----------------------------------------------------------------------------------
-- Company: www.mlab.cz
-- Based on code written by MIHO.
--
-- Design Name: S3AN01A
-- Project Name: PulseGen
-- Target Devices: XC3S50AN-4
-- Tool versions: ISE 13.3
-- Description: Sample of Pulse Generator at S3AN01A MLAB board.
--
-- Dependencies: External PS/2 Keyboard has to be connected.
--
-- Version: $Id: PulseGen.vhd 2534 2012-09-02 13:40:37Z kakl $
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
use WORK.PS2_pkg.ALL;
library UNISIM;
use UNISIM.vcomponents.all;
entity PulseGen is
generic (
-- Top Value for 100MHz Clock Counter
MAXCOUNT: integer := 30_000_000;
MUXCOUNT: integer := 100_000 -- LED Display Multiplex Clock Divider
);
port (
-- Main Clock
CLK100MHz: in std_logic;
-- Mode Signals (usualy not used)
M: in std_logic_vector(2 downto 0);
VS: in std_logic_vector(2 downto 0);
-- Dipswitch Inputs
DIPSW: in std_logic_vector(7 downto 0);
-- Push Buttons
PB: in std_logic_vector(3 downto 0);
-- LED Bar Outputs
LED: out std_logic_vector(7 downto 0);
-- LED Display (8 digit with 7 segments and ddecimal point)
LD_A_n: out std_logic;
LD_B_n: out std_logic;
LD_C_n: out std_logic;
LD_D_n: out std_logic;
LD_E_n: out std_logic;
LD_F_n: out std_logic;
LD_G_n: out std_logic;
LD_DP_n: out std_logic;
LD_0_n: out std_logic;
LD_1_n: out std_logic;
LD_2_n: out std_logic;
LD_3_n: out std_logic;
LD_4_n: out std_logic;
LD_5_n: out std_logic;
LD_6_n: out std_logic;
LD_7_n: out std_logic;
-- VGA Video Out Port
VGA_R: out std_logic_vector(1 downto 0);
VGA_G: out std_logic_vector(1 downto 0);
VGA_B: out std_logic_vector(1 downto 0);
VGA_VS: out std_logic;
VGA_HS: out std_logic;
-- Bank 1 Pins - Inputs for this Test
B: inout std_logic_vector(24 downto 0);
-- PS/2 Bidirectional Port (open collector, J31 and J32)
-- PS2_CLK1: inout std_logic;
-- PS2_DATA1: inout std_logic;
PS2_CLK2: inout std_logic;
PS2_DATA2: inout std_logic;
-- Diferencial Signals on 4 pin header (J7)
DIF1P: inout std_logic;
DIF1N: inout std_logic;
DIF2P: inout std_logic;
DIF2N: inout std_logic;
-- I2C Signals (on connector J30)
I2C_SCL: inout std_logic;
I2C_SDA: inout std_logic;
-- Diferencial Signals on SATA like connectors (not SATA capable, J28 and J29)
SD1AP: inout std_logic;
SD1AN: inout std_logic;
SD1BP: inout std_logic;
SD1BN: inout std_logic;
SD2AP: inout std_logic;
SD2AN: inout std_logic;
SD2BP: inout std_logic;
SD2BN: inout std_logic;
-- Analog In Out
ANA_OUTD: out std_logic;
ANA_REFD: out std_logic;
ANA_IND: in std_logic;
-- SPI Memory Interface
SPI_CS_n: inout std_logic;
SPI_DO: inout std_logic;
SPI_DI: inout std_logic;
SPI_CLK: inout std_logic;
SPI_WP_n: inout std_logic
);
end entity PulseGen;
architecture PulseGen_a of PulseGen is
function to_bcd ( bin : std_logic_vector(7 downto 0) ) return std_logic_vector is
variable i : integer:=0;
variable mybcd : std_logic_vector(11 downto 0) := (others => '0');
variable bint : std_logic_vector(7 downto 0) := bin;
begin
for i in 0 to 7 loop -- repeating 8 times.
