///////////////////////////////////////////////////////////////////////////////////
// A small demo of sonar.
// Program allow distance measuring.
// Uses cross-correlation algorithm to find echos
//
// Author: kaklik (kaklik@mlab.cz)
//$Id:$
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <alsa/asoundlib.h>
#include <sys/time.h>
#include <math.h>
#include <fftw3.h>
#define SOUND_SPEED 340.0 // sound speed in air in metrs per second
#define MAX_RANGE 5.0 // maximal working radius in meters
#define Xl -0.1 // microphones position
#define Xr 0.1
static char *device = "plughw:0,0"; /* playback device */
static snd_pcm_format_t format = SND_PCM_FORMAT_S16; /* sample format */
static unsigned int rate = 96000; /* stream rate */
static unsigned int buffer_time = 2 * (MAX_RANGE / SOUND_SPEED * 1e6); /* ring buffer length in us */
static unsigned int period_time = MAX_RANGE / SOUND_SPEED * 1e6; /* period time in us */
static int resample = 1; /* enable alsa-lib resampling */
unsigned int chirp_size;
static snd_pcm_sframes_t buffer_size; // size of buffer at sound card
static snd_pcm_sframes_t period_size; //samples per frame
static snd_output_t *output = NULL;
static int set_hwparams(snd_pcm_t *handle, snd_pcm_hw_params_t *params, unsigned int channels)
{
unsigned int rrate;
snd_pcm_uframes_t size;
int err, dir;
/* choose all parameters */
err = snd_pcm_hw_params_any(handle, params);
if (err < 0)
{
printf("Broken configuration for playback: no configurations available: %s\n", snd_strerror(err));
return err;
}
/* set hardware resampling */
err = snd_pcm_hw_params_set_rate_resample(handle, params, resample);
if (err < 0)
{
printf("Resampling setup failed for playback: %s\n", snd_strerror(err));
return err;
}
/* set the interleaved read/write format */
err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED);
if (err < 0)
{
printf("Access type not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the sample format */
err = snd_pcm_hw_params_set_format(handle, params, format);
if (err < 0)
{
printf("Sample format not available for playback: %s\n", snd_strerror(err));
return err;
}
/* set the count of channels */
err = snd_pcm_hw_params_set_channels(handle, params, channels);
if (err < 0)
{
printf("Channels count (%i) not available for playbacks: %s\n", channels, snd_strerror(err));
return err;
}
/* set the stream rate */
rrate = rate;
err = snd_pcm_hw_params_set_rate_near(handle, params, &rrate, 0);
if (err < 0)
{
printf("Rate %iHz not available for playback: %s\n", rate, snd_strerror(err));
return err;
}
if (rrate != rate)
{
printf("Rate doesn't match (requested %iHz, get %iHz)\n", rate, err);
return -EINVAL;
}
else printf("Rate set to %i Hz\n", rate, err);
/* set the buffer time */
err = snd_pcm_hw_params_set_buffer_time_near(handle, params, &buffer_time, &dir);
if (err < 0)
{
printf("Unable to set buffer time %i for playback: %s\n", buffer_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_buffer_size(params, &size);
if (err < 0)
{
printf("Unable to get buffer size for playback: %s\n", snd_strerror(err));
return err;
}
buffer_size = size;
printf("Bufffer size set to: %d Requested buffer time: %ld \n", (int) buffer_size, (long) buffer_time);
// set the period time
err = snd_pcm_hw_params_set_period_time_near(handle, params, &period_time, &dir);
if (err < 0)
{
printf("Unable to set period time %i for playback: %s\n", period_time, snd_strerror(err));
return err;
}
err = snd_pcm_hw_params_get_period_size(params, &size, &dir);
if (err < 0)
{
printf("Unable to get period size for playback: %s\n", snd_strerror(err));
return err;
}
period_size = size;
printf("Period size set to: %d Requested period time: %ld \n", (int) period_size, (long) period_time);
/* write the parameters to device */
err = snd_pcm_hw_params(handle, params);
if (err < 0)
{
printf("Unable to set hw params for playback: %s\n", snd_strerror(err));
return err;
}
return 0;
}
static int set_swparams(snd_pcm_t *handle, snd_pcm_sw_params_t *swparams)
{
int err;
/* get the current swparams */
err = snd_pcm_sw_params_current(handle, swparams);
if (err < 0)
{
printf("Unable to determine current swparams for playback: %s\n", snd_strerror(err));
return err;
}
