CCS PCM C Compiler, Version 4.106, 47914 03-IX-13 00:32
Filename: D:\MLAB\Designs\Measuring_instruments\GeoMet01A\SW\PIC16F887\main.lst
ROM used: 3183 words (39%)
Largest free fragment is 2048
RAM used: 27 (7%) at main() level
52 (14%) worst case
Stack: 5 locations
*
0000: MOVLW 0A
0001: MOVWF 0A
0002: GOTO 2B7
0003: NOP
.................... #include "main.h"
.................... #include <16F887.h>
.................... //////// Standard Header file for the PIC16F887 device ////////////////
.................... #device PIC16F887
.................... #list
....................
.................... #device adc=10
....................
.................... #FUSES NOWDT //No Watch Dog Timer
.................... #FUSES INTRC //Internal RC Osc
.................... #FUSES NOPUT //No Power Up Timer
.................... #FUSES MCLR //Master Clear pin enabled
.................... #FUSES NOPROTECT //Code not protected from reading
.................... #FUSES NOCPD //No EE protection
.................... #FUSES NOBROWNOUT //No brownout reset
.................... #FUSES IESO //Internal External Switch Over mode enabled
.................... #FUSES FCMEN //Fail-safe clock monitor enabled
.................... #FUSES NOLVP //No low voltage prgming, B3(PIC16) or B5(PIC18) used for I/O
.................... #FUSES NODEBUG //No Debug mode for ICD
.................... #FUSES NOWRT //Program memory not write protected
.................... #FUSES BORV40 //Brownout reset at 4.0V
....................
.................... #use delay(clock=8000000)
*
00FB: MOVLW 43
00FC: MOVWF 04
00FD: BCF 03.7
00FE: MOVF 00,W
00FF: BTFSC 03.2
0100: GOTO 10E
0101: MOVLW 02
0102: MOVWF 78
0103: CLRF 77
0104: DECFSZ 77,F
0105: GOTO 104
0106: DECFSZ 78,F
0107: GOTO 103
0108: MOVLW 97
0109: MOVWF 77
010A: DECFSZ 77,F
010B: GOTO 10A
010C: DECFSZ 00,F
010D: GOTO 101
010E: RETURN
.................... #use i2c(master, sda=PIN_C4, scl=PIN_C3)
*
0078: MOVLW 08
0079: MOVWF 78
007A: NOP
007B: BCF 07.3
007C: BCF 20.3
007D: MOVF 20,W
007E: BSF 03.5
007F: MOVWF 07
0080: NOP
0081: BCF 03.5
0082: RLF 3B,F
0083: BCF 07.4
0084: BTFSS 03.0
0085: GOTO 08C
0086: BSF 20.4
0087: MOVF 20,W
0088: BSF 03.5
0089: MOVWF 07
008A: GOTO 090
008B: BCF 03.5
008C: BCF 20.4
008D: MOVF 20,W
008E: BSF 03.5
008F: MOVWF 07
0090: NOP
0091: BCF 03.5
0092: BSF 20.3
0093: MOVF 20,W
0094: BSF 03.5
0095: MOVWF 07
0096: BCF 03.5
0097: BTFSS 07.3
0098: GOTO 097
0099: DECFSZ 78,F
009A: GOTO 07A
009B: NOP
009C: BCF 07.3
009D: BCF 20.3
009E: MOVF 20,W
009F: BSF 03.5
00A0: MOVWF 07
00A1: NOP
00A2: BCF 03.5
00A3: BSF 20.4
00A4: MOVF 20,W
00A5: BSF 03.5
00A6: MOVWF 07
00A7: NOP
00A8: NOP
00A9: BCF 03.5
00AA: BSF 20.3
00AB: MOVF 20,W
00AC: BSF 03.5
00AD: MOVWF 07
00AE: BCF 03.5
00AF: BTFSS 07.3
00B0: GOTO 0AF
00B1: CLRF 78
00B2: NOP
00B3: BTFSC 07.4
00B4: BSF 78.0
00B5: BCF 07.3
00B6: BCF 20.3
00B7: MOVF 20,W
00B8: BSF 03.5
00B9: MOVWF 07
00BA: BCF 03.5
00BB: BCF 07.4
00BC: BCF 20.4
00BD: MOVF 20,W
00BE: BSF 03.5
00BF: MOVWF 07
00C0: BCF 03.5
00C1: RETURN
*
0285: MOVLW 08
0286: MOVWF 3C
0287: MOVF 77,W
0288: MOVWF 3D
0289: BSF 20.4
028A: MOVF 20,W
028B: BSF 03.5
028C: MOVWF 07
028D: NOP
028E: BCF 03.5
028F: BSF 20.3
0290: MOVF 20,W
0291: BSF 03.5
0292: MOVWF 07
0293: BCF 03.5
0294: BTFSS 07.3
0295: GOTO 294
0296: BTFSC 07.4
0297: BSF 03.0
0298: BTFSS 07.4
0299: BCF 03.0
029A: RLF 78,F
029B: NOP
029C: BCF 20.3
029D: MOVF 20,W
029E: BSF 03.5
029F: MOVWF 07
02A0: BCF 03.5
02A1: BCF 07.3
02A2: DECFSZ 3C,F
02A3: GOTO 289
02A4: BSF 20.4
02A5: MOVF 20,W
02A6: BSF 03.5
02A7: MOVWF 07
02A8: NOP
02A9: BCF 03.5
02AA: BCF 07.4
02AB: MOVF 3D,W
02AC: BTFSC 03.2
02AD: GOTO 2B3
02AE: BCF 20.4
02AF: MOVF 20,W
02B0: BSF 03.5
02B1: MOVWF 07
02B2: BCF 03.5
02B3: NOP
02B4: BSF 20.3
02B5: MOVF 20,W
02B6: BSF 03.5
02B7: MOVWF 07
02B8: BCF 03.5
02B9: BTFSS 07.3
02BA: GOTO 2B9
02BB: NOP
02BC: BCF 07.3
02BD: BCF 20.3
02BE: MOVF 20,W
02BF: BSF 03.5
02C0: MOVWF 07
02C1: NOP
02C2: BCF 03.5
02C3: BCF 07.4
02C4: BCF 20.4
02C5: MOVF 20,W
02C6: BSF 03.5
02C7: MOVWF 07
02C8: BCF 03.5
02C9: RETURN
.................... #use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8)
....................
....................
....................
.................... #define LCD_ENABLE_PIN PIN_E0 ////
.................... #define LCD_RS_PIN PIN_E1 ////
.................... #define LCD_RW_PIN PIN_E2 ////
.................... #define LCD_DATA4 PIN_D4 ////
.................... #define LCD_DATA5 PIN_D5 ////
.................... #define LCD_DATA6 PIN_D6 ////
.................... #define LCD_DATA7 PIN_D7
.................... #include <lcd.c>
.................... ///////////////////////////////////////////////////////////////////////////////
.................... //// LCD.C ////
.................... //// Driver for common LCD modules ////
.................... //// ////
.................... //// lcd_init() Must be called before any other function. ////
.................... //// ////
.................... //// lcd_putc(c) Will display c on the next position of the LCD. ////
.................... //// \a Set cursor position to upper left ////
.................... //// \f Clear display, set cursor to upper left ////
.................... //// \n Go to start of second line ////
.................... //// \b Move back one position ////
.................... //// If LCD_EXTENDED_NEWLINE is defined, the \n character ////
.................... //// will erase all remanining characters on the current ////
.................... //// line, and move the cursor to the beginning of the next ////
.................... //// line. ////
.................... //// If LCD_EXTENDED_NEWLINE is defined, the \r character ////
.................... //// will move the cursor to the start of the current ////
.................... //// line. ////
.................... //// ////
.................... //// lcd_gotoxy(x,y) Set write position on LCD (upper left is 1,1) ////
.................... //// ////
.................... //// lcd_getc(x,y) Returns character at position x,y on LCD ////
.................... //// ////
.................... //// CONFIGURATION ////
.................... //// The LCD can be configured in one of two ways: a.) port access or ////
.................... //// b.) pin access. Port access requires the entire 7 bit interface ////
.................... //// connected to one GPIO port, and the data bits (D4:D7 of the LCD) ////
.................... //// connected to sequential pins on the GPIO. Pin access ////
.................... //// has no requirements, all 7 bits of the control interface can ////
.................... //// can be connected to any GPIO using several ports. ////
.................... //// ////
.................... //// To use port access, #define LCD_DATA_PORT to the SFR location of ////
.................... //// of the GPIO port that holds the interface, -AND- edit LCD_PIN_MAP ////
.................... //// of this file to configure the pin order. If you are using a ////
.................... //// baseline PIC (PCB), then LCD_OUTPUT_MAP and LCD_INPUT_MAP also must ////
.................... //// be defined. ////
.................... //// ////
.................... //// Example of port access: ////
.................... //// #define LCD_DATA_PORT getenv("SFR:PORTD") ////
.................... //// ////
.................... //// To use pin access, the following pins must be defined: ////
.................... //// LCD_ENABLE_PIN ////
.................... //// LCD_RS_PIN ////
.................... //// LCD_RW_PIN ////
.................... //// LCD_DATA4 ////
.................... //// LCD_DATA5 ////
.................... //// LCD_DATA6 ////
.................... //// LCD_DATA7 ////
.................... //// ////
.................... //// Example of pin access: ////
.................... //// #define LCD_ENABLE_PIN PIN_E0 ////
.................... //// #define LCD_RS_PIN PIN_E1 ////
.................... //// #define LCD_RW_PIN PIN_E2 ////
.................... //// #define LCD_DATA4 PIN_D4 ////
.................... //// #define LCD_DATA5 PIN_D5 ////
.................... //// #define LCD_DATA6 PIN_D6 ////
.................... //// #define LCD_DATA7 PIN_D7 ////
.................... //// ////
.................... ///////////////////////////////////////////////////////////////////////////////
.................... //// (C) Copyright 1996,2010 Custom Computer Services ////
.................... //// This source code may only be used by licensed users of the CCS C ////
.................... //// compiler. This source code may only be distributed to other ////
.................... //// licensed users of the CCS C compiler. No other use, reproduction ////
.................... //// or distribution is permitted without written permission. ////
.................... //// Derivative programs created using this software in object code ////
.................... //// form are not restricted in any way. ////
.................... ///////////////////////////////////////////////////////////////////////////
....................
.................... // define the pinout.
.................... // only required if port access is being used.
.................... typedef struct
.................... { // This structure is overlayed
.................... BOOLEAN enable; // on to an I/O port to gain
.................... BOOLEAN rs; // access to the LCD pins.
.................... BOOLEAN rw; // The bits are allocated from
.................... BOOLEAN unused; // low order up. ENABLE will
.................... int data : 4; // be LSB pin of that port.
.................... #if defined(__PCD__) // The port used will be LCD_DATA_PORT.
.................... int reserved: 8;
.................... #endif
.................... } LCD_PIN_MAP;
....................
.................... // this is to improve compatability with previous LCD drivers that accepted
.................... // a define labeled 'use_portb_lcd' that configured the LCD onto port B.
.................... #if ((defined(use_portb_lcd)) && (use_portb_lcd==TRUE))
.................... #define LCD_DATA_PORT getenv("SFR:PORTB")
.................... #endif
....................
.................... #if defined(__PCB__)
.................... // these definitions only need to be modified for baseline PICs.
.................... // all other PICs use LCD_PIN_MAP or individual LCD_xxx pin definitions.
.................... /* EN, RS, RW, UNUSED, DATA */
.................... const LCD_PIN_MAP LCD_OUTPUT_MAP = {0, 0, 0, 0, 0};
.................... const LCD_PIN_MAP LCD_INPUT_MAP = {0, 0, 0, 0, 0xF};
.................... #endif
....................
.................... ////////////////////// END CONFIGURATION ///////////////////////////////////
....................
.................... #ifndef LCD_ENABLE_PIN
.................... #define lcd_output_enable(x) lcdlat.enable=x
.................... #define lcd_enable_tris() lcdtris.enable=0
.................... #else
.................... #define lcd_output_enable(x) output_bit(LCD_ENABLE_PIN, x)
.................... #define lcd_enable_tris() output_drive(LCD_ENABLE_PIN)
.................... #endif
....................
.................... #ifndef LCD_RS_PIN
.................... #define lcd_output_rs(x) lcdlat.rs=x
.................... #define lcd_rs_tris() lcdtris.rs=0
.................... #else
.................... #define lcd_output_rs(x) output_bit(LCD_RS_PIN, x)
.................... #define lcd_rs_tris() output_drive(LCD_RS_PIN)
.................... #endif
....................
.................... #ifndef LCD_RW_PIN
.................... #define lcd_output_rw(x) lcdlat.rw=x
.................... #define lcd_rw_tris() lcdtris.rw=0
.................... #else
.................... #define lcd_output_rw(x) output_bit(LCD_RW_PIN, x)
.................... #define lcd_rw_tris() output_drive(LCD_RW_PIN)
.................... #endif
....................
.................... // original version of this library incorrectly labeled LCD_DATA0 as LCD_DATA4,
.................... // LCD_DATA1 as LCD_DATA5, and so on. this block of code makes the driver
.................... // compatible with any code written for the original library
.................... #if (defined(LCD_DATA0) && defined(LCD_DATA1) && defined(LCD_DATA2) && defined(LCD_DATA3) && !defined(LCD_DATA4) && !defined(LCD_DATA5) && !defined(LCD_DATA6) && !defined(LCD_DATA7))
.................... #define LCD_DATA4 LCD_DATA0
.................... #define LCD_DATA5 LCD_DATA1
.................... #define LCD_DATA6 LCD_DATA2
.................... #define LCD_DATA7 LCD_DATA3
.................... #endif
....................
