Rev 2228 Rev 2230
Line 6... Line 6...
6 xmlns:svg="http://www.w3.org/2000/svg" 6 xmlns:svg="http://www.w3.org/2000/svg"
7 xmlns="http://www.w3.org/2000/svg" 7 xmlns="http://www.w3.org/2000/svg"
8 xmlns:xlink="http://www.w3.org/1999/xlink" 8 xmlns:xlink="http://www.w3.org/1999/xlink"
9 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" 9 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
10 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" 10 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
11 width="170pt" 11 width="178.83441"
12 height="106pt" 12 height="106.87331"
13 viewBox="0 0 170 106" 13 viewBox="0 0 143.06753 85.498651"
14 version="1.1" 14 version="1.1"
15 id="svg3209" 15 id="svg3209"
16 inkscape:version="0.48.1 r9760" 16 inkscape:version="0.48.1 r9760"
17 sodipodi:docname="USB232R01B_breadboard.svg"> 17 sodipodi:docname="USB232R01B_breadboard.svg">
18 <metadata 18 <metadata
Line 38... Line 38...
38 inkscape:window-width="1024" 38 inkscape:window-width="1024"
39 inkscape:window-height="696" 39 inkscape:window-height="696"
40 id="namedview3217" 40 id="namedview3217"
41 showgrid="false" 41 showgrid="false"
42 inkscape:zoom="2.8070805" 42 inkscape:zoom="2.8070805"
43 inkscape:cx="85.718185" 43 inkscape:cx="69.479345"
44 inkscape:cy="52.447624" 44 inkscape:cy="39.801111"
45 inkscape:window-x="0" 45 inkscape:window-x="0"
46 inkscape:window-y="24" 46 inkscape:window-y="24"
47 inkscape:window-maximized="1" 47 inkscape:window-maximized="1"
48 inkscape:current-layer="svg3209" /> 48 inkscape:current-layer="svg3209"
-   49 fit-margin-top="0"
-   50 fit-margin-left="0"
-   51 fit-margin-right="0"
-   52 fit-margin-bottom="0" />
49 <defs 53 <defs
50 id="defs3211"> 54 id="defs3211">
51 <image 55 <image
52 id="image2692" 56 id="image2692"
53 width="709" 57 width="709"
54 height="442" 58 height="442"
55 xlink:href="" /> 59 xlink:href="" />
-   60 <clipPath
-   61 clipPathUnits="userSpaceOnUse"
-   62 id="clipPath4229">
-   63 <path
-   64 inkscape:connector-curvature="0"
-   65 id="path4231"
-   66 d="m 7.6944548,89.613147 143.0675352,0 0,-85.212701 L 7.9800192,4.1144979 z"
-   67 style="fill:none;stroke:#000000;stroke-width:0.01606411;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
-   68 </clipPath>
56 </defs> 69 </defs>
57 <g 70 <g
58 id="surface2688"> 71 id="surface2688"
-   72 clip-path="url(#clipPath4229)"
-   73 transform="translate(-7.6944548,-4.1144979)">
59 <use 74 <use
60 xlink:href="#image2692" 75 xlink:href="#image2692"
61 transform="matrix(0.24,0,0,0.24,0,0)" 76 transform="scale(0.24,0.24)"
62 id="use3215" /> 77 id="use3215"
-   78 x="0"
-   79 y="0"
-   80 width="170"
-   81 height="106" />
63 </g> 82 </g>
64 <rect 83 <rect
65 style="fill:none" 84 style="fill:none"
66 height="5.3040056" 85 height="5.3040056"
67 width="2.157968" 86 width="2.157968"
68 y="30.749302" 87 y="26.634804"
69 x="61.964127" 88 x="54.269672"
70 id="connector1pin" /> 89 id="connector1pin" />
71 <rect 90 <rect
72 style="fill:none" 91 style="fill:none"
73 height="5.3669462" 92 height="5.3669462"
74 width="2.1569686" 93 width="2.1569686"
75 y="57.899738" 94 y="53.78524"
76 x="61.974129" 95 x="54.279675"
77 id="connector3pin" /> 96 id="connector3pin" />
78 <rect 97 <rect
79 style="fill:none" 98 style="fill:none"
80 height="5.3669462" 99 height="5.3669462"
81 width="2.1569686" 100 width="2.1569686"
82 y="57.899738" 101 y="53.78524"
83 x="61.974129" 102 x="54.279675"
84 id="connector5pin" /> 103 id="connector5pin" />
85 <rect 104 <rect
86 style="fill:none" 105 style="fill:none"
87 height="5.3669462" 106 height="5.3669462"
88 width="2.1569686" 107 width="2.1569686"
89 y="57.899738" 108 y="53.78524"
90 x="61.974129" 109 x="54.279675"
91 id="connector4pin" /> 110 id="connector4pin" />
92 <rect 111 <rect
93 style="fill:none" 112 style="fill:none"
94 height="3.6655478" 113 height="3.6655478"
95 width="2.157968" 114 width="2.157968"
96 y="30.749302" 115 y="26.634804"
97 x="61.964127" 116 x="54.269672"
98 id="connector1terminal" /> 117 id="connector1terminal" />
99 <rect 118 <rect
100 style="fill:none" 119 style="fill:none"
101 height="3.7105057" 120 height="3.7105057"
102 width="2.1569686" 121 width="2.1569686"
103 y="59.556171" 122 y="55.441673"
104 x="61.974129" 123 x="54.279675"
105 id="connector3terminal" /> 124 id="connector3terminal" />
106 <rect 125 <rect
107 style="fill:none" 126 style="fill:none"
108 height="3.7105057" 127 height="3.7105057"
109 width="2.1569686" 128 width="2.1569686"
110 y="59.556171" 129 y="55.441673"
111 x="61.974129" 130 x="54.279675"
112 id="connector5terminal" /> 131 id="connector5terminal" />
113 <rect 132 <rect
114 style="fill:none" 133 style="fill:none"
115 height="3.7105057" 134 height="3.7105057"
116 width="2.1569686" 135 width="2.1569686"
117 y="59.556171" 136 y="55.441673"
118 x="61.974129" 137 x="54.279675"
119 id="connector4terminal" /> 138 id="connector4terminal" />
120 <g 139 <g
121 id="g40" 140 id="g40"
122 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> 141 transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)">
123 <rect 142 <rect
124 style="fill:#898989" 143 style="fill:#898989"
125 id="rect42" 144 id="rect42"
126 height="34.015999" 145 height="34.015999"
127 width="45.355" 146 width="45.355"
128 y="4.2519999" 147 y="4.2519999"
129 x="0.001" /> 148 x="0.001" />
130 </g> 149 </g>
131 <g 150 <g
132 id="g44" 151 id="g44"
133 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> 152 transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)">
134 <rect 153 <rect
135 style="fill:#dddddd" 154 style="fill:#dddddd"
136 id="rect46" 155 id="rect46"
137 height="0.74299997" 156 height="0.74299997"
138 width="45.355" 157 width="45.355"
139 y="4.2519999" 158 y="4.2519999"
140 x="0.001" /> 159 x="0.001" />
141 </g> 160 </g>
142 <g 161 <g
143 id="g48" 162 id="g48"
144 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> 163 transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)">
145 <rect 164 <rect
146 style="fill:#c6c6c6" 165 style="fill:#c6c6c6"
147 id="rect50" 166 id="rect50"
148 height="0.889" 167 height="0.889"
149 width="45.355" 168 width="45.355"
150 y="4.9910002" 169 y="4.9910002"
151 x="0.001" /> 170 x="0.001" />
152 </g> 171 </g>
153 <rect 172 <rect
154 y="31.626476" 173 y="27.511978"
155 width="45.313328" 174 width="45.313328"
156 height="31.312511" 175 height="31.312511"
157 id="rect54" 176 id="rect54"
158 x="8.5184603" 177 x="0.82400548"
159 style="fill:#adadad" /> 178 style="fill:#adadad" />
160 <g 179 <g
161 id="g56" 180 id="g56"
162 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> 181 transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)">
163 <line 182 <line
164 style="fill:#919191;stroke:#4d4d4d;stroke-width:0.1" 183 style="fill:#919191;stroke:#4d4d4d;stroke-width:0.1"
165 id="line58" 184 id="line58"
166 y2="38.268002" 185 y2="38.268002"
167 x2="34.173" 186 x2="34.173"
168 y1="4.2519999" 187 y1="4.2519999"
169 x1="34.173" /> 188 x1="34.173" />
170 </g> 189 </g>
171 <g 190 <g
172 id="g76" 191 id="g76"
173 transform="matrix(0.9990592,0,0,0.9990592,8.5184624,25.752007)"> 192 transform="matrix(0.9990592,0,0,0.9990592,0.8240076,21.637509)">
174 <path 193 <path
175 style="fill:#4d4d4d" 194 style="fill:#4d4d4d"
176 inkscape:connector-curvature="0" 195 inkscape:connector-curvature="0"
177 id="path78" 196 id="path78"
178 d="m 30.074,21.386 -2.64,-1.524 v 1.134 H 13.468 c 0.515,-0.416 1.008,-0.965 1.493,-1.505 0.802,-0.894 1.631,-1.819 2.338,-1.819 h 2.277 c 0.141,0.521 0.597,0.913 1.163,0.913 0.677,0 1.226,-0.548 1.226,-1.225 0,-0.677 -0.549,-1.226 -1.226,-1.226 -0.566,0 -1.022,0.392 -1.163,0.914 h -2.277 c -0.985,0 -1.868,0.984 -2.803,2.026 -0.744,0.83 -1.509,1.675 -2.255,1.922 h -1.82 c -0.185,-1.02 -1.073,-1.794 -2.145,-1.794 -1.206,0 -2.184,0.978 -2.184,2.184 0,1.207 0.978,2.184 2.184,2.184 1.072,0 1.96,-0.774 2.145,-1.794 h 5.196 c 0.746,0.247 1.511,1.093 2.254,1.922 0.934,1.043 1.817,2.026 2.802,2.026 h 2.142 v 0.985 h 2.595 v -2.595 h -2.595 v 0.985 h -2.142 c -0.707,0 -1.536,-0.925 -2.337,-1.818 -0.485,-0.541 -0.978,-1.09 -1.493,-1.506 h 10.592 v 1.134 l 2.639,-1.523 z" /> 197 d="m 30.074,21.386 -2.64,-1.524 v 1.134 H 13.468 c 0.515,-0.416 1.008,-0.965 1.493,-1.505 0.802,-0.894 1.631,-1.819 2.338,-1.819 h 2.277 c 0.141,0.521 0.597,0.913 1.163,0.913 0.677,0 1.226,-0.548 1.226,-1.225 0,-0.677 -0.549,-1.226 -1.226,-1.226 -0.566,0 -1.022,0.392 -1.163,0.914 h -2.277 c -0.985,0 -1.868,0.984 -2.803,2.026 -0.744,0.83 -1.509,1.675 -2.255,1.922 h -1.82 c -0.185,-1.02 -1.073,-1.794 -2.145,-1.794 -1.206,0 -2.184,0.978 -2.184,2.184 0,1.207 0.978,2.184 2.184,2.184 1.072,0 1.96,-0.774 2.145,-1.794 h 5.196 c 0.746,0.247 1.511,1.093 2.254,1.922 0.934,1.043 1.817,2.026 2.802,2.026 h 2.142 v 0.985 h 2.595 v -2.595 h -2.595 v 0.985 h -2.142 c -0.707,0 -1.536,-0.925 -2.337,-1.818 -0.485,-0.541 -0.978,-1.09 -1.493,-1.506 h 10.592 v 1.134 l 2.639,-1.523 z" />
179 </g> 198 </g>
180 <g 199 <g
181 transform="matrix(1.000278,0,0,1.000278,43.36261,75.73517)" 200 transform="matrix(1.000278,0,0,1.000278,35.668155,71.620672)"
182 id="use4089"> 201 id="use4089">
183 <rect 202 <rect
184 style="fill:none" 203 style="fill:none"
185 height="2.7909999" 204 height="2.7909999"
186 width="2.7909999" 205 width="2.7909999"
Line 227... Line 246...
227 <g 246 <g
228 id="g3600"> 247 id="g3600">
229 <polygon 248 <polygon
230 style="fill:#404040" 249 style="fill:#404040"
231 id="polygon3602" 250 id="polygon3602"
232 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " /> 251 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " />
233 </g> 252 </g>
234 <g 253 <g
235 id="g3604"> 254 id="g3604">
236 <rect 255 <rect
237 style="fill:#8d8c8c" 256 style="fill:#8d8c8c"
Line 248... Line 267...
