Line -... |
Line 1... |
- |
|
1 |
// Atomic counter with I2C and RS232 output |
- |
|
2 |
|
- |
|
3 |
// Usage conditions: |
- |
|
4 |
// 1. The first I2C or RS232 readout can be performed minimally 20 s after power up. |
- |
|
5 |
// 2. The I2C internal address 0 has to be read first. |
- |
|
6 |
// 3. An I2C readout can be performed at 15-th, 35-th and 55-th second of UTC. |
- |
|
7 |
// |
- |
|
8 |
// Counter gives 32 bit value: |
- |
|
9 |
// I2C register address 0 = LSB |
- |
|
10 |
// I2C register address 3 = MSB |
- |
|
11 |
|
1 |
#define ID "$Id: main.c 2916 2013-04-14 17:42:03Z kaklik $" |
12 |
#define ID "$Id: main.c 2916 2013-04-14 17:42:03Z kaklik $" |
2 |
#include "main.h" |
13 |
#include "main.h" |
3 |
#use i2c(SLAVE, Fast, sda=PIN_C4, scl=PIN_C3, force_hw, address=0xA2) |
14 |
#use i2c(SLAVE, Fast, sda=PIN_C4, scl=PIN_C3, force_hw, address=0xA2) |
4 |
|
15 |
|
5 |
//#include <string.h> |
16 |
#include <string.h> |
6 |
|
- |
|
7 |
#define LED PIN_E1 |
- |
|
8 |
#define CE PIN_E2 |
- |
|
9 |
|
17 |
|
10 |
#define SEL0 PIN_E0 // external counter division ratio |
18 |
#define SEL0 PIN_E0 // external counter division ratio |
11 |
#define SEL1 PIN_E1 // external counter division ratio |
19 |
#define SEL1 PIN_E1 // external counter division ratio |
12 |
#define MR PIN_E2 // external counter master reset |
20 |
#define MR PIN_E2 // external counter master reset |
13 |
#define CLKI PIN_C0 // internal counter input |
21 |
#define CLKI PIN_C0 // internal counter input |
14 |
#define BEEP PIN_C3 // buzzer |
- |
|
15 |
|
22 |
|
16 |
unsigned int32 count; |
23 |
unsigned int32 count; // count per second |
17 |
|
24 |
|
18 |
const int8 buf_len=8; |
25 |
#define BUF_LEN 4 |
19 |
int8 buffer[buf_len]; // I2C buffer |
26 |
int8 buffer[BUF_LEN]; // I2C buffer |
20 |
int8 address=0; |
27 |
int8 address=0; |
21 |
|
28 |
|
22 |
unsigned int16 of=0; // count of overflow |
29 |
unsigned int16 of=0; // count of overflow |
23 |
|
30 |
|
24 |
const char cmd[40]={0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x80, 0x84, 0x1E, 0x00, 0xE0, 0xC8, 0x10, 0x00, 0x40, 0x42, 0x0F, 0x00, 0xA0, 0x86, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF7, 0x00, 0x00, 0x00, 0x12, 0x03}; |
31 |
// 1x 100 us per 10 s UTC synchronised |
25 |
|
32 |
const char cmd[40]={0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x80, 0x96, 0x98, 0x00, 0xE0, 0xC8, 0x10, 0x00, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x73, 0x00, 0x00, 0x00, 0xC6, 0x51}; |
26 |
|
- |
|
- |
|
33 |
|
27 |
#INT_SSP |
34 |
#INT_SSP |
28 |
void ssp_interupt () |
35 |
void ssp_interupt () |
29 |
{ |
36 |
{ |
30 |
BYTE incoming, state; |
37 |
int8 incoming, state; |
31 |
|
38 |
|
32 |
state = i2c_isr_state(); |
39 |
state = i2c_isr_state(); |
- |
|
40 |
|
33 |
if(state < 0x80) //Master is sending data |
41 |
