNw+5oms2tJBqrKu0KfNKeXn5n1q+65+GfxXxNYTayecKhQKt\nVttgvbKrhT+b+Fq1ikGlWkNg4G+ABp2uO926tSIi4o8AiDNnComJeRhRDEeWZcrLk9m2bR1O5zDs\n9g0olQOwWBSoVAHI8kCczlMUFeXQqtUDbNmylz598ut1dQKEhYUxdeof7jaLxcI994xg/Ph7G/0M\nERFBiOL+cx+5C5ttA/7+3jW5kuPG3cWMGauBSUApSuUPJCXdhV6vZ+HC5Tgck9BqbwbAbhf45JPP\nGDhwQBN68+rgYhGlsqxAqVRxyy2DWLBgPg5HIG73LiIicrn55ucBWLJkPnPnzuONN/Zgs/2KKCZj\nt1sQhBQ0midRKHry5ZedmTZtSqPJ/uzZs0AECoUeiEOhiAVyEMUEnE5PCgsL68hYPfrof3jkkQk1\nz1MfKioqsNvteHl51QlUqs8SMZvNiGIYglA1wYtiAIJQlWCv0+nYu/cYMB1RvAmoCjgrLl7JHXc8\ngc3WCX//jhiNQVRUFLBmzc889NDtjB+v4+TJM2g0Slq3HoLT6cRms9G8eTQxMREUF29ApVITFtab\nsrLyBvumMZaTIAiMHn0Hd911K7IsX1F066Xuc7Fo5PNdpUBNrnFj9g3Ly8v/ayM64V9GfPW5AM5X\nW6k9UP7qtl3ufd1uNytXruHHH39DrVZy55396NGjOwCpqWkEBo4lKKg/SqWI1ZrJ77/Pq3N+q1aR\nbN26AX//CUhSBWbzIrKznajVOXh5RZKfvxVBGIQkVSBJO1Cp7sDpXMbRo6BQRJOenl4v8e3fn8q2\nbalotUqSk68lIiKiSc83evQoli27k6NHr6es7ASyrODQIYHFi5dwzz138+STjyJJLj7//G1UKjUD\nB47g0UerggpEUYEsu2pdzYFCoWDDhg3k5eWRkJBA587116Q7H03NsWwKqie0pKQoNm/eR/PmbRkz\nZjCnTi2nV68e3HHHHTWakbIs88AD99O5c0fuvHMCDsdHOBwnUav7oVYPQZZLL/v+ISEhuN1nkGUF\ncBxZPgFocLkOotGU16nQUbvNDWHv3lS2bDmF06lCry9n9OiBdSJ5z0ebNm1QqV7FbF6DStUJp3Mp\nLVuG1OwvGo0elJaK58aSDKjw9fXFbneg0QTj41O1sNNqvbBYqgoeh4aGEhoaSllZGU8//SqHDuUB\nDiIivFAohmMwBKFUiqhU5ezefZR27aoicKvLZOXm5hIeHk58fDylpaVYLBb8/Pwu6g36O6IhG9o3\ntNvtuN3uGq3Sauvw/D3n2q7SplZmKCkp4Y477iAzM5NmzZrxzTff1HudZs2a1UReq1Qq9uzZ0+Tn\nbgoE+b89fKcWqv3j56ut6HS6mpWZzWZDkqQG3XhXC9UT2eVYmj/88CPz5p0gKOhOXC4rpaULePHF\nG4mJiWHlylUsXOgkMvIBBAEKCn6mQ4edzJgxCaj6GLKzs3nxxVkcOVJKbu5JZLkDGk17LJbfiI0N\nJyNjMyaTEkFwIQhJiGI4np4OPDxG4O+/hJkze9G1a1135e7de3jzzZ/QagfjclnQaNbz+uv/wdvb\nG0EQGq1YX50PZTabufbaoRQXP4XBMBJZzgKGs379fBISqqqcS5KEzWZDp9Phcrmw2+0cO3aMYcPG\nYrM9iSBoUKlep1OnOA4elHG52qNQbGDSpNuZMGHMJdtisVjQ6XR/mdsbqibdw4fTOHYsF71eRdeu\nCRfk/9WOKC0oKGD79u288MKbWCxjUSjaoFB8xKhRrZg+feplkfayZd/y/PPvY7frMJky8PFpicFg\nYs6cl+vs8V0KeXl5LFiQQnp6AZs3f4HT6cbfX83kyY/QoUM8kZHhF/SrLMs8+uhTfPXVOtxuNx4e\nWlatmk/HjlUBI4sWfc2TT36Jw/EkUIle/xZLl75CbGws77+/EW/vQWg0nmRnbyMpyULnzm0JCAjA\nYDDw0ksz2bQpmICAMUhSBamp96JWxxEdPYW8vG8oKFhFixYy7733DB07dmT+/MUsXvw7gtAGt/s3\nwsJs5OTIKBRqOnQI5KWXJv7l80RTUL2Y12g0Nf93vqu0ehyVl5czbtw4mjVrhtlsZsaMGcTFxTXa\ncn366afx9/fn6aef5o033qC0tJTXX3/9guOio6PZt2/fFee0NhX/OuKzWCw1ait6vf6CF2q323E6\nnX+5f7sphPvMM7MoKLgVT89oZFkmK2sr/fuf4L77RiBJEpMmvcapU4GAB0bjAd555wnUajWTJ0/j\n+PFcvLx8eOyxEahUCu6//1NUqvdRKg2UlBzE5ZpMq1aBtGzpy6ZNB7Ba9YiiF97eD2I2HyA+fi+r\nVn1ygTtkypR3yc0dird3VQL92bPrueOOCoYMGdAoYq9thVcrvzRv3gmt9mTN5C1JjzBzZjduu+22\nC853OBzY7XaMRiMpKSl8/PEiTKYS1GpPfvrpEIKwEtDhdhcAA9izZ80la+H9HcRXH1wuF5mZmXh4\neDQYTXv27FlmzfqE3Nxi+vRJ4t5776pZxVev7iVJ4v3357Jp024CA3154YXHadGirppMTk4OWVlZ\neHh4IMsy4eHhl5SvOnLkCGlpaURGRpKUlMTx48d5993trF27AaVyPpWVKuz22bRqdZr+/YfQr58X\n11zTraZfMzMzWbRoEZ9++jNG4xpE0RuLZSFt265nxYqqdAZZllm6dDlffPEDKpXIo4/eVSOzdvLk\nSRYvXk9aWiZgQRTD8fVtjkKRzS23dOattxbhcr2GVhuKxVLB3r0folCsRBA8kaRAlMrRREXJeHp+\nxYwZ9/Dcc1/i5zcbpdJAdvYyjh9fS/fu76HTeZCbO4/hwx088sjYP+HNXl3Y7XYEQag3F7M2ZFmm\nsrKSn3/+mc2bN7Njxw4qKyvJyckhISGBX375pQ551of4+Hh+/vlngoKCyMvLo0+fPqSlpV1wXHR0\nNCkpKRe1/q8m/lWuzmrf/sXUVq5GInljcDn3lSSJvLw8ZNlBZWUhen34uTyyEoKCfGusqnfffZ59\n+/bhcrlITByGQqGgb9+RZGUl4HR6I0lnOHhwJiNGJCJJIXh7h2M2m7Faw5FlD/LyPImKknnxxQd4\n883luFw6CgunIMue5OeH8dBDU5k79/UaMjObzaSk7CY3N5OwsC60bDmSxlbqrpaAs1qtdUS+q6oz\neGCx7Eat7obbbUaW9xMZeftFrwWQlJTEK69E8OGHmygq0iEINmw2DWq1FpUqBofDk2XLfmLixPsa\n1e9/J7Kzsxk69E7y8yuRpDLuvPNW3n57xgWWXHh4OHPmvFHn/86PKH3uuRmsWJEDTObw4TRSUkaz\nYcM3hIWF1ZBQtXsQqtxXR48eJSAggOjoaH7//XcsFgsJCQk1LsjPP1/Myy9/iCD0RJY/4J57bmD8\n+HvIy9uPyzUIUfRCkhxoNPeSkzMKT8+ubN/+Pb16Vbnmf/75Z8aNm4rF0gGzWcTheI6AgPfRaody\n/PicmmcRBIERI25jxIgLFz16vZ6SEgmt9npSU/ej1fbG4fBg584iVqx4BUEwERS0k7CwYZw4kYVC\nkU9AwCMUFQkoFFvw8grHzy8Uq7WYXbv2IIr+KJVVC9HKykIEoReSpEAQFHh69uHw4fkXtOGfiOp0\niEtBEAT0ej2DBg3CZDLRtm1bHnzwQcxmM0eOHLkk6QHk5/+x7x8UFER+fn6D97ruuusQRZHx48fz\nwAMPXN5DXSH+VcRXPaFezO3zdxFfY2Gz2fjww684csROWZmNkyffIjT0dpRKF8HBh+nf/3Ggihyz\ns7MJCgoiKioKlUrFp59+Tm7uNTidRpzOYchyBCbTVr777jNUqhAslu8pLAwEjqJSCXh5LWDHjkH8\n/vuPyPL15OVtw+2uwMOjHxUVzdiy5VeSk2+nuNiKh4cBrVbJmTOdMJlakZu7naysX2jXzo/u3cch\nCEJNDbTz4XQ6sVqtCIJwgci3IAjMm/cOo0ePxe1ugcuVyT33DL7AxVr7+NrIzs4GWhIbG4UgvIos\n/4rL1Q34Bj+/QMrLpf9j77zDoyi7Nv6b2b6b3fReCAkkEHrvvYuAiOCLiiIIiA1FBeyiL2IXRVRQ\nQUQFCwKC9N4lVCGUAAmm97a9zXx/hKyhY/fT976uXEDYmeeZeWafM+ec+5z791iWPxz33vs42dnD\ngCeAKr78cgCdOy/3SQldDbVZgbIss2zZKpTKfYhiENAJh+NHNm/ezLBhw3w5ohqafGpqKnfccT+Q\niNudSUSEP2ZzIKIYilZ7hsWL5xAREcFzz72GIGxCFOOQ5Uo++aQ7I0cOpWPHBPbt243bPRxQYLXu\nwWZz8eqr79O4cSbTpo1CEAQefvh5vN65qNWNEYRybLbx2O0bkeUKUlLir+se7d59CJerEyaTEYPB\ngywns23bGgyGsXi9EkZjAtnZ01Eq9+JwZBATUx+1ujGVlaU4ncEYDCWYTMlYreVERoZjNKZTVraL\ngIB2eDylKBQlaDTVOWSr9Qjx8aHXmNH/X9TUbkJ1E/ra37c+ffpQUFBwyTEzZsy44N9XqwPctWsX\nkZGRFBcX06dPHxo0aECXLl1+xyu4Ov5Vhu96ij7/7h7f+vVbOXo0lMjIfoSHi4jiFzRqdJLOndvR\nqtUj+Pv7Y7PZeO65Nzl61I0giCQnC/z3v5MpLa1CqYzE5TqLKPZEEEqBQGy2xjRuXElBwVpkOReF\nQklo6HjASXl5PlVVkXg83yNJPYD2WCyReL198HhEDh9eQlLSWsrLV5Ob+yENG04lMFAiN7c52dm3\n0Llz5yu+KdZWTqgRtb3c+rRv354uXdqyYcNeBEHg6NHjpKamEhkZec0wpUajweMpwGhsw623Psfn\nnz+Nx2MlKqoFnTvfR2Ki9TpW569HWloasjznfJ2ZPzbbINLSTlyX4bsYoqhAln+WIRIEu69etXbe\n0OVyMWbMJGy291GpeuJ0FnLqVDciIl5Dre5CZeXXPP74DN555wUUikAEIe78+f0RhHoUFhYyadID\nHDkyif37x2O1qpDldLTaNxCESk6e3M7q1au54YYbKC8vRa9vjiCo0Otd2GzRuFxPER6u4803371g\n/jabjVWrVlFcXE6rVs1o0aIFR48eJTPzLBCGwRCGLG/Bbk8C9EhSPgqFSGDgUBSK+UyZ0pKPPiog\nPPx+lMoQ/PzsnDixD70+mfz8NKKiDtG//4u0adOGF198n59+epvmzcNRqQTOnJmCUmkgJqaK8eOf\n+A0r+ufh10oSXSm0vWHDhiseVxPijIiIID8//7JkKMDXkCA0NJShQ4eyb9++/xm+vxJX80z+6HGv\nZfjcbjenT+eh1bZHrdagUIhERHQgNHQ/PXv+XDC8dOlKjhyJJSZmDAAnTnzG4sXL6NChGYsWfUJZ\nmRZZPoEsZ6HV5uN2nyY2tj49e9bh229Pk5+fgE7XhezssXg8nfB6C5Gkh4EsoBmgwu3OxuMR0ema\nolD4oVbXBQLOF/67MZslZDmIVavCOHRoFCtXLvKFRGsrJ2i12mt2xJkz50O2bRMRhB243RJbtz5K\ndvZ7DB58IwMGFNChQ+srHpuUlERCwgn27n0PhwO6dWtLWFgcfn6hxMQUM3jwDde7RH8pEhISOHx4\nDTAeWXai020mMfHK4d4rQRAE7r//bmbPvgu7fRyynEZAwA+0afOg7w3d4XCQn5+PwWCgrKwUtbrH\neYNoQpbb43KdRqVqikrVgqysNwkJCcHPz0tp6bdoNEPxePagVp+gQYMGqFQqPvlkNgcOHOC22yZg\ns01BqXShVCbidA4nLe0kN954I02aNOXYsbnodPfj51eMVrufN954hL59+16Q93Y6nYwd+yjHj8ci\ny0kIwrvIcgYORwxerwOF4iv69HmH+PhojhyZgSTlY7H4oVLFc/bsBAIDi+nXrx8REdG89dab2O3+\nGI3FzJz5H2TZg8FgoE+fF/D398ff358FC17zGQ673U5GRgZFRUWYTCZfA/O/O/5MLb7BgwezcOFC\npk6dysKFC7npppsu+UzNy25NB6b169fz3HPP/eKxfgv+2mz9n4zrWfxfW/D5W3E1w+fxeDCbzVit\nVurVi8TpPIUogixLmM1p1K174VvVuXNF6PVNfRuZwdCMzMwiunbtwpNP9sNk2oMo3otW+xVu99fA\nTRw/3p916w7xwQfTufFGDR7PjchyHvHxTyIIaiAc8AcOAG4k6SQKxUH0+mpShFbbCKXyLDbbQvLy\ntgKL0evbYzS+QHFxMtu3b/clzysrK4HqQveLlcIvh/37T+B0DkYQjEiS5ctsQQAAIABJREFUFoXi\nLsrKXCiVbdm48TRW689e28X3UaFQIEkeLBY1bncsfn7JDBiQwqOP9mPcuGH/b4p033//VYKCXker\n7Y5a3YIePUIZMeKXGz6ARx55gOefH0ZS0ue0aFHMHXe8zZo1JykqKmLPnj20bNmDXr3upGHDTjgc\nEpWVX2CzOfB6i4AdVFTMIisrntzc5siyE1EUWbBgFuHhL+N0JqDXj2fevJcJCgryFVS3bduWxo2b\nolKp0esHoFI1RK3eSd261V7i3Lmvkpy8Fru9IYIwhNdfn8zQoUMvIXvt3LmTU6cCCAp6kZCQO6ms\nfILsbBCElcjy95jN7Th9+r+0b1/JRx/dS5MmQSgU/RDF25DlrkRENMBut5OcXA9RLCc7+xDZ2eco\nKqrgzjtHMnz4LZds+DXPp0KhID39HAsXHmbOnAymTVvAwYOHftUa/N3xa7X4pk2bxoYNG0hKSmLz\n5s1MmzYNqCZLDRxYLZ1WUFBAly5daN68Oe3atePGG2+kb9++v+v8r4V/ncd3vSHFP6tuqwaXm9fl\neoUOGNCL3NwvOXTobUCmbdtgevUaeMFxDRrEsn37XgIDWyJJbsrLN6LTuXjssRl4PDLvv/8sixev\nYOvWXSgUvWjR4i70+gCKitSsWbODuXNfJzMzk+HDXyQoKAaPZyC5uTOQpGEoFKcRhBUEBsZQr145\nBQUryc4+gMVyCoNBplWr/WzYsB+9fiL+/vefv4ca3G43brcbs9lMenomGRklBATo6NGjzSU9IC9G\nQkIkkrQbUeyPLAvAXvz8opAkAYVCh9PpvCIbNisri8OHXTRrdjcg4Hbb2LDhfeLjY8jM/ImAABOh\noaGIoohGo7mgf+bFNPu/EvXr12f//q0cP34cg8FA48aNf/Hz6XA4sNvtBAQEkJTUiGHDOhERUd2u\nrLQ0m71705gyZRo22wdYLC+d9/LjEIRxuN0z0Wgs+PmFUFGRBOwDLBQUDOKbb5YyatQd7N+/GbPZ\njFarRZIkX/1YTY5x5sxp3HbbfdhsK/B6i+nSJZ6bb65uMBAVFcXatV9ek0FbzVAM9l27y2VAljU4\nHHZcLgVeb1+Ki+cTFGSkfv16BAQkcsMNd2Oz2TAam1NRUU5qaipffLGKY8eaExX1ELLs4KuvHqNZ\ns4307dsXr9fLoUOHqKyspH79+sTFVRvnY8eO8fbbSzEaexIb2xKdrh9z577Lu+82/l2kyf4o/Jke\nX1BQEBs3brzk91FRUXz//fdATfTi0v6lfyb+dYbvWqjxkv5KwydJEg6HA6fTiUaj8dXAQbWw7MSJ\nd1BWVoYgCAQGBl4yz5tuGkh6+nusXj2K3NwKZFngyJFSAgLGEBPTmLVrX0Svj0evfwSLpZQzZ2Zi\nsw3DbM7gxImPUam8TJkymVatgtm37xUCAjpRUuLB5ZqBIISg01XSv39D3njjDRYsWMSsWbuIifkA\nPz8dZ87MYMCAduzdewyX6xBe73GMxh9ISvoP99//FPv2ncDplOjTZywJCclkZq5h4sSbrlrmMHny\nfaxaNYycnGGAhFZroW7dJ3E6C4mLc1/2zbQmV+VwOBCEavV4i8XK999v4Ny5VWzfvpn+/Sfx008b\nEEWJyMhQOneuQ9++3WqVTXh9a1Jzvt9a0lBUVMTq1avxer307dv3gk4614LJZKJ9+/a/atw333yX\nWbM+AJQ0adKQ+++/B1H8mZyhUCgpKSnD7TagVHbA6z0B3IkgVKDVvogsn2Pw4GZs3vwCgjAZUdQi\nijqczjHs2LGPUaPuQBCES8pbajNKExISWLt2CcePH0ev19OwYUOfxFNN/v1a5TwtWrRAo/mYqqpN\naLVJKBTzUKk0OJ1eFAol8B1JST05fNhM9+4O1GonglBBaGjU+VrXEyxf7mDfvmJcrp4UFpYSERGC\nLHfn5MkMevXy8tJLs9m5044gxGK1fsHIka3p0aM7zz8/j6yszuh0CWRkLKBjx1vxejVYrda/tWDr\nrzV813oh/f+Mf1Wo83rxVxBcasasCQXKsoy/vz96vf6Sh1YQBIKDgwkKCrrsA61SqRg//jbq1q1H\nvXqTcTon4PE8Q3l5AVlZesrK1Nhsd1Ov3hAUij4UFpqpqtqGKB5Eo5nJ66+vZ+XKlcya9QLjxgUR\nETGX4GA/+vXbT9++m2nUaDZKpR6TycSRI+cIDX2UiIhW+PmloFDcSUxMAg8+2IQGDWbRvfs+li79\nkHnzvuTo0VbAUvT6pWzZsg6v101lZRQ5OTmXXIPFYuHgwYMcPHgQtVrNtm3LmTq1B0OHJtGlSzO0\n2uVkZ38LuCgrK7vkPtYU5kZFReHvX0R+/hE+/XQh6ekZOJ2DyM7ux2efPUl5eTNstpsIDx/N9u0u\njh8/hUajQa1WI4oiHk9195cawofb7cblcvkaBf+SfHBOTg49egzh2WdP8vzzWfTsOZRTp6oVKv7I\nfNGGDRuYPXsVSuUPqFSnOHq0BQsXLsbtPn6evFSE2fwj7do1BCrwek8gihHATsCNWh0DnCAoKAR/\n/1AEYTeiWH2f1erdxMdfWQapxttTqVRoNBrCw8MxGo1MnvwizZt3Z9iwsZw7dw6bzYbNZsNut+N0\nOn339+LvYWRkJB9++AJJSV+g002iceOzKJXZ2O2tcDpbkZiopEOHcQiCEoVCwSOPDMdsfpP8/Pcp\nKHgBWS7C4+lMaGgiopiO3a7AbrcCB4iPj+LQoUPs3GknPPwZ8vPbkZFxOzNmrGbkyEmUlXXCz68z\nGk0HlMoxHDz4GSaT429dxP5r9zGHw3GBDNg/DYrnn3/++b96En8mLvdluhhOpxOVSvWnFSzXdJJx\nu90IgoCfnx8ajeY3eZznzp3jhx88nDplRJJCcbtjEYQTCEIyLtdGTKb+1K1bBz8/FdnZy1GpCtHp\nemKzLcLhyCA19QdGjRpBt26dcTgsnDnTCn//puep7kqczo2MGDGALVt2kZERiF5fHTKzWPbQtKmZ\niRPHcPvtN3PLLYMJCQnhhRfewWB4DptNQqkMx+UqJSKiCoNBQ4sWQRd0cCgvL2fmzE/Ytk1k//4q\nDhzYQseOTenZsyuDB/dGrYbS0jrExt5CcbGRAwfW0bp1Mmq12sdGdLlceL1eFAoFjRrFcfToKnbs\nWIJCMQRRHIFS2ROHYxHR0T1RqwOJjQ1CltXodDnExIRRWlqKLMu+vq01z0MN3b/Gk6nt0dT2Di+3\ndi+88CqpqR1QKl9CFPvicGg5fXohlZUCW7YcIysri7i4sF+04UiSxIwZrzN+/GQ++GAhSqVM27YX\nkn2WLl3Grl3NUKt7n59XPSoq3uWll+6nqiodrbaQrl3rkJycRGJiLOvX349KZcLpnIfR+CMazQq6\ndw8iJcWfhIRQ0tJmoVRuQ6WaS1xcPnPmvHFdNV5QXed1883jqar6L1rti+Tl2di1azZ9+nRl2rSZ\nzJmziGPH0mjVqgmiKPrWsfb9DQsL45ZbbgCcrF9fSVjYQgQBJCmYNm1uQZbziY8vp0uXNsTGxtCt\nWxNSUlSsW/ctx465OHu2PlVVFnS6jTid24Bv6N7dn/vuu4fTp0+zezfYbLH89JMDjaYjkrQRtbot\npaXQvHk3SkvPUVV1mvLyxYCBLVu20axZvb+th+R2u697fWrw+eefM2bMmD816vVn4n+hzsvgz/L4\nZFn2qbrXPGC/l+ZfYGAgkpQHBOHnF0tl5XokKROP5zB6fQnwDRkZfZCkHLTaY4ji05jNryPLDYHu\n5ORsZujQu9mxYyXNmzcCPsHhaIdKFURZ2Vfcckt1u7CJE29j796nKCzMQ5ZdGI3rGTly5iXKFmFh\nweTnHycgoBmlpSV4vYex2ZKJiRF9OZQarF27nfLyNsTHV9Obs7K2sWHDToYPr+5yv2vXaWJjJ6JU\nqjEaI8jKyiEjI4OUlBSguu6otjisyWRixIg+fPTRIgShPy6XEq/XBpgxmzOIjIxBo9Fis2WTl5fN\n22+XoVD4ERzsYsSIHj5DdDnJmIuNX43nVvNnTehcEARKSiqBjrWOjiE93Uzfvp2JjQ2nuPgsK1bs\nZNSoG677GZgzZx7z5u1FklYiSTZmzhyFXq9h9OjRvnNER0eiVm9Blr0IggK3ezN6vYqCggIGDepy\nwVg33ngDrVu3JCMjA61WS2VlJSEhIRfkFO+9dwS7du1Co9HQrVu3X2Sojx07hiQ1R6vtgSxLGAzj\nOHduLv/5z72Ul49Bo2nPmjVfk5//DIsXz/Xdy8vp061f/wNq9T1oNNFERU0mP/9tCgvnM3TocPr0\nGezrlxkWFsbq1Ws4e7Yeen1/nE4lbndvBEFB//5VjB07kJYtWyKKIvXq1UMUV5CTE4PVasRme53A\nQH/Cwm4kPX0yXm9nEhJ07Nu3lOTk+6hTZzRlZft5/vn3WLDglb+dYvmvCXP+1fnsPwP/OsN3PQ/B\nn2H4PB4PNpsNSZJ8HkVFRcXvlluMiori1lubkZu7mtOnN+PvX4nHcxY4iMkkkJu7BklKRacz06tX\nQzZtegZZjgbeQRTVqNWjOXSoB6mpqbRp04apUwt5992pVFW5GDCgNRMnVndaSEpKYtGimaxfvxGl\nUsHAgbOJianuAPPRR1/y44/niIwM4L77hvP88zNxOJri9Z4iNraKTp2a07hxFFVVVYSEhPjmXlFh\nQ6//mamq14dRXp4LVK+NUini9TpRKlVIkozX67jEKF0sAdSgQQMGDOjMmjW3I8s3IAhrSEgIJCkp\nEz8/PRkZBwkJKaGoKIK6dYeg0WgpLs5k7dq9jBx5ZR2/mjGvJERb83eAPn06smXLbLzelgiCFlF8\nnfr1u2AyVXe6CA1NJCfnMHa7/bp7tn733RY8nidQKsOw2cbj8biZMuUtdu8+wpw5r6JWqxk+fDjf\nfruew4cH4PXqMJu3kp3djIED76Fz5yZ8+eWCC+YfERFBRETEFccMDg5m8ODB1zW/ixEYGIjXm4ko\nugAlXm8+Ho8Zs7khRuNdAKhUT/Ljj90pKSkhNDT0kraCNfc0KMgPt/un80LEarTaADp1SmbAgO6+\nYv2a71JeXhGS1Aw/v34IwlYcjt243d/z7LOLLhC5jY2NZejQJjz99PNIUhAKRTxWaxllZV/Tr189\nwsPXk5tbSEyMjoSE6vkGBbUmP38hFRUVf1kLrt8bVys+/yfgX2f4rgd/pOG7mKlZO6T5e4/brVsH\n9Holx44dY/9+C/v3J6HTNeX48SUoFJ8QHByNx5PNyZPTGDv2Bt5/PxulUofXK+F06pBlAxMnvsxb\nbz1Mv369iYmJxOv10qhRI7Rarc94h4aGMm7cWF8BerVy+kccPhxPSMgIzpw5Q3b21zz22Ejef381\noaGdKS3N4L33fqJ9+xgMhi+ZNGkg8fHxADRpEs++fbswGqMBqKraTZMmDX3XNWhQKxYvXopG0wyn\ns5g6dcqoV+/qdGhRFPnggzf44ovFHDlykpSUPtxxx+2+/peyLGM2m1m3TkaSqkPPfn4R5OTs9DET\nr3cjqN0ppQayLHPbbf+huLiM994bhNfr5eabBxAUVB+n04FSqcbpNKNUuq/ZU7E2goJMSNI57Pat\neL0RwBwUCiebN0/jo48+4b77xqNWq/nyy4/Zu3cvEyY8Rmnpm1it4wAXO3f2YsmSJdx+++3XPWZN\neU210Ov1zxWqySn9+qWwdu0teL0tUCq3MGbMLXz11XGfRyrLNmTZecG5c3Nzefnl98jKKqJNmwZM\nnjyRSZPu5sCBKVRUZAIugoP3ctddb/j06WrIYQqFghYtGqNUzkOSbkKv7wls5oYb2l9g9KC63+jy\n5buIiHgWjaY1OTlFuFy7MBiW89JLcwkODqagoIDx49/G47GgUhmx2XLQaBx/y9KYX/Mi7XK5/jA5\npb8L/tlX9yvxRxi+i4u2L6fq/nuMW1BQwMmTJ6mqqmLhwvWYzZF4vSXY7XkkJb1FRsZyFIo4BCEa\nt1tCpYrA6TTRo0cPPvzwCZzOr4HWwGpUKhk/vxeYPn0GoaFfkJYGKpWOOnXMzJr1DEaj8RLjDdVK\nE4cP5xEd/RiCIKDVtiUvbz/Ll+8mMnIKguCivDwBrzcRSVKh0TTkm2+2MWFCMM8//xp79x5BrRbw\nek/j729ixIhWtG/fFuB84auBZs0EzOa9NG2aRLt2wy/YJD0eDxaLBaPReIHxUSgUjBp1B6NG/ZxX\n9Xg81K1bF41GQ35+PirVIRSK6jxmSUk6YWEGLBaL7/jaP7/UGCqVSh599CEeffQhoHoOu3ensm3b\nekQxGMjnxhsb+0LgtcOkV8o3P/30Q6Sm3klZmQlZfglRdGAyheB2D+HgwTW+zymVSjp37kxFRSlQ\nU7SvxmbrSUZG5nVdA1Q/X198sZmqKjUqlYNhw9rSoEHSdR8vCAKzZs1g48aN5OTk0Lz5DJo2bUp6\n+kPs3/8IstweQVhJx44pzJ79IevWbcdqdVJWVoZefy9a7d2cOfMlOTnP8cEHr/HNN++yfft2FAoF\nPXuOJigoiP379zNt2huUl1tITIzm5ZenkJycTL9+8axc2RFRVNGxYyuefXbmBYzSPXt+4J13tpOV\n5UdZmQej0U6LFimUlZ2jf//uGI1GBEEgJiaGu+/uzIIFTyGKdRCEMzzxxO2/OI/2Z+DXGL5fW8P3\n/wn/OsP3Z4c6a6sNqNXqq6q6/9Zxjx07xqOPvoPL1ZwzZ1ai0dxFu3a3I8sudu4cg1q9H4MhAoXC\njtu9AlnugcOxm4CAXPbvP4lG0weX6yNk+R1AicfTgPz8TVitx0hNjQeSEIRQiorCePnld5g9+/I5\njWoiiBe324xabUKWJQoKzpCVdQRRPINaXYhO1wiFQoPH40avD6eqys699z7G7t1RqFRvYrf/QGHh\ne2zZspTw8HAfU3PTpp3s2mXl+PGfKCrKJD8/h65dO/nGTk9PZ968NdhsKvz9PUyceNMFOURZlvF4\nPD7RYYPB4LuGqKgoevcuYsuW7wAdwcFuhgzphslkuiBn6HK5KCws5L33FlBQUEGXLs25667bLyDA\nXA8EQaBTp7bUq1d4nhLfgMDAwAtYqTVh0prSitqaaaIo0qRJEzZuXMqECZM5enQHRmMPFAoRj2c7\nSUmXlko0atSE1NQP8XqfA8rR67+ladOp1zVfSZJYsmQzXm9PYmJisdsr+eqr5UyaFP6LNkpRFOnV\nqxdOp9MX0v3447dYsuQrMjNPUlhoIjMzmjVrvsfjmYxanYLN9hVu9w8EBDyAVpvCzp3dqaqqIjIy\nkltvvdV37n379jF8+GO43QkYDC04ezaee+55FJOpPpLUlsaNI2jbVsW0adUiybVV7xct2oC//wRa\ntChkx463qKqykp0tEBi4nOHDL2xPNnz4ENq1a0FJSQkxMcOv2Jrr/yOu1q7sn4J/neG7Hvwehq/G\no7Db7ReoDfyR47766gIE4QHCw1ty5sxhrNYGlJQUExYWRlhYZyorPycgYDQGgxqL5QO83vcIChKZ\nP/8V3n77S0SxK2r1BFyuEOAwgpBBQcFyJMmB19sU6I8kbcHpPMamTU6+/vp7br11kG+jl2WZtWvX\ns3fvj4SHy/z006uoVB2xWI5SUnKMmJhxFBbm4XDUpbJyBRER7dHrW7B//+e0bFnJrl1H0Os/oKLC\nhiTdQlHRJqZPf5PXXnsWjaa6Xio1NZ/ly78hJycMSerK0aOfY7FMQanUcPLkOSorlXTqNJPY2DjK\nyzN4773lvPjiRFQqlS/MXMPWvFzRcZs2zUlJqY/L5bqgYXZNDlGlUmE2m7nttvsoKOiPLHdh585P\nyMjI4qmnHvV1Kqn9cy1jeLHE0MUeXm3ttJoXqfz8fGRZJjIykri4OD77bC7Dh99DQcFQvF43jRrp\nuO++Sw3a/PnvMHDgCAoLP8bjqeTOO8dcd77ObrdTUSESE1NtUHU6f8rKwqioqLiujVKWZV599U0W\nL/4OlUrHmDG3cO+9YxEEAY1Gw113jaKsrIxx497EYGiDIBSh1f4HpzMfmIjdfguSVEn1tiVdEo6r\nqqri6afn4nY/hlY7HIdjK5K0jry8Ujp3nkVQUDKyLJGaOoO0tDSfxl/N/fV4vGg0OgyG5jRvPp60\ntHk0aABPP/0YiYmJOJ3OC8aLi4u7hJj1d8P/PL7L419n+K7X4/u1/TprwlQ2mw1RFC9RG7jWuL/F\n8BUXV2Iw1APAzy+O4uI0XK4I3G4zJtNp7rvvdvLyShDFLtSpE0VAQACJiYlERUXRuPEPrF37I7Kc\niEZjwOnchiwrMRqLqayMQJbHAXUQhK7Ick9CQpqwe3c5nTvn+hpFz5//GXPm/IBSORSPx5/AwLWM\nHt2I/HwlK1feTFDQrej1mygoOERV1U6Skx0sXz4HjSaWs2ehqqoMrzcfSYpAodAgy06KiiL54YcD\ndO3aEUEQyM4+S36+C4ViHkqliMczkIULmxEU9ABwG2bzJuz2QwwfHkdgYAI5OToqKirw8/Pz0brV\navVVnwODwXDV2qzt27dTWlofjeY/WCzbkaRBLFgwiwcfHEdUVJTPM6yRwaptDGVZZteuanHW4GA9\nvXu3u4AQIUkSBw/+SFpaHlqtkm7dmhIREeEzhna7nW++2UxeXnVTg6Cgo9x6ay8CAgJYtuwTTpw4\ngVqtpkmTJqjV6kuK7mNiYjh4cAdZWVmYTKbrJmPU1HXp9R7M5iKMxjBcLhtQitHY8rrO8fDDU/j0\n0w0IQgfgGK+88hVhYSEMG/ZzP8dqNqwKlcqELBcgyxIKhQpByMPlKsFs3oAgrGbkyAGXEICys7OR\npEREMQYQUKt743AsRZLcmEx1ARAEEVGsJl/VoMaD7tOnBd988zVVVY1JT88AZEpKDJw+fc6nV1ij\n5VmjXlFbufzviF9r+P7OBfm/B/51hu968GsNUA3Zo0Zw9UpqA38U2rRJZu3aOZSXV2G15uLxLMNq\n3UBJiYZmzYJZtuwHlEoFd97Zn169uuPxeKiqqmLdui2YzR7i4/dz8uRO3G4DWm0Adesa6dKlCx9/\nfAjwIMsnARlRdNGy5a2IYj4ulwuo/oJ9+OG3BAYuRKWq3kxLSgoJCgokNjaG+fM/wWzuSlRUV/z8\n4vDzK6S0tIiwsJcxGjsiy17Ky2/Dar0FQXgAr/cQEREi0dFdOXx4N7m5PxEZGUlYmIjXa0ShAEly\nU919X4VW+wAAdnsGubm5WCwWRNGBKFb61tLPz+9X12bm5+djsVioW7d6A5UksFp3IIo3oFQa