248 y="3.0079999" 267 y="3.0079999"
249 x="3.0090001" /> 268 x="3.0090001" />
250 <polygon 269 <polygon
251 style="fill:#b8af82" 270 style="fill:#b8af82"
252 id="polygon3610" 271 id="polygon3610"
253 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " /> 272 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " />
254 <polygon 273 <polygon
255 style="fill:#80795b" 274 style="fill:#80795b"
256 id="polygon3612" 275 id="polygon3612"
257 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " /> 276 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " />
258 <polygon 277 <polygon
259 style="fill:#5e5b43" 278 style="fill:#5e5b43"
260 id="polygon3614" 279 id="polygon3614"
261 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " /> 280 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " />
262 <polygon 281 <polygon
263 style="fill:#9a916c" 282 style="fill:#9a916c"
264 id="polygon3616" 283 id="polygon3616"
265 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " /> 284 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " />
266 </g> 285 </g>
267 <g 286 <g
268 id="g3618"> 287 id="g3618">
269 <polygon 288 <polygon
270 style="fill:#404040" 289 style="fill:#404040"
271 id="polygon3620" 290 id="polygon3620"
272 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " /> 291 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " />
273 </g> 292 </g>
274 <g 293 <g
275 id="g3622"> 294 id="g3622">
276 <rect 295 <rect
277 style="fill:#8d8c8c" 296 style="fill:#8d8c8c"
Line 288... Line 307...
288 y="3.0079999" 307 y="3.0079999"
289 x="10.208" /> 308 x="10.208" />
290 <polygon 309 <polygon
291 style="fill:#b8af82" 310 style="fill:#b8af82"
292 id="polygon3628" 311 id="polygon3628"
293 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " /> 312 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " />
294 <polygon 313 <polygon
295 style="fill:#80795b" 314 style="fill:#80795b"
296 id="polygon3630" 315 id="polygon3630"
297 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " /> 316 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " />
298 <polygon 317 <polygon
299 style="fill:#5e5b43" 318 style="fill:#5e5b43"
300 id="polygon3632" 319 id="polygon3632"
301 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " /> 320 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " />
302 <polygon 321 <polygon
303 style="fill:#9a916c" 322 style="fill:#9a916c"
304 id="polygon3634" 323 id="polygon3634"
305 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " /> 324 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " />
306 </g> 325 </g>
307 <g 326 <g
308 id="g3636"> 327 id="g3636">
309 <polygon 328 <polygon
310 style="fill:#404040" 329 style="fill:#404040"
311 id="polygon3638" 330 id="polygon3638"
312 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " /> 331 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " />
313 </g> 332 </g>
314 <g 333 <g
315 id="g3640"> 334 id="g3640">
316 <rect 335 <rect
317 style="fill:#8d8c8c" 336 style="fill:#8d8c8c"
Line 328... Line 347...
328 y="3.0079999" 347 y="3.0079999"
329 x="17.407" /> 348 x="17.407" />
330 <polygon 349 <polygon
331 style="fill:#b8af82" 350 style="fill:#b8af82"
332 id="polygon3646" 351 id="polygon3646"
333 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " /> 352 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " />
334 <polygon 353 <polygon
335 style="fill:#80795b" 354 style="fill:#80795b"
336 id="polygon3648" 355 id="polygon3648"
337 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " /> 356 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " />
338 <polygon 357 <polygon
339 style="fill:#5e5b43" 358 style="fill:#5e5b43"
340 id="polygon3650" 359 id="polygon3650"
341 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " /> 360 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " />
342 <polygon 361 <polygon
343 style="fill:#9a916c" 362 style="fill:#9a916c"
344 id="polygon3652" 363 id="polygon3652"
345 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " /> 364 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " />
346 </g> 365 </g>
347 </g> 366 </g>
348 <rect 367 <rect
349 style="fill:none" 368 style="fill:none"
350 id="rect3654" 369 id="rect3654"
Line 392... Line 411...
392 id="g3666"> 411 id="g3666">
393 <g 412 <g
394 id="g3668"> 413 id="g3668">
395 <polygon 414 <polygon
396 style="fill:#404040" 415 style="fill:#404040"
397 points="1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 " 416 points="1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 "
398 id="polygon3670" /> 417 id="polygon3670" />
399 </g> 418 </g>
400 <g 419 <g
401 id="g3672"> 420 id="g3672">
402 <rect 421 <rect
Line 413... Line 432...
413 width="1.182" 432 width="1.182"
414 height="1.183" 433 height="1.183"
415 id="rect3676" /> 434 id="rect3676" />
416 <polygon 435 <polygon
417 style="fill:#b8af82" 436 style="fill:#b8af82"
418 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " 437 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
419 id="polygon3678" /> 438 id="polygon3678" />
420 <polygon 439 <polygon
421 style="fill:#80795b" 440 style="fill:#80795b"
422 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " 441 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
423 id="polygon3680" /> 442 id="polygon3680" />
424 <polygon 443 <polygon
425 style="fill:#5e5b43" 444 style="fill:#5e5b43"
426 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " 445 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
427 id="polygon3682" /> 446 id="polygon3682" />
428 <polygon 447 <polygon
429 style="fill:#9a916c" 448 style="fill:#9a916c"
430 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " 449 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
431 id="polygon3684" /> 450 id="polygon3684" />
432 </g> 451 </g>
433 <g 452 <g
434 id="g3686"> 453 id="g3686">
435 <polygon 454 <polygon
436 style="fill:#404040" 455 style="fill:#404040"
437 points="8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 " 456 points="8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 "
438 id="polygon3688" /> 457 id="polygon3688" />
439 </g> 458 </g>
440 <g 459 <g
441 id="g3690"> 460 id="g3690">
442 <rect 461 <rect
Line 453... Line 472...
453 width="1.182" 472 width="1.182"
454 height="1.183" 473 height="1.183"
455 id="rect3694" /> 474 id="rect3694" />
456 <polygon 475 <polygon
457 style="fill:#b8af82" 476 style="fill:#b8af82"
458 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " 477 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
459 id="polygon3696" /> 478 id="polygon3696" />
460 <polygon 479 <polygon
461 style="fill:#80795b" 480 style="fill:#80795b"
462 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " 481 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
463 id="polygon3698" /> 482 id="polygon3698" />
464 <polygon 483 <polygon
465 style="fill:#5e5b43" 484 style="fill:#5e5b43"
466 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " 485 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
467 id="polygon3700" /> 486 id="polygon3700" />
468 <polygon 487 <polygon
469 style="fill:#9a916c" 488 style="fill:#9a916c"
470 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " 489 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
471 id="polygon3702" /> 490 id="polygon3702" />
472 </g> 491 </g>
473 <g 492 <g
474 id="g3704"> 493 id="g3704">
475 <polygon 494 <polygon
476 style="fill:#404040" 495 style="fill:#404040"
477 points="15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 " 496 points="15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 "
478 id="polygon3706" /> 497 id="polygon3706" />
479 </g> 498 </g>
480 <g 499 <g
481 id="g3708"> 500 id="g3708">
482 <rect 501 <rect
Line 493... Line 512...
493 width="1.182" 512 width="1.182"
494 height="1.183" 513 height="1.183"
495 id="rect3712" /> 514 id="rect3712" />
496 <polygon 515 <polygon
497 style="fill:#b8af82" 516 style="fill:#b8af82"
498 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " 517 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
499 id="polygon3714" /> 518 id="polygon3714" />
500 <polygon 519 <polygon
501 style="fill:#80795b" 520 style="fill:#80795b"
502 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " 521 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
503 id="polygon3716" /> 522 id="polygon3716" />
504 <polygon 523 <polygon
505 style="fill:#5e5b43" 524 style="fill:#5e5b43"
506 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " 525 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
507 id="polygon3718" /> 526 id="polygon3718" />
508 <polygon 527 <polygon
509 style="fill:#9a916c" 528 style="fill:#9a916c"
510 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " 529 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
511 id="polygon3720" /> 530 id="polygon3720" />
512 </g> 531 </g>
513 </g> 532 </g>
514 </g> 533 </g>
515 <g 534 <g
516 id="g3881" 535 id="g3881"
517 transform="matrix(1.000139,0,0,1.000139,43.397586,18.268968)"> 536 transform="matrix(1.000139,0,0,1.000139,35.703131,14.15447)">
518 <rect 537 <rect
519 height="2.7909999" 538 height="2.7909999"
520 width="2.7909999" 539 width="2.7909999"
521 y="2.204" 540 y="2.204"
522 x="2.204" 541 x="2.204"
Line 561... Line 580...
561 id="breadboard"> 580 id="breadboard">
562 <g 581 <g
563 id="g10"> 582 id="g10">
564 <polygon 583 <polygon
565 id="polygon12" 584 id="polygon12"
566 points="5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 " 585 points="5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 "
567 style="fill:#404040" /> 586 style="fill:#404040" />
568 </g> 587 </g>
569 <g 588 <g
570 id="g14"> 589 id="g14">
571 <rect 590 <rect
Line 582... Line 601...
582 y="3.0079999" 601 y="3.0079999"
583 x="3.0090001" 602 x="3.0090001"
584 style="fill:#8c8663" /> 603 style="fill:#8c8663" />
585 <polygon 604 <polygon
586 id="polygon20" 605 id="polygon20"
587 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " 606 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
588 style="fill:#b8af82" /> 607 style="fill:#b8af82" />
589 <polygon 608 <polygon
590 id="polygon22" 609 id="polygon22"
591 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " 610 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
592 style="fill:#80795b" /> 611 style="fill:#80795b" />
593 <polygon 612 <polygon
594 id="polygon24" 613 id="polygon24"
595 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " 614 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
596 style="fill:#5e5b43" /> 615 style="fill:#5e5b43" />
597 <polygon 616 <polygon
598 id="polygon26" 617 id="polygon26"
599 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " 618 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
600 style="fill:#9a916c" /> 619 style="fill:#9a916c" />
601 </g> 620 </g>
602 <g 621 <g
603 id="g28"> 622 id="g28">
604 <polygon 623 <polygon
605 id="polygon30" 624 id="polygon30"
606 points="12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 " 625 points="12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 "
607 style="fill:#404040" /> 626 style="fill:#404040" />
608 </g> 627 </g>
609 <g 628 <g
610 id="g32"> 629 id="g32">
611 <rect 630 <rect
Line 622... Line 641...
622 y="3.0079999" 641 y="3.0079999"
623 x="10.208" 642 x="10.208"
624 style="fill:#8c8663" /> 643 style="fill:#8c8663" />
625 <polygon 644 <polygon
626 id="polygon38" 645 id="polygon38"
627 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " 646 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
628 style="fill:#b8af82" /> 647 style="fill:#b8af82" />
629 <polygon 648 <polygon
630 id="polygon40" 649 id="polygon40"
631 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " 650 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
632 style="fill:#80795b" /> 651 style="fill:#80795b" />
633 <polygon 652 <polygon
634 id="polygon42" 653 id="polygon42"
635 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " 654 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
636 style="fill:#5e5b43" /> 655 style="fill:#5e5b43" />
637 <polygon 656 <polygon
638 id="polygon44" 657 id="polygon44"
639 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " 658 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
640 style="fill:#9a916c" /> 659 style="fill:#9a916c" />
641 </g> 660 </g>
642 <g 661 <g
643 id="g46"> 662 id="g46">
644 <polygon 663 <polygon
645 id="polygon48" 664 id="polygon48"
646 points="20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 " 665 points="20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 "
647 style="fill:#404040" /> 666 style="fill:#404040" />
648 </g> 667 </g>
649 <g 668 <g
650 id="g50"> 669 id="g50">
651 <rect 670 <rect
Line 662... Line 681...
662 y="3.0079999" 681 y="3.0079999"
663 x="17.407" 682 x="17.407"
664 style="fill:#8c8663" /> 683 style="fill:#8c8663" />
665 <polygon 684 <polygon
666 id="polygon56" 685 id="polygon56"
667 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " 686 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 "
668 style="fill:#b8af82" /> 687 style="fill:#b8af82" />
669 <polygon 688 <polygon
670 id="polygon58" 689 id="polygon58"
671 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " 690 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 "
672 style="fill:#80795b" /> 691 style="fill:#80795b" />
673 <polygon 692 <polygon
674 id="polygon60" 693 id="polygon60"
675 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " 694 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 "
676 style="fill:#5e5b43" /> 695 style="fill:#5e5b43" />
677 <polygon 696 <polygon
678 id="polygon62" 697 id="polygon62"
679 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " 698 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 "
680 style="fill:#9a916c" /> 699 style="fill:#9a916c" />
681 </g> 700 </g>
682 </g> 701 </g>
683 <rect 702 <rect
684 style="fill:none" 703 style="fill:none"
Line 727... Line 746...
727 id="g3057"> 746 id="g3057">
728 <g 747 <g
729 id="g3059"> 748 id="g3059">
730 <polygon 749 <polygon
731 style="fill:#404040" 750 style="fill:#404040"
732 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " 751 points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 "
733 id="polygon3061" /> 752 id="polygon3061" />
734 </g> 753 </g>
735 <g 754 <g
736 id="g3063"> 755 id="g3063">
737 <rect 756 <rect
Line 748... Line 767...
