----------------------------------------------------------------------------------
-- Company: www.mlab.cz
-- Based on code written by MIHO.
--
-- HW Design Name: S3AN01A
-- Project Name: Atomic Counter
-- Target Devices: XC3S50AN-4
-- Tool versions: ISE 13.3
-- Description: Counter up to 640 MHz synchonised by GPS.
-- Output frequency is displayed on the 7seg. LED display.
-- You can choice half or full frequency by DIPSW7.
--
-- Dependencies: TTLPECL01A, GPS01A
--
-- Version: $Id: gtime.vhd 3177 2013-07-17 23:48:47Z kakl $
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
library UNISIM;
use UNISIM.vcomponents.all;
entity AtomicCounter is
generic (
-- Top Value for 100MHz Clock Counter
MAXCOUNT: integer := 10_000; -- Maximum for the first counter
MUXCOUNT: integer := 100_000 -- LED Display Multiplex Clock Divider
);
port (
-- Clock on PCB
CLK100MHz: in std_logic;
-- Mode Signals (usualy not used)
M: in std_logic_vector(2 downto 0);
VS: in std_logic_vector(2 downto 0);
-- Dipswitch Inputs
DIPSW: in std_logic_vector(7 downto 0);
-- Push Buttons
PB: in std_logic_vector(3 downto 0);
-- LED Bar Outputs
LED: out std_logic_vector(7 downto 0);
-- LED Display (8 digit with 7 segments and ddecimal point)
LD_A_n: out std_logic;
LD_B_n: out std_logic;
LD_C_n: out std_logic;
LD_D_n: out std_logic;
LD_E_n: out std_logic;
LD_F_n: out std_logic;
LD_G_n: out std_logic;
LD_DP_n: out std_logic;
LD_0_n: out std_logic;
LD_1_n: out std_logic;
LD_2_n: out std_logic;
LD_3_n: out std_logic;
LD_4_n: out std_logic;
LD_5_n: out std_logic;
LD_6_n: out std_logic;
LD_7_n: out std_logic;
-- VGA Video Out Port
VGA_R: out std_logic_vector(1 downto 0);
VGA_G: out std_logic_vector(1 downto 0);
VGA_B: out std_logic_vector(1 downto 0);
VGA_VS: out std_logic;
VGA_HS: out std_logic;
-- Bank 1 Pins - Inputs for this Test
B: inout std_logic_vector(24 downto 0);
-- PS/2 Bidirectional Port (open collector, J31 and J32)
PS2_CLK1: inout std_logic;
PS2_DATA1: inout std_logic;
PS2_CLK2: inout std_logic;
PS2_DATA2: inout std_logic;
-- Diferencial Signals on 4 pin header (J7)
DIF1P: inout std_logic;
DIF1N: inout std_logic;
DIF2P: inout std_logic;
DIF2N: inout std_logic;
-- I2C Signals (on connector J30)
I2C_SCL: inout std_logic;
I2C_SDA: inout std_logic;
-- Diferencial Signals on SATA like connectors (not SATA capable, J28 and J29)
SD1AP: inout std_logic;
SD1AN: inout std_logic;
SD1BP: inout std_logic;
SD1BN: inout std_logic;
SD2AP: inout std_logic;
SD2AN: inout std_logic;
SD2BP: inout std_logic;
SD2BN: inout std_logic;
-- Analog In Out
ANA_OUTD: out std_logic;
ANA_REFD: out std_logic;
ANA_IND: in std_logic;
-- SPI Memory Interface
SPI_CS_n: inout std_logic;
SPI_DO: inout std_logic;
SPI_DI: inout std_logic;
SPI_CLK: inout std_logic;
SPI_WP_n: inout std_logic
);
end entity AtomicCounter;
architecture AtomicCounter_a of AtomicCounter is
function to_bcd ( bin : std_logic_vector(15 downto 0) ) return std_logic_vector is
variable i : integer:=0;
variable mybcd : std_logic_vector(19 downto 0) := (others => '0');
variable bint : std_logic_vector(15 downto 0) := bin;
begin
for i in 0 to 15 loop -- repeating 16 times.
mybcd(19 downto 1) := mybcd(18 downto 0); --shifting the bits.