if(state < 0x80) //Master is sending data |
34 |
{ |
42 |
{ |
35 |
incoming = i2c_read(); |
43 |
incoming = i2c_read(); // Read byte |
- |
|
44 |
|
36 |
if(state == 1) //First received byte is address |
45 |
if(state == 1) //Second received byte is address of register |
37 |
{ |
46 |
{ |
38 |
address = incoming; |
47 |
address = incoming; |
39 |
if (incoming == 2) |
- |
|
40 |
{ |
- |
|
41 |
/* buffer[0]=make8(anemo,0); |
- |
|
42 |
buffer[1]=make8(anemo,1); |
- |
|
43 |
buffer[2]=make8(rain,0); |
- |
|
44 |
buffer[3]=make8(rain,1); |
- |
|
45 |
*/ } |
- |
|
46 |
} |
48 |
} |
47 |
if(state == 2) //Second received byte is data |
- |
|
48 |
buffer[address] = incoming; |
- |
|
49 |
} |
49 |
} |
50 |
if(state == 0x80) //Master is requesting data |
50 |
if(state == 0x80) //Master is requesting data |
51 |
{ |
51 |
{ |
- |
|
52 |
//i2c_read(); // Dummy read of I2C device address |
- |
|
53 |
|
- |
|
54 |
if(address == 0) // Change buffer atomically at reading of the first byte |
- |
|
55 |
{ |
- |
|
56 |
buffer[0]=make8(count,0); |
- |
|
57 |
buffer[1]=make8(count,1); |
- |
|
58 |
buffer[2]=make8(count,2); |
- |
|
59 |
buffer[3]=make8(count,3); |
- |
|
60 |
} |
52 |
if(address <= buf_len) i2c_write(buffer[address]); |
61 |
if(address <= BUF_LEN) i2c_write(buffer[address]); // Prepare one byte to SSP buffer |
- |
|
62 |
else |
- |
|
63 |
{ |
53 |
else i2c_write(ID[address - buf_len]); |
64 |
i2c_write(0x00); // There is nothing to prepare, so zero |
- |
|
65 |
} |
- |
|
66 |
} |
- |
|
67 |
|
- |
|
68 |
if(state == 0x81) //Master is requesting data |
- |
|
69 |
{ |
- |
|
70 |
i2c_write(buffer[1]); // Prepare next byte to SSP buffer |
- |
|
71 |
} |
- |
|
72 |
if(state == 0x82) //Master is requesting data |
- |
|
73 |
{ |
- |
|
74 |
i2c_write(buffer[2]); // Prepare next byte to SSP buffer |
- |
|
75 |
} |
- |
|
76 |
if(state == 0x83) //Master is requesting data |
- |
|
77 |
{ |
- |
|
78 |
i2c_write(buffer[3]); // Prepare next byte to SSP buffer |
- |
|
79 |
} |
- |
|
80 |
|
- |
|
81 |
if(state > 0x83) //Master is requesting data |
- |
|
82 |
{ |
- |
|
83 |
i2c_write(0x00); // There is nothing to prepare, so zero |
54 |
} |
84 |
} |
55 |
} |
85 |
} |
56 |
|
86 |
|
57 |
|
87 |
|
58 |
|
88 |
|
59 |
/*#int_EXT // Interrupt from 1PPS |
89 |
#int_EXT // Interrupt from 1PPS (RB0) |
60 |
void EXT_isr(void) |
90 |
void EXT_isr(void) |
61 |
{ |
91 |
{ |
62 |
unsigned int16 countH; |
92 |
unsigned int16 countH; |
63 |
unsigned int8 countL; |
93 |
unsigned int8 countL; |
64 |
char countS[10], a[4], b[4], c[4]; // strings for printing results |
94 |
int16 of2; |
65 |
|
95 |
|
66 |
countL=0; |
96 |
of2=of; // read overflow counter |
67 |
countH=get_timer1(); // read internal counter |
97 |
countH=get_timer1(); // read internal counter |
- |
|
98 |
countL=0; |
68 |
output_low(SEL0); |
99 |