.................... #ifndef LCD_DATA4
.................... #ifndef LCD_DATA_PORT
.................... #if defined(__PCB__)
.................... #define LCD_DATA_PORT 0x06 //portb
.................... #define set_tris_lcd(x) set_tris_b(x)
.................... #else
.................... #if defined(PIN_D0)
.................... #define LCD_DATA_PORT getenv("SFR:PORTD") //portd
.................... #else
.................... #define LCD_DATA_PORT getenv("SFR:PORTB") //portb
.................... #endif
.................... #endif
.................... #endif
....................
.................... #if defined(__PCB__)
.................... LCD_PIN_MAP lcd, lcdlat;
.................... #byte lcd = LCD_DATA_PORT
.................... #byte lcdlat = LCD_DATA_PORT
.................... #elif defined(__PCM__)
.................... LCD_PIN_MAP lcd, lcdlat, lcdtris;
.................... #byte lcd = LCD_DATA_PORT
.................... #byte lcdlat = LCD_DATA_PORT
.................... #byte lcdtris = LCD_DATA_PORT+0x80
.................... #elif defined(__PCH__)
.................... LCD_PIN_MAP lcd, lcdlat, lcdtris;
.................... #byte lcd = LCD_DATA_PORT
.................... #byte lcdlat = LCD_DATA_PORT+9
.................... #byte lcdtris = LCD_DATA_PORT+0x12
.................... #elif defined(__PCD__)
.................... LCD_PIN_MAP lcd, lcdlat, lcdtris;
.................... #word lcd = LCD_DATA_PORT
.................... #word lcdlat = LCD_DATA_PORT+2
.................... #word lcdtris = LCD_DATA_PORT-0x02
.................... #endif
.................... #endif //LCD_DATA4 not defined
....................
.................... #ifndef LCD_TYPE
.................... #define LCD_TYPE 2 // 0=5x7, 1=5x10, 2=2 lines
.................... #endif
....................
.................... #ifndef LCD_LINE_TWO
.................... #define LCD_LINE_TWO 0x40 // LCD RAM address for the second line
.................... #endif
....................
.................... #ifndef LCD_LINE_LENGTH
.................... #define LCD_LINE_LENGTH 20
.................... #endif
....................
.................... BYTE const LCD_INIT_STRING[4] = {0x20 | (LCD_TYPE << 2), 0xc, 1, 6};
.................... // These bytes need to be sent to the LCD
.................... // to start it up.
....................
.................... BYTE lcd_read_nibble(void);
....................
.................... BYTE lcd_read_byte(void)
.................... {
.................... BYTE low,high;
....................
.................... #if defined(__PCB__)
.................... set_tris_lcd(LCD_INPUT_MAP);
.................... #else
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7))
.................... output_float(LCD_DATA4);
*
0174: BSF 08.4
.................... output_float(LCD_DATA5);
0175: BSF 08.5
.................... output_float(LCD_DATA6);
0176: BSF 08.6
.................... output_float(LCD_DATA7);
0177: BSF 08.7
.................... #else
.................... lcdtris.data = 0xF;
.................... #endif
.................... #endif
....................
.................... lcd_output_rw(1);
0178: BCF 03.5
0179: BSF 09.2
017A: BSF 03.5
017B: BCF 09.2
.................... delay_cycles(1);
017C: NOP
.................... lcd_output_enable(1);
017D: BCF 03.5
017E: BSF 09.0
017F: BSF 03.5
0180: BCF 09.0
.................... delay_cycles(1);
0181: NOP
.................... high = lcd_read_nibble();
0182: BCF 03.5
0183: CALL 13B
0184: MOVF 78,W
0185: MOVWF 4A
....................
.................... lcd_output_enable(0);
0186: BCF 09.0
0187: BSF 03.5
0188: BCF 09.0
.................... delay_cycles(1);
0189: NOP
.................... lcd_output_enable(1);
018A: BCF 03.5
018B: BSF 09.0
018C: BSF 03.5
018D: BCF 09.0
.................... delay_us(1);
018E: GOTO 18F
.................... low = lcd_read_nibble();
018F: BCF 03.5
0190: CALL 13B
0191: MOVF 78,W
0192: MOVWF 49
....................
.................... lcd_output_enable(0);
0193: BCF 09.0
0194: BSF 03.5
0195: BCF 09.0
....................
.................... #if defined(__PCB__)
.................... set_tris_lcd(LCD_OUTPUT_MAP);
.................... #else
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7))
.................... output_drive(LCD_DATA4);
0196: BCF 08.4
.................... output_drive(LCD_DATA5);
0197: BCF 08.5
.................... output_drive(LCD_DATA6);
0198: BCF 08.6
.................... output_drive(LCD_DATA7);
0199: BCF 08.7
.................... #else
.................... lcdtris.data = 0x0;
.................... #endif
.................... #endif
....................
.................... return( (high<<4) | low);
019A: BCF 03.5
019B: SWAPF 4A,W
019C: MOVWF 77
019D: MOVLW F0
019E: ANDWF 77,F
019F: MOVF 77,W
01A0: IORWF 49,W
01A1: MOVWF 78
.................... }
....................
.................... BYTE lcd_read_nibble(void)
.................... {
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7))
*
013B: CLRF 4B
.................... BYTE n = 0x00;
....................
.................... /* Read the data port */
.................... n |= input(LCD_DATA4);
013C: BSF 03.5
013D: BSF 08.4
013E: MOVLW 00
013F: BCF 03.5
0140: BTFSC 08.4
0141: MOVLW 01
0142: IORWF 4B,F
.................... n |= input(LCD_DATA5) << 1;
0143: BSF 03.5
0144: BSF 08.5
0145: MOVLW 00
0146: BCF 03.5
0147: BTFSC 08.5
0148: MOVLW 01
0149: MOVWF 77
014A: BCF 03.0
014B: RLF 77,F
014C: MOVF 77,W
014D: IORWF 4B,F
.................... n |= input(LCD_DATA6) << 2;
014E: BSF 03.5
014F: BSF 08.6
0150: MOVLW 00
0151: BCF 03.5
0152: BTFSC 08.6
0153: MOVLW 01
0154: MOVWF 77
0155: RLF 77,F
0156: RLF 77,F
0157: MOVLW FC
0158: ANDWF 77,F
0159: MOVF 77,W
015A: IORWF 4B,F
.................... n |= input(LCD_DATA7) << 3;
015B: BSF 03.5
015C: BSF 08.7
015D: MOVLW 00
015E: BCF 03.5
015F: BTFSC 08.7
0160: MOVLW 01
0161: MOVWF 77
0162: RLF 77,F
0163: RLF 77,F
0164: RLF 77,F
0165: MOVLW F8
0166: ANDWF 77,F
0167: MOVF 77,W
0168: IORWF 4B,F
....................
.................... return(n);
0169: MOVF 4B,W
016A: MOVWF 78
.................... #else
.................... return(lcd.data);
.................... #endif
.................... }
016B: RETURN
....................
.................... void lcd_send_nibble(BYTE n)
.................... {
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7))
.................... /* Write to the data port */
.................... output_bit(LCD_DATA4, bit_test(n, 0));
*
010F: BTFSC 4A.0
0110: GOTO 113
0111: BCF 08.4
0112: GOTO 114
0113: BSF 08.4
0114: BSF 03.5
0115: BCF 08.4
.................... output_bit(LCD_DATA5, bit_test(n, 1));
0116: BCF 03.5
0117: BTFSC 4A.1
0118: GOTO 11B
0119: BCF 08.5
011A: GOTO 11C
011B: BSF 08.5
011C: BSF 03.5
011D: BCF 08.5
.................... output_bit(LCD_DATA6, bit_test(n, 2));
011E: BCF 03.5
011F: BTFSC 4A.2
0120: GOTO 123
0121: BCF 08.6
0122: GOTO 124
0123: BSF 08.6
0124: BSF 03.5
0125: BCF 08.6
.................... output_bit(LCD_DATA7, bit_test(n, 3));
0126: BCF 03.5
0127: BTFSC 4A.3
0128: GOTO 12B
0129: BCF 08.7
012A: GOTO 12C
012B: BSF 08.7
012C: BSF 03.5
012D: BCF 08.7
.................... #else
.................... lcdlat.data = n;
.................... #endif
....................
.................... delay_cycles(1);
012E: NOP
.................... lcd_output_enable(1);
012F: BCF 03.5
0130: BSF 09.0
0131: BSF 03.5
0132: BCF 09.0
.................... delay_us(2);
0133: GOTO 134
0134: GOTO 135
.................... lcd_output_enable(0);
0135: BCF 03.5
0136: BCF 09.0
0137: BSF 03.5
0138: BCF 09.0
.................... }
0139: BCF 03.5
013A: RETURN
....................
.................... void lcd_send_byte(BYTE address, BYTE n)
.................... {
.................... #if defined(__PCB__)
.................... set_tris_lcd(LCD_OUTPUT_MAP);
.................... #else
.................... lcd_enable_tris();
*
016C: BSF 03.5
016D: BCF 09.0
.................... lcd_rs_tris();
016E: BCF 09.1
.................... lcd_rw_tris();
016F: BCF 09.2
.................... #endif
....................
.................... lcd_output_rs(0);
0170: BCF 03.5
0171: BCF 09.1
0172: BSF 03.5
0173: BCF 09.1
.................... while ( bit_test(lcd_read_byte(),7) ) ;
*
01A2: MOVF 78,W
01A3: MOVWF 49
01A4: BTFSS 49.7
01A5: GOTO 1A8
01A6: BSF 03.5
01A7: GOTO 174
.................... lcd_output_rs(address);
01A8: MOVF 47,F
01A9: BTFSS 03.2
01AA: GOTO 1AD
01AB: BCF 09.1
01AC: GOTO 1AE
01AD: BSF 09.1
01AE: BSF 03.5
01AF: BCF 09.1
.................... delay_cycles(1);
01B0: NOP
.................... lcd_output_rw(0);
01B1: BCF 03.5
01B2: BCF 09.2
01B3: BSF 03.5
01B4: BCF 09.2
.................... delay_cycles(1);
01B5: NOP
.................... lcd_output_enable(0);
01B6: BCF 03.5
01B7: BCF 09.0
01B8: BSF 03.5
01B9: BCF 09.0
.................... lcd_send_nibble(n >> 4);
01BA: BCF 03.5
01BB: SWAPF 48,W
01BC: MOVWF 49
01BD: MOVLW 0F
01BE: ANDWF 49,F
01BF: MOVF 49,W
01C0: MOVWF 4A
01C1: CALL 10F
.................... lcd_send_nibble(n & 0xf);
01C2: MOVF 48,W
01C3: ANDLW 0F
01C4: MOVWF 49
01C5: MOVWF 4A
01C6: CALL 10F
.................... }
01C7: RETURN
....................
.................... #if defined(LCD_EXTENDED_NEWLINE)
.................... unsigned int8 g_LcdX, g_LcdY;
.................... #endif
....................
.................... void lcd_init(void)
.................... {
.................... BYTE i;
....................
.................... #if defined(__PCB__)
.................... set_tris_lcd(LCD_OUTPUT_MAP);
.................... #else
.................... #if (defined(LCD_DATA4) && defined(LCD_DATA5) && defined(LCD_DATA6) && defined(LCD_DATA7))
.................... output_drive(LCD_DATA4);
01C8: BSF 03.5
01C9: BCF 08.4
.................... output_drive(LCD_DATA5);
01CA: BCF 08.5
.................... output_drive(LCD_DATA6);
01CB: BCF 08.6
.................... output_drive(LCD_DATA7);
01CC: BCF 08.7
.................... #else
.................... lcdtris.data = 0x0;
.................... #endif
.................... lcd_enable_tris();
01CD: BCF 09.0
.................... lcd_rs_tris();
01CE: BCF 09.1
.................... lcd_rw_tris();
01CF: BCF 09.2
.................... #endif
....................
.................... lcd_output_rs(0);
01D0: BCF 03.5
01D1: BCF 09.1
01D2: BSF 03.5
01D3: BCF 09.1
.................... lcd_output_rw(0);
01D4: BCF 03.5
01D5: BCF 09.2
01D6: BSF 03.5
01D7: BCF 09.2
.................... lcd_output_enable(0);
01D8: BCF 03.5
01D9: BCF 09.0
01DA: BSF 03.5
01DB: BCF 09.0
....................
.................... delay_ms(15);
01DC: MOVLW 0F
01DD: BCF 03.5
01DE: MOVWF 43
01DF: CALL 0FB
.................... for(i=1;i<=3;++i)
01E0: MOVLW 01
01E1: MOVWF 35
01E2: MOVF 35,W
01E3: SUBLW 03
01E4: BTFSS 03.0
01E5: GOTO 1EE
.................... {
.................... lcd_send_nibble(3);
01E6: MOVLW 03
01E7: MOVWF 4A
01E8: CALL 10F
.................... delay_ms(5);
01E9: MOVLW 05
01EA: MOVWF 43
01EB: CALL 0FB
.................... }
01EC: INCF 35,F
01ED: GOTO 1E2
....................