mybcd(11 downto 1) := mybcd(10 downto 0); --shifting the bits.
mybcd(0) := bint(7);
bint(7 downto 1) := bint(6 downto 0);
bint(0) :='0';
if(i < 7 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(3 downto 0) := std_logic_vector(unsigned(mybcd(3 downto 0)) + 3);
end if;
if(i < 7 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(7 downto 4) := std_logic_vector(unsigned(mybcd(7 downto 4)) + 3);
end if;
if(i < 7 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(11 downto 8) := std_logic_vector(unsigned(mybcd(11 downto 8)) + 3);
end if;
end loop;
return mybcd;
end to_bcd;
-- O1: ____|^^^^^^^|______
-- O2: _________|^^|______
-- t1 t2
-- t1/t2 is from 0 to 2000 ns; repeating frequency is cca 1,6 kHz
signal T1: unsigned(15 downto 0) := X"000a"; -- Time t1 to Impuls at O2
signal T2: unsigned(15 downto 0) := X"0001"; -- Duration t2 of impuls at O2
signal CT0: unsigned(15 downto 0) := X"0000"; -- Timer
signal O1: std_logic := '0'; -- Output 1
signal O2: std_logic := '0'; -- Output 2
signal CTburst: unsigned(15 downto 0) := X"0000"; -- Pulse counter
-- LED Demo Signals
-- ----------------
signal Counter: unsigned(31 downto 0) := X"00000000"; -- Main Counter (binary)
signal Bar: unsigned(7 downto 0) := X"00"; -- Counter for Bar output (binary)
signal FastBlink: std_logic; -- Signal mask for half intensity LED output (several kHz)
-- LED Display
-- -----------
signal Number: std_logic_vector(32 downto 0); -- LED Display Input
signal MuxCounter: unsigned(31 downto 0) := (others => '0'); -- LED Multiplex - Multiplex Clock Divider
signal Enable: std_logic;
signal Digits: std_logic_vector(7 downto 0) := X"01"; -- LED Multiplex - Digit Counter - LED Digit Output
signal Segments: std_logic_vector(0 to 7); -- LED Segment Output
signal Code: std_logic_vector(3 downto 0); -- BCD to 7 Segment Decoder Output
-- PS/2 Port
-- ---------
-- Interface Signals
signal PS2_Code: std_logic_vector(7 downto 0); -- Key Scan Code
signal PS2_Attribs: std_logic_vector(7 downto 0); -- State of Shifts for Scan Code
signal PS2_Valid: boolean; -- Valid Data (synchronous with Main Clock)
signal PS2_Shifts: std_logic_vector(9 downto 0); -- Immediate (life) State of Shifts for Scan Code
-- Result
signal PS2_Result: std_logic_vector(15 downto 0); -- Result (memory)
-- signal Key: std_logic_vector(7 downto 0); -- Cislo na klavese
-- VGA Demo Signals
-- ----------------
signal CLK: std_logic; -- Main Clock - global distribution network
signal CLKVGAi: std_logic; -- DCM Clock Out (40MHz Pixel Clock) - internal connection from DCM to BUFG
signal CLKVGA: std_logic; -- DCM Clock Out (40MHz Pixel Clock) - global distribution network
signal VGA_Blank: boolean; -- Blank
signal VGA_Hsync: boolean; -- Horisontal Synchronisation
signal VGA_Vsync: boolean; -- Vertical Synchronisation
signal VCounter: unsigned(9 downto 0) := "0000000000"; -- Vertical Counter