// start the transfer when the buffer is almost full: never fou our case
err = snd_pcm_sw_params_set_start_threshold(handle, swparams, 2 * buffer_size);
if (err < 0)
{
printf("Unable to set start threshold mode for playback: %s\n", snd_strerror(err));
return err;
}
err = snd_pcm_sw_params_set_period_event(handle, swparams, 1);
if (err < 0)
{
printf("Unable to set period event: %s\n", snd_strerror(err));
return err;
}
/* write the parameters to the playback device */
err = snd_pcm_sw_params(handle, swparams);
if (err < 0)
{
printf("Unable to set sw params for playback: %s\n", snd_strerror(err));
return err;
}
return 0;
}
////// SIGNAL GENERATION STUFF
unsigned int linear_windowed_chirp(short *pole) // generate the ping signal
{
unsigned int maxval = (1 << (snd_pcm_format_width(format) - 1)) - 1;
static const float f0 = 5000; //starting frequency
static const float fmax = 10000; //ending frequency
static const float Tw = 0.0015; // time width of ping in seconds
static float k;
unsigned int n=0;
double t;
unsigned int chirp_samples; // number of samples per period
k=2*(fmax-f0)/Tw;
chirp_samples = ceil(rate*Tw); // compute size of ping sinal in samples
for (n=0;n<=chirp_samples;n++)
{
t = (double) n / (double)rate;
pole[n] = (short) floor( (0.35875 - 0.48829*cos(2*M_PI*t*1/Tw) + 0.14128*cos(2*M_PI*2*t*1/Tw) - 0.01168*cos(2*M_PI*3*t*1/Tw))*maxval*sin(2*M_PI*(t)*(f0+(k/2)*(t))) ); // signal generation formula
}
return (chirp_samples); // return count of samples in ping
}
int main(int argc, char *argv[])
{
snd_pcm_t *playback_handle, *capture_handle;
int err;
snd_pcm_hw_params_t *hwparams;
snd_pcm_sw_params_t *swparams;
long int *correlationl, *correlationr;
float *echo_map;
int *L_signal, *R_signal;
short *chirp, *signal;
float *chirp_spect, *lecho_spect, *recho_spect;
float a,b; // sides of trilateration triangle.
float f,g; //measured lenght path of signal
unsigned int i,j,m,n;
unsigned int map_size; //number of points in echo map.
unsigned int delayl[10],delayr[10]; //store delay of signifed correlation
long int l,r; // store correlation at strict time
double df; //frequency resolution
double k; // sample numbers to distance normalising constant
unsigned int frequency_bins; // number of output frequency bins
double *inchirp; // Fourier transform variables
fftw_complex *outchirp;
fftw_plan fft_plan_chirp;
FILE *out; // dummy variable for file data output
snd_pcm_hw_params_alloca(&hwparams); // allocation of soundcard parameters registers
snd_pcm_sw_params_alloca(&swparams);
printf("Simple PC sonar $Rev:$ starting work.. \n");
//open and set playback device
if ((err = snd_pcm_open(&playback_handle, device, SND_PCM_STREAM_PLAYBACK, 0)) < 0)
{
printf("Playback open error: %s\n", snd_strerror(err));
return 0;
}
if ((err = set_hwparams(playback_handle, hwparams, 1)) < 0)
{
printf("Setting of hwparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if ((err = set_swparams(playback_handle, swparams)) < 0)
{
printf("Setting of swparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
//open and set capture device
if ((err = snd_pcm_open(&capture_handle, device, SND_PCM_STREAM_CAPTURE, 0)) < 0)
{
printf("Playback open error: %s\n", snd_strerror(err));
return 0;
}
if ((err = set_hwparams(capture_handle, hwparams, 2)) < 0)
{
printf("Setting of hwparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
if ((err = set_swparams(capture_handle, swparams)) < 0)
{
printf("Setting of swparams failed: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
/* err = snd_pcm_link( capture_handle, playback_handle); //link capture and playback together
if (err < 0)
{
printf("Device linking error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}*/
k = SOUND_SPEED/rate; // normalising constant - normalise sample number to distance
correlationl = malloc(period_size * sizeof(long int)); //array to store correlation curve
correlationr = malloc(period_size * sizeof(long int)); //array to store correlation curve
L_signal = malloc(period_size * sizeof(int));
R_signal = malloc(period_size * sizeof(int));
chirp = calloc(2*period_size, sizeof(short));
signal = malloc(2*period_size * sizeof(short));
map_size=0;
for (i=0;i < period_size; i++) // brute force function for compute number of points in echo map.
