VEML6030

High Accuracy Ambient Light Sensor with I^{2} C Interface

DESCRIPTION

VEML6030 is a high accuracy ambient light digital 16-bit resolution sensor in a miniature transparent $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ package. It includes a high sensitive photodiode, a low noise amplifier, a 16-bit A/D converter and supports an easy to use $I^{2} \mathrm{C}$ bus communication interface and additional interrupt feature.

The ambient light result is as digital value available.

APPLICATIONS

- Ambient light sensor for mobile devices (e.g. smart phones, touch phones, PDA, GPS) for backlight dimming
- Ambient light sensor for industrial on- / off-lighting operation
- Optical switch for consumer, computing, and industrial devices and displays

FEATURES

- Package type: surface mount
- Dimensions (Lx W x H in mm): $2 \times 2 \times 0.85$
- Integrated modules: ambient light sensor (ALS)
- Supply voltage range V_{DD} : 2.5 V to 3.6 V
- Communication via $\mathrm{I}^{2} \mathrm{C}$ interface
- ${ }^{2} \mathrm{C}$ bus H -level range: 1.7 V to 3.6 V
- Floor life: 72 h , MSL 4, according to J-STD-020
- Low stand by current consumption: typ. $0.5 \mu \mathrm{~A}$

RoBS COMPLIANT halogen FREE

- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AMBIENT LIGHT FUNCTION

- Filtron ${ }^{\text {TM }}$ technology adaption: close to real human eye response
- O-Trim ${ }^{\text {TM }}$ technology adoption: ALS output tolerance $\leq 10 \%$
- 16-bit dynamic range for ambient light detection from 0 lx to about 167 klx with resolution down to $0.005 \mathrm{~lx} / \mathrm{ct}$, supports low transmittance (dark) lens design
- 100 Hz and 120 Hz flicker noise rejection
- Excellent temperature compensation
- High dynamic detection resolution
- Software shutdown mode control

PRODUCT SUMMARY							
PART NUMBER	OPERATING RANGE $(\mathbf{m m})$	OPERATING VOLTAGE RANGE (V)	\mathbf{I}^{2} C BUS VOLTAGE RANGE (V)	AMBIENT LIGHT RANGE $(\mathbf{(x)}$	AMBIENT LIGHT RESOLUTION (Ix)	OUTPUT CODE	ADC RESOLUTION PROXIMITY / AMBIENT LIGHT
VEML6030	n / a	2.5 to 3.6	1.7 to 3.6	0 to 167000	0.005	$16 \mathrm{bit}, \mathrm{l}^{2} \mathrm{C}$	$-/ 0.005$

ORDERING INFORMATION	PACKAGING	VOLUME ${ }^{(1)}$	REMARKS
ORDERING CODE	Tape and reel	MOQ: 3000	$2.0 \mathrm{~mm} \times 2.0 \mathrm{~mm} \times 0.85 \mathrm{~mm}$

Note

${ }^{(1)}$ MOQ: minimum order quantity

VEML6030

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT
Supply voltage		V_{DD}	0	4	V
Operation temperature range		$\mathrm{T}_{\text {amb }}$	-25	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-25	+85	${ }^{\circ} \mathrm{C}$
Total power dissipation		$\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$	T_{j}	-	50
Junction temperature		-	110	mW	

BASIC CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		$V_{D D}$	2.5	3.3	3.6	V
Shut down current ${ }^{(2)}$	V_{DD} is 3.3 V	$\mathrm{I}_{\text {sd }}$	-	0.5	-	$\mu \mathrm{A}$
Operation mode current ${ }^{(1)}$	$V_{D D}$ is $3.3 \mathrm{~V}, \mathrm{PSM}=11$, refresh time 4100 ms	I_{DD}	-	2	-	$\mu \mathrm{A}$
	$V_{D D}$ is $3.3 \mathrm{~V}, \mathrm{PSM}=00$, refresh time 600 ms	IDD	-	8	-	$\mu \mathrm{A}$
	$V_{D D}$ is $3.3 \mathrm{~V}, \mathrm{PSM}$ _EN $=0$, refresh time 100 ms	I_{DD}	-	45	-	$\mu \mathrm{A}$
$1^{2} \mathrm{C}$ clock rate range		$\mathrm{f}_{\text {SCL }}$	10	-	400	kHz
${ }^{2} \mathrm{C}$ bus input H -level range	V_{DD} is 3.3 V	$\mathrm{V}_{\text {ih }}$	1.3	-	3.6	V
$1^{2} \mathrm{C}$ bus input L-level range	V_{DD} is 3.3 V	V_{il}		-	0.4	V
Digital current out (low, current sink)		IO_{1}	3	-	-	mA
Digital resolution (LSB count)	with ALS_SM = "01"		-	0.005	-	Ix/step
Detectable minimum illuminance	with ALS_SM = "01"	$\mathrm{E}_{\mathrm{V} \text { min. }}$	-	0.01	-	Ix
Detectable maximum illuminance	with ALS_SM = "10"	$\mathrm{E}_{\mathrm{V} \text { max. }}$	-	167000	-	Ix
Dark offset ${ }^{(1)}$	with ALS_SM = "01"		-	3	-	step

