Clear=0.175; // size of tolerance zone
thickness = 2; // global wall thickness
height = 15; // height of one screen element
screen_radius = 75/2; // outer radius of screen
tube_radius=30/2; // inner radius of the space for a sensor
screen_bevel = 10; // bevel of outer screen wall
num_ribs = 3; // number of holding ribs
cap_radius = screen_radius * 1.5;
inner_ring_thickness = thickness *2;
angle_sep = 360/num_ribs;
cap_height = cap_radius - sqrt(cap_radius*cap_radius - (screen_radius - screen_bevel)*(screen_radius - screen_bevel));
difference () {
union() {
//cap outer shell
intersection () {
translate ([0,0,-cap_radius + height + cap_height])
sphere(cap_radius, $fn=100);
//screen outer shell
cylinder (h=screen_radius*(height/screen_bevel),r1=screen_radius ,r2=0,$fn=100);
}
// cap hook
translate ([0,0,height + (cap_height-thickness)])
difference () {
cylinder (h=height/2,r1=screen_radius/4,r2=screen_radius/4 - thickness,$fn=100);
translate ([0,screen_radius/4,2.5])
rotate ([90,0,0])
cylinder (h=screen_radius/2,r=3, $fn=100);
translate ([-screen_radius/4,0,2.5])
rotate ([0,90,0])
cylinder (h=screen_radius/2,r=3, $fn=100);
}
}
union() {
intersection () {
//cap inner cavity
translate ([0,0,-cap_radius + height + cap_height ])
sphere(cap_radius-thickness, $fn=100);
//screen inner cavity (height is solved by triangle similarity)
translate ([0,0, -Clear/2 ])
cylinder (h=(screen_radius - thickness)*(height/screen_bevel),r1=screen_radius - thickness ,r2=0,$fn=100);
}
}
}
// center ribs
for (i = [0 : (num_ribs-1)]) {
rotate ([90,0,angle_sep * i])
translate ([0,0,-thickness/2])
linear_extrude (height = thickness, convexity = 10)
polygon(points=[[0, cap_height + height],[tube_radius + thickness - Clear, 0],[screen_radius - thickness,0],[screen_radius - screen_bevel - thickness,height]]);
}