8Xh+\nZMmSbTz88K2oVKoLvMnaYdLvvttIaqqGoKDO5OWVkJHxHRMnDkWr1TJ//kI2bNiDxxNA//5PYLFI\nfPHFHkaP7uarczxw4Ci5udHExbVFFEVyc39k797DdO7cGpPJROfOnS9glcLPpRVOp5O3357Ljh2H\niIwM5umnH7qm4SstLeWTT74nP9+O0SjSu3cK27evxmwOQpYrGDQo5bpUtAsLC1m8eB2wAUFIRJZz\nqKzsw/LlG2ndugUqlYrIyEiCg4Np1MjEjz9mEhiopbh4FKLYhMDAbbRu3ZrY2MO0atWLm2++tPmx\nn58fWq2V2Fg/srP3AgJe7yG6d29GUdFKIiJuwmbLQhQPUa/epUryw4bdiNP5DTNmzCQkpC91685A\nrQ7i44+n0KtXVxQKBXq93ud917zc1LxcXGwQ/67G8Fr4n8f3L4Uoir/I46str6PT6a7pUVwJv9Xj\nu+eeW1m69EEsluFoNH1ISCihYcNUevduzdy5xwgOfhCHw8XMmXPw89PTqlVL1qzZzMaNLkJCbqFl\nyy7Ur7+EhAQdOp0/7do15Z13vsFg8MdiWYIsd0SWVxEVFYDX6yI9/Rs+/vg4gwb1om3btni9EqL4\nc02XIGipqqpiypQZZGRY8Xju5Phxf5o3D+Hll5/i9tsfQa9vfP6zCgICOtGwoZvs7A3ExnakadNp\nbN36FMuXn0Wp7I0grKJfvziMxjSqqj5CpWoPfIJarUUQ/M/n7NpTWfkUeXlqtNpSRo/uSnBw8K+u\nr5IkiUmTnmDp0jUoFCYiIzUsXPgufn5HqKyMRKVqhyyvpE2bzthsTiwWyyVvy7U3xbS0YurVG3ve\nW4skKyufrKwsXnnlXbZudWC3D0IUt5CXN4mHH/6CvLxEcnNzCQoKwm63s3r1Lo4d8+PkyUxSUpqi\nUvlRUXHuika9JownSRKPP/4cq1d7UKme5ezZ4wwffi+rVi0kPDz8sgQaWZaZP38VFRUdiYtLwWwu\nYPXqZTz0UDUr1WAwXPcGWVBQgFIZi9sdcX69Y5CkIE6fzuP113cjSQ6aNdOQmXmSJUs2YLdbiYwM\nZ9Cg+jRq5KZt20nXlK2Ji4tj8OAGrFjxFRpNJC7XfsaOvZNhw4bw1lsLOHhwPAEBep555j9ER0df\ncrxCoaBDh1bUr59JWNgjvt8LQgBms9nXOrDGuNW+T7XrOGu6ztSwe2sbxD/bGP7P47s8/nWG7/ck\nt/xSeZ3fa9wroaKiguTkGwgPv/O8bptAbm4q27YdwWS6Db2+Ojdjsw1h587DtG7dip07TxEd/Qhq\ntRGdLgKLJYuePU107dqVxYu/Zs+eLJTKV1CrP0MQ5uHv76Fly2jWrp2GKN7BTz9FsGzZy7z11n0M\nHdqdb76ZgV7/H5zOsxiNB9m0KZvTp0NQqT5CoajC630Bh6OQlJQUWrduzO7dnxMYOAGXKx9R3Mjj\njz9OdnYJu3adoaTkY86cScVk2ohSGYYk2Vm/fjDvvfcS8+YtISvrM1q1akJ6egKnT49DFLshitvo\n378ODz/cnOjoaEJCQn7TmixdupRly04gCIeQJAM//fQKzzzzKl999SF33/06TucmGjSoT7t2jbFa\nV121/q6a2Qkejwu1WocggCC4sVgsbNt2EIXiICoVSNJIsrO7kJl5GFm24XLpsNvtrFmzA7u9CWp1\nNKIYxYED60lMFOjdO+mqhKma0P2aNVswGPYiinq02hbY7ftJTU1We+mkAAAgAElEQVRl4MCBFxTf\nQ7WxtlqtFBV5iY2taQwQQVVVJFarlYSEBADOnDlDaWkpycnJV90s69Spg9FYjt2+A0nqgCynAtnU\nr/8OMTE3IMte5s17hnPn1qBWf44gRFJQ8BYqVRWPPjr5utZKEATGjbuD9u2PUlJSQlxcN+rVqw79\nT5/+yHX1Wo2MjESvL6Ki4gj+/k0pK0slIMBKSEiIr33d5catCWXXePoXq97XhL1rG87aYdI/yiBe\nr/p6bVRVVREVFfWHzOfvgn+d4bseXMsA1WZqajSaqzI1f89xrwWj0YjXW4AsewA1DkcJSqWTwMAA\nMjNLfZ/zeEoxGrXnv7AiLpcVWVYhCCIqlReNRkNGRgazZ3+Ov39nXC4rYWGvY7GsJClpDW3bxnP4\ncEOCgycBYLMl8tZbr7Ny5XxCQr5gx44PCQsL4KGHXmbEiPuRpDFIUgAKRV1keSJFRc8AMHPmEzz4\n4NMcOfIlSqXMM89MoE2bNrRpAzfdJJGfn8/atdVGD0AUdSgUcRiNRpYuXQDA/v2HmDdvM06nhYqK\nFfTuHcWMGa9ctlzkYpw8eZKDBw8SEhLC6dPnmD9/6fnNczgjRw6nsrKS1NTDOBwD0Wr9zs9hBGlp\nS0hOTuaDDyaxYkUasmzHbF7DiBHtr1rXJooi/fs3Y9mylWg0KbhcRdSrZycsLAlRVFGd25JxONwI\ngobi4uOYTHmcOVMHk8lEenoh9esPQaMp5MyZ41itVpKTBZo0aXjFN/vTp09TWFiMyeR3PpJhRRRr\njLPFV45S2zOsKbxXqVQolQ7M5hL0+kC8Xjdnz+7lkUcWo9OZ8Hgq2bv3BCpVLApFFl9/PZ8WLVpc\n9toDAgL4+ONXGTduChYLKJV2unS5kfj46vZqTqeb4mI/BKETKlX1OdzuiezYMeyqa3gxBEGgadOm\nV7z/14LBYOC//53If/87j7w8MzExgTz11APnBY09v7mWs7bQb02YtGZuF3uGf1Wo9H+szn8gfovH\n92uYmr90br9FBDc+Pp5Bg+qxcuUriGI8spzGpEk3ERcXzZEjb5GTU4AsuwgK2sOQIU/h9XoZNKg1\nixZ9jsHQBY+njLCwsyxefIRTpzycPFmJVnsUg8GGw7EWWT7OkCFd8XoF4OeQpij643K5zzfHvovx\n46t/f/r0abKyCvF6nUiSG0E4iSieJCkpFlmWCQwM5NNPZ2O3VyuA176XoigSHh5ORISW3NxFaLXD\nKCpah9e7jXnzqmupQkJC+OSTLYSGjqV3byMej5Xy8vk+evrVsHLlKh54YDqy3Ben8yBudy5hYSsR\nBAUzZz7EmjX7qV+/D6dOFaFUnkKWJyIIGiRpLfXqVXs7TZs2pk6dWMxmM/7+/hiNxmuuUdu2rQgK\n8icrqwCTyY+mTdujVCpJTo4iLW0qMBylch2hoWYyM78jNTULQUhCkp5i5MhRKJVl5ObmsmvXdtzu\nI0RGhjF06I0olcpL2KTbtu1m1ao8lMokCgr2Y7GYqaoajFI5moCAbBIScunatTrXJQgCFouFKVOm\ns2nTToxGIy++OJk77+zJggVfU1ERy6FDKzl48ByS1AtZLkKWf0SjmY4sj8TtXs6YMQ9z6NC2K157\n586dOXJkKyUlJfj7+7Ns2ToWL/6OjAwTbrcDp/M4guDxGXGvN+Oy99Tj8ZCbm+trev17G4j69evz\nySev4nb/3EygJnT5W1C7DKWG8HbxC4fH47mgLVttz/DX5A3/TEmi/08Q5H9DY7aLUPNgXQmyLFNe\nXu5L2l/M1NTr9X9IZ4OaRtW/pQOELMucOHGC0tJS4uLiqFOnDlDNePvhh1SUSgUdOrTH6XSyefMO\nHA43MTGh2O0yJpOOM2d+YsUKmTNnzlBe3gynsxydbg9xcd0JCtrCF1+8Tnl5OcOHT0aSpqJSheJ0\nzuKhh9oxceLYC+YyZcp/Wb06lNzcLTgcA5HlEvz8FrFjx+cIgoDL5aJu3bpUVlayYcNe7HY3bdok\n0bJlc985srKyeOCBZ9i1aw8eTyA6XVNstiMolVbuuONGrNY6xMbei1KpRBRFcnIW8OSTPXxM0yvd\no/r1W2G3L0ahaIrZXIHbPYyIiKlotX0pKFhKePjn3HXXQjweB0uWDKO01IxKFYqfXymrVn3h6zJz\nMbKystiy5SAej0T79sk0atTI9381uWCdTnfJ81NRUcHTT8/kyJGTJCfH07dvJx588F3s9q0Igg5Z\n3oVWO4IBA0by3XcFQL3zigfHmTixMU888YiPcOH1erFarcyYsYSIiLG43V7effcjHA47anUYbvca\nQkLOsm/fZoKCgrDZbDz55H9ZsuQ77HYtQUFvoVCEAPfy7beziY6OJi0tjZEjZ1FRMRVB6IwspwMf\noFA40enmIstOvN5IsrNP+zZruLKX5Xa7WbXqex56aDYeT18EQcLr/Q6FQoPXm4Isx6LRrGbhwun0\n7NmTsrIyMjIykCSJOXMWc/asE0my0b9/E5566mEEQaC0tBSFQnFdZJtfipq0xp+lxHBxLWftOs5f\nwii12Wy+7jXXiwkTJjB9+nQfk/WfiH+dx/dLUFPsXFP7ZTAY/lDByd+jflAQBF+z5tqIjY0lJiYG\nu93O2bNnefbZd3E6u6NUxqJUbuPpp4fSsmULdu6cxblzVZSVdTivXJ2Nx2NDr1/LO+88R1hYGOHh\n4cyfP5233lqI2Wzjppu6c/fdd1wyZmWlDZOpNUFB/Sgv34LFUkjv3t356qvV7NxZgkLhj59fFoGB\n0Wg0A1Gr/Th4cAtjxrhp164NUE1YmDv3ZXr0uBu3ezSlpakolXuRpHOsWvU6ycl7CQwcSFBQIpWV\nWWi1Zdfc+DweDxUV5chyIoLgRJJEIBmPp5jCwqLzzNDTvP/+Ddx116f07TuegQND0Ol0FBYWsnv3\nbsxmM02aNLngvHl5ecyevQ6VqgcKhYoff9zGuHEyjRs3pqioiGXLdlNVpUCtdjFkSGvi4+v4jg0I\nCODdd1/x/Xv+/Pm43c0RhBpZqo7Y7WbS09OAvmi1A5EkB263hk2bdjBmTHURfEhICP7+/ng8HtRq\nP3Q6P7Kz04EolEo9anVbtNr7cTqbUlVVhclk4qGHnmDNGi8Wy1dADiUlk4iMXIXTeTN79+5l/Pjx\nhISEYDbrEAQDgqAEEpFlB16vC0EAj+dLEhIaoFKpfBt1dnY2u3fvQRAEIiOj8HrVhIUZady4+vnc\ntGkfev0UDIYeCIIKu70XwcEvUq+egL9/Cffc8z6NGzfm+PHjTJ06G6czmXPn9uP1GkhJWQB4Wb36\naVJSlrNnTxqHDhUCHvr3b8Kjj078XaMxf4U+55V6lP7RjNJ/uhYf/M/wXRY1D43ZbEaSpN/E1Pyl\n4/4RDnjtEG1aWhpjxz5JSUkoSuWnNG06hvDwO1iy5DtatmxBXFwQJSV7UCj6oVQakGU3KlUAbrfM\nc899itGoZNKkEbRp04YvvmhzwTgnT55kzpzPqKqyMXBgJwYM6EBq6nyMxikYDCk4HF8BsWzc6CIq\n6gkqK9NIS1uMUqnn1ltbIAigVhvYsGGlz/AB51823NhsR4DhgB5B0KDR3Ia//xeoVCvIzgajUeKB\nBwZfs8FzUVER/v7RlJe/hyg+iigew+v9DqtVwm4/jCDsRKVahtm8kRUrnmTAgI60atWPKVNeZPdu\nF7LcEFF8gRdeuJMhQwb5znv48Anc7mYYDAaUSg0BAb3YsWMXKSkpLF++G6+3A9HRUdhsFSxbtpHx\n40Mu8SBqogtJSUnI8ivAWWQ5EUl6nYCAWCAElao+CkUyCgXY7SvweBzMnr0NQQhGqdzFXXd1IT4+\nnsREHWfO7OH06QKs1iMIQh00mhCgGEmyotfrzzNF1yKKRxFFkKRmwA7s9s2oVGcxmarVJEJDQ1Gr\n87HbtwECspwN7EKtLkCpbEVAgJNFixb5XgzT09MZN246FksfLJaTCMIhbr99NApFJTk52+jRoz1G\now4oRqGoDqs5HIU4nRri4gahVBb71nHmzI+RpIcIDW1BRsZBbLZPsVgOYDS2QZY78P77H1BZ2ZT4\n+FkoFBpWr55Jw4brGDToBv5JuFLe8GqM0pr/+yXG8H85vn8ormZgakIaUN3fUKfT/b+tx4HqsG6N\n7JFer2fKlFdxu/+LUtkGhcLGkSN3061bDE5nNWOtX7/uvPrqpxQVvYUkZaLTBWK3b0Cl6kRMzKNY\nrTm88soHvP125AVtms6dO8eoUVNxOMajUoVz4MBcHnywPe3b61iz5k5KSwsICOjD2rWleL27sVoD\nsdsTsFgSsdkqycvLJSQk9DxDtvoLXJPkDw4O5sYbO7Fo0Q4kKRJIxGBQIIrpJCfX4bnnHsBqtWIw\nGHyhtbS0NNatO4THI9GlSwPat2/jW8fS0lJ69nyI3buXkp//DhpNAO3adUSlymL37hD8/L7E4QjB\n6+1ISckcRo9+imPHjrFnjwV//w8RBAUu181Mn34ngwYN9I1ZVVXBkSOH0OubAxYCA91ERQnY7Xaq\nqkQfU06vD6CiIojKykqf4du3bx/vvrsQp9PNqFGD6d+/P/fcM4IPP2yLLItoNPWJjx+K11uFRrMe\nt7sSWVaiUm0gMXEQUVEjUChUWCzFLF68nCeeGM0ddwziwQef5tChdBQKCY/nEFVVuZhMm3n88ft8\n66fT6XE4CjAY6mKxWJDlDDye/SQn6+jduzdOp5PAwEAmT+7Pa68txu3eCpwBsjAYwrj33ht47LHJ\nF8gTzZv3FS7XWEJCOuBy7cDhCODMmRL69+/F8ePLaNmykjFj/sP69Q9QUVGJJCmx2z8iMfFORLEu\nBkN7vvzyOx57LJaCglJCQqpDxn5+fpjNkWRnn8Dp1GKzLUWnM6BS1cXhmEWDBg+iUnXmxIkjDPr5\nneQfi2sxSj0ej69h9/UySiXp0q44/zT8s6/uF0CSJBwOh6+juyiKf4qXVxu/p8d3OdmjsrIyKiu9\nBAV1xmotQZKCkOX65Od/xt13DwEgOjqawYO7s3evErM5HaezFIWigJYtq/Mo1dp+ieTk5BAWFoYs\ny+zZs5fXXnuf3NyuxMb2R6PRUFGhZ/r0UURGdsXp7IQoRgNujMZXyM4ehSi6iYy8AY/HhEKxhIMH\nN9KmTSus1m3cfHMzHA4HXq+XGtHXp556hMTEKN544xMcjh/x8zMSGZnH/ffP9rUSy8zMRBRFnE4n\nH310AJcrluLiAnbsWMWkSVZ69+4BQFBQEDqdhVGjPkMUVZSXZ+Lvv5mEBCM//rgMpTIUo1GH3f49\nPXq0IympPpmZGQhCDIJQ/batUkVjNnsuEPnMz7eiVCYgy40QBIGMjI8YN64LWq0WtdqN1VqOwRCI\n1VrFiRN7WLcug549e1JUVMSwYRNwOp8ANOzaNZ3589W89NKz9OrVk9mzvyMoaATNmjUjKysHhWIx\n4eEWBKGcDh1uoqwsBYWietPz8wslK6t6wzMYDKSlpRMYOAelMgmbbTlW62cMG9aSCRPGYLPZ0Ov1\nPP30Izz77O243Xei1x/H3/8kzz03mSFDhvjEfd1uN/ffP4GmTVN48cU3OXWqLrAFs7mE2bOH07Zt\na/r2/Vkho6LCilodBsiAiMejZevWTRw+fIp69Qq4557OxMTEsGrVJ6xYsZKVKzdw+nR70tPrcerU\nl3Ts2J6AAAVms5mUlHjS0tYQGjqYOnUM5OWtwWIxAUvRaIKBUQhCQ5zODAoLNyGKPxEX9/v2zvyz\nQ52/BbXrB51OJzqdDrgwVFoTJq3pKiSKIkeOHPnVpJavv/6a559/npMnT5KamuprB3cx1q5dy8MP\nP4zX6+Wee+5h6tTr6xP7e+NfafhqP8BXYmp6PJ4/JOx4rXn91jFr1xbWUNWtVivp6emo1Wr0ehmP\nJ43o6BSKi88iy/u4++6xDBjQB6gu4n322QeZN28Jp07lUqdOAseOKXE6i1Aqo/B6XUhSLv7+1Y2h\nt2/fyaxZuyguTsFuF8jIyMNo1FBRsQmbTcJsjsDrzUGhOIrdHk1AQA