Notes

${ }^{(1)}$ Light source: white LED
${ }^{(2)}$ Light conditions: dark

CIRCUIT BLOCK DIAGRAM

Fig. 1 - Block Diagram

BASIC CHARACTERISTICS $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 2 - Spectral Response

Fig. 3 - White Channel Responsivity

ALS sensitivity spectrum close to human eye photopic curve $\mathrm{V}(\lambda)$. Human eye curve adaption achieved by Filtron technology.

Fig. 4 - Relative Radiant Sensitivity vs. Angular Displacement

Brightness Acc. Calibrated Luxmeter (klx)
Fig. 5 - ALS measurement deviation between different light sources: ≤ 10 \%

APPLICATION INFORMATION

VEML6030 is a cost effective solution of ambient light sensor with $\mathrm{I}^{2} \mathrm{C}$ bus interface. The standard serial digital interface is easy to access "Ambient Light Signal" without complex calculation and programming by external controller. Beside the digital output also a flexible programmable interrupt pin is available.

1. Application Circuit

Fig. 6 - Application Circuit
$(x)=$ Pin Number

Notes

- The interrupt pin is an open drain output. Proposed values for the pull-up resistors should be $>1 \mathrm{k} \Omega$, e.g. $2.2 \mathrm{k} \Omega$ to $4.7 \mathrm{k} \Omega$ for the R 1 and R2 (at SDA and SCL) and $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ for R3 (at interrupt).
Normally just one decoupling capacitor is needed. This should be $\geq 100 \mathrm{nF}$ and placed close to the $\mathrm{V}_{\mathrm{DD}} \mathrm{pin}$.
Pin ADDR allows for the device addresses: pin $4=$ high $\left(V_{D D}\right)=0 x 48$, pin $4=$ low $(G N D)=0 x 10$
For detailed description about set-up and use of the interrupt as well as more application related information see AN: "Designing VEML6030 into an Application".

2. $I^{2} C$ Interface

The VEML6030 contains actual six 16 bit command codes for operation control, parameter setup, and result buffering. All registers are accessible via $\mathrm{I}^{2} \mathrm{C}$ communication. Figure 7 shows the basic $\mathrm{I}^{2} \mathrm{C}$ communication with VEML6030.
The built in $\mathrm{I}^{2} \mathrm{C}$ interface is compatible with $\mathrm{I}^{2} \mathrm{C}$ modes "standard" and "fast": 10 kHz to 400 kHz .
$\mathrm{I}^{2} \mathrm{C}$-level range $=1.3 \mathrm{~V}$ to 3.6 V .
Please refer to the $\mathrm{I}^{2} \mathrm{C}$ specification from NXP for details.
Send byte Write command to VEML6030

S	Slave address	Wr	A	Command code	A	Data byte (LSB)	A	Data byte (MSB)	A

Receive byte Read data from VEML6030

Fig. 7 - Send Byte / Receive Byte Protocol

Device Address

The VEML6030 has two fix slave addresses for the host programming and accessing selection.
With ADDR pin plugged to power supply $=$ high $=\mathrm{V}_{\mathrm{DD}}$, the predefined 7 bit I2C bus address is set to $1001000=0 \times 48$. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to $10010000=90 \mathrm{~h}$ for write and $10010001=91 \mathrm{~h}$ for read.

With ADDR pin plugged to ground = low, the slave address (7 bit) is set to $0010000=0 \times 10$. According 8 bit the bus address is then $00100000=20 \mathrm{~h}$ for write and $00100001=$ 21 h for read.

VEML6030

Register Addresses

VEML6030 has actual six user accessible 16 bit command codes.
The addresses are 00h to 06h (03h not defined / reserved).

Auto-Memorization

VEML6030 can memorize the last ambient data before shutdown and keep this data before waking up.
When VEML6030 is in shutdown mode, the host can freely read this data via read command directly.
When VEML6030 wakes up, the data will be refreshed by new detection.

