Rev 3598 Rev 3657
Line 1... Line 1...
1 { 1 {
2 "metadata": { 2 "metadata": {
3 "name": "ALTIMET_test" 3 "name": ""
4 }, 4 },
5 "nbformat": 3, 5 "nbformat": 3,
6 "nbformat_minor": 0, 6 "nbformat_minor": 0,
7 "worksheets": [ 7 "worksheets": [
8 { 8 {
9 "cells": [ 9 "cells": [
10 { 10 {
11 "cell_type": "markdown", 11 "cell_type": "markdown",
12 "metadata": {}, 12 "metadata": {},
13 "source": [ 13 "source": [
14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty\n", 14 "Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty z modulu ALTIMET01A\n",
15 "=======\n", 15 "=======\n",
16 "\n", 16 "\n",
17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 moduluvou stavebnici MLAB a jej\u00ed knihovnu https://github.com/MLAB-project/MLAB-I2c-modules \n", 17 "P\u0159\u00edklad vyu\u017e\u00edv\u00e1 modulovou stavebnici MLAB a jej\u00ed Python knihovnu [pymlab](https://github.com/MLAB-project/MLAB-I2c-modules)\n",
-   18 "\n",
-   19 "Pou\u017eit\u00fd sn\u00edma\u010d [MPL3115A2](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPL3115A2) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n",
-   20 "\n",
-   21 "* Tlakov\u00e9 rozli\u0161en\u00ed: 1,5 Pa\n",
-   22 "* Relativn\u00ed p\u0159esnost: 0,1 kPa\n",
-   23 "* Absolutn\u00ed tlakov\u00e1 p\u0159esnost 0,4 kPa\n",
-   24 "\n",
-   25 "Katalogov\u00fd rozsah m\u011b\u0159en\u00ed tlaku je 50 kPa a\u017e 110 kPa, co\u017e by odpov\u00eddalo rozsahu m\u011b\u0159en\u00fdch v\u00fd\u0161ek p\u0159ibli\u017en\u011b -1 km a\u017e 6 km. Z [jin\u00fdch experiment\u016f](http://wiki.mlab.cz/doku.php?id=cs:altimet#parametry) s t\u00edmto tlakov\u00fdm \u010didlem ale v\u00edme \u017ee jeho m\u011b\u0159\u00edc\u00ed rozsah je podstatn\u011b v\u011bt\u0161\u00ed zejm\u00e9na v oblasti n\u00edzk\u00fdch tlak\u016f, a lze s n\u00edm m\u011b\u0159it minim\u00e1ln\u011b do v\u00fd\u0161ky 16 km. \n",
18 "\n", 26 "\n",
19 "Zprovozn\u011bn\u00ed demo k\u00f3du\n", 27 "Zprovozn\u011bn\u00ed demo k\u00f3du\n",
20 "---------------------\n", 28 "---------------------\n",
21 "\n", 29 "\n",
22 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n" 30 "Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n"
Line 41... Line 49...
41 "i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n", 49 "i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n",
42 "i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n", 50 "i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
43 "i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n", 51 "i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
44 "i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n", 52 "i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n",
45 "i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n", 53 "i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n",
46 "i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 006\tI2C adapter\r\n" 54 "i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 008\tI2C adapter\r\n"
47 ] 55 ]
48 } 56 }
49 ], 57 ],
50 "prompt_number": 1 58 "prompt_number": 1
51 }, 59 },
Line 135... Line 143...
135 ")" 143 ")"
136 ], 144 ],
137 "language": "python", 145 "language": "python",
138 "metadata": {}, 146 "metadata": {},
139 "outputs": [], 147 "outputs": [],
140 "prompt_number": 4 148 "prompt_number": 8
141 }, 149 },
142 { 150 {
143 "cell_type": "markdown", 151 "cell_type": "markdown",
144 "metadata": {}, 152 "metadata": {},
145 "source": [ 153 "source": [
Line 154... Line 162...
154 "gauge = cfg.get_device(\"altimet\")\n", 162 "gauge = cfg.get_device(\"altimet\")\n",
155 "time.sleep(0.5)" 163 "time.sleep(0.5)"
156 ], 164 ],
157 "language": "python", 165 "language": "python",
158 "metadata": {}, 166 "metadata": {},
159 "outputs": [], 167 "outputs": [
-   168 {
-   169 "output_type": "stream",
-   170 "stream": "stderr",
-   171 "text": [
-   172 "WARNING:pymlab.sensors.iic:HID device does not exist, we will try SMBus directly...\n"
-   173 ]
-   174 }
-   175 ],
160 "prompt_number": 5 176 "prompt_number": 9
161 }, 177 },
162 { 178 {
163 "cell_type": "markdown", 179 "cell_type": "markdown",
164 "metadata": {}, 180 "metadata": {},
165 "source": [ 181 "source": [
166 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge." 182 "Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge. A vy\u010d\u00edst z n\u011bj s\u00e9rii 100 vzork\u016f. "
167 ] 183 ]
168 }, 184 },
169 { 185 {
170 "cell_type": "code", 186 "cell_type": "code",
171 "collapsed": false, 187 "collapsed": false,
172 "input": [ 188 "input": [
173 "MEASUREMENTS = 100\n", 189 "MEASUREMENTS = 100\n",
174 "t = np.zeros(MEASUREMENTS)\n", 190 "t = np.zeros(MEASUREMENTS)\n",
175 "p = np.zeros(MEASUREMENTS)\n", 191 "p = np.zeros(MEASUREMENTS)\n",
176 "\n", 192 "\n",
-   193 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
177 "for n in range(MEASUREMENTS):\n", 194 "for n in range(MEASUREMENTS):\n",
-   195 " (t[n], p[n]) = gauge.get_tp()\n",
-   196 " print(n,t[n], p[n])"
-   197 ],
-   198 "language": "python",
-   199 "metadata": {},
-   200 "outputs": [
-   201 {
-   202 "output_type": "stream",
-   203 "stream": "stdout",
-   204 "text": [
-   205 "(0, 22.625, 98286.0)\n",
-   206 "(1, 22.625, 98288.25)"
-   207 ]
-   208 },
-   209 {
-   210 "output_type": "stream",
-   211 "stream": "stdout",
-   212 "text": [
-   213 "\n",
-   214 "(2, 22.625, 98288.25)"
-   215 ]
-   216 },
-   217 {
-   218 "output_type": "stream",
-   219 "stream": "stdout",
-   220 "text": [
-   221 "\n",
-   222 "(3, 22.625, 98290.75)"
-   223 ]
-   224 },
-   225 {
-   226 "output_type": "stream",
-   227 "stream": "stdout",
-   228 "text": [
-   229 "\n",
-   230 "(4, 22.625, 98290.75)"
-   231 ]
-   232 },
-   233 {
-   234 "output_type": "stream",
-   235 "stream": "stdout",
-   236 "text": [
-   237 "\n",
-   238 "(5, 22.625, 98284.75)"
-   239 ]
-   240 },
-   241 {
-   242 "output_type": "stream",
-   243 "stream": "stdout",
-   244 "text": [
-   245 "\n",
-   246 "(6, 22.625, 98284.75)"
-   247 ]
-   248 },
-   249 {
-   250 "output_type": "stream",
-   251 "stream": "stdout",
-   252 "text": [
-   253 "\n",
-   254 "(7, 22.625, 98284.5)"
-   255 ]
-   256 },
-   257 {
-   258 "output_type": "stream",
-   259 "stream": "stdout",
-   260 "text": [
-   261 "\n",
-   262 "(8, 22.625, 98284.5)"
-   263 ]
-   264 },
-   265 {
-   266 "output_type": "stream",
-   267 "stream": "stdout",
-   268 "text": [
-   269 "\n",
-   270 "(9, 22.625, 98284.5)"
-   271 ]
-   272 },
-   273 {
-   274 "output_type": "stream",
-   275 "stream": "stdout",
-   276 "text": [
-   277 "\n",
-   278 "(10, 22.625, 98284.5)"
-   279 ]
-   280 },
-   281 {
-   282 "output_type": "stream",
-   283 "stream": "stdout",
-   284 "text": [
-   285 "\n",
-   286 "(11, 22.625, 98284.5)"
-   287 ]
-   288 },
-   289 {
-   290 "output_type": "stream",
-   291 "stream": "stdout",
-   292 "text": [
-   293 "\n",
-   294 "(12, 22.625, 98284.5)"
-   295 ]
-   296 },
-   297 {
-   298 "output_type": "stream",
-   299 "stream": "stdout",
-   300 "text": [
-   301 "\n",
-   302 "(13, 22.625, 98284.5)"
-   303 ]
-   304 },
-   305 {
-   306 "output_type": "stream",
-   307 "stream": "stdout",
-   308 "text": [
-   309 "\n",
-   310 "(14, 22.625, 98284.75)"
-   311 ]
-   312 },
-   313 {
-   314 "output_type": "stream",
-   315 "stream": "stdout",
-   316 "text": [
-   317 "\n",
-   318 "(15, 22.625, 98284.75)"
-   319 ]
-   320 },
-   321 {
-   322 "output_type": "stream",
-   323 "stream": "stdout",
-   324 "text": [
-   325 "\n",
-   326 "(16, 22.625, 98286.5)"
-   327 ]
-   328 },
-   329 {
-   330 "output_type": "stream",
-   331 "stream": "stdout",
-   332 "text": [
-   333 "\n",
-   334 "(17, 22.625, 98286.5)"
-   335 ]
-   336 },
-   337 {
-   338 "output_type": "stream",
-   339 "stream": "stdout",
-   340 "text": [
-   341 "\n",
-   342 "(18, 22.625, 98284.25)"
-   343 ]
-   344 },
-   345 {
-   346 "output_type": "stream",
-   347 "stream": "stdout",
-   348 "text": [
-   349 "\n",
-   350 "(19, 22.625, 98284.25)"
-   351 ]
-   352 },
-   353 {
-   354 "output_type": "stream",
-   355 "stream": "stdout",
-   356 "text": [
-   357 "\n",
-   358 "(20, 22.625, 98288.25)"
-   359 ]
-   360 },
-   361 {
-   362 "output_type": "stream",
-   363 "stream": "stdout",
-   364 "text": [
-   365 "\n",
-   366 "(21, 22.625, 98288.25)"
-   367 ]
-   368 },
-   369 {
-   370 "output_type": "stream",
-   371 "stream": "stdout",
-   372 "text": [
-   373 "\n",
-   374 "(22, 22.625, 98288.5)"
-   375 ]
-   376 },
-   377 {
-   378 "output_type": "stream",
-   379 "stream": "stdout",
-   380 "text": [
-   381 "\n",
-   382 "(23, 22.625, 98284.5)"
-   383 ]
-   384 },
-   385 {
-   386 "output_type": "stream",
-   387 "stream": "stdout",
-   388 "text": [
-   389 "\n",
-   390 "(24, 22.625, 98284.5)"
-   391 ]
-   392 },
-   393 {
-   394 "output_type": "stream",
-   395 "stream": "stdout",
-   396 "text": [
-   397 "\n",
-   398 "(25, 22.625, 98286.0)"
-   399 ]
-   400 },
-   401 {
-   402 "output_type": "stream",
-   403 "stream": "stdout",
-   404 "text": [
-   405 "\n",
-   406 "(26, 22.625, 98286.0)"
-   407 ]
-   408 },
-   409 {
-   410 "output_type": "stream",
-   411 "stream": "stdout",
-   412 "text": [
-   413 "\n",
-   414 "(27, 22.625, 98290.0)"
-   415 ]
-   416 },
-   417 {
-   418 "output_type": "stream",
-   419 "stream": "stdout",
-   420 "text": [
-   421 "\n",
-   422 "(28, 22.625, 98290.0)"
-   423 ]
-   424 },
-   425 {
-   426 "output_type": "stream",
-   427 "stream": "stdout",
-   428 "text": [
-   429 "\n",
-   430 "(29, 22.625, 98286.5)"
-   431 ]
-   432 },
-   433 {
-   434 "output_type": "stream",
-   435 "stream": "stdout",
-   436 "text": [
-   437 "\n",
-   438 "(30, 22.625, 98286.5)"
-   439 ]
-   440 },
-   441 {
-   442 "output_type": "stream",
-   443 "stream": "stdout",
-   444 "text": [
-   445 "\n",
-   446 "(31, 22.625, 98290.75)"
-   447 ]
-   448 },
-   449 {
-   450 "output_type": "stream",
-   451 "stream": "stdout",
-   452 "text": [
-   453 "\n",
-   454 "(32, 22.625, 98290.75)"
-   455 ]
-   456 },
-   457 {
-   458 "output_type": "stream",
-   459 "stream": "stdout",
-   460 "text": [
-   461 "\n",
-   462 "(33, 22.625, 98286.25)"
-   463 ]
-   464 },
-   465 {
-   466 "output_type": "stream",
-   467 "stream": "stdout",
-   468 "text": [
-   469 "\n",
-   470 "(34, 22.625, 98286.25)"
-   471 ]
-   472 },
-   473 {
-   474 "output_type": "stream",
-   475 "stream": "stdout",
-   476 "text": [
-   477 "\n",
-   478 "(35, 22.625, 98286.25)"
-   479 ]
-   480 },
-   481 {
-   482 "output_type": "stream",
-   483 "stream": "stdout",
-   484 "text": [
-   485 "\n",
-   486 "(36, 22.625, 98286.25)"
-   487 ]
-   488 },
-   489 {
-   490 "output_type": "stream",
-   491 "stream": "stdout",
-   492 "text": [
-   493 "\n",
-   494 "(37, 22.625, 98286.25)"
-   495 ]
-   496 },
-   497 {
-   498 "output_type": "stream",
-   499 "stream": "stdout",
-   500 "text": [
-   501 "\n",
-   502 "(38, 22.625, 98286.25)"
-   503 ]
-   504 },
-   505 {
-   506 "output_type": "stream",
-   507 "stream": "stdout",
-   508 "text": [
-   509 "\n",
-   510 "(39, 22.625, 98286.25)"
-   511 ]
-   512 },
-   513 {
-   514 "output_type": "stream",
-   515 "stream": "stdout",
-   516 "text": [
-   517 "\n",
-   518 "(40, 22.625, 98290.75)"
-   519 ]
-   520 },
-   521 {
-   522 "output_type": "stream",
-   523 "stream": "stdout",
-   524 "text": [
-   525 "\n",
-   526 "(41, 22.625, 98290.75)"
-   527 ]
-   528 },
-   529 {
-   530 "output_type": "stream",
-   531 "stream": "stdout",
-   532 "text": [
-   533 "\n",
-   534 "(42, 22.625, 98286.0)"
-   535 ]
-   536 },
-   537 {
-   538 "output_type": "stream",
-   539 "stream": "stdout",
-   540 "text": [
-   541 "\n",
-   542 "(43, 22.625, 98286.0)"
-   543 ]
-   544 },
-   545 {
-   546 "output_type": "stream",
-   547 "stream": "stdout",
-   548 "text": [
-   549 "\n",
-   550 "(44, 22.625, 98286.0)"
-   551 ]
-   552 },
-   553 {
-   554 "output_type": "stream",
-   555 "stream": "stdout",
-   556 "text": [
-   557 "\n",
-   558 "(45, 22.625, 98286.0)"
-   559 ]
-   560 },
-   561 {
-   562 "output_type": "stream",
-   563 "stream": "stdout",
-   564 "text": [
-   565 "\n",
-   566 "(46, 22.625, 98288.75)"
-   567 ]
-   568 },
-   569 {
-   570 "output_type": "stream",
-   571 "stream": "stdout",
-   572 "text": [
-   573 "\n",
-   574 "(47, 22.625, 98288.75)"
-   575 ]
-   576 },
-   577 {
-   578 "output_type": "stream",
-   579 "stream": "stdout",
-   580 "text": [
-   581 "\n",
-   582 "(48, 22.625, 98286.5)"
-   583 ]
-   584 },
-   585 {
-   586 "output_type": "stream",
-   587 "stream": "stdout",
-   588 "text": [
-   589 "\n",
-   590 "(49, 22.625, 98286.5)"
-   591 ]
-   592 },
-   593 {
-   594 "output_type": "stream",
-   595 "stream": "stdout",
-   596 "text": [
-   597 "\n",
-   598 "(50, 22.625, 98288.5)"
-   599 ]
-   600 },
-   601 {
-   602 "output_type": "stream",
-   603 "stream": "stdout",
-   604 "text": [
-   605 "\n",
-   606 "(51, 22.625, 98288.5)"
-   607 ]
-   608 },
-   609 {
-   610 "output_type": "stream",
-   611 "stream": "stdout",
-   612 "text": [
-   613 "\n",
-   614 "(52, 22.625, 98288.5)"
-   615 ]
-   616 },
-   617 {
-   618 "output_type": "stream",
-   619 "stream": "stdout",
-   620 "text": [
-   621 "\n",
-   622 "(53, 22.625, 98286.75)"
-   623 ]
-   624 },
-   625 {
-   626 "output_type": "stream",
-   627 "stream": "stdout",
-   628 "text": [
-   629 "\n",
-   630 "(54, 22.625, 98286.75)"
-   631 ]
-   632 },
-   633 {
-   634 "output_type": "stream",
-   635 "stream": "stdout",
-   636 "text": [
-   637 "\n",
-   638 "(55, 22.625, 98286.0)"
-   639 ]
-   640 },
-   641 {
-   642 "output_type": "stream",
-   643 "stream": "stdout",
-   644 "text": [
-   645 "\n",
-   646 "(56, 22.625, 98286.0)"
-   647 ]
-   648 },
-   649 {
-   650 "output_type": "stream",
-   651 "stream": "stdout",
-   652 "text": [
-   653 "\n",
-   654 "(57, 22.625, 98286.75)"
-   655 ]
-   656 },
-   657 {
-   658 "output_type": "stream",
-   659 "stream": "stdout",
-   660 "text": [
-   661 "\n",
-   662 "(58, 22.625, 98286.75)"
-   663 ]
-   664 },
-   665 {
-   666 "output_type": "stream",
-   667 "stream": "stdout",
-   668 "text": [
-   669 "\n",
-   670 "(59, 22.625, 98290.75)"
-   671 ]
-   672 },
-   673 {
-   674 "output_type": "stream",
-   675 "stream": "stdout",
-   676 "text": [
-   677 "\n",
-   678 "(60, 22.625, 98290.75)"
-   679 ]
-   680 },
-   681 {
-   682 "output_type": "stream",
-   683 "stream": "stdout",
-   684 "text": [
-   685 "\n",
-   686 "(61, 22.625, 98284.5)"
-   687 ]
-   688 },
-   689 {
-   690 "output_type": "stream",
-   691 "stream": "stdout",
-   692 "text": [
-   693 "\n",
-   694 "(62, 22.625, 98284.5)"
-   695 ]
-   696 },
-   697 {
-   698 "output_type": "stream",
-   699 "stream": "stdout",
-   700 "text": [
-   701 "\n",
-   702 "(63, 22.625, 98282.25)"
-   703 ]
-   704 },
-   705 {
-   706 "output_type": "stream",
-   707 "stream": "stdout",
-   708 "text": [
-   709 "\n",
-   710 "(64, 22.625, 98286.25)"
-   711 ]
-   712 },
-   713 {
-   714 "output_type": "stream",
-   715 "stream": "stdout",
-   716 "text": [
-   717 "\n",
-   718 "(65, 22.625, 98288.25)"
-   719 ]
-   720 },
-   721 {
-   722 "output_type": "stream",
-   723 "stream": "stdout",
-   724 "text": [
-   725 "\n",
-   726 "(66, 22.625, 98288.25)"
-   727 ]
-   728 },
-   729 {
-   730 "output_type": "stream",
-   731 "stream": "stdout",
-   732 "text": [
-   733 "\n",
-   734 "(67, 22.625, 98288.25)"
-   735 ]
-   736 },
-   737 {
-   738 "output_type": "stream",
-   739 "stream": "stdout",
-   740 "text": [
-   741 "\n",
-   742 "(68, 22.625, 98290.5)"
-   743 ]
-   744 },
-   745 {
-   746 "output_type": "stream",
-   747 "stream": "stdout",
-   748 "text": [
-   749 "\n",
-   750 "(69, 22.625, 98290.5)"
-   751 ]
-   752 },
-   753 {
-   754 "output_type": "stream",
-   755 "stream": "stdout",
-   756 "text": [
-   757 "\n",
-   758 "(70, 22.625, 98290.25)"
-   759 ]
-   760 },
-   761 {
-   762 "output_type": "stream",
-   763 "stream": "stdout",
-   764 "text": [
-   765 "\n",
-   766 "(71, 22.625, 98290.25)"
-   767 ]
-   768 },
-   769 {
-   770 "output_type": "stream",
-   771 "stream": "stdout",
-   772 "text": [
-   773 "\n",
-   774 "(72, 22.625, 98286.0)"
-   775 ]
-   776 },
-   777 {
-   778 "output_type": "stream",
-   779 "stream": "stdout",
-   780 "text": [
-   781 "\n",
-   782 "(73, 22.625, 98286.0)"
-   783 ]
-   784 },
-   785 {
-   786 "output_type": "stream",
-   787 "stream": "stdout",
-   788 "text": [
-   789 "\n",
-   790 "(74, 22.625, 98290.25)"
-   791 ]
-   792 },
-   793 {
-   794 "output_type": "stream",
-   795 "stream": "stdout",
-   796 "text": [
-   797 "\n",
-   798 "(75, 22.625, 98290.25)"
-   799 ]
-   800 },
-   801 {
-   802 "output_type": "stream",
-   803 "stream": "stdout",
-   804 "text": [
-   805 "\n",
-   806 "(76, 22.625, 98284.5)"
-   807 ]
-   808 },
-   809 {
-   810 "output_type": "stream",
-   811 "stream": "stdout",
-   812 "text": [
-   813 "\n",
-   814 "(77, 22.625, 98284.5)"
-   815 ]
-   816 },
-   817 {
-   818 "output_type": "stream",
-   819 "stream": "stdout",
-   820 "text": [
-   821 "\n",
-   822 "(78, 22.625, 98290.5)"
-   823 ]
-   824 },
-   825 {
-   826 "output_type": "stream",
-   827 "stream": "stdout",
-   828 "text": [
-   829 "\n",
-   830 "(79, 22.625, 98290.5)"
-   831 ]
-   832 },
-   833 {
-   834 "output_type": "stream",
-   835 "stream": "stdout",
-   836 "text": [
-   837 "\n",
-   838 "(80, 22.625, 98290.5)"
-   839 ]
-   840 },
-   841 {
-   842 "output_type": "stream",
-   843 "stream": "stdout",
-   844 "text": [
-   845 "\n",
-   846 "(81, 22.625, 98290.25)"
-   847 ]
-   848 },
-   849 {
-   850 "output_type": "stream",
-   851 "stream": "stdout",
-   852 "text": [
-   853 "\n",
-   854 "(82, 22.625, 98290.25)"
-   855 ]
-   856 },
-   857 {
-   858 "output_type": "stream",
-   859 "stream": "stdout",
-   860 "text": [
-   861 "\n",
-   862 "(83, 22.625, 98286.25)"
-   863 ]
-   864 },
-   865 {
-   866 "output_type": "stream",
-   867 "stream": "stdout",
-   868 "text": [
-   869 "\n",
-   870 "(84, 22.625, 98286.25)"
-   871 ]
-   872 },
-   873 {
-   874 "output_type": "stream",
-   875 "stream": "stdout",
-   876 "text": [
-   877 "\n",
-   878 "(85, 22.625, 98290.5)"
-   879 ]
-   880 },
-   881 {
-   882 "output_type": "stream",
-   883 "stream": "stdout",
-   884 "text": [
-   885 "\n",
-   886 "(86, 22.625, 98290.5)"
-   887 ]
-   888 },
-   889 {
-   890 "output_type": "stream",
-   891 "stream": "stdout",
-   892 "text": [
-   893 "\n",
-   894 "(87, 22.625, 98288.5)"
-   895 ]
-   896 },
-   897 {
-   898 "output_type": "stream",
-   899 "stream": "stdout",
-   900 "text": [
-   901 "\n",
-   902 "(88, 22.625, 98288.5)"
-   903 ]
-   904 },
-   905 {
-   906 "output_type": "stream",
-   907 "stream": "stdout",
-   908 "text": [
-   909 "\n",
-   910 "(89, 22.625, 98286.75)"
-   911 ]
-   912 },
-   913 {
-   914 "output_type": "stream",
-   915 "stream": "stdout",
-   916 "text": [
-   917 "\n",
-   918 "(90, 22.625, 98286.75)"
-   919 ]
-   920 },
-   921 {
-   922 "output_type": "stream",
-   923 "stream": "stdout",
-   924 "text": [
-   925 "\n",
-   926 "(91, 22.625, 98290.75)"
-   927 ]
-   928 },
-   929 {
-   930 "output_type": "stream",
-   931 "stream": "stdout",
-   932 "text": [
-   933 "\n",
-   934 "(92, 22.625, 98290.75)"
-   935 ]
-   936 },
-   937 {
-   938 "output_type": "stream",
-   939 "stream": "stdout",
-   940 "text": [
-   941 "\n",
-   942 "(93, 22.625, 98288.75)"
-   943 ]
-   944 },
-   945 {
-   946 "output_type": "stream",
-   947 "stream": "stdout",
-   948 "text": [
-   949 "\n",
-   950 "(94, 22.625, 98288.75)"
-   951 ]
-   952 },
-   953 {
-   954 "output_type": "stream",
-   955 "stream": "stdout",
-   956 "text": [
-   957 "\n",
-   958 "(95, 22.625, 98288.75)"
-   959 ]
-   960 },
-   961 {
-   962 "output_type": "stream",
-   963 "stream": "stdout",
-   964 "text": [
-   965 "\n",
-   966 "(96, 22.625, 98290.5)"
-   967 ]
-   968 },
-   969 {
-   970 "output_type": "stream",
-   971 "stream": "stdout",
-   972 "text": [
-   973 "\n",
-   974 "(97, 22.625, 98290.5)"
-   975 ]
-   976 },
-   977 {
-   978 "output_type": "stream",
-   979 "stream": "stdout",
-   980 "text": [
-   981 "\n",
-   982 "(98, 22.625, 98290.0)"
-   983 ]
-   984 },
-   985 {
-   986 "output_type": "stream",
-   987 "stream": "stdout",
-   988 "text": [
-   989 "\n",
-   990 "(99, 22.625, 98290.0)"
-   991 ]
-   992 },
-   993 {
-   994 "output_type": "stream",
-   995 "stream": "stdout",
-   996 "text": [
-   997 "\n"
-   998 ]
-   999 }
-   1000 ],
-   1001 "prompt_number": 34
-   1002 },
-   1003 {
-   1004 "cell_type": "markdown",
-   1005 "metadata": {},
-   1006 "source": [
-   1007 "Nam\u011b\u0159en\u00e1 data si ulo\u017e\u00edme pro pozd\u011bj\u0161\u00ed zpracov\u00e1n\u00ed. "
-   1008 ]
-   1009 },
-   1010 {
-   1011 "cell_type": "code",
-   1012 "collapsed": false,
-   1013 "input": [
-   1014 "np.savez(\"data_desk\", temp = t, preassure = p)"
-   1015 ],
-   1016 "language": "python",
-   1017 "metadata": {},
-   1018 "outputs": [],
-   1019 "prompt_number": 35
-   1020 },
-   1021 {
-   1022 "cell_type": "markdown",
-   1023 "metadata": {},
-   1024 "source": [
-   1025 "Nyn\u00ed p\u0159em\u00edst\u00edme m\u011b\u0159\u00edc\u00ed p\u0159\u00edpravek ze stolu na zem, a zopakujeme m\u011b\u0159en\u00ed"
-   1026 ]
-   1027 },
-   1028 {
-   1029 "cell_type": "code",
-   1030 "collapsed": false,
-   1031 "input": [
-   1032 "MEASUREMENTS = 100\n",
-   1033 "t = np.zeros(MEASUREMENTS)\n",
-   1034 "p = np.zeros(MEASUREMENTS)\n",
-   1035 "\n",
178 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n", 1036 "# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
-   1037 "for n in range(MEASUREMENTS):\n",
179 " (t[n], p[n]) = gauge.get_tp()\n", 1038 " (t[n], p[n]) = gauge.get_tp()\n",
180 " print(n,t[n], p[n])" 1039 " print(n,t[n], p[n])"
181 ], 1040 ],
182 "language": "python", 1041 "language": "python",
183 "metadata": {}, 1042 "metadata": {},
184 "outputs": [ 1043 "outputs": [
185 { 1044 {
186 "output_type": "stream", 1045 "output_type": "stream",
187 "stream": "stdout", 1046 "stream": "stdout",
188 "text": [ 1047 "text": [
189 "(0, 21.3125, 98476.75)\n", 1048 "(0, 22.5625, 98296.25)\n",
190 "(1, 21.3125, 98476.75)" 1049 "(1, 22.5625, 98296.25)"
191 ] 1050 ]
192 }, 1051 },
193 { 1052 {
194 "output_type": "stream", 1053 "output_type": "stream",
195 "stream": "stdout", 1054 "stream": "stdout",
196 "text": [ 1055 "text": [
197 "\n", 1056 "\n",
198 "(2, 21.3125, 98476.75)" 1057 "(2, 22.5625, 98302.5)"
199 ] 1058 ]
200 }, 1059 },
201 { 1060 {
202 "output_type": "stream", 1061 "output_type": "stream",
203 "stream": "stdout", 1062 "stream": "stdout",
204 "text": [ 1063 "text": [
205 "\n", 1064 "\n",
206 "(3, 21.3125, 98480.25)" 1065 "(3, 22.5625, 98302.5)"
207 ] 1066 ]
208 }, 1067 },
209 { 1068 {
210 "output_type": "stream", 1069 "output_type": "stream",
211 "stream": "stdout", 1070 "stream": "stdout",
212 "text": [ 1071 "text": [
213 "\n", 1072 "\n",
214 "(4, 21.3125, 98480.25)" 1073 "(4, 22.5625, 98300.25)"
215 ] 1074 ]
216 }, 1075 },
217 { 1076 {
218 "output_type": "stream", 1077 "output_type": "stream",
219 "stream": "stdout", 1078 "stream": "stdout",
220 "text": [ 1079 "text": [
221 "\n", 1080 "\n",
222 "(5, 21.3125, 98480.25)" 1081 "(5, 22.5625, 98300.25)"
223 ] 1082 ]
224 }, 1083 },
225 { 1084 {
226 "output_type": "stream", 1085 "output_type": "stream",
227 "stream": "stdout", 1086 "stream": "stdout",
228 "text": [ 1087 "text": [
229 "\n", 1088 "\n",
230 "(6, 21.3125, 98480.25)" 1089 "(6, 22.5625, 98302.0)"
231 ] 1090 ]
232 }, 1091 },
233 { 1092 {
234 "output_type": "stream", 1093 "output_type": "stream",
235 "stream": "stdout", 1094 "stream": "stdout",
236 "text": [ 1095 "text": [
237 "\n", 1096 "\n",
238 "(7, 21.3125, 98476.75)" 1097 "(7, 22.5625, 98302.0)"
239 ] 1098 ]
240 }, 1099 },
241 { 1100 {
242 "output_type": "stream", 1101 "output_type": "stream",
243 "stream": "stdout", 1102 "stream": "stdout",
244 "text": [ 1103 "text": [
245 "\n", 1104 "\n",
246 "(8, 21.3125, 98476.75)" 1105 "(8, 22.5625, 98300.75)"
247 ] 1106 ]
248 }, 1107 },
249 { 1108 {
250 "output_type": "stream", 1109 "output_type": "stream",
251 "stream": "stdout", 1110 "stream": "stdout",
252 "text": [ 1111 "text": [
