/**** IR Mrakomer 4 ****/
#define VERSION "4.0"
#define ID "$Id: irmrak4.c 1292 2009-01-08 19:51:56Z kakl $"
#include "irmrak4.h"
#CASE // Case sensitive compiler
#define MAXHEAT 20 // Number of cycles for heating
#define MAXOPEN 20 // Number of cycles for dome open
#define MEASURE_DELAY 6000 // Delay to a next measurement
#define RESPONSE_DELAY 100 // Reaction time after receiving a command
#define SAFETY_COUNT 90 // Time of one emergency cycle
#define SEND_DELAY 50 // Time between two characters on RS232
#define DOME PIN_B4 // Dome controll port
#define HEATING PIN_B3 // Heating for defrosting
#bit CREN = 0x18.4 // USART registers
#bit SPEN = 0x18.7
#bit OERR = 0x18.1
#bit FERR = 0x18.2
char VER[4]=VERSION; // Buffer for concatenate of a version string
char REV[50]=ID;
int8 heat; // Status variables
int8 open;
inline void toggle_dome(void) // Wire exercise
{
if (open>0)
{output_toggle(DOME);} // Toggle = Open Dome
else
{output_high(DOME);} // Do not toggle = Close Dome
}
void delay(int16 cycles) // Wire exercise with delay
{
int16 i;
for(i=0; i<cycles; i++) {toggle_dome(); delay_us(100);}
}
void welcome(void) // Welcome message
{
printf("\n\r* Mrakomer %s (C) 2007 KAKL *\n\r",VER); // Welcome message
printf("* %s *\n\r",REV);
printf("<#sequence> <ambient [1/100 C]> <sky [1/100 C]> ");
printf("<heating [s]> <dome [s]>\n\r\n\r");
}
#include "smb.c" // System Management Bus driver
// Read sensor RAM
// Returns temperature in °K
int16 ReadTemp(int8 addr, int8 select)
{
unsigned char arr[6]; // Buffer for the sent bytes
int8 crc; // Readed CRC
int16 temp; // Readed temperature
addr<<=1;
SMB_STOP_bit(); //If slave send NACK stop comunication
SMB_START_bit(); //Start condition
SMB_TX_byte(addr);
SMB_TX_byte(RAM_Access|select);
SMB_START_bit(); //Repeated Start condition
SMB_TX_byte(addr);
arr[2]=SMB_RX_byte(ACK); //Read low data,master must send ACK
arr[1]=SMB_RX_byte(ACK); //Read high data,master must send ACK
temp=make16(arr[1],arr[2]);
crc=SMB_RX_byte(NACK); //Read PEC byte, master must send NACK
SMB_STOP_bit(); //Stop condition
arr[5]=addr;
arr[4]=RAM_Access|select;
arr[3]=addr;
arr[0]=0;
if (crc != PEC_calculation(arr)) temp=0; // Calculate and check CRC
return temp;
}
/*-----------------------------------------------------------------------*/
void main()
{
unsigned int16 seq, temp, tempa;
signed int16 ta, to;
int8 safety_counter;
int1 repeat;
output_high(DOME); // Close Dome
output_low(HEATING); // Heating off
setup_wdt(WDT_2304MS); // Setup Watch Dog
setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DISABLED,0,1);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);
// setup_oscillator(OSC_4MHZ|OSC_INTRC,+2); // Pokud je nutna kalibrace RCosc
setup_oscillator(OSC_8MHZ|OSC_INTRC);
delay_ms(1000);
restart_wdt();
seq=0; // Variables initiation
heat=0;
open=0;
repeat=TRUE;
welcome();
tempa=ReadTemp(SA, RAM_Tamb); // Dummy read
temp=ReadTemp(SA, RAM_Tobj1);
delay_ms(1000);
//---WDT
restart_wdt();
while(TRUE) // Main Loop
{
safety_counter=SAFETY_COUNT; // Heating and Dome Count Down
do
{
if (safety_counter<SAFETY_COUNT) safety_counter++;
delay(RESPONSE_DELAY);
if (safety_counter>=SAFETY_COUNT)
{
if (heat>0) heat--;
if (open>0) open--;
if (heat>0) { output_high(HEATING); } else { output_low(HEATING); }
safety_counter=0;
//---WDT
restart_wdt();
}
} while (!kbhit()&&!repeat);
//---WDT
restart_wdt();
{ // Retrieve command
char ch='k';
if(kbhit()) ch=getc();
switch (ch)
{
case 'h':
heat=MAXHEAT; // Need heating
break;
case 'c':
heat=0; // Need colder
break;
case 'o':
open=MAXOPEN; // Open the dome
break;
case 'x':
open=MAXOPEN; // Open the dome
heat=MAXHEAT; // Need heating
break;
case 'l':
open=0; // Lock the dome
break;
case 'i':
if (open==0) welcome(); // Information about version, etc...
break; // Only when dome is closed
case 'r':
repeat=TRUE; // Repeated measure mode
break;
case 's':
repeat=FALSE; // Single measure mode
break;
}
}
// while(kbhit()) getc(); // Flush USART buffer
CREN=0; CREN=1; // Reinitialise USART
seq++; // Increment the number of measurement
tempa=ReadTemp(SA, RAM_Tamb); // Read temperatures from sensor
temp=ReadTemp(SA, RAM_Tobj1);
ta=tempa*2-27315; // °K -> °C
to=temp*2-27315;
{ // printf
char output[8]; // Output buffer
int8 j; // String pointer
delay(SEND_DELAY);
sprintf(output,"#%Lu ", seq);
j=0; while(output[j]!=0) { delay(SEND_DELAY); putc(output[j++]); }
sprintf(output,"%Ld ", ta);
j=0; while(output[j]!=0) { delay(SEND_DELAY); putc(output[j++]); }
sprintf(output,"%Ld ", to);
j=0; while(output[j]!=0) { delay(SEND_DELAY); putc(output[j++]); }
sprintf(output,"%u ", heat);
j=0; while(output[j]!=0) { delay(SEND_DELAY); putc(output[j++]); }
sprintf(output,"%u\n\r\0", open);
j=0; while(output[j]!=0) { delay(SEND_DELAY); putc(output[j++]); }
}
delay(MEASURE_DELAY); // Delay to a next measurement
//---WDT
restart_wdt();
}
}