748 width="1.182" 767 width="1.182"
749 height="1.183" 768 height="1.183"
750 id="rect3067" /> 769 id="rect3067" />
751 <polygon 770 <polygon
752 style="fill:#b8af82" 771 style="fill:#b8af82"
753 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " 772 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
754 id="polygon3069" /> 773 id="polygon3069" />
755 <polygon 774 <polygon
756 style="fill:#80795b" 775 style="fill:#80795b"
757 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " 776 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
758 id="polygon3071" /> 777 id="polygon3071" />
759 <polygon 778 <polygon
760 style="fill:#5e5b43" 779 style="fill:#5e5b43"
761 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " 780 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
762 id="polygon3073" /> 781 id="polygon3073" />
763 <polygon 782 <polygon
764 style="fill:#9a916c" 783 style="fill:#9a916c"
765 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " 784 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
766 id="polygon3075" /> 785 id="polygon3075" />
767 </g> 786 </g>
768 <g 787 <g
769 id="g3077"> 788 id="g3077">
770 <polygon 789 <polygon
771 style="fill:#404040" 790 style="fill:#404040"
772 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " 791 points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 "
773 id="polygon3079" /> 792 id="polygon3079" />
774 </g> 793 </g>
775 <g 794 <g
776 id="g3081"> 795 id="g3081">
777 <rect 796 <rect
Line 788... Line 807...
788 width="1.182" 807 width="1.182"
789 height="1.183" 808 height="1.183"
790 id="rect3085" /> 809 id="rect3085" />
791 <polygon 810 <polygon
792 style="fill:#b8af82" 811 style="fill:#b8af82"
793 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " 812 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
794 id="polygon3087" /> 813 id="polygon3087" />
795 <polygon 814 <polygon
796 style="fill:#80795b" 815 style="fill:#80795b"
797 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " 816 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
798 id="polygon3089" /> 817 id="polygon3089" />
799 <polygon 818 <polygon
800 style="fill:#5e5b43" 819 style="fill:#5e5b43"
801 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " 820 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
802 id="polygon3091" /> 821 id="polygon3091" />
803 <polygon 822 <polygon
804 style="fill:#9a916c" 823 style="fill:#9a916c"
805 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " 824 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
806 id="polygon3093" /> 825 id="polygon3093" />
807 </g> 826 </g>
808 <g 827 <g
809 id="g3095"> 828 id="g3095">
810 <polygon 829 <polygon
811 style="fill:#404040" 830 style="fill:#404040"
812 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " 831 points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 "
813 id="polygon3097" /> 832 id="polygon3097" />
814 </g> 833 </g>
815 <g 834 <g
816 id="g3099"> 835 id="g3099">
817 <rect 836 <rect
Line 828... Line 847...
828 width="1.182" 847 width="1.182"
829 height="1.183" 848 height="1.183"
830 id="rect3103" /> 849 id="rect3103" />
831 <polygon 850 <polygon
832 style="fill:#b8af82" 851 style="fill:#b8af82"
833 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " 852 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 "
834 id="polygon3105" /> 853 id="polygon3105" />
835 <polygon 854 <polygon
836 style="fill:#80795b" 855 style="fill:#80795b"
837 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " 856 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 "
838 id="polygon3107" /> 857 id="polygon3107" />
839 <polygon 858 <polygon
840 style="fill:#5e5b43" 859 style="fill:#5e5b43"
841 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " 860 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 "
842 id="polygon3109" /> 861 id="polygon3109" />
843 <polygon 862 <polygon
844 style="fill:#9a916c" 863 style="fill:#9a916c"
845 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " 864 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 "
846 id="polygon3111" /> 865 id="polygon3111" />
847 </g> 866 </g>
848 </g> 867 </g>
849 </g> 868 </g>
850 <g 869 <g
851 id="g3957" 870 id="g3957"
852 transform="matrix(1.0001389,0,0,1.0001389,68.57072,10.774555)"> 871 transform="matrix(1.0001389,0,0,1.0001389,60.876265,6.6600571)">
853 <rect 872 <rect
854 height="2.7909999" 873 height="2.7909999"
855 width="2.7909999" 874 width="2.7909999"
856 y="2.204" 875 y="2.204"
857 x="2.204" 876 x="2.204"
Line 892... Line 911...
892 x="16.916" 911 x="16.916"
893 id="connector2terminal-3" 912 id="connector2terminal-3"
894 style="fill:none" /> 913 style="fill:none" />
895 <g 914 <g
896 id="breadboard-0"> 915 id="breadboard-0">
897 <g 916 <g
898 id="g3897"> 917 id="g3897">
899 <polygon 918 <polygon
900 id="polygon3899" 919 id="polygon3899"
901 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " 920 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
902 style="fill:#404040" /> 921 style="fill:#404040" />
903   922 </g>
904 </g> 923 <g
905   924 id="g3901">
906 <g 925 <rect
907 id="g3901"> 926 id="rect3903"
908 <rect 927 height="2.299"
909 id="rect3903" 928 width="2.2969999"
910 height="2.299" 929 y="2.45"
911 width="2.2969999" 930 x="2.451"
912 y="2.45" 931 style="fill:#8d8c8c" />
913 x="2.451" 932 <rect
914 style="fill:#8d8c8c" /> 933 id="rect3905"
915   934 height="1.183"
916 <rect 935 width="1.182"
917 id="rect3905" 936 y="3.0079999"
918 height="1.183" 937 x="3.0090001"
919 width="1.182" 938 style="fill:#8c8663" />
920 y="3.0079999" 939 <polygon
921 x="3.0090001" 940 id="polygon3907"
922 style="fill:#8c8663" /> 941 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
923   942 style="fill:#b8af82" />
924 <polygon 943 <polygon
925 id="polygon3907" 944 id="polygon3909"
926 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " 945 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
927 style="fill:#b8af82" /> 946 style="fill:#80795b" />
928   947 <polygon
929 <polygon 948 id="polygon3911"
930 id="polygon3909" 949 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
931 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " 950 style="fill:#5e5b43" />
932 style="fill:#80795b" /> 951 <polygon
933   952 id="polygon3913"
934 <polygon 953 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
935 id="polygon3911" 954 style="fill:#9a916c" />
936 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " 955 </g>
937 style="fill:#5e5b43" /> 956 <g
938   957 id="g3915">
939 <polygon 958 <polygon
940 id="polygon3913" 959 id="polygon3917"
941 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " 960 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
942 style="fill:#9a916c" /> 961 style="fill:#404040" />
943   962 </g>
944 </g> 963 <g
945   964 id="g3919">
946 <g 965 <rect
947 id="g3915"> 966 id="rect3921"
948 <polygon 967 height="2.299"
949 id="polygon3917" 968 width="2.2969999"
950 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " 969 y="2.45"
951 style="fill:#404040" /> 970 x="9.6499996"
952   971 style="fill:#8d8c8c" />
953 </g> 972 <rect
954   973 id="rect3923"
955 <g 974 height="1.183"
956 id="g3919"> 975 width="1.182"
957 <rect 976 y="3.0079999"
958 id="rect3921" 977 x="10.208"
959 height="2.299" 978 style="fill:#8c8663" />
960 width="2.2969999" 979 <polygon
961 y="2.45" 980 id="polygon3925"
962 x="9.6499996" 981 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
963 style="fill:#8d8c8c" /> 982 style="fill:#b8af82" />
964   983 <polygon
965 <rect 984 id="polygon3927"
966 id="rect3923" 985 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
967 height="1.183" 986 style="fill:#80795b" />
968 width="1.182" 987 <polygon
969 y="3.0079999" 988 id="polygon3929"
970 x="10.208" 989 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
971 style="fill:#8c8663" /> 990 style="fill:#5e5b43" />
972   991 <polygon
973 <polygon 992 id="polygon3931"
974 id="polygon3925" 993 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
975 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " 994 style="fill:#9a916c" />
976 style="fill:#b8af82" /> 995 </g>
977   996 <g
978 <polygon 997 id="g3933">
979 id="polygon3927" 998 <polygon
980 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " 999 id="polygon3935"
981 style="fill:#80795b" /> 1000 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 "
982   1001 style="fill:#404040" />
983 <polygon 1002 </g>
984 id="polygon3929" 1003 <g
985 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " 1004 id="g3937">
986 style="fill:#5e5b43" /> 1005 <rect
987   1006 id="rect3939"
988 <polygon 1007 height="2.299"
989 id="polygon3931" 1008 width="2.2969999"
990 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " 1009 y="2.45"
991 style="fill:#9a916c" /> 1010 x="16.849001"
992   1011 style="fill:#8d8c8c" />
993 </g> 1012 <rect
994   1013 id="rect3941"
995 <g 1014 height="1.183"
996 id="g3933"> 1015 width="1.182"
997 <polygon 1016 y="3.0079999"
998 id="polygon3935" 1017 x="17.407"
999 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " 1018 style="fill:#8c8663" />
1000 style="fill:#404040" /> 1019 <polygon
1001   1020 id="polygon3943"
1002 </g> 1021 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 "
1003   1022 style="fill:#b8af82" />
1004 <g 1023 <polygon
1005 id="g3937"> 1024 id="polygon3945"
1006 <rect 1025 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 "
1007 id="rect3939" 1026 style="fill:#80795b" />
1008 height="2.299" 1027 <polygon
1009 width="2.2969999" 1028 id="polygon3947"
1010 y="2.45" 1029 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 "
1011 x="16.849001" 1030 style="fill:#5e5b43" />
1012 style="fill:#8d8c8c" /> 1031 <polygon
1013   1032 id="polygon3949"
1014 <rect 1033 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 "
1015 id="rect3941" 1034 style="fill:#9a916c" />
1016 height="1.183" 1035 </g>
1017 width="1.182" 1036 </g>
1018 y="3.0079999" -  
1019 x="17.407" -  
1020 style="fill:#8c8663" /> -  
1021   -  
1022 <polygon -  
1023 id="polygon3943" -  
1024 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " -  
1025 style="fill:#b8af82" /> -  
1026   -  
1027 <polygon -  
1028 id="polygon3945" -  
1029 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " -  
1030 style="fill:#80795b" /> -  
1031   -  
1032 <polygon -  
1033 id="polygon3947" -  
1034 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " -  
1035 style="fill:#5e5b43" /> -  
1036   -  
1037 <polygon -  
1038 id="polygon3949" -  
1039 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " -  
1040 style="fill:#9a916c" /> -  
1041   -  
1042 </g> -  
1043   -  
1044 </g> -  
1045 </g> 1037 </g>
1046 <g 1038 <g
1047 id="g4209" 1039 id="g4209"
1048 transform="matrix(0,-1.0001389,1.0001389,0,78.620656,55.811367)"> 1040 transform="matrix(0,-1.0001389,1.0001389,0,70.926201,51.696869)">
1049 <rect 1041 <rect
1050 height="2.7909999" 1042 height="2.7909999"
1051 width="2.7909999" 1043 width="2.7909999"
1052 y="2.204" 1044 y="2.204"
1053 x="2.204" 1045 x="2.204"
Line 1088... Line 1080...