.................... lcd_send_nibble(2);
01EE: MOVLW 02
01EF: MOVWF 4A
01F0: CALL 10F
.................... for(i=0;i<=3;++i)
01F1: CLRF 35
01F2: MOVF 35,W
01F3: SUBLW 03
01F4: BTFSS 03.0
01F5: GOTO 1FF
.................... lcd_send_byte(0,LCD_INIT_STRING[i]);
01F6: MOVF 35,W
01F7: CALL 004
01F8: MOVWF 36
01F9: CLRF 47
01FA: MOVF 36,W
01FB: MOVWF 48
01FC: CALL 16C
....................
.................... #if defined(LCD_EXTENDED_NEWLINE)
01FD: INCF 35,F
01FE: GOTO 1F2
.................... g_LcdX = 0;
.................... g_LcdY = 0;
.................... #endif
.................... }
01FF: RETURN
....................
.................... void lcd_gotoxy(BYTE x, BYTE y)
.................... {
.................... BYTE address;
....................
.................... if(y!=1)
0200: DECFSZ 44,W
0201: GOTO 203
0202: GOTO 206
.................... address=LCD_LINE_TWO;
0203: MOVLW 40
0204: MOVWF 45
.................... else
0205: GOTO 207
.................... address=0;
0206: CLRF 45
....................
.................... address+=x-1;
0207: MOVLW 01
0208: SUBWF 43,W
0209: ADDWF 45,F
.................... lcd_send_byte(0,0x80|address);
020A: MOVF 45,W
020B: IORLW 80
020C: MOVWF 46
020D: CLRF 47
020E: MOVF 46,W
020F: MOVWF 48
0210: CALL 16C
....................
.................... #if defined(LCD_EXTENDED_NEWLINE)
.................... g_LcdX = x - 1;
.................... g_LcdY = y - 1;
.................... #endif
.................... }
0211: RETURN
....................
.................... void lcd_putc(char c)
.................... {
.................... switch (c)
.................... {
0212: MOVF 42,W
0213: XORLW 07
0214: BTFSC 03.2
0215: GOTO 220
0216: XORLW 0B
0217: BTFSC 03.2
0218: GOTO 225
0219: XORLW 06
021A: BTFSC 03.2
021B: GOTO 22D
021C: XORLW 02
021D: BTFSC 03.2
021E: GOTO 233
021F: GOTO 238
.................... case '\a' : lcd_gotoxy(1,1); break;
0220: MOVLW 01
0221: MOVWF 43
0222: MOVWF 44
0223: CALL 200
0224: GOTO 23E
....................
.................... case '\f' : lcd_send_byte(0,1);
0225: CLRF 47
0226: MOVLW 01
0227: MOVWF 48
0228: CALL 16C
.................... delay_ms(2);
0229: MOVLW 02
022A: MOVWF 43
022B: CALL 0FB
.................... #if defined(LCD_EXTENDED_NEWLINE)
.................... g_LcdX = 0;
.................... g_LcdY = 0;
.................... #endif
.................... break;
022C: GOTO 23E
....................
.................... #if defined(LCD_EXTENDED_NEWLINE)
.................... case '\r' : lcd_gotoxy(1, g_LcdY+1); break;
.................... case '\n' :
.................... while (g_LcdX++ < LCD_LINE_LENGTH)
.................... {
.................... lcd_send_byte(1, ' ');
.................... }
.................... lcd_gotoxy(1, g_LcdY+2);
.................... break;
.................... #else
.................... case '\n' : lcd_gotoxy(1,2); break;
022D: MOVLW 01
022E: MOVWF 43
022F: MOVLW 02
0230: MOVWF 44
0231: CALL 200
0232: GOTO 23E
.................... #endif
....................
.................... case '\b' : lcd_send_byte(0,0x10); break;
0233: CLRF 47
0234: MOVLW 10
0235: MOVWF 48
0236: CALL 16C
0237: GOTO 23E
....................
.................... #if defined(LCD_EXTENDED_NEWLINE)
.................... default :
.................... if (g_LcdX < LCD_LINE_LENGTH)
.................... {
.................... lcd_send_byte(1, c);
.................... g_LcdX++;
.................... }
.................... break;
.................... #else
.................... default : lcd_send_byte(1,c); break;
0238: MOVLW 01
0239: MOVWF 47
023A: MOVF 42,W
023B: MOVWF 48
023C: CALL 16C
023D: GOTO 23E
.................... #endif
.................... }
.................... }
023E: RETURN
....................
.................... char lcd_getc(BYTE x, BYTE y)
.................... {
.................... char value;
....................
.................... lcd_gotoxy(x,y);
.................... while ( bit_test(lcd_read_byte(),7) ); // wait until busy flag is low
.................... lcd_output_rs(1);
.................... value = lcd_read_byte();
.................... lcd_output_rs(0);
....................
.................... return(value);
.................... }
....................
....................
.................... #include "../SHT25.h"
....................
.................... #define SHT25_HEATER_ON 0x04
.................... #define SHT25_HEATER_OFF 0x00
.................... #define SHT25_OTP_reload_off 0x02
.................... #define SHT25_RH12_T14 0x00
.................... #define SHT25_RH8_T12 0x01
.................... #define SHT25_RH10_T13 0x80
.................... #define SHT25_RH11_T11 0x81
....................
.................... #define SHT25_ADDR 0x80
....................
.................... #include "SHT25.c"
.................... void SHT25_soft_reset()
.................... {
.................... i2c_start(); // Start condition
.................... i2c_write(0x80); // Device address
.................... i2c_write(0xFE); // Device command
.................... i2c_stop(); // Stop condition
.................... }
....................
.................... unsigned int8 SHT25_setup(unsigned int8 setup_reg ) // writes to status register and returns its value
.................... {
.................... unsigned int8 reg;
....................
.................... i2c_start(); // Start condition
.................... i2c_write(SHT25_ADDR); // Device address
.................... i2c_write(0xE7); // Device command
....................
.................... i2c_start(); // Start condition
.................... i2c_write(SHT25_ADDR+1); // Device address
.................... reg=i2c_read(0); // Read status actual status register
....................
.................... reg = (reg & 0x3A) | setup_reg;
....................
.................... i2c_start(); // Start condition
.................... i2c_write(SHT25_ADDR); // Device address
.................... i2c_write(0xE6); // Write to status register
.................... i2c_write(reg); // Device command
.................... i2c_stop(); // Stop condition
....................
.................... delay_ms(10);
....................
.................... i2c_start(); // Start condition
.................... i2c_write(SHT25_ADDR); // Device address
.................... i2c_write(0xE7); // Device command
....................
.................... i2c_start(); // Start condition
.................... i2c_write(SHT25_ADDR+1); // Device address
.................... reg=i2c_read(0); // Read status actual status register
....................
.................... return (reg);
.................... }
....................
....................
.................... float SHT25_get_temp()
.................... {
.................... unsigned int8 MSB, LSB, Check;
.................... unsigned int16 data;
....................
.................... i2c_start();
*
0567: BSF 20.4
0568: MOVF 20,W
0569: BSF 03.5
056A: MOVWF 07
056B: NOP
056C: BCF 03.5
056D: BSF 20.3
056E: MOVF 20,W
056F: BSF 03.5
0570: MOVWF 07
0571: NOP
0572: BCF 03.5
0573: BTFSS 07.3
0574: GOTO 573
0575: BCF 07.4
0576: BCF 20.4
0577: MOVF 20,W
0578: BSF 03.5
0579: MOVWF 07
057A: NOP
057B: BCF 03.5
057C: BCF 07.3
057D: BCF 20.3
057E: MOVF 20,W
057F: BSF 03.5
0580: MOVWF 07
.................... I2C_Write(SHT25_ADDR);
0581: MOVLW 80
0582: BCF 03.5
0583: MOVWF 3B
0584: CALL 078
.................... I2C_write(0xE3);
0585: MOVLW E3
0586: MOVWF 3B
0587: CALL 078
.................... i2c_stop();
0588: BCF 20.4
0589: MOVF 20,W
058A: BSF 03.5
058B: MOVWF 07
058C: NOP
058D: BCF 03.5
058E: BSF 20.3
058F: MOVF 20,W
0590: BSF 03.5
0591: MOVWF 07
0592: BCF 03.5
0593: BTFSS 07.3
0594: GOTO 593
0595: NOP
0596: GOTO 597
0597: NOP
0598: BSF 20.4
0599: MOVF 20,W
059A: BSF 03.5
059B: MOVWF 07
059C: NOP
....................
.................... delay_ms(100);
059D: MOVLW 64
059E: BCF 03.5
059F: MOVWF 43
05A0: CALL 0FB
....................
.................... i2c_start();
05A1: BSF 20.4
05A2: MOVF 20,W
05A3: BSF 03.5
05A4: MOVWF 07
05A5: NOP
05A6: BCF 03.5
05A7: BSF 20.3
05A8: MOVF 20,W
05A9: BSF 03.5
05AA: MOVWF 07
05AB: NOP
05AC: BCF 03.5
05AD: BCF 07.4
05AE: BCF 20.4
05AF: MOVF 20,W
05B0: BSF 03.5
05B1: MOVWF 07
05B2: NOP
05B3: BCF 03.5
05B4: BCF 07.3
05B5: BCF 20.3
05B6: MOVF 20,W
05B7: BSF 03.5
05B8: MOVWF 07
.................... I2C_Write(SHT25_ADDR+1);
05B9: MOVLW 81
05BA: BCF 03.5
05BB: MOVWF 3B
05BC: CALL 078
.................... MSB=i2c_read(1);
05BD: MOVLW 01
05BE: MOVWF 77
05BF: CALL 285
05C0: MOVF 78,W
05C1: MOVWF 35
.................... LSB=i2c_read(1);
05C2: MOVLW 01
05C3: MOVWF 77
05C4: CALL 285
05C5: MOVF 78,W
05C6: MOVWF 36
.................... Check=i2c_read(0);
05C7: CLRF 77
05C8: CALL 285
05C9: MOVF 78,W
05CA: MOVWF 37
.................... i2c_stop();
05CB: BCF 20.4
05CC: MOVF 20,W
05CD: BSF 03.5
05CE: MOVWF 07
05CF: NOP
05D0: BCF 03.5
05D1: BSF 20.3
05D2: MOVF 20,W
05D3: BSF 03.5
05D4: MOVWF 07
05D5: BCF 03.5
05D6: BTFSS 07.3
05D7: GOTO 5D6
05D8: NOP
05D9: GOTO 5DA
05DA: NOP
05DB: BSF 20.4
05DC: MOVF 20,W
05DD: BSF 03.5
05DE: MOVWF 07
05DF: NOP
....................
.................... LSB = LSB >> 2; // trow out status bits
05E0: BCF 03.5
05E1: RRF 36,F
05E2: RRF 36,F
05E3: MOVLW 3F
05E4: ANDWF 36,F
....................
.................... data = (((unsigned int16) MSB << 8) + (LSB << 4));
05E5: CLRF 3B
05E6: MOVF 35,W
05E7: MOVWF 3A
05E8: MOVWF 3B
05E9: CLRF 3A
05EA: SWAPF 36,W
05EB: MOVWF 77
05EC: MOVLW F0
05ED: ANDWF 77,F
05EE: MOVF 77,W
05EF: ADDWF 3A,W
05F0: MOVWF 38
05F1: MOVF 3B,W
05F2: MOVWF 39
05F3: BTFSC 03.0
05F4: INCF 39,F
.................... return(-46.85 + 175.72*((float)data/0xFFFF));
05F5: MOVF 39,W
05F6: MOVWF 3B
05F7: MOVF 38,W
05F8: MOVWF 3A
05F9: CALL 2CA
05FA: MOVF 77,W
05FB: MOVWF 3A
05FC: MOVF 78,W
05FD: MOVWF 3B
05FE: MOVF 79,W
05FF: MOVWF 3C
0600: MOVF 7A,W
0601: MOVWF 3D
0602: MOVWF 41
0603: MOVF 79,W
0604: MOVWF 40
0605: MOVF 78,W
0606: MOVWF 3F
0607: MOVF 77,W
0608: MOVWF 3E
0609: CLRF 45
060A: MOVLW FF
060B: MOVWF 44
060C: MOVLW 7F
060D: MOVWF 43
060E: MOVLW 8E
060F: MOVWF 42
0610: CALL 2E7
0611: MOVLW 52
0612: MOVWF 45
0613: MOVLW B8
0614: MOVWF 44
0615: MOVLW 2F
0616: MOVWF 43
0617: MOVLW 86
0618: MOVWF 42
0619: MOVF 7A,W
061A: MOVWF 49
061B: MOVF 79,W
061C: MOVWF 48
061D: MOVF 78,W
061E: MOVWF 47
061F: MOVF 77,W
0620: MOVWF 46
0621: CALL 3B1
0622: BCF 03.1
0623: MOVLW 66
0624: MOVWF 3D
0625: MOVWF 3C
0626: MOVLW BB
0627: MOVWF 3B
0628: MOVLW 84
0629: MOVWF 3A
062A: MOVF 7A,W
062B: MOVWF 41
062C: MOVF 79,W
062D: MOVWF 40
062E: MOVF 78,W
062F: MOVWF 3F
0630: MOVF 77,W
0631: MOVWF 3E
0632: CALL 426
.................... }
0633: BSF 0A.3
0634: BCF 0A.4
0635: GOTO 38B (RETURN)
....................
.................... float SHT25_get_hum()
.................... {
.................... unsigned int8 MSB, LSB, Check;
.................... unsigned int16 data;
....................