253 "\n", 1112 "\n",
254 "(9, 21.3125, 98480.5)" 1113 "(9, 22.5625, 98300.75)"
255 ] 1114 ]
256 }, 1115 },
257 { 1116 {
258 "output_type": "stream", 1117 "output_type": "stream",
259 "stream": "stdout", 1118 "stream": "stdout",
260 "text": [ 1119 "text": [
261 "\n", 1120 "\n",
262 "(10, 21.3125, 98480.5)" 1121 "(10, 22.5625, 98304.5)"
263 ] 1122 ]
264 }, 1123 },
265 { 1124 {
266 "output_type": "stream", 1125 "output_type": "stream",
267 "stream": "stdout", 1126 "stream": "stdout",
268 "text": [ 1127 "text": [
269 "\n", 1128 "\n",
270 "(11, 21.3125, 98482.0)" 1129 "(11, 22.5625, 98304.5)"
271 ] 1130 ]
272 }, 1131 },
273 { 1132 {
274 "output_type": "stream", 1133 "output_type": "stream",
275 "stream": "stdout", 1134 "stream": "stdout",
276 "text": [ 1135 "text": [
277 "\n", 1136 "\n",
278 "(12, 21.3125, 98482.0)" 1137 "(12, 22.5625, 98304.25)"
279 ] 1138 ]
280 }, 1139 },
281 { 1140 {
282 "output_type": "stream", 1141 "output_type": "stream",
283 "stream": "stdout", 1142 "stream": "stdout",
284 "text": [ 1143 "text": [
285 "\n", 1144 "\n",
286 "(13, 21.3125, 98484.5)" 1145 "(13, 22.5625, 98304.25)"
287 ] 1146 ]
288 }, 1147 },
289 { 1148 {
290 "output_type": "stream", 1149 "output_type": "stream",
291 "stream": "stdout", 1150 "stream": "stdout",
292 "text": [ 1151 "text": [
293 "\n", 1152 "\n",
294 "(14, 21.3125, 98480.5)" 1153 "(14, 22.5625, 98300.25)"
295 ] 1154 ]
296 }, 1155 },
297 { 1156 {
298 "output_type": "stream", 1157 "output_type": "stream",
299 "stream": "stdout", 1158 "stream": "stdout",
300 "text": [ 1159 "text": [
301 "\n", 1160 "\n",
302 "(15, 21.3125, 98476.5)" 1161 "(15, 22.5625, 98300.25)"
303 ] 1162 ]
304 }, 1163 },
305 { 1164 {
306 "output_type": "stream", 1165 "output_type": "stream",
307 "stream": "stdout", 1166 "stream": "stdout",
308 "text": [ 1167 "text": [
309 "\n", 1168 "\n",
310 "(16, 21.3125, 98480.5)" 1169 "(16, 22.5625, 98300.25)"
311 ] 1170 ]
312 }, 1171 },
313 { 1172 {
314 "output_type": "stream", 1173 "output_type": "stream",
315 "stream": "stdout", 1174 "stream": "stdout",
316 "text": [ 1175 "text": [
317 "\n", 1176 "\n",
318 "(17, 21.3125, 98480.5)" 1177 "(17, 22.5625, 98302.5)"
319 ] 1178 ]
320 }, 1179 },
321 { 1180 {
322 "output_type": "stream", 1181 "output_type": "stream",
323 "stream": "stdout", 1182 "stream": "stdout",
324 "text": [ 1183 "text": [
325 "\n", 1184 "\n",
326 "(18, 21.3125, 98482.25)" 1185 "(18, 22.5625, 98302.5)"
327 ] 1186 ]
328 }, 1187 },
329 { 1188 {
330 "output_type": "stream", 1189 "output_type": "stream",
331 "stream": "stdout", 1190 "stream": "stdout",
332 "text": [ 1191 "text": [
333 "\n", 1192 "\n",
334 "(19, 21.3125, 98482.25)" 1193 "(19, 22.5625, 98304.0)"
335 ] 1194 ]
336 }, 1195 },
337 { 1196 {
338 "output_type": "stream", 1197 "output_type": "stream",
339 "stream": "stdout", 1198 "stream": "stdout",
340 "text": [ 1199 "text": [
341 "\n", 1200 "\n",
342 "(20, 21.3125, 98482.25)" 1201 "(20, 22.5625, 98304.0)"
343 ] 1202 ]
344 }, 1203 },
345 { 1204 {
346 "output_type": "stream", 1205 "output_type": "stream",
347 "stream": "stdout", 1206 "stream": "stdout",
348 "text": [ 1207 "text": [
349 "\n", 1208 "\n",
350 "(21, 21.3125, 98482.25)" 1209 "(21, 22.5625, 98298.5)"
351 ] 1210 ]
352 }, 1211 },
353 { 1212 {
354 "output_type": "stream", 1213 "output_type": "stream",
355 "stream": "stdout", 1214 "stream": "stdout",
356 "text": [ 1215 "text": [
357 "\n", 1216 "\n",
358 "(22, 21.3125, 98482.75)" 1217 "(22, 22.5625, 98298.5)"
359 ] 1218 ]
360 }, 1219 },
361 { 1220 {
362 "output_type": "stream", 1221 "output_type": "stream",
363 "stream": "stdout", 1222 "stream": "stdout",
364 "text": [ 1223 "text": [
365 "\n", 1224 "\n",
366 "(23, 21.3125, 98482.75)" 1225 "(23, 22.5625, 98298.5)"
367 ] 1226 ]
368 }, 1227 },
369 { 1228 {
370 "output_type": "stream", 1229 "output_type": "stream",
371 "stream": "stdout", 1230 "stream": "stdout",
372 "text": [ 1231 "text": [
373 "\n", 1232 "\n",
374 "(24, 21.3125, 98478.5)" 1233 "(24, 22.5625, 98298.5)"
375 ] 1234 ]
376 }, 1235 },
377 { 1236 {
378 "output_type": "stream", 1237 "output_type": "stream",
379 "stream": "stdout", 1238 "stream": "stdout",
380 "text": [ 1239 "text": [
381 "\n", 1240 "\n",
382 "(25, 21.3125, 98478.5)" 1241 "(25, 22.5625, 98300.5)"
383 ] 1242 ]
384 }, 1243 },
385 { 1244 {
386 "output_type": "stream", 1245 "output_type": "stream",
387 "stream": "stdout", 1246 "stream": "stdout",
388 "text": [ 1247 "text": [
389 "\n", 1248 "\n",
390 "(26, 21.3125, 98482.5)" 1249 "(26, 22.5625, 98300.5)"
391 ] 1250 ]
392 }, 1251 },
393 { 1252 {
394 "output_type": "stream", 1253 "output_type": "stream",
395 "stream": "stdout", 1254 "stream": "stdout",
396 "text": [ 1255 "text": [
397 "\n", 1256 "\n",
398 "(27, 21.3125, 98482.5)" 1257 "(27, 22.5625, 98296.0)"
399 ] 1258 ]
400 }, 1259 },
401 { 1260 {
402 "output_type": "stream", 1261 "output_type": "stream",
403 "stream": "stdout", 1262 "stream": "stdout",
404 "text": [ 1263 "text": [
405 "\n", 1264 "\n",
406 "(28, 21.3125, 98486.75)" 1265 "(28, 22.5625, 98300.0)"
407 ] 1266 ]
408 }, 1267 },
409 { 1268 {
410 "output_type": "stream", 1269 "output_type": "stream",
411 "stream": "stdout", 1270 "stream": "stdout",
412 "text": [ 1271 "text": [
413 "\n", 1272 "\n",
414 "(29, 21.3125, 98482.75)" 1273 "(29, 22.5625, 98306.75)"
415 ] 1274 ]
416 }, 1275 },
417 { 1276 {
418 "output_type": "stream", 1277 "output_type": "stream",
419 "stream": "stdout", 1278 "stream": "stdout",
420 "text": [ 1279 "text": [
421 "\n", 1280 "\n",
422 "(30, 21.3125, 98482.75)" 1281 "(30, 22.5625, 98302.75)"
423 ] 1282 ]
424 }, 1283 },
425 { 1284 {
426 "output_type": "stream", 1285 "output_type": "stream",
427 "stream": "stdout", 1286 "stream": "stdout",
428 "text": [ 1287 "text": [
429 "\n", 1288 "\n",
430 "(31, 21.3125, 98480.25)" 1289 "(31, 22.5625, 98302.75)"
431 ] 1290 ]
432 }, 1291 },
433 { 1292 {
434 "output_type": "stream", 1293 "output_type": "stream",
435 "stream": "stdout", 1294 "stream": "stdout",
436 "text": [ 1295 "text": [
437 "\n", 1296 "\n",
438 "(32, 21.3125, 98480.25)" 1297 "(32, 22.5625, 98302.75)"
439 ] 1298 ]
440 }, 1299 },
441 { 1300 {
442 "output_type": "stream", 1301 "output_type": "stream",
443 "stream": "stdout", 1302 "stream": "stdout",
444 "text": [ 1303 "text": [
445 "\n", 1304 "\n",
446 "(33, 21.3125, 98478.25)" 1305 "(33, 22.5625, 98302.75)"
447 ] 1306 ]
448 }, 1307 },
449 { 1308 {
450 "output_type": "stream", 1309 "output_type": "stream",
451 "stream": "stdout", 1310 "stream": "stdout",
452 "text": [ 1311 "text": [
453 "\n", 1312 "\n",
454 "(34, 21.3125, 98478.25)" 1313 "(34, 22.5625, 98302.75)"
455 ] 1314 ]
456 }, 1315 },
457 { 1316 {
458 "output_type": "stream", 1317 "output_type": "stream",
459 "stream": "stdout", 1318 "stream": "stdout",
460 "text": [ 1319 "text": [
461 "\n", 1320 "\n",
462 "(35, 21.3125, 98478.25)" 1321 "(35, 22.5625, 98302.75)"
463 ] 1322 ]
464 }, 1323 },
465 { 1324 {
466 "output_type": "stream", 1325 "output_type": "stream",
467 "stream": "stdout", 1326 "stream": "stdout",
468 "text": [ 1327 "text": [
469 "\n", 1328 "\n",
470 "(36, 21.3125, 98478.25)" 1329 "(36, 22.5625, 98300.25)"
471 ] 1330 ]
472 }, 1331 },
473 { 1332 {
474 "output_type": "stream", 1333 "output_type": "stream",
475 "stream": "stdout", 1334 "stream": "stdout",
476 "text": [ 1335 "text": [
477 "\n", 1336 "\n",
478 "(37, 21.3125, 98478.25)" 1337 "(37, 22.5625, 98300.25)"
479 ] 1338 ]
480 }, 1339 },
481 { 1340 {
482 "output_type": "stream", 1341 "output_type": "stream",
483 "stream": "stdout", 1342 "stream": "stdout",
484 "text": [ 1343 "text": [
485 "\n", 1344 "\n",
486 "(38, 21.3125, 98478.25)" 1345 "(38, 22.5625, 98296.5)"
487 ] 1346 ]
488 }, 1347 },
489 { 1348 {
490 "output_type": "stream", 1349 "output_type": "stream",
491 "stream": "stdout", 1350 "stream": "stdout",
492 "text": [ 1351 "text": [
493 "\n", 1352 "\n",
494 "(39, 21.3125, 98480.75)" 1353 "(39, 22.5625, 98296.5)"
495 ] 1354 ]
496 }, 1355 },
497 { 1356 {
498 "output_type": "stream", 1357 "output_type": "stream",
499 "stream": "stdout", 1358 "stream": "stdout",
500 "text": [ 1359 "text": [
501 "\n", 1360 "\n",
502 "(40, 21.3125, 98480.75)" 1361 "(40, 22.5625, 98296.5)"
503 ] 1362 ]
504 }, 1363 },
505 { 1364 {
506 "output_type": "stream", 1365 "output_type": "stream",
507 "stream": "stdout", 1366 "stream": "stdout",
508 "text": [ 1367 "text": [
509 "\n", 1368 "\n",
510 "(41, 21.3125, 98482.25)" 1369 "(41, 22.5625, 98296.5)"
511 ] 1370 ]
512 }, 1371 },
513 { 1372 {
514 "output_type": "stream", 1373 "output_type": "stream",
515 "stream": "stdout", 1374 "stream": "stdout",
516 "text": [ 1375 "text": [
517 "\n", 1376 "\n",
518 "(42, 21.3125, 98482.25)" 1377 "(42, 22.5625, 98300.0)"
519 ] 1378 ]
520 }, 1379 },
521 { 1380 {
522 "output_type": "stream", 1381 "output_type": "stream",
523 "stream": "stdout", 1382 "stream": "stdout",
524 "text": [ 1383 "text": [
525 "\n", 1384 "\n",
526 "(43, 21.3125, 98478.25)" 1385 "(43, 22.5625, 98300.0)"
527 ] 1386 ]
528 }, 1387 },
529 { 1388 {
530 "output_type": "stream", 1389 "output_type": "stream",
531 "stream": "stdout", 1390 "stream": "stdout",
532 "text": [ 1391 "text": [
533 "\n", 1392 "\n",
534 "(44, 21.3125, 98478.25)" 1393 "(44, 22.5625, 98300.0)"
535 ] 1394 ]
536 }, 1395 },
537 { 1396 {
538 "output_type": "stream", 1397 "output_type": "stream",
539 "stream": "stdout", 1398 "stream": "stdout",
540 "text": [ 1399 "text": [
541 "\n", 1400 "\n",
542 "(45, 21.3125, 98478.25)" 1401 "(45, 22.5625, 98300.5)"
543 ] 1402 ]
544 }, 1403 },
545 { 1404 {
546 "output_type": "stream", 1405 "output_type": "stream",
547 "stream": "stdout", 1406 "stream": "stdout",
548 "text": [ 1407 "text": [
549 "\n", 1408 "\n",
550 "(46, 21.3125, 98482.0)" 1409 "(46, 22.5625, 98300.5)"
551 ] 1410 ]
552 }, 1411 },
553 { 1412 {
554 "output_type": "stream", 1413 "output_type": "stream",
555 "stream": "stdout", 1414 "stream": "stdout",
556 "text": [ 1415 "text": [
557 "\n", 1416 "\n",
558 "(47, 21.3125, 98482.0)" 1417 "(47, 22.5625, 98300.5)"
559 ] 1418 ]
560 }, 1419 },
561 { 1420 {
562 "output_type": "stream", 1421 "output_type": "stream",
563 "stream": "stdout", 1422 "stream": "stdout",
564 "text": [ 1423 "text": [
565 "\n", 1424 "\n",
566 "(48, 21.3125, 98484.5)" 1425 "(48, 22.5625, 98300.5)"
567 ] 1426 ]
568 }, 1427 },
569 { 1428 {
570 "output_type": "stream", 1429 "output_type": "stream",
571 "stream": "stdout", 1430 "stream": "stdout",
572 "text": [ 1431 "text": [
573 "\n", 1432 "\n",
574 "(49, 21.3125, 98484.5)" 1433 "(49, 22.5625, 98300.75)"
575 ] 1434 ]
576 }, 1435 },
577 { 1436 {
578 "output_type": "stream", 1437 "output_type": "stream",
579 "stream": "stdout", 1438 "stream": "stdout",
580 "text": [ 1439 "text": [
581 "\n", 1440 "\n",
582 "(50, 21.3125, 98476.5)" 1441 "(50, 22.5625, 98300.75)"
583 ] 1442 ]
584 }, 1443 },
585 { 1444 {
586 "output_type": "stream", 1445 "output_type": "stream",
587 "stream": "stdout", 1446 "stream": "stdout",
588 "text": [ 1447 "text": [
589 "\n", 1448 "\n",
590 "(51, 21.3125, 98476.5)" 1449 "(51, 22.5625, 98298.75)"
591 ] 1450 ]
592 }, 1451 },
593 { 1452 {
594 "output_type": "stream", 1453 "output_type": "stream",
595 "stream": "stdout", 1454 "stream": "stdout",
596 "text": [ 1455 "text": [
597 "\n", 1456 "\n",
598 "(52, 21.3125, 98478.75)" 1457 "(52, 22.5625, 98298.75)"
599 ] 1458 ]
600 }, 1459 },
601 { 1460 {
602 "output_type": "stream", 1461 "output_type": "stream",
603 "stream": "stdout", 1462 "stream": "stdout",
604 "text": [ 1463 "text": [
605 "\n", 1464 "\n",
606 "(53, 21.3125, 98478.75)" 1465 "(53, 22.5625, 98298.75)"
607 ] 1466 ]
608 }, 1467 },
609 { 1468 {
610 "output_type": "stream", 1469 "output_type": "stream",
611 "stream": "stdout", 1470 "stream": "stdout",
612 "text": [ 1471 "text": [
613 "\n", 1472 "\n",
614 "(54, 21.3125, 98480.25)" 1473 "(54, 22.5625, 98298.75)"
615 ] 1474 ]
616 }, 1475 },
617 { 1476 {
618 "output_type": "stream", 1477 "output_type": "stream",
619 "stream": "stdout", 1478 "stream": "stdout",
620 "text": [ 1479 "text": [
621 "\n", 1480 "\n",
622 "(55, 21.3125, 98480.25)" 1481 "(55, 22.5625, 98300.5)"
623 ] 1482 ]
624 }, 1483 },
625 { 1484 {
626 "output_type": "stream", 1485 "output_type": "stream",
627 "stream": "stdout", 1486 "stream": "stdout",
628 "text": [ 1487 "text": [
629 "\n", 1488 "\n",
630 "(56, 21.3125, 98480.0)" 1489 "(56, 22.5625, 98300.5)"
631 ] 1490 ]
632 }, 1491 },
633 { 1492 {
634 "output_type": "stream", 1493 "output_type": "stream",
635 "stream": "stdout", 1494 "stream": "stdout",
636 "text": [ 1495 "text": [
637 "\n", 1496 "\n",
638 "(57, 21.3125, 98480.0)" 1497 "(57, 22.5625, 98296.75)"
639 ] 1498 ]
640 }, 1499 },
641 { 1500 {
642 "output_type": "stream", 1501 "output_type": "stream",
643 "stream": "stdout", 1502 "stream": "stdout",
644 "text": [ 1503 "text": [
645 "\n", 1504 "\n",
646 "(58, 21.3125, 98482.0)" 1505 "(58, 22.5625, 98296.75)"
647 ] 1506 ]
648 }, 1507 },
649 { 1508 {
650 "output_type": "stream", 1509 "output_type": "stream",
651 "stream": "stdout", 1510 "stream": "stdout",
652 "text": [ 1511 "text": [
653 "\n", 1512 "\n",
654 "(59, 21.3125, 98482.0)" 1513 "(59, 22.5625, 98296.75)"
655 ] 1514 ]
656 }, 1515 },
657 { 1516 {
658 "output_type": "stream", 1517 "output_type": "stream",
659 "stream": "stdout", 1518 "stream": "stdout",
660 "text": [ 1519 "text": [
661 "\n", 1520 "\n",
662 "(60, 21.3125, 98482.0)" 1521 "(60, 22.5625, 98298.25)"
663 ] 1522 ]
664 }, 1523 },
665 { 1524 {
666 "output_type": "stream", 1525 "output_type": "stream",
667 "stream": "stdout", 1526 "stream": "stdout",
668 "text": [ 1527 "text": [
669 "\n", 1528 "\n",
670 "(61, 21.3125, 98476.25)" 1529 "(61, 22.5625, 98298.25)"
671 ] 1530 ]
672 }, 1531 },
673 { 1532 {
674 "output_type": "stream", 1533 "output_type": "stream",
675 "stream": "stdout", 1534 "stream": "stdout",
676 "text": [ 1535 "text": [
677 "\n", 1536 "\n",
678 "(62, 21.3125, 98476.25)" 1537 "(62, 22.5625, 98298.25)"
679 ] 1538 ]
680 }, 1539 },
681 { 1540 {
682 "output_type": "stream", 1541 "output_type": "stream",
683 "stream": "stdout", 1542 "stream": "stdout",
684 "text": [ 1543 "text": [
685 "\n", 1544 "\n",
686 "(63, 21.3125, 98480.75)" 1545 "(63, 22.5625, 98298.25)"
687 ] 1546 ]
688 }, 1547 },
689 { 1548 {
690 "output_type": "stream", 1549 "output_type": "stream",
691 "stream": "stdout", 1550 "stream": "stdout",
692 "text": [ 1551 "text": [
693 "\n", 1552 "\n",
694 "(64, 21.3125, 98480.75)" 1553 "(64, 22.5625, 98304.25)"
695 ] 1554 ]
696 }, 1555 },
697 { 1556 {
698 "output_type": "stream", 1557 "output_type": "stream",
699 "stream": "stdout", 1558 "stream": "stdout",
700 "text": [ 1559 "text": [
701 "\n", 1560 "\n",
702 "(65, 21.3125, 98480.5)" 1561 "(65, 22.5625, 98304.25)"
703 ] 1562 ]
704 }, 1563 },
705 { 1564 {
706 "output_type": "stream", 1565 "output_type": "stream",
707 "stream": "stdout", 1566 "stream": "stdout",
708 "text": [ 1567 "text": [
709 "\n", 1568 "\n",
710 "(66, 21.3125, 98480.5)" 1569 "(66, 22.5625, 98298.0)"
711 ] 1570 ]
712 }, 1571 },
713 { 1572 {
714 "output_type": "stream", 1573 "output_type": "stream",
715 "stream": "stdout", 1574 "stream": "stdout",
716 "text": [ 1575 "text": [
717 "\n", 1576 "\n",
718 "(67, 21.3125, 98482.0)" 1577 "(67, 22.5625, 98298.0)"
719 ] 1578 ]
720 }, 1579 },
721 { 1580 {
722 "output_type": "stream", 1581 "output_type": "stream",
723 "stream": "stdout", 1582 "stream": "stdout",
724 "text": [ 1583 "text": [
725 "\n", 1584 "\n",
726 "(68, 21.3125, 98482.0)" 1585 "(68, 22.5625, 98302.5)"
727 ] 1586 ]
728 }, 1587 },
729 { 1588 {
730 "output_type": "stream", 1589 "output_type": "stream",
731 "stream": "stdout", 1590 "stream": "stdout",
732 "text": [ 1591 "text": [
733 "\n", 1592 "\n",
734 "(69, 21.3125, 98482.25)" 1593 "(69, 22.5625, 98302.5)"
735 ] 1594 ]
736 }, 1595 },
737 { 1596 {
738 "output_type": "stream", 1597 "output_type": "stream",
739 "stream": "stdout", 1598 "stream": "stdout",
740 "text": [ 1599 "text": [
741 "\n", 1600 "\n",
742 "(70, 21.3125, 98482.25)" 1601 "(70, 22.5625, 98302.5)"
743 ] 1602 ]
744 }, 1603 },
745 { 1604 {
746 "output_type": "stream", 1605 "output_type": "stream",
747 "stream": "stdout", 1606 "stream": "stdout",
748 "text": [ 1607 "text": [
749 "\n", 1608 "\n",
750 "(71, 21.375, 98482.75)" 1609 "(71, 22.5625, 98302.5)"
751 ] 1610 ]
752 }, 1611 },
753 { 1612 {
754 "output_type": "stream", 1613 "output_type": "stream",
755 "stream": "stdout", 1614 "stream": "stdout",
756 "text": [ 1615 "text": [
757 "\n", 1616 "\n",
758 "(72, 21.375, 98486.75)" 1617 "(72, 22.5625, 98298.0)"
759 ] 1618 ]
760 }, 1619 },
761 { 1620 {
762 "output_type": "stream", 1621 "output_type": "stream",
763 "stream": "stdout", 1622 "stream": "stdout",
764 "text": [ 1623 "text": [
765 "\n", 1624 "\n",
766 "(73, 21.3125, 98484.25)" 1625 "(73, 22.5625, 98298.0)"
767 ] 1626 ]
768 }, 1627 },
769 { 1628 {
770 "output_type": "stream", 1629 "output_type": "stream",
771 "stream": "stdout", 1630 "stream": "stdout",
772 "text": [ 1631 "text": [
773 "\n", 1632 "\n",
774 "(74, 21.3125, 98480.25)" 1633 "(74, 22.5625, 98298.0)"
775 ] 1634 ]
776 }, 1635 },
777 { 1636 {
778 "output_type": "stream", 1637 "output_type": "stream",
779 "stream": "stdout", 1638 "stream": "stdout",
780 "text": [ 1639 "text": [
781 "\n", 1640 "\n",
782 "(75, 21.3125, 98480.25)" 1641 "(75, 22.5625, 98302.5)"
783 ] 1642 ]
784 }, 1643 },
785 { 1644 {
786 "output_type": "stream", 1645 "output_type": "stream",
787 "stream": "stdout", 1646 "stream": "stdout",
788 "text": [ 1647 "text": [
789 "\n", 1648 "\n",
790 "(76, 21.3125, 98480.5)" 1649 "(76, 22.5625, 98302.5)"
791 ] 1650 ]
792 }, 1651 },
793 { 1652 {
794 "output_type": "stream", 1653 "output_type": "stream",
795 "stream": "stdout", 1654 "stream": "stdout",
796 "text": [ 1655 "text": [
797 "\n", 1656 "\n",
798 "(77, 21.3125, 98480.5)" 1657 "(77, 22.5625, 98300.75)"
799 ] 1658 ]
800 }, 1659 },
801 { 1660 {
802 "output_type": "stream", 1661 "output_type": "stream",
803 "stream": "stdout", 1662 "stream": "stdout",
804 "text": [ 1663 "text": [
805 "\n", 1664 "\n",
806 "(78, 21.3125, 98482.5)" 1665 "(78, 22.5625, 98300.75)"
807 ] 1666 ]
808 }, 1667 },
809 { 1668 {
810 "output_type": "stream", 1669 "output_type": "stream",
811 "stream": "stdout", 1670 "stream": "stdout",
812 "text": [ 1671 "text": [
813 "\n", 1672 "\n",
814 "(79, 21.3125, 98482.5)" 1673 "(79, 22.5625, 98300.25)"
815 ] 1674 ]
816 }, 1675 },
817 { 1676 {
818 "output_type": "stream", 1677 "output_type": "stream",
819 "stream": "stdout", 1678 "stream": "stdout",
820 "text": [ 1679 "text": [
821 "\n", 1680 "\n",
822 "(80, 21.3125, 98482.0)" 1681 "(80, 22.5625, 98300.25)"
823 ] 1682 ]
824 }, 1683 },
825 { 1684 {
826 "output_type": "stream", 1685 "output_type": "stream",
827 "stream": "stdout", 1686 "stream": "stdout",
828 "text": [ 1687 "text": [
829 "\n", 1688 "\n",
830 "(81, 21.3125, 98482.0)" 1689 "(81, 22.5625, 98300.0)"
831 ] 1690 ]
832 }, 1691 },
833 { 1692 {
834 "output_type": "stream", 1693 "output_type": "stream",
835 "stream": "stdout", 1694 "stream": "stdout",
836 "text": [ 1695 "text": [
837 "\n", 1696 "\n",
838 "(82, 21.375, 98480.0)" 1697 "(82, 22.5625, 98300.0)"
839 ] 1698 ]
840 }, 1699 },
841 { 1700 {
842 "output_type": "stream", 1701 "output_type": "stream",
843 "stream": "stdout", 1702 "stream": "stdout",
844 "text": [ 1703 "text": [
845 "\n", 1704 "\n",
846 "(83, 21.375, 98480.0)" 1705 "(83, 22.5625, 98300.0)"
847 ] 1706 ]
848 }, 1707 },
849 { 1708 {
850 "output_type": "stream", 1709 "output_type": "stream",
851 "stream": "stdout", 1710 "stream": "stdout",
852 "text": [ 1711 "text": [
853 "\n", 1712 "\n",
854 "(84, 21.3125, 98476.0)" 1713 "(84, 22.5625, 98300.0)"
855 ] 1714 ]
856 }, 1715 },
857 { 1716 {
858 "output_type": "stream", 1717 "output_type": "stream",
859 "stream": "stdout", 1718 "stream": "stdout",
860 "text": [ 1719 "text": [
861 "\n", 1720 "\n",
862 "(85, 21.3125, 98476.0)" 1721 "(85, 22.5625, 98298.75)"
863 ] 1722 ]
864 }, 1723 },
865 { 1724 {
866 "output_type": "stream", 1725 "output_type": "stream",
867 "stream": "stdout", 1726 "stream": "stdout",
868 "text": [ 1727 "text": [
869 "\n", 1728 "\n",
870 "(86, 21.3125, 98478.5)" 1729 "(86, 22.5625, 98302.75)"
871 ] 1730 ]
872 }, 1731 },
873 { 1732 {
874 "output_type": "stream", 1733 "output_type": "stream",
875 "stream": "stdout", 1734 "stream": "stdout",
876 "text": [ 1735 "text": [
877 "\n", 1736 "\n",
878 "(87, 21.3125, 98478.5)" 1737 "(87, 22.5625, 98302.75)"
879 ] 1738 ]
880 }, 1739 },
881 { 1740 {
882 "output_type": "stream", 1741 "output_type": "stream",
883 "stream": "stdout", 1742 "stream": "stdout",
884 "text": [ 1743 "text": [
885 "\n", 1744 "\n",
886 "(88, 21.3125, 98478.5)" 1745 "(88, 22.5625, 98300.5)"
887 ] 1746 ]
888 }, 1747 },
889 { 1748 {
890 "output_type": "stream", 1749 "output_type": "stream",
891 "stream": "stdout", 1750 "stream": "stdout",
892 "text": [ 1751 "text": [
893 "\n", 1752 "\n",
894 "(89, 21.3125, 98478.0)" 1753 "(89, 22.5625, 98300.5)"
895 ] 1754 ]
896 }, 1755 },
897 { 1756 {
898 "output_type": "stream", 1757 "output_type": "stream",
899 "stream": "stdout", 1758 "stream": "stdout",
900 "text": [ 1759 "text": [
901 "\n", 1760 "\n",
902 "(90, 21.375, 98478.0)" 1761 "(90, 22.5625, 98298.5)"
903 ] 1762 ]
904 }, 1763 },
905 { 1764 {
906 "output_type": "stream", 1765 "output_type": "stream",
907 "stream": "stdout", 1766 "stream": "stdout",
908 "text": [ 1767 "text": [
909 "\n", 1768 "\n",
910 "(91, 21.375, 98484.0)" 1769 "(91, 22.5625, 98298.5)"
911 ] 1770 ]
912 }, 1771 },
913 { 1772 {
914 "output_type": "stream", 1773 "output_type": "stream",
915 "stream": "stdout", 1774 "stream": "stdout",
916 "text": [ 1775 "text": [
917 "\n", 1776 "\n",
918 "(92, 21.3125, 98484.0)" 1777 "(92, 22.5625, 98300.0)"
919 ] 1778 ]
920 }, 1779 },
921 { 1780 {
922 "output_type": "stream", 1781 "output_type": "stream",
923 "stream": "stdout", 1782 "stream": "stdout",
924 "text": [ 1783 "text": [
925 "\n", 1784 "\n",
926 "(93, 21.3125, 98480.0)" 1785 "(93, 22.5625, 98300.0)"
927 ] 1786 ]
928 }, 1787 },
929 { 1788 {
930 "output_type": "stream", 1789 "output_type": "stream",
931 "stream": "stdout", 1790 "stream": "stdout",
932 "text": [ 1791 "text": [
933 "\n", 1792 "\n",
934 "(94, 21.3125, 98480.0)" 1793 "(94, 22.5625, 98298.5)"
935 ] 1794 ]
936 }, 1795 },
937 { 1796 {
938 "output_type": "stream", 1797 "output_type": "stream",
939 "stream": "stdout", 1798 "stream": "stdout",
940 "text": [ 1799 "text": [
941 "\n", 1800 "\n",
942 "(95, 21.3125, 98478.5)" 1801 "(95, 22.5625, 98298.5)"
943 ] 1802 ]
944 }, 1803 },
945 { 1804 {
946 "output_type": "stream", 1805 "output_type": "stream",
947 "stream": "stdout", 1806 "stream": "stdout",
948 "text": [ 1807 "text": [
949 "\n", 1808 "\n",
950 "(96, 21.3125, 98478.5)" 1809 "(96, 22.5625, 98298.75)"
951 ] 1810 ]
952 }, 1811 },
953 { 1812 {
954 "output_type": "stream", 1813 "output_type": "stream",
955 "stream": "stdout", 1814 "stream": "stdout",
956 "text": [ 1815 "text": [
957 "\n", 1816 "\n",
958 "(97, 21.3125, 98476.75)" 1817 "(97, 22.5625, 98298.75)"
959 ] 1818 ]
960 }, 1819 },
961 { 1820 {
962 "output_type": "stream", 1821 "output_type": "stream",
963 "stream": "stdout", 1822 "stream": "stdout",
964 "text": [ 1823 "text": [
965 "\n", 1824 "\n",
966 "(98, 21.3125, 98476.75)" 1825 "(98, 22.5625, 98300.75)"
967 ] 1826 ]
968 }, 1827 },
969 { 1828 {
970 "output_type": "stream", 1829 "output_type": "stream",
971 "stream": "stdout", 1830 "stream": "stdout",
972 "text": [ 1831 "text": [
973 "\n", 1832 "\n",
974 "(99, 21.3125, 98482.75)" 1833 "(99, 22.5625, 98300.75)"
975 ] 1834 ]
976 }, 1835 },
977 { 1836 {
978 "output_type": "stream", 1837 "output_type": "stream",
979 "stream": "stdout", 1838 "stream": "stdout",
980 "text": [ 1839 "text": [
981 "\n" 1840 "\n"
982 ] 1841 ]
983 } 1842 }
984 ], 1843 ],
985 "prompt_number": 6 1844 "prompt_number": 10
986 }, 1845 },
987 { 1846 {
988 "cell_type": "code", 1847 "cell_type": "code",
989 "collapsed": false, 1848 "collapsed": false,
990 "input": [ 1849 "input": [
991 "np.savez(\"data_ground\", t, p)\n", -  
992 "#np.savez(\"data_top\", t, p)" 1850 "np.savez(\"data_floor\", temp = t, preassure = p)"
993 ], 1851 ],
994 "language": "python", 1852 "language": "python",
995 "metadata": {}, 1853 "metadata": {},
996 "outputs": [], 1854 "outputs": [],
997 "prompt_number": 22 1855 "prompt_number": 11
-   1856 },
-   1857 {
-   1858 "cell_type": "markdown",
-   1859 "metadata": {},
-   1860 "source": [
-   1861 "D\u00e1le bude pracov\u00e1no s daty ulo\u017een\u00fdmi do souboru, kter\u00e9 m\u016f\u017eeme na\u010d\u00edst n\u00e1sleduj\u00edc\u00edm blokem."