1088 x="16.916" 1080 x="16.916"
1089 id="connector2terminal-7" 1081 id="connector2terminal-7"
1090 style="fill:none" /> 1082 style="fill:none" />
1091 <g 1083 <g
1092 id="breadboard-4"> 1084 id="breadboard-4">
1093 <g 1085 <g
1094 id="g4149"> 1086 id="g4149">
1095 <polygon 1087 <polygon
1096 id="polygon4151" 1088 id="polygon4151"
1097 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " 1089 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
1098 style="fill:#404040" /> 1090 style="fill:#404040" />
1099   1091 </g>
1100 </g> 1092 <g
1101   1093 id="g4153">
1102 <g 1094 <rect
1103 id="g4153"> 1095 id="rect4155"
1104 <rect 1096 height="2.299"
1105 id="rect4155" 1097 width="2.2969999"
1106 height="2.299" 1098 y="2.45"
1107 width="2.2969999" 1099 x="2.451"
1108 y="2.45" 1100 style="fill:#8d8c8c" />
1109 x="2.451" 1101 <rect
1110 style="fill:#8d8c8c" /> 1102 id="rect4157"
1111   1103 height="1.183"
1112 <rect 1104 width="1.182"
1113 id="rect4157" 1105 y="3.0079999"
1114 height="1.183" 1106 x="3.0090001"
1115 width="1.182" 1107 style="fill:#8c8663" />
1116 y="3.0079999" 1108 <polygon
1117 x="3.0090001" 1109 id="polygon4159"
1118 style="fill:#8c8663" /> 1110 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
1119   1111 style="fill:#b8af82" />
1120 <polygon 1112 <polygon
1121 id="polygon4159" 1113 id="polygon4161"
1122 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " 1114 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
1123 style="fill:#b8af82" /> 1115 style="fill:#80795b" />
1124   1116 <polygon
1125 <polygon 1117 id="polygon4163"
1126 id="polygon4161" 1118 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
1127 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " 1119 style="fill:#5e5b43" />
1128 style="fill:#80795b" /> 1120 <polygon
1129   1121 id="polygon4165"
1130 <polygon 1122 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
1131 id="polygon4163" 1123 style="fill:#9a916c" />
1132 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " 1124 </g>
1133 style="fill:#5e5b43" /> 1125 <g
1134   1126 id="g4167">
1135 <polygon 1127 <polygon
1136 id="polygon4165" 1128 id="polygon4169"
1137 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " 1129 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
1138 style="fill:#9a916c" /> 1130 style="fill:#404040" />
1139   1131 </g>
1140 </g> 1132 <g
1141   1133 id="g4171">
1142 <g 1134 <rect
1143 id="g4167"> 1135 id="rect4173"
1144 <polygon 1136 height="2.299"
1145 id="polygon4169" 1137 width="2.2969999"
1146 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " 1138 y="2.45"
1147 style="fill:#404040" /> 1139 x="9.6499996"
1148   1140 style="fill:#8d8c8c" />
1149 </g> 1141 <rect
1150   1142 id="rect4175"
1151 <g 1143 height="1.183"
1152 id="g4171"> 1144 width="1.182"
1153 <rect 1145 y="3.0079999"
1154 id="rect4173" 1146 x="10.208"
1155 height="2.299" 1147 style="fill:#8c8663" />
1156 width="2.2969999" 1148 <polygon
1157 y="2.45" 1149 id="polygon4177"
1158 x="9.6499996" 1150 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
1159 style="fill:#8d8c8c" /> 1151 style="fill:#b8af82" />
1160   1152 <polygon
1161 <rect 1153 id="polygon4179"
1162 id="rect4175" 1154 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
1163 height="1.183" 1155 style="fill:#80795b" />
1164 width="1.182" 1156 <polygon
1165 y="3.0079999" 1157 id="polygon4181"
1166 x="10.208" 1158 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
1167 style="fill:#8c8663" /> 1159 style="fill:#5e5b43" />
1168   1160 <polygon
1169 <polygon 1161 id="polygon4183"
1170 id="polygon4177" 1162 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
1171 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " 1163 style="fill:#9a916c" />
1172 style="fill:#b8af82" /> 1164 </g>
1173   1165 <g
1174 <polygon 1166 id="g4185">
1175 id="polygon4179" 1167 <polygon
1176 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " 1168 id="polygon4187"
1177 style="fill:#80795b" /> 1169 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 "
1178   1170 style="fill:#404040" />
1179 <polygon 1171 </g>
1180 id="polygon4181" 1172 <g
1181 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " 1173 id="g4189">
1182 style="fill:#5e5b43" /> 1174 <rect
1183   1175 id="rect4191"
1184 <polygon 1176 height="2.299"
1185 id="polygon4183" 1177 width="2.2969999"
1186 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " 1178 y="2.45"
1187 style="fill:#9a916c" /> 1179 x="16.849001"
1188   1180 style="fill:#8d8c8c" />
1189 </g> 1181 <rect
1190   1182 id="rect4193"
1191 <g 1183 height="1.183"
1192 id="g4185"> 1184 width="1.182"
1193 <polygon 1185 y="3.0079999"
1194 id="polygon4187" 1186 x="17.407"
1195 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " 1187 style="fill:#8c8663" />
1196 style="fill:#404040" /> 1188 <polygon
1197   1189 id="polygon4195"
1198 </g> 1190 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 "
1199   1191 style="fill:#b8af82" />
1200 <g 1192 <polygon
1201 id="g4189"> 1193 id="polygon4197"
1202 <rect 1194 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 "
1203 id="rect4191" 1195 style="fill:#80795b" />
1204 height="2.299" 1196 <polygon
1205 width="2.2969999" 1197 id="polygon4199"
1206 y="2.45" 1198 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 "
1207 x="16.849001" 1199 style="fill:#5e5b43" />
1208 style="fill:#8d8c8c" /> 1200 <polygon
1209   1201 id="polygon4201"
1210 <rect 1202 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 "
1211 id="rect4193" 1203 style="fill:#9a916c" />
1212 height="1.183" 1204 </g>
1213 width="1.182" 1205 </g>
1214 y="3.0079999" -  
1215 x="17.407" -  
1216 style="fill:#8c8663" /> -  
1217   -  
1218 <polygon -  
1219 id="polygon4195" -  
1220 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 " -  
1221 style="fill:#b8af82" /> -  
1222   -  
1223 <polygon -  
1224 id="polygon4197" -  
1225 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 " -  
1226 style="fill:#80795b" /> -  
1227   -  
1228 <polygon -  
1229 id="polygon4199" -  
1230 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 " -  
1231 style="fill:#5e5b43" /> -  
1232   -  
1233 <polygon -  
1234 id="polygon4201" -  
1235 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 " -  
1236 style="fill:#9a916c" /> -  
1237   -  
1238 </g> -  
1239   -  
1240 </g> -  
1241 </g> 1206 </g>
1242 <g 1207 <g
1243 transform="matrix(1.0001389,0,0,1.0001389,103.05495,10.917051)" 1208 transform="matrix(1.0001389,0,0,1.0001389,95.360495,6.8025531)"
1244 id="g4245"> 1209 id="g4245">
1245 <rect 1210 <rect
1246 style="fill:none" 1211 style="fill:none"
1247 id="rect4247" 1212 id="rect4247"
1248 x="2.204" 1213 x="2.204"
Line 1284... Line 1249...
1284 y="2.4690001" 1249 y="2.4690001"
1285 width="2.164" 1250 width="2.164"
1286 height="2.2620001" /> 1251 height="2.2620001" />
1287 <g 1252 <g
1288 id="g4259"> 1253 id="g4259">
1289 <g 1254 <g
1290 id="g4261"> 1255 id="g4261">
1291 <polygon 1256 <polygon
1292 style="fill:#404040" 1257 style="fill:#404040"
1293 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 " 1258 points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 "
1294 id="polygon4263" /> 1259 id="polygon4263" />
1295   1260 </g>
1296 </g> 1261 <g
1297   1262 id="g4265">
1298 <g 1263 <rect
1299 id="g4265"> 1264 style="fill:#8d8c8c"
1300 <rect 1265 x="2.451"
1301 style="fill:#8d8c8c" 1266 y="2.45"
1302 x="2.451" 1267 width="2.2969999"
1303 y="2.45" 1268 height="2.299"
1304 width="2.2969999" 1269 id="rect4267" />
1305 height="2.299" 1270 <rect
1306 id="rect4267" /> 1271 style="fill:#8c8663"
1307   1272 x="3.0090001"
1308 <rect 1273 y="3.0079999"
1309 style="fill:#8c8663" 1274 width="1.182"
1310 x="3.0090001" 1275 height="1.183"
1311 y="3.0079999" 1276 id="rect4269" />
1312 width="1.182" 1277 <polygon
1313 height="1.183" 1278 style="fill:#b8af82"
1314 id="rect4269" /> 1279 points="4.748,2.45 2.451,2.45 3.009,3.008 4.19,3.008 "
1315   1280 id="polygon4271" />
1316 <polygon 1281 <polygon
1317 style="fill:#b8af82" 1282 style="fill:#80795b"
1318 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 " 1283 points="4.748,4.749 4.19,4.19 4.19,3.008 4.748,2.45 "
1319 id="polygon4271" /> 1284 id="polygon4273" />
1320   1285 <polygon
1321 <polygon 1286 style="fill:#5e5b43"
1322 style="fill:#80795b" 1287 points="2.451,4.749 3.009,4.19 4.19,4.19 4.748,4.749 "
1323 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 " 1288 id="polygon4275" />
1324 id="polygon4273" /> 1289 <polygon
1325   1290 style="fill:#9a916c"
1326 <polygon 1291 points="2.451,4.749 2.451,2.45 3.009,3.008 3.009,4.19 "
1327 style="fill:#5e5b43" 1292 id="polygon4277" />
1328 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 " 1293 </g>
1329 id="polygon4275" /> 1294 <g
1330   1295 id="g4279">
1331 <polygon 1296 <polygon
1332 style="fill:#9a916c" 1297 style="fill:#404040"
1333 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 " 1298 points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 "
1334 id="polygon4277" /> 1299 id="polygon4281" />
1335   1300 </g>
1336 </g> 1301 <g
1337   1302 id="g4283">
1338 <g 1303 <rect
1339 id="g4279"> 1304 style="fill:#8d8c8c"
1340 <polygon 1305 x="9.6499996"
1341 style="fill:#404040" 1306 y="2.45"
1342 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 " 1307 width="2.2969999"
1343 id="polygon4281" /> 1308 height="2.299"
1344   1309 id="rect4285" />
1345 </g> 1310 <rect
1346   1311 style="fill:#8c8663"
1347 <g 1312 x="10.208"
1348 id="g4283"> 1313 y="3.0079999"
1349 <rect 1314 width="1.182"
1350 style="fill:#8d8c8c" 1315 height="1.183"
1351 x="9.6499996" 1316 id="rect4287" />
1352 y="2.45" 1317 <polygon
1353 width="2.2969999" 1318 style="fill:#b8af82"
1354 height="2.299" 1319 points="11.947,2.45 9.65,2.45 10.208,3.008 11.389,3.008 "
1355 id="rect4285" /> 1320 id="polygon4289" />
1356   1321 <polygon
1357 <rect 1322 style="fill:#80795b"
1358 style="fill:#8c8663" 1323 points="11.947,4.749 11.389,4.19 11.389,3.008 11.947,2.45 "
1359 x="10.208" 1324 id="polygon4291" />
1360 y="3.0079999" 1325 <polygon
1361 width="1.182" 1326 style="fill:#5e5b43"
1362 height="1.183" 1327 points="9.65,4.749 10.208,4.19 11.389,4.19 11.947,4.749 "
1363 id="rect4287" /> 1328 id="polygon4293" />
1364   1329 <polygon
1365 <polygon 1330 style="fill:#9a916c"
1366 style="fill:#b8af82" 1331 points="9.65,4.749 9.65,2.45 10.208,3.008 10.208,4.19 "
1367 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 " 1332 id="polygon4295" />
1368 id="polygon4289" /> 1333 </g>
1369   1334 <g
1370 <polygon 1335 id="g4297">
1371 style="fill:#80795b" 1336 <polygon
1372 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 " 1337 style="fill:#404040"
1373 id="polygon4291" /> 1338 points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 "
1374   1339 id="polygon4299" />
1375 <polygon 1340 </g>
1376 style="fill:#5e5b43" 1341 <g
1377 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 " 1342 id="g4301">
1378 id="polygon4293" /> 1343 <rect
1379   1344 style="fill:#8d8c8c"
1380 <polygon 1345 x="16.849001"
1381 style="fill:#9a916c" 1346 y="2.45"
1382 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 " 1347 width="2.2969999"
1383 id="polygon4295" /> 1348 height="2.299"
1384   1349 id="rect4303" />
1385 </g> 1350 <rect
1386   1351 style="fill:#8c8663"
1387 <g 1352 x="17.407"
1388 id="g4297"> 1353 y="3.0079999"
1389 <polygon 1354 width="1.182"
1390 style="fill:#404040" 1355 height="1.183"
1391 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 " 1356 id="rect4305" />
1392 id="polygon4299" /> 1357 <polygon
1393   1358 style="fill:#b8af82"
1394 </g> 1359 points="19.146,2.45 16.849,2.45 17.407,3.008 18.588,3.008 "
1395   1360 id="polygon4307" />
1396 <g 1361 <polygon
1397 id="g4301"> 1362 style="fill:#80795b"
1398 <rect 1363 points="19.146,4.749 18.588,4.19 18.588,3.008 19.146,2.45 "
1399 style="fill:#8d8c8c" 1364 id="polygon4309" />
1400 x="16.849001" 1365 <polygon
1401 y="2.45" 1366 style="fill:#5e5b43"
1402 width="2.2969999" 1367 points="16.849,4.749 17.407,4.19 18.588,4.19 19.146,4.749 "
1403 height="2.299" 1368 id="polygon4311" />
1404 id="rect4303" /> 1369 <polygon
1405   1370 style="fill:#9a916c"
1406 <rect 1371 points="16.849,4.749 16.849,2.45 17.407,3.008 17.407,4.19 "
1407 style="fill:#8c8663" 1372 id="polygon4313" />
1408 x="17.407" 1373 </g>
1409 y="3.0079999" 1374 </g>
1410 width="1.182" -  
1411 height="1.183" -  
1412 id="rect4305" /> -  
1413   -  
1414 <polygon -  
1415 style="fill:#b8af82" -  
1416 points="16.849,2.45 17.407,3.008 18.588,3.008 19.146,2.45 " -  
1417 id="polygon4307" /> -  
1418   -  
1419 <polygon -  
1420 style="fill:#80795b" -  
1421 points="18.588,4.19 18.588,3.008 19.146,2.45 19.146,4.749 " -  
1422 id="polygon4309" /> -  
1423   -  
1424 <polygon -  
1425 style="fill:#5e5b43" -  
1426 points="17.407,4.19 18.588,4.19 19.146,4.749 16.849,4.749 " -  
1427 id="polygon4311" /> -  
1428   -  
1429 <polygon -  
1430 style="fill:#9a916c" -  
1431 points="16.849,2.45 17.407,3.008 17.407,4.19 16.849,4.749 " -  
1432 id="polygon4313" /> -  
1433   -  
1434 </g> -  
1435   -  
1436 </g> -  
1437 </g> 1375 </g>
1438 <g 1376 <g
1439 id="g4491" 1377 id="g4491"
1440 transform="matrix(0,-1.0001389,1.0001389,0,119.80224,44.801534)"> 1378 transform="matrix(0,-1.0001389,1.0001389,0,112.10779,40.687036)">
1441 <rect 1379 <rect
1442 height="2.7909999" 1380 height="2.7909999"
1443 width="2.7909999" 1381 width="2.7909999"
1444 y="2.204" 1382 y="2.204"
1445 x="2.204" 1383 x="2.204"
Line 1466... Line 1404...