.................... i2c_start(); //RH
0636: BSF 20.4
0637: MOVF 20,W
0638: BSF 03.5
0639: MOVWF 07
063A: NOP
063B: BCF 03.5
063C: BSF 20.3
063D: MOVF 20,W
063E: BSF 03.5
063F: MOVWF 07
0640: NOP
0641: BCF 03.5
0642: BCF 07.4
0643: BCF 20.4
0644: MOVF 20,W
0645: BSF 03.5
0646: MOVWF 07
0647: NOP
0648: BCF 03.5
0649: BCF 07.3
064A: BCF 20.3
064B: MOVF 20,W
064C: BSF 03.5
064D: MOVWF 07
.................... I2C_Write(SHT25_ADDR);
064E: MOVLW 80
064F: BCF 03.5
0650: MOVWF 3B
0651: CALL 078
.................... I2C_write(0xE5);
0652: MOVLW E5
0653: MOVWF 3B
0654: CALL 078
....................
.................... delay_ms(100);
0655: MOVLW 64
0656: MOVWF 43
0657: CALL 0FB
....................
.................... i2c_start();
0658: BSF 20.4
0659: MOVF 20,W
065A: BSF 03.5
065B: MOVWF 07
065C: NOP
065D: BCF 03.5
065E: BSF 20.3
065F: MOVF 20,W
0660: BSF 03.5
0661: MOVWF 07
0662: NOP
0663: BCF 03.5
0664: BTFSS 07.3
0665: GOTO 664
0666: BCF 07.4
0667: BCF 20.4
0668: MOVF 20,W
0669: BSF 03.5
066A: MOVWF 07
066B: NOP
066C: BCF 03.5
066D: BCF 07.3
066E: BCF 20.3
066F: MOVF 20,W
0670: BSF 03.5
0671: MOVWF 07
.................... I2C_Write(SHT25_ADDR+1);
0672: MOVLW 81
0673: BCF 03.5
0674: MOVWF 3B
0675: CALL 078
.................... MSB=i2c_read(1);
0676: MOVLW 01
0677: MOVWF 77
0678: CALL 285
0679: MOVF 78,W
067A: MOVWF 35
.................... LSB=i2c_read(1);
067B: MOVLW 01
067C: MOVWF 77
067D: CALL 285
067E: MOVF 78,W
067F: MOVWF 36
.................... Check=i2c_read(0);
0680: CLRF 77
0681: CALL 285
0682: MOVF 78,W
0683: MOVWF 37
.................... i2c_stop();
0684: BCF 20.4
0685: MOVF 20,W
0686: BSF 03.5
0687: MOVWF 07
0688: NOP
0689: BCF 03.5
068A: BSF 20.3
068B: MOVF 20,W
068C: BSF 03.5
068D: MOVWF 07
068E: BCF 03.5
068F: BTFSS 07.3
0690: GOTO 68F
0691: NOP
0692: GOTO 693
0693: NOP
0694: BSF 20.4
0695: MOVF 20,W
0696: BSF 03.5
0697: MOVWF 07
0698: NOP
....................
.................... LSB = LSB >> 2; // trow out status bits
0699: BCF 03.5
069A: RRF 36,F
069B: RRF 36,F
069C: MOVLW 3F
069D: ANDWF 36,F
....................
.................... data = (((unsigned int16) MSB << 8) + (LSB << 4) );
069E: CLRF 3B
069F: MOVF 35,W
06A0: MOVWF 3A
06A1: MOVWF 3B
06A2: CLRF 3A
06A3: SWAPF 36,W
06A4: MOVWF 77
06A5: MOVLW F0
06A6: ANDWF 77,F
06A7: MOVF 77,W
06A8: ADDWF 3A,W
06A9: MOVWF 38
06AA: MOVF 3B,W
06AB: MOVWF 39
06AC: BTFSC 03.0
06AD: INCF 39,F
.................... return( -6.0 + 125.0*((float)data/0xFFFF));
06AE: MOVF 39,W
06AF: MOVWF 3B
06B0: MOVF 38,W
06B1: MOVWF 3A
06B2: CALL 2CA
06B3: MOVF 77,W
06B4: MOVWF 3A
06B5: MOVF 78,W
06B6: MOVWF 3B
06B7: MOVF 79,W
06B8: MOVWF 3C
06B9: MOVF 7A,W
06BA: MOVWF 3D
06BB: MOVWF 41
06BC: MOVF 79,W
06BD: MOVWF 40
06BE: MOVF 78,W
06BF: MOVWF 3F
06C0: MOVF 77,W
06C1: MOVWF 3E
06C2: CLRF 45
06C3: MOVLW FF
06C4: MOVWF 44
06C5: MOVLW 7F
06C6: MOVWF 43
06C7: MOVLW 8E
06C8: MOVWF 42
06C9: CALL 2E7
06CA: CLRF 45
06CB: CLRF 44
06CC: MOVLW 7A
06CD: MOVWF 43
06CE: MOVLW 85
06CF: MOVWF 42
06D0: MOVF 7A,W
06D1: MOVWF 49
06D2: MOVF 79,W
06D3: MOVWF 48
06D4: MOVF 78,W
06D5: MOVWF 47
06D6: MOVF 77,W
06D7: MOVWF 46
06D8: CALL 3B1
06D9: BCF 03.1
06DA: CLRF 3D
06DB: CLRF 3C
06DC: MOVLW C0
06DD: MOVWF 3B
06DE: MOVLW 81
06DF: MOVWF 3A
06E0: MOVF 7A,W
06E1: MOVWF 41
06E2: MOVF 79,W
06E3: MOVWF 40
06E4: MOVF 78,W
06E5: MOVWF 3F
06E6: MOVF 77,W
06E7: MOVWF 3E
06E8: CALL 426
.................... }
06E9: BSF 0A.3
06EA: BCF 0A.4
06EB: GOTO 396 (RETURN)
....................
....................
....................
....................
.................... #include "../LTS01.h"
.................... //Adresa pro VDD, VDD, VDD W 0x9E R 0x9F
.................... //Adresa pro GND GND GND W 0x90 R 0x91
....................
.................... #define LTS01A_address 0x90
....................
.................... #include "LTS01.c"
.................... float LTS01_get_temp()
.................... {
.................... unsigned int8 MSB;
.................... unsigned int8 LSB;
.................... signed int16 data;
....................
.................... i2c_start();
06EC: BSF 20.4
06ED: MOVF 20,W
06EE: BSF 03.5
06EF: MOVWF 07
06F0: NOP
06F1: BCF 03.5
06F2: BSF 20.3
06F3: MOVF 20,W
06F4: BSF 03.5
06F5: MOVWF 07
06F6: NOP
06F7: BCF 03.5
06F8: BCF 07.4
06F9: BCF 20.4
06FA: MOVF 20,W
06FB: BSF 03.5
06FC: MOVWF 07
06FD: NOP
06FE: BCF 03.5
06FF: BCF 07.3
0700: BCF 20.3
0701: MOVF 20,W
0702: BSF 03.5
0703: MOVWF 07
.................... I2C_Write(LTS01A_address);
0704: MOVLW 90
0705: BCF 03.5
0706: MOVWF 3B
0707: CALL 078
.................... I2C_write(0x00);
0708: CLRF 3B
0709: CALL 078
.................... i2c_stop();
070A: BCF 20.4
070B: MOVF 20,W
070C: BSF 03.5
070D: MOVWF 07
070E: NOP
070F: BCF 03.5
0710: BSF 20.3
0711: MOVF 20,W
0712: BSF 03.5
0713: MOVWF 07
0714: BCF 03.5
0715: BTFSS 07.3
0716: GOTO 715
0717: NOP
0718: GOTO 719
0719: NOP
071A: BSF 20.4
071B: MOVF 20,W
071C: BSF 03.5
071D: MOVWF 07
071E: NOP
.................... i2c_start();
071F: BCF 03.5
0720: BSF 20.4
0721: MOVF 20,W
0722: BSF 03.5
0723: MOVWF 07
0724: NOP
0725: BCF 03.5
0726: BSF 20.3
0727: MOVF 20,W
0728: BSF 03.5
0729: MOVWF 07
072A: NOP
072B: BCF 03.5
072C: BCF 07.4
072D: BCF 20.4
072E: MOVF 20,W
072F: BSF 03.5
0730: MOVWF 07
0731: NOP
0732: BCF 03.5
0733: BCF 07.3
0734: BCF 20.3
0735: MOVF 20,W
0736: BSF 03.5
0737: MOVWF 07
.................... I2C_Write(LTS01A_address+1);
0738: MOVLW 91
0739: BCF 03.5
073A: MOVWF 3B
073B: CALL 078
.................... MSB=i2c_read(1);
073C: MOVLW 01
073D: MOVWF 77
073E: CALL 285
073F: MOVF 78,W
0740: MOVWF 35
.................... LSB=i2c_read(0);
0741: CLRF 77
0742: CALL 285
0743: MOVF 78,W
0744: MOVWF 36
.................... i2c_stop();
0745: BCF 20.4
0746: MOVF 20,W
0747: BSF 03.5
0748: MOVWF 07
0749: NOP
074A: BCF 03.5
074B: BSF 20.3
074C: MOVF 20,W
074D: BSF 03.5
074E: MOVWF 07
074F: BCF 03.5
0750: BTFSS 07.3
0751: GOTO 750
0752: NOP
0753: GOTO 754
0754: NOP
0755: BSF 20.4
0756: MOVF 20,W
0757: BSF 03.5
0758: MOVWF 07
0759: NOP
....................
.................... data = MAKE16(MSB,LSB);
075A: BCF 03.5
075B: MOVF 35,W
075C: MOVWF 38
075D: MOVF 36,W
075E: MOVWF 37
....................
.................... return (data * 0.00390625 );
075F: MOVF 38,W
0760: MOVWF 3A
0761: MOVF 37,W
0762: MOVWF 39
0763: MOVF 3A,W
0764: MOVWF 3C
0765: MOVF 39,W
0766: MOVWF 3B
*
078B: MOVF 7A,W
078C: MOVWF 45
078D: MOVF 79,W
078E: MOVWF 44
078F: MOVF 78,W
0790: MOVWF 43
0791: MOVF 77,W
0792: MOVWF 42
0793: CLRF 49
0794: CLRF 48
0795: CLRF 47
0796: MOVLW 77
0797: MOVWF 46
0798: CALL 3B1
....................
.................... }
0799: BSF 0A.3
079A: BCF 0A.4
079B: GOTO 3A1 (RETURN)
....................
....................
....................
.................... #include "./HMC5883L.h"
.................... // i2c slave addresses
.................... #define HMC5883L_WRT_ADDR 0x3C
.................... #define HMC5883L_READ_ADDR 0x3D
....................
.................... // Register addresses
.................... #define HMC5883L_CFG_A_REG 0x00
.................... #define HMC5883L_CFG_B_REG 0x01
.................... #define HMC5883L_MODE_REG 0x02
.................... #define HMC5883L_X_MSB_REG 0x03
....................
.................... //Konstanty nastavujici rozsah
.................... //pro void set_mag_roz (unsigned int8 h)
.................... #define MAG_ROZ088 0x00
.................... #define MAG_ROZ130 0x20
.................... #define MAG_ROZ190 0x40
.................... #define MAG_ROZ250 0x60
.................... #define MAG_ROZ400 0x80
.................... #define MAG_ROZ470 0xA0
.................... #define MAG_ROZ560 0xC0
.................... #define MAG_ROZ810 0xE0
....................
....................
.................... #include "HMC5883L.c"
.................... //------------------------------
.................... // Low level routines
.................... //------------------------------
.................... void hmc5883l_write_reg(int8 reg, int8 data)
.................... {
.................... i2c_start();
*
00C2: BSF 20.4
00C3: MOVF 20,W
00C4: BSF 03.5
00C5: MOVWF 07
00C6: NOP
00C7: BCF 03.5
00C8: BSF 20.3
00C9: MOVF 20,W
00CA: BSF 03.5
00CB: MOVWF 07
00CC: NOP
00CD: BCF 03.5
00CE: BCF 07.4
00CF: BCF 20.4
00D0: MOVF 20,W
00D1: BSF 03.5
00D2: MOVWF 07
00D3: NOP
00D4: BCF 03.5
00D5: BCF 07.3
00D6: BCF 20.3
00D7: MOVF 20,W
00D8: BSF 03.5
00D9: MOVWF 07
.................... i2c_write(HMC5883L_WRT_ADDR);
00DA: MOVLW 3C
00DB: BCF 03.5
00DC: MOVWF 3B
00DD: CALL 078
.................... i2c_write(reg);
00DE: MOVF 35,W
00DF: MOVWF 3B
00E0: CALL 078
.................... i2c_write(data);
00E1: MOVF 36,W
00E2: MOVWF 3B
00E3: CALL 078
.................... i2c_stop();
00E4: BCF 20.4
00E5: MOVF 20,W
00E6: BSF 03.5
00E7: MOVWF 07
00E8: NOP
00E9: BCF 03.5
00EA: BSF 20.3
00EB: MOVF 20,W
00EC: BSF 03.5
00ED: MOVWF 07
00EE: BCF 03.5
00EF: BTFSS 07.3
00F0: GOTO 0EF
00F1: NOP
00F2: GOTO 0F3
00F3: NOP
00F4: BSF 20.4
00F5: MOVF 20,W
00F6: BSF 03.5
00F7: MOVWF 07
00F8: NOP
.................... }
00F9: BCF 03.5
00FA: RETURN
....................
.................... //------------------------------
.................... int8 hmc5883l_read_reg(int8 reg)
.................... {
.................... int8 retval;
....................