signal HCounter: unsigned(10 downto 0) := "00000000000"; -- Horisontal Counter
signal PinState: std_logic; -- For IB1 Port Test
signal Red: std_logic_vector(1 downto 0);
signal Green: std_logic_vector(1 downto 0);
signal Blue: std_logic_vector(1 downto 0);
-- ADDA
signal ADDA_DataIn: std_logic_vector(7 downto 0);
begin
-- Basic LED Blinking Test
-- =======================
-- LED Bar Counter
process (CLK100MHz)
begin
if rising_edge(CLK100MHz) then
if Counter < MAXCOUNT-1 then
Counter <= Counter + 1;
else
Counter <= (others => '0');
Bar <= Bar + 1;
end if;
end if;
end process;
LED <= std_logic_vector(Bar); -- LED Bar Connected to Counter
FastBlink <= Counter(13) and Counter(14) and Counter(15) and Counter(16); -- 1/16 intensity
-- LED Display (multiplexed)
-- =========================
-- Connect LED Display Output Ports (negative outputs)
LD_A_n <= not (Segments(0) and Enable);
LD_B_n <= not (Segments(1) and Enable);
LD_C_n <= not (Segments(2) and Enable);
LD_D_n <= not (Segments(3) and Enable);
LD_E_n <= not (Segments(4) and Enable);
LD_F_n <= not (Segments(5) and Enable);
LD_G_n <= not (Segments(6) and Enable);
LD_DP_n <= not (Segments(7) and Enable);
LD_0_n <= not Digits(0);
LD_1_n <= not Digits(1);
LD_2_n <= not Digits(2);
LD_3_n <= not Digits(3);
LD_4_n <= not Digits(4);
LD_5_n <= not Digits(5);
LD_6_n <= not Digits(6);
LD_7_n <= not Digits(7);
-- Time Multiplex
process (CLK100MHz)
begin
if rising_edge(CLK100MHz) then
if MuxCounter < MUXCOUNT-1 then
MuxCounter <= MuxCounter + 1;
else
MuxCounter <= (others => '0');
Digits(7 downto 0) <= Digits(6 downto 0) & Digits(7); -- Rotate Left
Enable <= '0';
end if;
if MuxCounter > (MUXCOUNT-4) then
Enable <= '1';
end if;
end if;
end process;
-- BCD to 7 Segmet Decoder
-- -- A
-- | | F B
-- -- G
-- | | E C
-- -- D H
-- ABCDEFGH
Segments <= "11111100" when Code="0000" else -- Digit 0
"01100000" when Code="0001" else -- Digit 1
"11011010" when Code="0010" else -- Digit 2
"11110010" when Code="0011" else -- Digit 3
"01100110" when Code="0100" else -- Digit 4
"10110110" when Code="0101" else -- Digit 5
"10111110" when Code="0110" else -- Digit 6
"11100000" when Code="0111" else -- Digit 7
"11111110" when Code="1000" else -- Digit 8
"11110110" when Code="1001" else -- Digit 9
"11101110" when Code="1010" else -- Digit A
"00111110" when Code="1011" else -- Digit b
"10011100" when Code="1100" else -- Digit C
"01111010" when Code="1101" else -- Digit d
"10011110" when Code="1110" else -- Digit E
"10001110" when Code="1111" else -- Digit F
"00000000";
Code <= Number( 3 downto 0) when Digits="00000001" else
Number( 7 downto 4) when Digits="00000010" else
Number(11 downto 8) when Digits="00000100" else
Number(15 downto 12) when Digits="00001000" else
Number(19 downto 16) when Digits="00010000" else
Number(23 downto 20) when Digits="00100000" else
Number(27 downto 24) when Digits="01000000" else
Number(31 downto 28) when Digits="10000000" else