-   1862 ]
998 }, 1863 },
999 { 1864 {
1000 "cell_type": "code", 1865 "cell_type": "code",
1001 "collapsed": false, 1866 "collapsed": false,
1002 "input": [ 1867 "input": [
-   1868 "data = np.load('./data_desk.npz')\n",
-   1869 "th=data['temp']\n",
-   1870 "ph=data['preassure']"
-   1871 ],
-   1872 "language": "python",
-   1873 "metadata": {},
-   1874 "outputs": [],
-   1875 "prompt_number": 24
-   1876 },
-   1877 {
-   1878 "cell_type": "markdown",
-   1879 "metadata": {},
-   1880 "source": [
-   1881 "Na\u010dten\u00e1 data nyn\u00ed budeme statisticky analyzovat. Najdeme minim\u00e1ln\u00ed a maxim\u00e1ln\u00ed hodnoty a spo\u010d\u00edt\u00e1me sm\u011brodatnou odchylku. "
-   1882 ]
-   1883 },
-   1884 {
-   1885 "cell_type": "markdown",
-   1886 "metadata": {},
-   1887 "source": [
-   1888 "Minim\u00e1ln\u00ed nam\u011b\u0159en\u00e1 hodnota tlaku:"
-   1889 ]
-   1890 },
-   1891 {
-   1892 "cell_type": "code",
-   1893 "collapsed": false,
-   1894 "input": [
1003 "amin(p)" 1895 "amin(ph)"
1004 ], 1896 ],
1005 "language": "python", 1897 "language": "python",
1006 "metadata": {}, 1898 "metadata": {},
1007 "outputs": [ 1899 "outputs": [
1008 { 1900 {
1009 "metadata": {}, 1901 "metadata": {},
1010 "output_type": "pyout", 1902 "output_type": "pyout",
1011 "prompt_number": 7, 1903 "prompt_number": 27,
1012 "text": [ 1904 "text": [
1013 "96972.25" 1905 "98346.0"
1014 ] 1906 ]
1015 } 1907 }
1016 ], 1908 ],
1017 "prompt_number": 7 1909 "prompt_number": 27
-   1910 },
-   1911 {
-   1912 "cell_type": "markdown",
-   1913 "metadata": {},
-   1914 "source": [
-   1915 "Minim\u00e1ln\u00ed nam\u011b\u0159en\u00e1 hodnota teploty:"
-   1916 ]
1018 }, 1917 },
1019 { 1918 {
1020 "cell_type": "code", 1919 "cell_type": "code",
1021 "collapsed": false, 1920 "collapsed": false,
1022 "input": [ 1921 "input": [
1023 "amax(p)" 1922 "amin(th)"
1024 ], 1923 ],
1025 "language": "python", 1924 "language": "python",
1026 "metadata": {}, 1925 "metadata": {},
1027 "outputs": [ 1926 "outputs": [
1028 { 1927 {
1029 "metadata": {}, 1928 "metadata": {},
1030 "output_type": "pyout", 1929 "output_type": "pyout",
1031 "prompt_number": 8, 1930 "prompt_number": 28,
1032 "text": [ 1931 "text": [
1033 "96838.75" 1932 "22.5625"
1034 ] 1933 ]
1035 } 1934 }
1036 ], 1935 ],
1037 "prompt_number": 8 1936 "prompt_number": 28
-   1937 },
-   1938 {
-   1939 "cell_type": "markdown",
-   1940 "metadata": {},
-   1941 "source": [
-   1942 "Maxim\u00e1ln\u00ed tlak"
-   1943 ]
1038 }, 1944 },
1039 { 1945 {
1040 "cell_type": "code", 1946 "cell_type": "code",
1041 "collapsed": false, 1947 "collapsed": false,
1042 "input": [ 1948 "input": [
1043 "std(p)" 1949 "amax(ph)"
1044 ], 1950 ],
1045 "language": "python", 1951 "language": "python",
1046 "metadata": {}, 1952 "metadata": {},
1047 "outputs": [ 1953 "outputs": [
1048 { 1954 {
1049 "metadata": {}, 1955 "metadata": {},
1050 "output_type": "pyout", 1956 "output_type": "pyout",
1051 "prompt_number": 9, 1957 "prompt_number": 29,
1052 "text": [ 1958 "text": [
1053 "2.3585270827361722" 1959 "98358.25"
1054 ] 1960 ]
1055 } 1961 }
1056 ], 1962 ],
1057 "prompt_number": 9 1963 "prompt_number": 29
-   1964 },
-   1965 {
-   1966 "cell_type": "markdown",
-   1967 "metadata": {},
-   1968 "source": [
-   1969 "Maxim\u00e1ln\u00ed hodnota teploty"
-   1970 ]
1058 }, 1971 },
1059 { 1972 {
1060 "cell_type": "code", 1973 "cell_type": "code",
1061 "collapsed": false, 1974 "collapsed": false,
1062 "input": [ 1975 "input": [
1063 "plt.plot(p)" 1976 "amax(th)"
1064 ], 1977 ],
1065 "language": "python", 1978 "language": "python",
1066 "metadata": {}, 1979 "metadata": {},
1067 "outputs": [ 1980 "outputs": [
1068 { 1981 {
1069 "metadata": {}, 1982 "metadata": {},
1070 "output_type": "pyout", 1983 "output_type": "pyout",
1071 "prompt_number": 9, 1984 "prompt_number": 30,
1072 "text": [ 1985 "text": [
1073 "[<matplotlib.lines.Line2D at 0xa00bb2c>]" 1986 "22.625"
1074 ] 1987 ]
1075 }, 1988 }
-   1989 ],
-   1990 "prompt_number": 30
-   1991 },
-   1992 {
-   1993 "cell_type": "markdown",
-   1994 "metadata": {},
-   1995 "source": [
-   1996 "Sm\u011brodatn\u00e1 odchylka tlaku"
-   1997 ]
-   1998 },
-   1999 {
-   2000 "cell_type": "code",
-   2001 "collapsed": false,
-   2002 "input": [
-   2003 "std(ph)"
-   2004 ],
-   2005 "language": "python",
-   2006 "metadata": {},
-   2007 "outputs": [
1076 { 2008 {
1077 "metadata": {}, 2009 "metadata": {},
1078 "output_type": "display_data", 2010 "output_type": "pyout",
1079 "png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOW9xp/NhVsSI7mQCAmCSCDhElJAMRWJYsBDC1rF\nakBAqLSWY6vWU3s5xxZ6CkRtRbStPfUUxAtgtdai0iiIESxClSAgcAjFRIOBcMuFJJDLZs4fbyc7\nO5mZnZmd2Zl39vf9fPJJdrO78+5cnnnmeX/vOz5BEAQQBEEQ3BPjdAMIgiAIayBBJwiC8Agk6ARB\nEB6BBJ0gCMIjkKATBEF4BBJ0giAIj+CIoO/btw/XXHMNxo4di1mzZuH8+fOKr2toaMDs2bORm5uL\nvLw87Nq1S/P9L730EgoKCrp/YmNjsX//fl1t+v73v4+kpCRrviBBEIQTCDbz3nvvCXfffXfQcxMm\nTBC2b98uCIIgrFmzRnjkkUcU3zt//nzhj3/8oyAIgtDR0SE0NDTofv+BAweEK6+8UlcbP/roI2He\nvHlCUlKSvi9FEAThQmx36D6fr8dzR48exeTJkwEAN954I/785z/3eE1jYyN27NiBRYsWAQDi4uKQ\nnJys+/3r16/HnXfe2f34nXfeQWFhIcaPH49vfvObaGlpAQD4/X48/PDDeOyxxyDQGCuCIDjGdkFX\nEslRo0bhr3/9KwDglVdeQU1NTY/XVFVVIT09HQsXLsRXvvIVLF68GK2trbrf/6c//QklJSUAgDNn\nzmD58uV49913sWfPHowfPx5PPPEEAOA3v/kNbr75ZmRmZlrzhQmCIBzCNkGfNGkSCgoKsHjxYmza\ntKk7196yZQvWrFmD3/3ud5gwYQKam5vRq1evHu/v7OxERUUFlixZgoqKCiQkJKC0tBQAQr5/9+7d\n6NevH/Ly8gAAu3btwqFDh1BYWIiCggI8//zz+OKLL1BbW4tXX30V9913H7lzgiC4J86uDxY7MN9/\n/30899xzWLt2bdD/3377bQBAZWUl3nrrrR7vz8rKQlZWFiZOnAgAmD17dregjxgxQvP9GzduxJw5\nc4KeKy4uxvr164Oe27x5M/75z3/iyiuvBAC0trYiJycHlZWVpr4zQRCEkzgSuZw+fRoA0NXVhV/+\n8pf47ne/2+M1mZmZyM7O7hbXrVu3YtSoUSHf39XVhVdeeSUoP580aRL+/ve/49ixYwCAlpYWHD16\nFDNmzMCJEydQVVWFqqoq9OvXj8ScIAhu0RT0RYsWISMjA2PGjOnxv1//+teIiYnBuXPnNBfg8/l6\ndIxu2LABI0aMQG5uLrKysnD33XcDAGpra/G1r32t+3VPP/005s6di/z8fOzfvx8//elPNd8PANu3\nb8fgwYMxZMiQ7ufS0tLw3HPPoaSkBPn5+SgsLMSRI0cU20oQBMErPkEjPN6xYwcSExMxf/58HDhw\noPv5mpoaLF68GEeOHMGePXuQkpISkcYSBEEQ6mg69MmTJ6N///49nv/BD36Axx57zLZGEQRBEMYx\n3Cn617/+FVlZWRg7dqzqayi6IAiCMEc4FXeGOkVbW1uxYsUKLFu2LOTCBUGgH0HAz3/+c8fb4JYf\nWhe0LmhdaP+EiyFBP3bsGKqrq5Gfn4+hQ4fi+PHjGD9+PE6dOhV2QwiCIIjwMBS5jBkzBnV1dd2P\nhw4dSp2iBEEQLkHToZeUlKCwsBCVlZXIzs7uMTiIsvLQFBUVOd0E10DrIgCtiwC0LqxDs2zR9If6\nfJbkQQRBENFEuNpJN7ggCILwCCToBEEQHoEEnSAIwiOQoBMEQXgEEnSCIAiPQIJOEAThEUjQCYIg\nPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeAQSdIIgCI9Agk4QBOERSNAJgiA8Agk6\nQRCERyBBJwiC8Agk6ARBRCWHDwMvv+x0K6yFBJ0giKjkpZeAV15xuhXWQoJOEERUsmMH0NbmdCus\nhQSdIIioo60N2L2bBJ0gCIJ7PvoI6OwkQScIguCe7duBq64iQScIguCeHTuAG28kQScIguAavx/Y\nuROYOhVob3e6NdZCgk4QRFSxbx+QlQUMHOg9hx7ndAOspKMDeP119hsA4uOBb3wDiPPUtyQIIhy2\nbwcmTwZ69yZBdzWffgp85zvATTexx3/7GzByJDBmjLPtIgjCPezYAdx2mzcFXTNyWbRoETIyMjBG\noog//OEPkZubi/z8fNx6661obGy0vZF6uXCBCfj69ewnJwdobna6VQRBuAVBYILuVYeuKegLFy5E\nWVlZ0HPTpk3DwYMHsW/fPuTk5GDlypW2NtAIFy8CffoEHickAC0tzrWHIAh3ceQI04Xs7CgU9MmT\nJ6N///5BzxUXFyMmhr3t6quvxvHjx+1rnUHa2thGEklIAFpbnWsPQRDuQszPAaBXL1blIgjOtslK\nwsrQ16xZg5KSEsX/LV26tPvvoqIiFBUVhbMoXUTSof/jH8B//3fg8aBBwO9/r/0eQQAWLADq69lj\nnw9YsQIYPdqeNhJEtNPZCcyfD5w/zx4fPAj85Cfs79hYICaGvSY+3pn2lZeXo7y83LLPMy3oy5cv\nR69evTBnzhzF/0sFPVJEWtAFgXXCtrUB8+aFFvT2dpbt/+Uv7PETTwB795KgE4Rd1NcDb70FvPgi\ne+zzATfcEPi/GLs4Jehys7ts2bKwPs+UoD/33HPYvHkz3n333bAWbjUXL/aMXOwS9IsXWQfszJlM\nqMVSSS06Othl3syZ7PGmTawjlyAIe2hqAlJTA8ecHFHQExMj2y67MCzoZWVlePzxx/H++++jj9QO\nu4C2tmCH3q+fvYIunjzi49noM0FgDkCNjo5gJ9CnDwk6QdhJUxOQnKz+f691jGp2ipaUlKCwsBBH\njhxBdnY21qxZg+9973tobm5GcXExCgoKsGTJkki1NSSRjFykJw+fj+VxnZ3a75FndX37kqAThJ00\nNQGXXKL+f68JuqZD37BhQ4/nFi1aZFtjwkUpcjl71r5lSXeU+PieDlyO/P99+7LPIQjCHhobtQVd\nrHTxCp6ay0UeudhZtig/eYiCroWSoJNDJwj7iDaH7ilBdypyAUjQCcKNkKBzTKSrXMIVdOoUJQh7\nIUHnGKeqXADzDp0ydIKwD6py4RiKXAiCkEIOnWN4i1xI0AnCXqjKhWN4q3KhDJ0g7IUcOsdQ5EIQ\nhBQSdI7hMXKhTlGCsA8SdI5Rq3KxY75jGlhEEO6Hqlw4Ru6ae/Vi86zY0elBkQtBuJ9QDp06RV2M\n3DUD9sUuNLCIINxPqCoXcuguRu6aAXsFnQYWEYR7aWtj01przfJNgu5i5K4ZsK90kSIXgnA3588z\nd651jwISdBcTqchFEKxx6PHxQFdX6HnUCYIwTqgOUYAE3dVEKnLp6GA3tIiNDTxnRtB9PsrRCcIu\nQnWIAiTorkYpcrFjgi6l5ZgRdIBiF4KwCz2C7rUqF1M3iXYjYnQhF0w7HLrSlUA4gk4do8D77wMf\nfxx4XFgIXHONc+0h9NHcDPzv/7LOR4AJ5L33at+5K1KEqnAB9Dn0+nrgyBFg0iTr2mYXnnHobW1s\n48g7QOwQdKWsnhx6eKxYAXz4IVBbC5SXA0884XSLCD3s3g08+STbbrW1wM9/Dnz2mdOtYlgVubz3\nHvtePOAZh64UgwD2VLlQ5GI9zc3AI48A114LvPkm8MwzTreI0ENdHXOuv/41e/zuu/ZNiGcUqwS9\ntdW+KUSsxjMOXck1A+6PXKhTlNHSAiQmsr/79XOPKBDa1NUBGRmBx27adlZVuZCgO4CSyAJ8RC6U\noTOHnpDA/rZz2mPCWuSC7qZtZ5VDv3CB7Z884BlBV4tcqMqFD8ih88nJk+516Ho6RfVUuZBDdwCt\nDN3NkQsJOkPq0O28FyxhLUqRi1u2nZUZOjn0CCNWuchxe+RCGTobedvaGizobnF5hDZuz9Ctilzs\nmobbajwj6FTlwi8XLrBLX3HkrZtyWEKbaMjQW1vZOBce+rqiomwxEpFLXJw+QY+TrXHqFA3OzwG2\nTlpbmSPSmliJcJauLuD0aWDAgMBzVjj0zz8PiGxsLHDFFeb2AyurXAC2n/bta7wdkcQzgh7pyIUc\nunVI83OAraOYGNZZpbRNCXdQX88EXOkuYWb5/HNg+HBgyBD2+PhxYNs2c6M0rYxcALafpqUZb0ck\n0YxcFi1ahIyMDIwZM6b7uXPnzqG4uBg5OTmYNm0aGhoabG+kHiLp0GmkqLXIHTrgriyWUEYetwDh\nb7dz54C8PKCykv1Mn85E3QxWVrkA7uns1UJT0BcuXIiysrKg50pLS1FcXIzKykpMnToVpaWltjZQ\nL5EsW6SBRdYid+gACToP2CHoTU1AUlLgcUYGW47Zz7IqQwf4qHTRFPTJkyejf//+Qc9t2rQJCxYs\nAAAsWLAAr7/+un2tM0AkR4paHblQht7Tobupc41QRknQw91u589bI+jt7ex4C5V56xX03r35cOiG\nM/S6ujpk/GsrZmRkoE5lbS9durT776KiIhQVFZlqoF54HilKDl3ZofNwAEUSQQBefRW4/XanW8Ko\nqwMyM4OfC3e7KQn6vn3mPifU3YoAdjz6/ayDN0bF3l64AKSn2+PQy8vLUV5ebtnnhdUp6vP54FNZ\nY1JBjwSRLluUXbiQoIdBczNl6HqorwfmzHGXoFsduVjl0PVUuABM8Hv1YoZQzc23tjJBt8NgyM3u\nsmXLwvo8w3XoGRkZOHnyJADgxIkTGCCtWXIQtcilXz8mmF1d1i2LMnRraWmhDF0PLS1szn+33JDB\n7YIeKj8XEQVdDVHQuc/QlZg1axbWrVsHAFi3bh1uueUWyxtlBrXIJSbGetGkyMValBw6Zeg9EQXF\nLcJiV4YuFWKzgq6nwkWkd2/tk+SFC6zWnocIUFPQS0pKUFhYiCNHjiA7Oxtr167Fj3/8Y2zZsgU5\nOTnYtm0bfvzjH0eqrZqoRS6A9XksdYpaCzl0fYj7sFuExSsOPVTHKE8OXTND37Bhg+LzW7dutaUx\n4aAWuQDWd4zS5FzW0tzcs0+COkV7woNDD3e7NTUBOTmBx0lJLC5VuooL9TlWCHpXF/tfaio72bgd\nz8zloha5ANYLOkUu1kIOXR9ucuiCAJw6Zb9D9/nMuXSrBF28Gk9Kcsd6D4VnBF0rcrE6j7UycqFO\nUcrQ9eImh97YyDoT5ZUhVtehA+YFXU+VC6At6K2t7CSVmOiO9R4KTwk6r5ELZejk0PXgJoeuFLcA\nwROrmUFJ0DMz7XXoWlUura3sO9kxnsUOPCPoFLnwi1odOg8HUCRxk0NXE/S4OPYTavSlGvIqF8Cc\nQ7eqyoUcukPwXOUS7YJODl0fPDh0ILxtZ2XkYkWGfuEC+z7k0COMGyKXzk7t91GGrgxl6PrgwaED\n4W07+eRcgLOCLkYu5NAjDK+RS+/e7ETg91vXPt4gh66Plha2j7vBKfLg0K3sFCWHHmFCVbm4NXLx\n+dhnRXPHKGXo+mhuZuLmBqcYStDNbDtxWoN+/YKfd0PkQg49woSKXKx0e2aqXASB7bByQQcoRyeH\nrg9R0N1worPDoZ8/z4RTPt+f3YKudZMLaeTihvUeCs8Iutsjl85ONq+M0hSd0SzogqA8fS5l6D1p\naeHDoZvddkoVLkBkqlz0RC5uWO+h8Iyguz1yUYpbRKK5Y7S9nd0IuFev4OfJofckGhy6PD8HWBbe\n3m7sM62OXHr1YlcObpnpUg1PCbpa5GJlHtvZyVxlnGwWnHAEPZoHFym5c4AydCXc4tAFwZ4MXU3Q\nfT4226Fel97RoZzFq6HHoQN8uHTPCHqkIpe2NrYDyHO+2Fj2W61aJZSgR6tDV7r9HEAOXQm3OPTm\nZrb/q02WZXbbKZUsihiJXfTerUhET9kiwEeO7glBF4SA0CphpaBrRTtaLp0EXRkth06CHoxbHLrS\nreekWB25AMYE3UjcAmgP/RcjF4AcesRob2cRiNo9Aa3sYLND0KM5Q1ebFlUUBbNzgngRt5QtasUt\nQHidolYIupEOUUDf0H+AHHrE0IpbAHsiFyXIoRtHqWQRYOsqJsb9nVCRRHToTotKKEEPJ0NXE2I7\nHbreyIUceoTQcs0AH5FLNHeKWp3FepHOTrYPpaY6Lyp6BJ2nyEVvpygPDl3zjkW8oFXhAlhbMeFE\nhn7iBHDkSODx0KHA5Zdrt9PvB86c0T7w3ICaQwcCwiC/m1E0Iq4np0Tl00/Z/gQAH30EZGerv9Yu\nQf/gA/X3fvklcPQo+3v3busEnbcM3ROC7vXI5Uc/AvbsYfc1FAQm7nv2AIMGqb/nkUeAd99lO7eb\n0XLoNLgogLie+vRh+1JnZ8/SWTu57jpg1KhANdfcueqvNbvdmpqAgQOV/6fl0AUBKCpipY3iMXbX\nXfqX66UqF08IOu+RS6hO0dpaYNUqYNo09viXvwTmzQO2bAkcYFLeew/43e+M3YPRKfQ4dCKwnny+\nwP6sd/KpcLl4kZ1Qtm/XVwoY6chl9252HHzwgf5SRSmhbnDBk0OPigy9d28WQYSaPCvcZdmVocsz\ny5/8hDm0xx/v+dqzZ4H584Hnn2f3fHR7lUioDN3tjihSSNdTpCeKqqtj7levWEa6U/TFF5kjNyPm\ngHaVizRy4cGhe0LQtWIQIOBqrHB7WvGOXZGLXNBjY9lOvGoV8I9/BJ4XBOCee4BvfhOYNYvtiPX1\n2t/Hacih60O6niI9lWuoTlA5djj0/v3ZZ8qNT0cH8PLLwJw5xpcn4qWRoq6NXMrKgNdeCzyeOBFY\nvFj5taEcOmDdZapWB6yWoKvNtAgwQRc7nJTeV18PpKUFPz94MPDb3wK33w5Mn86eO3sWqK4GNm5k\nj0VXk5Ki+ZVU2bkTeO65wOMhQ9jVgVknpIRYW62EmzL0998HXnpJ32sXLAC++lVrl++0Qzci6HbU\nocfEsKuEU6fYvi/y9tvAiBHAFVcYX56IkQxd7Th1C64V9BdeYGfGiRNZhvz00+EJulWX75HO0M+c\nYe5EqQNs9my2M544EXhuxozACUcU9Nxc5c8OxZ//DDQ0ADfeyB4/8wxry3e/a+7zlODFob/yChPR\noiLt1x07xjqxtSoyzOC0Q9caGSrHDocOBPZnqaC/8IKxDlAl9Fa58DAnumsFvbYW+K//AqZOZX//\n4Q/qrw1VtghYdxBEOnIJ5Y5mzlT/n5lpR6XU1gI33xyoaCgqYs5TrHiwAl4y9DNn2LooKdF+XUcH\nq9T47LPwXKMcnhy61ZNzicj358ZGdiX/zDPGlyXFS5GLazP02tpAWV5qKjug1Dr4QpUtAtYJutnI\nxWynqNGDSUq4gv7ll8GlkTk5wKOPMlGzaiAULw799OmesZcS8fHAHXfoj2f04rRDj0SGrjU5F9Bz\nf37tNeCGG8xHiiJqVS6CwF/ZoisFXRCYmIg1qb17s5Xa1KT8eiMZerhEemCRk4JeW9uzLnjhQmDk\nSODhh81/rhRe6tDPnGHjAPRw112s09rKCiOeHLqZ7Sbe6MSIoIvVLeGiVuUiztUvxp3k0E1y/jz7\nLd24aWnMJSmhN3LhscrFKUEXBGVB9/mA//kf4K232PYRf1asMLccJxz6+PHBbV+/PvR79Dp0ALj6\naqCrC/j4Y32vr6hgGbXYnuRkNnBMCk8OvW9f4xOrtbayY1hrsNQVVwBLlwbW05EjwNe+pn8ZaqhF\nLtL8HAjt0PfvB+6+O/z2hINpQV+5ciVGjRqFMWPGYM6cOWhTC6FMIMYt0mqK9HT1HmbeIxetTlGn\nBL2hgbVXyT337w/83/+x7VRbCzz1FLBvn7nlOJGhHz0aaP8DDwAHD2q/XhDYvqdX0H2+gEsPRXMz\ni7B+9avA+rzhBta5Kn8dLw49Lo79GJGEUPk5wIoizp4NrKfPPgt93OtBTdClcQsQ2qF//jmwa1f4\n7QkHU4JeXV2NZ599FhUVFThw4AD8fj82irVyFiCNW0RCOXTeIxetDN1IhYGUcARdyZ1LiY8POKUr\nrmCvN4MTDv3iRbY/JSWxOUlCraOmJnbQGxGPuXNZ+WiowWwPPAAUFrITgLg+MzN7mhfpjUAineWa\nMRVGt50eQff5gq+s5LctNIuWoBtx6C0t5o8DqzAl6Jdccgni4+PR2tqKzs5OtLa2YpDWxCIGURIT\nLYeuJ3Jxc9miGyOXUIIuZdAgdhI2Q6Qz9K4uVtsvioGedWQkPxe58kp2otu6Vf01r7zC6tufeir4\neSXzIr0RSCSz3PZ2JrZGOx6Nbjs9gm4XeiOXUOu9uZl9DzEydgJTZYspKSl46KGHMHjwYPTt2xfT\np0/HjWKx8r9YunRp999paUW4/PKi7sdTpmjPhiatcAl8hrpDb2sLvcMlJLCs8o032OOBA1mWapRI\nT85lhaALgvHBQPIKFy0uu4xtMzPLibRDl99CUI+gG8nPpdx1FxPrzk7ldvz7vwf6IqSkpwdmDhRx\nyqGfOsXao3bzGDWMbrtQFS52Ila5yPdfow5dFPvaWjbYSQ/l5eUoLy833GY1TAn6sWPH8OSTT6K6\nuhrJycm4/fbb8dJLL2GuZAo2UdA7O9lKEUczHjrELjO/9z31z//yy541vKEceqjL4aIiNjjpD39g\n4vrJJ8DJk9rvMbost2Xo/fqxZTY1GR8ha8ShJySw71Bfb8zJtbezOXYicXNvEfn2s8uhAywb/+AD\n9TEUjz3GBs7JSUtjo3SlOOXQze5/Rred1jwudhMby37ko7nlGXrv3tozXYrf14igFxUVoUgyWm3Z\nsmXGv4AEU4L+8ccfo7CwEKmpqQCAW2+9FTt37gwSdJG6OlZHLjrjVat6ug85tbXAtdcGP5eWBhw+\nrPx6PZHLtGmB2QoFgZ1tjU6ELy4rUpGLOKe5GTERychgJy4zgp6To//1YuxiRNClMwgqYYdDl+8r\neq5ijHSISklJATZsMP4+JfMi7xSNlEMPR9B5iVyAQOwiPUblkYt4Y2y1KUTEk6zZ+NEKTGXoI0eO\nxK5du3DhwgUIgoCtW7ciLy9P8bXyS/crr9Qn6EqRSzhVLlJ8PmDYMOCf/9T/HumyIjWw6OxZtuOo\nvU8PZnN0I5ELwNy80Q4haYyghF2Ri3Rf6dePXXKrjXEAWOQSzknVKErxorxskQeHzqOgS5FHLoD2\num9pYZ/jZMeoKUHPz8/H/PnzMWHCBIwdOxYA8O1vf1vxtfJL9+HDQwu6UpVLenp4VS5y9LTD6LLC\niVza21mHnZRw4haRzExzgm4kcgHMCbo0RlDCjk5Rpe0X6qRn1qGbxQsOnadOUUBd0KWRC6C97pub\nmWF1UtBNz+Xy8MMP42EdwwXlwnDFFUBNjbrAdXWxiOCyy4Kf13LoeiIXOW4SdJ+Ptf/ixWBHYIWg\nm3XoRgXdTKWLHoduR4Yu31fEdaQWMZ0+bSx+ChdxX5fGQE469Kws4+8zk6E7KehKw//NOPScHA4j\nFyPIL9179WKPq6qUX3/2LNuwctHUcuhGIxfAvKDbEbkAyh2jTgm638/eIz+pamGHQ49E5AK4z6H3\n6cOOE2n5G28O3QuRizxDB0I79