COMMAND REGISTER FORMAT				
COMMAND CODE	REGISTER NAME	BIT	FUNCTION / DESCRIPTION	R / W
00	reserved	15:13	Set 000b	W
	ALS_SM	12:11	Sensitivity mode selection $00=$ ALS sensitivity $\times 1$ $01=$ ALS sensitivity $\times 2$ $10=$ ALS sensitivity $\times(1 / 8)$ $11=$ ALS sensitivity $\times(1 / 4)$	W
	reserved	10	Set 0b	W
	ALS_IT	9:6	ALS integration time setting $1100=25 \mathrm{~ms}$ $1000=50 \mathrm{~ms}$ $0000=100 \mathrm{~ms}$ $0001=200 \mathrm{~ms}$ $0010=400 \mathrm{~ms}$ $0011=800 \mathrm{~ms}$	W
	ALS_PERS	5:4	ALS persistence protect number setting $\begin{aligned} & 00=1 \\ & 01=2 \\ & 10=4 \\ & 11=8 \end{aligned}$	W
	reserved	3:2	Set 00b	W
	ALS_INT_EN	1	ALS interrupt enable setting 0 = ALS INT disable 1 = ALS INT enable	W
	ALS_SD	0	ALS shut down setting 0 = ALS power on 1 = ALS shut down	W
01	ALS_WH	15:8	ALS high threshold window setting (MSB)	W
		7:0	ALS high threshold window setting (LSB)	W
02	ALS_WL	15:8	ALS low threshold window setting (MSB)	W
		7:0	ALS low threshold window setting (LSB)	W
03	reserved	15:3	Set 000000000000 0b	
	PSM	2:1	Power saving mode; see table "Refresh time" $00=$ mode 1 $01=$ mode 2 $10=$ mode 3 11 = mode 4	W
	PSM_EN	0	Power saving mode enable setting 0 = disable 1 = enable	W
04	ALS	15:8	MSB 8 bits data of whole ALS 16 bits	R
		7:0	LSB 8 bits data of whole ALS 16 bits	R
05	WHITE	15:8	MSB 8 bits data of whole WHITE 16 bits	R
		7:0	LSB 8 bits data of whole WHITE 16 bits	R
06	ALS_IF_L	15	ALS crossing low threshold INT trigger event	R
	ALS_IF_H	14	ALS crossing high threshold INT trigger event	R
	reserved	13:0		

Note

- Command code 0 default value is 01 = devices is shut down

VEML6030
Vishay Semiconductors

Command Code \#0: Configuration Register

Register address $=00 \mathrm{~h}$
The command code \#0 is for configuration of the ambient light measurements.

TABLE 1 - CONFIGURATION REGISTER \#O

REGISTER NAME	BIT	FUNCTION / DESCRIPTION	R / W
reserved	15:13	Set 000b	W
ALS_SM	12: 11	Sensitivity mode selection $00=$ ALS sensitivity $\times 1$ $01=$ ALS sensitivity $\times 2$ $10=$ ALS sensitivity $\times(1 / 8)$ $11=$ ALS sensitivity $\times(1 / 4)$	W
reserved	10	Set 0b	W
ALS_IT	9: 6	ALS integration time setting $1100=25 \mathrm{~ms}$ $1000=50 \mathrm{~ms}$ $0000=100 \mathrm{~ms}$ $0001=200 \mathrm{~ms}$ $0010=400 \mathrm{~ms}$ $0011=800 \mathrm{~ms}$	W
ALS_PERS	$5: 4$	ALS persistence protect number setting $\begin{aligned} & 00=1 \\ & 01=2 \\ & 10=4 \\ & 11=8 \end{aligned}$	W
reserved	3:2	Set 00b	W
ALS_INT_EN	1	ALS interrupt enable setting 0 = ALS INT disable 1 = ALS INT enable	W
ALS_SD	0	ALS shut down setting $0=$ ALS power on 1 = ALS shut down	W

Note

- Light level [Ix] is (ALS OUTPUT DATA [dec.] / ALS sensitivity) x (10 / IT [ms]). Please study also the application note.

Command Code \#1: High Threshold Windows Setting

Command code address $=01 \mathrm{~h}$. Once enable INT function and use high / low windows threshold, bit 15:0 provides 16 bit register for high bound threshold windows setting.