6CIFNRkY3bvYg6dfxp3348\neXkf0KqVgVatupCSkuK7jhrPb+/e/VRVQWJiPRwOA+DCaPTjzTcXEh0dgM2mxGqNRZI8VFSkUlgY\nzY8/HsPjaYEg6HjttW9o06Yl/v7+xMTEcPPNySxf/hHgj7+/mYYNI9i9+whxcZWcO9cWlcpE/fpG\nnnnmdUpLS2nUqBFK5Rwslr3odI2orFxIq1YNL+jIb7fDgAG9zjNZZVSq9gQFBaFQKLjpprZ8++0m\niosNfPbZh1gsIlu3NuDll2+jQYM6OByPodXehSCAy6XnnXcW0rdvX7p2bcfOnTnExnahoKCAHTtS\nKSrKwN8/jRdemEadOnV4++3V2Gxl6PVBFBYeJy7O6Hv7V6mUSJIFQRAxGG7G6z1KQcFJbrllKiUl\npSQlGXnoobF8+ukLbN26i7CweowaNR2TyXTJsyXLMgMGDGDKlBnI8geIYiSCEIndPpHvvltPt27d\nADh79iwNG0Zw+PB8lMrHcbmyKSn5Dj+/3lRU+HHgwBa+/XYl48ffTUxMDH379mbVqkKCg+9EqYxF\nFHuwa9ejjBzZFpPJxNSp43n22bfJzFyGKLpo0MBEXNyLpKevwOW6FZstH7d7BXa7ldLSQwwY0IjB\ng0f/pu/RPwm1Zc+uxihdtmwZK1asoLi4mG7dutGiRQtatmxJv379rqrPCNCkSROWLVvGhAkTrvgZ\nr9fLAw88wMaNG4mOjqZNmzYMHjyYhg0bXvGYPwr/SsMH1YteEwZUKBSX9NT8o/JtV8NvGfNKtYXZ\n2dk888z7VFXF4PWW06lTS7Zvn4rXG01AQC4PPjiGu+6644KXAX9/fx5//OcH+MCBg7z22hxKSupg\ns51gwIB6vgLm77/fR0DASLzeKrzex3A6dVitemA+SuWTqNUjcTjK8Hhew+U6QG5uOiASF6fCaGyE\nKBZQVXWY0aNvZMCAXrhcLo4ePYrJZCIsLAyTycSXX37Hpk0uzp6NIi9vIBERNtzuluzdu5zMzGIk\n6ScMhoaMHNkNlUpFRkY5e/YsR6t9i/9j77zDq6jyN/6ZmdtLei+EEnoLHQlNmiAqRVAUCyLYRRFF\nWN1FXUSwoYiIgggioggICApLVRABSYDQSSAhCen19jYzvz9CsoCoqOi6P/d9Hp48udzMzL1zzrzn\nfMv7Go1JuFw5ZGcf4ciRI6Sm1hB2796ptGvXCpfLxXff7eXpp99HUcahqnFYre8zceJtiKKVjz/O\nAASSk7XMmTOFF154jZKScrp0acY//vHkRTuB+vXDOXMmnzZt2uDzuSgqOlIXoqtXL5EePUoYO3Yi\neXmVGI03YTROxePpw8GDjyMIN/HvWyDVjQOj0UhEhMjZsxksWbIJj6czgtCRAweyefnld/jkkwWM\nHt2F+fPfw24P0LJlLLfe+m/R6YkTxzB58hM4HA8CxWg0n1JWdgeFhd0pLxfIzFzLzp2TeO21J3j+\n+Wd/dnxKkkRwcBD5+btQ1WgEIQaN5hRRUaG43W4mTXqOHTuO4PPJ6PXVWK2FiGIxFktDQkLCCAS0\nKMokli59mfHja1zia2T+QnC7XVRUZKCqASyWUho1snDDDWOprKyiW7cUlix5lujoaCZMmIHbbSI+\nvguHDy/BZivHau2CKOaTmAg7d35HSkofWrVqzltvTb+sSssvxX/Tjq8WP3fNl1pevfTSS7z44osM\nGjSIadOmkZ6ezqZNm2jcuPHPEl+zZs1+9nr27dtHcnJyXUX0qFGjWLt27f+I74+C3++vE6n9sUrN\n/xbiu5TAL+0tnDfvE5zOYcTGXoOiyGRlzWHWrInExsYSGRmJ0Wj82XN26NCeRx9188wz7xAIxLNu\n3SGioz9n1KjhiKJAIODl9Gkv9erNJz//fny+UlQ1gCDEEAgUoqqgqjJe7yl8vhEEBUUTCOwmOHgH\ndnseLVsmoNNFMHHikyxbthm/34hG4+PBB4fxt789xY4dWSQlTeLUqX2EhralqupTSkqOEgi0wmbL\nR1GqsNmkOgfs8PD6+P0V6HTleDyg1Raj0QRx+vRpCgsL0Wg09O7dm5CQEIKDg3nnnRVoNC9hMLSn\npORFiooCPPvsBkQxn/Hj36V+/c7s3r2UzMxDTJkyDp9PYN++YpYuTSM5+SjDhvVFr9dz4409WbFi\nC/n5RxBFH0OHptQZnRYXFzNmzCRKSh5DVdvidq9AUSYSFvYCoqjF738Jh0ML6DEYXuDBB6fVjYnb\nb+/Ps8++ic93DkmKxGAYgkbTgF27muNyuZg/fzGff74TjSaafftKuP76rnVVeTffPIzQ0GC++GIb\nQUEm7PabOXCgE5WVIjpdd0TRgqJYmDZtNp06tScuLu4nK5fPnTtH27a9OH58A4pyAI3mHFFRZ3no\noU2sX/8l69en4/V2AVKx2T4lMrKSe+65kfff1+PztcHlEpHl78nPd7F06UruumskSUlJFBR8jdfb\nmZiYDthsX6HVunjppeXo9S9hsTTi668XoijvMmfOdB59dCTTpy9Eq22F378HnW4MQUHNiIlJJS3t\nnwQHjyQo6A6OHl3M+PGTWbduSV1O63/4adT6WPbt25e+ffte1WOfO3eOxMR/W2UlJCSwd+/eq3qO\nK8VfkviA83mXH8/h/SeIrxZXurqs7S2EHyfw/PwKgoObnz8u2GyRpKWlM2bM3URHR2O323/2c6qq\nyltvrcBimUJISAp+v50FC/5GSkoLhgzpxowZS3G7GwN+FEXCYJiL17sRWV5PIGBBEGxI0jY0mqmo\nalNMppYEAtEYjRVotVY2bEjntdc2U1WVC/wNURyOJOUzb95dREQEU1xcTGiom+joYE6dyiUQqFH6\n0GorCQq6FkWRKSpagdfrRhRBry+kWbMoKio2odV2RaNRcbm+45VXis/3jHmIilrCp5/OJyoqCp/P\njyhacLu/o7p6O7AJVTUgywdYtuxprrvuYT7//H0kKZUlS94iNtbIuHFLkSQNmZl72Lnze/r1647V\namXs2KG4XC50Ot1F9yMtLQ2frwMWyzDc7ipU9Rm83g54va+SmpqCICRy9OgaFCVAixa9aNfu372M\nUVFRjBjRi02bFiCKdyOKWhSlDEFQ2bp1K2vWnESj+RpRNFFZuYKHH36GLVtW1v19nz596NOnDwCv\nvPIWX3zxPX5/T6ACVT2B359Nbm4evXuPITJSw6efvlcnxn0pPvvsaxo0GMukSQ9w9OhhHI5tvPTS\n80RERLB37wE8niAkac55MYaBnDzZkSFDrmflyomcOVONJCWh0XxCp05TWbduE337dkOr1ZKcnExR\n0dc4HJ9Tr14SqtqE4uJEwsLaAmCx3MvatT1wOg3UqxfG1KkjzvcqJlG//ki0WiN5eXkIQjN0ukRE\nUYPVOpYzZ97FZrOdVzW6WJLtcvqkF6Kqqgqn00lkZCRwZeIXfyZc7eb1/v37U1RU9IPXZ8yYwY1X\nUEn0Z/r+/pLEp9Ppfnb195/a8dWe96cGyS8RxW7Vqh7fffc10dHX8/3331Na+g07djTl2LH5/OMf\nd/zAC+5S5Ofns3XrDo4cySYuLp6ysjIMBiPQhIKCArp168bQocc5d+4Tysv9mExj0enaIAh6AoGF\n+Hy3YbU2AaJxuaJQ1TAqK3ORJD95eTvQajXIcnPcbh2wCBiOqkr4fIlAJ2bPXole35i0tGfo3fs2\nLJYDVFdvQq/3otMNBBKQ5SLCw/Nwu9dQXGzlppuace21Y1i4cCdVVbuRpFKsVj+FhY8TGjoSVVUp\nKnqT995bwoQJ9zNsWG/mzZuG19sKRWmNKEoYjQa83muw2Yr4/POZ+P0TUJQq/P44srI+Izc3nQYN\nOhMWlkxe3rcX3cNLWxRqlWRkuQSDwUBYmJXy8uMoSgkJCQcoKYkjIuIaxo2bdt5x4RBHj2ZdFKLr\n1asXjRvP58SJCchye3S6T3n00fHk5+fj93dHq60p/dfr+5OT88Jl72VxcTHl5QZCQ09RUnKWQEBC\np8vF7T6HTvc1Wm0TCguXcN99T7F588of/L2qqpSVOYmPj0MURaKi+pKf/2+7pbi4CEBLjQZpzTjW\n6YyEhITw1lvTeOyxt7FYQkhKeoWwsJacO7cLqGkbCg01ER9/FyZTLIGAi8OHn0QQclEUGRDIzv4e\nt9vEwYO9KCry4HBsZcaMR+jf/zibNn2K0diT8vIzqOoOtNo7EATw+8+i0wmEhobWXeOF+pm196YW\nF5LhmjVf8tFHuxCEYMLCXEydek/d7v2/BVfbi2/z5s2/6Xri4+PJy8ur+z0vL+8nhSZ+T/wlie/3\n9uT7Lfipa/s1otgPPHA7VVXz2bVrLWVlNjp2vItGjW6kvPwwS5Z8ydNPj60jeL/ff9EuJTs7m0cf\nfRWHoy+FhQJnz64mNLQvgpBJRMReYmN788or89m5s4KIiEFUVW3G691HUFB3Gjdug8s1htzcDJo1\nm8yBA1NRlOUIwoNYrSY8npWkpsZRUNCGzMxsfL4aGxk4jqq2RJbtCMJRDIbROJ3lOBx72LJlIlOn\n3sXIkW+zcOEq9u6NwO8/iigW0K1bDyZPvrdOwSUvL4/Ro6vxer2kpAxm2rS5lJc3BITzuapG2Gx7\nCQoK4qGHxmMyGVm2bC12ez4Wy0QMhki83k8wmy3YbE5Ah053D7JcjseznZ0716PTJQDFqGohW7Zs\noWnTpheFcmrzrn6/n+7du9O69SccOvQwqppCVNQqwsKaUlHRA4dD4ujRM1RVbeKmmwahKF602oub\nr/V6PWvXLuXDD5eSl3eGbt0eYPDgwWzbtg2tdjaK8hCiGIzXu5o2bZpcdiycPHkarbYrd989lkOH\ntrNt2w7s9uNotUMIDa0RczYYbuXEiX/W/Y0sy5SVlWG1WjGZTDRqFE5u7lFiYlrj8dhQ1VzCwpJx\nuVyMGXMXCxZ8Rnn5TOAaNJq1dO3ajKioKEJCQujWrQUlJU2lsCwAACAASURBVK0wGMLIy1tLYqLK\n9OmLqK42Y7OVIwivEBnZEUUp4oEHbuCLLzaTnj4Ruz0Ku301VuuN+HxxnDlTjSxXU1paSmpqG5Yv\nf4Py8s1IkkpCgguP5yn8/lYIwjfMmPFkXe7+0h3e5fRJFUXh+PHjLF6cTnT0NHQ6K6Wle3jzzWXM\nmvXUT861/w+4GpZEP7Zh6NixI5mZmeTk5BAXF8enn37K8uXLf9O5fi3+ksR3JRBF8aLV4B+JSwfO\nhZWnOp3uF4liBwcHM2PGZJYv/4xVq4Jp0KCmqddojKa62oUgCOTk5PDyyx+Ql1dBbGwwf//7/SQn\nJ7N8+Xp8vpGEh3fDbA4iEFiA2/0NZrMGs9lLQUEBy5alodWORhD8hIa2QRB2EhS0BJstEqdzHUFB\nCnv2TEGWBwB7EYSHcTiCaNSoPtdffz0ffPAdBgOoakNgKHAv0BbIRBDs5OefAnoDDyAIa9m58zi3\n367lscfuYs2azWRnnyIpKYzhw++o01Xcty+NxYu/RxCaIMvnEIRM+vbtyNGjC9Bo4hEEBVVdRq9e\ntyIIAjqdjvvuG8t9941lwYIPmDHjBmQ5jLg4P2+88TJjxryA3Z6AIAThdpcjy4mkpx/l2LHHadTI\njc0WjEZTDLzNG29MpEePHnVq/BqNps4yaPnyd1m5ciUFBSUEBV3P3LnfERQ0HaPxLGVlmzh4cBfN\nm5sJDz9FSsoQZFmmsLAQRVGIiYnBbDbz4IMPXHR/+/Tpw5gx+/nggx5IUiixsQrz5i38wTg4d+4c\nR44cIy9PIiIimQ4dBtKwYQvKynSsWpUGeAATXu+OOof1vLw87rnnCfLz7QiCi6efvp/hw29g+fJN\n5OXtR6PxM2xYuzoJv5iYGHbuXMvUqTM4c+YbOnduxbRpcxGEGof1Z54Zz7JlX5CXt4+UlFgyMmQ8\nnhHEx7clMtJGfv5M7rorgebN+xMdHc2NN17H2rVrmTlzEdXVfZGkm7HZ9mM0NqCg4DRlZWUsW7aF\ntm1fJCQkGVEUyMlZSu/eVURFRdGixbCfLJy4tLijdq6Vl5ej0bRAp7OiqhAW1oHs7MV1ItUXNoP/\nmfOGf6T7+ueff86ECRMoKytj8ODBtGvXjq+++oqCggLGjx/Phg0b0Gg0zJ07l+uuuw5Zlrn33nv/\nI4Ut8D/i+1H8p3J8F573Qo3Qy1We/pJjduyYwpo1n+FwtEWvD6Gk5EuGDk3G6/Uybdp83O47SUjo\nRGXlIZ55Zh6LFv0Th8OLRhOM3+9Ho0kmPHwCYWFb6Nx5ImVlc9iwYSeqOoTg4BtQFB8FBUdQ1SCS\nkvKxWnOpqurHgQM7MZun4XCYEYSnkaRpWK0NcbvX07lzZ6zWYCZM+DtQD7AAsUAUkICiVADH0Ghm\no6o5KEoCVVUOsrOz6dixI3feORyoCZW99tp80tJOEhlpxW5XaNjw74SGxqAoMmvXPkd8vB27fQeF\nhT3Q6yWefvpeBg8eVPcdqarKunXr2bfvOIMH92P48P6kpqai1+sZMWIQa9ceo7Q0A1UVMZlaExo6\nEJ8vm6NHP6Nly8+RJD0ez0kmT57AunXN+OSTz8jLK6V9++bccssIoCavfMcdNdJuO3fuxOvdBGzH\naOxMRMQgKipG0LNnR3r3HoLZbGbx4tVkZWkQBC0xMbu4554bfyDaLAgC06Y9zQMPjMFms1GvXr2L\nWiygpr1gwYJd+P1tyc09zLlzs+nQYQAazUkefHA0iuLl88/7Igj1MJkyeeedeQA88siz5ObeQlDQ\nnQQCRcyceScpKS25//6R2O12ZFlGp9NhNBrrCCA+Pp4PP3z7suMwPDycCRPGADXRhTvu+DuJiTVO\nCjpdEDpda0wmU134XavVEhkZS3z8XVRVRePxVKAo8ZSVvYBGU8Dddz+Pw1FKz55DURSZQEBFUYKp\nVy+Ivn371imX/BKnA0EQiImJQVF2oyheRNFAeflBkpKiMBgMF+0SgToNzQu99v4sZPhHClQPGzaM\nYcOG/eD1uLg4NmzYUPf7oEGDGDRo0A/e90fjL0l8V9OT72qj9rwXurlfDY3QJk2a8MQT/Vi8eAFV\nVV6uv74lt9xyEzk5OVRVmYmP7wxAWFgKRUXh5Ofn06dPe3bv/gSzeTyKkkUgsJ5GjW6nquoEMTEq\nJlMoJpMep7MAlysNhyOC+vXvpWPHfqxb90+SkzsSCGxGq41HklQ0GhVFCcNi8ZGYGENa2kG2bcsg\nMbE+mZn7CAQUVPU6oB9QAuiBJwkEVqDTxaLV6nE6czCb+9V9LlVVmTTpefbuTURVJ7F377f4/e8S\nG7ubLl1aY7N9w7ffHsDtTkaSWhET0x+Nxs++fWkXjYNlyz5h5sxNaDQPEAgUsW/fbFatakxiYiJj\nxw7G4djMiRNBHDpUjskUhMXSF7t9DaqajCjW2PpotclUVLgYP34SR47Eoygt+OCDN5k69XX69Utl\n+vTJxMTEUFVVxXPPzaasTEWW30GjmUZERGd6927L0KE3cPToUWbO/IgTJzw0adKZzp0HUVJygm3b\n9jBkSP/L3t/o6Oi6YqWlSz+muLiSa65JoU+fPvzrX+lYLP0JDa1HXFwK6enriI9PZ/jwwcTHx/Pa\na9MZN+44lZWVNG/enLCwMFRV5dixkwQFLQVAo4lBVXtx7NgxmjSpCaVaLBY0Gs0P5lNFRQXHjx9H\nFEVatWp1WYcFrVZLTEwQFRXHCA9vid/vRFWziIzscNH7ZFmhYcMGlJaWUVGhpbw8Da+3Ekn6EJst\nHkXZxI4dkxgy5DPc7nL0+gM0b34bUKNaVBu1udS54qfIsFmzZowa1Zzly59FFEMJDbUxefL9F83B\nHwuT1lzzxYLS8Ochw5+DzWa7SJHp/yuk55577rn/9EX8J/BzYczaNoELZZj+CHi9XgKBAB6PB4PB\ngNlsvmpiuwkJCdxwQy+GDetDu3atkSQJv9/PmjWbMBh6IEkGfD47DsdabrmlDy1aNCcmRiUnZzUR\nEUeIinLhch0gOPgUjz46mogIKydOHEWSLJSW7kCvj+O6664hLCyS7OwiPJ5CdDorFRWH8fsj0GjO\nYjR+TpMmrYmJKWfXLjeKMgynsxF5ed8gig1QVT+qGocotkRV/QjCVmAnsryXQOAbwsPtjBlzc93D\ntLq6mhkzPiAoaDaFhSCKqbhce3A4FE6cyCE/fxUazWuoaj8kaTiVlY/jcuWRmZlBUlIkrVu3JCPj\nMI8/Pgu3+zkslvZYrSlUV1cSHX2W9u3bERERQdu28VitOezduwSj8V4kKRiXawGBwNc4HFn4/YX4\nfMeJiTlNdraK0TifsrIZ+P0jcbvvprhYZcuWNxg58gbeeus9tm+PJyxsHorSD7+/goYN97F8+btU\nVFTw6qvrcTgGoapDqary4HB8T716bVGULDp0qAkNffHFlzzyyAu8995y8vPz6Nq1Az6fj9GjH+bL\nL80cOdKYjRuXYzQ6cTpBVZuj05nRaLSAh549Q2nVqiWnTp3ihRdeZ+vW74iPj6J9+5Q6Uli1agPV\n1Q3QaOphs5Vjt8/GYoHWrRuTmZnJffc9w9tvLyYrK4vU1E5otVoKCwv55z+XsGdPKPv3O9i//190\n7tzisvOoefNEdu/+mPLyQzgcm7nzzk507tzxoveYTAbS079Fq1Wx2bZTWfk9Wm07TKbxeL1+FCUK\nh2MelZXfEBWVyeTJo2jatCkajQadTlf3r1YBKBAI4PV68fl8dbqWl+6M/H4/DRvWo2/fNvTv34xR\nowYTERFx0XVdGCaVJAmNRlOXX659vZYMLyVI+GP6AmtDs7/k+bF9+3YaNGhA06ZNf8cr+8/jfzu+\nn3jPH7njU1W1TqlEq9USEhLyh5T/BgcHM25cfxYufAFBaIYsn+See3rWhZsGDuzPwIH9UVWVBQs+\nZtu2EjyeGGbO/Iynnx7Bffe1ZOPG7Wg054iO7kFiYiKKopCQoKG6Og2NpgmiuA1J+giNRkNUVI0t\nznffVaAovYiMdNGiRXuSk0eTmbkCaIogrEeSqtFoduD3q8AkJCkCs/lbFKWcL77Ywf333w7UClgH\n8PlsqKoGu92NKGrR60V8vs14vRATE0NBgQOv14eqNkQQnkEUs3jyyRksXrwGjSaSQCAYRTFRWuoi\nKkoAFC78+hMSEhgz5i7q1Utg2rTpVFdXExKiIgiDqKxsg822g+joozz22FSmTPkCWT5LIACieD+K\nko/F0o2ion9x6tQpsrLyEYQbkCSJiIhw3O4+hIUdx2QycezYMRSlOdHR9SkuriQoqCfnzs0iPv4I\nHTrUPHzT0tJ48cU1WK2vEhQUzvr1b2AyLaRt2yZkZ8cQFlZj9Ov392LOnFuZO/cFVq/+GuiJz+dE\nFA/SuPFAcnNzGTHiIVyu+5GkGL77bi52u4MxY2rCsW+88Q/uuedpysuTcLnyaN68HcHB9/LqqyvZ\nuXMHWu2r6HRJrFnzEllZD3LbbTeTmZmDz9efevVqRMbz8rawY8duhg79oWB0/fr1eeONJykpKcFi\nsRAeHn7R/9tsNmbMmMvq1eux2yPRajsjywqCcBDwEgj48fmyCAtrRseOb+BwLPhBmO5Cgrpwx3ah\ny0HtzrCWjFRVRa/XExcX94udDi7XL3gp+dUuumt/XphnvJo7w1/rvv7/3ZkB/qLEBz9PbH8U8V0q\nmabT6S4bPvo9cd11fWnZsinFxcXExqaSnJz8g/ccO3aMrVsrSEychChK2GzZzJu3hLlzn2HQoH6U\nlJTw9ttryclx4/fb6dDBT2lpfTZuzEWnC8XnCyMQMJGbq+H0aRFZ1qHRuDAYwjlwIIv4+EQ6dWrL\nxo3H8fkkfL48goKaU1zcD42mBVFRTRHF7pSW3kJVVTMURSEtLY2KigoGDGjLV19NwefrhKqeQK+3\nYjKNwGTy4XCsR1W/Jzi4JcXFmxEEN6pahSh+jMv1ACdOxKKq/yIhIZL8/BdQlLspKTlHdPRXDBgw\nj4KCArZv344oivTt25c+ffpw7bXXcuzYMUaNeoH4+NdJTNQgy3fhcIykcePGhIcXk5e3FFnOQ1XP\nodFocLlsaDQOQkND6d69HV9//SkVFe1xu2UCgflERNh5662ldOjQCJ/vHLGx/WnQwMWpU1sQhDM0\na5bEkSMuNm78nqKi0/j912Iw1AMgOPgutm2bQnr6Ic6dy6K8/BFiYx9Er29IIBCgS5cOCEI63377\nBVFRJgYOvJaYmBjeeeddHI6bCAm5EwCvN4GFCyfWEV9KSgpffPE+kya9TGLiTBIS2iMIIhkZVjye\njgQHdyAQKMPp1LNrV0NMpghOnlxPs2at6saNThdOdXXZj449o9FY5xl5KaZPn8O2bUbc7ubodAsJ\nBArRau8kELgfn28kPp8JrbaQ1NSXCQpqgM3WgczMzCsqka8lKK1WWxfdqS1Gqi1sq/XtvDRM+mvI\nEPhRV4Va7z24mAwvV3zze+Ov4MwAf2Hi+zn8EcRXW7giCEJd4UptXu/3Ru3Eq+kvk4mOjiYuLg5J\nkvD5fD+Y4DabDUlKRBRrJq/VmkR+vr3uGEFBQTzwwA2UlJRgMpmIiIjgzjv/iV7fDkXxotd3wm7P\nRpbjEUU7BkMRHs+3FBfLWCwuKiuXcvZsExQlHrPZT48eIzhxYjPl5T50ugBVVTkoSiGSVEaXLk2Y\nO/cDtm1zAo0AIzffnEBZ2Qk+/XQjknQdgvAZkZG9CA3dTUzMhxQUFON0FmOxTMFgqKCoqAuS1BOj\n0YjH04KiogcZPPgR0tJWkpTkZ9asN/B4PNx22wRstl7Y7ekIwmxGj76eCRPGoSgKkqSnVrRaFLUI\ngha9Xs+KFe9yyy0TcDjCCASeRqcbSHX1BgYOrDEGvuOOUSxduo4jR/oTCEiEhKRgNKZy5kw9wsNL\n6dhRZN++9xHFCJo1O84999zJunV7KC3tRlhYSwoL11FW9hWxsXciCBIeTw4lJbkUFQ1DFO/G5XKT\nkzOViIj6DBnSk/LycmbNepsTJ86i0aiEhj5KXFzceScGEb8/B0WxI8vVyLJStwhzu92EhYXRpEkL\nzOZGCELtA9yDKJYCYLfvxu9vg8ViJCGhF1VVCseOLSM2tjOK4sft/pqUlB4AZGRk8Pe/v0Z+fjGt\nWzdh1qxnfrKP9LvvDmE2P4UglCJJ4SiKD4OhGo/HSuPGIZSUnKJNm1eIiup4fjwXYTb/tLTWpZBl\nuc6NxWKx/CAseKn/ncfjuSpk+HMWQ5fmDGv/5peQ4a8tbvnfju8vjNoB83vE4mvNbWVZrnNOuFBI\n9vdG7QpTVVU0Gg1Wq7XutVpPr0sneE3z7laczp6YTFEUFGynRYv4ugeHJElERUXVNfnWSMKpOJ3l\nCEI9ZNlxXiw5GFARhAiMxp7AesrLDwHdqa5+iIgIM273v8jM/Jj4+Ciqqo5SUjIP6IAgbCEkxEtZ\nWTE7dpSgKHdRXFyNJMXy/feLWLXqNcaOHcWECS/gdhuB3cya9QQDBvRHlmUyMjJ48MEXqKw0oCiR\nhIdr8XgUHI5KFKWcc+eOMHhwBx5+eAgRERE88MCTnD0bgtv9MaraH1G8h48/3k9e3ossWvQ6jRvr\nOXFiNnp9bzyeLbRqZSUpKQlJkujatQe9e48lO3sLpaWnEYRmjB3bDUEQsNvttGlzPY0a9WTfvmL8\nfgvZ2Z8THHycqCg9U6aMoU+fU7hcLuLiuuB0OikqMp2XnVNp0+YWcnM3UVg4Ga22HjrdTlRVR1zc\nY4SEeMnJycNmM1Kv3lGuu+5JJkz4O4cP98BsXowoljJ16kheeuk9/H4jFRWnqK4+hSR1w+f7FI+n\nmN6972T06P488MA96HQ6RoxIZcmS1YhiSwKBUrp2NXDkSDqHDzdGlv2I4m0kJw9CUVQSEpIICrLg\n872LJAmMG9eV8PAwxox5iLVr96AoUVgs7bHbGzJmzETee28WR44cwWg0oigK8+evxO32MmJEX8LC\ngikqCiBJxQQC21HVOEymAzRqZGT+/EnY7Q5eemkV3367H5crn5YtK2nR4vYrngO1uT6DwXDRHLwQ\nF+4Ma3Gp/53X6z2/EPpzkeEf2c7w34a/LPFdyY7uSlRUfgkudU74sQb032vHd+EkunSiCIJQl6C/\n8HpryTAyMpLx43vw/vsvU1Ii0KRJJHffPQK3213Xx3UhjEYjMTEK6emrcTjMqGonVDUCVd2I0WhF\nlquA4whCJQZDCwKBoeh0KZSXH6NBg2swmXYQGdmJpKQY7HYngqASFTUJvd7Hp5++T0FBHPn5xWg0\nDRAELwUF+eTn59OuXTvmzPkHjz32EtXVJp57biGVlXZuvXU47dq1Y/36BRw4cIDp09/l9OnPgDbo\n9Wto0OA2/P5KBg3qUVfIsGvXfjyeVFRVRFVnIsvZCEILsrJmkJOTw8KFr/L66+9y4sQ7tGiRxMSJ\nL9c9tBo0COfYsZO0aDECWfaRl/dh3e7GZDIhCC7sdht2u56goDbAXvLyBJo0KUEUxYtEf4uLixEE\nD5IkotVKSJJKp05NGTq0KaIo0rz53xg//u94PEUYjbGEhh6isvIcZ88O4vHHl5OX9w16/Uw8Hi+C\nEMDhCCCKszAaWyOK3+D3TweaoNMNRa8PEBJyBx999Hfatv2OXr16kZLShtDQYPLy8rFYYpk5cw2q\nOgpRHIyqpgMfcPJkDJWV2cTFnWDq1MHExUXjdDpRVZX77nue/ft1BALLEMXmuFyvoNdLZGZWcvPN\nDwN9cDozKCvLJC7uTbTaIF599VVuvTWZL798k+joZAoLn0Snc9O6dUdeeeVl6tevj8/nIzJyFRUV\ndgTByqlTdqZOnc6bb874yR1R7cJTFMW6HstfgloyvHDMX7pw/L3JsPZ8l6rQ1Ob1fm3EyuVy/UB5\n6P8j/rLEdyW4WuHOH3NO+LFzXm3FmAsJD648gX7pard3756kpl6Dw+Gom8SKotT1GWo0mrrX33pr\nEfn5TZAkJ4LQA3Ch0ewjEMgGfISHR9OggYaCAhs63QPk5e0E+qOqFmy29VgsAYqL3VRW5qLTXYtO\ndwuKYsPhWMzp09nk5BxFVfsjCDKCsJugoCC+/PJLdu8+xpYte4D+iOIQFGUnTz75Pnq9xNChNTu5\n/v37k5KSQr9+t1NVtQ2zOYjk5K6oalHd/ZZlmcpKG7I8EJhHTWuFFZ0ugKoGEEWR4OBgnn9+8mW/\nu44dG7N//2ccP/4NFovEDTc0pUWLFkAN8Y0c2Ynp09eg1zfCZvua8PAIwsKiiY01/uBYUVFR9O4d\nz9ati5CkpsjyUW66qTW33DK07v4+8cSdvPLKVCoqepKd/RZm80KiotpRXb2ZQOAgOt0ZtNruuN3H\nUZQwXK4kKipcBAJdgHAkKQhIxu//Ho8nC4cjhE2bttGzZ08EQSApKYmkpCQ8Hg9paYeRpNnUeFa2\nxe3egM+3hoKCOCTJy9KlZUBb/H4jJ0+uxeeLxGC4GY9Hg6pqUNVBuN1L8PuLCAmZRUTEjdjtr+D1\ndkeWmxEUFIqqTiQt7XVWrHiNw4cPYzZfR9euXetECgDOnj1LWVk0Z8/6qag4A7QlO3sjMTGv88wz\nT152HtQq6fzULu/X4HILx9+TDH9MhaaW/Px+/0Xnv9B09ufm/39L68VvwV+W+P6Iys6fc074Pc55\n6fl/DeH92LF8Pl+dsWWtWe+F5pYOh4PTp0/jdrvZuPEIcXGzych4iECgD/AmcD2RkckkJWUTH7+H\nN998mkmTpnPsmEJkZBylpXciy0XExQXj99enrKwxqhqL2z0HWdbjcm3G46nGYrkFr3chsBxRNCMI\n4bjdEcyd+ynFxQp+fwegEHiDkJDX8PlyWLToK/r0ubbOZ66oqIji4hK83ok4HGY2bJhIp05tiY+f\niizLfPHFRgQhGINBwOOJBp5BFFshikdJSQm+bAFQLRYsWMLbb29AFJvj929hypQ7uemm6y56T/fu\nXbn33kLWrSsjOvoGrNYEqqoOER+vsHbtZrKzy4iLC2bgwO4EBQVx990jad06neLicuLiOpKS8m8R\na0EQGDFiGA0bJrFnzz5efz2Y+PiO5xdRLgyGgcBkvN5OKMpBRLGIQMANJAHFgBtVzUSWQ/B4MsjM\nrMbvD2HjxmwaNlzGuHF31J2ruLgYp9OFz5eNLMciCBpU1YHJNBmDIYGoqDC2bBlFSkp70tM/xOPR\nIss7sVgaYjA0we3ORJa3o6p7iIgwExRU074gSQZU1UkgUFvkUYnJpCMhIeFHi1UkSSIvL5OKimq0\n2oUIQhA+X2cWL57OPffcXud4D/82Zr5QSef3xn+CDAE8Hg+1BtS1TfyX0ye9NEz6nxLl/0/gL0t8\nV4LfQkJX4pxwtc95IS5c/f0S5YrLoTapL4riD/oKa0MxZWVlPP74DEpKwvH5KiktPYnBUI7DYUUQ\n9lLjdtCXiopv6devLx5PJRUVFbz44pM88sg0CgpkDIZq7r57GAUFPtzukRw+XILLVZ/Q0OvRaF6m\nqkpL/fpLKSn5COgPFCMI16LRePF6V1NWZsbvjwe6AJXAfmy2dzGbbWi1TamqqqK8vJyPP97AqlUb\ncLuHIIojURQBRdHi8y0jPDwcp9NJWloO3btP5NtvX0Wv743T+SWiuBqzOZ7Y2P44HA6Cg4Pr7lXt\n95uXl8e8eWuxWD5CownF58vntdfG0KpV87pc1oABA7BYLNx00/WUl68mMzMDu/0oSUkuSkoEsrIS\nkKSmnDxZQG7uah57bDRarZaOHTteemsAKC0txe1206pVK1JSUti8eR/Z2csJDh6BqtrQavMZMOB1\n9u+fR0lJOIJQgNM5Go0mBVEswGC4Dkn6Hr8/G48nF4NhAtHRJhITRRYvnkH//j1ISko6r5CzgjZt\nxnLgwNN4vT3xevcDZahqFElJMYCELMukpa1Bq12NwWDAbl+N2z0Dg+E0Ol0VFstJYmMjqK72cvbs\nXBo1mkZw8DUUFt6NzydSVhaJTvcJjzzyQ23MI0eOsH//USwWA717p2I2l6CqOlRVQVGyMRgikeVw\nbDYbcXFxF7UJGY3G3ywE8VvxS8iwtkfw0sb7H4Pf768rTLowjfJT+qQXkqHf76e6uvoPrSj/T+F/\nxPcT+DUk9EucE67WOS/ET+XxfilkWa5bPRoMhp9ss5gzZwnFxQOJjh6CqsoUFj7BkSOTgesQhC9R\n1QIkKR3woddrqa4uZffu3ZhMZv7xj4frvPFCQ0OZMmUORqOZ1NS2VFZWUliYyM03P8rs2ZtQlGz8\n/qbAIARhIZJ0EEFIJzw8ksLCUmAikAKIwFMoymoUJYQ9e7J56ql8KislTp++htLSQchyJpKUgSR1\nQpKM510naqr7goONhIc3Z9iwN8jO/hfp6RKRka9jMjVi06YdwAIaN67Hxo3pSJLArbf2ZsCAazl4\n8CCyHAposdt3I8suHA43d9wxFUW5EUE4zcKFq/nkk3kEBQUxbtxICgsLUVUVk8nE9OmrOHs2m+rq\nYEAhK+sIw4bl0qhRo8ve60WLlrNq1X4EIYiYGC8zZjzOvHkv8tRTMzh8+F3i4yMZPz6VlStnUVra\nEllujSDEoKqVyLILg6EFUElCQhBdusSyd28oERENyMt7h337cpHlAOPGTWHp0tlUVVXhciXQpctd\nREd35euvV2Gz5Z9fXO1GkizY7V9hNrtxOHoiiuGAA6u1D07nNIzGQkJDNZSXJyBJrxAbqyEz8z5y\ncnoSGRnOrFmP4vX68HiKGTDgeVq3bn3R5929ew+vvbYVrbYvgUAFW7e+zYMP3sLDD78BfIVe3wu/\nfz+RkRUkJCRcRARWq/VP+0D/OTKsba34MTIELiqW+ylZwx8Lkx49epQnnniCbt26/X4f9E+Evyzx\nXW2HBkVR8Hg8eL3eK3ZO+LFz/hriu9phzdpciF6vvyLyPnu2FKu1HQCCIJGQ0B+D4T0qKxdhMo1G\no7Fgt+8DAhQWFuJ2n2DFinBEMQpYycSJ/ejYsQM2u39jIQAAIABJREFUm43u3Zvw2WefERraF1mu\nJj7+LP3738XKlZvZvv01AoFWgICqRqDTNcFkKqR5cwNlZcX4fAFqhrXt/E83fv/1mM19+PrrxXi9\nrZCkALJcAgjI8jIUxYnf/ywaTVO2b9+OIAjUrx/EyZOr8fs74/OVAZ0QxU643dlUVtp5//2PaNdu\nHHp9H9zuEmbP3sK//rULt7sR5eUBioruQacbhixLuFw6YmJuIzLyXmS5kjNnXmbdui+4447RaDSa\nOkcHp9NJbm4W1dXDCA3tjaqqZGcXMXv221RUlHPiRCFms5WHHrqV2267hfT0dFasyCI29hU0GiNF\nRZuZPXsxM2c+zUcfvXVRYVZ2dgU5OS1Q1Swk6TFU1Ybff4hA4CsSEkJISAjh0UfvwGZ7j+PH36e0\n1Isovo7BUEZFRRrTp8/hoYfuwOcrw+/3YbMFo9XeQUiIEVG8hsrKxeTkfMTYsUNJTp7AxIkL8HpP\nYjJFoiiHUZQwrrvuC9LTX6aysg3l5VYaN65Pw4av06zZp8yfP73uWv1+P06ns+5BX4tPPtlGaOgY\nrNb658ech9DQIJ599g7eeONNXK5XqV8/mg8+mIEgCHg8np8lgj8rfgkZAufzrbq6913psycQCDBn\nzhy2bt3KokWL6uTo/r/jv29E/IG4krj3b3FOuBx+KfFdbcK7nKvAlaBFi0Q2b96G0Xg3iuJBVb9j\n8uSH+OCDVWzfvh1ZbogkfUVMjJVz58KoqtKRmjoavT4Ep7Mjr732FDfckEtIiIn+/a/FbDbx/fdb\nMZu1DBhwI3q9nupqO6oahapakKTP0WpbIYrf0KaNyKuvTuStt5by0Udf4vWWIYouVHUvkIokJeJ2\n70Cn64PdvhVRjAb6AnuBxajqFsDIN99k8s03zxMT04GoqHCuucZIv34KGRlGzpypIhBI59y5D1GU\ngfj9SezZ8zU6XRaC0BSv9ygVFZFce+04mjb1k5aWiar6CAkxo9XeitN5GvgIt7sCj8fG5s3fMWrU\nrRc92MxmM/HxwRQVebDZinA68zh3zs7y5Xb8/sbodHbq1ZvESy/NJyYmEofDAaSg0dTsVMPDu5CV\n9Xnd8WoffrIsU79+JIHAIRRFQJIao6o70ekaExOjpWvXpiiKj/T040yZci8PPfQMstwfi6Wa+vWT\nACN5ef+icePGdOuWxldfzSA7243T6UEUOxAcPICIiIYIwgu0bNmY4cNvoKLCybx5DyBJsXi9p2jQ\n4O7zhVImBKESh8PFsWOZeL0HSUiorLvWvXv3MXPmUrxeLdHRWp5//mHq1atp1Pf5ZESxRlavpofS\ngCwrTJjwAI8+ej+BQKBu0SZJ0vnq2T/nLu/X4EIyrA3h1kZjgJ/dGV76XWRmZvL4448zcOBANm/e\n/F+5QPi1+MtqdQI/u5urnUiXywvUkkRNE3CNkLTBYPjNE+2XaIRemsf7LaRXm/xXFKWueOWXfJa2\nbZtz+PBacnI+w+lcy4gRzRk5chjDhw+mbVsrSUnleDwxpKS8jUbTj5ycAIHAEaKjO3Lu3DYyMg5i\nsw0gPb2KtLS1jBt3G9de24VOndoSFhZGRkYGixYdx2h8C6u1G4rSGFmey0031WPRolfJy8sjOFiP\nTncWSdqLVvsNOl0zAoGpaLXDCQS8QAZe71kE4SlU1QREABuBF4G7keUvkOVxeL31cTi+x+WSGDEi\nla5du7Jx4xecPr0OVZ2GJLVEFI/i8/nR6+djNPbE42lGRcU7HDtWTFFRJooSScOGbRkx4nqcThd5\neR+jKNcgijciCD6io8OIjnbToMHFqiV6PWRnnyUyMoaMjN1UV1cTCPRFEIaiqjpE8TB6fT+02v20\nb9+KHTu+w2y+BlHUUFb2LU2alJOcnMDBgwcpLS2loqKCjIwMmjdP5vjxL8nLO0Yg4EIQFDQaK8HB\nB2jatDt2eymHDq1mz54iPB4bgYCNhg1vRavVU1W1ms6doU+f7ixZspw9ew7hdFZSXb2LQMCG17sf\nVf2e+vU74/efJTW1LR06tGXo0Gu5/voUhgzpz9696eh0rQkKakBm5rO4XBX4fMeR5dV4PAHatEnE\nYNDz1FPzMZn+Rnj4bVRUhLBnzwcMGdIPQRCori5h8eLnOXRoJUePLkavP86jj47BarXWRVxqw32/\nNMXw34TaHbEkSZjN5joy1GprBBT0en1dWkJRlLrFrN/vZ8qUKRw/fpwNGzYwf/583n77bW6++ea/\nRCXnhfjrUPyvwI+FOi90TqidZFfznFeyy7xaebzaB0YgEPhNJd5BQUHMmfM8ZWVl6HS6izQT+/Wr\ncVPYt8+PXh9KWJgeo7ERxcWr8HorOHLkfWJjnyEmpisAublz2L9/P6mpqaxb9xX79p3E4SjGaIzH\n4ajAaEwiNLQ91dV6hg3rx9tvL2b58nQqK1UEoYqbb26J1dqBr7/uyPHjDtzuXCASr/cgJpOE338K\nVfWhqiIQhyAMRFVnA+OBO9FotMhyNIWFS3C73URHR/Pgg0N54olXEcVgNBoDktSGkpIjBAJVeL0O\nJMmC1ythsTyD1/sBgcBWTp3SsXx5Cap6mODgSqqqTiGKdpKTY4mKasbZs5k/+B579epGWVk17733\nCqWlR1HVG4HuKEoNUXs83+J2H2fVqmJWrdqDXi9QWnorMTGtiYpy0b17KuPGzcHlao7Xexaf7wQN\nGtyIqu7k7ruHM2BAPnPnfoLdHowsKzidHSkoOElu7lISE28gIWEkERGVlJXdQ1HRSAyGEJo0MfHk\nk9NYu3YtW7d6CQ3dQHFxFYKwAlnegqJcA6wiJKQf0dE1rQKBQICIiAhCQ0NRVZX77y/nww+n4/X6\nadYsmPz8AhwOFZ3udkpKDjN79gdMnfoAitIYsznx/JhqytmzFZSXlxMREUFGxkkEoR8WyygEwUF1\n9T85c+YMYWFheL3eKw7L/7fiwhTETxXq/FjvnyzLNGzYkM2bN5OZmUlZWRm33HIL7du356233vqB\nVur/Z/xlie/XtDPU9qzVDrxfuiu60uuqrby69NhXO6xZq1yh0+muSvJfFMUftTQJCQlBVb9HVWvK\nrJs3N1BYWEAg8BJhYTJNmlxoSGnC4XDwwQefsHJlKVbrjVRXH8Vmm0tQUFccjkJ8vs106hRLy5bN\nmTlzDR5PP6KibicQsLNy5WTGjTPi928jJeVhzpwpoLr6Y1JTY4iOjmfjxj2UlUXj9+8DilDVU4AT\naAqUo9XGEwgYEYRyGjZsCMAtt9zA7t3fsnHjAkJC7kOWo6msfIfw8EwsluYUFq7B74/H5XoeWe6M\nKPZHlrdQWlpKUlIL8vOj0esrCQ29B7e7mv37VzNs2MVVml6vlxUrVvPNN99z4sQO9PpmBAKZQDmB\nQA6K8h5OZxYQg6I0JDz8CXy+UmJjdzF8eAyjRt3MNdfcTknJfahqA9zuCCyWcFq0uAardTTLlj3D\nk08O5ppr9ISEDCcraz+FhekUFLxDfHwkDRrU9AUaDKE0bz6GUaNUUlJSCAkJwev1cvr0WRSlG4Kg\nwePxYTYPxutdRXh4OzyeTPz+zxg9+gU0Gg1Op5MDBw6g1Wpp3749/fv35dpre1FcXMzTTz/PsWOV\nBAUtQZLCcbszOXFi8vmxfZZAwEVu7hdkZX2FqlYzceJLzJo1ifT0kyQkzEGnq5ElKy6+ngMHMmjb\ntu1VdTH5M+LCdoxfM1dVVWX58uWsWbOGN954gy5duhAIBDh+/DhpaWl1bT5/Ffxlie9KcCEJud3u\nulXl7+mc8GNKLn+GPN5vQfv27enR4xC7dr2CJIUREpLN66+/TIMGDZg/fwmrVy8kJGQo5eUnycn5\niFdfrceZM2fo0GEOISGtCAlphc93DIvlE1RVS/v2jXnqqTmcO3cOhwOMxl6IogatNhRJ6kxoqMpt\nt6l89tmTxMSojB7dmoceeva8Hc1Mli37HEEYhqpGAFOAMGAPkiQgy0FI0lwmT76tTsVFFEVeffWf\nJCa+x/btLxASYuGxxybw4YdvUl5eQZs2oZw61ZDKSgWT6V5crqlI0t8wmeLR6w3nm7cX43AcRxBU\nkpJk2rUbw6FDhygtLSM8PIxly9azYoULWe6FzSYB36LVBuP1DgGcSBKYzSMxm1tjtydhs3mxWuMw\nmXqTk7OHjIwMiop8mM03oapevF47TmcZfr8TjcaMw6Hjs89Wcu6clRMnTmC3NwJaYLNNoGFDA1VV\nmYSHt0CW/ShKDvXr9+LAgcMsWrQZVTWiqkXAARSlxlg3EFhLfHwbmjQxU1JSweTJY4iPjyc/P5/R\nox+jujoZRXHRuPEilix5k/z8fMaOnUpurh+XS8bj+Q6rNRmdrpSoqKZIksSIEa15//3xZGer6HQP\n0bp1C8rLDzBr1kLi4iI4efIwOl0MsuxHVTOIj++A2Wz+y+/yfgrFxcU89thjJCcns23bNozGmpyw\nRqOhdevWP6ie/Svgf8T3M5BlmaqqKrRa7RU1oF8NXCiVdjX78Wp1NWtDtH9kMlsURR599B4GDcrC\n7XaTlDS0Lhx67723Y7WuYefOhZw4sZ8mTZ4mJmYQWVmfcujQe/To8ToajQmTKZKpU3uTmpp60XGD\ng50UFR0kJCQWp7MAk6mY+PiW9OnTk1tvHYJer8dkMgE1D5IzZ3LR6e5Fku7F6SwBDiEI09BqmwP/\nJCkpkSZNYtFodLjd7roHhU6n46mnHuGpC9rL7rrrLqDG9HTq1Bl88MEuvN5dSJIXg8GNIAQoL69G\nUbYgSTeh1d5OIJBGSclMVq/+km++8aCqjaio+JLMzDQEYS4hIclAX6qq7sbn+w5BeAVBaI1Gs55A\nYD2q2gZRtKMo9fD7S/D5yjhyJIOzZ7OQJD9+/3o0mmv/r70zj4uyXP//+5mFZVhFEQUsLAmXREFB\nT9bP6hwr1/RY2mLHFssyF1qOeyWtWqZWLtn32zHtdLSyPFIClfh1qRxwyeVY7mKAiuK4AAOz//6w\nmTMzbAPMwMDc79er1yvhAe7neeZ5rvu67+v6fIDTWCxqiovN/PxzOhUVv3PiRH+02qtYLB9y/fX/\npKLi/2jXbiAGQz6BgV9QVBSL2VzC3Xd3QiaT8dFHuQQHz0ahCOXq1R1ER3/I+fNDCAlRoNNpiI19\nEp1uNcOGxdjuy4IFK7h48QHCw8dhsVg4fPg1/vnPdWzbto/Cws5UVLRFLj+DyVSBTneMxMQ2tGlT\nQZcuXejZsycmk5aPP5aIje2Nv78/ZnMqR46sZvHiF3jmmXQuXtyC2XyBW24JYdiwYa026Fml1eRy\neYOzvK+//pqlS5fy9ttv21R4BD4c+Or6AFgb0M1mM6GhoU0aJKx7i/YOCt6wj9dYZDJZteXSSqWS\nhx++nwEDUnj2WRlRUYMBiI+/hd9++5aiokwUCjMdO56id++HHX523779tGnjz9Gjb6HVZhMVpeL2\n24Po168Pfn5+VbIBSZLQ6SzIZAWYzTogFOiITBaPSrWMq1cHcOyYhhMnLKjVOWzdupcPPniVgICA\nWu+Bn58f77zzMu3avU9Gxr+RpG6cPLkIP7+h6PXlSFIBMtk8wA+Z7Eb8/G7m229/ISpqNnv2nKKi\n4lbOn99FQMBZ/P3jCA2NoLLSjMHQk5CQOwkPD+PixccwGr8kIECJVptDZeWPtGkTyH/+kwV0QqHw\no7LSH4XiYyQpl4CAoygUhzh+vILKyikEBNxEZeVyQkJuRqP5nsuXJxAd/f+47rqHgEUsXDiVoqIi\ngoKCiI2NJTs7m+PHw9Bq8wEZISEh3HhjB774YhmVlZXo9XpOnz5NeHgvevfubbs+BQXn8ffvZbve\nktSL33/fy9mzJWi1evz83kWpvIBW+y4WywFksg6kp8+yLbf17duXL7/cQECAHLlcQUnJPq6/PoqY\nmBg++WQ+R48eRaVSkZR0rX3Gue2hpeOOLO/ixYu8+OKLhIeHs3nzZptxs+AaPhv4oPpCEvsG9ICA\nACoqKpo06FnHY12KbIw3n73MmLc38YJ1H7AEnU6Dv38EHTqEUF5uYMCA41x3XQdGjZrhIKB7zebm\nc4KDZ9OnD5w9u5DRo2OYNOkpQkNDazzX4cMHceLERioq5gBtADVK5WTKyzdhsYQSHLwVMHL16qvs\n2pXP/v376d69u61owKpJ6lwiLpPJmDlzGrfcsp1vv/2eoKAILJadxMYGsmmThEIBRmMxUELbtnJA\nxd69p1AqkygtLcNiCaa8fD16vYHAwF8JDi7FbJYTERGCJCkIDdWi0Wjo2dPAlSuhREefAy6TnT2I\ntm1fx2KpRJLeR6dbS1ycheTk7lgs8fzyy2COHAnBzy8eo/FB4N8EBHQgNvYmrr9+GCUlXzB6dC9C\nQkIcxLEPHfoNjeYEoaHPI5P5o9F8Tdu2Fxz2cauTbuvXrwfHjn1BQEBXzOZKYCMpKfdgNBo5cOD/\ngEokqSP+/o/TseMqpk+/x2FC1Lt3b+6//z+sX/935PIIgoMvMG3aRFvP43XXXWfrZdPpdJhMJoeC\nDnvZr5aGfZbXkG0Ii8VCdnY2CxYsID09nXvuucern/nmwqcDnz32zgnWBnTr3l5TYL+P5+/vb3uo\ntVqtTQneVR0/i8VisxaqTmbMWwkPD2fSpGEsW/YKknQTFstxZs9+kBEjBld7/I4du5GkEQQHd/vD\nU/BFTpxY5WCrYrFY+P77HPbsOUJkZCj33TeMZ599jMpKHRkZP1BcXIgkxRMcvBONZit6/cNIUtAf\nL9IhVFQssS1zO3uzWcV/qyppSPz88xUCA+disZg5fnwZgwZ15ttvX8Bs/guSdJSzZ3eQmPhnjh49\nQmDgTVy6pCY0tBt6/S7gVSTpEq+9lsbu3QfIzn4YszkZmSyHmTMn0K9fLCrVTSQmJvLMM/NQKm9B\nkuRIUhB+frcSFraFzZv/hb+/P/Pnv8+uXWeJiIhBozmNxXIKuEqnTidISJBjMi1mzJgejBt3X5Xr\nazAoiYiIQKudB7RDqTxMx451V/6lpU3kzJlX2bLlz0iSmUceGc699w7nz3++g927f+GXXx5GkgYT\nGXmV7t1LSU1Ndfh5SZJ48slHGDLkTjQaDe3btyciIsIh87EXT7fXi3UOhvbPTV2SX82JO7K8q1ev\nMmvWLIxGI9nZ2URERHhgpK0Dnw989s4J1TWg11Rh6e4x2O/j2bdH1CVqa32wrft/zjJjza1NWF+G\nDbubxMRunDlzho4d76nRnRtApfLDYCjBaDQhl8swm68SHOzobrB69VrWrDlJQMA96PWn+OmnN1i2\nLJ25c59jzpw0zGYz+/fvp6ysjI0b/diwIYCKihMoFFHo9buIiSmlW7duNZaI279wrc3DX321BaXy\nb/