.................... i2c_start();
.................... i2c_write(HMC5883L_WRT_ADDR);
.................... i2c_write(reg);
.................... i2c_start();
.................... i2c_write(HMC5883L_READ_ADDR);
.................... retval = i2c_read(0);
.................... i2c_stop();
....................
.................... return(retval);
.................... }
....................
.................... //------------------------------
.................... typedef struct
.................... {
.................... signed int16 x;
.................... signed int16 y;
.................... signed int16 z;
.................... }hmc5883l_result;
....................
.................... // This global structure holds the values read
.................... // from the HMC5883L x,y,z registers.
.................... hmc5883l_result compass = {0,0,0};
*
0ADB: CLRF 21
0ADC: CLRF 22
0ADD: CLRF 23
0ADE: CLRF 24
0ADF: CLRF 25
0AE0: CLRF 26
....................
.................... //------------------------------
.................... void hmc5883l_read_data(void)
.................... {
.................... unsigned int8 x_lsb;
.................... unsigned int8 x_msb;
....................
.................... unsigned int8 y_lsb;
.................... unsigned int8 y_msb;
....................
.................... unsigned int8 z_lsb;
.................... unsigned int8 z_msb;
....................
.................... i2c_start();
*
0800: BSF 20.4
0801: MOVF 20,W
0802: BSF 03.5
0803: MOVWF 07
0804: NOP
0805: BCF 03.5
0806: BSF 20.3
0807: MOVF 20,W
0808: BSF 03.5
0809: MOVWF 07
080A: NOP
080B: BCF 03.5
080C: BCF 07.4
080D: BCF 20.4
080E: MOVF 20,W
080F: BSF 03.5
0810: MOVWF 07
0811: NOP
0812: BCF 03.5
0813: BCF 07.3
0814: BCF 20.3
0815: MOVF 20,W
0816: BSF 03.5
0817: MOVWF 07
.................... i2c_write(HMC5883L_WRT_ADDR);
0818: MOVLW 3C
0819: BCF 03.5
081A: MOVWF 3B
081B: BCF 0A.3
081C: CALL 078
081D: BSF 0A.3
.................... i2c_write(HMC5883L_X_MSB_REG); // Point to X-msb register
081E: MOVLW 03
081F: MOVWF 3B
0820: BCF 0A.3
0821: CALL 078
0822: BSF 0A.3
.................... i2c_start();
0823: BSF 20.4
0824: MOVF 20,W
0825: BSF 03.5
0826: MOVWF 07
0827: NOP
0828: BCF 03.5
0829: BSF 20.3
082A: MOVF 20,W
082B: BSF 03.5
082C: MOVWF 07
082D: NOP
082E: BCF 03.5
082F: BTFSS 07.3
0830: GOTO 02F
0831: BCF 07.4
0832: BCF 20.4
0833: MOVF 20,W
0834: BSF 03.5
0835: MOVWF 07
0836: NOP
0837: BCF 03.5
0838: BCF 07.3
0839: BCF 20.3
083A: MOVF 20,W
083B: BSF 03.5
083C: MOVWF 07
.................... i2c_write(HMC5883L_READ_ADDR);
083D: MOVLW 3D
083E: BCF 03.5
083F: MOVWF 3B
0840: BCF 0A.3
0841: CALL 078
0842: BSF 0A.3
....................
.................... x_msb = i2c_read();
0843: MOVLW 01
0844: MOVWF 77
0845: BCF 0A.3
0846: CALL 285
0847: BSF 0A.3
0848: MOVF 78,W
0849: MOVWF 36
.................... x_lsb = i2c_read();
084A: MOVLW 01
084B: MOVWF 77
084C: BCF 0A.3
084D: CALL 285
084E: BSF 0A.3
084F: MOVF 78,W
0850: MOVWF 35
....................
.................... z_msb = i2c_read();
0851: MOVLW 01
0852: MOVWF 77
0853: BCF 0A.3
0854: CALL 285
0855: BSF 0A.3
0856: MOVF 78,W
0857: MOVWF 3A
.................... z_lsb = i2c_read();
0858: MOVLW 01
0859: MOVWF 77
085A: BCF 0A.3
085B: CALL 285
085C: BSF 0A.3
085D: MOVF 78,W
085E: MOVWF 39
....................
.................... y_msb = i2c_read();
085F: MOVLW 01
0860: MOVWF 77
0861: BCF 0A.3
0862: CALL 285
0863: BSF 0A.3
0864: MOVF 78,W
0865: MOVWF 38
.................... y_lsb = i2c_read(0); // do a NACK on last read
0866: CLRF 77
0867: BCF 0A.3
0868: CALL 285
0869: BSF 0A.3
086A: MOVF 78,W
086B: MOVWF 37
....................
.................... i2c_stop();
086C: BCF 20.4
086D: MOVF 20,W
086E: BSF 03.5
086F: MOVWF 07
0870: NOP
0871: BCF 03.5
0872: BSF 20.3
0873: MOVF 20,W
0874: BSF 03.5
0875: MOVWF 07
0876: BCF 03.5
0877: BTFSS 07.3
0878: GOTO 077
0879: NOP
087A: GOTO 07B
087B: NOP
087C: BSF 20.4
087D: MOVF 20,W
087E: BSF 03.5
087F: MOVWF 07
0880: NOP
....................
.................... // Combine high and low bytes into 16-bit values.
.................... compass.x = make16(x_msb, x_lsb);
0881: BCF 03.5
0882: MOVF 36,W
0883: MOVWF 22
0884: MOVF 35,W
0885: MOVWF 21
.................... compass.y = make16(y_msb, y_lsb);
0886: MOVF 38,W
0887: MOVWF 24
0888: MOVF 37,W
0889: MOVWF 23
.................... compass.z = make16(z_msb, z_lsb);
088A: MOVF 3A,W
088B: MOVWF 26
088C: MOVF 39,W
088D: MOVWF 25
.................... }
088E: BSF 0A.3
088F: BCF 0A.4
0890: GOTO 3AB (RETURN)
....................
....................
....................
....................
.................... #include <math.h>
.................... ////////////////////////////////////////////////////////////////////////////
.................... //// (C) Copyright 1996,2008 Custom Computer Services ////
.................... //// This source code may only be used by licensed users of the CCS C ////
.................... //// compiler. This source code may only be distributed to other ////
.................... //// licensed users of the CCS C compiler. No other use, reproduction ////
.................... //// or distribution is permitted without written permission. ////
.................... //// Derivative programs created using this software in object code ////
.................... //// form are not restricted in any way. ////
.................... ////////////////////////////////////////////////////////////////////////////
.................... //// ////
.................... //// History: ////
.................... //// * 9/20/2001 : Improvments are made to sin/cos code. ////
.................... //// The code now is small, much faster, ////
.................... //// and more accurate. ////
.................... //// * 2/21/2007 : Compiler handles & operator differently and does
.................... //// not return generic (int8 *) so type cast is done ////
.................... //// ////
.................... ////////////////////////////////////////////////////////////////////////////
....................
.................... #ifndef MATH_H
.................... #define MATH_H
....................
.................... #ifdef PI
.................... #undef PI
.................... #endif
.................... #define PI 3.1415926535897932
....................
....................
.................... #define SQRT2 1.4142135623730950
....................
.................... //float const ps[4] = {5.9304945, 21.125224, 8.9403076, 0.29730279};
.................... //float const qs[4] = {1.0000000, 15.035723, 17.764134, 2.4934718};
....................
.................... ///////////////////////////// Round Functions //////////////////////////////
....................
.................... float32 CEIL_FLOOR(float32 x, unsigned int8 n)
.................... {
.................... float32 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float32)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float32)l);
.................... res = 32768.0*(float32)l;
.................... res += (float32)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float32)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
....................
.................... // Overloaded Functions to take care for new Data types in PCD
.................... // Overloaded function CEIL_FLOOR() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 CEIL_FLOOR(float48 x, unsigned int8 n)
.................... {
.................... float48 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float48)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float48)l);
.................... res = 32768.0*(float32)l;
.................... res += (float48)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float48)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
....................
....................
.................... // Overloaded function CEIL_FLOOR() for data type - Float64
.................... float64 CEIL_FLOOR(float64 x, unsigned int8 n)
.................... {
.................... float64 y, res;
.................... unsigned int16 l;
.................... int1 s;
....................
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y <= 32768.0)
.................... res = (float64)(unsigned int16)y;
....................
.................... else if (y < 10000000.0)
.................... {
.................... l = (unsigned int16)(y/32768.0);
.................... y = 32768.0*(y/32768.0 - (float64)l);
.................... res = 32768.0*(float64)l;
.................... res += (float64)(unsigned int16)y;
.................... }
....................
.................... else
.................... res = y;
....................
.................... y = y - (float64)(unsigned int16)y;
....................
.................... if (s)
.................... res = -res;
....................
.................... if (y != 0)
.................... {
.................... if (s == 1 && n == 0)
.................... res -= 1.0;
....................
.................... if (s == 0 && n == 1)
.................... res += 1.0;
.................... }
.................... if (x == 0)
.................... res = 0;
....................
.................... return (res);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float floor(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : rounds down the number x.
.................... // Date : N/A
.................... //
.................... float32 floor(float32 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
.................... // Following 2 functions are overloaded functions of floor() for PCD
.................... // Overloaded function floor() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 floor(float48 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
....................
.................... // Overloaded function floor() for data type - Float64
.................... float64 floor(float64 x)
.................... {
.................... return CEIL_FLOOR(x, 0);
.................... }
.................... #endif
....................
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float ceil(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : rounds up the number x.
.................... // Date : N/A
.................... //
.................... float32 ceil(float32 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
.................... // Following 2 functions are overloaded functions of ceil() for PCD
.................... // Overloaded function ceil() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 ceil(float48 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
....................
.................... // Overloaded function ceil() for data type - Float64
.................... float64 ceil(float64 x)
.................... {
.................... return CEIL_FLOOR(x, 1);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fabs(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the absolute value of floating point number x
.................... // Returns : returns the absolute value of x
.................... // Date : N/A
.................... //
.................... #define fabs abs
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float fmod(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the floating point remainder of x/y
.................... // Returns : returns the value of x= i*y, for some integer i such that, if y
.................... // is non zero, the result has the same isgn of x na dmagnitude less than the
.................... // magnitude of y. If y is zero then a domain error occurs.
.................... // Date : N/A
.................... //
....................
.................... float fmod(float32 x,float32 y)
.................... {
.................... float32 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... //Overloaded function for fmod() for PCD
.................... // Overloaded function fmod() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 fmod(float48 x,float48 y)
.................... {
.................... float48 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... // Overloaded function fmod() for data type - Float64
.................... float64 fmod(float64 x,float64 y)
.................... {
.................... float64 i;
.................... if (y!=0.0)
.................... {
.................... i=(x/y < 0.0)? ceil(x/y): floor(x/y);
.................... return(x-(i*y));
.................... }
.................... else
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... }
.................... #endif
.................... //////////////////// Exponential and logarithmic functions ////////////////////
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float exp(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (e^x)
.................... // Date : N/A
.................... //
.................... #define LN2 0.6931471805599453
....................
.................... float const pe[6] = {0.000207455774, 0.00127100575, 0.00965065093,
.................... 0.0554965651, 0.240227138, 0.693147172};
....................
....................
.................... float32 exp(float32 x)
.................... {
.................... float32 y, res, r;
.................... #if defined(__PCD__)
.................... int8 data1;
.................... #endif
.................... signed int8 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 88.722838)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&res)) = n + 0x7F;
.................... #endif
....................
.................... #if defined(__PCD__) // Takes care of IEEE format for PCD
.................... data1 = n+0x7F;
.................... if(bit_test(data1,0))
.................... bit_set(*(((unsigned int8 *)(&res)+2)),7);
.................... rotate_right(&data1,1);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&res)+3)) = data1;
.................... #endif
....................
.................... y = y/LN2 - (float32)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
....................
.................... //Overloaded function for exp() for PCD
.................... // Overloaded function exp() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 exp(float48 x)
.................... {
.................... float48 y, res, r;
.................... int8 data1;
.................... signed int8 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 88.722838)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
....................
.................... data1 = n+0x7F;
.................... if(bit_test(data1,0))
.................... bit_set(*(((unsigned int8 *)(&res)+4)),7);
.................... rotate_right(&data1,1);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&res)+5)) = data1;
....................
.................... y = y/LN2 - (float48)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
.................... // Overloaded function exp() for data type - Float64
.................... float64 exp(float64 x)
.................... {
.................... float64 y, res, r;
.................... unsigned int16 data1, data2;
.................... unsigned int16 *p;
.................... signed int16 n;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x > 709.7827128)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... n = (signed int16)(x/LN2);
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... n = -n;
.................... y = -y;
.................... }
....................
.................... res = 0.0;
....................
.................... #if !defined(__PCD__)
.................... *((unsigned int16 *)(&res)) = n + 0x7F;
.................... #endif
.................... p= (((unsigned int16 *)(&res))+3);
.................... data1 = *p;
.................... data2 = *p;
.................... data1 = n + 0x3FF;
.................... data1 = data1 <<4;
.................... if(bit_test(data2,15))
.................... bit_set(data1,15);
.................... data2 = data2 & 0x000F;
.................... data1 ^= data2;
....................
.................... *(((unsigned int16 *)(&res)+3)) = data1;
....................
....................
.................... y = y/LN2 - (float64)n;
....................