1466 x="9.717" 1404 x="9.717"
1467 id="connector1terminal-18" 1405 id="connector1terminal-18"
1468 style="fill:none" /> 1406 style="fill:none" />
1469 <g 1407 <g
1470 id="breadboard-7"> 1408 id="breadboard-7">
1471 <g 1409 <g
1472 id="g4449"> 1410 id="g4449">
1473 <polygon 1411 <polygon
1474 id="polygon4451" 1412 id="polygon4451"
1475 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " 1413 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
1476 style="fill:#404040" /> 1414 style="fill:#404040" />
1477   -  
1478 </g> 1415 </g>
1479   -  
1480 <g 1416 <g
1481 id="g4453"> 1417 id="g4453">
1482 <rect 1418 <rect
1483 id="rect4455" 1419 id="rect4455"
1484 height="2.299" 1420 height="2.299"
1485 width="2.2969999" 1421 width="2.2969999"
1486 y="2.45" 1422 y="2.45"
1487 x="2.451" 1423 x="2.451"
1488 style="fill:#8d8c8c" /> 1424 style="fill:#8d8c8c" />
1489   -  
1490 <rect 1425 <rect
1491 id="rect4457" 1426 id="rect4457"
1492 height="1.183" 1427 height="1.183"
1493 width="1.182" 1428 width="1.182"
1494 y="3.0079999" 1429 y="3.0079999"
1495 x="3.0090001" 1430 x="3.0090001"
1496 style="fill:#8c8663" /> 1431 style="fill:#8c8663" />
1497   -  
1498 <polygon 1432 <polygon
1499 id="polygon4459" 1433 id="polygon4459"
1500 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 " 1434 points="2.451,2.45 3.009,3.008 4.19,3.008 4.748,2.45 "
1501 style="fill:#b8af82" /> 1435 style="fill:#b8af82" />
1502   -  
1503 <polygon 1436 <polygon
1504 id="polygon4461" 1437 id="polygon4461"
1505 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 " 1438 points="4.19,4.19 4.19,3.008 4.748,2.45 4.748,4.749 "
1506 style="fill:#80795b" /> 1439 style="fill:#80795b" />
1507   -  
1508 <polygon 1440 <polygon
1509 id="polygon4463" 1441 id="polygon4463"
1510 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 " 1442 points="3.009,4.19 4.19,4.19 4.748,4.749 2.451,4.749 "
1511 style="fill:#5e5b43" /> 1443 style="fill:#5e5b43" />
1512   -  
1513 <polygon 1444 <polygon
1514 id="polygon4465" 1445 id="polygon4465"
1515 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 " 1446 points="2.451,2.45 3.009,3.008 3.009,4.19 2.451,4.749 "
1516 style="fill:#9a916c" /> 1447 style="fill:#9a916c" />
1517   -  
1518 </g> 1448 </g>
1519   -  
1520 <g 1449 <g
1521 id="g4467"> 1450 id="g4467">
1522 <polygon 1451 <polygon
1523 id="polygon4469" 1452 id="polygon4469"
1524 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " 1453 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
1525 style="fill:#404040" /> 1454 style="fill:#404040" />
1526   -  
1527 </g> 1455 </g>
1528   -  
1529 <g 1456 <g
1530 id="g4471"> 1457 id="g4471">
1531 <rect 1458 <rect
1532 id="rect4473" 1459 id="rect4473"
1533 height="2.299" 1460 height="2.299"
1534 width="2.2969999" 1461 width="2.2969999"
1535 y="2.45" 1462 y="2.45"
1536 x="9.6499996" 1463 x="9.6499996"
1537 style="fill:#8d8c8c" /> 1464 style="fill:#8d8c8c" />
1538   -  
1539 <rect 1465 <rect
1540 id="rect4475" 1466 id="rect4475"
1541 height="1.183" 1467 height="1.183"
1542 width="1.182" 1468 width="1.182"
1543 y="3.0079999" 1469 y="3.0079999"
1544 x="10.208" 1470 x="10.208"
1545 style="fill:#8c8663" /> 1471 style="fill:#8c8663" />
1546   -  
1547 <polygon 1472 <polygon
1548 id="polygon4477" 1473 id="polygon4477"
1549 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 " 1474 points="9.65,2.45 10.208,3.008 11.389,3.008 11.947,2.45 "
1550 style="fill:#b8af82" /> 1475 style="fill:#b8af82" />
1551   -  
1552 <polygon 1476 <polygon
1553 id="polygon4479" 1477 id="polygon4479"
1554 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 " 1478 points="11.389,4.19 11.389,3.008 11.947,2.45 11.947,4.749 "
1555 style="fill:#80795b" /> 1479 style="fill:#80795b" />
1556   -  
1557 <polygon 1480 <polygon
1558 id="polygon4481" 1481 id="polygon4481"
1559 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 " 1482 points="10.208,4.19 11.389,4.19 11.947,4.749 9.65,4.749 "
1560 style="fill:#5e5b43" /> 1483 style="fill:#5e5b43" />
1561   -  
1562 <polygon 1484 <polygon
1563 id="polygon4483" 1485 id="polygon4483"
1564 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 " 1486 points="9.65,2.45 10.208,3.008 10.208,4.19 9.65,4.749 "
1565 style="fill:#9a916c" /> 1487 style="fill:#9a916c" />
1566   -  
1567 </g> 1488 </g>
1568   -  
1569 </g> 1489 </g>
1570 </g> 1490 </g>
1571 <g 1491 <g
1572 id="g3376" 1492 id="g3376"
1573 transform="matrix(1.0001389,0,0,1.0001389,68.517272,68.604263)"> 1493 transform="matrix(1.0001389,0,0,1.0001389,60.822817,64.489765)">
1574 <g 1494 <g
1575 id="breadboard-07" 1495 id="breadboard-07"
1576 transform="translate(-5.2541901e-8,7.171834)"> 1496 transform="translate(-5.2541901e-8,7.171834)">
1577 <g 1497 <g
1578 id="g20"> 1498 id="g20">
1579 <polygon 1499 <polygon
1580 points="0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 " 1500 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 "
1581 id="polygon22-3" 1501 id="polygon22-3"
1582 style="fill:#404040" /> 1502 style="fill:#404040" />
1583   1503 </g>
1584 </g> 1504 <g
1585   1505 id="g24">
1586 <g 1506 <rect
1587 id="g24"> 1507 x="2.451"
1588 <rect 1508 y="2.45"
1589 x="2.451" 1509 width="2.2969999"
1590 y="2.45" 1510 height="2.299"
1591 width="2.2969999" 1511 id="rect26"
1592 height="2.299" 1512 style="fill:#8d8c8c" />
1593 id="rect26" 1513 <rect
1594 style="fill:#8d8c8c" /> 1514 x="3.0090001"
1595   1515 y="3.0079999"
1596 <rect 1516 width="1.182"
1597 x="3.0090001" 1517 height="1.183"
1598 y="3.0079999" 1518 id="rect28"
1599 width="1.182" 1519 style="fill:#8c8663" />
1600 height="1.183" 1520 <polygon
1601 id="rect28" 1521 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 "
1602 style="fill:#8c8663" /> 1522 id="polygon30-4"
1603   1523 style="fill:#b8af82" />
1604 <polygon 1524 <polygon
1605 points="4.748,2.45 2.451,2.45 3.009,3.008 4.19,3.008 " 1525 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 "
1606 id="polygon30-4" 1526 id="polygon32"
1607 style="fill:#b8af82" /> 1527 style="fill:#80795b" />
1608   1528 <polygon
1609 <polygon 1529 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 "
1610 points="4.748,4.749 4.19,4.19 4.19,3.008 4.748,2.45 " 1530 id="polygon34"
1611 id="polygon32" 1531 style="fill:#5e5b43" />
1612 style="fill:#80795b" /> 1532 <polygon
1613   1533 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 "
1614 <polygon 1534 id="polygon36"
1615 points="2.451,4.749 3.009,4.19 4.19,4.19 4.748,4.749 " 1535 style="fill:#9a916c" />
1616 id="polygon34" 1536 </g>
1617 style="fill:#5e5b43" /> 1537 <g
1618   1538 id="g38">
1619 <polygon 1539 <polygon
1620 points="2.451,4.749 2.451,2.45 3.009,3.008 3.009,4.19 " 1540 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 "
1621 id="polygon36" 1541 id="polygon40-8"
1622 style="fill:#9a916c" /> 1542 style="fill:#404040" />
1623   1543 </g>
1624 </g> 1544 <g
1625   1545 id="g42">
1626 <g 1546 <rect
1627 id="g38"> 1547 x="9.6499996"
1628 <polygon 1548 y="2.45"
1629 points="7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 " 1549 width="2.2969999"
1630 id="polygon40-8" 1550 height="2.299"
1631 style="fill:#404040" /> 1551 id="rect44"
1632   1552 style="fill:#8d8c8c" />
1633 </g> 1553 <rect
1634   1554 x="10.208"
1635 <g 1555 y="3.0079999"
1636 id="g42"> 1556 width="1.182"
1637 <rect 1557 height="1.183"
1638 x="9.6499996" 1558 id="rect46-4"
1639 y="2.45" 1559 style="fill:#8c8663" />
1640 width="2.2969999" 1560 <polygon
1641 height="2.299" 1561 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 "
1642 id="rect44" 1562 id="polygon48-2"
1643 style="fill:#8d8c8c" /> 1563 style="fill:#b8af82" />
1644   1564 <polygon
1645 <rect 1565 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 "
1646 x="10.208" 1566 id="polygon50"
1647 y="3.0079999" 1567 style="fill:#80795b" />
1648 width="1.182" 1568 <polygon
1649 height="1.183" 1569 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 "
1650 id="rect46-4" 1570 id="polygon52"
1651 style="fill:#8c8663" /> 1571 style="fill:#5e5b43" />
1652   1572 <polygon
1653 <polygon 1573 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 "
1654 points="11.947,2.45 9.65,2.45 10.208,3.008 11.389,3.008 " 1574 id="polygon54"
1655 id="polygon48-2" 1575 style="fill:#9a916c" />
1656 style="fill:#b8af82" /> 1576 </g>
1657   1577 <g
1658 <polygon 1578 id="g56-7">
1659 points="11.947,4.749 11.389,4.19 11.389,3.008 11.947,2.45 " 1579 <polygon
1660 id="polygon50" 1580 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 "
1661 style="fill:#80795b" /> 1581 id="polygon58-5"
1662   1582 style="fill:#404040" />
1663 <polygon 1583 </g>
1664 points="9.65,4.749 10.208,4.19 11.389,4.19 11.947,4.749 " 1584 <g
1665 id="polygon52" 1585 id="g60">
1666 style="fill:#5e5b43" /> 1586 <rect
1667   1587 x="16.849001"
1668 <polygon 1588 y="2.45"
1669 points="9.65,4.749 9.65,2.45 10.208,3.008 10.208,4.19 " 1589 width="2.2969999"
1670 id="polygon54" 1590 height="2.299"
1671 style="fill:#9a916c" /> 1591 id="rect62"
1672   1592 style="fill:#8d8c8c" />
1673 </g> 1593 <rect
1674   1594 x="17.407"
1675 <g 1595 y="3.0079999"
1676 id="g56-7"> 1596 width="1.182"
1677 <polygon 1597 height="1.183"
1678 points="14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 " 1598 id="rect64"
1679 id="polygon58-5" 1599 style="fill:#8c8663" />
1680 style="fill:#404040" /> 1600 <polygon
1681   1601 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 "
1682 </g> 1602 id="polygon66"
1683   1603 style="fill:#b8af82" />
1684 <g 1604 <polygon
1685 id="g60"> 1605 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 "
1686 <rect 1606 id="polygon68"
1687 x="16.849001" 1607 style="fill:#80795b" />
1688 y="2.45" 1608 <polygon
1689 width="2.2969999" 1609 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 "
1690 height="2.299" 1610 id="polygon70"
1691 id="rect62" 1611 style="fill:#5e5b43" />
1692 style="fill:#8d8c8c" /> 1612 <polygon
1693   1613 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 "
1694 <rect 1614 id="polygon72"
1695 x="17.407" 1615 style="fill:#9a916c" />
1696 y="3.0079999" 1616 </g>
1697 width="1.182" 1617 <g
1698 height="1.183" 1618 id="g74">
1699 id="rect64" 1619 <polygon
1700 style="fill:#8c8663" /> 1620 points="28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 "
1701   1621 id="polygon76"
1702 <polygon 1622 style="fill:#404040" />
1703 points="19.146,2.45 16.849,2.45 17.407,3.008 18.588,3.008 " 1623 </g>
1704 id="polygon66" 1624 <g
1705 style="fill:#b8af82" /> 1625 id="g78">
1706   1626 <rect
1707 <polygon 1627 x="24.048"
1708 points="19.146,4.749 18.588,4.19 18.588,3.008 19.146,2.45 " 1628 y="2.45"
1709 id="polygon68" 1629 width="2.2969999"
1710 style="fill:#80795b" /> 1630 height="2.299"
1711   1631 id="rect80"
1712 <polygon 1632 style="fill:#8d8c8c" />
1713 points="16.849,4.749 17.407,4.19 18.588,4.19 19.146,4.749 " 1633 <rect