"0000";
-- Key <= "00000000" when PS2_Result(7 downto 0)=X"70" else -- Digit 0
-- "00000001" when PS2_Result(7 downto 0)=X"69" else -- Digit 1
-- "00000010" when PS2_Result(7 downto 0)=X"72" else -- Digit 2
-- "11111111";
-- Number(31 downto 28) <= Key(3 downto 0);
-- Number( 7 downto 0) <= std_logic_vector(BAR);
-- Number(31 downto 24) <= DIPSW;
-- PS/2 Port
-- =========
-- Instantiate PS/2 Keyboard Interface Handler
PS2_Keyboard: PS2 generic map(
CLKFREQ => 100_000_000
)
port map(
-- Main Clock
Clk => CLK100MHz,
-- PS/2 Port
PS2_Clk => PS2_CLK2,
PS2_Data => PS2_DATA2,
-- Result - valid when PS2_Valid
PS2_Code => PS2_Code,
PS2_Attribs => PS2_Attribs,
PS2_Valid => PS2_Valid,
-- Immediate State of Shifts
PS2_Shifts => PS2_Shifts
); -- PS2
process (CLK100MHz)
begin
if rising_edge(CLK100MHz) then
if PS2_Valid and PS2_Attribs(7)='0' then
-- Valid Scan Code with no Break Attribute
PS2_Result( 7 downto 0) <= PS2_Code;
PS2_Result(15 downto 8) <= PS2_Attribs;
end if;
if PS2_Valid and PS2_Attribs(7)='0' then
if PS2_Code = X"74" and T1<2000 then T1<=T1+1; end if;
if PS2_Code = X"6b" and T1>0 then T1<=T1-1; end if;
if PS2_Code = X"75" and T2<200 then T2<=T2+1; end if;
if PS2_Code = X"72" and T2>0 then T2<=T2-1; end if;
CT0<=X"0000";
O1<='0';
O2<='0';
CTburst<=X"0000";
end if;
if PB(0)='1' then
T1<=X"0000";
T2<=X"0000";
end if;
if DIPSW(0)='1' then
if CT0>X"F000" then
CT0<=X"0000";
else
CT0<=CT0+1;
end if;
else
if CT0>X"0200" then
CT0<=X"0000";
else
CT0<=CT0+1;
end if;
end if;
if CTburst>2000 then
CTburst<=X"0000";
end if;
if (CTburst<1000) or (DIPSW(1)='0') then
if CT0=X"0000" then
O1<='1';
end if;
if CT0=T1+X"0000" then
O2<='1';
end if;
end if;
if CT0=T2+T1+X"0000" then
O1<='0';
O2<='0';
CTburst<=CTburst+1;
end if;
end if;
end process;
-- Display Result on LED
Number(3 downto 0) <= (others=>'0');
Number(15 downto 4) <= to_bcd(std_logic_vector(T2));
Number(19 downto 16) <= (others=>'0');
Number(31 downto 20) <= to_bcd(std_logic_vector(T1));
-- Test Diferencial In/Outs
-- ========================
-- Output Signal on SATA Connector
SD1AP <= Bar(0);
SD1AN <= Bar(1);
SD1BP <= Bar(2);
SD1BN <= Bar(3);
-- Input Here via SATA Cable
SD2AP <= 'Z';
SD2AN <= 'Z';
SD2BP <= 'Z';
SD2BN <= 'Z';
-- Copy SATA Connector Input to 4 pin header (J7) - Connect these signals to B port input to visualize them
-- !!!!!!!!!!!! Pulse Generator Outputs !!!!!!!!!!!!!!!!!!!!!
DIF1P <= O1;
B(0) <= O1;
DIF1N <= not O1;
B(1) <= not O1;
DIF2P <= O2;
B(2) <= O2;
DIF2N <= not O2;
B(3) <= not O2;
VGA_R(0) <= O1;
VGA_R(1) <= O2;
-- Unused Signals
-- ==============
-- I2C Signals (on connector J30)
I2C_SCL <= 'Z';
I2C_SDA <= 'Z';
-- SPI Memory Interface
SPI_CS_n <= 'Z';
SPI_DO <= 'Z';
SPI_DI <= 'Z';
SPI_CLK <= 'Z';
SPI_WP_n <= 'Z';
ANA_OUTD <= 'Z';
ANA_REFD <= 'Z';
VGA_R <= "ZZ";
VGA_G <= "ZZ";
VGA_B <= "ZZ";
VGA_VS <= 'Z';
VGA_HS <= 'Z';
end architecture PulseGen_a;