.................... r = pe[0]*y + pe[1];
.................... r = r*y + pe[2];
.................... r = r*y + pe[3];
.................... r = r*y + pe[4];
.................... r = r*y + pe[5];
....................
.................... res = res*(1.0 + y*r);
....................
.................... if (s)
.................... res = 1.0/res;
.................... return(res);
.................... }
....................
.................... #ENDIF
....................
....................
.................... /************************************************************/
....................
.................... float32 const pl[4] = {0.45145214, -9.0558803, 26.940971, -19.860189};
.................... float32 const ql[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the natural log of x
.................... // Date : N/A
.................... //
.................... float32 log(float32 x)
.................... {
.................... float32 y, res, r, y2;
.................... #if defined(__PCD__)
.................... unsigned int8 data1,data2;
.................... #endif
.................... signed int8 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
....................
.................... #if defined(__PCD__) // Takes care of IEEE format
.................... data2 = *(((unsigned int8 *)(&y))+3);
.................... *(((unsigned int8 *)(&y))+3) = 0x3F;
.................... data1 = *(((unsigned int8 *)(&y))+2);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&y))+2) = data1;
.................... if(bit_test(data2,7))
.................... bit_set(*(((unsigned int8 *)(&y))+3),7);
.................... #endif
....................
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl[0]*y2 + pl[1];
.................... res = res*y2 + pl[2];
.................... res = res*y2 + pl[3];
....................
.................... r = ql[0]*y2 + ql[1];
.................... r = r*y2 + ql[2];
.................... r = r*y2 + ql[3];
....................
.................... res = y*res/r;
.................... #if !defined(__PCD__)
.................... n = *((unsigned int8 *)(&x)) - 0x7E;
.................... #endif
.................... #if defined(__PCD__)
.................... data1 = *(((unsigned int8 *)(&x)+3));
.................... rotate_left(&data1,1);
.................... data2 = *(((unsigned int8 *)(&x)+2));
.................... if(bit_test (data2,7))
.................... bit_set(data1,0);
.................... n = data1 - 0x7E;
.................... #endif
....................
.................... if (n<0)
.................... r = -(float32)-n;
.................... else
.................... r = (float32)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
....................
.................... //Overloaded function for log() for PCD
.................... // Overloaded function log() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 log(float48 x)
.................... {
.................... float48 y, res, r, y2;
.................... unsigned int8 data1,data2;
.................... signed int8 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
....................
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
.................... data2 = *(((unsigned int8 *)(&y))+5);
.................... *(((unsigned int8 *)(&y))+5) = 0x3F;
.................... data1 = *(((unsigned int8 *)(&y))+4);
.................... bit_clear(data1,7);
.................... *(((unsigned int8 *)(&y))+4) = data1;
....................
.................... if(bit_test(data2,7))
.................... bit_set(*(((unsigned int8 *)(&y))+4),7);
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl[0]*y2 + pl[1];
.................... res = res*y2 + pl[2];
.................... res = res*y2 + pl[3];
....................
.................... r = ql[0]*y2 + ql[1];
.................... r = r*y2 + ql[2];
.................... r = r*y2 + ql[3];
....................
.................... res = y*res/r;
....................
.................... data1 = *(((unsigned int8 *)(&x)+5));
.................... rotate_left(&data1,1);
.................... data2 = *(((unsigned int8 *)(&x)+4));
.................... if(bit_test (data2,7))
.................... bit_set(data1,0);
....................
.................... n = data1 - 0x7E;
....................
.................... if (n<0)
.................... r = -(float48)-n;
.................... else
.................... r = (float48)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function log() for data type - Float48
.................... #if defined(__PCD__)
.................... float32 const pl_64[4] = {0.45145214, -9.0558803, 26.940971, -19.860189};
.................... float32 const ql_64[4] = {1.0000000, -8.1354259, 16.780517, -9.9300943};
.................... #endif
.................... float64 log(float64 x)
.................... {
.................... float64 y, res, r, y2;
.................... unsigned int16 data1,data2;
.................... unsigned int16 *p;
.................... signed int16 n;
.................... #ifdef _ERRNO
.................... if(x <0)
.................... {
.................... errno=EDOM;
.................... }
.................... if(x ==0)
.................... {
.................... errno=ERANGE;
.................... return(0);
.................... }
.................... #endif
.................... y = x;
....................
.................... if (y != 1.0)
.................... {
.................... #if !defined(__PCD__)
.................... *((unsigned int8 *)(&y)) = 0x7E;
.................... #endif
.................... p= (((unsigned int16 *)(&y))+3);
.................... data1 = *p;
.................... data2 = *p;
.................... data1 = 0x3FE;
.................... data1 = data1 <<4;
.................... if(bit_test (data2,15))
.................... bit_set(data1,15);
.................... data2 = data2 & 0x000F;
.................... data1 ^=data2;
....................
.................... *p = data1;
....................
.................... y = (y - 1.0)/(y + 1.0);
....................
.................... y2=y*y;
....................
.................... res = pl_64[0]*y2 + pl_64[1];
.................... res = res*y2 + pl_64[2];
.................... res = res*y2 + pl_64[3];
....................
.................... r = ql_64[0]*y2 + ql_64[1];
.................... r = r*y2 + ql_64[2];
.................... r = r*y2 + ql_64[3];
....................
.................... res = y*res/r;
....................
.................... p= (((unsigned int16 *)(&x))+3);
.................... data1 = *p;
.................... bit_clear(data1,15);
.................... data1 = data1 >>4;
.................... n = data1 - 0x3FE;
....................
....................
.................... if (n<0)
.................... r = -(float64)-n;
.................... else
.................... r = (float64)n;
....................
.................... res += r*LN2;
.................... }
....................
.................... else
.................... res = 0.0;
....................
.................... return(res);
.................... }
.................... #endif
....................
....................
.................... #define LN10 2.3025850929940456
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float log10(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the the log base 10 of x
.................... // Date : N/A
.................... //
.................... float32 log10(float32 x)
.................... {
.................... float32 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
....................
.................... //Overloaded functions for log10() for PCD
.................... // Overloaded function log10() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 log10(float48 x)
.................... {
.................... float48 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
....................
.................... // Overloaded function log10() for data type - Float64
.................... float64 log10(float64 x)
.................... {
.................... float64 r;
....................
.................... r = log(x);
.................... r = r/LN10;
.................... return(r);
.................... }
.................... #endif
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float modf(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description :breaks the argument value int integral and fractional parts,
.................... // ach of which have the same sign as the argument. It stores the integral part
.................... // as a float in the object pointed to by the iptr
.................... // Returns : returns the signed fractional part of value.
.................... // Date : N/A
.................... //
....................
.................... float32 modf(float32 value,float32 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... //Overloaded functions for modf() for PCD
.................... // Overloaded function modf() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 modf(float48 value,float48 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... // Overloaded function modf() for data type - Float64
.................... float64 modf(float64 value,float64 *iptr)
.................... {
.................... *iptr=(value < 0.0)? ceil(value): floor(value);
.................... return(value - *iptr);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pwr(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... // Note : 0 is returned when the function will generate an imaginary number
.................... //
.................... float32 pwr(float32 x,float32 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... //Overloaded functions for pwr() for PCD
.................... // Overloaded function pwr() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 pwr(float48 x,float48 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... // Overloaded function pwr() for data type - Float64
.................... float64 pwr(float64 x,float64 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... #endif
....................
.................... //////////////////// Power functions ////////////////////
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float pow(float x,float y)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the value (x^y)
.................... // Date : N/A
.................... // Note : 0 is returned when the function will generate an imaginary number
.................... //
.................... float32 pow(float32 x,float32 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... //Overloaded functions for pow() for PCD
.................... // Overloaded function for pow() data type - Float48
.................... #if defined(__PCD__)
.................... float48 pow(float48 x,float48 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
....................
.................... // Overloaded function pow() for data type - Float64
.................... float64 pow(float64 x,float64 y)
.................... {
.................... if(0 > x && fmod(y, 1) == 0) {
.................... if(fmod(y, 2) == 0) {
.................... return (exp(log(-x) * y));
.................... } else {
.................... return (-exp(log(-x) * y));
.................... }
.................... } else if(0 > x && fmod(y, 1) != 0) {
.................... return 0;
.................... } else {
.................... if(x != 0 || 0 >= y) {
.................... return (exp(log(x) * y));
.................... }
.................... }
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sqrt(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the square root of x
.................... // Date : N/A
.................... //
.................... float32 sqrt(float32 x)
.................... {
.................... float32 y, res;
.................... #if defined(__PCD__)
.................... unsigned int16 data1,data2;
.................... #endif
.................... BYTE *p;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
....................
.................... #if !defined(__PCD__)
.................... p=&y;
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1);
.................... #endif
....................
.................... #if defined(__PCD__)
.................... p = (((unsigned int8 *)(&y))+3);
.................... data1 = *(((unsigned int8 *)(&y))+3);
.................... data2 = *(((unsigned int8 *)(&y))+2);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1 = ((data1+127) >>1);
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+3) = data1;
.................... *(((unsigned int8 *)(&y))+2) = data2;
....................
.................... #endif
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
....................
.................... #if !defined(__PCD__)
.................... (*p)--;
.................... #endif
....................
.................... #if defined(__PCD__)
.................... data1 = *(((unsigned int8 *)(&y))+3);
.................... data2 = *(((unsigned int8 *)(&y))+2);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1--;
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+3) = data1;
.................... *(((unsigned int8 *)(&y))+2) = data2;
....................
.................... #endif
.................... } while(res != y);
....................
.................... return(res);
.................... }
.................... //Overloaded functions for sqrt() for PCD
.................... // Overloaded function sqrt() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sqrt(float48 x)
.................... {
.................... float48 y, res;
.................... unsigned int16 data1,data2;
.................... BYTE *p;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
....................
.................... #if !defined(__PCD__)
.................... p=&y;
.................... (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1);
.................... #endif
....................
.................... #if defined(__PCD__)
.................... p = (((unsigned int8 *)(&y))+5);
.................... data1 = *(((unsigned int8 *)(&y))+5);
.................... data2 = *(((unsigned int8 *)(&y))+4);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1 = ((data1+127) >>1);
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+5) = data1;
.................... *(((unsigned int8 *)(&y))+4) = data2;
....................
.................... #endif
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
....................
.................... #if !defined(__PCD__)
.................... (*p)--;
.................... #endif
....................
.................... data1 = *(((unsigned int8 *)(&y))+5);
.................... data2 = *(((unsigned int8 *)(&y))+4);
.................... rotate_left(&data1,1);
.................... if(bit_test(data2,7))
.................... bit_set(data1,0);
.................... data1--;
.................... bit_clear(data2,7);
.................... if(bit_test(data1,0))
.................... bit_set(data2,7);
.................... data1 = data1 >>1;
.................... *(((unsigned int8 *)(&y))+5) = data1;
.................... *(((unsigned int8 *)(&y))+4) = data2;
....................
.................... } while(res != y);
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function sqrt() for data type - Float64
.................... float64 sqrt(float64 x)
.................... {
.................... float64 y, res;
.................... unsigned int16 *p;
.................... unsigned int16 temp1,temp2;
....................
.................... #ifdef _ERRNO
.................... if(x < 0)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
....................
.................... if( x<=0.0)
.................... return(0.0);
....................
.................... y=x;
.................... p= (((unsigned int16 *)(&y))+3);
.................... temp1 = *p;
.................... temp2 = *p;
.................... bit_clear(temp1,15);
.................... temp1 = (temp1>>4)+1023;
.................... temp1 = temp1 >> 1;
.................... temp1 = (temp1<<4) & 0xFFF0;
.................... if(bit_test(temp2,15))
.................... bit_set(temp1,15);
.................... temp2 = temp2 & 0x000F;
.................... temp1 ^= temp2;
....................
.................... (*p) = temp1;
....................
.................... do {
.................... res=y;
.................... y+=(x/y);
.................... temp1 = *p;
.................... temp2 = *p;
.................... bit_clear(temp1,15);
.................... temp1 = (temp1>>4);
.................... temp1--;
.................... temp1 = (temp1<<4) & 0xFFF0;
.................... if(bit_test(temp2,15))
.................... bit_set(temp1,15);
.................... temp2 = temp2 & 0x000F;
.................... temp1 ^= temp2;
.................... (*p) = temp1;
....................
.................... } while(res != y);
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... ////////////////////////////// Trig Functions //////////////////////////////
.................... #ifdef PI_DIV_BY_TWO
.................... #undef PI_DIV_BY_TWO
.................... #endif
.................... #define PI_DIV_BY_TWO 1.5707963267948966
.................... #ifdef TWOBYPI
.................... #undef TWOBYPI
.................... #define TWOBYPI 0.6366197723675813
.................... #endif
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float cos(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the cosine value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 cos(float32 x)
.................... {
.................... float32 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float32 frac;
.................... float32 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 1.0;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
....................
.................... //Overloaded functions for cos() for PCD
.................... // Overloaded function cos() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 cos(float48 x)
.................... {
.................... float48 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float48 frac;
.................... float48 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 0.999999999781;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
.................... // Overloaded function cos() for data type - Float48
.................... float64 cos(float64 x)
.................... {
.................... float64 y, t, t2 = 1.0;
.................... unsigned int8 quad, i;
.................... float64 frac;
.................... float64 p[6] = { //by the series definition for cosine
.................... -0.5, // sum ( ( (-1)^n * x^2n )/(2n)! )
.................... 0.04166666666667,
.................... -0.00138888888889,
.................... 0.00002480158730,
.................... -0.00000027557319,
.................... 0.00000000208767,
.................... //-0.00000000001147,
.................... // 0.00000000000005
.................... };
....................