JwcDiMXIyg5PS0xVYpbAJYlt7Yqz7nAe+QCKOfoTgn66dPApZca\nG7jBS4ZuJnKJdIYOBOfofj9rt3j578UM3UyBgpUozeeiFLmEcujDh0eBoMs717TEVO1S3+dTj114\nj1wA5UoXpwTdaNwCmItc9Dp0Kye50opc1Ii0QweCc3Tx0l+sBefBoXslQzfq0EVBd+rWjxGJXJQc\nulqFiZaYqAm6mcglM5Md3A0Nxt5nV+TiJkE3WuEC2OPQ4+OZiFlxL1gRtchFa0yC0w5dPvhK3Ffk\nneh2QJFL8HNa8+i0tLDtlpDAomMncGXkoiYmajm6mcjF52M90kZLF+1y6G7K0M049MxMtm38fv3v\nCeXQAes7Ro1GLh0d1ty60ChShy6fHiEmJjJzxXd2MsNj5uqEt05RI2WLWg49MZHpl1Oxi62CfuEC\nWyn/Gn/UjZnIBbA2cgnVDjV4jVyMXAKaEfT4eDaQxsjJI5RDB6wXLqORy5kzbP81OvQ9XLQcOhCZ\nHP30abZNY2ONv5c3h65W5aJUtqjl0BMS2LHjVKWLrbtpbS2rlJCPwBsyhH1hpQ5OLTFRc+hmIhfA\nnKDbGbnY0SmamMjWv5GD30zkAhiPXfQ4dKtr0Y1WuTiRnwPaDh2ITI4ezkyfPGbocj1Silz0OHQz\n8aNV2C7oSuIcH8+mLf3ss57/0xITLYduRtD1jFqV0tXFNnokMvSuLnbyGjBAf/vUMBq7mHHogPEd\n2SmHriboSlcxTuTngDscerjzCBkVdKerXPR2iiqtd3FgoFiW7VlBVxNnNXdsxqFHKnKRz9Qnx0pB\nr69nB62Z7yUnUoJudEd2KkOXr1Otq5hod+jhCLqR9jk52yKgf6SomkMXzYnPF4UOHVAW044O1jus\n5kqtrHJRa4MWoU4cVnaKWhG3iBgV9HAiFyPZoRMOXW1fUVtH5NDNvdfIdhNnMLTi7kNmCbfKRbov\nezZDVxskBCiXLp48ycRc7b6CSpMWiXNNa92LUI0BA9jOdO6cvteHOnFYmaE7JehtbUBjozkR4yFD\nV4vn1NYROXRz7zWy3cT83Ohc+lYSbpWLdF+myEXyeq1LfaVJi8zGLQDbgbRq4uWEyuqtjFycEvQT\nJ9jrzVR1GN2R3ZKhA9qCTg7dOEa2m9MdokD4VS5yh+5ZQTcSuYQSdCWHbjZu0WqHGnZGLm4RdK2T\ncCiMXmo6kaGrVSlpRS5OOPRLL2Xfu6PDOYd+8mRkMnQ3CLra0H+9k3NJ9+WMDLbfKN2pym4ci1wu\nv5ztMNKYIVR2m5bGMnZpNYLZChcRI4KuJ3JR24i8ZOhmO0QBfqtcAPc59JgYVgN+5kx0OHQnK1yA\n8Cfnku7LcXFMq8zezzccbBN0QdAWh7g4JurS0sVQYiLeeb2xMfBcJAU91LLi4rQdulbO7xaHrnUS\nDkVaGjs4lW64q4TWDaJFnM7QnXLoQCBi9HqG7nSFCxD+DS7kV5tO5ei2CXpTExthprWh5GKqxx3K\nc3StgT6ONwl6AAAV/ElEQVR6cFPkIr1aCedyV06ouUqkhBO5xMSwgSh6d2S9kYvdI0UB93WKAoGI\n0QmH7vezYgGzVyd9++qfWM0tkYtU0P1+dszKZxxVO5HKT7pOVbrYJuh6nJ5cTPWUy8lzdKscup4d\nz+4qFzc49HAiF8BY7KI3crE6Q9fr0AXBWUF30qGfOcNyfDPVYwB7X1ycvqs1Nwi6vFNUjFvklTdq\nJ1L5SdepjlHTdywKhR6nd+WVQEVFYCL/48eNO/RwBT01lR24X3wRuMFxQoJylYfdVS7nzwfWhZUO\n/ZJLWLZfVxe4hBQHQcgJJ3IBQl9qit/P72cHkLyKQI6TGfr58+xAd6o+OtIO3e8PrOuqqvD3P3Hb\nKa2/jo7AFemZM84LutyhK8UtANtf29rYupLOcSM/6XouctHj9MaPB159lb1u4EB2iTd4sPZ75IOL\nwo1cfD7g2muB0aNZG9LTgYceUn6tnYKelQW8805gXXR1mZ9HQ47PBxQUsBPowIHsJPb008qvDWf+\nDkD7UvNHP2Lrd+BANvXDiBGha4+djFycGlQkEkmH7vcD06axbT9wIFBcDOTnh/eZatuuq4vtj5dd\nxpb1i1+wfdNJ5FUuSiWLQGCmS/m6V3LoTkQutjl0PfHJpEnBHZx6kA//D9ehA8Cbbwb+/ugjYNEi\n5deFOnmEI+iTJ2vfeT5cPvww8Pfy5eoRTLgVB2qXmm+/Daxfz/YL+eybWkRici6AfeeOjmBn5mTc\nArBlV1ZGxqGXlrIrVbHvywrUtt3Onez3+fPODiaSInfoShUuIikpzHxKj5Pm5uD92qnIxVGHbga5\nQ7dC0KUUFACff648etROhx5JtMRAT0elFkqXmqdOAQsXAs8/b0zMgcjMhw4wYZG7dLc7dKsEfdcu\ndsX2wgvWiTmgvu1efBG46y73iDmgP3IB2D4s1wf5STcqIxczKDl0KyawEomLY1cOf/97z/95RdC1\nLtf1dFRqIb/UFAQm5nffDVx/vfHPi1TkAvQUdDc49NOnlU+yWtO4GqGxEZgzB/j9781XN6mhtO3a\n2ljMOneutcsKFyVBV+vfER26FLdUuTgauZhBKUO3utNq8mRg+3Zg5szg5+2MXCKJmkMXJ0kK5wQ5\ncCBw5Ajwhz+wx59+yrbXsmXmPi9Sk3MB7nXoSidZsw69uRl4+eXAnaXeeAOYPh245Zbw2ytHadtt\n3gyMGcP6UNyEvMpFy6GnpPS8xZzcoaemsueeeSZw1TNjBusrsxNbq1zsilysztDlXHcd68CTY9ah\n+/3MqVp5ORsOoUa7hXMpPGwYcPvtwMcfs8exsUxAzJ7MIjWwCOhZr+8Gh37qlHKGbrZTdPVq4PXX\nWbQIsI7pX/wi/LYqobTtxLjFbRjJ0JUiF7lD9/mAn/0M2LuXPd69m93O7+GHrW23HNsEva6O9WJb\njVLZopWRCwBcdRVw4EDPA8msoIvu3C2ZodZot3DiFoA5ndWrw/sMKU5HLjk51i3bKOLw8d69e5oB\nM52igsAEdc0a4JprrGunGvJtV18PbN0K/PGP9i/bKEpVLkYduvzY+c//DPy9dKn9I3sBGzP05OSe\no6ysQO7Q7Yhc+vYFxo1jnUVSzEYubopbAG2HHk6HqB1EamARoBy5OOnQ+/Rh20PpJCu6XyP3it2z\nh4nWpEnWtVEL+bZ79VVWGnnppZFZvhGMZOhqDl3r2InE3DuAjYJuR9wCsJ2htTVwNrUjcgFY7LJj\nR/BzeuZyEeMVKW4TdDsdutVY6dAFQfukrOTQnczQAbZ8JaGIjWWGSX5jcS0iXV0i33YvvgjMmxeZ\nZRvFaNmiHocuJRJz7wA2Ri52CbrPx25Mcf31TCSrqoAlS6xfzuTJwK9+FfxcKEH3+QITdEmvTtwm\n6Dw5dNGJFhWxxz4f2y7jxxv/rPZ2tn3U5nofOBB4993Asvbts+aeruGQlqZ+QhO3o5rwSOnsBDZu\n7GlS7CQpCXjySeC119jJ9NAh4KabIrd8I4RbtugWh26boD/2mF2fDGzZwjqLRMQOHiv56leBO+5g\nIiCKs568Xoxd3CzoPDn0uDg22EscgPbkk6yDyYygh4rnCgtZ1Yc4BXLv3qyT10mUbuoiIm5HPVcR\nW7cCQ4awuYsixX/8B4tYRC6/3J4Y1gqUqly0yhY959AbGhpwzz334ODBg/D5fFizZg0mScK50aMt\naZ8ieXnsx06Sk9lw5D17Ah1IevJ6pRzdbYLOk0MHgk/Y771nfp7pUFdYsbFsGgg3kZYWPAunFCMi\n4UR1SUpK4GrH7ShFLmr9J/I6dL+fGT+tfcv1Gfr999+PGTNm4PDhw9i/fz9yc3OtbJcrmDw5+BJV\nT17Pg6D37h2oOZfiRocux+gNr6XY1d9iJ2lp6idZvSLR3Mymt7jjDmvb5iWMVLnIIxfRCGn1Tbja\noTc2NmLHjh1Yt24d+5C4OCQnJwe9ZunSpd1/FxUVoYiXU7WE664Dnn024GwaG/VHLlLcJug+X2AH\nk242tzp0KeEKutUlrnaTns7u86pEYiKbJTTUhHavv86uPJzu4HUzvXuz/UMcrn/mjHrk0r8/K8EU\nBHYs6b3ZudLJt7y8HOXl5WG1XYopQa+qqkJ6ejoWLlyIffv2Yfz48Vi9ejX6SU5pUkHnlSlT2ECA\nCRPY49jY0CO9eBB0ILCDSQXd6w7djhJXu8nPV+/EHTsWeOCB0J8RE+PO2m83ER8P5OYGjnWfD/jO\nd9Rf268fm8gsOVnfdBlqDl1udpeZHVL9L0wJemdnJyoqKvCb3/wGEydOxAMPPIDS0lL8wq4hZw6R\nnh58izw98CLoSjtYNDh03gT93/6N/SixahX7IcLH52ODCfUidowmJ4fn0K3GVIaelZWFrKwsTJw4\nEQAwe/ZsVFRUWNowXuFF0JV2MK87dB4jF8KdSHN0PcdNpDJ0U4KemZmJ7OxsVFZWAgC2bt2KUaNG\nWdowXuFF0Hl16ElJrKrAzMHBY+RCuBNp6aKe40YcZNXVZW+7TJctPv3005g7dy7a29sxbNgwrF27\n1sp2cQsvgs6rQ5fOW37FFcbey2PkQrgTaeminuMmNpbtexcu2GuaTAt6fn4+PvroIyvb4gl4EXQl\nhx7uzS0iRTiCTpELYQXSyEXvla1oouw8xmybyyVa4UXQlRx6uDe3iBRmc3SKXAirkEYueq9sI5Gj\nk6BbDC+CzrtDl85brheKXAirkDt0vYJud6ULCbrF8CLo0ejQKXIhrELu0PVGLuTQOYMXQefdoVPk\nQjgJOfQogRdBj1aHToJOWAE59CiBF0FXcgu8OPTMTIpcCGeRli2SQ/cwvAi63C34/SySUJuQyE1Q\n5EI4TWoqOfSogBdBl7sF8c43ahNBuQmKXAinufRSNvtqVxc5dE+jJOidne4TdLlb4CU/B9iESO3t\nxu6nCZCgE9YRF8emoWhsJIfuaXh16DwM+xcR7ytr1KVr3SCaIIwidoySQ/cwvAi6kkPnoUNUxEzs\nQg6dsBKxdJEcuofhRdB5dugACTrhPOTQowBeBD1aHTpFLoRViKWL5NA9DC+CHo0OncoWCStJTWX3\nHr14Uf2G0lLIoXMIL4Lety/bEf1+9jhaHDoJOmEVKSlATQ3bp/SU+5JD5xBeBD0mJnAXFSA6HDpF\nLoSVpKYyQdd73JBD5xBeBB0InqArGhw6RS6ElaSkAJ9/rv+4IYfOITwJunSCrmhx6CTohFWkpgJf\nfEEO3dPwJOjR5tApciGsJCWF3WhFr6ArzXBqNSToFsOToPPs0Pv3Zyehtjb976HIhbCSlBRAEIxH\nLoJgX5tI0C0mPp7N3SLFrYLOs0OPiQHS04FTp/S/hyIXwkpSU9lvvUYoPp7NAXPxon1tIkG3GHLo\nkcNo7EKRC2ElyclsXiEjRsjuG0WToFsMT4LOs0MHjAl6Zyc7+OLi7G0TET3ExrLoz4gRsrtjlATd\nYngS9Ghy6BS3EHaQkmLMCNldukiCbjE8CXo0OXSKWwg7SE0lh+5peBJ03h26kXuLUoULYQduc+iU\nKFoMT4KemBioEuHVoT/7LPDQQ+xxUhLws58pz6tBkQthB0YF3W6HToJuMTwJOu8Ofdo0NrBDrOtd\ntgy4917m3OWQoBN28MMfsvJZvbjWofv9fkyYMAFZWVl44403rGwT1/Ak6GKG3tXFJunSMwWom0hL\nA37wg8DjtWtZBKMm6JShE1aTn2/s9a7N0FevXo28vDz4fD4r28M9PAm66NAvXGDuNTbW6RaFh1Yn\nKWXohBtwZZXL8ePHsXnzZtxzzz0Q7BzHyiE8Cbro0HnMz5XQEnSKXAg34MoM/cEHH8Tjjz+OpqYm\n1dcsXbq0+++ioiIUFRWZWRR38CTookPnMT9XIpSgU+RCOE1CAnD+fOBxeXk5ysvLLft8w4L+5ptv\nYsCAASgoKNBsiFTQowmeBF3q0L0u6BS5EG4gMRE4cSLwWG52ly1bFtbnG45cdu7ciU2bNmHo0KEo\nKSnBtm3bMH/+/LAa4SV4EnSpQ6fIhSDsx3UZ+ooVK1BTU4Oqqips3LgRN9xwA55//nk72sYlPAm6\n6NC9ErloDTSiyIVwA66tchGhKpdgeBJ00aFHQ6coRS6EG3BtHToATJkyBVOmTLGqLZ5ALuiCAPj9\n7pzlT9y5zp/3hkOnyIVwO6536EQwcXHBgt7Rweq73XghExvLYogzZ7zh0AcMYN+lq6vn/yhyIdyA\n6zJ0Qhu5Q3dr3CKSmMhcrRccenw8cMklwNmzPf9HkQvhBsihc4Yo6OJ4K7cLekICE3QvOHRAPXah\nyIVwA+TQOSMmhv34/eyx2wXdSw4d0BZ0ilwIpyGHziHS2MXtgh4tDp0iF8IN0D1FOYQnQY8mh06C\nTjhNr14sjm1vt+fzSdBtgCdBT0hgN7nwukMnQSfcgp0unQTdBngS9MRE1kavO/S2NsrQCXcgvbGM\n1ZCg2wBPgi46c3LoBBEZyKFzBk+CLjpzrzt0EnTCLZBD5wyeBD2aHDpFLoQbIIfOGTwJutcc+oAB\nrJNXfiMtKlsk3AI5dM7gSdC95tD79GE3u66vD36eIhfCLZBD5wyeBF105l4RdEA5dqHIhXAL5NA5\ngydBT0hggx3c3EajKAk6RS6EWyCHzhk8CXpionfycxE1h06CTrgBcuicwZOgJyR4K24BKHIh3I2d\nDt2F99Hhn169gOXLgbVrgepqYMgQp1ukTlKS9xy60r1FKXIh3EJCArsRix2QoNtAaSnw6aeBxwUF\nzrUlFPn5wIYNTrfCWjIygN27A4/9fqCz091XSkT0QA6dM8aOZT88EBvLRN1LyCMXcR4XN94GkIg+\nKEMnCAMoCTrFLYRboCoXgjCAXNCpwoVwE+TQCcIAoqCLw/+pwoVwE5ddBmzfziJA8efYMWs+mzJ0\nwnP07csqjZqagORkilwId5GXxzrp7YAcOuFJMjKAkyfZ3xS5ENECCTrhSaQ5Ogk6ES1Q5EJ4kowM\n4C9/AY4fBw4fpgydiA7IodtMeXm5001wDZFcF3feyRz6m2+yDqeSkogtWhe0XwSgdWEdpgS9pqYG\n119/PUaNGoXRo0fjqaeesrpdnoF21gCRXBe33w6sXx/4uffeiC1aF7RfBKB1YR2mIpf4+HisWrUK\n48aNQ3NzM8aPH4/i4mLk5uZa3T6CIAhCJ6YcemZmJsaNGwcASExMRG5uLmpray1tGEEQBGEMnyDI\n775ojOrqakyZMgUHDx5E4r+m7fPRpBkEQRCmCEeSw6pyaW5uxuzZs7F69epuMQ+3QQRBEIQ5TFe5\ndHR04LbbbsNdd92FW265xco2EQRBECYwFbkIgoAFCxYgNTUVq1atsqNdBEEQhEFMCfoHH3yA6667\nDmPHju3Oy1euXImbbrrJ8gYSBEEQ+jAVuVx77bXo6urCJ598gr1792Lv3r3dYl5WVoaRI0di+PDh\nePTRRy1trNtRq88/d+4ciouLkZOTg2nTpqGhocHhlkYOv9+PgoICzJw5E0D0rouGhgbMnj0bubm5\nyMvLw+7du6N2XaxcuRKjRo3CmDFjMGfOHLS1tUXNuli0aBEyMjIwZsyY7ue0vvvKlSsxfPhwjBw5\nEu+8807Iz7d0pKjf78d9992HsrIyHDp0CBs2bMDhw4etXISrEevzDx48iF27duG3v/0tDh8+jNLS\nUhQXF6OyshJTp05FaWmp002NGKtXr0ZeXl73lVy0rov7778fM2bMwOHDh7F//36MHDkyKtdFdXU1\nnn32WVRUVODAgQPw+/3YuHFj1KyLhQsXoqysLOg5te9+6NAhvPzyyzh06BDKysqwZMkSdHV1aS9A\nsJCdO3cK06dP7368cuVKYeXKlVYugituvvlmYcuWLcKIESOEkydPCoIgCCdOnBBGjBjhcMsiQ01N\njTB16lRh27Ztwte//nVBEISoXBcNDQ3C0KFDezwfjevi7NmzQk5OjnDu3Dmho6ND+PrXvy688847\nUbUuqqqqhNGjR3c/VvvuK1asEEpLS7tfN336dOHDDz/U/GxLHfqXX36J7Ozs7sdZWVn48ssvrVwE\nN1RXV2Pv3r24+uqrUVdXh4yMDABARkYG6uS3pPcoDz74IB5//HHExAR2s2hcF1VVVUhPT8fChQvx\nla98BYsXL0ZLS0tUrouUlBQ89NBDGDx4MAYOHIhLL70UxcXFUbkuRNS+e21tLbKysrpfp0dPLRV0\nGlDEaG5uxm233YbVq1cjKSkp6H8+ny8q1tObb76JAQMGoKCgQHVcQrSsi87OTlRUVGDJkiWoqKhA\nQkJCj0ghWtbFsWPH8OSTT6K6uhq1tbVobm7Giy++GPSaaFkXSoT67qHWi6WCPmjQINTU1HQ/rqmp\nCTrDRANiff68efO66/MzMjJw8l93Wzhx4gQGDBjgZBMjws6dO7Fp0yYMHToUJSUl2LZtG+bNmxeV\n6yIrKwtZWVmYOHEiAGD27NmoqKhAZmZm1K2Ljz/+GIWFhUhNTUVcXBxuvfVWfPjhh1G5LkTUjgm5\nnh4/fhyDBg3S/CxLBX3ChAk4evQoqqur0d7ejpdffhmzZs2ychGuRhAEfOtb30JeXh4eeOCB7udn\nzZqFdevWAQDWrVsXFQOxVqxYgZqaGlRVVWHjxo244YYb8MILL0TlusjMzER2djYqKysBAFu3bsWo\nUaMwc+bMqFsXI0eOxK5du3DhwgUIgoCtW7ciLy8vKteFiNoxMWvWLGzcuBHt7e2oqqrC0aNHcdVV\nV2l/mNWB/+bNm4WcnBxh2LBhwooVK6z+eFezY8cOwefzCfn5+cK4ceOEcePGCX/729+Es2fPClOn\nThWGDx8uFBcXC/X19U43NaKUl5cLM2fOFARBiNp18cknnwgTJkwQxo4dK3zjG98QGhoaonZdPPro\no0JeXp4wevRoYf78+UJ7e3vUrIs777xTuOyyy4T4+HghKytLWLNmjeZ3X758uTBs2DBhxIgRQllZ\nWcjPD3tyLoIgCMId0B2LCIIgPAIJOkEQhEcgQScIgvAIJOgEQRAegQSdIAjCI5CgEwRBeIT/B4Th\n3AENN2mnAAAAAElFTkSuQmCC\n", 2011 "prompt_number": 31,
1080 "text": [ 2012 "text": [
1081 "<matplotlib.figure.Figure at 0x9eb46cc>" 2013 "2.3781768226942255"
1082 ] 2014 ]
1083 } 2015 }
1084 ], 2016 ],
1085 "prompt_number": 9 2017 "prompt_number": 31
-   2018 },
-   2019 {
-   2020 "cell_type": "markdown",
-   2021 "metadata": {},
-   2022 "source": [
-   2023 "Sm\u011brodatn\u00e1 odchylka teploty"
-   2024 ]
1086 }, 2025 },
1087 { 2026 {
1088 "cell_type": "code", 2027 "cell_type": "code",
1089 "collapsed": false, 2028 "collapsed": false,
1090 "input": [ 2029 "input": [
1091 "plt.plot(t)" 2030 "std(th)"
1092 ], 2031 ],
1093 "language": "python", 2032 "language": "python",
1094 "metadata": {}, 2033 "metadata": {},
1095 "outputs": [ 2034 "outputs": [
1096 { 2035 {
1097 "metadata": {}, 2036 "metadata": {},
1098 "output_type": "pyout", 2037 "output_type": "pyout",
1099 "prompt_number": 11, 2038 "prompt_number": 32,
1100 "text": [ 2039 "text": [
1101 "[<matplotlib.lines.Line2D at 0x9ee51ec>]" 2040 "0.024518806557416305"
1102 ] 2041 ]
-   2042 }
-   2043 ],
-   2044 "prompt_number": 32
-   2045 },
-   2046 {
-   2047 "cell_type": "markdown",
-   2048 "metadata": {},
-   2049 "source": [
-   2050 "Otev\u0159eme soubor s m\u011b\u0159en\u00edm z podlahy a zpo\u010d\u00edt\u00e1me znovu statistick\u00e9 parametry. "
-   2051 ]
-   2052 },
-   2053 {
-   2054 "cell_type": "code",
-   2055 "collapsed": false,
-   2056 "input": [
-   2057 "data = np.load('./data_floor.npz')\n",
-   2058 "tl=data['temp']\n",
-   2059 "pl=data['preassure']"
-   2060 ],
-   2061 "language": "python",
-   2062 "metadata": {},
-   2063 "outputs": [],
-   2064 "prompt_number": 25
-   2065 },
-   2066 {
-   2067 "cell_type": "code",
-   2068 "collapsed": false,
-   2069 "input": [
-   2070 "amin(pl)"
-   2071 ],
-   2072 "language": "python",
-   2073 "metadata": {},
-   2074 "outputs": [
-   2075 {
-   2076 "metadata": {},
-   2077 "output_type": "pyout",
-   2078 "prompt_number": 15,
-   2079 "text": [
-   2080 "98296.0"
-   2081 ]
-   2082 }
-   2083 ],
-   2084 "prompt_number": 15
-   2085 },
-   2086 {
-   2087 "cell_type": "code",
-   2088 "collapsed": false,
-   2089 "input": [
-   2090 "amin(tl)"
-   2091 ],
-   2092 "language": "python",
-   2093 "metadata": {},
-   2094 "outputs": [
-   2095 {
-   2096 "metadata": {},
-   2097 "output_type": "pyout",
-   2098 "prompt_number": 16,
-   2099 "text": [
-   2100 "22.5625"
-   2101 ]
-   2102 }
-   2103 ],
-   2104 "prompt_number": 16
-   2105 },
-   2106 {
-   2107 "cell_type": "code",
-   2108 "collapsed": false,
-   2109 "input": [
-   2110 "amax(pl)"
-   2111 ],
-   2112 "language": "python",
-   2113 "metadata": {},
-   2114 "outputs": [
-   2115 {
-   2116 "metadata": {},
-   2117 "output_type": "pyout",
-   2118 "prompt_number": 17,
-   2119 "text": [
-   2120 "98306.75"
-   2121 ]
-   2122 }
-   2123 ],
-   2124 "prompt_number": 17
-   2125 },
-   2126 {
-   2127 "cell_type": "code",
-   2128 "collapsed": false,
-   2129 "input": [
-   2130 "amax(tl)"
-   2131 ],
-   2132 "language": "python",
-   2133 "metadata": {},
-   2134 "outputs": [
-   2135 {
-   2136 "metadata": {},
-   2137 "output_type": "pyout",
-   2138 "prompt_number": 18,
-   2139 "text": [
-   2140 "22.5625"
-   2141 ]
-   2142 }
-   2143 ],
-   2144 "prompt_number": 18
-   2145 },
-   2146 {
-   2147 "cell_type": "code",
-   2148 "collapsed": false,
-   2149 "input": [
-   2150 "std(pl)"
-   2151 ],
-   2152 "language": "python",
-   2153 "metadata": {},
-   2154 "outputs": [
-   2155 {
-   2156 "metadata": {},
-   2157 "output_type": "pyout",
-   2158 "prompt_number": 19,
-   2159 "text": [
-   2160 "2.2464082442868674"
-   2161 ]
-   2162 }
-   2163 ],
-   2164 "prompt_number": 19
-   2165 },
-   2166 {
-   2167 "cell_type": "code",
-   2168 "collapsed": false,
-   2169 "input": [
-   2170 "std(tl)"
-   2171 ],
-   2172 "language": "python",
-   2173 "metadata": {},
-   2174 "outputs": [
-   2175 {
-   2176 "metadata": {},
-   2177 "output_type": "pyout",
-   2178 "prompt_number": 14,
-   2179 "text": [
-   2180 "0.0"
-   2181 ]
1103 }, 2182 }
-   2183 ],
-   2184 "prompt_number": 14
-   2185 },
-   2186 {
-   2187 "cell_type": "markdown",
-   2188 "metadata": {},
-   2189 "source": [
-   2190 "Pro porovn\u00e1n\u00ed je nyn\u00ed mo\u017en\u00e9 vykreslit graf z hodnot nam\u011b\u0159en\u00fdch na stole a na zemi. "
-   2191 ]
-   2192 },
-   2193 {
-   2194 "cell_type": "code",
-   2195 "collapsed": false,
-   2196 "input": [
-   2197 "#fig, ax = plt.subplots()\n",
-   2198 "\n",
-   2199 "plt.plot( pl, label=\"Podlaha\")\n",
-   2200 "plt.plot( ph, label=\"Stul\")\n",
-   2201 "plt.legend(loc=2); # upper left corner\n",
-   2202 "plt.xlabel('vzorek')\n",
-   2203 "plt.ylabel('Tlak [Pa]')\n",
-   2204 "plt.title('Namerene tlaky');\n",
-   2205 "plt.show()"
-   2206 ],
-   2207 "language": "python",
-   2208 "metadata": {},
-   2209 "outputs": [
1104 { 2210 {