{
a=k*i;
for(j=0;j < period_size; j++)
{
b=k*j;
if( (Xl <= a) && (Xr <= b) ) map_size++;
}
}
echo_map = malloc((3*map_size) * sizeof(float)); // Array to store 2D image of echos
if (echo_map == NULL) printf("Can't allocate enought memory");
// generate ping pattern
chirp_size = linear_windowed_chirp(chirp);
frequency_bins = chirp_size / 2 + 1;
df = (double) rate / (double) chirp_size;
chirp_spect = malloc(frequency_bins * sizeof(float));
lecho_spect = malloc(frequency_bins * sizeof(float));
recho_spect = malloc(frequency_bins * sizeof(float));
inchirp = fftw_malloc(sizeof(double) * chirp_size); // allocate input array for FFT
outchirp = fftw_malloc(sizeof(fftw_complex) * frequency_bins);
fft_plan_chirp = fftw_plan_dft_r2c_1d(chirp_size, inchirp, outchirp, FFTW_ESTIMATE);
printf("compute chirp spectrum\n");
for(i=0; i < chirp_size; i++) inchirp[i] = chirp[i];
fftw_execute(fft_plan_chirp);
for(i=0; i < frequency_bins; i++) chirp_spect[i] = sqrt( outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1] );
// write chirp data to souncard buffer
err = snd_pcm_writei(playback_handle, chirp, period_size);
if (err < 0)
{
printf("Initial write error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
//start sream
err = snd_pcm_start(playback_handle);
if (err < 0)
{
printf("Start error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
err = snd_pcm_start(capture_handle);
if (err < 0)
{
printf("Start error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
else printf("Transmitting all samples of chirp\n");
//--------------
while ( snd_pcm_avail_update(capture_handle) < period_size) // wait for one period of data
{
usleep(1000);
printf(".");
}
err = snd_pcm_drop(playback_handle); // stop audio stream
err = snd_pcm_drain(capture_handle);
if (err < 0)
{
printf("Stop error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
err = snd_pcm_readi(capture_handle, signal, period_size); //read period from audio buffer
if (err < 0)
{
printf("Read error: %s\n", snd_strerror(err));
exit(EXIT_FAILURE);
}
j=0;
for (i=0;i < period_size;i++) // separe inretleaved samples to two arrays
{
L_signal[i]=signal[j];
R_signal[i]=signal[j+1];
j+=2;
}
printf("\nChirp transmitted \ncorrelating\n");
for (n=0; n < (period_size - chirp_size - 1); n++)
{
l=0;
r=0;
for ( m = 0; m < chirp_size;m++)
{
l += chirp[m]*L_signal[m+n]; // correlate with left channel
r += chirp[m]*R_signal[m+n]; // correlate with right channel
}
correlationl[n]=abs(l);
correlationr[n]=abs(r);
}
m=0;
printf("Building echo map\n"); // compute map from left and right correlation data
for (i=0; i < period_size; i++)
{
f=k*i; // transform number of sample to distance (divide by 2 becouse path of signal is aproximmately 2times longer than distance)
for(j=0; j < period_size; j++)
{
g=k*j;
a=(2*f*g*Xl+f*f*Xr+Xl*(g*g+(Xl-Xr)*Xr))/(2*g*Xl+2*f*Xr);