1714 id="polygon70" 1634 x="24.606001"
1715 style="fill:#5e5b43" /> 1635 y="3.0079999"
1716   1636 width="1.182"
1717 <polygon 1637 height="1.183"
1718 points="16.849,4.749 16.849,2.45 17.407,3.008 17.407,4.19 " 1638 id="rect82"
1719 id="polygon72" 1639 style="fill:#8c8663" />
1720 style="fill:#9a916c" /> 1640 <polygon
1721   1641 points="25.787,3.008 26.345,2.45 24.048,2.45 24.606,3.008 "
1722 </g> 1642 id="polygon84"
1723   1643 style="fill:#b8af82" />
1724 <g 1644 <polygon
1725 id="g74"> 1645 points="26.345,2.45 26.345,4.749 25.787,4.19 25.787,3.008 "
1726 <polygon 1646 id="polygon86"
1727 points="21.597,5.637 23.16,7.199 27.232,7.199 28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 " 1647 style="fill:#80795b" />
1728 id="polygon76" 1648 <polygon
1729 style="fill:#404040" /> 1649 points="26.345,4.749 24.048,4.749 24.606,4.19 25.787,4.19 "
1730   1650 id="polygon88"
1731 </g> 1651 style="fill:#5e5b43" />
1732   1652 <polygon
1733 <g 1653 points="24.606,4.19 24.048,4.749 24.048,2.45 24.606,3.008 "
1734 id="g78"> 1654 id="polygon90"
1735 <rect 1655 style="fill:#9a916c" />
1736 x="24.048" 1656 </g>
1737 y="2.45" 1657 <g
1738 width="2.2969999" 1658 id="g92">
1739 height="2.299" 1659 <polygon
1740 id="rect80" 1660 points="35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 "
1741 style="fill:#8d8c8c" /> 1661 id="polygon94"
1742   1662 style="fill:#404040" />
1743 <rect 1663 </g>
1744 x="24.606001" 1664 <g
1745 y="3.0079999" 1665 id="g96">
1746 width="1.182" 1666 <rect
1747 height="1.183" 1667 x="31.247"
1748 id="rect82" 1668 y="2.45"
1749 style="fill:#8c8663" /> 1669 width="2.2969999"
1750   1670 height="2.299"
1751 <polygon 1671 id="rect98"
1752 points="26.345,2.45 24.048,2.45 24.606,3.008 25.787,3.008 " 1672 style="fill:#8d8c8c" />
1753 id="polygon84" 1673 <rect
1754 style="fill:#b8af82" /> 1674 x="31.805"
1755   1675 y="3.0079999"
1756 <polygon 1676 width="1.182"
1757 points="26.345,4.749 25.787,4.19 25.787,3.008 26.345,2.45 " 1677 height="1.183"
1758 id="polygon86" 1678 id="rect100"
1759 style="fill:#80795b" /> 1679 style="fill:#8c8663" />
1760   1680 <polygon
1761 <polygon 1681 points="32.986,3.008 33.544,2.45 31.247,2.45 31.805,3.008 "
1762 points="24.048,4.749 24.606,4.19 25.787,4.19 26.345,4.749 " 1682 id="polygon102"
1763 id="polygon88" 1683 style="fill:#b8af82" />
1764 style="fill:#5e5b43" /> 1684 <polygon
1765   1685 points="33.544,2.45 33.544,4.749 32.986,4.19 32.986,3.008 "
1766 <polygon 1686 id="polygon104"
1767 points="24.048,4.749 24.048,2.45 24.606,3.008 24.606,4.19 " 1687 style="fill:#80795b" />
1768 id="polygon90" 1688 <polygon
1769 style="fill:#9a916c" /> 1689 points="33.544,4.749 31.247,4.749 31.805,4.19 32.986,4.19 "
1770   1690 id="polygon106"
1771 </g> 1691 style="fill:#5e5b43" />
1772   1692 <polygon
1773 <g 1693 points="31.805,4.19 31.247,4.749 31.247,2.45 31.805,3.008 "
1774 id="g92"> 1694 id="polygon108"
1775 <polygon 1695 style="fill:#9a916c" />
1776 points="28.796,5.637 30.359,7.199 34.431,7.199 35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 " 1696 </g>
1777 id="polygon94" 1697 <g
1778 style="fill:#404040" /> 1698 id="g110">
1779   1699 <polygon
1780 </g> 1700 points="43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 "
1781   1701 id="polygon112"
1782 <g 1702 style="fill:#404040" />
1783 id="g96"> 1703 </g>
1784 <rect 1704 <g
1785 x="31.247" 1705 id="g114">
1786 y="2.45" 1706 <rect
1787 width="2.2969999" 1707 x="38.445999"
1788 height="2.299" 1708 y="2.45"
1789 id="rect98" 1709 width="2.2969999"
1790 style="fill:#8d8c8c" /> 1710 height="2.299"
1791   1711 id="rect116"
1792 <rect 1712 style="fill:#8d8c8c" />
1793 x="31.805" 1713 <rect
1794 y="3.0079999" 1714 x="39.004002"
1795 width="1.182" 1715 y="3.0079999"
1796 height="1.183" 1716 width="1.182"
1797 id="rect100" 1717 height="1.183"
1798 style="fill:#8c8663" /> 1718 id="rect118"
1799   1719 style="fill:#8c8663" />
1800 <polygon 1720 <polygon
1801 points="33.544,2.45 31.247,2.45 31.805,3.008 32.986,3.008 " 1721 points="40.185,3.008 40.743,2.45 38.446,2.45 39.004,3.008 "
1802 id="polygon102" 1722 id="polygon120"
1803 style="fill:#b8af82" /> 1723 style="fill:#b8af82" />
1804   1724 <polygon
1805 <polygon 1725 points="40.743,2.45 40.743,4.749 40.185,4.19 40.185,3.008 "
1806 points="33.544,4.749 32.986,4.19 32.986,3.008 33.544,2.45 " 1726 id="polygon122"
1807 id="polygon104" 1727 style="fill:#80795b" />
1808 style="fill:#80795b" /> 1728 <polygon
1809   1729 points="40.743,4.749 38.446,4.749 39.004,4.19 40.185,4.19 "
1810 <polygon 1730 id="polygon124"
1811 points="31.247,4.749 31.805,4.19 32.986,4.19 33.544,4.749 " 1731 style="fill:#5e5b43" />
1812 id="polygon106" 1732 <polygon
1813 style="fill:#5e5b43" /> 1733 points="39.004,4.19 38.446,4.749 38.446,2.45 39.004,3.008 "
1814   1734 id="polygon126"
1815 <polygon 1735 style="fill:#9a916c" />
1816 points="31.247,4.749 31.247,2.45 31.805,3.008 31.805,4.19 " 1736 </g>
1817 id="polygon108" 1737 <g
1818 style="fill:#9a916c" /> 1738 id="g128">
1819   1739 <polygon
1820 </g> 1740 points="50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 "
1821   1741 id="polygon130"
1822 <g 1742 style="fill:#404040" />
1823 id="g110"> 1743 </g>
1824 <polygon 1744 <g
1825 points="35.995,5.637 37.558,7.199 41.63,7.199 43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 " 1745 id="g132">
1826 id="polygon112" 1746 <rect
1827 style="fill:#404040" /> 1747 x="45.645"
1828   1748 y="2.45"
1829 </g> 1749 width="2.2969999"
1830   1750 height="2.299"
1831 <g 1751 id="rect134"
1832 id="g114"> 1752 style="fill:#8d8c8c" />
1833 <rect 1753 <rect
1834 x="38.445999" 1754 x="46.202999"
1835 y="2.45" 1755 y="3.0079999"
1836 width="2.2969999" 1756 width="1.182"
1837 height="2.299" 1757 height="1.183"
1838 id="rect116" 1758 id="rect136"
1839 style="fill:#8d8c8c" /> 1759 style="fill:#8c8663" />
1840   1760 <polygon
1841 <rect 1761 points="47.384,3.008 47.942,2.45 45.645,2.45 46.203,3.008 "
1842 x="39.004002" 1762 id="polygon138"
1843 y="3.0079999" 1763 style="fill:#b8af82" />
1844 width="1.182" 1764 <polygon
1845 height="1.183" 1765 points="47.942,2.45 47.942,4.749 47.384,4.19 47.384,3.008 "
1846 id="rect118" 1766 id="polygon140"
1847 style="fill:#8c8663" /> 1767 style="fill:#80795b" />
1848   1768 <polygon
1849 <polygon 1769 points="47.942,4.749 45.645,4.749 46.203,4.19 47.384,4.19 "
1850 points="40.743,2.45 38.446,2.45 39.004,3.008 40.185,3.008 " 1770 id="polygon142"
1851 id="polygon120" 1771 style="fill:#5e5b43" />
1852 style="fill:#b8af82" /> 1772 <polygon
1853   1773 points="46.203,4.19 45.645,4.749 45.645,2.45 46.203,3.008 "
1854 <polygon 1774 id="polygon144"
1855 points="40.743,4.749 40.185,4.19 40.185,3.008 40.743,2.45 " 1775 style="fill:#9a916c" />
1856 id="polygon122" 1776 </g>
1857 style="fill:#80795b" /> 1777 <g
1858   1778 id="g146">
1859 <polygon 1779 <polygon
1860 points="38.446,4.749 39.004,4.19 40.185,4.19 40.743,4.749 " 1780 points="57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 "
1861 id="polygon124" 1781 id="polygon148"
1862 style="fill:#5e5b43" /> 1782 style="fill:#404040" />
1863   1783 </g>
1864 <polygon 1784 <g
1865 points="38.446,4.749 38.446,2.45 39.004,3.008 39.004,4.19 " 1785 id="g150">
1866 id="polygon126" 1786 <rect
1867 style="fill:#9a916c" /> 1787 x="52.844002"
1868   1788 y="2.45"
1869 </g> 1789 width="2.2969999"
1870   1790 height="2.299"
1871 <g 1791 id="rect152"
1872 id="g128"> 1792 style="fill:#8d8c8c" />
1873 <polygon 1793 <rect
1874 points="43.194,5.637 44.757,7.199 48.829,7.199 50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 " 1794 x="53.402"
1875 id="polygon130" 1795 y="3.0079999"
1876 style="fill:#404040" /> 1796 width="1.182"
1877   1797 height="1.183"
1878 </g> 1798 id="rect154"
1879   1799 style="fill:#8c8663" />
1880 <g 1800 <polygon
1881 id="g132"> 1801 points="54.583,3.008 55.141,2.45 52.844,2.45 53.402,3.008 "
1882 <rect 1802 id="polygon156"
1883 x="45.645" 1803 style="fill:#b8af82" />
1884 y="2.45" 1804 <polygon
1885 width="2.2969999" 1805 points="55.141,2.45 55.141,4.749 54.583,4.19 54.583,3.008 "
1886 height="2.299" 1806 id="polygon158"
1887 id="rect134" 1807 style="fill:#80795b" />
1888 style="fill:#8d8c8c" /> 1808 <polygon
1889   1809 points="55.141,4.749 52.844,4.749 53.402,4.19 54.583,4.19 "
1890 <rect 1810 id="polygon160"
1891 x="46.202999" 1811 style="fill:#5e5b43" />
1892 y="3.0079999" 1812 <polygon
1893 width="1.182" 1813 points="53.402,4.19 52.844,4.749 52.844,2.45 53.402,3.008 "
1894 height="1.183" 1814 id="polygon162"
1895 id="rect136" 1815 style="fill:#9a916c" />
1896 style="fill:#8c8663" /> 1816 </g>
1897   1817 </g>
1898 <polygon -  
1899 points="47.942,2.45 45.645,2.45 46.203,3.008 47.384,3.008 " -  
1900 id="polygon138" -  
1901 style="fill:#b8af82" /> -  
1902   -  
1903 <polygon -  
1904 points="47.942,4.749 47.384,4.19 47.384,3.008 47.942,2.45 " -  
1905 id="polygon140" -  
1906 style="fill:#80795b" /> -  
1907   -  
1908 <polygon -  
1909 points="45.645,4.749 46.203,4.19 47.384,4.19 47.942,4.749 " -  
1910 id="polygon142" -  
1911 style="fill:#5e5b43" /> -  
1912   -  
1913 <polygon -  
1914 points="45.645,4.749 45.645,2.45 46.203,3.008 46.203,4.19 " -  
1915 id="polygon144" -  
1916 style="fill:#9a916c" /> -  
1917   -  
1918 </g> -  
1919   -  
1920 <g -  
1921 id="g146"> -  
1922 <polygon -  
1923 points="50.393,5.637 51.956,7.199 56.028,7.199 57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 " -  
1924 id="polygon148" -  
1925 style="fill:#404040" /> -  
1926   -  
1927 </g> -  
1928   -  
1929 <g -  
1930 id="g150"> -  
1931 <rect -  
1932 x="52.844002" -  
1933 y="2.45" -  
1934 width="2.2969999" -  
1935 height="2.299" -  
1936 id="rect152" -  
1937 style="fill:#8d8c8c" /> -  
1938   -  
1939 <rect -  
1940 x="53.402" -  
1941 y="3.0079999" -  
1942 width="1.182" -  
1943 height="1.183" -  
1944 id="rect154" -  
1945 style="fill:#8c8663" /> -  
1946   -  
1947 <polygon -  
1948 points="55.141,2.45 52.844,2.45 53.402,3.008 54.583,3.008 " -  
1949 id="polygon156" -  
1950 style="fill:#b8af82" /> -  
1951   -  
1952 <polygon -  
1953 points="55.141,4.749 54.583,4.19 54.583,3.008 55.141,2.45 " -  
1954 id="polygon158" -  
1955 style="fill:#80795b" /> -  
1956   -  
1957 <polygon -  
1958 points="52.844,4.749 53.402,4.19 54.583,4.19 55.141,4.749 " -  
1959 id="polygon160" -  
1960 style="fill:#5e5b43" /> -  
1961   -  
1962 <polygon -  
1963 points="52.844,4.749 52.844,2.45 53.402,3.008 53.402,4.19 " -  
1964 id="polygon162" -  
1965 style="fill:#9a916c" /> -  
1966   -  
1967 </g> -  
1968   -  
1969 </g> -  
1970 <g 1818 <g
1971 id="g3342"> 1819 id="g3342">
1972 <rect 1820 <rect
1973 style="fill:none" 1821 style="fill:none"
1974 height="2.7909999" 1822 height="2.7909999"
Line 2195... Line 2043...