1105 "metadata": {}, 2211 "metadata": {},
1106 "output_type": "display_data", 2212 "output_type": "display_data",
1107 "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEECAYAAAAvY19bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHpFJREFUeJzt3X9wk/XhB/B3+kM5ql86JoSZRMtIaBOQNKMYj+ldtNRq\nlUyBzaLTjlXXK1ernrd9x+27G72bQA83V1Z313pnofNW+mc7L0SskE3EtGMtsKOdpBz5mgTpd4px\ngvgNTZ/vH/kaSJs+SfNEyofn/brrtU/yeZ588py8+/GdJ41GkiQJRESkGjmzPQEiIrq6GPxERCrD\n4CciUhkGPxGRyjD4iYhUhsFPRKQy13Tw//SnP4XZbIbVasW6devw2WefTRnz5Zdfwm63o7S0FBaL\nBVu2bInf98tf/hJWqxWlpaUoLy9HIBAAAJw7dw733nsvbr75Zjz77LNpzaW1tRVGoxE5OTk4d+5c\ndp4gEdEsuGaC3+PxYNOmTQm33X///Thx4gSOHTuGpUuXYvv27VP2mzNnDg4ePIijR4/i+PHjOHjw\nIA4dOgQA+NnPfoZjx47h6NGjeOSRR9DU1BTf59e//jVefvnltOd3991345133sHtt9+u4FkSEc2+\nayb4NRrNlNsqKiqQkxObot1uRzAYTLrv3LlzAQCRSATRaBTz588HANx8883xMefPn8ctt9wSH//d\n734XN95445Rj7d+/H6tXr8bKlSvxgx/8ABcuXAAAlJaWMvSJ6LpwzQR/qjcQv/7666iqqkp638TE\nBEpLS6HVanHvvffCYrHE7/vFL36B2267DXv27MHPf/7zhP0m/7L5+OOP8dJLL+Gdd97B3//+d6xc\nuRK//e1vM3xGRETXplkP/rvuugs2mw3PPPMMent7YbPZYLPZsH///viYl156CTfccAMef/zxpMfI\nycnB0aNHEQwG8de//hUejydh3w8//BA/+tGP8MILL8jOxev1Ynh4GKtXr4bNZkNnZyc+/PDDrDxP\nIqJrRd5sT8Dr9QIA/vKXv2D37t3o6OhIuH/37t1wuVx45513Uh5r3rx5eOihh3DkyBE4HI6E+x5/\n/PFp/4/hShUVFfjTn/6U/hMgIhLMrK/4v5Ks6nG73di5cyd6enowZ86cpPt9/PHHCIfDAICLFy/i\n7bffhs1mAwD4fL74uJ6envjt0z3mXXfdhffeew+nTp0CAFy4cCHhGHJzJSISRcrgd7vdKCkpgclk\nQnNzc9IxjY2NMJlMsFqtGBoaAgB88MEH8drGZrNh3rx52LVr17SPo9FopnTuzz77LM6fP4+KigrY\nbDZs3rwZAHDmzBk89NBD8Z/vu+8+lJaWwm63Y+3atSgvLwcAbNmyBXfccQdKS0vh8Xjwm9/8Jn7s\noqIivPjii9i9ezcMBgP++c9/4pZbbsHu3buxceNGWK1WrF69Gh988AEAYNeuXTAYDAiFQlixYgV+\n8pOfpDp1RETXJI3cn2WORqMoLi5GX18fdDodVq1aha6uLpjN5vgYl8uF1tZWuFwu9Pf347nnnovX\nN1+ZmJiATqfDwMAADAbD1/dsiIgoJdkV/8DAAIxGI4qKipCfn4/q6mr09PQkjOnt7UVNTQ2A2CWX\n4XAYY2NjCWP6+vqwZMkShj4R0TVA9sXdUCiUENZ6vR79/f0pxwSDQWi12vhte/fuTXpFTrJr94mI\nKDUlrzXKrvjTDebJE7hyv0gkgj//+c/4/ve/P+2+/JLwq1/9atbncK188VzwXPBcyH8pJRv8Op0u\n/vdtACAQCECv18uOCQaD0Ol08e19+/Zh5cqVWLBggeLJEhGRcrLBX1ZWBp/PB7/fj0gkgu7ubjid\nzoQxTqcTnZ2dAGLX5BcWFibUPF1dXdi4cePXMHUiIsqEbMefl5eH1tZWVFZWIhqNora2FmazGW1t\nbQCAuro6VFVVweVywWg0oqCgIOENWBcuXEBfXx9ee+21r/dZXAcmv+FMzXguLuO5uIznIntkL+f8\n2h9co8lKX0VEpCZKs/OaeecuERFdHQx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKMPiJ\niFSGwU9EpDIMfiIilZn1D1vPxLp1wFtvJb+vuBgYHJTf/3//F7j9duDzz7M/NyKir0tPD7BmjfLj\nCBn8//3fseCf9NnpOHcOsFpT73/xIvDFF8D//M/XMz8ioq/DjTdm5zhCBv/4OPAf/wEUFCTeHo3G\n7ktn/xtumLo/EZEaCNnxj48DeUl+ZeXlpR/8yfYnIlIDIYP/0qXpg//Spcz3JyJSAyGDf3wcyM+f\nevtXK/5Uf6Z6uv2JiNRA2OBPtmLPyYl9TUxktj8RkRoIGfxyVU06dQ+rHiJSMyGDX27Fns4LvFzx\nE5GaCRv803X0+fnpBT87fiJSKyGDn1UPEVHmhAx+Vj1ERJkTNvhZ9RARZSZl8LvdbpSUlMBkMqG5\nuTnpmMbGRphMJlitVgwNDcVvD4fD2LBhA8xmMywWC7xer+IJS1LsTzPkTDNzrviJiOTJBn80GkVD\nQwPcbjeGh4fR1dWFkZGRhDEulwujo6Pw+Xxob29HfX19/L7nnnsOVVVVGBkZwfHjx2E2mxVP+KvQ\n1miS38+On4hInmz8DQwMwGg0oqioCABQXV2Nnp6ehADv7e1FTU0NAMButyMcDmNsbAxz5szBu+++\niz179sQeKC8P8+bNm/IYW7dujf/scDjgcDhkJ5yqpmHVQ0TXG4/HA4/Hk7XjyQZ/KBSCwWCIb+v1\nevT396ccEwwGkZubiwULFmDTpk04duwYVq5ciZaWFsydOzdh/yuDPx2pahpWPUR0vZm8KG5qalJ0\nPNmqRzNdnzKJNOmP42g0GoyPj2NwcBCbN2/G4OAgCgoKsGPHjsxn+v9S1TSseoiI5MkGv06nQyAQ\niG8HAgHo9XrZMcFgEDqdDnq9Hnq9HqtWrQIAbNiwAYOpPhorDVzxExEpIxv8ZWVl8Pl88Pv9iEQi\n6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8WiRYtgMBhw8uRJAEBfXx+WLVumeMLs+ImIlJFd9+bl\n5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0dHfP/f//73eOKJJxCJRLBk\nyZKE+zLFqoeISBmNNLmgv5oPrtFMeX0glVOngPvvj31Pprwc2LJF/gOJ29uBv/0NeO21GT00EdE1\nIZPsvJJw79xl1UNEpIyQwc8Xd4mIMidc8LPjJyJSRrjgZ9VDRKSMkMHPqoeIKHPCBT+rHiIiZYQL\nfq74iYiUETL42fETEWVOuOBn1UNEpIxwwc+qh4hIGSGDn1UPEVHmhAx+rviJiDInXPCz4yciUka4\n4GfVQ0SkjJDBz6qHiChzwgU/qx4iImWEC36u+ImIlBEy+NnxExFlTrjgZ9VDRKSMcMHPqoeISBkh\ng59VDxFR5oQMfq74iYgylzL43W43SkpKYDKZ0NzcnHRMY2MjTCYTrFYrhoaG4rcXFRVhxYoVsNls\nuPPOO7MyYXb8RETKyMZfNBpFQ0MD+vr6oNPpsGrVKjidTpjN5vgYl8uF0dFR+Hw+9Pf3o76+Hl6v\nFwCg0Wjg8Xgwf/78rE2YVQ8RkTKyK/6BgQEYjUYUFRUhPz8f1dXV6OnpSRjT29uLmpoaAIDdbkc4\nHMbY2Fj8fkmSsjphVj1ERMrIxl8oFILBYIhv6/V69Pf3pxwTCoWg1Wqh0WiwZs0a5Obmoq6uDs88\n88yUx9i6dWv8Z4fDAYfDITthVj1EpDYejwcejydrx5ONP41Gk9ZBplvVHzp0CLfeeiv+9a9/oaKi\nAiUlJbjnnnsSxlwZ/Ongip+I1GbyoripqUnR8WSrHp1Oh0AgEN8OBALQ6/WyY4LBIHQ6HQDg1ltv\nBQAsWLAAjz76KAYGBhRNFmDHT0SklGzwl5WVwefzwe/3IxKJoLu7G06nM2GM0+lEZ2cnAMDr9aKw\nsBBarRZffPEFPv/8cwDAhQsXsH//ftxxxx2KJ8yqh4hIGdn4y8vLQ2trKyorKxGNRlFbWwuz2Yy2\ntjYAQF1dHaqqquByuWA0GlFQUICOjg4AwNmzZ7Fu3ToAwPj4OJ544gncf//9iifMqoeISBmNlO3L\nbmby4BrNjK/6qa4GHn0UeOyx5Pf39wONjbHv01mwABgejn0nIhJNJtl5Jb5zl4hIZYQLfnb8RETK\nCBf8vKqHiEgZIYOfVQ8RUeaEC36lVY8kAdEokJub/bkREYlAuOBXuuIfH4+FfppvSiYiuu4IGfxK\nOn72+0SkdsIFv9Kqh1f0EJHaCRf82ah6GPxEpGZCBj+rHiKizAkZ/FzxExFlTrjgZ8dPRKSMcMGf\nqqrJzQUmJmJfmexPRHS9EzL45VbsGk3s/mg0s/2JiK53wgV/OlWNXN3DqoeI1E644E9nxS73Ai9X\n/ESkdkIGf6qOXu6STnb8RKR2wgU/qx4iImWEC35WPUREylyXwc+qh4hoekIF/8RE7HLNnBSz5oqf\niGh6QgV/uv08O34ioukJFfzp1jSseoiIppcy+N1uN0pKSmAymdDc3Jx0TGNjI0wmE6xWK4aGhhLu\ni0ajsNlsWLt2reLJplvTsOohIpqebPBHo1E0NDTA7XZjeHgYXV1dGBkZSRjjcrkwOjoKn8+H9vZ2\n1NfXJ9zf0tICi8UCTRY+65BVDxGRcrLBPzAwAKPRiKKiIuTn56O6uho9PT0JY3p7e1FTUwMAsNvt\nCIfDGBsbAwAEg0G4XC48/fTTkCRJ8WS54iciUk42AkOhEAwGQ3xbr9ejv78/5ZhQKAStVosXXngB\nO3fuxL///e9pH2Pr1q3xnx0OBxwOx7Rj2fETkRp5PB54PJ6sHU82+NOtZyav5iVJwptvvomFCxfC\nZrPJTvjK4E+FVQ8RqdHkRXFTU5Oi48lWPTqdDoFAIL4dCASg1+tlxwSDQeh0Ohw+fBi9vb1YvHgx\nNm7ciAMHDuCpp55SNFlWPUREyskGf1lZGXw+H/x+PyKRCLq7u+F0OhPGOJ1OdHZ2AgC8Xi8KCwux\naNEibNu2DYFAAKdPn8bevXtx3333xcdlilUPEZFysmvfvLw8tLa2orKyEtFoFLW1tTCbzWhrawMA\n1NXVoaqqCi6XC0ajEQUFBejo6Eh6rGxc1cMVPxGRchopG5fbZPrgGs2MrvYZHASefjr2Xc66dcAT\nTwDr10+9b+dOYGwMePnlGU6WiOgaMdPsnIzv3CUiUhnhgp9VDxGRMkIFPy/nJCJSTqjg54qfiEg5\n4YKfHT8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRLvi54iciUkao4GfHT0SknFDBz6qHiEg5\n4YKfVQ8RkTJCBT+rHiIi5YQKflY9RETKCRf8rHqIiJQRKvhZ9RARKSdU8HPFT0SknHDBz46fiEgZ\n4YKfK34iImWECn52/EREygkV/Kx6iIiUEy74WfUQESkjVPCz6iEiUi5l8LvdbpSUlMBkMqG5uTnp\nmMbGRphMJlitVgwNDQEAvvzyS9jtdpSWlsJisWDLli2KJ8uqh4hIOdngj0ajaGhogNvtxvDwMLq6\nujAyMpIwxuVyYXR0FD6fD+3t7aivrwcAzJkzBwcPHsTRo0dx/PhxHDx4EIcOHVI0WVY9RETKyQb/\nwMAAjEYjioqKkJ+fj+rqavT09CSM6e3tRU1NDQDAbrcjHA5jbGwMADB37lwAQCQSQTQaxfz58xVN\nllUPEZFyshEYCoVgMBji23q9Hv39/SnHBINBaLVaRKNRrFy5EqdOnUJ9fT0sFsuUx9i6dWv8Z4fD\nAYfDMe18uOInIjXyeDzweDxZO55sBGo0mrQOIklS0v1yc3Nx9OhRfPbZZ6isrITH45kS7FcGfyrs\n+IlIjSYvipuamhQdT7bq0el0CAQC8e1AIAC9Xi87JhgMQqfTJYyZN28eHnroIRw5ckTRZFn1EBEp\nJxv8ZWVl8Pl88Pv9iEQi6O7uhtPpTBjjdDrR2dkJAPB6vSgsLIRWq8XHH3+McDgMALh48SLefvtt\n2Gw2RZNl1UNEpJxsBObl5aG1tRWVlZWIRqOora2F2WxGW1sbAKCurg5VVVVwuVwwGo0oKChAR0cH\nAOCjjz5CTU0NJiYmMDExgSeffBLl5eWKJsuqh4hIOY00uaC/mg+u0Ux5fUBORQXwn/8JrFkjP250\nFHjggdj3yXJyYuGfI9Rb14iILptpdk4mVPwp7fij0dh3hj4RqZlQEai06mHNQ0QkYPAreXGXL+wS\nEQkW/EqrHl7KSUQkWPBzxU9EpJxwwc+On4hIGaGCn1UPEZFyQgX/TKueyZe5suohIhIw+NOpanJy\nYl8TE5ntT0R0PRMu+NNdsSd7gZcrfiIiwYJ/Jh19sp6fHT8RkWDBP5OqJtmVPax6iIgEDH5WPURE\nyggV/Kx6iIiUEyr4ueInIlJOmOCXpNifVc7NTW88O34iouSECf6vVutpfv47qx4iomkIF/zpYtVD\nRJScUME/k5qGVQ8RUXJCBT9X/EREygkT/DPt59nxExElJ0zws+ohIsoOoYKfVQ8RkXIpg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaAgAEAgEcO+992LZsmVYvnw5du3apWiirHqIiLJDNvij0Sga\nGhrgdrsxPDyMrq4ujIyMJIxxuVwYHR2Fz+dDe3s76uvrAQD5+fl45ZVXcOLECXi9Xrz66qtT9p0J\nrviJiLJDNvgHBgZgNBpRVFSE/Px8VFdXo6enJ2FMb28vampqAAB2ux3hcBhjY2NYtGgRSktLAQA3\n3XQTzGYzzpw5k/FE2fETEWWH7Po3FArBYDDEt/V6Pfr7+1OOCQaD0Gq18dv8fj+GhoZgt9unPMbW\nrVvjPzscDjgcjqRzYdVDRGrl8Xjg8XiydjzZGNSk+fcRpEkfbnvlfufPn8eGDRvQ0tKCm266acq+\nVwa/HFY9RKRWkxfFTU1Nio4nW/XodDoEAoH4diAQgF6vlx0TDAah0+kAAJcuXcL69evxwx/+EI88\n8oiiibLqISLKDtngLysrg8/ng9/vRyQSQXd3N5xOZ8IYp9OJzs5OAIDX60VhYSG0Wi0kSUJtbS0s\nFguef/55xRPlip+IKDtkYzAvLw+tra2orKxENBpFbW0tzGYz2traAAB1dXWoqqqCy+WC0WhEQUEB\nOjo6AADvvfce3njjDaxYsQI2mw0AsH37djzwwAMZTTRbHf+NN2b08ERE142UUfrggw/iwQcfTLit\nrq4uYbu1tXXKfnfffTcmJiYUTu+ybFU9SV5mICJSFb5zl4hIZYQJfl7OSUSUHcIEP1f8RETZIVTw\n83JOIiLlhAl+Vj1ERNkhTPCz6iEiyg6hgp9VDxGRckIFP1f8RETKCRP87PiJiLJDmOBn1UNElB1C\nBT+rHiIi5YQJflY9RETZIUzwc8VPRJQdQgU/O34iIuWECX5WPURE2SFM8LPqISLKDqGCn1UPEZFy\nQgU/V/xERMoJE/zs+ImIskOY4GfVQ0SUHUIFP6seIiLlhAl+Vj1ERNkhTPBzxU9ElB0pg9/tdqOk\npAQmkwnNzc1JxzQ2NsJkMsFqtWJoaCh++49//GNotVrccccdiifKjp+IKDtkgz8ajaKhoQFutxvD\nw8Po6urCyMhIwhiXy4XR0VH4fD60t7ejvr4+ft+mTZvgdruzMlFWPURE2SEb/AMDAzAajSgqKkJ+\nfj6qq6vR09OTMKa3txc1NTUAALvdjnA4jLNnzwIA7rnnHnzjG9/IykRZ9RARZYdsDIZCIRgMhvi2\nXq9Hf39/yjGhUAiLFi1KawJbt26N/+xwOOBwOJKOY9VDRGrl8Xjg8XiydjzZ4NdoNGkdRJKkjPYD\nEoNfjtIVvyQB0SiQm5v+MYiIrgWTF8VNTU2Kjidb9eh0OgQCgfh2IBCAXq+XHRMMBqHT6RRNKhml\nHf/4eCz0Z/A7iYjouiQb/GVlZfD5fPD7/YhEIuju7obT6UwY43Q60dnZCQDwer0oLCyEVqvN+kSV\nVj2seYiIYmSDPy8vD62traisrITFYsFjjz0Gs9mMtrY2tLW1AQCqqqrw7W9/G0ajEXV1dfjDH/4Q\n33/jxo1YvXo1Tp48CYPBgI6OjownqrTq4Qu7REQxGmlyQX81H1yjmfL6wHRsNuD112Pf0/Hpp8Di\nxUA4HNs+dw5YsiR2OxGRyGaSncmo5p27XPETEcUIFfzs+ImIlBMm+JVe1cN37RIRxQgT/DOtanJz\ngYmJ2Fcm+xMRXa+ECv6ZVDUaTSzoo9HM9iciul4JFfwzXbFf+QIvV/xERDHCBH8mHf2VPT87fiKi\nGGGCP5Oq5sore1j1EBHFCBX8rHqIiJQTJvhZ9RARZYcwwc8VPxFRdggR/BMTscszc2Y4W3b8RERT\nCRH8mdY0rHqIiKYSIvgzrWlY9RARTSVM8GdS07DqISKaSpjg54qfiCg7hAh+dvxERNkjRPCz6iEi\nyp5ZXwNv2JB6zIULmQf/f/0XsGAB4PcDpaUzPwYR0fVm1oO/ujq9cXr9zI/d0gJ88MHl7XQ/r5eI\n6HomzIetExFRjGo+bJ2IiLKDwX+N8Hg8sz2FawbPxWU8F5fxXGRPyuB3u90oKSmByWRCc3Nz0jGN\njY0wmUywWq0YGhqa0b4Uw/+oL+O5uIzn4jKei+yRDf5oNIqGhga43W4MDw+jq6sLIyMjCWNcLhdG\nR0fh8/nQ3t6O+vr6tPclIqKrTzb4BwYGYDQaUVRUhPz8fFRXV6OnpydhTG9vL2pqagAAdrsd4XAY\nZ8+eTWtfIiK6+mQv5wyFQjAYDPFtvV6P/v7+lGNCoRDOnDmTcl8g9uo0xTQ1Nc32FK4ZPBeX8Vxc\nxnORHbLBn24oZ3pZES/lJCK6+mSDX6fTIRAIxLcDgQD0k95JNXlMMBiEXq/HpUuXUu5LRERXn2zH\nX1ZWBp/PB7/fj0gkgu7ubjidzoQxTqcTnZ2dAACv14vCwkJotdq09iUioqtPdsWfl5eH1tZWVFZW\nIhqNora2FmazGW1tbQCAuro6VFVVweVywWg0oqCgAB0dHbL7EhHRLJNmyb59+6Ti4mLJaDRKO3bs\nmK1pzIoPP/xQcjgcksVikZYtWya1tLRIkiRJn3zyibRmzRrJZDJJFRUV0qeffjrLM716xsfHpdLS\nUunhhx+WJEm95+LTTz+V1q9fL5WUlEhms1nyer2qPRfbtm2TLBaLtHz5cmnjxo3Sl19+qZpzsWnT\nJmnhwoXS8uXL47fJPfdt27ZJRqNRKi4ult56662Ux5+Vd+6q/Rr//Px8vPLKKzhx4gS8Xi9effVV\njIyMYMeOHaioqMDJkydRXl6OHTt2zPZUr5qWlhZYLJb4BQVqPRfPPfccqqqqMDIyguPHj6OkpESV\n58Lv9+O1117D4OAg/vGPfyAajWLv3r2qORebNm2C2+1OuG265z48PIzu7m4MDw/D7XZj8+bNmJiY\nkH+Ar+XXVQqHDx+WKisr49vbt2+Xtm/fPhtTuSZ873vfk95++22puLhYOnv2rCRJkvTRRx9JxcXF\nszyzqyMQCEjl5eXSgQMH4it+NZ6LcDgsLV68eMrtajwXn3zyibR06VLp3Llz0qVLl6SHH35Y2r9/\nv6rOxenTpxNW/NM9923btiW0JpWVldL7778ve+xZWfFPd+2/Gvn9fgwNDcFut2NsbAxarRYAoNVq\nMTY2NsuzuzpeeOEF7Ny5Ezk5l/9zVOO5OH36NBYsWIBNmzbhO9/5Dp555hlcuHBBledi/vz5ePHF\nF3Hbbbfh1ltvRWFhISoqKlR5Lr4y3XM/c+ZMwhWT6eTprAQ/37QVc/78eaxfvx4tLS24+eabE+7T\naDSqOE9vvvkmFi5cCJvNNu37OtRyLsbHxzE4OIjNmzdjcHAQBQUFU6oMtZyLU6dO4Xe/+x38fj/O\nnDmD8+fP44033kgYo5ZzkUyq557qvMxK8Kfz/oDr3aVLl7B+/Xo8+eSTeOSRRwDEfoufPXsWAPDR\nRx9h4cKFsznFq+Lw4cPo7e3F4sWLsXHjRhw4cABPPvmkKs+FXq+HXq/HqlWrAAAbNmzA4OAgFi1a\npLpzceTIEaxevRrf/OY3kZeXh3Xr1uH9999X5bn4ynT/JpK9l0qn08kea1aCX+3X+EuShNraWlgs\nFjz//PPx251OJ/bs2QMA2LNnT/wXwvVs27ZtCAQCOH36NPbu3Yv77rsPf/zjH1V5LhYtWgSDwYCT\nJ08CAPr6+rBs2TKsXbtWdeeipKQEXq8XFy9ehCRJ6Ovrg8ViUeW5+Mp0/yacTif27t2LSCSC06dP\nw+fz4c4775Q/WLZfkEiXy+WSli5dKi1ZskTatm3bbE1jVrz77ruSRqORrFarVFpaKpWWlkr79u2T\nPvnkE6m8vPy6v1RtOh6PR1q7dq0kSZJqz8XRo0elsrIyacWKFdKjjz4qhcNh1Z6L5ubm+OWcTz31\nlBSJRFRzLqqrq6VvfetbUn5+vqTX66XXX39d9rm/9NJL0pIlS6Ti4mLJ7XanPP6sfvQiERFdffwE\nLiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyvwf/46pxWPvViQAAAAASUVORK5CYII=\n", 2213 "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEVCAYAAAAGrllxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8U/X+/19pWroXpUBLCwWKQBmllNEWKG1RliAFAUVk\nKAqiXhyI43tVcFWG4PYi1ys40Kven4iAICAtqKWMIkuQClLoBDpI98zn98fxpBknyTlpTpI27+fj\nwUOTnPHJ6cl5fd7zo2CMMRAEQRBOiYu9B0AQBEHYDxIBgiAIJ4ZEgCAIwokhESAIgnBiSAQIgiCc\nGBIBgiAIJ4ZEgLA7ubm5cHFxwX/+8x+d99944w3cd999dhqVfOzatQsrV64EAGzZsgVTp041uX1u\nbi58fX1tMTTCCSERIBwCFxcXrFixAn/++afmPYVCYccRycexY8dQVlZm72EQBAASAcJB8PT0xPLl\nyzFnzhw0NjYCALTrGHNycnDbbbchISEBERERSE1NRX19PQDAw8MD//d//4fBgwcjIiIC33zzDWbP\nno3+/ftj3LhxqKmpAQCcP38eEyZMwLBhwxATE4PNmzcDADIyMhAdHY1Ro0YhJiYGDQ0N2LFjB+Li\n4jB06FCMHj0aWVlZAIBVq1Zh4cKFmDhxIvr374/ExEQUFRUBAAoKCjBjxgwMGzYM0dHReP311w2+\n55EjR/Dhhx/iq6++wvPPP68jdFlZWRg7dizi4uLQo0cPPPDAAwb7nz9/Hr169cJ3332HtLQ0zJ07\nV/PZr7/+iqFDh7bq70A4IawNUFZWxqZMmcJGjx7Nxo8fz65cuWKwzQcffMCGDRvGhg8fzrZt28YY\nY+zmzZtsypQpbOzYsSw+Pp4dPnyYMcbYL7/8wkaOHMni4uLY888/L2oMW7duZfHx8db7UoSGy5cv\nMx8fH6ZWq1liYiJ76qmnGGOMrVu3ji1cuJAxxtiKFSvY1q1bGWOMNTY2ssGDB7Nvv/2WMcaYQqFg\n7777LmOMsTVr1jA/Pz9WWFjI1Go1i42NZV9++SVrbGxkUVFR7MSJE4wx7t6IiopiWVlZLD09nSmV\nSnb16lXGGGM5OTls0KBBrKysjDHG2NmzZ1lISAirrq5mK1euZL1792aVlZWMMcbuuOMOtnLlSsYY\nY8nJyWzHjh2MMcZqa2tZcnIy+/rrrw2+76pVq9g//vEPxhhjmzdvZlOmTGGMMTZnzhx28OBBxhhj\nlZWVLDg4mJ04cUJzfc6cOcMiIyPZgQMHGGOMXb9+nfn7+7Py8nLGGGPz5s1jmzZtav0fhHAqXO0t\nQmJIS0vDqFGj8Oyzz+Knn37CsmXL8N1332k+r6qqwrp165CTk4OqqioMGTIEqampePPNN3Hbbbdh\n2bJlyMnJwZw5c5CdnY3ly5djy5Yt6NevH8aMGYOzZ89i4MCBRs//22+/4eOPP7bFV3VqFAoFPv/8\nc8TExGDChAk6s+Q1a9Zg7969WLduHS5cuIDCwkJUVVVpPr/zzjsBAL169cKgQYMQEhICAOjZsyfK\nysqQk5ODv/76C/fff79mn7q6Opw8eRJ9+/ZFeHg4wsPDAQD79u1DUVERUlJSNNsqlUpcvHgRCoUC\nycnJ8PHxAQDExMSgvLwcNTU1OHjwIMrLy/HCCy8AAKqrq3Hq1CnMmjVL53syxnSsHJ5PPvkEu3bt\nwuuvv47z58+jpqYGVVVVCAwMRF1dHVJSUpCUlITk5GQAQHBwMKZMmYJPP/0U8+bNw969e7Fx40bL\n/wCEU+KwIrBq1SqEhIRgyZIlOHfuHF577TUAQEJCAmbOnKmzLf+wqKqqQmVlJZRKJQDgiSeegLu7\nOwCgsbERnp6eADjXQ2lpKRoaGlBXVwdXV+4yPPfcc/jll1/Q3NyMJ598EjNnzkRpaSn++c9/4q23\n3sKDDz5ok+/uzISHh2Pjxo1YsGAB5s+fr3n/7rvvRnNzM+666y7cfvvtyMvL03mQ8n9nAHBzczM4\nrlqtRkBAAH777TfNe8XFxQgICEBWVpbmoc5vO27cOPz3v//VvHf16lWEhYVh27Zt8PDw0LyvUCjA\nGENzczMA4PDhw5rPS0pKNPecNgqFQjDeMXr0aMTExGDixImYPXs2jh49qvmOCoUC27dvx7333ott\n27Zh+vTpAIBHHnkES5cuhaurK2bOnAkvLy9jl5YgBHG4mMDXX3+N5ORkfPLJJ9iwYQOSk5Nx8+ZN\nfP/99wCA77//XuPj5fH29sacOXMQFRWFYcOGYdmyZQAAf39/eHh4oLi4GPPmzdP4aJ966ilMmTIF\nUVFR6N69O/r27Yvdu3cjNzcXP//8Mw4cOIDXXnsNZWVlWLRoETZs2KDzkCDkZebMmZg0aRLeeust\nzcNy7969ePHFFzWz6iNHjmgevGLo27cvPDw8sHXrVgBAXl4eoqOjdUSBJyUlBXv37sWFCxcAAHv2\n7MGQIUNQV1dnMIPnZ/W+vr6Ii4vD+vXrAQAqlQpjxozR3LfauLq6oqGhQee9mzdvIjs7G6tXr0Zq\nairy8/Nx8eJFzXd0d3dHfHw8Pv74Yzz00EO4du0aACA+Ph4uLi544403sHTpUtHXgyB4HM4SmD17\nNmbPno2XXnoJISEhWLx4MaqqqrBs2TKMHTsWt99+u8Zs58nMzMThw4eRm5sLxhgmTJiAhIQEDB8+\nHGfOnMGcOXOwfv16jBkzBrW1tVi2bBnOnz+Prl274plnnsH69evBGEN2drbG1G5qasKlS5dw8eJF\nLF26FHV1dTh37hyefPJJbNiwwR6Xpl2jPzN+55138Msvv2hep6WlYfr06ejSpQu6d++OO++8Excv\nXjTY19gs283NDdu3b8djjz2GtWvXorGxEa+88gri4+ORkZGhs09UVBQ2bdqEu+++G4wxuLm5YceO\nHfDy8jI4vvbrL774Ao8++igGDx6MhoYG3HPPPZgzZ47BWMaNG4cZM2bA3d0dQ4cOhUKhQEBAAJ57\n7jkMHToUoaGhiIqKwuTJk3Hx4kX06tVLc46xY8fi7rvvxqJFi7Bz504AwMKFC/HNN99gwIABkq87\nQThsYHjVqlXsww8/ZIwxtnPnTpaZmckYY+x///