TABLE 2 - HIGH THRESHOLD WINDOWS SETTING \# 1

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Description															
ALS high threshold window setting (15:8 MSB 8 bits of whole 16 bits)															
ALS high threshold window setting (7:0 LSB 8 bits of whole 16 bits)															

Command Code \#2: Low Threshold Windows Setting

Command code address $=02 \mathrm{~h}$. Once enable INT function and use high / low windows threshold, bit 15:0 provides 16 bit register for low bound threshold windows setting.

TABLE 3 - LOW THRESHOLD WINDOWS SETTING \#2

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Description															
ALS low threshold window setting (15:8 MSB 8 bits of whole 16 bits)															

Command Code \#3: Power Saving Mode: PSM

Command code address $=03 \mathrm{~h}$. Bits 2 and 1 define the power saving modes. Bits 15:3 are reserved.

TABLE 4 - POWER SAVING MODES						
COMMAND CODE	REGISTER NAME	BIT	FUNCTION / DESCRIPTION			
03	PSM	$2: 1$Power saving mode; see table "Refresh time" $00=$ mode 1 $01=$ mode 2 $10=$ mode 3 $11=$ mode 4	W			

Command Code \#4: ALS High Resolution Output Data

Command code address $=04 \mathrm{~h}$. To access 16 bit high resolution ALS output, it is suitable to follow read protocol to read from command code \#04 16 bits register.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Description															
ALS high resolution output data (15:8 MSB 8 bits of whole 16 bits)															
ALS high resolution output data ($7: 0$ LSB 8 bits of whole 16 bits)															

Command Code \#5: White Channel Output Data

Command code address $=05 \mathrm{~h}$. To access 16 bit WHITE output, it is suitable to follow read protocol to read from command code \#05 16 bits register.

TABLE 6 - WHITE CHANNEL OUTPUT DATA \#5

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Description															
WHITE output data (15:8 MSB 8 bits of whole 16 bits)															
WHITE output data (7:0 LSB 8 bits of whole 16 bits)															

Command Code \#6: Interrupt Status

Command code address $=06 \mathrm{~h}$. Bit 15 defines interrupt flag while trigger occurred due to data crossing low threshold windows. Bit 14 defines interrupt flag while trigger occurred due to data crossing high threshold windows.

TABLE 7 - INTERRUPT STATUS \#6

Bit 15	Bit 14	Bit 13 to 0
int_th_low	int_th_high	reserved
Description		
int_th_low		Read bit. Indicated a low threshold exceed
int_th_high		Read bit. Indicated a high threshold exceed

REFRESH TIME DETERMINATION OF PSM

VEML6030's refresh time can be determined by PSM and ALS_IT setting in power saving mode (PSM). Cooperating with the command register setting, the designer has a flexible method in defining the timing, power consumption, and sensitivity for light data collection.

REFRESH TIME, IDD, AND SENSITIVITY RELATION

ALS_SM	PSM	ALS_IT	REFRESH TIME (ms)	IDD $^{(\boldsymbol{\mu A})}$	SENSITIVITY (IX/bit)
01	00	0000	600	8	0.042
01	01	0000	1100	5	0.042
01	10	0000	2100	3	0.042
01	11	0000	4100	2	0.042
01	00	0001	700	13	0.021
01	01	0001	1200	8	0.021
01	10	0001	2200	5	0.021
01	11	0001	4200	3	0.021
01	00	0010	900	20	0.010
01	01	0010	1400	13	0.010
01	10	0010	2400	8	0.010
01	11	0010	4400	5	0.010
01	00	0011	1300	28	0.005
01	01	0011	1800	20	0.005
01	10	0011	2800	13	0.005
01	11	0011	4800	8	0.005

PACKAGE DIMENSIONS in millimeters

Drawing No.: 6.550-5348.01-4
Issue: 1; 19.02.16
Not indicated tolerances ± 0.1

TAPE AND REEL DIMENSIONS in millimeters

Form of the leave open of the wheel is supplier specific.
14.4 max.

Drawing-No.: 9.800-5096.01-4

Issue: 4; 08.03.2016

Fig. 8-7" Reel, 3000 Pieces

Vishay Semiconductors

$$
Z(2: 1)
$$

Drawing-No.: 9.800-5140.01-4
Issue: prel. 1; 02.03.2016

Teaticid daranins according to DIN specification.

14.4 max.

Fig. 9-13" Reel, 10000 Pieces

REFLOW SOLDER PROFILE

Fig. 11 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:
Floor life: 72 h
Conditions: $\mathrm{T}_{\mathrm{amb}}<30^{\circ} \mathrm{C}, \mathrm{RH}<60 \%$
Moisture sensitivity level 4, according to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at $40^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{C}\right), \mathrm{RH}<5 \%$.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