output_low(SEL0); |
69 |
output_low(SEL1); |
100 |
output_low(SEL1); |
70 |
countL=input(CLKI); // read bit 0 of external counter |
101 |
countL=input(CLKI); // read bit 0 of external counter |
71 |
output_high(SEL0); |
102 |
output_high(SEL0); |
72 |
output_low(SEL1); |
103 |
// output_low(SEL1); |
73 |
countL|=input(CLKI)<<1; // read bit 1 of external counter |
104 |
countL|=input(CLKI)<<1; // read bit 1 of external counter |
74 |
output_low(SEL0); |
105 |
output_low(SEL0); |
75 |
output_high(SEL1); |
106 |
output_high(SEL1); |
76 |
countL|=input(CLKI)<<2; // read bit 2 of external counter |
107 |
countL|=input(CLKI)<<2; // read bit 2 of external counter |
77 |
output_high(SEL0); |
108 |
output_high(SEL0); |
78 |
output_high(SEL1); |
109 |
// output_high(SEL1); |
79 |
countL|=input(CLKI)<<3; // read bit 3 of external counter |
110 |
countL|=input(CLKI)<<3; // read bit 3 of external counter |
80 |
|
111 |
|
81 |
output_low(MR); // External counter Master Reset |
112 |
output_low(MR); // External counter Master Reset |
82 |
output_high(MR); |
113 |
output_high(MR); |
83 |
|
- |
|
84 |
set_timer1(0); // Internal counter reset |
114 |
set_timer1(0); // Internal counter reset |
- |
|
115 |
of=0; // Overflow counter reset |
85 |
|
116 |
|
86 |
count=((unsigned int32)of<<20)+((unsigned int32)countH<<4)+(unsigned int32)countL; // concatenate |
117 |
count=((unsigned int32)of2<<20)+((unsigned int32)countH<<4)+(unsigned int32)countL; // concatenate |
87 |
|
- |
|
88 |
sprintf(countS,"%09Lu", count); // engeneering values conversion |
- |
|
89 |
strncpy(a, countS, 3); a[3]='\0'; |
- |
|
90 |
strncpy(b, &countS[3], 3); b[3]='\0'; |
- |
|
91 |
strncpy(c, &countS[6], 3); c[3]='\0'; |
- |
|
92 |
|
- |
|
93 |
printf("%s\r\n", countS); // output to RS232 |
- |
|
94 |
|
- |
|
95 |
output_toggle(BEEP); // cvak... |
- |
|
96 |
|
118 |
|
97 |
of=0; // reset overflow counter |
119 |
printf("%010Lu\r\n", count); |
98 |
} |
120 |
} |
99 |
|
121 |
|
100 |
#int_TIMER1 // Interrupf from overflow |
122 |
#int_TIMER1 // Interrupf from overflow |
101 |
void TIMER1_isr(void) |
123 |
void TIMER1_isr(void) |
102 |
{ |
124 |
{ |
103 |
of++; |
125 |
of++; |
104 |
} |
126 |
} |
105 |
|
127 |
|
106 |
|
128 |
|
107 |
/*#int_TIMER2 // every 10 ms |
- |
|
108 |
void TIMER2_isr(void) |
- |
|
109 |
{ |
- |
|
110 |
output_low(CE); |
- |
|
111 |
count=get_timer1(); |
- |
|
112 |
set_timer1(0); |
- |
|
113 |
output_high(CE); |
- |
|
114 |
}*/ |
- |
|
115 |
|
- |
|
116 |
|
- |
|
117 |
void main() |
129 |
void main() |
118 |
{ |
130 |
{ |
119 |
/* setup_adc_ports(NO_ANALOGS|VSS_VDD); |
131 |
setup_adc_ports(NO_ANALOGS|VSS_VDD); |
120 |
setup_adc(ADC_OFF); |
132 |
setup_adc(ADC_OFF); |
121 |
// setup_spi(SPI_SS_DISABLED); |
133 |
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use! |
122 |