.................... if (x < 0) x = -x; // absolute value of input
....................
.................... quad = (unsigned int8)(x / PI_DIV_BY_TWO); // quadrant
.................... frac = (x / PI_DIV_BY_TWO) - quad; // fractional part of input
.................... quad = quad % 4; // quadrant (0 to 3)
....................
.................... if (quad == 0 || quad == 2)
.................... t = frac * PI_DIV_BY_TWO;
.................... else if (quad == 1)
.................... t = (1-frac) * PI_DIV_BY_TWO;
.................... else // should be 3
.................... t = (frac-1) * PI_DIV_BY_TWO;
....................
.................... y = 0.999999999781;
.................... t = t * t;
.................... for (i = 0; i <= 5; i++)
.................... {
.................... t2 = t2 * t;
.................... y = y + p[i] * t2;
.................... }
....................
.................... if (quad == 2 || quad == 1)
.................... y = -y; // correct sign
....................
.................... return (y);
.................... }
....................
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sin(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the sine value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 sin(float32 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
....................
.................... //Overloaded functions for sin() for PCD
.................... // Overloaded function sin() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sin(float48 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
....................
.................... // Overloaded function sin() for data type - Float48
.................... float64 sin(float64 x)
.................... {
.................... return cos(x - PI_DIV_BY_TWO);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float tan(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the tangent value of the angle x, which is in radian
.................... // Date : 9/20/2001
.................... //
.................... float32 tan(float32 x)
.................... {
.................... float32 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
.................... //Overloaded functions for tan() for PCD
.................... // Overloaded function tan() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 tan(float48 x)
.................... {
.................... float48 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
....................
.................... // Overloaded function tan() for data type - Float48
.................... float64 tan(float64 x)
.................... {
.................... float64 c, s;
....................
.................... c = cos(x);
.................... if (c == 0.0)
.................... return (1.0e+36);
....................
.................... s = sin(x);
.................... return(s/c);
.................... }
.................... #endif
....................
.................... float32 const pas[3] = {0.49559947, -4.6145309, 5.6036290};
.................... float32 const qas[3] = {1.0000000, -5.5484666, 5.6036290};
....................
.................... float32 ASIN_COS(float32 x, unsigned int8 n)
.................... {
.................... float32 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
....................
.................... //Overloaded functions for ASIN_COS() for PCD
.................... // Overloaded function ASIN_COS() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 ASIN_COS(float48 x, unsigned int8 n)
.................... {
.................... float48 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function ASIN_COS() for data type - Float64
.................... float64 ASIN_COS(float64 x, unsigned int8 n)
.................... {
.................... float64 y, res, r, y2;
.................... int1 s;
.................... #ifdef _ERRNO
.................... if(x <-1 || x > 1)
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... s = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 0.5)
.................... {
.................... y = sqrt((1.0 - y)/2.0);
.................... n += 2;
.................... }
....................
.................... y2=y*y;
....................
.................... res = pas[0]*y2 + pas[1];
.................... res = res*y2 + pas[2];
....................
.................... r = qas[0]*y2 + qas[1];
.................... r = r*y2 + qas[2];
....................
.................... res = y*res/r;
....................
.................... if (n & 2) // |x| > 0.5
.................... res = PI_DIV_BY_TWO - 2.0*res;
.................... if (s)
.................... res = -res;
.................... if (n & 1) // take arccos
.................... res = PI_DIV_BY_TWO - res;
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float asin(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arcsine value of the value x.
.................... // Date : N/A
.................... //
.................... float32 asin(float32 x)
.................... {
.................... float32 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
.................... //Overloaded functions for asin() for PCD
.................... // Overloaded function asin() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 asin(float48 x)
.................... {
.................... float48 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
....................
.................... // Overloaded function asin() for data type - Float64
.................... float64 asin(float64 x)
.................... {
.................... float64 r;
....................
.................... r = ASIN_COS(x, 0);
.................... return(r);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float acos(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arccosine value of the value x.
.................... // Date : N/A
.................... //
.................... float32 acos(float32 x)
.................... {
.................... float32 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
.................... //Overloaded functions for acos() for PCD
.................... // Overloaded function acos() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 acos(float48 x)
.................... {
.................... float48 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
....................
.................... // Overloaded function acos() for data type - Float64
.................... float64 acos(float64 x)
.................... {
.................... float64 r;
....................
.................... r = ASIN_COS(x, 1);
.................... return(r);
.................... }
.................... #endif
....................
.................... float32 const pat[4] = {0.17630401, 5.6710795, 22.376096, 19.818457};
.................... float32 const qat[4] = {1.0000000, 11.368190, 28.982246, 19.818457};
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float atan(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : returns the arctangent value of the value x.
.................... // Date : N/A
.................... //
.................... float32 atan(float32 x)
.................... {
.................... float32 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
.................... //Overloaded functions for atan() for PCD
.................... // Overloaded function atan() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 atan(float48 x)
.................... {
.................... float48 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
....................
.................... // Overloaded function atan() for data type - Float64
.................... float64 atan(float64 x)
.................... {
.................... float64 y, res, r;
.................... int1 s, flag;
....................
.................... s = 0;
.................... flag = 0;
.................... y = x;
....................
.................... if (x < 0)
.................... {
.................... s = 1;
.................... y = -y;
.................... }
....................
.................... if (y > 1.0)
.................... {
.................... y = 1.0/y;
.................... flag = 1;
.................... }
....................
.................... res = pat[0]*y*y + pat[1];
.................... res = res*y*y + pat[2];
.................... res = res*y*y + pat[3];
....................
.................... r = qat[0]*y*y + qat[1];
.................... r = r*y*y + qat[2];
.................... r = r*y*y + qat[3];
....................
.................... res = y*res/r;
....................
....................
.................... if (flag) // for |x| > 1
.................... res = PI_DIV_BY_TWO - res;
.................... if (s)
.................... res = -res;
....................
.................... return(res);
.................... }
.................... #endif
....................
.................... /////////////////////////////////////////////////////////////////////////////
.................... // float atan2(float y, float x)
.................... /////////////////////////////////////////////////////////////////////////////
.................... // Description :computes the principal value of arc tangent of y/x, using the
.................... // signs of both the arguments to determine the quadrant of the return value
.................... // Returns : returns the arc tangent of y/x.
.................... // Date : N/A
.................... //
....................
.................... float32 atan2(float32 y,float32 x)
.................... {
.................... float32 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
....................
.................... //Overloaded functions for atan2() for PCD
.................... // Overloaded function atan2() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 atan2(float48 y,float48 x)
.................... {
.................... float48 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
....................
.................... // Overloaded function atan2() for data type - Float64
.................... float64 atan2(float64 y,float64 x)
.................... {
.................... float64 z;
.................... int1 sign;
.................... unsigned int8 quad;
.................... sign=0;
.................... quad=0; //quadrant
.................... quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1));
.................... if(y<0.0)
.................... {
.................... sign=1;
.................... y=-y;
.................... }
.................... if(x<0.0)
.................... {
.................... x=-x;
.................... }
.................... if (x==0.0)
.................... {
.................... if(y==0.0)
.................... {
.................... #ifdef _ERRNO
.................... {
.................... errno=EDOM;
.................... }
.................... #endif
.................... }
.................... else
.................... {
.................... if(sign)
.................... {
.................... return (-(PI_DIV_BY_TWO));
.................... }
.................... else
.................... {
.................... return (PI_DIV_BY_TWO);
.................... }
.................... }
.................... }
.................... else
.................... {
.................... z=y/x;
.................... switch(quad)
.................... {
.................... case 1:
.................... {
.................... return atan(z);
.................... break;
.................... }
.................... case 2:
.................... {
.................... // return (atan(z)+PI_DIV_BY_TWO); //2L3122
.................... return (PI-atan(z));
.................... break;
.................... }
.................... case 3:
.................... {
.................... return (atan(z)-PI);
.................... break;
.................... }
.................... case 4:
.................... {
.................... return (-atan(z));
.................... break;
.................... }
.................... }
.................... }
.................... }
.................... #endif
....................
.................... //////////////////// Hyperbolic functions ////////////////////
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float cosh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic cosine value of x
.................... // Returns : returns the hyperbolic cosine value of x
.................... // Date : N/A
.................... //
....................
.................... float32 cosh(float32 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
.................... //Overloaded functions for cosh() for PCD
.................... // Overloaded function cosh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 cosh(float48 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
....................
.................... // Overloaded function cosh() for data type - Float64
.................... float64 cosh(float64 x)
.................... {
.................... return ((exp(x)+exp(-x))/2);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float sinh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic sine value of x
.................... // Returns : returns the hyperbolic sine value of x
.................... // Date : N/A
.................... //
....................
.................... float32 sinh(float32 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
.................... //Overloaded functions for sinh() for PCD
.................... // Overloaded function sinh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 sinh(float48 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
....................
.................... // Overloaded function sinh() for data type - Float48
.................... float64 sinh(float64 x)
.................... {
....................
.................... return ((exp(x) - exp(-x))/2);
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float tanh(float x)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : Computes the hyperbolic tangent value of x
.................... // Returns : returns the hyperbolic tangent value of x
.................... // Date : N/A
.................... //
....................
.................... float32 tanh(float32 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
.................... //Overloaded functions for tanh() for PCD
.................... // Overloaded function tanh() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 tanh(float48 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
....................
.................... // Overloaded function tanh() for data type - Float64
.................... float64 tanh(float64 x)
.................... {
.................... return(sinh(x)/cosh(x));
.................... }
.................... #endif
....................
.................... ////////////////////////////////////////////////////////////////////////////
.................... // float frexp(float x, signed int *exp)
.................... ////////////////////////////////////////////////////////////////////////////
.................... // Description : breaks a floating point number into a normalized fraction and an integral
.................... // power of 2. It stores the integer in the signed int object pointed to by exp.
.................... // Returns : returns the value x, such that x is a double with magnitude in the interval
.................... // [1/2,1) or zero, and value equals x times 2 raised to the power *exp.If value is zero,
.................... // both parts of the result are zero.
.................... // Date : N/A
.................... //
....................
.................... #define LOG2 .30102999566398119521
.................... float32 frexp(float32 x, signed int8 *exp)
.................... {
.................... float32 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
....................
.................... //Overloaded functions for frexp() for PCD
.................... // Overloaded function frexp() for data type - Float48
.................... #if defined(__PCD__)
.................... float48 frexp(float48 x, signed int8 *exp)
.................... {
.................... float48 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
....................
.................... // Overloaded function frexp() for data type - Float64
.................... float64 frexp(float64 x, signed int8 *exp)
.................... {
.................... float64 res;
.................... int1 sign = 0;
.................... if(x == 0.0)
.................... {
.................... *exp=0;
.................... return (0.0);
.................... }
.................... if(x < 0.0)
.................... {
.................... x=-x;
.................... sign=1;
.................... }
.................... if (x > 1.0)
.................... {
.................... *exp=(ceil(log10(x)/LOG2));
.................... res=x/(pow(2, *exp));
.................... if (res == 1)
.................... {
.................... *exp=*exp+1;
.................... res=.5;
.................... }
.................... }
.................... else
.................... {
.................... if(x < 0.5)
.................... {
.................... *exp=-1;
.................... res=x*2;
.................... }
.................... else
.................... {
.................... *exp=0;
.................... res=x;
.................... }
.................... }
.................... if(sign)
.................... {
.................... res=-res;
.................... }
.................... return res;
.................... }
.................... #endif
....................
.................... //////////////////////////////////////////////////////////////////////////////
.................... // float ldexp(float x, signed int *exp)
.................... //////////////////////////////////////////////////////////////////////////////
.................... // Description : multiplies a floating point number by an integral power of 2.
.................... // Returns : returns the value of x times 2 raised to the power exp.
.................... // Date : N/A
.................... //
....................
.................... float32 ldexp(float32 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... //Overloaded functions for ldexp() for PCD
.................... // Overloaded function ldexp() for data type - Float48
....................
.................... #if defined(__PCD__)
.................... float48 ldexp(float48 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... // Overloaded function ldexp() for data type - Float64
.................... float64 ldexp(float64 value, signed int8 exp)
.................... {
.................... return (value * pow(2,exp));
.................... }
.................... #endif
....................
.................... #endif
....................
....................
....................
.................... void main()
.................... {
*
0AB7: CLRF 04
0AB8: BCF 03.7
0AB9: MOVLW 1F
0ABA: ANDWF 03,F
0ABB: MOVLW 71
0ABC: BSF 03.5
0ABD: MOVWF 0F
0ABE: MOVF 0F,W
0ABF: BSF 03.6
0AC0: BCF 07.3
0AC1: MOVLW 0C
0AC2: BCF 03.6
0AC3: MOVWF 19
0AC4: MOVLW A2
0AC5: MOVWF 18
0AC6: MOVLW 90
0AC7: BCF 03.5
0AC8: MOVWF 18
0AC9: BSF 03.5
0ACA: BSF 03.6
0ACB: MOVF 09,W
0ACC: ANDLW C0
0ACD: MOVWF 09
0ACE: BCF 03.6
0ACF: BCF 1F.4
0AD0: BCF 1F.5
0AD1: MOVLW 00
0AD2: BSF 03.6
0AD3: MOVWF 08
0AD4: BCF 03.5
0AD5: CLRF 07
0AD6: CLRF 08
0AD7: CLRF 09
*
0AE1: CLRF 34
0AE2: CLRF 33
.................... float temp1, temp2, humidity;
.................... int16 i=0;
....................