2195 height="2.2620001" /> 2043 height="2.2620001" />
2196 </g> 2044 </g>
2197 <g 2045 <g
2198 id="g3177" 2046 id="g3177"
2199 transform="translate(0.0160871,0)"> 2047 transform="translate(0.0160871,0)">
2200 <g 2048 <g
2201 id="g3179"> 2049 id="g3179">
2202 <polygon 2050 <polygon
2203 id="polygon3181" 2051 id="polygon3181"
2204 points="7.199,5.637 7.199,1.564 5.635,0 1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 " 2052 points="1.563,0 1.563,0 0,1.564 0,5.637 1.563,7.199 5.635,7.199 7.199,5.637 7.199,1.564 5.635,0 "
2205 style="fill:#404040" /> 2053 style="fill:#404040" />
2206   2054 </g>
2207 </g> 2055 <g
2208   2056 id="g3183">
2209 <g 2057 <rect
2210 id="g3183"> 2058 id="rect3185"
2211 <rect 2059 height="2.299"
2212 id="rect3185" 2060 width="2.2969999"
2213 height="2.299" 2061 y="2.45"
2214 width="2.2969999" 2062 x="2.451"
2215 y="2.45" 2063 style="fill:#8d8c8c" />
2216 x="2.451" 2064 <rect
2217 style="fill:#8d8c8c" /> 2065 id="rect3187"
2218   2066 height="1.183"
2219 <rect 2067 width="1.182"
2220 id="rect3187" 2068 y="3.0079999"
2221 height="1.183" 2069 x="3.0090001"
2222 width="1.182" 2070 style="fill:#8c8663" />
2223 y="3.0079999" 2071 <polygon
2224 x="3.0090001" 2072 id="polygon3189"
2225 style="fill:#8c8663" /> 2073 points="3.009,3.008 4.19,3.008 4.748,2.45 2.451,2.45 "
2226   2074 style="fill:#b8af82" />
2227 <polygon 2075 <polygon
2228 id="polygon3189" 2076 id="polygon3191"
2229 points="4.19,3.008 4.748,2.45 2.451,2.45 3.009,3.008 " 2077 points="4.19,3.008 4.748,2.45 4.748,4.749 4.19,4.19 "
2230 style="fill:#b8af82" /> 2078 style="fill:#80795b" />
2231   2079 <polygon
2232 <polygon 2080 id="polygon3193"
2233 id="polygon3191" 2081 points="4.19,4.19 4.748,4.749 2.451,4.749 3.009,4.19 "
2234 points="4.748,2.45 4.748,4.749 4.19,4.19 4.19,3.008 " 2082 style="fill:#5e5b43" />
2235 style="fill:#80795b" /> 2083 <polygon
2236   2084 id="polygon3195"
2237 <polygon 2085 points="3.009,3.008 3.009,4.19 2.451,4.749 2.451,2.45 "
2238 id="polygon3193" 2086 style="fill:#9a916c" />
2239 points="4.748,4.749 2.451,4.749 3.009,4.19 4.19,4.19 " 2087 </g>
2240 style="fill:#5e5b43" /> 2088 <g
2241   2089 id="g3197">
2242 <polygon 2090 <polygon
2243 id="polygon3195" 2091 id="polygon3199"
2244 points="3.009,4.19 2.451,4.749 2.451,2.45 3.009,3.008 " 2092 points="8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 14.398,5.637 14.398,1.564 12.834,0 "
2245 style="fill:#9a916c" /> 2093 style="fill:#404040" />
2246   2094 </g>
2247 </g> 2095 <g
2248   2096 id="g3201">
2249 <g 2097 <rect
2250 id="g3197"> 2098 id="rect3203"
2251 <polygon 2099 height="2.299"
2252 id="polygon3199" 2100 width="2.2969999"
2253 points="14.398,5.637 14.398,1.564 12.834,0 8.762,0 8.762,0 7.199,1.564 7.199,5.637 8.762,7.199 12.834,7.199 " 2101 y="2.45"
2254 style="fill:#404040" /> 2102 x="9.6499996"
2255   2103 style="fill:#8d8c8c" />
2256 </g> 2104 <rect
2257   2105 id="rect3205"
2258 <g 2106 height="1.183"
2259 id="g3201"> 2107 width="1.182"
2260 <rect 2108 y="3.0079999"
2261 id="rect3203" 2109 x="10.208"
2262 height="2.299" 2110 style="fill:#8c8663" />
2263 width="2.2969999" 2111 <polygon
2264 y="2.45" 2112 id="polygon3207"
2265 x="9.6499996" 2113 points="10.208,3.008 11.389,3.008 11.947,2.45 9.65,2.45 "
2266 style="fill:#8d8c8c" /> 2114 style="fill:#b8af82" />
2267   2115 <polygon
2268 <rect 2116 id="polygon3209"
2269 id="rect3205" 2117 points="11.389,3.008 11.947,2.45 11.947,4.749 11.389,4.19 "
2270 height="1.183" 2118 style="fill:#80795b" />
2271 width="1.182" 2119 <polygon
2272 y="3.0079999" 2120 id="polygon3211"
2273 x="10.208" 2121 points="11.389,4.19 11.947,4.749 9.65,4.749 10.208,4.19 "
2274 style="fill:#8c8663" /> 2122 style="fill:#5e5b43" />
2275   2123 <polygon
2276 <polygon 2124 id="polygon3213"
2277 id="polygon3207" 2125 points="10.208,3.008 10.208,4.19 9.65,4.749 9.65,2.45 "
2278 points="11.389,3.008 11.947,2.45 9.65,2.45 10.208,3.008 " 2126 style="fill:#9a916c" />
2279 style="fill:#b8af82" /> 2127 </g>
2280   2128 <g
2281 <polygon 2129 id="g3215">
2282 id="polygon3209" 2130 <polygon
2283 points="11.947,2.45 11.947,4.749 11.389,4.19 11.389,3.008 " 2131 id="polygon3217"
2284 style="fill:#80795b" /> 2132 points="15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 21.597,5.637 21.597,1.564 20.033,0 "
2285   2133 style="fill:#404040" />
2286 <polygon 2134 </g>
2287 id="polygon3211" 2135 <g
2288 points="11.947,4.749 9.65,4.749 10.208,4.19 11.389,4.19 " 2136 id="g3219">
2289 style="fill:#5e5b43" /> 2137 <rect
2290   2138 id="rect3221"
2291 <polygon 2139 height="2.299"
2292 id="polygon3213" 2140 width="2.2969999"
2293 points="10.208,4.19 9.65,4.749 9.65,2.45 10.208,3.008 " 2141 y="2.45"
2294 style="fill:#9a916c" /> 2142 x="16.849001"
2295   2143 style="fill:#8d8c8c" />
2296 </g> 2144 <rect
2297   2145 id="rect3223"
2298 <g 2146 height="1.183"
2299 id="g3215"> 2147 width="1.182"
2300 <polygon 2148 y="3.0079999"
2301 id="polygon3217" 2149 x="17.407"
2302 points="21.597,5.637 21.597,1.564 20.033,0 15.961,0 15.961,0 14.398,1.564 14.398,5.637 15.961,7.199 20.033,7.199 " 2150 style="fill:#8c8663" />
2303 style="fill:#404040" /> 2151 <polygon
2304   2152 id="polygon3225"
2305 </g> 2153 points="17.407,3.008 18.588,3.008 19.146,2.45 16.849,2.45 "
2306   2154 style="fill:#b8af82" />
2307 <g 2155 <polygon
2308 id="g3219"> 2156 id="polygon3227"
2309 <rect 2157 points="18.588,3.008 19.146,2.45 19.146,4.749 18.588,4.19 "
2310 id="rect3221" 2158 style="fill:#80795b" />
2311 height="2.299" 2159 <polygon
2312 width="2.2969999" 2160 id="polygon3229"
2313 y="2.45" 2161 points="18.588,4.19 19.146,4.749 16.849,4.749 17.407,4.19 "
2314 x="16.849001" 2162 style="fill:#5e5b43" />
2315 style="fill:#8d8c8c" /> 2163 <polygon
2316   2164 id="polygon3231"
2317 <rect 2165 points="17.407,3.008 17.407,4.19 16.849,4.749 16.849,2.45 "
2318 id="rect3223" 2166 style="fill:#9a916c" />
2319 height="1.183" 2167 </g>
2320 width="1.182" 2168 <g
2321 y="3.0079999" 2169 id="g3233">
2322 x="17.407" 2170 <polygon
2323 style="fill:#8c8663" /> 2171 id="polygon3235"
2324   2172 points="23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 28.796,5.637 28.796,1.564 27.232,0 "
2325 <polygon 2173 style="fill:#404040" />
2326 id="polygon3225" 2174 </g>
2327 points="18.588,3.008 19.146,2.45 16.849,2.45 17.407,3.008 " 2175 <g
2328 style="fill:#b8af82" /> 2176 id="g3237">
2329   2177 <rect
2330 <polygon 2178 id="rect3239"
2331 id="polygon3227" 2179 height="2.299"
2332 points="19.146,2.45 19.146,4.749 18.588,4.19 18.588,3.008 " 2180 width="2.2969999"
2333 style="fill:#80795b" /> 2181 y="2.45"
2334   2182 x="24.048"
2335 <polygon 2183 style="fill:#8d8c8c" />
2336 id="polygon3229" 2184 <rect
2337 points="19.146,4.749 16.849,4.749 17.407,4.19 18.588,4.19 " 2185 id="rect3241"
2338 style="fill:#5e5b43" /> 2186 height="1.183"
2339   2187 width="1.182"
2340 <polygon 2188 y="3.0079999"
2341 id="polygon3231" 2189 x="24.606001"
2342 points="17.407,4.19 16.849,4.749 16.849,2.45 17.407,3.008 " 2190 style="fill:#8c8663" />
2343 style="fill:#9a916c" /> 2191 <polygon
2344   2192 id="polygon3243"
2345 </g> 2193 points="24.606,3.008 25.787,3.008 26.345,2.45 24.048,2.45 "
2346   2194 style="fill:#b8af82" />
2347 <g 2195 <polygon
2348 id="g3233"> 2196 id="polygon3245"
2349 <polygon 2197 points="25.787,3.008 26.345,2.45 26.345,4.749 25.787,4.19 "
2350 id="polygon3235" 2198 style="fill:#80795b" />
2351 points="28.796,5.637 28.796,1.564 27.232,0 23.16,0 23.16,0 21.597,1.564 21.597,5.637 23.16,7.199 27.232,7.199 " 2199 <polygon
2352 style="fill:#404040" /> 2200 id="polygon3247"
2353   2201 points="25.787,4.19 26.345,4.749 24.048,4.749 24.606,4.19 "
2354 </g> 2202 style="fill:#5e5b43" />
2355   2203 <polygon
2356 <g 2204 id="polygon3249"
2357 id="g3237"> 2205 points="24.606,3.008 24.606,4.19 24.048,4.749 24.048,2.45 "
2358 <rect 2206 style="fill:#9a916c" />
2359 id="rect3239" 2207 </g>
2360 height="2.299" 2208 <g
2361 width="2.2969999" 2209 id="g3251">
2362 y="2.45" 2210 <polygon
2363 x="24.048" 2211 id="polygon3253"
2364 style="fill:#8d8c8c" /> 2212 points="30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 35.995,5.637 35.995,1.564 34.431,0 "
2365   2213 style="fill:#404040" />
2366 <rect 2214 </g>
2367 id="rect3241" 2215 <g
2368 height="1.183" 2216 id="g3255">
2369 width="1.182" 2217 <rect
2370 y="3.0079999" 2218 id="rect3257"
2371 x="24.606001" 2219 height="2.299"
2372 style="fill:#8c8663" /> 2220 width="2.2969999"
2373   2221 y="2.45"
2374 <polygon 2222 x="31.247"
2375 id="polygon3243" 2223 style="fill:#8d8c8c" />
2376 points="25.787,3.008 26.345,2.45 24.048,2.45 24.606,3.008 " 2224 <rect
2377 style="fill:#b8af82" /> 2225 id="rect3259"
2378   2226 height="1.183"
2379 <polygon 2227 width="1.182"
2380 id="polygon3245" 2228 y="3.0079999"
2381 points="26.345,2.45 26.345,4.749 25.787,4.19 25.787,3.008 " 2229 x="31.805"
2382 style="fill:#80795b" /> 2230 style="fill:#8c8663" />
2383   2231 <polygon
2384 <polygon 2232 id="polygon3261"
2385 id="polygon3247" 2233 points="31.805,3.008 32.986,3.008 33.544,2.45 31.247,2.45 "