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); |
134 |
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); |
123 |
// setup_wdt(WDT_144MS); |
135 |
setup_wdt(WDT_2304MS); |
124 |
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1); |
136 |
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1); |
125 |
setup_timer_2(T2_DIV_BY_16,196,16); |
137 |
setup_timer_2(T2_DISABLED,0,1); |
126 |
setup_ccp1(CCP_OFF); |
- |
|
127 |
setup_comparator(NC_NC_NC_NC); |
138 |
setup_comparator(NC_NC_NC_NC); |
128 |
setup_vref(FALSE); |
139 |
setup_vref(FALSE); |
129 |
|
140 |
|
130 |
*/ |
- |
|
131 |
|
- |
|
132 |
setup_adc_ports(NO_ANALOGS|VSS_VDD); |
141 |
restart_wdt(); |
133 |
// setup_adc(ADC_CLOCK_DIV_2); |
142 |
delay_ms(1000); |
134 |
setup_adc(ADC_OFF); |
143 |
restart_wdt(); |
135 |
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use! |
- |
|
136 |
setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1); |
- |
|
137 |
// setup_timer_0(RTCC_INTERNAL);setup_wdt(WDT_144MS); |
- |
|
138 |
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1|T1_CLK_OUT); |
- |
|
- |
|
144 |
|
139 |
// setup_timer_2(T2_DISABLED,0,1); |
145 |
// setup GPS |
140 |
setup_comparator(NC_NC_NC_NC); |
146 |
{ |
141 |
setup_vref(FALSE); |
147 |
int n; |
142 |
// setup_oscillator(OSC_8MHZ|OSC_INTRC); |
148 |
for (n=0;n<40;n++) putc(cmd[n]); |
- |
|
149 |
} |
143 |
|
150 |
|
144 |
// ext_int_edge( L_TO_H ); // set 1PPS active edge |
151 |
ext_int_edge( L_TO_H ); // set 1PPS active edge |
145 |
// enable_interrupts(INT_TIMER1); |
152 |
enable_interrupts(INT_TIMER1); |
146 |
// enable_interrupts(INT_EXT); |
153 |
enable_interrupts(INT_EXT); |
147 |
enable_interrupts(INT_SSP); |
154 |
enable_interrupts(INT_SSP); |
148 |
// enable_interrupts(INT_TIMER2); |
- |
|
149 |
enable_interrupts(GLOBAL); |
155 |
enable_interrupts(GLOBAL); |
150 |
|
- |
|
151 |
|
- |
|
152 |
/* delay_ms(1000); |
- |
|
153 |
int n; |
- |
|
154 |
for (n=0;n<40;n++) putc(cmd[n]); // setup GPS |
- |
|
155 |
|
- |
|
156 |
*/ |
- |
|
157 |
|
- |
|
158 |
printf("cvak...\r\n"); |
- |
|
159 |
|
156 |
|
- |
|
157 |
buffer[0]=0x0; // Clear I2C output buffer |
- |
|
158 |
buffer[1]=0x0; |
- |
|
159 |
buffer[2]=0x0; |
- |
|
160 |
buffer[3]=0x0; |
160 |
|
161 |
|
161 |
buffer[2]=0; |
- |
|
162 |
buffer[3]=0; |
- |
|
163 |
buffer[4]=0; |
- |
|
164 |
buffer[5]=0; |
162 |
printf("\r\ncvak...\r\n"); |
165 |
|
163 |
|
166 |
while(true) |
164 |
while(true) |
167 |
{ |
165 |
{ |
168 |
// output_high(LED); |
166 |
restart_wdt(); |
169 |
delay_ms(1000); |
167 |
delay_ms(1000); |
170 |
// output_low(LED); |
- |
|
171 |
// delay_ms(999); |
- |
|
172 |
printf("%X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]); |
168 |
// printf("%X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]); |
173 |
|
- |
|
174 |
} |
169 |
} |
175 |
} |
170 |
} |