ufJljIs3fvXjZ58mTN62nTprF9+/ax33//nfXt\n25edPn1a81lVVRULDw9nKpWKMcbYhg0b2D//+U/2/fffs8WLFzPGuMDjSy+9xKqqqjT75ebmsri4\nOHm+LEFYSGNjI5syZYpgAJogxCCLJdDc3IwHH3wQOTk5UCgU2LhxI9zd3bFw4UK4uLhg4MCBeP/9\n903mgfPFNADQr18/LFiwAIwxdOzYUZPa9+abbyIyMhJTp07Fvn37MHLkSCiVSowZMwa33norUlNT\n0dDQoHEPBQQEYNu2bVizZg1uvfVWeHl5ITAwEFu2bIG/vz8yMjKQmJiIqqoqzJgxA97e3tpi2W7z\n1om2yblz5zB69GjcfvvtBsFnghCLgjHrLyqzfft27NixAx999BEOHjyocZ8sX74ciYmJWLp0KSZM\nmIDU1FRrn5ogCIKQgCyB4WnTpuHDDz8EwJW8BwYGIjs7G4mJiQCASZMmYf/+/XKcmiAIgpCAbNlB\nSqUSCxcuxGOPPYa5c+fqZFX4+PhApVLJdWqCIAhCJLJmB23ZsgXXrl3DiBEjUFdXp3m/srISAQEB\ngvtERkbi0qVLcg6LIAiiXdG7d29NtpxUZLEEPvvsM01OvqenJ5RKJYYNG4aDBw8CAHbv3q1xDelz\n6dIlTe61s/9buXKl3cfgKP/oWtC1oGth/F9rJs6yWAIzZ87EwoULMXbsWDQ2NuLtt99Gv3798OCD\nD6KhoQFRUVEGVb8EQRCE7ZFFBDw9PfHVV18ZvJ+RkSHH6QiCIAgLcbi2EUQLSUlJ9h6Cw0DXogW6\nFi3QtWg9stQJtAa+IRdBEAQhjtY8Nx2ud5AxOnbsiPLycnsPo10RGBhIK1wRhJPTZiwBshCsD11T\ngmgftOa3TDEBgiAIJ4ZEgCAIwokhESAIgnBiSARaSW5uLpRKJWJiYjT/hgwZoml3LZaBAwfi0KFD\nyM3Nha+vr9ntIyIicOLECUuHTRAEAaANZQc5Ml5eXjrLFBYWFmLgwIEYNmwYBg0aJOoYUtcqoKAu\nQRDWgCwBGQgNDUWfPn2Qk5ODV155BQMGDEB0dDRmzZqlWRv23LlziIuLQ3R0NGbPno2qqiqD41y7\ndg2pqalISEhAr169kJycjBs3bmg+//DDDzF8+HD06NEDzz//PABukfTHHnsMcXFxGDBgAKKiopCZ\nmWmbL04QRJuDREAGDh8+jIsXL+L8+fPYs2cPjh8/jlOnTmHgwIFYuHAhAGDu3LlYsmQJTp06heXL\nlyMvL8/gOF999RVGjRqFzMxM/PXXX/Dy8sJnn32m+dzT0xPHjh3D0aNHsX79ehQUFODIkSMoLi5G\nVlYWfv/9d8yfPx+rV6+21VcnCKKN0W7cQdZa+dESD0ttbS1iYmIAcAvUBwcH44svvsDHH3+M+++/\nH56engCAZcuW4bXXXsP169dx5swZzJ8/HwAwcuRIREdHGxx32bJl+Pnnn7Fhwwb8+eefOHv2LOLi\n4jSf33PPPQCALl26oEuXLrh+/Tri4+MRFBSEf/3rX/jrr7+QkZEBPz8/6V+KIAinoN2IgD3d456e\nnjoxAZ6PPvpIx2+vVqvR1NSk81qpVAIAXF0N/xTPPPMMjh07hkWLFiElJQVNTU06x3Nzc9P8Px8j\n2LVrFx5//HE89dRTSE1NRb9+/fD5559b5XsSBNH+IHeQjEyYMAGbN29GTU0NAOCdd97B2LFj0blz\nZ8TGxuKjjz4CAJw8eRInT5402H/v3r14/PHHMXfuXAQHB2Pfvn1obm42ej7GGPbv34+pU6diyZIl\niI2NxbZt20zuQxCEc9NuLAF7YiyzZ9GiRcjLy8OIESOgVqvRp08fbN26FQDw5Zdf4r777sO//vUv\nREZGon///gbHe/HFF/HUU08hLS0NnTt3xsyZM02uHqRQKPDQQw/hnnvuQUxMDAIDAzFt2jSsX7/e\nit+WIIj2BPUOcmLomhJE+4B6BxEEQRAWQSJAEAThxJAIEARBODEkAoQO77wDXLpk71EQBGErKDuI\n0OHLL4GOHYHeve09EoIgbAFZAoQO5eWAQAcLgiDaKSQChA4kAgThXJAIEBoYIxEgCGeDRMAKZGVl\nISUlBdHR0Rg0aBAmT56Mc+fOAQDGjx+PsrIyk/uLXUhGbmpqgMZGID/f3iMhCMJWUGC4ldTX12PK\nlCnYv38/hgwZAgDYunUrJk2ahL/++gv79+9vM1W55eWAuztZAgThTJAl0EpqamqgUqlQWVmpeW/u\n3Ll477338OCDDwIAUlJSkJ+fj4iICGRnZ2u2c7QlIsvLuaygqirOKiAIov3TbiwBxUvWWVCArZQ2\naw8MDMTatWsxceJEdO3aFaNGjUJycjLuvvtuTJ06FVu2bEF6ejo6duwIhUKh02xO6pKSclNezqWH\n1tVxLqFbbrH3iAiCkJt2IwJSH97W5IknnsDixYuRkZGBQ4cOYc2aNVizZg2OHDlitzFZQnk5EBgI\nKJWcS4hEgCDaP7K4gxobGzFv3jwkJiZi5MiR2LFjB3777Td069YNycnJSE5Oxtdffy3HqW3Or7/+\ninXr1sHb2xu333471qxZg99//x0uLi7Yv3+/zrb6nf4aGhpsPVyT8CIQHk7BYYJwFmSxBLZu3Yrg\n4GB89tlnKC8vR3R0NFauXInly5fjySeflOOUdiM4OBivvfYaRo4cicTERABAQUEBqqurMWjQICiV\nSs3DPjg4GMeOHUNsbCyysrJQVFRkz6EbUFbGiYCXFwWHCcJZkGU9gerqajDG4OPjg9LSUowYMQIT\nJkzAhQsX0NTUhD59+uCtt96Cj4+P4YDa4HoCGRkZWLlyJa5evQovLy/4+/tj1apVGD9+PO666y5k\nZ2fj+++/x/Xr17F06VJ4eHggNjYWp0+fxsaNG9GxY0cMHjwYFRUVNh23/jV94QXA1RUIDgZOnQI+\n/NCmwyEIwkJa83yUdVGZyspKTJs2DYsXL0ZdXR2io6MRExODtLQ0lJeXY926dYYDaoMi0FbRv6aP\nPsrFAXr2BP71L+CHH+w4OIIgRNOa56NsgeG8vDzMmDEDjzzyCO6++26oVCr4+/sDAFJTU7Fs2TKj\n+65atUrz/0lJSUhKSpJrmIQW2jEBcgcRhOOSkZGBjIwMqxxLFkvg2rVrSEpKwgcffIDk5GQAQHx8\nPN555x0MHz4c7777LgoKCrB69WrDAZElYDP0r+nkycAjjwBxcUBkJCcKBEE4Pg5nCaSlpUGlUuHl\nl1/Gyy+/DAB466238MQTT8DNzQ0hISHYtGmTHKcmWgFvCXTsCNTXc0VjAmEbgiDaEbTQvBOjf037\n9QO2bQP69+diA9u3c/9PEIRj43CWANE24S0BoCUuQCLQ9qmvB4qLW14HBAB/h+cIou2IQGBgoMO1\nWWjrBPJPfLS0kdYWASoYax+sXAls2gT4+nJdYrt1A44ds/eoCEehzYiAuXbM1mLqVGDRIiA11fR2\nZ88Cs2YB589b57yMAZmZXN8eAOjQARg9GrCV7tXUcDUC7u7ca8oQaj8UFgIbNgALFwJXrwKjRtl7\nRIQj0WZEwFZcuQL06GF+O/4hyZh1HtQ7dwIPPggMGMC9PnKEm63Zyh2jbQUA3Pc7etQ25ybkpbQU\nCAri/r9jR64ynCB4qJW0HmJFwN8fcHEBVCrrnHf7duDZZ4GffuL+DR0KXLtmnWOLQUgEyBJoH2iL\ngLc30NTUYnESBImAFioVoFbrPgxNERZmnQelWg3s2gVMmdLyXnAwcONG648tFn0RsNZ3I+xPSQnQ\nqRP3/woFWQOELiQCWly5AnTvLt69Y63ZcnY2l7ERGdnynr1FgALD7QdtSwDgRKC01H7jIRwLEgEt\nxLqCeKwlAjt2cAFpbewtAv7+XLzDWu4uwj40NQGVldwkgycoiCwBogUSAS0sEQFrzJYdQQT4NtI8\nCgXFBdoD5eWcoCuVLe+RJUBoQyKgxdWrtrcE8vO5Y8TH675vb0sAIBFoD5SWtsQDeMgSILQhEdCC\njwmIxRrB0507gUmTuBx9bUgECGtQUqIbDwAoMEzoQiKghT1iAjt26GYF8TiCCISFUXC4raMfFAa4\n1+QOInhIBLSwNCZgaV+76mrg55+BiRMNP+vUyf4i0K8fkJbGLTfZmn/bt9vuexC6CIkAWQLCDBum\ne986y8p6baZiuKQE4NdlVyqBzp2t21Khvp77wYSEiN/Hx4drs1BWZvhDM4ZKxT38Aa4obPhw4WZe\nnTpx41GruaI0uSkv5x4O2tx9N3DHHa077htvAL/8Akyb1rrjEJZhTATEWAI3bnC9hszh4wP4+Ukb\nV00NcPOm7pg8PKQdw5o0NQGnT3PPGVdX4KuvgD17gCVL7DcmW9EmRKCgAIiI4FwkAPfQ3bsX+Htd\nd6uQl8c11tLOohADHxcQIwKMcS2aXVxaBGzDBuFt3d252cjNm4YPZzkQsgQAbgytITYWeOed1h2D\nsBxLA8MXL3ItS/jfnDHUau5evXJF2rhmzQKysrh96+uBW2/lHrz2oqiI+668mMXFAa+9Zr/x2JI2\nIQJFRcDgwVxRFQA8/jjXW8eaIiDVFcTDxwWGDDG/7eXLgJubeD97cDA3M7GnCLSWwYO5GRZhH0pK\ngF69dN8T4w7KzeV+Xz/9ZHq7piZuotDUZJjcYO74GRnAoEHcJC862nZWrxB5edxvmeeWW7i2LXL9\nLhyJNhET0He3xMa2CIK1aK0IiCE7mxu7WGwVHNZvI21NwsK4PjXXr1v/2IR5LA0MFxaKc426unLH\nk9rnSvv43bpx1oo9Jwv6IqBUchO7EyfsNyZb0SZEoLRUdzYcGwscP25+v6NHgc2bW/7l5Bjf9upV\naemhPFJE4PhxxxQB/TbS1kSh4KyBM2esf2zCPJYGhouKgNBQcecIDeW2F0ttLXfPaY8rJQU4cED8\nMaxNfr6uCADyTDYdkTYhAvqWQN++3MxDO7AkxPz5wO7dwKFDwPffA/PmGd+2NZaAWPdOdjaXgSAW\nW4mA3CYvuYTsh1BMwNOTs/5qaozvV1goXgRCQrjtxVJUxO2jndiRnAykp4s/hrXJy+OsVm1IBByI\nsjJdS0CMqVZQwD1A//tfzgr45hvuQX/hgvD2loqA2IIxxrjxOqIlQCLQfhGyBBQK88Fhse4gQLol\nwIuANklJXLp0U5P441gTfXcQwE3YSAQcBH13EGBepdPTuRuLDzS5ugJz5gBbtwpvL7VlBI9Yd9Dl\ny1wArUsX8ccmESBaA2PCIgCYTxOV6g6SYgkIWRnBwdzvz14PXSER0A4Ot2fahAgI5eGLEYGUFN33\n5s0DPv/csLhLrRb2CYohLIyzOtRq09tJDQoD7UcEBgzgluG01yzPWamo4HLvO3Qw/MyaloBUd5Cx\nY9szLiAkAs4SHG4TImCJJXDggKEIxMRwP4rDh3XfLy7mCrY8PaWPzcuLK5Yx97B2ZhHw8eEyQP78\nU75zEIYYswIA08FhxoRdNsawxB0kZGXYSwQaGrhr1bWr4WfOEBdoEyIgZAn07cs9vIWCw5cvc2mJ\n/frpvq9QAPfey1kD2lgaD+ARExw+flxaUBiwnQjot5GWg8GDgVOn5D0HoYtQUJjHVJrozZtcppi3\nt7jzWGIJCIlAYiJXQFZfL/5Y1qCwkBMAoUJREgEHQcgSUCq5AhMhU+3AAS7bQKitxD33AF9/3dKC\nArA8HsBjLjhsSVAYaD+WAEBxAXtgqSUgxRUEWCcwDHDWeP/+XCGoLRFyBfGITUdvy7QJETDWm8eY\nSgu5gngiIoCoKC51lEdqC2l9zAWHLQkKAy0iYGmDOrGQCLRPhNpI85gKDEsJCgNcH6+SEvExH1Pp\np/ZwCZkSgb59uULH9hwcdngRUKs581R7eTweoRQuxkyLAMC5hLZs4W7ckhKuiKy17iBTImBJPADg\nhEOpBKqqLB+bGGwhAtHRbU8Eamtb7hEpDzlHwZQlYCowLNUScHXl3E5iq4ZNHT8lBdi3r+Wal5bK\nPwkyJQKOFByur9e9HysrrXNchxcBlYoLLAr1JRGyBP74g/Nn9uxp/JizZgHnznExg379uFbHYnr/\nGMNcTEBqkZg2tmgpbQsRiIjgztMWZlS1tcDq1Zybj79HevYEHn3U3iOThjl3kLUsAUC8S0ioWlib\nUaO44/DXvUcPrleYnEIgVCimjaPEBe64A4iMbLk2Tz9tneM6fAM5U22atYPDvKVgKh7AExhovGjM\nEsRYAk88YdmxeZeQfhMwMfz2W0uQTakEhg4VDn4JtZG2Ni4uXLOwM2es2/hPDIxx10I7DmSMP/4A\nVq7kfviHD3O54gBw8iQXT2oNxcVc4zSeiAjhjBRrUVrK+diFMGcJmJpECSE2OCxULayNtzfw118t\nr1Uq7n5ZvRp47jlpYxJLfr5pz0FsLFdfxN+3bm7cb8marezN0dQEZGZyzxkhr0hrkEUEGhsbcf/9\n9+PKlSuor6/H888/j/79+2PhwoVwcXHBwIED8f7770Mh4ioKBYV5tIPD/B8xPd32vetNBYYZs9wd\nBFgeHD57lrtpBwzgXv/xB2fxjB1ruK2tOiXycQFbi8D//R+XEdatm/ltAwO5bceM0X1/4EDuYaFf\nvS6FOXM4M97bm3u49enDtTORi9YEhhMSpJ1LrCUgJfUU4ILFu3dzFkJICLBwobRxicGUOwjgik4/\n/JCzSACu5mXvXmDkSOuPxRinT3NxS2sLACCTCGzduhXBwcH47LPPUF5ejujoaMTExCAtLQ2JiYlY\nunQptm/fjtTUVLPHMrdgS2ws8MknLbOQ9HTgrbes9EVEEhbGnf+zzwxnBzdvWhYU5uHbSUvl11+B\nmTO5lhkAN4s15rKypQh8913LjeztDaSmyjujeucdYNs2zhIwli4pBldXbgGgrCxg8mTp+9fUAMeO\ncdaAjw9nWcyfb/l4xGAqMGwqRdQSd5BYS0BKTyKe0FBugZexY7kx878lT09uadbWNj40JwLh4dzC\nSDyPPMLNym0pApmZ0oVZLLLEBGbNmoWXX34ZAKBWq+Hm5oYTJ04g8e8p4KRJk7B//35RxzJlCQDA\n3LlAczN3k+zZAzzwgGn/nhy4u3OzhB9/bBkH/y8rC3j2WcuPbaklkJkJxMe3vDb2I5WzjbQ+Eydy\n7g/+2sybx1Vby8VXXwFr13J/l9YIAE9CgmGhoVgyMzmr1ceHe92jh/SFWKRiyhIIDOQmWEK+dksf\n1GItAanHBjjX786dnHjy989773Hurq+/tjxmUFfHWWWdO4vfJz6e+3vaksOHdX/P1kQWS8D77yqT\nyspKzJo1C6+++iqeeuopzec+Pj5QqVSijmXO/B4xwrD4yx6sXSvPcS0VgcOHgRUrWl6Hhgo/cOVs\nI61Pr17Ap5+2vI6L42o0LBXtykrg7beFs3bq6oCPPwb2729d5pc28fHA+vWW7aufsRYQwD24jGW+\nWQNTxWKenpw7tbq6RZgA6dXCPKGhwI4d5reTmnmkzbBhnLWtzYEDwFNPAW++CUyYIO44Cxdy8RiA\ns45DQ6UtZpOQADzzDHetTFmx27dzFijP9OncRMASMjOBF16wbF9zyBYYzsvLw4wZM/DII49gzpw5\neForlF1ZWYkAE3f+qlWrNP+fm5uEHj2S5BqmwxMcLD2IfeMGl9scFdXyXkgI547Qp7hY2izImnTv\nzs2GLTVzs7I4V+DcuYafeXgAu3ZxLihrERfHXUOpq2gBnJsyLa3ltULBff+rV+UVAVOuVD44rC0C\nfLWw1GVFpbiD9Cv5W0NKClfM9fXXXNzLHGfPAqtWcSnigGU9w3r25O6BvDzj9UX19Zy7b9kyTmxz\ncznh2LNH2rkATpRVqpYkBQDIyMhARkaG9IMJIIsIXLt2DePHj8cHH3yA5ORkAEBMTAwOHjyIsWPH\nYvfu3Rg3bpzR/bVFYNky2yyv6KhYYgkcPsz5K7VnN8Y6PVraOM8atNYlcvky5yfWul1kpWNHLrh8\n9qy0lOKyhCraAAAgAElEQVSKCm4ffXOe//7WFCqe2lruQWWq9QMfHNZ+kFk6U5crMCwGFxfg7rvF\nbXvtGidCNTWc0JmLBwihUHATl8xM4yJw8CCXlPHKK9zrigrO4q2sBHx9pZ2PdwVp/56TkpKQlJSk\nef3SSy9JO6gWssQE0tLSoFKp8PLLLyM5ORnJycl49dVXsXLlSiQkJKCpqQkzZ84UdSxzs5n2jqUi\noD+7NvYjteRHYC169OBmwpZy+bL0VMbWwv/4pfDzz5zb0sND93054wL878aUu0IoOGypz15s1bAl\n8QZr0qULZ9Ft3869tvT+j483HR/asQOYOrXltZ8fd959+6SfS86gMCCTCLz99tsoLCxEenq65t/g\nwYORkZGBzMxMfPTRR6LSQ4HWpeS1BywRAaGbhjfX9QNo9hQB3h1kKfYSAanBYb52RZ/Wfn9TiJk8\nCaWJWvqQ5quGza0lbanIWBPtJpKW3v+mJgOMGYoAwL0WEzfRR86gMNAGKobNpYi2d6SKQGMjV5eg\nn77m68uZk/ql5uaqJeXEGu4gW4uAJZkhxtqYtNYSMoWpoDCPUNVwawK35uICtbVcINrek7rUVC6F\n+vp1y+//2Fiu64DQEp1nz3L/5Wt0eKZM4eJUzc3iz1Nfz2VEjRghfYxicXgRMJci2t7x8+MqXevq\nxG1/6hSXhePnZ/iZ0I/U3u6gK1csT++7fLkly8NW9OvHTUzE9skpLQUuXeJqDPSxhTvIFEJVw62Z\nqZtbYcxctbCt8PbmZuVffWX5/e/pyRUQCnUY5a0A/e/ZsyfnNjt6VPx5TpzgAsLawXtr4/Ai4Ozu\nIIVCWv8g/foAbYR+pPYMDPv7c99PaE0Ic1RVcf/kbLsghIuLeX+wNgcPAqNHc60G9LG3CFjbEjAX\nHJYjKGwpvEuoNfe/MZfQzp2GriCeqVO5z8UiFN+zNg4tAs3NXFRdrhS6toIUl5CpIJLQj9SeloBC\nYfmDMDeX29ces0opLiFTHW27duUmOWKtPCmYqhbmsbYlYM4dZO+gsDbjxnH3XU2N5YWEQvfB9euc\nm0ioPQsgPS5galJnLRy6gdzNm5xbQ6jpmTMhRQQOH25JS9NH/0daU8PNpoODWz9GS+FFQGoXV3vE\nA3gSErgqcDGdJfftA774QvgzpZJLOc3P57pDWpPSUvPibs3AMMDtZ+qaOEJQmMfVlevltGOH5ROJ\nhASuhYR20dgPPwC33mq8+HLkSO46GFvNsLpat94hM1O+QlQehxYBZ08P5RHrDioo4B7sxh4o+lXD\n+fncQ8iePlpLg6P2FIGRI7l0z8WLzW/bo4dpgeNFUA4RMCes+imillYL84ixBBzFHQRwfz/9tF0p\nhIVx+1+8yDUDBISzgrRRKrneUzt26LYmb27m+ny9+CI3KeOLEYcOlf8+d2gRcPZ4AE9wMPDTT8J+\nZW1++40zHY091PWrhu3pCuKxNE3SniLg48Pl/lsDudJELUkRtbRamEdMTMCa1cKtpX9/4PXXW3eM\nhATggw+4GgDGuDYl//qX6X2mTgXWrWuxwKurubYXgYFc/YJQEoGcOLQIkCXAMXUq8NFHwLffmt92\nyRLjn+n/SO0ZFObp0cOyNVwvX+YCrm0duYLDlgSGWztTN5cd5GiWgDV44AHd3+bTT5tvwzJpEtfU\nkN/HxYVz4U6bZh+r3KFFgCwBjttu4/61Fn1z3REsAUsfgva0BKxJjx66bYrN8fnn4q7XpUviLQHe\np93awK121bBQbyVHCgxbC0t+m97ewL//Lc94LMGhs4NIBKwLP1Pj8/LtWSjGwzdRkwJj7UcEpLiD\n8vOBf/yDi/uY+7dsmfnr4+7O/eMLCFsbuDVXNexIgWGiBYe2BMgdZF20q4b9/DgRmDLFvmMKCeHW\nM6irEx+kKy/nZq7tIXVYiiW0cycXVHztNeudPyiIc2l4ewO//86totUaQkOBhx82XJ+CMceoFiYM\ncWgRKCvjFpMgrAfvEuJFwN7uIBcXzhq5elW3Va4peCvA3pWn1qB7d26Gr1ab72m/Ywe3EI812bKl\nZd3jxEThHkdSeO894y2dZ89uH3+z9oZDiwBZAtaHDw736+cYgWGgxSUkVQTaAx4e3Ky5uNi0q6S6\nmstI2rrVuudv7UNfn/h4+YubCOtCMQEng7cEqqq45lSOcH2lBofbkwgA4uICP/3ErazVHlxghGPh\n0CLg7M3j5IAPDvNBYUcwz51dBMR8f3NFSARhKUbdQSFmEnoVCgUKxawn1wqcvY20HPBVw44QD+Dp\n0QM4dEj89pcvcwHS9oK5qmm1mgsKP/OM7cZEOA9GRaBv374m17BMam0agQjIHWR9+KphRxIBqVWz\n7c0S6N7d9DrS2dlcx1Vrt5YgCMCEO2jXrl2C7xf9XXJq7HNr0dTE+a39/WU9jdPBB4YdJSgMSHMH\nqdXctrZeR0BOzH1/U62JCaK1GBUB779XqH7hhRcQHBwMPz8/uLq6Yvr06Tqfy0V5ORcEM5c2R0iD\nDww7kiUQHs65qMSsuFRczNU7yHz72RRzIkDxAEJOzKaIfv/998jLy8OTTz6JJ598EqtXr7bFuCg9\nVCa0A8MzZth7NBzaaZLdupnetr25ggDOHZSbK9wbqrqaEwi5FxYhnBezIhASEgIPDw9UVFQgMjIS\nV+RaCkkPigfIg68vlxH0+++OYwkALbNhZxSBwECutz2/+Lk+r70m3IuHIKyB2VsrLCwM//nPf+Dj\n44Nnn30WN6Sset4KKD1UPkJDgT//dDwR2LjRfDO1gweBwYNtMyZboVAAmzbZexSEs2JWBDZt2oS8\nvDzMmjULW7ZswRfGlkmyMpQeKh98cNiRgu5LlwK7d3NdKE0xYABwzz22GRNBOAMKxviekroUFRXh\njTfegK+vL1asWCF7IFgzIIUCDz7I8Pvv3OIKb71lk9M6FXPmACdPAufP23skBEFYA4VCASOPcrMY\nzb1ZsGAB+vTpAzc3Nzz99NMWD84Shg0DFizg1u8krE9oqGO5ggiCsB9G3UFNTU146KGHAADjxo2z\n2YAAcWu3EpYTFgZUVNh7FARBOAKicg7UarXc4yBsyIMPcv37CYIgjIpAdXU1cnJywBhDTU2N5v8V\nCgVuEdvzl3BIfHy4fwRBEEYDw0lJSVD83WKSf/jzpKenyzegVgQ4CIIgnJHWPDeNikB6ejqSTaw4\nkZGRYbaJ3JEjR/Dss88iPT0dv/32G6ZOnYo+ffoAAJYuXYrZs2cbDohEgCAIQhKyiEB0dDTWrVsn\nuBNjDE8//TROnTpl9MBr167F559/Dh8fH2RmZuKjjz5CRUUFnnzySdMDIhEgCIKQRGuem0ZjAjEx\nMfjyyy+N7jh06FCTB46MjMS3336LeX8vipqdnY2cnBxs374dffr0wVtvvQUfckwTBEHYFaOWgDXI\nzc3FnDlzcPjwYWzZsgXR0dGIiYlBWloaysvLBS0NsgQIgiCkIYslYG2mT58O/7/7FKSmpmLZsmVG\nt121apXm/5OSkmyygA1BEERbISMjw+SiX1KwmSUQHx+Pd955B8OHD8e7776LgoICwbbUZAkQBEFI\nQ5a2ETza6aA1NTVYsmSJpBPwqaUbN27EE088geTkZBw+fBjPP/+8xKESBEEQ1sasJTB69Gi8+eab\naG5uxgMPPIB7770Xzz77rHwDIkuAIAhCErKkiPLcuHED06ZNQ0NDAz799FNERUVZdCLRAyIRIAiC\nkIQsIvDcc89p/r+4uBg//vgjFixYAIVCgbS0NMtGKmZAJAIEQRCSkCU7qG/fvhp/fr9+/ShDhyAI\noh1i1h3U2NiIY8eOobGxEYwxFBYW4h4Zl3YiS4AgCEIastYJTJ8+HU1NTcjPz4darcbQoUNlFQGC\nIAjCdphNES0pKcGePXsQFxeH48ePo6amxhbjIgiCIGyAWRHw9vYGYwxVVVXw8vJCibmVwAmCIIg2\ng9mYwHvvvYeysjK4ublh+/bt8Pb2xk8//STfgCgmQBAEIQlZ6wSAlkVlzpw5g8jISHh6elp0MlED\nIhEgCIKQhCyB4Tlz5hg92RdffGHRyQiCIAjHwqgIPPTQQwBgoC7ay0wSBEEQbRuj7qDZs2fj66+/\ntvV4yB1EEAQhEVm6iN64ccPiAREEQRBtA6OWQI8ePTB37lxBdxD1DiIIgnAcZAkMe3l5oW/fvhYP\niiAIgnB8jIpA165dsWDBAluOhSAIgrAxRmMCsbGxthwHQRAEYQdkXWPYEigmQBAEIQ1Z1xgmCIIg\n2i8kAgRBEE4MiQBBEIQTQyJAEAThxJAIEARBODEkAgRBEE4MiQBBEIQTQyJAEAThxJAIEARBODFG\newc5Mmt+WYMjBUc0r+cOmos7o+6044jaP83qZiz6fhEq6isAcBWKr6W8hn6d+sl+7hV7V+BS+SXN\n68fjHkdij0TZz+sIXCq7hGf2PwM1UwMAvDt44+M7Poab0s3OIyP0UdWpsGTnEjQ0NwAAlC5KvDvp\nXXT16WrnkZmmTVoCb2a9iam3TMW9g+9FuF84vs/53t5DavcUVxVjZ85O3Dv4Xtw7+F5U1Ffg16u/\nyn5exhjePfou7hpwF+4dfC883Tyx99Je2c/rKPya9ytKa0s1133PxT0oriq297AIAc5eP4tT105p\n/lYlNSXYd2mfvYdlljZnCVyruoaG5gYsHLIQCoUCbi5u+DD7Q3sPq91TUFmAiIAIzOg/AwBwougE\nCisLZT9veV05PFw9cNfAuwAApTWlOlZgeydPlYeR3UZqrvuqjFUoqy1DuH+4rOctrirG7V/cjsbm\nRgDcrPbeQffi0RGPwt3VXdZza/PKwVfwzblvBD/zdPPEYyMfw90D74aLQvp8Nqc0B3f97y40q5sB\nAO6u7tgzdw+CvIIsGmteRR4Gdh6o+VtdVV1FZl4m5kXPE32MXTm78NxPz2led/LqhC/u/EJWa0JW\nEThy5AieffZZpKen4+LFi1i4cCFcXFwwcOBAvP/++xatV3zm+hkM7jJYs2+QVxBKa0utPXRCj4KK\nAnTz66Z5HeITgrPXz8p+3sLKQoT4hmhed/XpiqKqItnP6yjkVeRhUOdBmtcdPTva5H7/5eovCPQI\nxIYJGwAAFfUVWPvrWrx/7H2svnU1ZkXNssl64xlXMvCPEf/AyLCRBp8VVBRgZcZKvJn1JtaPXy/Z\nRXiq+BQ6eXXC+vHrAQD/2P0P/HL1F0zrN82iseap8hDu1yLOCeEJ2HJyi6Rj/Pf3/2JW1CzNGL46\n+xUmb52MgwsPwtfd16JxmUM2EVi7di0+//xz+Pj4AACefPJJpKWlITExEUuXLsX27duRmpoq+bin\nr53G4C6DNa+DPINQWkMiIDcFlQXo5tsiAqG+odj3l/ymblFlEUJ9QzWvu/p0dSp3SH5FPib3max5\nHeQVhLLaMtnPm12YjcQeiTq/tdHdR+PA5QN4au9TmL9tvmb23T+4P7IXZ5s8XmV9JXq90wvVDdUA\nABeFC/bN24f48HiT+5XUlCA2NFZnHDyDuwzGhMgJ+OrsV5i/bT6uV1/XfHZn1J34bPpnJo9dUFmA\nfkH9NMdOiUhBZl6mxSKQX5GPiIAIzeshXYfgYtlFVNRXwM/dz+z+jDEcuHwAK8euRGTHSADAoM6D\nUFpbihlfz8Cue3ahg7KDRWMzhWwxgcjISHz77bea9qYnTpxAYiKn1JMmTcL+/fstOq6BCJAlIBk1\nU6OwslDzT1WnMrtPQYWuCIT4htjEHVRYWYgQnxZLIMQ3xKlEIK8iD2F+YZrXHT062mTSk12UjdgQ\nwzVFUnqmIHtxNsqeKUPJ0yUoWl6EM9fOaFwqxriiuoIgzyCUPF2CkqdLcPstt+sE+41RWlOKTl6d\njH7uonDBnEFzcGnZJc2xDy48iBNFJ8weW9+6TQhPwOH8w2b3M0ZeRZ6Om66DsgNiQmJwtOCoqP1z\nSnOgVCjRO7C35j2FQoH3J78Pnw4+WPjdQhRUFGh+t+W15RaPVRvZLIEZM2YgNzdX81q717WPjw9U\nKuMPnlWrVmn+PykpCUlJSZrXp6+dxsPDH9a8DvQIhKpOhWZ1M5QuSquMvb2z8fhGPL3vafi5+4GB\noaG5ASUrSkya9wWVBUjpmaJ5HeobahO3TFGVriXQ2bszblTfgJqpLfIDtzX0XQy2sAQYYzheeByx\nocILSykUCni5eXEv3DgX1bXqazp/J30KKgoQ7h+u2a+rd1eU1JSYHUtpbSmCPM376JUuSni5cMeO\n7BiJPFWe2X0KKgt0JpQjw0biRNEJNDQ3WDTj1hdsAEgIS8DhvMO4tdetZvdPz01HSs8Ug9+h0kWJ\nL2Z8gVnfzMLwfw8HANRfrEfvit46VqKl2Cww7OLS8oOtrKxEQECA0W21RUCbJnUT/ij5AwOCB2je\nU7oo4e/hj/K6cpMzBqKFS2WX8OLYF/H0qKcBAAGrA1BWW2YyIFZQWaBzg3f16YprVddkfxgXVhai\nV2AvzesOyg7wc/dDSU0JOnt3lu28jkB1QzVqm2p17uuOnh113B5ykHszF55unqKDkd38uiG/It+k\nCORX5OtYkp28OpkVgZrGGjDGWgRHJAEeAVAzNVR1Kvh7+BvdrqBS1xLwc/dDr8BeOFV8CsO7DZd0\nTsBQsAEgPjxedOLKgcsHMOWWKYKfebp5Yuc9O43u+9JLL4kfqB42m0rFxMTg4MGDAIDdu3drXENS\nyCnNQZhfGLw7eOu8T3EBaeRV6N6sPQN74vLNyyb30f8Rd1B2gL+HP25U35BtnABnCWi7gwDniQvw\nM0vtmWGQp/yWgDFXkDG6+XZDQUWByW30Y0piRKC0phRBXkGSA9AKhQLh/uHIqzBtDei7OAHOJZSZ\nlynpfABQ31SPstoyA+GMD4tHVn6Wps7DGGqmRnpuOpIjkiWfu7XILgL8H3D9+vVYuXIlEhIS0NTU\nhJkzZ0o+1qniU4IBIooLSEPfd9kzoCculxsXAcaYgf8UsI1LqLCy0GCG6SxxgfyKfIOZZUfPjvKL\nQKEFIlBpRgT07h9RIiDSFSREuF848ivyjX7OGDOwBIC/RSBfugjwWWz6LukuPl0Q5BmEP0r+MLn/\n2etnEeARIHvqrxCyikBERAQyM7kL2qdPH2RkZCAzMxMfffSRRell+kFhHrIEpKFvtvYMMG0JVNRX\nQKFQGGQ4hPjIHxzWTxEFnMgSUBn6mG0x4ckuysaw0GGit+/mJ48lUFJTYrGLN8wvzGRcoLyuHB2U\nHeDTwUfn/fiweBzOkx4c1reudY4ZHm/Wujhw+QBSIlJMbiMXbSqydvq6sAiIuaEIjiZ1E65XX9eZ\nXfcMNG0J6P+AeUJ9Q2UVAcYYiioF3EHeXVFU2f5rBYQeLHJbAuaCwkKIsgQqLbAE/nYHWUK4n2l3\nUEFFgYHAAlxQubap1qQVIUSeKs/oLJ4PDpviwOUDOokXtqRticC104juEm3wfpAnuYPEUlRZhE5e\nnXR6z0QERJi0BIRcQcDf7iAZH8Z8tbB+DMiZLAH9B0tHT3lTRKUGhYG/LQEx7iCpMYHWuIPMxAT0\nY1w8CoXCImsgryIPYb6GogKYdzE1qZtw6MohJEUkSTqntWgzIlBWWwZVnQo9AnoYfBbkRe4gsejH\nAwDz7iBjloDc7qCiyiIDVxDwd0yg2glEwIQloJ1ybU2kBoUB84Hh+qZ63Ky7qZPNxbu1TH2P0hr5\nYgJC8QAeS4LDpiyBgZ0HoqCiwKgFd6LoBML8wtDFp4ukc1qLNiMCZ66dwaAugwTTEckSEI9QGltE\nQASuqq4azWAQyqIA5A8MCwWFAeexBPIr8g0eLB6uHnBTuqGqoUqWc0oNCgOc/92UJVBUVYSuPl11\ngqYdlB3g5eYFVb3xeqHSWsvdQeZiAsbuacCyorH8SsMgPo/SRYkR3UYgKz9L8PP0y+l2cwUBbaiB\n3OlrpzG4s2E8AKDsICkIZZx4d/CGn7sfiquKBR+6BZUFiAqOMnhf7qph/Wphnq4+rYsJLN25FEcL\nW6o4Hx3+KO6Luc/i48mFUPER0JImKkcvmeNFx/HYyMck7ePn7gfGmNH2CMbcibxLKMBDuGaopKYE\nQ0OGShoLD+8OYowJJqEUVBYgpmuM4L7DQofhzPUzqG2shaebp6jzmbIEAGBU+Cgs2blEsLYl92Yu\nPr7jY1HnkYM2JQLGboggzyAKDIskryIP3f27G7zPp4kaE4HxvccbvC93YFi/WpinNZYAYwxbz2zF\nznt2wtvNG79c/QXfnPvG4USgor4CTeomBHoEGnzGN5ETco22BsaYRZaAQqHQFIwJTRaM+d95EeD7\n5OjTmpiAn7sfXF1cUV5Xjo6eHQ0+L6gsMFqY5eXmhajgKGQXZWN099GizmcqOwgAnhn9DO7oe4fg\nZy4KF8GEF1vRdkTg+mksHLJQ8LNOXp2cIiZQXluOVw+9ipyyHOyYs8OiY+RV5CEhPMHgfb5gbFT3\nUQafGfsRd/XpiuvV12WrGtavFuYJ9AhEbVOtpJkaT0FlAbw7eGs6Tnb27oy0X9KMzhh5tp7eiod/\neFjwMxeFC7bfvd2qC93wbjuhMcnVOoIPCgvFYczBxwWERMBYTMlccLg12UHA3xlCqjxhETDhDgKA\npB5JuO2z2zTtI0Z0G4F984QbJtY21qKivgLB3sFGj+fl5iUp48qWOKwIqJlac6OrmRq/X/8dAzsP\nFNy2PbqDahprUNNYA4D7/l+c+QJpP6dhUp9JyMjNMPvQMoZQTAAwXTBmzJzXrhqWI6hVVFWEUeGG\noqRQKLi2FdXXdLo2iuHcjXM6D6owvzBN4ZCQ64Vn98XdeH3c65g7aK7BZ2t/XYudOTutKwICAXye\n1qaJlteWo5kZNnw7eOWgZCuAx1SGkDl3kDFaYwkAnEsovyIf0V0NMwpNBYYBYM1ta/B84vMAuOyd\nnm/3NCpK/CSprfayclgRWPPLGrz686vwdOVmejEhMUb7gPDFYpY+GB2R2E2xuFZ1TXNjxYXFIX1B\nOqKCo/Dt+W9RUV9hsi+KMYw9XHoG9BQMhjU2N6KstgxdvIUf8nxwWA4RMBYYBlriAhaJQKcWEVAo\nFIgNjUV2YbZJEcjMy8Q/x/xT8JpPjJyIJ358QtI4zJFfkW90PK0pjjxacBSjPx5ttLXxS0mW9aAx\nlSFUUFkg6Mrt5CmvJRDmGyaYJlrfVA9Vncpk7ykXhYvO33p099HIyM0QXMZWKIDflnBYETicfxif\npn4qau1gd1d3dFB2QFVDlWwLL9gSNVPjr/K/UPFsheAqTnwhjFQRaGhuQGlNqWCwtWdgT3xx9guD\n94uqitDZu7PRDq18XGBI1yGSxiIG/bUEtLE0LnDuxjmDgGBsSCyOFx432ke+uKoYN+tuom+nvoKf\njwwbiQulF1BeW45AT0MfviUYs9iA1lkCh64cwkPDHsI7k95pzfAM6ObbDedLzgt+ZmzWbcoSaGxu\nRFVDldGgsRjC/cMFM4T4KnQpM/eUnilIz00XfB6Ziwc4Og5rv0itWgzyaj/B4evV1xHgEWB0GT9z\n6W/GKKwsRBefLoIPdGPuIGOmPI9ctQKMMcGWEdrntVQE9P3Ww0KHIbvI+KIoh/MOIz483uhDo4Oy\nAxLCE3DoyiHJ4zGGqQdLa1YXy8zLRHyY6YVcLMGsO0hiTKCstgyBnoGtcrEYqxo2FqMwRUrPFBy4\nfEDwM1OC3RZwSBEoqixCfXM9eviLz37o5NWp3cQFhHrGaGOuJN7UcY3drN39u6OoqghN6iad9839\nYOSqGuarhY21EbbEEmCMCYpAbEgssouyjRYuiXlwpkQYf0hYgqmYgKWdRBljOJx/WDAxoLUYcwfx\nYi7VEmhtPAAwXjWcX5FvcmIjRHSXaBRXFQve66b+Vm0BhxQBvmpRin+/PTWRM2deGjNzRR3XyM3q\npnRDV5+uBsc1l0UhlyVgrFqYx5K1hq9VczEW/SwO7eCwEGIenMk9k3Eg13oiIFTPwWOpJZB7MxcK\nKARThFuLMUugtLYUnm6egmJuUgRaGQ8AjFcNm7unhVC6KDE2YizSc9MNPjMVv2kLOKYIWJCr3J4y\nhMyZl3JYAoBw+whzWRRyVQ2bCgoDllkCQlYAoBsc1qe+qR6/Ff+GEd1GmDz20JChyFPlWWXBF8aY\nSWvQ0hTRzLxMJIQnyJI80dWnK0prStHY3KjzvrFGbYD8lkCYXxjyK/INLDxL3EGAcWuPYgIykF2U\nLTmntt1ZAibMSz71TSqmZpfA343kyg1FwNQsR66CMWOFYjyWxASMiQAADAsRjgv8Vvwbbgm6xaDl\nsD6uLq5I7JGIjNwMSWMS4mbdTYPsFG0sbSInlysI4L5/sHewwYTAWI0JYFoEWtNGmse7gzc8XT0N\nzmFuYmMMPjisj7lqYUfHIUXgeOFxSf3MgfZVNWzWHWSpJWCkDQGPoCVgzh0kU+sIYy0jeKxpCQBA\nbCiXIaTP4bzDSAgT9+A0FTyUgrlJgKUxAbmCwjxCcQFTs+6Onh2hqlcJLlLfmuZx2gjFBSxxBwFA\nVHAUqhqqkHszV/NedUM16prqrDJWe+GQIiA1KAy0r8CwOR8jnx0ktZOkuYeL0DKT5oJo2lXD1sSc\nO6iLTxcUVxVLugbnS84bFwEjweHM/EzEh4t7cFpNBMy47QI9A1FeVy7pu1c1VOFC6QWLe/GIQSgu\nYCq7TOmihL87tz64Pq1pHqeNUFzAUktAoVBw1sDlFmtAaAnQtoZDioDUoDDQDmMCJh7Wvu6+6KDs\nIHk2KComoOUO0izBZ2LWJNdaw0JrC2vDrzMg5RqYsgSEgsOMMY0fXQwDOw9EeV25RUF7bcy57Too\nO8DT1RMV9RWij3ms4Biiu0QbTTu2BlItAcC4S8hqloCfbhKFJlvJAksAAJIjdBMA2nqhGODAIiCV\n9hITaFY3o7iq2OxNKmYhbW3qmuqgqleZrOzVtwTK68rhrnQ3WNRFHzniAuYsAUBaXKCkpgT1TfVG\nhX60uJwAABKbSURBVEUoOJxXkYdmdTN6BvQUdQ4XhQuSIpIE/cZSMOe2A6QXjEkRM0sRWmHM3Kzb\nqAhYyRII89OtGi6pKYFPBx/JPad4eGuPt8LMpXO3BRxTBCxotNReLIGiKsOVv4TQn+GYo6CiAKG+\noSaLb0J9Q1FeW47axlrNPmLMZjkyhExVC/NIiQucv8G5gkxZmPrB4cw8zhUkxSod32s8luxcgk5r\nO6HT2k7o/35/s1bS9err6PdeP80+b2S+YbSzJo/UNFE5g8I8Rt1BFlgC1ggMA4aTJUszg3h6B/aG\nh6sHOq3j/laP7n4UkYGm/1aOjkO2jbDUEnDUwHBlfaXGZ+7q4mpyZi12ZmFu5SSD44qYXbooXNDd\nvzvOXj+LW4JuwZ9lf4r6wVi7VoAxxrmDzHSzlFIrYMoVxBMbGouNxzdCVcctdHLoyiHRQWGeB4Y+\ngOn9p2tev3zwZTz303P46I6PjO7z7P5nMaH3BLww9gXNe+ZcIVLSRPkisX9P/beo7S3FqDvIjCUg\nJJLWSBEFDCdLlhSKaaNQKHBm6RlNc0cAgu2+2xIOKQJSm4IBjttO+qe/fsLErRM1xTK1jbX467G/\njD6QxVYf6pu55hBb2h4fHo9bP7tV83rpsKVm97F21fDNuptwV7obrRbmkWIJiBGBuLA4LN6xGN3f\n4oqplAol9s/fL27Qf6NQKHRmsK8kv4L+7/dHVn4W4sLiDLY/nHcYP176EecfOW+0qZsQUtJEc0pz\n4OfuZ1GLaCnoWwK1jbWoaqgyOaM3GROwRmBYL53a0swgbbzcvMzem20JhxQBSyLtPh180NDcgPqm\nelmDX1L58dKPeH7M81iZtBIAMPXLqThacNSoCJgLCvKE+4fjp8s/iR6H2IKWT1I/EX1MnhCfEBy8\nclCw2MoSLt+8LOqBJSUmcK7kHCb1mWRym64+XXF9ReuLvbTx9/DH2tvW4pEfHsHRB47q9G1qVjfj\n4R8exrrb1kkSAEBamqjcqaE8vCXAd/Pl4zqmXJCdvDoZTCAYY0YXg7FoTJUFOF54HAoocKLoRKtF\noL3hkCJgCQqFQhMXMOdLtiXpuenYMH6D5nVsCBd8nNF/huD2YmfsUmMCxlZ9sgYjuo3A5pObsXjn\nYqsdc0of4VWftOnq0xWnrp0SdbxzN86hf6f+rR2WRcwdNBebsjdhU/YmLB3eYlltPL4R/u7+mDNw\njuRjSokJnCw+KbnuxhJ83X3hpnTDzbqbCPQMFOV/7+TVCWeun9F5T1Wvgqerp2ZBl9bg6eaJyX0m\nY8nOJZr3Xh/3equP255oNyIAtGQIOYoIlNeW44+SPzAybKTmvdiQWLx37D2j++RV5InKSzeXHcQY\nw+6Lu1FZXwmAK8Cb0HuChNGLZ3i34Ti+2LDQSm66+nTFmetn8NXZr0xu19DcAFWdym6pfAqFAu9P\nfh8pn6bA38MfSoUSzawZLx18CQcWHLDI8g3yDMIV1RVR216tuGrVBW9M0c23Gzaf3Ixuvt2QlZ9l\n1v8u5A6yVlCYZ9td26x2rPZI+xIBB2snfejKISSEJ+jMaPg0RGML4IgJ4AJcTEDb9Nbn56s/Y9H3\nizQ//siOkRjebXgrvo3jMaTrEAzsPBDf/vGt2W1XJKyw68pPg7oMwqvJr2L7he2a915NedXoannm\n6OjZEb8V/yZqW1u2NVgcu1hncaK7BtxlcnshEbBWPIAQR7sSAUerGj5w+QBSIlJ03gv1DYWb0g1X\nVVcFFwoX6w7ycvOCTwcf3Ki5IbhC0o4LO7B46GK8lGzZSlFtgWDvYGydsdXewxDNkmFLsGTYEvMb\nikBKSrQtG5w9Hvc4HsfjorcXFAErZQYR4nDIOgFLcbSCsQO5B5DSM8XgfWOLmDQ2N6KkpkR0Foep\nxWV25OzAlFvM+9WJtonYYrH6pnrcrLspy/Kf1oAsAfvT/kTAQSyBa1XXkF+Rj5iQGIPP+OUM9eFX\n/nJ1EWegGYsL/Fn6J1T1KouK7oi2gdgU0YLKAoT4SFtK0Zb4u/ujprEGDc0NmvfIErAtNncHDR06\nFP7+XIvcXr164T//+Y/Vjh3kFSTLKleWkJGbgTHdxwg+0I0Fh6Wa7cYyhHbm7MSUPlMc9odPtB6x\nKaKO3uZYoVBoLHjeArZ2YJgwjU1FoK6uDgCQnt663irGCPIMwtnrZ2U5tlQOXBZ2BQHGg8NS+5AY\naym9I2cHHo8T75cl2h6BnoG4WXcTaqY2KfZtYcET3iXEi0BpTanFAXNCOjadKp46dQo1NTWYMGEC\nxo0bhyNHjlj1+KYWqbA16bnpRkVAOzisjWRLQGBxmZt1N3G88Dhu7XWrkb2I9oCriyt8OvhoWlwY\noy0sgq7/u7VW8zhCHDYVAW9vb6xYsQI//vgjNm7ciLlz50Kttl4fekdpIpenykN5XbnJ2Qzfv15/\nPymmu1DriD0X9yCxR2K7KmsnhBETHG4Li6ALigDFBGyGTd1Bt9xyCyIjuY57ffr0QVBQEIqKitCt\nm25ByapVqzT/n5SUhKSkJFHHD/IMwo3qG5rmTgooLG4ZK5WG5gY0qZsAAHsv7UVyRLJJM31Y6DAc\nLzyuUzmcX5mPpIgk0ecUiglQVpDzwE96eqO30W3yKvIwvvd4G45KOgYiQNlBZsnIyEBGRoZVjmVT\nEdi8eTNOnz6N999/H4WFhaioqEBIiGE6pLYISCHENwQ3626i01ouqNSkbsKtvW7FutvWYUDnAa0Z\nulFUdSqs/mU13j36rs7qWpumbjK5n1Bw2BJLoLCyEM3qZihdlGhSN2HPxT1Yc+saaV+CaJOIsQTE\n9qKyJ/oiUFJTQpaAGfQnxy+9ZHk9kE1FYNGiRbjvvvuQmMhVsW7evBkuLtbzSPm5+6Hk6ZabqaG5\nAR8c+wDJnyRjer/pWBy72Gyffin8fOVnvHLoFUzuMxkXHr0gqUWtUHBYbLUwj7urOwI9A3HoyiEE\neQXhzLUz6OHfo80vckGII8gzCCeLT2rapHTx7mJQD+Do2UEAJwLHC4/j9LXTADh3EGUH2Q4Fk7pQ\nrcwoFArJa+eao7y2HK/9/Br2Xtpr1eNGBETg5eSXMaTrEIv2D1kfgqxFWegR0AP1TfXwfd0Xtf+s\n1ek0aY4Hv38QRwpaAuzL45djwZAFFo2HaFu8f/R9fJj9IQBuXW7fDr46PZxqGmvQcU1H1P6z1qHX\nwD105RAe/eFRzetg72Dsn7ffocfsaLTmuekUIuCoTPliCqK7RCM2NBY3qm/g9V9eR+7jufYeFtEG\nqW2sRdDaIJQ9UwYPVw8A3DoCk7dOxsVlF+08OkJuWvPcbFe9g9oai2IW4bPTn+F8yXkAXPMtgrAE\nTzdP9AnqgzPXzmgaBbaH9W8J+SERsCPT+0/XWYqQIFoDn3asEYE2kB5K2B/qK0AQ7QR+wSKetpAZ\nRNgfEgGCaCfod6dtC9XChP0hESCIdsLgLoPxR8kfqGvienRJTTkmnBMSAYJoJ2gHhwGKCRDiIBEg\niHaEdk8qcgcRYiARIIh2BB8crqyvRENzAzp6drT3kAgHh0SAINoRsaGcJZBfkY9w/3CquiXMQiJA\nEO2I6C7R+KPkD1wsu0hBYUIUJAIE0Y7gg8M//PkDxQMIUZAIEEQ7IzYkFtsvbCcRIERBIkAQ7YzY\nkFgUVRVReighChIBgmhnxIbGAgBZAoQoSAQIop0R3SUaSoWSAsOEKEgECKKd4enmiQ+nfIi+nfra\neyhEG4AWlSEIgmjjtOa5SZYAQRCEE0MiQBAE4cSQCBAEQTgxJAIEQRBODIkAQRCEE0MiQBAE4cSQ\nCBAEQTgxJAIEQRBODIkAQRCEE0MiQBAE4cSQCBAEQTgxNhUBtVqNhx56CAkJCUhOTsalS5dsefo2\nR0ZGhr2H4DDQtWiBrkULdC1aj01F4LvvvkNDQwMyMzOxevVqLF++3Janb3PQDd4CXYsW6Fq0QNei\n9dhUBH799VdMnDgRADBy5EgcP37clqcnCIIg9LCpCFRUVMDPz0/zWqlUQq1W23IIBEEQhBY2XU9g\n+fLliIuLw6xZswAA4eHhyMvL09kmMjKSYgUEQRAS6N27Ny5evGjRvq5WHotJRo0ahR07dmDWrFnI\nysrC4MGDDbax9IsQBEEQ0rGpJcAYw8MPP4zTp08DADZv3oxbbrnFVqcnCIIg9HC45SUJgiAI2+EQ\nxWLOXj/Q2NiIefPmITExESNHjsSOHTtw8eJFjB49GomJiXj44Yedbt3l69evIzw8HDk5OU59LV5/\n/XUkJCRg+PDh+OSTT5z2WqjVatx///2a737hwgWnvBZHjhxBcnIyABj9/v/+978xfPhwxMfHY9eu\nXeYPyhyA//f//h+77777GGOMZWVlsWnTptl5RLZl8+bN7IknnmCMMVZWVsbCw8PZHXfcwQ4ePMgY\nY+yhhx5i27Zts+cQbUpDQwNLTU1lffv2ZX/88QebOnWqU16L9PR0NnXqVMYYY1VVVezFF1902vti\n9+7dbPbs2Ywxxvbt28dmzJjhdNdizZo1bNCgQSw+Pp4xxgR/F0VFRWzQoEGsoaGBqVQqNmjQIFZf\nX2/yuA5hCTh7/cCsWbPw8ssvA+BmPG5ubjhx4gQSExMBAJMmTcL+/fvtOUSbsmLFCixduhQhISEA\n4LTXYu/evRg0aBBSU1MxdepU3HHHHcjOznbKa+Hp6QmVSgXGGFQqFTp06OB01yIyMhLffvutZsYv\n9Ls4duwYRo0aBTc3N/j5+SEyMlITgzWGQ4iAs9cPeHt7w8fHB5WVlZg1axZeffVVne/v4+MDlUpl\nxxHaji1btiA4OBjjx48HwCUTMC0z35muxY0bN5CdnY3//e9/2LhxI+655x6nvRajRo1CXV0d+vXr\nhyVLlmDZsmVOdy1mzJgBV9eWhE7t7+/r6wuVSoWKigr4+/sbvG8KhxABPz8/VFZWal6r1Wq4uDjE\n0GxGXl4eUlJSMH/+fMyZM0fn+1dWViIgIMCOo7Mdmzdvxr59+5CcnIyTJ09iwYIFuHHjhuZzZ7oW\nnTp1wvjx4+Hq6opbbrkFHh4eOj9oZ7oWa9euxahRo3DhwgWcPHkS8+fPR2Njo+ZzZ7oWPNrPiIqK\nCgQEBBg8SysrKxEYGGj6OLKNUAKjRo3CDz/8AABG6wfaM9euXcP48eOxdu1aLFy4EAAQExODgwcP\nAgB2796tMfvaOwcPHkRGRgbS09MxZMgQfPrpp5g4caJTXovRo0djz549AIDCwkLU1NRg3LhxTnkt\nqqurNd6CwMBANDU1Oe1vhEfo+48YMQI///wz6uvroVKpcP78eQwcONDkcWxaLGaM6dOnY9++fRg1\nahQAbjboTKSlpUGlUuHll1/WxAbefvttLFu2DA0NDYiKisLMmTPtPEr7oFAosH79ejz44INOdy1u\nv/12HDp0CCNGjIBarcYHH3yAiIgIp7wWK1aswH333YcxY8agsbERr7/+OmJjY53yWigUCgAQ/F0o\nFAosW7YMY8aMgVqtRlpaGjp06GD6eIw5QV4VQRAEIYhDuIMIgiAI+0AiQBAE4cSQCBAEQTgxJAIE\nQRBODIkAQRCEE0MiQBAE4cSQCBCEFYmIiEBDQ4O9h0EQoiERIAgrwhfyEERbgUSAcCruvPNOHDp0\nCABw/PhxuLu7Izk5GcnJyQgLC8OiRYvQ1NSEe++9F6NGjUJcXBy+/vprAEBSUhLuuusujB8/Hg0N\nDVi0aBHGjh2LMWPGaMr3Aa6x18aNG3HnnXeSVUA4PCQChFPx/9u7Y9XEggAKw79iLwpiYaEmQdEH\nsBeCvUUEA1bhgsTCys43EGy0UIJFinQBNTYSBBGvhbWFglqotQiCCEJkC1m7Zdlms8s9Xz3DMNVh\nBuaMYRi8vr4Cl3qSZrNJv9+nVCoRCAQol8vUajW8Xi+j0Yher0exWGS73WKz2Xh8fOTz85NGo4HH\n42EwGNBqtcjlctc1KpUKpmny/v7+2yf7It/tn+gOEvlbEokEhUKB3W6HaZpUq1Wm0ynZbJZOp4PT\n6WQ2m3F/fw9cKoqj0ej1t7twOAzAZDLBNE3G4zEAX19fbLdbAHq9Hg6HQ1dD8l/QSUAsxW638/Dw\nQDabJZlMsl6vSafTvL29XT+xiUQiDIdD4FLFO5lMCAaD1/k/x6TTafr9Pu12m1QqhdvtBuDj4wOX\ny0W9Xv+GHYr8GRXIieVsNhvu7u6Yz+c8Pz+zWCzw+Xycz2f8fj8vLy8YhsFyueR4PJLP58lkMsTj\ncer1OqFQiNPphGEYrFYr9vs9uVyOp6cnbm5umM1mHA4HYrEY3W6X29vb796yyC8pBERELEzXQSIi\nFqYQEBGxMIWAiIiFKQRERCxMISAiYmEKARERC1MIiIhYmEJARMTCfgCZinoJ0V/GkAAAAABJRU5E\nrkJggg==\n",
1108 "text": [ 2214 "text": [
1109 "<matplotlib.figure.Figure at 0x9d764cc>" 2215 "<matplotlib.figure.Figure at 0x7f04e70453d0>"
1110 ] 2216 ]
1111 } 2217 }
1112 ], 2218 ],
-   2219 "prompt_number": 59
-   2220 },
-   2221 {
-   2222 "cell_type": "code",
-   2223 "collapsed": false,
-   2224 "input": [
-   2225 "#fig, ax = plt.subplots()\n",
-   2226 "\n",
-   2227 "plt.plot( tl, label=\"Podlaha\")\n",
-   2228 "plt.plot( th, label=\"Stul\")\n",
-   2229 "plt.legend(loc=2); # upper left corner\n",
-   2230 "plt.xlabel('vzorek')\n",
-   2231 "plt.ylabel('Teplota [deg C]')\n",
-   2232 "plt.title('Namerene teploty');\n",
-   2233 "plt.show()"
-   2234 ],
-   2235 "language": "python",
-   2236 "metadata": {},
-   2237 "outputs": [
-   2238 {
-   2239 "metadata": {},
-   2240 "output_type": "display_data",