mybcd(0) := bint(15);
bint(15 downto 1) := bint(14 downto 0);
bint(0) :='0';
if(i < 15 and mybcd(3 downto 0) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(3 downto 0) := std_logic_vector(unsigned(mybcd(3 downto 0)) + 3);
end if;
if(i < 15 and mybcd(7 downto 4) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(7 downto 4) := std_logic_vector(unsigned(mybcd(7 downto 4)) + 3);
end if;
if(i < 15 and mybcd(11 downto 8) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(11 downto 8) := std_logic_vector(unsigned(mybcd(11 downto 8)) + 3);
end if;
if(i < 15 and mybcd(15 downto 12) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(15 downto 12) := std_logic_vector(unsigned(mybcd(15 downto 12)) + 3);
end if;
if(i < 15 and mybcd(19 downto 16) > "0100") then --add 3 if BCD digit is greater than 4.
mybcd(19 downto 16) := std_logic_vector(unsigned(mybcd(19 downto 16)) + 3);
end if;
end loop;
return mybcd;
end to_bcd;
-- Counters
-- ----------------
signal Counter: unsigned(13 downto 0) := "00000000000000"; -- Main Counter 1 Hz, max. 9.999 kHz (binary)
signal CounterMaxcount: unsigned(15 downto 0) := "0000000000000000"; -- Main Counter 10 kHz, max. 655.35 MHz (binary)
-- LED Display
-- -----------
signal NumberPom: std_logic_vector(35 downto 0) := X"000000000"; -- Variable for bin/BCD conversion
signal Number: std_logic_vector(35 downto 0) := X"000000000"; -- LED Display Input
signal Freq: std_logic_vector(31 downto 0) := X"00000000"; -- Measured Frequency
signal MuxCounter: unsigned(31 downto 0) := (others => '0'); -- LED Multiplex - Multiplex Clock Divider
signal Enable: std_logic;
signal Digits: std_logic_vector(7 downto 0) := X"01"; -- LED Multiplex - Digit Counter - LED Digit Output
signal Segments: std_logic_vector(0 to 7); -- LED Segment Output
signal Code: std_logic_vector(3 downto 0); -- BCD to 7 Segment Decoder Output
signal LO_CLOCK: std_logic; -- Frequency divided by 2
signal EXT_CLOCK: std_logic; -- Input Frequency
signal Decko: std_logic; -- D flip-flop
signal State: unsigned(2 downto 0) := (others => '0'); -- Inner states of automata
begin
-- Input divider by 2
process (EXT_CLOCK)
begin
if rising_edge(EXT_CLOCK) then
LO_CLOCK <= not LO_CLOCK;
end if;
end process;
-- Counter
process (LO_CLOCK)
begin
if rising_edge(LO_CLOCK) then
if (State = 3) or (State = 0) then
if Counter < MAXCOUNT-1 then
Counter <= Counter + 1;
else
Counter <= (others => '0');
CounterMaxcount <= CounterMaxcount + 1;
end if;
end if;
if (State = 1) then
Freq(15 downto 0) <= std_logic_vector("00"&Counter);
Freq(31 downto 16) <= std_logic_vector(CounterMaxcount);
end if;
if (State = 2) then
CounterMaxcount <= (others => '0');
Counter <= (others => '0');
end if;
end if;
end process;
-- Sampling 1PPS signal
process (LO_CLOCK)
begin
if rising_edge(LO_CLOCK) then
Decko <= B(22);
end if;
end process;
-- Automata for controlling the Counter
process (LO_CLOCK)
begin
if rising_edge(LO_CLOCK) then
if (Decko = '1') then
if (State < 3) then
State <= State + 1;
end if;
else
State <= (others => '0');
end if;
end if;
end process;
-- Coding to BCD for LED Display
process (Decko)
begin
if falling_edge(Decko) then
if DIPSW(7) = '0' then
NumberPom(15 downto 0) <= to_bcd(Freq(15 downto 0))(15 downto 0); -- Half frequency
NumberPom(35 downto 16) <= to_bcd(Freq(31 downto 16))(19 downto 0);
else
NumberPom(15 downto 0) <= to_bcd(Freq(14 downto 1)&"0")(15 downto 0); -- Full frequency
NumberPom(35 downto 16) <= to_bcd(Freq(30 downto 15))(19 downto 0);
end if;
end if;
end process;
Number(35 downto 0) <= NumberPom(35 downto 0);
LED(7) <= Decko; -- Disply 1PPS pulse on LEDbar
LED(6 downto 4) <= (others => '0');