2386 points="26.345,4.749 24.048,4.749 24.606,4.19 25.787,4.19 " 2234 style="fill:#b8af82" />
2387 style="fill:#5e5b43" /> 2235 <polygon
2388   2236 id="polygon3263"
2389 <polygon 2237 points="32.986,3.008 33.544,2.45 33.544,4.749 32.986,4.19 "
2390 id="polygon3249" 2238 style="fill:#80795b" />
2391 points="24.606,4.19 24.048,4.749 24.048,2.45 24.606,3.008 " 2239 <polygon
2392 style="fill:#9a916c" /> 2240 id="polygon3265"
2393   2241 points="32.986,4.19 33.544,4.749 31.247,4.749 31.805,4.19 "
2394 </g> 2242 style="fill:#5e5b43" />
2395   2243 <polygon
2396 <g 2244 id="polygon3267"
2397 id="g3251"> 2245 points="31.805,3.008 31.805,4.19 31.247,4.749 31.247,2.45 "
2398 <polygon 2246 style="fill:#9a916c" />
2399 id="polygon3253" 2247 </g>
2400 points="35.995,5.637 35.995,1.564 34.431,0 30.359,0 30.359,0 28.796,1.564 28.796,5.637 30.359,7.199 34.431,7.199 " 2248 <g
2401 style="fill:#404040" /> 2249 id="g3269">
2402   2250 <polygon
2403 </g> 2251 id="polygon3271"
2404   2252 points="37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 43.194,5.637 43.194,1.564 41.63,0 "
2405 <g 2253 style="fill:#404040" />
2406 id="g3255"> 2254 </g>
2407 <rect 2255 <g
2408 id="rect3257" 2256 id="g3273">
2409 height="2.299" 2257 <rect
2410 width="2.2969999" 2258 id="rect3275"
2411 y="2.45" 2259 height="2.299"
2412 x="31.247" 2260 width="2.2969999"
2413 style="fill:#8d8c8c" /> 2261 y="2.45"
2414   2262 x="38.445999"
2415 <rect 2263 style="fill:#8d8c8c" />
2416 id="rect3259" 2264 <rect
2417 height="1.183" 2265 id="rect3277"
2418 width="1.182" 2266 height="1.183"
2419 y="3.0079999" 2267 width="1.182"
2420 x="31.805" 2268 y="3.0079999"
2421 style="fill:#8c8663" /> 2269 x="39.004002"
2422   2270 style="fill:#8c8663" />
2423 <polygon 2271 <polygon
2424 id="polygon3261" 2272 id="polygon3279"
2425 points="32.986,3.008 33.544,2.45 31.247,2.45 31.805,3.008 " 2273 points="39.004,3.008 40.185,3.008 40.743,2.45 38.446,2.45 "
2426 style="fill:#b8af82" /> 2274 style="fill:#b8af82" />
2427   2275 <polygon
2428 <polygon 2276 id="polygon3281"
2429 id="polygon3263" 2277 points="40.185,3.008 40.743,2.45 40.743,4.749 40.185,4.19 "
2430 points="33.544,2.45 33.544,4.749 32.986,4.19 32.986,3.008 " 2278 style="fill:#80795b" />
2431 style="fill:#80795b" /> 2279 <polygon
2432   2280 id="polygon3283"
2433 <polygon 2281 points="40.185,4.19 40.743,4.749 38.446,4.749 39.004,4.19 "
2434 id="polygon3265" 2282 style="fill:#5e5b43" />
2435 points="33.544,4.749 31.247,4.749 31.805,4.19 32.986,4.19 " 2283 <polygon
2436 style="fill:#5e5b43" /> 2284 id="polygon3285"
2437   2285 points="39.004,3.008 39.004,4.19 38.446,4.749 38.446,2.45 "
2438 <polygon 2286 style="fill:#9a916c" />
2439 id="polygon3267" 2287 </g>
2440 points="31.805,4.19 31.247,4.749 31.247,2.45 31.805,3.008 " 2288 <g
2441 style="fill:#9a916c" /> 2289 id="g3287">
2442   2290 <polygon
2443 </g> 2291 id="polygon3289"
2444   2292 points="44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 50.393,5.637 50.393,1.564 48.829,0 "
2445 <g 2293 style="fill:#404040" />
2446 id="g3269"> 2294 </g>
2447 <polygon 2295 <g
2448 id="polygon3271" 2296 id="g3291">
2449 points="43.194,5.637 43.194,1.564 41.63,0 37.558,0 37.558,0 35.995,1.564 35.995,5.637 37.558,7.199 41.63,7.199 " 2297 <rect
2450 style="fill:#404040" /> 2298 id="rect3293"
2451   2299 height="2.299"
2452 </g> 2300 width="2.2969999"
2453   2301 y="2.45"
2454 <g 2302 x="45.645"
2455 id="g3273"> 2303 style="fill:#8d8c8c" />
2456 <rect 2304 <rect
2457 id="rect3275" 2305 id="rect3295"
2458 height="2.299" 2306 height="1.183"
2459 width="2.2969999" 2307 width="1.182"
2460 y="2.45" 2308 y="3.0079999"
2461 x="38.445999" 2309 x="46.202999"
2462 style="fill:#8d8c8c" /> 2310 style="fill:#8c8663" />
2463   2311 <polygon
2464 <rect 2312 id="polygon3297"
2465 id="rect3277" 2313 points="46.203,3.008 47.384,3.008 47.942,2.45 45.645,2.45 "
2466 height="1.183" 2314 style="fill:#b8af82" />
2467 width="1.182" 2315 <polygon
2468 y="3.0079999" 2316 id="polygon3299"
2469 x="39.004002" 2317 points="47.384,3.008 47.942,2.45 47.942,4.749 47.384,4.19 "
2470 style="fill:#8c8663" /> 2318 style="fill:#80795b" />
2471   2319 <polygon
2472 <polygon 2320 id="polygon3301"
2473 id="polygon3279" 2321 points="47.384,4.19 47.942,4.749 45.645,4.749 46.203,4.19 "
2474 points="40.185,3.008 40.743,2.45 38.446,2.45 39.004,3.008 " 2322 style="fill:#5e5b43" />
2475 style="fill:#b8af82" /> 2323 <polygon
2476   2324 id="polygon3303"
2477 <polygon 2325 points="46.203,3.008 46.203,4.19 45.645,4.749 45.645,2.45 "
2478 id="polygon3281" 2326 style="fill:#9a916c" />
2479 points="40.743,2.45 40.743,4.749 40.185,4.19 40.185,3.008 " 2327 </g>
2480 style="fill:#80795b" /> 2328 <g
2481   2329 id="g3305">
2482 <polygon 2330 <polygon
2483 id="polygon3283" 2331 id="polygon3307"
2484 points="40.743,4.749 38.446,4.749 39.004,4.19 40.185,4.19 " 2332 points="51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 57.592,5.637 57.592,1.564 56.028,0 "
2485 style="fill:#5e5b43" /> 2333 style="fill:#404040" />
2486   2334 </g>
2487 <polygon 2335 <g
2488 id="polygon3285" 2336 id="g3309">
2489 points="39.004,4.19 38.446,4.749 38.446,2.45 39.004,3.008 " 2337 <rect
2490 style="fill:#9a916c" /> 2338 id="rect3311"
2491   2339 height="2.299"
2492 </g> 2340 width="2.2969999"
2493   2341 y="2.45"
2494 <g 2342 x="52.844002"
2495 id="g3287"> 2343 style="fill:#8d8c8c" />
2496 <polygon 2344 <rect
2497 id="polygon3289" 2345 id="rect3313"
2498 points="50.393,5.637 50.393,1.564 48.829,0 44.757,0 44.757,0 43.194,1.564 43.194,5.637 44.757,7.199 48.829,7.199 " 2346 height="1.183"
2499 style="fill:#404040" /> 2347 width="1.182"
2500   2348 y="3.0079999"
2501 </g> 2349 x="53.402"
2502   2350 style="fill:#8c8663" />
2503 <g 2351 <polygon
2504 id="g3291"> 2352 id="polygon3315"
2505 <rect 2353 points="53.402,3.008 54.583,3.008 55.141,2.45 52.844,2.45 "
2506 id="rect3293" 2354 style="fill:#b8af82" />
2507 height="2.299" 2355 <polygon
2508 width="2.2969999" 2356 id="polygon3317"
2509 y="2.45" 2357 points="54.583,3.008 55.141,2.45 55.141,4.749 54.583,4.19 "
2510 x="45.645" 2358 style="fill:#80795b" />
2511 style="fill:#8d8c8c" /> 2359 <polygon
2512   2360 id="polygon3319"
2513 <rect 2361 points="54.583,4.19 55.141,4.749 52.844,4.749 53.402,4.19 "
2514 id="rect3295" 2362 style="fill:#5e5b43" />
2515 height="1.183" 2363 <polygon
2516 width="1.182" 2364 id="polygon3321"
2517 y="3.0079999" 2365 points="53.402,3.008 53.402,4.19 52.844,4.749 52.844,2.45 "
2518 x="46.202999" 2366 style="fill:#9a916c" />
2519 style="fill:#8c8663" /> 2367 </g>
2520   2368 </g>
2521 <polygon -  
2522 id="polygon3297" -  
2523 points="47.384,3.008 47.942,2.45 45.645,2.45 46.203,3.008 " -  
2524 style="fill:#b8af82" /> -  
2525   -  
2526 <polygon -  
2527 id="polygon3299" -  
2528 points="47.942,2.45 47.942,4.749 47.384,4.19 47.384,3.008 " -  
2529 style="fill:#80795b" /> -  
2530   -  
2531 <polygon -  
2532 id="polygon3301" -  
2533 points="47.942,4.749 45.645,4.749 46.203,4.19 47.384,4.19 " -  
2534 style="fill:#5e5b43" /> -  
2535   -  
2536 <polygon -  
2537 id="polygon3303" -  
2538 points="46.203,4.19 45.645,4.749 45.645,2.45 46.203,3.008 " -  
2539 style="fill:#9a916c" /> -  
2540   -  
2541 </g> -  
2542   -  
2543 <g -  
2544 id="g3305"> -  
2545 <polygon -  
2546 id="polygon3307" -  
2547 points="57.592,5.637 57.592,1.564 56.028,0 51.956,0 51.956,0 50.393,1.564 50.393,5.637 51.956,7.199 56.028,7.199 " -  
2548 style="fill:#404040" /> -  
2549   -  
2550 </g> -  
2551   -  
2552 <g -  
2553 id="g3309"> -  
2554 <rect -  
2555 id="rect3311" -  
2556 height="2.299" -  
2557 width="2.2969999" -  
2558 y="2.45" -  
2559 x="52.844002" -  
2560 style="fill:#8d8c8c" /> -  
2561   -  
2562 <rect -  
2563 id="rect3313" -  
2564 height="1.183" -  
2565 width="1.182" -  
2566 y="3.0079999" -  
2567 x="53.402" -  
2568 style="fill:#8c8663" /> -  
2569   -  
2570 <polygon -  
2571 id="polygon3315" -  
2572 points="54.583,3.008 55.141,2.45 52.844,2.45 53.402,3.008 " -  
2573 style="fill:#b8af82" /> -  
2574   -  
2575 <polygon -  
2576 id="polygon3317" -  
2577 points="55.141,2.45 55.141,4.749 54.583,4.19 54.583,3.008 " -  
2578 style="fill:#80795b" /> -  
2579   -  
2580 <polygon -  
2581 id="polygon3319" -  
2582 points="55.141,4.749 52.844,4.749 53.402,4.19 54.583,4.19 " -  
2583 style="fill:#5e5b43" /> -  
2584   -  
2585 <polygon -  
2586 id="polygon3321" -  
2587 points="53.402,4.19 52.844,4.749 52.844,2.45 53.402,3.008 " -  
2588 style="fill:#9a916c" /> -  
2589   -  
2590 </g> -  
2591   -  
2592 </g> -  
2593 </g> 2369 </g>
-   2370 <rect
-   2371 style="fill:none;stroke:none"
-   2372 id="rect3450"
-   2373 width="143.0668"
-   2374 height="79.79821"
-   2375 x="0.00037084927"
-   2376 y="-0.14220953" />
-   2377 <rect
-   2378 style="fill:none;stroke:none"
-   2379 id="rect4220"
-   2380 width="142.49681"
-   2381 height="85.213089"
-   2382 x="0.28536621"
-   2383 y="0.14278397" />
2594 </svg> 2384 </svg>