b=(g*g*Xl-2*f*g*Xr+Xr*(f*f+Xl*(-Xl+Xr)))/(2*g*Xl-2*f*Xr);
if( ((Xr-Xl) <= a+b) && (b <= a+(Xr-Xl)) && (a <= b+(Xr-Xl)) ) // kontrola trojuhelnikove nerovnosti
{
printf("%f %f\n",a,b);
echo_map[m]=(f*((f-g)*g + Xl*Xl)-g*Xr*Xr)/(2*f*Xl-2*g*Xr);
echo_map[m+1]=sqrt( ((-g*g+Xl*Xl)*(f-Xr)*(f-g+Xl-Xr)*(f+Xr)*(f-g-Xl+Xr))/(4*(f*Xl-g*Xr)*(f*Xl-g*Xr)) );
echo_map[m+2]=(correlationl[i]+correlationr[j])/2;
m+=3;
}
}
}
printf("Searching echos\n");
r=0;
l=0;
for (n=0; n < period_size;n++) //najde nejvetsi korelace
{
if (l < correlationl[n])
{
delayl[1] = n;
l = correlationl[n];
}
if (r < correlationr[n])
{
delayr[1] = n;
r = correlationr[n];
}
}
//spocitej frekvencni spektrum pro levy kanal
for(i=delayl[1]; i < delayl[1] + chirp_size; i++) inchirp[i-delayl[1]] = L_signal[i];
fftw_execute(fft_plan_chirp);
for(i=0; i < frequency_bins; i++) lecho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
// napln pole daty z praveho kanalu a spocitej frekvencni spektrum
for(i=delayr[1]; i < delayr[1] + chirp_size; i++) inchirp[i-delayr[1]] = R_signal[i];
fftw_execute(fft_plan_chirp);
for(i=0; i < frequency_bins; i++) recho_spect[i] = sqrt(outchirp[i][0] * outchirp[i][0] + outchirp[i][1] * outchirp[i][1]);
printf("Writing output files\n");
out=fopen("/tmp/sonar.txt","w");
for (i=0; i <= (period_size - 1); i++)
{
fprintf(out,"%2.3f %6d %6d %9ld %9ld\n", (float)i*k, L_signal[i], R_signal[i], correlationl[i], correlationr[i]);
}
fclose(out);
j=0;
m=0;
out=fopen("/tmp/plane_cut.txt","w"); // writes echo_map - e.g. density map to file
for (i=0;i < map_size; i++)
{
fprintf(out,"% 2.5f %2.5f %8.2f\n", echo_map[j], echo_map[j+1], echo_map[j+2]);
j+=3;
//m++;
//if (m > 1){ fprintf(out,"\n"); m=0;} //make isoline for gnuplot.
}
/* for (i=0; i < period_size; i++)
{
a=k*i;
for(j=0; j < period_size; j++)
{
b=k*j;
if( ((b+a) >= (Xr-Xl)) && (b <= ((Xr-Xl)+a)) && (a <= ((Xr-Xl)+b)) ) // kontrola trojuhelnikove nerovnosti
{
fprintf(out,"% 4.3f %4.3f %8.2f\n",(a*((a-b)*b + Xl*Xl)-b*Xr*Xr)/(2*a*Xl-2*b*Xr),sqrt( ((-b*b+Xl*Xl)*(a-Xr)*(a-b+Xl-Xr)*(a+Xr)*(a-b-Xl+Xr))/(4*(a*Xl-b*Xr)*(a*Xl-b*Xr)) ),(correlationl[i]+correlationr[j])/2);
}
}
fprintf(out, "\n");
}*/
fclose(out);
out=fopen("/tmp/chirp.txt","w");
for (i=0; i <= (chirp_size - 1); i++)
{
fprintf(out,"%6d %6d\n", i, chirp[i]);
}
fclose(out);
out=fopen("/tmp/echo.txt","w");
for(i=0; i < chirp_size; i++) fprintf(out,"%6d %6d %6d\n", i, L_signal[i + delayl[1]], R_signal[i + delayr[1]]);
fclose(out);
out=fopen("/tmp/spektra.txt","w");
for (i=0; i < frequency_bins; i++)
{
fprintf(out,"%4.3f %4.3f %4.3f %4.3f\n", (i+0.5) * df, chirp_spect[i], lecho_spect[i], recho_spect[i]);
}
fclose(out);
printf("Job done.\n");
free(correlationl);
free(correlationr);
free(L_signal);
free(R_signal);
free(chirp);
free(signal);
free(echo_map);
snd_pcm_close(playback_handle);
snd_pcm_close(capture_handle);
return 0;
}