1113 "prompt_number": 11 2241 "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEVCAYAAAAVeRmFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0Tff+//HnydASkiOK3rRXq8RQsyLhnCCHK0m/LUXR\n0haVpg3uj1thVeegxn6rt8NqKW24HdwOX1IpWrEqUiK5olcpIYZLFTXmZjBlOPv3R5ZTaWwRcpKQ\n12Mta+Wcz9mf895bzn7lcz57sBiGYSAiInIZHlVdgIiIVF8KCRERMaWQEBERUwoJERExpZAQERFT\nCgkRETGlkJBq5cCBA3h4ePDhhx+WeP5///d/efLJJ6uoKvdZuXIlr7766nX14eHhwenTp93+PlIz\nKSSk2vHw8GDy5Mns2bPH9ZzFYqnCitxn8+bNZe7gb6T3kZuPQkKqndq1axMTE8OwYcMoKCgA4NJz\nPjMzM+nbty82m40mTZowYMAALly4AECtWrV44YUXaN++PU2aNOHLL79k6NCh3HvvvfTp04ezZ88C\nkJGRQXh4OF26dKFTp07ExcUBkJSURIcOHbDb7XTq1In8/HwSEhLo1q0b9913HyEhIaSmpgIQGxvL\nqFGjiIiI4N5776Vnz54cPXoUgMOHDzNo0CC6dOlChw4dmDVrVqn1TEtLY8GCBXz++ee8/PLLAHz4\n4Yd06dKF++67j759+7J7924ARo0axahRo7DZbAQGBjJ27FgKCwtL9Tl9+nTatGlDhw4dGDJkCMeO\nHSvxPi+99BJhYWEsXLjQtcyMGTOYOHHi9f2nyc3LuAn897//NR588EGjV69eRvfu3Y1NmzaVes28\nefOM4OBgIzg42Jg6daphGIbhdDqNO+64wwgNDTVCQ0ONF154wTAMw9izZ4/xl7/8xejZs6cRHh5u\nnD59uswa/va3vxnz58+v2BWrgf7zn/8YdevWNZxOp9GzZ09j0qRJhmEYxuuvv26MGjXKMAzDmDx5\nsvHpp58ahmEYBQUFRvv27Y1ly5YZhmEYFovFeOeddwzDMIw5c+YYfn5+xpEjRwyn02l07tzZWLp0\nqVFQUGC0bt3a+PHHHw3DKP79ad26tZGammqsW7fO8PT0NH755RfDMAwjMzPTaNeunet34OeffzYC\nAgKMM2fOGK+++qrRrFkzIzc31zAMw+jfv7/x6quvGoZhGA6Hw0hISDAMwzDOnTtnOBwO44svvii1\nvrGxscb/+3//zzAMw0hKSjJ69uxpnD171jAMw/juu++M1q1bG4ZhGCNHjjQ6duxo5OXlGRcuXDB6\n9eplvPvuu651PnXqlPHRRx8ZNpvNtXxsbKwRERFR6n3i4+ONoKAgwzAMo6ioyLjnnnuMzMzMa/4/\nk5ubV1WHVEV488036du3L+PHjyczM5Nhw4axZcsWV/v+/fv57LPP+Ne//oXFYiEkJISBAwdSu3Zt\nOnfuzIoVK0r09/TTTzN79myCgoJYtmwZu3btonv37pd97xMnTjBixAj27NnDvffe69b1rEksFguf\nfPIJnTp1Ijw8vMTXTXPmzGHNmjW8/vrr7N69myNHjpCXl+dqf/jhhwFo2rQp7dq1IyAgAIB77rmH\n06dPk5mZyf79+xk9erRrmfPnz7N161ZatmxJ48aNady4MQCJiYkcPXqU3r17u17r6enJ3r17sVgs\nOBwO6tatC0CnTp3Iysri7NmzrF+/nqysLNcI4cyZM/z0008MGTKkxHoahuEaJa1cuZK9e/dis9lc\n7VlZWWRlZWGxWBg5ciR16tQBYMSIEcTHxzNu3DhXP6tXr2b06NHUrl0bgAkTJjBjxgwKCgpKvM+D\nDz7I+PHj2bZtG4cPH6Zp06Y0b9782v6j5KZ3w4ZEbGwsAQEBPPPMMzz77LPceuutABQUFLg+JBfd\nddddfPfdd64dzcXXbNmyhcOHD9O7d29q167Nm2++SePGjTlx4gQrVqzgueeeo0uXLsyZMweA559/\nng0bNlBUVMTEiRMZPHgwZ86cYerUqaxevbrEVyJy/Ro3bsz8+fMZOXIkI0aMcD3/6KOPUlRUxCOP\nPMIDDzzAoUOHSmz7i78LAN7e3qX6dTqd1KtXj3//+9+u53777Tfq1atHamqqa6d/8bV9+vThn//8\np+u5X375hT//+c8sX76cWrVquZ63WCwYhkFRUREAmzZtcrWfPHmy1O/lxWUu/l46nU6eeOIJZs+e\nDRTv+A8dOoS/vz9QHE4XFRUV4eVV8uN7aRBcfE1hYWGp30tPT0+io6P58MMPOXr0KNHR0aXqErno\nhpuT+OKLL3A4HCxZsoR58+bhcDjYvHkztWrV4rfffuOJJ54o9f2vl5cX9evXxzAMJk2axH333Udg\nYCB33HEHL7zwAt9//z0vvPACjz/+OFlZWezYsYO+ffuybt06srKyWLJkCatXr+bAgQP88MMPfP/9\n98yYMYPs7GyaNGlCUFBQFW2Nm9/gwYO5//77+fvf/+7ama5Zs4ZXXnnF9Vd5Wlqaa8d8NVq2bEmt\nWrX49NNPATh06BAdOnQoERoX9e7dmzVr1rjmBr799ls6duzI+fPnS+18L+6kfX196datG2+88QYA\n2dnZ9OjRo9SIFYp/N/Pz8wEICwtj6dKl/PbbbwAsXLiQsLAwV99ffPEF+fn5nD9/nn/84x/069fP\n1Y/FYiE8PJy4uDjXvMvbb79Nr169uOWWW/D29nbN7wA89dRTLF++nB9//JGBAwde9baTmueGG0kM\nHTqUoUOHMnXqVAICAnj66acB2L59O8OGDeONN96gR48epZY7f/48o0ePxmq18t577wHQpUsX119j\ndrudI0eOUL9+fXx9fenVqxdQPDRPTEykSZMmbNmyBYfDAUBhYSEHDx6kffv2lbHaNcofj2R6++23\n2bBhg+vxzJkzGThwILfffjt33XUXDz/8MHv37i217KV/pV/K29ubr7/+mgkTJjB37lwKCgqYPn06\n3bt3JykpqcQyrVu35oMPPuDRRx/FMAy8vb1JSEjAx8enVP+XPv7ss8/461//Svv27cnPz2f48OEM\nGzasVC19+vRh0KBB3Hrrrbz11ls899xz9O3bFw8PD6xWK8uXL3f1XbduXXr06EFWVhYPP/yw65Dg\ni+8ZGRnJoUOHCAoKwul00rx5c1cQ/vF9GjZsSNeuXWndunWJEYpIKZU9CVJRYmNjjQULFhiGYRg7\nduwwWrZsaWzbtu2yr3U6nUZYWJgxZ86cEs9PmTLFmDt3rmEYhrF161aje/fuhmEYRpcuXYwffvjB\nMIziCen33nvPWLFihfH0008bhlE8WTp16lTXhOXFejRxLe4yatSoUr+/1+PEiRPGPffcY/z6668V\n1qfcnNwyknA6nYwdO5Zt27Zx6623smjRIpo1a+ZqT0hIYPr06Xh5eTF69GieeuopFi9ezJIlSwA4\nd+4cP/30E8eOHcPPz++y73HpiUEvvPAC+fn5jB8/HoB69eqxfPly3nzzTQIDAykqKiI5OZmCggJW\nr14NwOzZs5kyZQqPP/44q1atwsvLi8WLFwPFhyGOGzeOwsJCmjZtyuuvv46XlxdJSUn07NmTvLw8\nBg0aVOK7a7h5j+WXm8vChQt58cUXefHFF7nzzjuruhyp5iyGUfGzrcuWLeObb77ho48+Ii0tjVmz\nZhEfHw8UTxq3bt2a9PR0fHx8sNvtfPPNNzRq1Mi1/F//+lc6duzIU089VdGliYhIObhl4nrjxo1E\nREQAEBwcTHp6uqstIyODwMBArFYr3t7ehISEkJyc7GpPT09nx44dCggRkWrALSGRk5NT4msiT09P\nnE6nq81qtbrafH19yc7Odj2eOXMmsbGx7ihLRETKyS1zEn5+fuTm5roeO51OPDyK88hqtZZoy83N\ndR0H/t///pfMzEzXkUWXExgYyL59+9xRtojITatZs2auowDLwy0jCbvdzqpVqwBITU0tcZhoq1at\n2LNnD1lZWeTn55OcnOw6mzk5OZk+ffpcse99+/a5jkev6f9effXVKq+huvzTttC20La48r9r/ePa\nLSOJgQMHkpiYiN1uByAuLo6lS5eSl5dHVFQU8+bNIzw8HKfTSWRkpOuyCZmZmSWOghIRkarllpCw\nWCy8//77JZ5r0aKF6+cHH3yQBx98sNRykyZNckc5IiJyjW64y3LI70JDQ6u6hGpD2+J32ha/07a4\nfm45T8KdLl5ETURErt617jtvuGs3malfvz5ZWVlVXcZNxd/fX3czE6nhbpqRhEYYFU/bVOTmca2f\nZ81JiIiIKYWEiIiYUkiIiIgphYSbHThwAE9PTzp16uT617FjR+Li4srVT9u2bUlOTubAgQP4+vqW\n+fomTZrw448/XmvZIiLATXR0U3Xm4+NT4taYR44coW3btnTp0oV27dpdVR/lvVeFJp1FpCJoJFEF\n7rjjDpo3b05mZibTp0+nTZs2dOjQgSFDhnDs2DEAdu7cSbdu3ejQoQNDhw4lLy+vVD/Hjh1jwIAB\n2Gw2mjZtisPh4MSJE672BQsW0LVrV+6++25eeukloPhiixMmTKBbt260adOG1q1bk5KSUjkrLiI3\nHIVEFdi0aRN79+4lIyODb7/9lvT0dH766Sfatm3LqFGjAHjsscd45pln+Omnn4iJieHQoUOl+vn8\n88+x2+2kpKSwf/9+fHx8+Pjjj13ttWvXZvPmzfzrX//ijTfe4PDhw6SlpfHbb7+RmprKjh07GDFi\nBLNnz66sVReRG0yN+bqpou4sei3f4Jw7d45OnToBUFhYSMOGDfnss8/46KOPGD16NLVr1wZg/Pjx\nzJgxg+PHj7N9+3ZGjBgBFN+4qUOHDqX6HT9+PD/88APz5s1jz549/Pzzz3Tr1s3VPnz4cABuv/12\nbr/9do4fP0737t257bbbeP/999m/fz9JSUmmt4gVEbkhQ8Iytfx7/Kr8er527dol5iQuWrRoUYl5\nA6fTSWFhYYnHnp6eAHh5lf6veu6559i8eTORkZH07t2bwsLCEv15e3u7fr44R7Fy5Ur+9re/MWnS\nJAYMGECrVq345JNPTGu/lm0tItWD8er17/huyJC43IpbYm+8nVl4eDhxcXEMHz4cHx8f3n77bXr1\n6kWjRo3o3LkzixYtYsyYMWzdupWtW7eWWn7NmjVMnTqV/v37c/jwYRITExk5cqTp+xmGwdq1a+nX\nrx/PPPMM58+fZ9asWRQVFZkvUwG/ZCJy47ohQ+JGY3ZkUmRkJIcOHSIoKAin00nz5s359NNPAVi6\ndClPPvkk77//PoGBgdx7772l+nvllVeYNGkSM2fOpFGjRgwePPiKd56yWCxER0czfPhwOnXqhL+/\nPw899BBvvPFGBa6tiNxMdO0mMaVtKnLz0LWbRESkwikkRETElEJCRERMKSRERMSUQkJEREwpJERE\nxJRCQkRETCkkRETElFtCwul0Eh0djc1mw+FwsG/fvhLtCQkJBAUFYbPZWLRokev5WbNmYbPZ6Nq1\nK0uWLHFHaVUiNTWV3r1706FDB9q1a8f//M//sHPnTgDCwsI4ffr0FZe/2hsNiYhUNLdcliM+Pp78\n/HxSUlJIS0sjJiaG+Ph4AAoKCpg4cSLp6en4+Phgt9vp378/O3fuZNOmTaSkpHDmzBnmzp3rjtIq\n3YULF3jwwQdZu3YtHTt2BODTTz/l/vvvZ//+/axdu1ZnNYtIteWWkcTGjRuJiIgAii9znZ6e7mrL\nyMggMDAQq9WKt7c3ISEhJCcns2bNGtq1a8eAAQPo168f/fv3d0dple7s2bNkZ2eTm5vreu6xxx7j\n3XffJSoqCoDevXvz66+/0qRJE7Zs2eJ6nW5BKiJVzS0jiZycnBL3KPD09MTpdOLh4UFOTg5Wq9XV\n5uvrS3Z2NidPnuTgwYOsXLmS/fv3079/f3bt2nXZ/mNjY10/h4aGEhoaWmZNFXXJ6/JeFdXf35+5\nc+cSERHBn/70J+x2Ow6Hg0cffZR+/fqxePFi1q1bR/369bFYLCUuBljeW5aKiFyUlJREUlLSdffj\nlpDw8/Mr8ZfzxYAAsFqtJdpyc3OpV68et912G61atcLLy4sWLVpQq1YtTp48SYMGDUr1f2lIXK2q\nvOT1s88+y9NPP01SUhLJycnMmTOHOXPmkJaWVmU1icjN7Y9/QE+dOvWa+nHL1012u51Vq1YBxZO2\n7du3d7W1atWKPXv2kJWVRX5+PsnJydhsNkJCQvj2228BOHLkCGfOnOG2225zR3mVauPGjbz++uvU\nqVOHBx54gDlz5rBjxw48PDxYu3Ztidf+8SqN+fn5lV2uiEgJbhlJDBw4kMTEROx2OwBxcXEsXbqU\nvLw8oqKimDdvHuHh4TidTiIjIwkICOCBBx4gOTnZdW+F995776b4uqVhw4bMmDGD4OBgevbsCcDh\nw4c5c+YM7dq1w9PT0xUGDRs2ZPPmzXTu3JnU1FSOHj1alaWLiOh+EpUhKSmJV199lV9++QUfHx+s\nViuxsbGEhYXxyCOPsGXLFlasWMHx48cZM2YMtWrVonPnzmzbto358+dTv3592rdvT05OTqXWXZ23\nqYiUz7V+nhUSYkrbVOTmoZsOiYhIhVNIiIiIKYWEiIiYUkiIiIgphYSIiJhyy3kSVcHf3/+mOK+i\nOvH396/qEkSkit00h8CKiIg5HQIrIiIVTiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJi\nSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqbcEhJOp5Po\n6GhsNhsOh4N9+/aVaE9ISCAoKAibzcaiRYtcz9933304HA4cDgeRkZHuKE1ERMrBLbcvjY+PJz8/\nn5SUFNLS0oiJiSE+Ph6AgoICJk6cSHp6Oj4+Ptjtdh566CF8fX0BWLdunTtKEhGRa+CWkcTGjRuJ\niIgAIDg4mPT0dFdbRkYGgYGBWK1WvL29CQkJYf369fz000+cPXuW8PBw+vTpQ1pamjtKExGRcnDL\nSCInJwc/Pz/XY09PT5xOJx4eHuTk5GC1Wl1tvr6+ZGdn06pVKyZPnkxkZCR79uzh/vvvJzMzEw+P\n0jkWGxvr+jk0NJTQ0FB3rIaIyA0rKSmJpKSk6+7HLSHh5+dHbm6u6/HFgACwWq0l2nJzc/H396dF\nixYEBgYC0Lx5c2677TaOHj3KnXfeWar/S0NCRERK++Mf0FOnTr2mftzydZPdbmfVqlUApKam0r59\ne1dbq1at2LNnD1lZWeTn55OcnEz37t2Ji4sjJiYGgCNHjpCTk0NAQIA7yhMRkatkMQzDqOhODcNg\n7NixbNu2DYC4uDi2bNlCXl4eUVFRfPPNN0ybNg2n00lkZCRjxoyhsLCQJ598koMHDwIwd+5cunXr\nVrpgiwU3lCwiclO71n2nW0LCnRQSIiLld637Tp1MJyIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYU\nEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqZMLxU+bNiwKy5osVj47LPPKrwgERGpPkxD\nYteuXfz9738vdUGoixeJevbZZ91enIiIVC3Tq8Bu2LCBkJAQ1+PCwkK8vLxM2yuLrgIrIlJ+FX4V\n2CZNmmCz2cjKygLg888/Jzg4mMOHDwNUSUCIiEjlMh1JPPDAA0RFRTFgwADXc19++SUff/wxK1as\nqLQC/0gjCRGR8qvwkUReXl6JgAAYMmQIp0+fLn91IiJyQzINCbPE0V/xIiI1h2lIBAUF8fbbb5d4\n7p133qF9+/ZuL0pERKoH05B47bXX2LlzJ3fccQf33XcfTZs2ZefOncybN68y6xMRkSpkOnF9UX5+\nPqdOnaJBgwZ4e3tXVl2mNHEtIlJ+17rvLDMkqhuFhIhI+VX40U0iIiJuCQmn00l0dDQ2mw2Hw8G+\nfftKtCckJBAUFITNZmPRokUl2o4fP07jxo3JzMx0R2kiIlIOZYbEnXfeiZeXFwEBAXh7e+Pr60vz\n5s1Zs2aN6TLx8fHk5+eTkpLC7NmziYmJcbUVFBQwceJEEhMTWb9+PR988AHHjx93tT3zzDPUqVOn\nAlZNRESuV5kh0bNnT3bs2MHRo0fZtWsXAwcOZNWqVbz88sumy2zcuJGIiAgAgoODSU9Pd7VlZGQQ\nGBiI1WrF29ubkJAQkpOTAZg8eTJjxowhICDgetdLREQqQJkhcejQIVq2bAlAs2bNOHjwIM2bN7/i\nkU45OTn4+fm5Hnt6euJ0Ol1tVqvV1ebr60t2djaLFy+mYcOGhIWFATppT0SkOjC9VPhFAQEBTJky\nhe7du7Np0yYCAgJITEzklltuMV3Gz8+P3Nxc12On04mHR3EeWa3WEm25ubnUq1ePt99+G4vFwtq1\na9m6dSsjR47k66+/5vbbby/Vf2xsrOvn0NBQQkNDr2ZdRURqjKSkJJKSkq67nzIPgT137hwffPAB\nu3btom3btkRGRvLvf/+bpk2bXnYHDrBs2TISEhKIi4sjNTWV6dOns3LlSqB43qFNmzakpaVRp04d\nbDYbCQkJJb5icjgcLFiwgBYtWpQuWIfAioiU27XuO8scSXh7e1OnTh0aNGhA27ZtycvLo3v37ldc\nZuDAgSQmJmK32wGIi4tj6dKl5OXlERUVxbx58wgPD8fpdBIZGak5CBGRaqrMkURkZCR33nkna9as\nYcqUKXzwwQesWrWqsuorRSMJEZHyc9vJdPv27WPatGnUrl2bAQMGkJ2dfU0FiojIjafMkCgqKuLk\nyZNA8STzxQloERG5+ZU5J/Haa69hs9n47bffCA4O5q233qqMukREpBq46gv8nThxggYNGmCxWNxd\n0xVpTkJEpPwq/Ogmh8Nh+kbff/99ud9IRERuPKYh8eWXXwIwadIkHnvsMXr06EFqair//Oc/K604\nERGpWqaz0A0aNKBBgwYcPHiQvn37UqtWLUJDQ9m1a1dl1iciIlWozIlrT09PPvzwQ7p27cqGDRt0\nhVYRkRqkzInrY8eOMWPGDHbv3k3r1q15+eWXqV+/fmXVV4omrkVEyq/Cb186ZcoUZs+ebbpgWe3u\nopAQESm/Cg+JRo0a0adPH9MFv//+e44dO1buN7xeCgkRkfKr8JBISkq6YqcWi4VevXqV+w2vl0JC\nRKT8KjwkqiuFhIhI+bntAn8iIlJzKSRERMRUmedJbNq0ibi4OAoLC3E6nRw9epTvvvuuMmoTEZEq\nVuZIYsyYMTgcDrKzs2nSpAnBwcGVUZeIiFQDZYZEgwYNGDZsGL6+vsTGxpKenl4ZdYmISDVQZkh4\nenry888/c+7cOXbt2sWhQ4cqoy4REakGyjwE9ueff2bnzp3ccccdTJgwgccff5xnn322suorRYfA\nioiUn9sOgU1NTWXo0KGEhISwZcsW3b5URKQGMR1JLF26lBUrVvD999/Tu3dvAJxOJ9u3b2fnzp2V\nWuSlNJIQESm/Cr8zXUREBAEBAZw8eZLo6GgAPDw8aNq06bVXKSIiN5SruizHypUr2bFjBy1btuSh\nhx6qjLpMaSQhIlJ+bpuTmDJlCh999BG33HILS5YsISYmpsxOnU4n0dHR2Gw2HA4H+/btK9GekJBA\nUFAQNpuNRYsWAVBUVMTo0aMJCQmhR48e7Nixo9wrIyIiFavMM66Tk5NJSUkBYMKECVd1Ml18fDz5\n+fmkpKSQlpZGTEwM8fHxABQUFDBx4kTS09Px8fHBbrfTv39/UlJS8PDwYMOGDaxfv54XX3zRtYyI\niFSNMkOisLCQoqIiPD09cTqdV3V008aNG4mIiAAgODi4xAl4GRkZBAYGYrVaAQgJCSE5OZnBgwfT\nr18/AA4cOIC/v/81rZCIiFScMkPikUcewW63061bN9LS0njkkUfK7DQnJwc/Pz/X40sDJicnxxUQ\nAL6+vmRnZ7teN2rUKJYvX85XX311LesjIiIVqMyQiImJISwsjN27d/PUU0/Rtm3bMjv18/MjNzfX\n9fjSEYjVai3RlpubW2LUsHjxYubMmUNwcDAZGRnUrl27VP+xsbGun0NDQwkNDS2zJhGRmiQpKYmk\npKTr7sf06Kbnn3/+8gtYLMycOfOKnS5btoyEhATi4uJITU1l+vTprFy5Eiiek2jTpg1paWnUqVMH\nm81GQkICa9eu5ddff+X5558nJyeHjh07kpGRwa233lrq/XV0k4hI+VT4eRItW7bEYrFcUzEDBw4k\nMTERu90OQFxcHEuXLiUvL4+oqCjmzZtHeHg4TqeTyMhIAgICGDx4MKNGjaJXr14UFBTw1ltvlQoI\nERGpXGWeJ3Hu3Dnmz59PZmYm7dq1IyoqCm9v78qqrxSNJEREys9t50kMHz6cw4cPEx4ezn/+8x8i\nIyOvqUAREbnxlDlxfeLECZYvXw7AgAEDCAkJcXtRIiJSPZQ5kmjevDnbt28His9faNy4sduLEhGR\n6qHMOQmbzcaxY8do1KgRJ0+exMvLCy8vLywWC9u2bausOl00JyEiUn7Xuu+8qgv8AZw6dYr69etf\n8xFPFUUhISJSfhV+COxF69evZ9y4cRQVFTF06FDuuusuTV6LiNQQZY4kevToQXx8PIMHD+brr78m\nNDSUH3/8sbLqK0UjCRGR8nPbIbAeHh7cdtttQPHlNi69JpOIiNzcygyJwMBApkyZwqlTp5g1axZ3\n3313ZdQlIiLVgGlIDB06FID58+dz9913ExISQt26dVm4cGGlFSciIlXLdOL6xIkTAHh7ezNmzJhK\nK0hERKoP04nru+++m8cee6zURMfVXAXWnTRxLSJSfhV+CKyPjw8tW7a8rqJEROTGZhoSf/rTnxg5\ncmRl1iIiItWM6cR1586dK7MOERGphq76shzVheYkRETKz20n04mISM2lkBAREVMKCRERMaWQEBER\nUwoJERExpZAQERFTCgkRETGlkBAREVNuCQmn00l0dDQ2mw2Hw8G+fftKtCckJBAUFITNZmPRokUA\nFBQU8MQTT9CzZ0+Cg4NJSEhwR2kiIlIOZd7j+lrEx8eTn59PSkoKaWlpxMTEEB8fDxSHwcSJE0lP\nT8fHxwd/HM5QAAAL5klEQVS73U7//v1ZtWoVDRs25OOPPyYrK4uOHTvSr18/d5QnIiJXyS0hsXHj\nRiIiIgAIDg4mPT3d1ZaRkUFgYCBWqxWAkJAQkpOTGTJkCIMHDwaKRyJeXm4pTUREysEte+KcnJwS\n98L29PTE6XTi4eFBTk6OKyAAfH19yc7Opk6dOgDk5uYyZMgQZsyY4Y7SRESkHNwSEn5+fuTm5roe\nXwwIAKvVWqItNzcXf39/AA4dOsSgQYMYN24cjz76qGn/sbGxrp9DQ0MJDQ2t2BUQEbnBJSUlkZSU\ndN39uOUqsMuWLSMhIYG4uDhSU1OZPn06K1euBIrnJNq0aUNaWhp16tTBZrORkJCAh4cHoaGhvPfe\nezgcDvOCdRVYEZFyu9Z9p1tCwjAMxo4dy7Zt2wCIi4tjy5Yt5OXlERUVxTfffMO0adNwOp1ERkYy\nZswYJkyYwJdfflnibnirV6+mVq1aJQtWSIiIlFu1Cgl3UkiIiJSf7ichIiIVTiEhIiKmFBIiImJK\nISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEh\nIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIi\nptwaEk6nk+joaGw2Gw6Hg3379pVoT0hIICgoCJvNxqJFi0q0paWl4XA43FmeiIiUwcudncfHx5Of\nn09KSgppaWnExMQQHx8PQEFBARMnTiQ9PR0fHx/sdjv9+/enUaNGzJ07l08++YS6deu6szwRESmD\nW0cSGzduJCIiAoDg4GDS09NdbRkZGQQGBmK1WvH29iYkJITk5GQAAgMDWbZsGYZhuLM8EREpg1tD\nIicnBz8/P9djT09PnE6nq81qtbrafH19yc7OBmDQoEF4ebl1kCMiIlfBrXtiPz8/cnNzXY+dTice\nHsW5ZLVaS7Tl5ubi7+9/Vf3Gxsa6fg4NDSU0NLRC6hURuVkkJSWRlJR03f1YDDd+p7Ns2TISEhKI\ni4sjNTWV6dOns3LlSqB4TqJNmzakpaVRp04dbDYbCQkJBAQEAHDgwAGGDRvGpk2bShZssehrKBGR\ncrrWfadbRxIDBw4kMTERu90OQFxcHEuXLiUvL4+oqCjmzZtHeHg4TqeTyMhIV0BcZLFY3FmeiIiU\nwa0jCXfQSEJEpPyudd+pk+lERMSUQkJEREwpJERExJRCQkRETCkkRETElEJCRERMKSRERMSUQkJE\nREwpJERExJRCQkRETCkkRETElEJCRERMKSRERMSUQkJEREwpJERExJRCQkRETCkkRETElEJCRERM\nKSRERMSUQkJEREx5VXUB18JiqeoKRESqP8O4/j5uyJCoiBUXEZGy6esmERExpZAQERFTbgkJp9NJ\ndHQ0NpsNh8PBvn37SrQnJCQQFBSEzWZj0aJFV7WMlJaUlFTVJVQb2ha/07b4nbbF9XNLSMTHx5Of\nn09KSgqzZ88mJibG1VZQUMDEiRNJTExk/fr1fPDBBxw/fpz4+HguXLhw2WXk8vQB+J22xe+0LX6n\nbXH93DJxvXHjRiIiIgAIDg4mPT3d1ZaRkUFgYCBWqxWAkJAQkpOT2bRpE/fff/9llxERkarhlpFE\nTk4Ofn5+rseenp44nU5X28WAAPD19SU7O/uKy4iISNVwy0jCz8+P3Nxc12On04mHR3EeWa3WEm25\nubnUq1fvistcqlmzZlh0ooTL1KlTq7qEakPb4nfaFr/TtijWrFmza1rOLSFht9tJSEhgyJAhpKam\n0r59e1dbq1at2LNnD1lZWdSpU4fk5GQmT56MxWIxXeZSe/fudUfJIiJyGRbDqPhT0wzDYOzYsWzb\ntg2AuLg4tmzZQl5eHlFRUXzzzTdMmzYNp9NJZGQkY8aMuewyLVq0qOjSRESkHNwSEiIicnO4YU6m\nq+nnURQUFPDEE0/Qs2dPgoODSUhIYO/evYSEhNCzZ0/Gjh1LTcv748eP07hxYzIzM2v0tpg1axY2\nm42uXbuyZMmSGrstnE4no0ePdq377t27a9y2SEtLw+FwAJiu+8KFC+natSvdu3dn5cqVZXdq3CD+\n7//+z3jyyScNwzCM1NRU46GHHqriiipXXFyc8eyzzxqGYRinT582GjdubPTv399Yv369YRiGER0d\nbSxfvrwqS6xU+fn5xoABA4yWLVsau3btMvr161cjt8W6deuMfv36GYZhGHl5ecYrr7xSY38vVq9e\nbQwdOtQwDMNITEw0Bg0aVKO2xZw5c4x27doZ3bt3NwzDuOxn4ujRo0a7du2M/Px8Izs722jXrp1x\n4cKFK/Z7w4wkrnTuRU0wZMgQpk2bBhT/xeTt7c2PP/5Iz549Abj//vtZu3ZtVZZYqSZPnsyYMWMI\nCAgAqLHbYs2aNbRr144BAwbQr18/+vfvz5YtW2rktqhduzbZ2dkYhkF2dja33HJLjdoWgYGBLFu2\nzDViuNxnYvPmzdjtdry9vfHz8yMwMNA1D2zmhgmJmn4eRZ06dahbty65ubkMGTKE1157rcT6161b\nl+zs7CqssPIsXryYhg0bEhYWBhQfKGFc8jVCTdoWJ06cYMuWLXz11VfMnz+f4cOH19htYbfbOX/+\nPK1ateKZZ55h/PjxNWpbDBo0CC+v3w9YvXTdLz0f7XLnqV3JDRMSV3sexc3s0KFD9O7dmxEjRjBs\n2LAS63/xfJOaIC4ujsTERBwOB1u3bmXkyJGcOHHC1V6TtkWDBg0ICwvDy8uLFi1aUKtWrRIf+pq0\nLebOnYvdbmf37t1s3bqVESNGUFBQ4GqvSdsCKLF/yMnJuez5aLm5ufj7+1+5H7dVWMHsdjurVq0C\nuOJ5FDerY8eOERYWxty5cxk1ahQAnTp1Yv369QCsXr3aNbS82a1fv56kpCTWrVtHx44d+cc//kFE\nRESN3BYhISF8++23ABw5coSzZ8/Sp0+fGrktzpw54/q2wd/fn8LCwhr7GYHL7x+CgoL44YcfuHDh\nAtnZ2WRkZNC2bdsr9nPD3HRo4MCBJCYmYrfbgeK/JmuSmTNnkp2dzbRp01xzE2+99Rbjx48nPz+f\n1q1bM3jw4CqusmpYLBbeeOMNoqKiaty2eOCBB0hOTiYoKAin08l7771HkyZNauS2mDx5Mk8++SQ9\nevSgoKCAWbNm0blz5xq3LS5ekeJynwmLxcL48ePp0aMHTqeTmTNncsstt1y5P8O4yY8JExGRa3bD\nfN0kIiKVTyEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIpWsSZMm5OfnV3UZIldFISFSyXT7\nXbmRKCRE/uDhhx8mOTkZgPT0dG699VYcDgcOh4M///nPREZGUlhYyOOPP47dbqdbt2588cUXAISG\nhvLII48QFhZGfn4+kZGR9OrVix49ergukQDFF1+bP38+Dz/8sEYVUq0pJET+ICoqiiVLlgDFl39Z\nvnw569at4/XXX6dJkybMmzeP+fPnc/vtt7Nx40bWrl3LSy+9xKlTp7BYLAwfPpw1a9bw4Ycf0rBh\nQ9avX098fDzjxo1zvcc777zDhg0b+Oqrr8q8LIJIVbphrt0kUlnCwsKYPHkyWVlZbNiwgXfffZeM\njAyio6NJSEjAarWya9cu/vKXvwDFl6Bu3bq1626JLVu2BGD79u1s2LCBtLQ0AIqKijh16hQAa9eu\nxcvLS189SbWnkYTIH3h4eDBkyBCio6MZOHAgv/zyC8OGDePTTz913eTo3nvv5YcffgCKL7e8fft2\n7rnnHtfyF18zbNgw1q1bx9dff83QoUOpX78+ACtWrMDf358FCxZUwRqKXD1d4E/kMg4dOkRgYCB7\n9uxh7Nix7N27lzvvvBOn08ndd9/NwoULiYqKYt++fZw7d44JEybwxBNP4HA4WLBgAS1atCA/P5+o\nqCgOHjxITk4O48aNIzIykqZNm7Jr1y7OnDlDUFAQ3377Lc2aNavqVRa5LIWEiIiY0tdNIiJiSiEh\nIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKm/j99TrGB0ZKj+wAAAABJRU5ErkJg\ngg==\n",
-   2242 "text": [
-   2243 "<matplotlib.figure.Figure at 0x7f04e72c54d0>"
-   2244 ]
-   2245 }
-   2246 ],
-   2247 "prompt_number": 60
1114 }, 2248 },
1115 { 2249 {
1116 "cell_type": "code", 2250 "cell_type": "code",
1117 "collapsed": false, 2251 "collapsed": false,
1118 "input": [], 2252 "input": [],