LED(3 downto 0) <= Number(35 downto 32); -- Disply 100-th of MHz on LEDbar
-- LED Display (multiplexed)
-- =========================
-- Connect LED Display Output Ports (negative outputs)
LD_A_n <= not (Segments(0) and Enable);
LD_B_n <= not (Segments(1) and Enable);
LD_C_n <= not (Segments(2) and Enable);
LD_D_n <= not (Segments(3) and Enable);
LD_E_n <= not (Segments(4) and Enable);
LD_F_n <= not (Segments(5) and Enable);
LD_G_n <= not (Segments(6) and Enable);
LD_DP_n <= not (Segments(7) and Enable);
LD_0_n <= not Digits(0);
LD_1_n <= not Digits(1);
LD_2_n <= not Digits(2);
LD_3_n <= not Digits(3);
LD_4_n <= not Digits(4);
LD_5_n <= not Digits(5);
LD_6_n <= not Digits(6);
LD_7_n <= not Digits(7);
-- Time Multiplex
process (CLK100MHz)
begin
if rising_edge(CLK100MHz) then
if MuxCounter < MUXCOUNT-1 then
MuxCounter <= MuxCounter + 1;
else
MuxCounter <= (others => '0');
Digits(7 downto 0) <= Digits(6 downto 0) & Digits(7); -- Rotate Left
Enable <= '0';
end if;
if MuxCounter > (MUXCOUNT-4) then
Enable <= '1';
end if;
end if;
end process;
-- HEX to 7 Segmet Decoder
-- -- A
-- | | F B
-- -- G
-- | | E C
-- -- D H
-- ABCDEFGH
Segments <= "11111100" when Code="0000" else -- Digit 0
"01100000" when Code="0001" else -- Digit 1
"11011010" when Code="0010" else -- Digit 2
"11110010" when Code="0011" else -- Digit 3
"01100110" when Code="0100" else -- Digit 4
"10110110" when Code="0101" else -- Digit 5
"10111110" when Code="0110" else -- Digit 6
"11100000" when Code="0111" else -- Digit 7
"11111110" when Code="1000" else -- Digit 8
"11110110" when Code="1001" else -- Digit 9
"11101110" when Code="1010" else -- Digit A
"00111110" when Code="1011" else -- Digit b
"10011100" when Code="1100" else -- Digit C
"01111010" when Code="1101" else -- Digit d
"10011110" when Code="1110" else -- Digit E
"10001110" when Code="1111" else -- Digit F
"00000000";
Code <= Number( 3 downto 0) when Digits="00000001" else
Number( 7 downto 4) when Digits="00000010" else
Number(11 downto 8) when Digits="00000100" else
Number(15 downto 12) when Digits="00001000" else
Number(19 downto 16) when Digits="00010000" else
Number(23 downto 20) when Digits="00100000" else
Number(27 downto 24) when Digits="01000000" else
Number(31 downto 28) when Digits="10000000" else
"0000";
-- Diferencial In/Outs
-- ========================
DIFbuffer1 : IBUFGDS
generic map (
DIFF_TERM => FALSE, -- Differential Termination
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer,
-- "0"-"16"
IOSTANDARD => "LVPECL_33")
port map (
I => SD1AP, -- Diff_p buffer input (connect directly to top-level port)
IB => SD1AN, -- Diff_n buffer input (connect directly to top-level port)
O => EXT_CLOCK -- Buffer output - Counter INPUT
);
OBUFDS_inst : OBUFDS
generic map (
IOSTANDARD => "LVDS_33")
port map (
O => SD2AP, -- Diff_p output (connect directly to top-level port)
OB => SD2AN, -- Diff_n output (connect directly to top-level port)
I => EXT_CLOCK -- Buffer input are connected directly to IBUFGDS
);
-- Output Signal on SATA Connector
-- SD1AP <= 'Z'; -- Counter INPUT
-- SD1AN <= 'Z';
SD1BP <= 'Z';
SD1BN <= 'Z';
-- Input Here via SATA Cable
-- SD2AP <= 'Z'; -- Counter OUTPUT
-- SD2AN <= 'Z';
SD2BP <= 'Z';
SD2BN <= 'Z';
-- Unused Signals
-- ==============
-- Differential inputs onn header
DIF1N <= 'Z';
DIF1P <= 'Z';
DIF2N <= 'Z';
DIF2P <= 'Z';
-- I2C Signals (on connector J30)
I2C_SCL <= 'Z';
I2C_SDA <= 'Z';
-- SPI Memory Interface
SPI_CS_n <= 'Z';
SPI_DO <= 'Z';
SPI_DI <= 'Z';
SPI_CLK <= 'Z';
SPI_WP_n <= 'Z';
-- A/D
ANA_OUTD <= 'Z';
ANA_REFD <= 'Z';
-- VGA
VGA_R <= "ZZ";
VGA_G <= "ZZ";
VGA_B <= "ZZ";
VGA_VS <= 'Z';
VGA_HS <= 'Z';
-- PS2
PS2_DATA2 <= 'Z';
PS2_CLK2 <='Z';
end architecture AtomicCounter_a;