j5deD06X9y5YqRs2dPoFQmoNcHI5MNQ6vtxJ49GYSFneXKlV+Bc1RU6AHo2PFmOnUqY+zYvzJu\n3FhycnIoKiqiS5eZJCYm2sr2f/vtNyRJh0x2lPLyI8jl4Wi1W7jjji74+/sD8OijY9i+fRZmcyGV\nlZfQ6TaRlHQzr776OjfffDO1ER8fS5s2lcTFjcVsrqS01J8+fXR13sPAwEA++OAtysvLUSgUtrGE\nhoaSk/M1mZlZ/PLLUaKi2jFmzATb/qv9dTUYDISEhBAREVFnf6wr96a2iUpzB8PG2iRZLBZ27NjB\nyy+/zPTp0xk9enSzn5O349OBT6/X2xpBqytc8fSHx5V+vLp88vR6vU1t3fo7lUolQUFBLXKpB+C6\n666zqXVUh3UJ9/bbB7Bx4wKKiw1IUgj+/t/xxBOTbMeZzWbWrt1CVNQylMoQ4BaKis6wb98+BgwY\nYHthJicnA3DjjTdy9Og8jh07SXn5JTp1Osnatctq9Cer6YUbFBSAwXCVo0c/QK8fBAyhtPTfVFb+\nB3//J/5QHAnn4sVvmDPnXj79NIdz50qRyWYTFtaVS5e+Ijx8A/7+/pSWliKXy4mMjCQuLs72Yvyf\n/1nNkiUbsFjiKS1dR3j4Sfz9ZfTqVc7ChQts4+nQoQOffrqQnTt3YrHE8ac/TbJVqtbFvfcOY8+e\nt9my5SUkSUGPHuE89dTLLv0sUO11kySJoUOHMHTokGp/xrryYnUXaOg2Q0sIhq6a4daGVqvllVde\n4dy5c3zzzTe1OtoL/otPBz6z2Vync4J9haW7aGx7gr1PnvXh0el0DmoNpaWlXjm7bSzWJVy4FiA/\n/vgNtm7dRmVlJX/6099tfXdWrhlz/vdjLknKGgUCYmJiWLPmbQ4cOIBCoSA5OdlW0ekqkiTxyCMj\n2LYtnbKyGJTKziiV+URH38WhQ3no9XuwWKKQpOX4+QXSqVMsDz74/zh71kB5eTAGw2kiIpIJDt7C\nxYsXmTr1dc6di0cm8yc8/HuWLJmOTCbjvffWERi4HoWiLQEB+ZSWjmbp0vn079+/yue5bdu2DBs2\nrF7nAVZlIxkqVXtATmCgn8cmU/ZtNn5+fh6RG/OmYGitJWhMlrdr1y5mzpzJpEmTGDduXIud6DYH\nPh34VCqVQ7ZUHd7qjwf/XSKRJIng4OAaH2ij0Whbhmus71dzUVNlatu2bRk9+q/V/oxMJuPeewfw\n1VeLCQkZRmVlPhERR0lMHFft8QBt2rRh4MCBjRpr9+7dWbz4eZ5+eikhIVeIi0tCqZRx+PBZTKZH\n/thDvBGj8QqdO3dGp9MRHLydG254FLlcyZkzPxAS4sfq1es4d+5PxMaOQ5KguPg71qz5mmHDbkcu\nj0ahuLbf5ucXR2DgjbRv377GSVx5eTlff53BmTMakpIS+Mtf7qzz8/fvf29i9+5I4uKuZXnHjn3G\np59+xaRJj9breuzfv5/PPvsWk8nM/fcPon///g7ft7bZAE2+H93UwdAdWZ5Op+Ott97i0KFDrF+/\nvka/wvrw+OOPs2nTJtq3b8/BgwerPWbq1KlkZWWhUqn45JNPbFW1LRGfDnyuYM2gGvswurMfz7oc\nZLU+qq7y0/6Btldtt98vrKysxGKxVCkA8KaZY2MrU59+ejyRkRnk5m4gKiqM8eNnNYlKRb9+/Zg6\n9SQbNnzD5cs90Gp3ERMTiVK5mnPnLmI0+mEyvcrChR/yxhuzGDLkEN9//yJnzugoKzsM9GH16izC\nwyf8YfJbSnl5IKdOFRMXF4ef31nKy38mKOgWysu3o1JdJDo6mvXrN7J5816Cg/157LF76dGjBzqd\njrS0Vzly5Cb8/HqzadP3nDpVxMSJ42s9h/z88wQGptiud3BwEidOfFWv63Dw4EEmTlyAxfIkkqRk\nx47lLF5sYsCAAQ731pvkxmqT/KrJJsj6DNU2kWxslgfXKpmff/55HnnkEebPn++2Z/Wxxx5jypQp\ntr5UZzIzMzl+/DjHjh0jNzeXZ555BrVa7Za/3Rz4dOBz5SFrrDOxO3U1nWXG6rscVJ/9wtrK9psK\n+4y2oZmAXC5nzJhRjBnjgQHWwaOPPkCvXr9w9uw5/PxuIT29AEkKQqPxIySkI3p9BAcORPGvf21g\n5swpdOy4mmXLfqFXrwz8/SM4fvxrCgpWUl7emcLCMozGLzl3bj/btu3ggw9e5rnnXubSpXLatQth\nxYr5bNr0PStX/kZY2KPo9Zd48cXlLF/+IhcvXuT48VA6dnwaSZIwGlNZu/YJHn/8oVqX+W+6KYbN\nm9WYzSlIkpzS0p1061a/7GL9+mxMpvG0a3cPAJcvK/jss2/p37+/LctrKvWgxlCXTVBtbuqSJKHX\n6xuV5RkMBpYsWcKOHTtYs2ZNtW0kjeG2224jPz+/xu9nZGQwfvy1iVK/fv24fPkyxcXFLXZP0acD\nnyt4iz+ep2TG7PcL7cdd0zKPKzPbxuItDfeNRZIkW+EMwG+/5bN06WyMxluBI8TFDSAy8k4OHFhN\neXk5MpmCkJBBBARcK0Pv1Ok2DIb/4fffp6BQdCMm5nbatHmR+fPT+O671Wze/DlXr14lMDAQuVzO\nG2+sIjz8RYKCrgckzpwpIC9vN9df3wlJ+q+urEzmh8VyrQK4tsA3bNg9/PrrcnbsSAPk9OnTloce\nmlrva2CPxcIf4tjlLfregmvB0LqqAtiutTVTdPW8jxw5QlpaGsOHD+e7775rltakoqIim28kQGxs\nLIWFhSLwtVaa0x8PHIs5mkJmrK5lnppmttbl1sa8xFpaw319mTJlAlrtJb74YhexsY/Rrt2fOHPm\n3/TsGUpAQADduiUgSRsxGO5CoQjm0qUckpO7oFSG06bNa7ZrUVKiRKfTERERQVBQkO3+BAT4UVZW\njtFoAiwYjVexWPyIj48nIuJTiov/jUqVQGlpJoMG9a7T+kqpVDJ79lQuXLiAxWKhffv29b4fo0ff\nTXb2m1y8qECSFBiNHzF27BMtIstrCPa9g9d0YY34+/sjl8sxm821ZobOwdBkMvHhhx/yzTffsGLF\nCnr06NGMZ0aV92BLfjZ9OvA1xKGhNty9j+ctWU9tM1uj0WjLRoEGq2e4Y1nT25EkibS0qVy6tJj9\n+7MpKtpMdPQlnn56OkqlkpSUFB5//BSrV0/BYvGja9cIpkx5iscem0dFxXFUqnguXdpMhw6BDrZP\n1vszYcJw5s1bjk43HKNRQ1RUHgMHziYgIID585/jH/9Yz/nzPzJ0aBf+9rcxtuX3unrkanLccIWe\nPXuycuVMPv10IwaDiTFjJjlorbZG7It1agrwNU0mt2/fzrZt2+jSpQvr16/nrrvuIicnp9n7cWNi\nYigoKLD9u7CwkJiYmGYcUeOQLO4qWWyBWE0aa8Ne1LkmnPfxGpv12O/jecL6yBNYG/3tH2ZXKuG8\nKcA3BSaTidLSUk6ePIlCoeCmm26qknmVl5dTWVlJREQEkiTx448/MWfOe2i1EBMTwuLFc+ncuXO1\nv//AgQP8+OMegoMDGDz4L0RGRtq+Z7+Ebf0PGj5ZcQWDwWCT/QsMDGzV97axxTpms5lDhw7x0Ucf\nsWvXLkpKStBqtSQnJ/PAAw/w1FNPeXD0kJ+PSZepAAAbqElEQVSfz/Dhw6ut6szMzGTp0qVkZmai\nVqtJS0tr0cUtPh34rB/U2rC6OlfXjOvufTx7nb7AwMAWvxTkvF9oNBptSzzWczMYDCiVSp94KVon\nNA15KZpMJsrLy926/Gs/WbFOVNwl9WU/oWlqJ5DmwD7Ls+651pezZ88ybdo0unfvzquvXhNGLykp\nYc+ePcjlcpuhsyd48MEH2bZtGyUlJURFRZGenm5LCiZOnAjA5MmTyc7OJigoiFWrVjnsX7c0ROCr\nI/DpdDoMBgPBwcEOP+fOfTx7uyBre0JrxX5WbP815yrSlh707bHPeupyeWhunCcr1v9c7WGzL8RS\nKpV1yo21dNzRkmGxWPjyyy9ZsWIFCxcu5NZbb23V18wbaL1vWDfhvMfn7n08a2D1pj4mT1HTsmZt\nLRXOeqQtCev5Wvstm3ufxhXqauiuTQwBsOnE+kKWZzab0Wq1QMMb7y9cuMALL7xAVFQUOTk5DhNs\ngefw6YwPcMg8qsM6Ww8JCXHrPp599aK/v79XZwGNxfl868oCrEtw9stvzlmHQqHwWtUZ+/NtSfu0\n9cG5odtoNNomg0qlssUpA9UH+6y2MVnepk2bWLhwIa+//jqDBg1qddfJm2ndUzIXcKVq02p1Yn3x\nNgbrA9OS7IIaQ0OqNa0TC2eXCms5uL1yhrdJsDWn/FZTYt0HlCQJg8GATCazFem4q9LXG7GqJl0T\nI2/Y/b18+TIzZsxALpfz/fffO1ToCpoGn8/49Hp9tYHPfnnHunxjfdE2ZC/K2S6oMQazLYGmqNas\nrooUmudFa++n5gvVqa7ubTVHJakncBbRbkgWb7FY2Lp1K+np6cyePZt77723VX9GvBmfD3wGg8FW\npAL/bdKsbh+vpoe4tgo4+xeiL+zj1XdZ09043yOj0eiWKsXaaEnFK+7AXnOyvtXHNVWSerOTiLNV\nUkOyvPLycl566SU0Gg3Lli1zaDMRND0i8NkFvvr249VUAedcrm/tYWrtL0T7Zc2GlnS7m7qqFBsj\nwWb/Qmzt1bjgHmeBmn5vYypJPYW7sjy1Ws3s2bOZOnUqDz30kNcEdF9GBL4/tCjd2Y/nXK4Pjks7\nrW2Zs6U1oTsXZljvf3VVpDWV7Htb8UpZWRkff/wF+/adIioqjKee+msVb8LGYN9j2hRZrfOervM9\n8vSerjuyvMrKSt544w2OHj3KypUriY6Odvs4BQ2jdacgdWA2m9m/fz9lZWW2GWZjHmjrw6LT6QgI\nCCAkJITQ0FCCg4NthRo6nY6rV69SWlqKVqtFp9PZllVbGtYMoKysDJlMRkhISItYyrUuffr7+6NS\nqWz3yRrA9Ho9ZWVllJaW2lRUDAaDrdK0rKwMg8FAUFCQ1/SpffDBGrZvb0tg4CyKiobwyiv/QKPR\nNPr3WiwWKioq0Gq1BAQEoFKpmmTlwtpW4XyPrEHXaDSi1Wq5evUqZWVlVFRU2FphGvssWe+/XC6v\n4nPpKr/88gtDhw4lISGBjRs3ui3oZWdn07VrV+Lj41mwYEGV72/dupWwsDCSkpJISkri9ddfd8vf\nbW207rUZF/j888/Jy8vDbDaTmJhI3759SU1N5frrr3f5AXeWGXNW16jNAaG6vqi6Mg5vwJoBtJbq\nVGsZvv09st+L0ul0tp4tuVyOUqm0HdPc90iv17NnTz6xsVOQJBlt2/aiqGgvJ0+eJCIiosG/137v\n0hsEwz2tGWvfd9nQPkSDwcDChQtRq9V89tlnbs26TSYTkydPZvPmzcTExJCSksKIESPo1q2bw3ED\nBw4kIyPDbX+3NeLTgU8mk/HOO+/YAte+ffvYuXMnr732GqdPnyYiIoKUlBRSU1NJTk6u8vBbl2Lq\naxdUm0msNRB6ky+ePfbLmjWZ4LYGrJMO67lZ92r9/Pxs98pbWioUCgVKpYROd5mAgIg/xnexTveF\nmnBHAGgq6usxWVMwtAZ5pVJJcHBwg+7f4cOHSUtLY9SoUWRnZ7t9MpiXl0eXLl2Ii4sD4IEHHmDj\nxo1VAl9LXD1qarz3E92ESJJEQEAA/fv3p3///sC1D09xcTFqtZrt27ezaNEitFotCQkJpKSkEB4e\nznvvvcfcuXMZOHBgo18Ozg+wcxO3vS+ecztFU7xknfe1vCED8DTO+zzV3WNvcLWXyWRMmDCY5cvf\nB/piNv9Ov36KKi/EunCWG2toAGhuqlthsX+WrNsL1uPMZrNNLrAh6jomk4lly5aRlZXFypUr633d\nXaU6T7zc3FyHYyRJ4ueff6ZXr17ExMSwcOFCunfv7pHxtGRE4KsBSZLo0KEDI0eOZOTIkcC15b1t\n27bx8ssvs3//fgYOHMj777/PTz/9REpKCikpKbRt29YtL4uamrirszLx9Eu2tS1r1kV9nO7rm3F4\nKnv/859vJyamA6dO5RMW1oPU1NR63SdXgnxLpaZnSa/X28QkZDKZrUWjPpWkJ0+eZNq0adx5553k\n5OR49Lq58nlJTk6moKAAlUpFVlYWI0eO5OjRox4bU0ul9Xy6mwBJknj22WcZPnw4mZmZhIaGcuXK\nFfLy8ti5cyf/+Mc/uHjxInFxcbYl0p49ezo8cI39+3W9ZI1Go9vKwH1lWdMe+yDfULPU+rrau0uC\nrWvXrnTt2rVeP+OcydcW5FsL1oIdo9FIUFCQwypLXepAGo2Gdu3aIZPJWLVqFevWrWPZsmX07t3b\n4+N29sQrKCggNjbW4ZiQkBDb/w8ePJhJkyah0WgatdfbGvH5dob6otVqa/XmM5vNnDhxgp07d5Kb\nm8uBAweQyWT06tXLFgxjY2M99nKpzQrIuZ2ipjF4Y7m+p2nqlgxXyvXd4WpfG+6w0mlp2O/luVKR\n69z68sQTT7BlyxYiIyOJjIxkypQp3HLLLXTu3Nnjz4jRaCQhIYGcnByio6NJTU1l7dq1DkurxcXF\ntG/fHkmSyMvLY8yYMeTn53t0XC0REfg8jMViQavVsnfvXtRqNbm5uRQVFREVFWULhL179/boTLsu\naS/7KlL7jCcgIKDVvwy9yUanOkUTcL+8V2O9AVsi9lleQ5dyzWYz69atY82aNdx///2UlZWxa9cu\ndu3axZw5c3j66ac9MHJHsrKySEtLswXhWbNmsXLlSuCab96yZctYsWIFCoUClUrFokWLbHULgv8i\nAl8zYLFYKCwsRK1Wo1ar2bt3L3q9nh49etj2Crt06eKxgoiaZKOs+Pn52RT2W/MLsSX4IDpn741V\nNGmM3FhLxdrz1xgX+PPnz/P8888TGxvL/Pnzq6z6mM1mn7iWrQUR+LwEg8HA/v37bVnh8ePHCQsL\no0+fPqSmptK3b1/Cw8M9IvRs3eS3BjvnpbfWZhDbkjOe2uS9aqv29TURbXA854ZWbFosFjIyMli8\neDFvvfUWd955Z6u/br6ACHxeisVi4eLFi+Tm5qJWq8nLy+PKlSvEx8fblki7d+/eqCylrmXNhohy\nezv259xaMp66JNisajRyubzVnHNduCPLu3TpEn//+98JDAxk0aJFhIWFeWCkguZABL4WhMlk4siR\nI+zcuRO1Ws2vv/6Kv78/SUlJpKamkpKSQlRUVJ0PeUOrNWsT5W7OBm5XcD7nluCG3his98naswaO\nwgkt1dW+LtyV5eXk5PD666/z0ksvMWzYsFZ3nXwdEfhaMBaLhbKyMnbv3m2rIi0uLiY2Nta2V9i7\nd29bVaZOp6OgoID27du7rVqzOidu8B6/NW8qXmlKnKsXgTpd7VtiBm+PO4S0S0tLmTt3LuXl5bz/\n/vu0a9fOAyMVNDci8LUyzGYzp0+ftgXCffv2YTabadu2LQcPHmTgwIEsWbLEo4UcdRVkuKNnzRV8\nsVzfXm6sroIdZ83YpnZAcBfuyvJ+/vln5s6dy3PPPcfYsWO9+pwFjUMEvlZOQUEBzz33HD/99BP3\n3Xcf58+f5/fff69Th9Sd1PWCdbcod0suXmko7spsvcnV3hXckeVVVFTw6quvcvr0aVasWEHHjh09\nMFKBNyECXyvn008/5dixY8ycOdNWgm2vQ6pWq9m9e7eDDmlqaioJCQkezZBq61lrjKyX9eXfVL5x\n3oA7vOPq+v1N7WpfF86muA1VR9qzZw/Tp0/nySef5NFHH/WJz4tABD4HvvzyS+bNm8fhw4fZtWsX\nycnJ1R6XnZ1tayKdMGECM2bMaOKRuh+j0cihQ4ds7RS//fYbwcHB9OnTh759+5KSkkK7du08mhXW\ntAfliii3rxWvQPMp7HjS1d4V3NGLqNfrefvtt9mzZw8rV660OR4IfAMR+Ow4fPgwMpmMiRMn8u67\n71Yb+EwmEwkJCQ6eWM6yQa0Bi8XioEOal5dHSUkJnTt39ogOaU1jqK5M3zkQWgW7fUVeDbxv/7Ku\nlgp3SLA5Z3kN7UU8dOiQbR/v2WefdVuW58qEeOrUqWRlZaFSqfjkk09ISkpyy98W1A/vk6poRlwR\n+HXVE6ulI0kS4eHh3HXXXdx1112Aow7punXrmD17NnK5nMTERI/okNYlym1fqm99qVrbK1pr8PPW\n/UtPm8TaZ3kNFQ83Go188MEHbN68mY8//piEhIR6/47axleXSWxmZibHjx/n2LFj5Obm8swzz6BW\nq902BoHriMBXT1zxxGqtyGQy4uPjiY+P529/+5tN/3Dv3r3s3LmTOXPmOOiQpqSkkJSU5FYdUuvy\nmVV829p4bw2I1Snqe1rsualwh3NEU1KTx6S9rVZdLRXuyvKOHTtGWload999Nz/88IPbq5pdmRBn\nZGQwfvx4APr168fly5cpLi4mKirKrWMR1I3PBb5BgwZx7ty5Kl9/8803GT58eJ0/39Jfnu5EkiRU\nKhW33nort956K+CoQ/rdd9/x1ltvuVWH1NqfVpvjvf2yW3WZRktr3m4tcmPWyUdtlk32ExfrMnZj\nfCDNZjP/+7//y1dffcWyZctITEx092kBrk2IqzumsLBQBL5mwOcC3w8//NCon3fFE8uXkSSJTp06\n0alTJ+6//37AUYf03XffbZAOaX2MUu0zDX9//yqZhrXPramKMRqDfbl+S8jy6ou9mowVs9lsy/Ks\n2XxZWVm9dWMLCgqYMmUKqamp5OTkeHQ/2tXPjXNJhbd93nwFnwt8rlJTzU/fvn05duwY+fn5REdH\n8/nnn7N27domHl3LQqlU0rdvX/r27cvkyZOxWCxoNBpyc3PZuXMny5cvd9AhTUlJoXv37iiVSoxG\nI1u3biU1NbXBRqm1ZRpGo9HBzd45K2xOxRmrjY6vVKmCY9FOSEiI7fq74mpvMpnw9/fHbDbzr3/9\ni1WrVrFkyRL69evn8XG7MiF2PqawsJCYmBiPj01QFVHVaceGDRuYOnUqJSUlhIWFkZSURFZWFmfO\nnOHJJ59k06ZNQPWeWILGUZ0OqU6n48qVK7Rr1441a9YQHR3tcXNY53YKaHxvYX2pr1lqa8C+NcOV\nop3qWipuueUWFAoFfn5+REZG8tprr5GSktIkkwZXTGIzMzNZunQpmZmZqNVq0tLSRHFLMyECn8Dr\nKC0tZc6cOXz++edMmDABlUpFXl4e58+ft1XMOeuQeoKGWgA1lPrIjbUm3NGaYbFYWL9+PWvXruXm\nm29Go9GQl5fHqVOn+OKLLxg6dKi7h12FukxiASZPnkx2djZBQUGsWrWqxl5hgWcRgU/gdZSUlJCe\nns68efNo27at7etms5nff//dlhVadUgTExNtTfZxcXEeXZ70hCi3vdyYL/Ui1jfLqwmNRsMLL7xA\neHg477zzDqGhobbvlZaW2opjBAIrIvC1YDQaDWPHjuX06dPExcXxxRdfEB4eXuW4uLg4QkNDkcvl\nKJVK8vLymmG07sda6r5v3z6bKPfp06ebVIcUGifK7Wm5MW/FbDaj1WqBxmV53333HfPnz2fevHkM\nHjzYJyYMgsYjAl8LZvr06bRr147p06ezYMECLl26xPz586sc17lzZ/bs2UNEREQzjLJp8RYdUldc\nDwwGA3q9XmR5DTjvq1evMmvWLAwGA++//75PfLYF7kMEvhZM165d2bZtG1FRUZw7d47bb7+dw4cP\nVzmuc+fO7N6922HZ0JcwGo38+uuvtqywqXVIwVHFxNn1wNp60ZJ6CxuCNbu1WCyNyvJ27NjByy+/\nzPTp0xk9enSrvmYCzyACXwumTZs2XLp0Cbj2QoiIiLD9254bbriBsLAw5HI5EydO5Mknn2zqoXoV\nzaVDaq9C4ufnh1KpbDah56bEXXuYWq2WefPmcebMGVasWCEavwUNRgQ+L6cmpZk33niD8ePHOwS6\niIgINBpNlWPPnj1Lx44duXDhAoMGDeKDDz7gtttu8+i4Wxr2OqS5ubkcOHDArTqk9nJjNTkK1Cb0\nXJ/GbW/CXXuYeXl5zJw5k0mTJjFu3LgWdQ0E3ocIfC2Yrl27snXrVjp06MDZs2e54447ql3qtCc9\nPZ3g4GBeeOGFJhply8RZhzQ3N7dBOqSNlRvzRi88V3BXlqfT6Zg/fz4HDx5k5cqVDpJfAkFDEYGv\nBTN9+nTatm3LjBkzmD9/PpcvX65S3KLVajGZTISEhFBeXs5dd93FK6+8YnNcELiOvQ6pWq1m7969\nteqQ7t69m/j4eFsjujuyFOfeQqtYd3XtFM0VDN2V5R08eJDnnnuOcePG8fTTT4ssT+A2ROBrwWg0\nGsaMGcPvv//u0M5grzRz8uRJ/vrXvwLXltsefvhhoTTjRux1SNVqNSdOnEClUmEymTh+/DgZGRkk\nJCQ0SeGMfRUpOPYWWh0qPIm7sjyj0cjixYvZvn07H374IfHx8R4YrcCXEYFPIHAj69evZ8qUKaSk\npNCzZ092795dow6pJ3Fup6hPb2FD/541y2uM6syRI0dIS0tj2LBhPP/88x5pO/H1/leBCHwCgdsw\nmUw89NBDTJkyxWbTZP26sw6pv78/SUlJpKamkpKSQlRUlMezQqsod3UO6Y0R5bZqizYmyzOZTKxc\nuZKMjAyWL1/OzTffXO/f4Sqi/1UgAp+gycjOzrZpGU6YMIEZM2ZUOWbq1KlkZWWhUqn45JNPSEpK\naoaRehaLxUJZWRm7d++2Fc40tQ6pdRyNEeV2l7Zofn4+06ZNY8CAAcyZM8fj2bDofxWIwCdoEkwm\nEwkJCWzevNn2gq9NvT43N5dp06b5jHq9t+iQuirKbW3PaIyDhNlsZs2aNfzzn//kvffeIyUlxQNn\nVRXR/yrwDfl3QbOTl5dHly5diIuLA+CBBx5g48aNDoEvIyOD8ePHA9CvXz8uX75McXGxTzQqy2Qy\n4uLiiIuL48EHH6yiQ/r66697XIe0OlNY58KZyspKm1elUqlEoVBgsVjqPYazZ88ybdo0unXrxpYt\nWwgICHDLOViprf/VHqtXY3X89NNPDv2vXbt2Ff2vrQQR+ARNQlFRkUMPVmxsLLm5uXUeU1hY6BOB\nzxlJkggICKB///70798fcNQh3b59O4sWLfK4Dqm9m73BYMBoNNoCntUp3blwprYlUqt90IoVK3jn\nnXe49dZbPbKc+8MPP9T4PesSp7X/tX379tUe17FjRwAiIyMZNWoUeXl5IvC1EkTgEzQJrr7cnFfe\nva0xuzmRJIkOHTowcuRIRo4cCTjqkC5fvtwjOqT2bvAqlarKXp6zKLder3conPnxxx+56aabUKlU\nvPjii0RGRvLDDz8QEhLSqOvRUEaMGMHq1auZMWMGq1evtl1Le5z7X7///nteeeWVZhitwBOIwCdo\nEmJiYigoKLD9u6CggNjY2FqPKSwsJCYmpsnG2BJRKBQkJiaSmJjIxIkTq+iQrlq1qlE6pPZu8DUt\nq9ovkVp/r70o9+rVq/nxxx/RarX06tWL5ORk9uzZQ0pKSrP45M2cOZMxY8bw8ccf29oZAIf+13Pn\nzlXpfxWiD60HUdwiaBKMRiMJCQnk5OQQHR1NampqrcUtarWatLQ0nylu8SQN0SG17uUZDAYCAwMb\nXGl55coVW/XuCy+8wOHDh8nNzUWtVvP8889z3333ueUcBYL6IAKfoMnIysqytTM88cQTzJo1i5Ur\nVwIwceJEACZPnkx2djZBQUGsWrWK5OTk5hxyq6QuHdKgoCAWLVrEmjVrSElJadAyqcViYevWraSn\npzNr1ixGjhwplq0FXoMIfAKBAIvFwtGjR5k2bRo7d+7kjjvu4MKFCzXqkNZGeXk5L730EhqNhmXL\nlhEZGdkEZyAQuI4IfAKBALhW9NGmTRuWLFlCmzZtqtUhDQsLo0+fPqSmptK3b1/Cw8NtmZzFYkGt\nVjN79mymTp3KQw89JLI8gVciAp9AUAd1Kc5s3bqVe++9lxtuuAGA0aNHM3fu3OYYaqO4evUqoaGh\nNX7fYrGg0WjIzc21GfhadUiTkpL4z3/+w/nz51m5cqUoShJ4NSLwCQS14IrizNatW1m0aBEZGRnN\nONLmwapDmp2dTX5+PkuWLBH2QQKvR7QzCAS14IriDFTtP/QV5HI53bt3p3v37s09FIHAZcTUTCCo\nherUZIqKihyOkSSJn3/+mV69ejFkyBB+/fXXph6mQCCoByLjEwhqwZXijOTkZAoKClCpVGRlZTFy\n5EiOHj3aBKMTCAQNQWR8AkEtuKI4ExISgkqlAmDw4MEYDAY0Gk2TjlMgELiOCHwCQS307duXY8eO\nkZ+fj16v5/PPP2fEiBEOxxQXF9v2+PLy8mxWN4L68eWXX9KjRw/kcjl79+6t8bjs7Gy6du1KfHw8\nCxYsaMIRCloLYqlTIKgFhULB0qVLufvuu22KM926dXNQnLG6DSgUClQqFevWrWvmUbdMevbsyYYN\nG2wqPtVhMpmYPHmyQ5XtiBEjqhQbCQS1IdoZBAKBV3HHHXfw7rvvVitXt3PnTtLT08nOzgZg/vz5\nwDXhaYHAVcRSp0AgaDG4UmUrENSFWOoUCARNRk3O6G+++SbDhw+v8+eFBJrAHYjAJxC0Uh5//HE2\nbdpE+/btOXjwYLXHTJ06laysLFQqFZ988glJSUkeHVNtzuiu4EqVrUBQF2KpUyBopTz22GO2vbDq\nyMzM5Pjx4xw7doyPPvqIZ555pglHVzs1lR64UmUrENSFCHwCQSvltttuo02bNjV+PyMjg/HjxwPQ\nr18/Ll++THFxcVMNrwobNmygU6dOqNVqhg4dyuDBg4FrzuhDhw4FHKtsu3fvztixY0VFp6DeiKVO\ngcBHqa5QpLCwkKioqGYZz6hRoxg1alSVr0dHR7Np0ybbvwcPHmwLigJBQxAZn0DgwzgvKYriEYEv\nIAKfQOCjOBeKFBYWCh89gU8gAp9A4KOMGDGCNWvWAKBWqwkPD2+2ZU6BoCkRe3wCQSvlwQcfZNu2\nbZSUlNCpUyfS09MxGAzANam1IUOGkJmZSZcuXQgKCmLVqlXNPGKBoGkQkmUCgUAg8CnEUqdAIBAI\nfAoR+AQCgUDgU4jAJxAIBAKfQgQ+gUAgEPgUIvAJBAKBwKcQgU8gEAgEPsX/B5KYXLk3/yC5AAAA\nAElFTkSuQmCC\n", 522 "prompt_number": 5,
8263 "text": [ 523 "text": [
8264 "<matplotlib.figure.Figure at 0xb5c440c>" 524 "<matplotlib.text.Text at 0x7f67ec372650>"
8265 ] 525 ]
8266 } 526 }
8267 ], 527 ],
8268 "prompt_number": 4 528 "prompt_number": "*"
8269 }, 529 },
8270 { 530 {
8271 "cell_type": "code", 531 "cell_type": "code",
8272 "collapsed": false, 532 "collapsed": false,
8273 "input": [ 533 "input": [
8274 "std(p)" 534 "help(map)"
8275 ], 535 ],
8276 "language": "python", 536 "language": "python",
8277 "metadata": {}, 537 "metadata": {},
8278 "outputs": [ 538 "outputs": [
8279 { 539 {
8280 "metadata": {}, -  
8281 "output_type": "pyout", 540 "output_type": "stream",
8282 "prompt_number": 9, 541 "stream": "stdout",
8283 "text": [ 542 "text": [
-   543 "Help on built-in function map in module __builtin__:\n",
-   544 "\n",
8284 "2.3585270827361722" 545 "map(...)\n",
-   546 " map(function, sequence[, sequence, ...]) -> list\n",
-   547 " \n",
-   548 " Return a list of the results of applying the function to the items of\n",
-   549 " the argument sequence(s). If more than one sequence is given, the\n",
-   550 " function is called with an argument list consisting of the corresponding\n",
-   551 " item of each sequence, substituting None for missing values when not all\n",
-   552 " sequences have the same length. If the function is None, return a list of\n",
-   553 " the items of the sequence (or a list of tuples if more than one sequence).\n",
-   554 "\n"
8285 ] 555 ]
8286 } 556 }
8287 ], 557 ],
8288 "prompt_number": 9 558 "prompt_number": 10
8289 }, 559 },
8290 { 560 {
8291 "cell_type": "code", 561 "cell_type": "code",
8292 "collapsed": false, 562 "collapsed": false,
8293 "input": [ 563 "input": [],
8294 "plt.plot(p)" -  
8295 ], -  
8296 "language": "python", 564 "language": "python",
8297 "metadata": {}, 565 "metadata": {},
8298 "outputs": [ -  
8299 { -  
8300 "metadata": {}, -  
8301 "output_type": "pyout", -  
8302 "prompt_number": 9, -  
8303 "text": [ -  
8304 "[<matplotlib.lines.Line2D at 0xa00bb2c>]" -  
8305 ] -  
8306 }, -  
8307 { -  
8308 "metadata": {}, -  
8309 "output_type": "display_data", -  
8310 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n", 566 "outputs": []
8311 "text": [ -  
8312 "<matplotlib.figure.Figure at 0x9eb46cc>" -  
8313 ] -  
8314 } -  
8315 ], -  
8316 "prompt_number": 9 -  
8317 } 567 }
8318 ], 568 ],
8319 "metadata": {} 569 "metadata": {}
8320 } 570 }
8321 ] 571 ]