.................... setup_adc_ports(NO_ANALOGS|VSS_VDD);
0AE3: BSF 03.5
0AE4: BSF 03.6
0AE5: MOVF 09,W
0AE6: ANDLW C0
0AE7: MOVWF 09
0AE8: BCF 03.6
0AE9: BCF 1F.4
0AEA: BCF 1F.5
0AEB: MOVLW 00
0AEC: BSF 03.6
0AED: MOVWF 08
.................... setup_adc(ADC_CLOCK_DIV_2);
0AEE: BCF 03.5
0AEF: BCF 03.6
0AF0: BCF 1F.6
0AF1: BCF 1F.7
0AF2: BSF 03.5
0AF3: BSF 1F.7
0AF4: BCF 03.5
0AF5: BSF 1F.0
.................... setup_spi(SPI_SS_DISABLED);
0AF6: BCF 14.5
0AF7: BCF 20.5
0AF8: MOVF 20,W
0AF9: BSF 03.5
0AFA: MOVWF 07
0AFB: BCF 03.5
0AFC: BSF 20.4
0AFD: MOVF 20,W
0AFE: BSF 03.5
0AFF: MOVWF 07
0B00: BCF 03.5
0B01: BCF 20.3
0B02: MOVF 20,W
0B03: BSF 03.5
0B04: MOVWF 07
0B05: MOVLW 01
0B06: BCF 03.5
0B07: MOVWF 14
0B08: MOVLW 00
0B09: BSF 03.5
0B0A: MOVWF 14
.................... setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
0B0B: MOVF 01,W
0B0C: ANDLW C7
0B0D: IORLW 08
0B0E: MOVWF 01
.................... setup_timer_1(T1_DISABLED);
0B0F: BCF 03.5
0B10: CLRF 10
.................... setup_timer_2(T2_DISABLED,0,1);
0B11: MOVLW 00
0B12: MOVWF 78
0B13: MOVWF 12
0B14: MOVLW 00
0B15: BSF 03.5
0B16: MOVWF 12
.................... setup_ccp1(CCP_OFF);
0B17: BCF 03.5
0B18: BSF 20.2
0B19: MOVF 20,W
0B1A: BSF 03.5
0B1B: MOVWF 07
0B1C: BCF 03.5
0B1D: CLRF 17
0B1E: BSF 03.5
0B1F: CLRF 1B
0B20: CLRF 1C
0B21: MOVLW 01
0B22: MOVWF 1D
.................... setup_comparator(NC_NC_NC_NC); // This device COMP currently not supported by the PICWizard
0B23: BCF 03.5
0B24: BSF 03.6
0B25: CLRF 07
0B26: CLRF 08
0B27: CLRF 09
.................... setup_oscillator(OSC_8MHZ);
0B28: MOVLW 71
0B29: BSF 03.5
0B2A: BCF 03.6
0B2B: MOVWF 0F
0B2C: MOVF 0F,W
....................
....................
.................... printf("GeoMet01A\r\n");
0B2D: MOVLW 0C
0B2E: BCF 03.5
0B2F: BSF 03.6
0B30: MOVWF 0D
0B31: MOVLW 00
0B32: MOVWF 0F
0B33: BCF 0A.3
0B34: BCF 03.6
0B35: CALL 030
0B36: BSF 0A.3
.................... printf("(c) Kaklik 2013\r\n");
0B37: MOVLW 12
0B38: BSF 03.6
0B39: MOVWF 0D
0B3A: MOVLW 00
0B3B: MOVWF 0F
0B3C: BCF 0A.3
0B3D: BCF 03.6
0B3E: CALL 030
0B3F: BSF 0A.3
.................... printf("www.mlab.cz\r\n");
0B40: MOVLW 1B
0B41: BSF 03.6
0B42: MOVWF 0D
0B43: MOVLW 00
0B44: MOVWF 0F
0B45: BCF 0A.3
0B46: BCF 03.6
0B47: CALL 030
0B48: BSF 0A.3
....................
.................... // Init the HMC5883L. Set Mode register for
.................... // continuous measurements.
.................... hmc5883l_write_reg(HMC5883L_CFG_A_REG, 0x18); // no average, maximal update range
0B49: CLRF 35
0B4A: MOVLW 18
0B4B: MOVWF 36
0B4C: BCF 0A.3
0B4D: CALL 0C2
0B4E: BSF 0A.3
.................... hmc5883l_write_reg(HMC5883L_CFG_B_REG, 0x00); // minimal range
0B4F: MOVLW 01
0B50: MOVWF 35
0B51: CLRF 36
0B52: BCF 0A.3
0B53: CALL 0C2
0B54: BSF 0A.3
.................... hmc5883l_write_reg(HMC5883L_MODE_REG, 0x00);
0B55: MOVLW 02
0B56: MOVWF 35
0B57: CLRF 36
0B58: BCF 0A.3
0B59: CALL 0C2
0B5A: BSF 0A.3
....................
.................... lcd_init();
0B5B: BCF 0A.3
0B5C: CALL 1C8
0B5D: BSF 0A.3
.................... lcd_putc("(c) Kaklik 2013");
0B5E: MOVLW 22
0B5F: BSF 03.6
0B60: MOVWF 0D
0B61: MOVLW 00
0B62: MOVWF 0F
0B63: BCF 0A.3
0B64: BCF 03.6
0B65: CALL 23F
0B66: BSF 0A.3
.................... lcd_gotoxy(3,2);
0B67: MOVLW 03
0B68: MOVWF 43
0B69: MOVLW 02
0B6A: MOVWF 44
0B6B: BCF 0A.3
0B6C: CALL 200
0B6D: BSF 0A.3
.................... lcd_putc("www.mlab.cz");
0B6E: MOVLW 2A
0B6F: BSF 03.6
0B70: MOVWF 0D
0B71: MOVLW 00
0B72: MOVWF 0F
0B73: BCF 0A.3
0B74: BCF 03.6
0B75: CALL 23F
0B76: BSF 0A.3
.................... Delay_ms(2000);
0B77: MOVLW 08
0B78: MOVWF 35
0B79: MOVLW FA
0B7A: MOVWF 43
0B7B: BCF 0A.3
0B7C: CALL 0FB
0B7D: BSF 0A.3
0B7E: DECFSZ 35,F
0B7F: GOTO 379
.................... lcd_init();
0B80: BCF 0A.3
0B81: CALL 1C8
0B82: BSF 0A.3
....................
.................... while (TRUE)
.................... {
.................... lcd_gotoxy(1,1);
0B83: MOVLW 01
0B84: MOVWF 43
0B85: MOVWF 44
0B86: BCF 0A.3
0B87: CALL 200
0B88: BSF 0A.3
.................... temp1 = SHT25_get_temp();
0B89: BCF 0A.3
0B8A: GOTO 567
0B8B: BSF 0A.3
0B8C: MOVF 7A,W
0B8D: MOVWF 2A
0B8E: MOVF 79,W
0B8F: MOVWF 29
0B90: MOVF 78,W
0B91: MOVWF 28
0B92: MOVF 77,W
0B93: MOVWF 27
.................... humidity = SHT25_get_hum();
0B94: BCF 0A.3
0B95: GOTO 636
0B96: BSF 0A.3
0B97: MOVF 7A,W
0B98: MOVWF 32
0B99: MOVF 79,W
0B9A: MOVWF 31
0B9B: MOVF 78,W
0B9C: MOVWF 30
0B9D: MOVF 77,W
0B9E: MOVWF 2F
.................... temp2= LTS01_get_temp();
0B9F: BCF 0A.3
0BA0: GOTO 6EC
0BA1: BSF 0A.3
0BA2: MOVF 7A,W
0BA3: MOVWF 2E
0BA4: MOVF 79,W
0BA5: MOVWF 2D
0BA6: MOVF 78,W
0BA7: MOVWF 2C
0BA8: MOVF 77,W
0BA9: MOVWF 2B
.................... hmc5883l_read_data();
0BAA: GOTO 000
....................
.................... printf(lcd_putc,"%f C %f \%%",temp1, humidity);
0BAB: MOVLW 89
0BAC: MOVWF 04
0BAD: MOVF 2A,W
0BAE: MOVWF 38
0BAF: MOVF 29,W
0BB0: MOVWF 37
0BB1: MOVF 28,W
0BB2: MOVWF 36
0BB3: MOVF 27,W
0BB4: MOVWF 35
0BB5: MOVLW 02
0BB6: MOVWF 39
0BB7: CALL 091
0BB8: MOVLW 20
0BB9: MOVWF 42
0BBA: BCF 0A.3
0BBB: CALL 212
0BBC: BSF 0A.3
0BBD: MOVLW 43
0BBE: MOVWF 42
0BBF: BCF 0A.3
0BC0: CALL 212
0BC1: BSF 0A.3
0BC2: MOVLW 20
0BC3: MOVWF 42
0BC4: BCF 0A.3
0BC5: CALL 212
0BC6: BSF 0A.3
0BC7: MOVLW 89
0BC8: MOVWF 04
0BC9: MOVF 32,W
0BCA: MOVWF 38
0BCB: MOVF 31,W
0BCC: MOVWF 37
0BCD: MOVF 30,W
0BCE: MOVWF 36
0BCF: MOVF 2F,W
0BD0: MOVWF 35
0BD1: MOVLW 02
0BD2: MOVWF 39
0BD3: CALL 091
0BD4: MOVLW 20
0BD5: MOVWF 42
0BD6: BCF 0A.3
0BD7: CALL 212
0BD8: BSF 0A.3
0BD9: MOVLW 25
0BDA: MOVWF 42
0BDB: BCF 0A.3
0BDC: CALL 212
0BDD: BSF 0A.3
.................... lcd_gotoxy(1,2);
0BDE: MOVLW 01
0BDF: MOVWF 43
0BE0: MOVLW 02
0BE1: MOVWF 44
0BE2: BCF 0A.3
0BE3: CALL 200
0BE4: BSF 0A.3
.................... printf(lcd_putc," %f C",temp2);
0BE5: MOVLW 20
0BE6: MOVWF 42
0BE7: BCF 0A.3
0BE8: CALL 212
0BE9: BSF 0A.3
0BEA: MOVLW 89
0BEB: MOVWF 04
0BEC: MOVF 2E,W
0BED: MOVWF 38
0BEE: MOVF 2D,W
0BEF: MOVWF 37
0BF0: MOVF 2C,W
0BF1: MOVWF 36
0BF2: MOVF 2B,W
0BF3: MOVWF 35
0BF4: MOVLW 02
0BF5: MOVWF 39
0BF6: CALL 091
0BF7: MOVLW 20
0BF8: MOVWF 42
0BF9: BCF 0A.3
0BFA: CALL 212
0BFB: BSF 0A.3
0BFC: MOVLW 43
0BFD: MOVWF 42
0BFE: BCF 0A.3
0BFF: CALL 212
0C00: BSF 0A.3
.................... printf("%ld %f %f %f ",i, temp1, humidity, temp2);
0C01: MOVLW 10
0C02: MOVWF 04
0C03: MOVF 34,W
0C04: MOVWF 36
0C05: MOVF 33,W
0C06: MOVWF 35
0C07: CALL 16B
0C08: MOVLW 20
0C09: BTFSS 0C.4
0C0A: GOTO 409
0C0B: MOVWF 19
0C0C: MOVLW 89
0C0D: MOVWF 04
0C0E: MOVF 2A,W
0C0F: MOVWF 38
0C10: MOVF 29,W
0C11: MOVWF 37
0C12: MOVF 28,W
0C13: MOVWF 36
0C14: MOVF 27,W
0C15: MOVWF 35
0C16: MOVLW 02
0C17: MOVWF 39
0C18: CALL 1E1
0C19: MOVLW 20
0C1A: BTFSS 0C.4
0C1B: GOTO 41A
0C1C: MOVWF 19
0C1D: MOVLW 89
0C1E: MOVWF 04
0C1F: MOVF 32,W
0C20: MOVWF 38
0C21: MOVF 31,W
0C22: MOVWF 37
0C23: MOVF 30,W
0C24: MOVWF 36
0C25: MOVF 2F,W
0C26: MOVWF 35
0C27: MOVLW 02
0C28: MOVWF 39
0C29: CALL 1E1
0C2A: MOVLW 20
0C2B: BTFSS 0C.4
0C2C: GOTO 42B
0C2D: MOVWF 19
0C2E: MOVLW 89
0C2F: MOVWF 04
0C30: MOVF 2E,W
0C31: MOVWF 38
0C32: MOVF 2D,W
0C33: MOVWF 37
0C34: MOVF 2C,W
0C35: MOVWF 36
0C36: MOVF 2B,W
0C37: MOVWF 35
0C38: MOVLW 02
0C39: MOVWF 39
0C3A: CALL 1E1
0C3B: MOVLW 20
0C3C: BTFSS 0C.4
0C3D: GOTO 43C
0C3E: MOVWF 19
.................... printf("%Ld %Ld %Ld \n\r", compass.x, compass.y, compass.z);
0C3F: MOVLW 10
0C40: MOVWF 04
0C41: MOVF 22,W
0C42: MOVWF 36
0C43: MOVF 21,W
0C44: MOVWF 35
0C45: CALL 16B
0C46: MOVLW 20
0C47: BTFSS 0C.4
0C48: GOTO 447
0C49: MOVWF 19
0C4A: MOVLW 10
0C4B: MOVWF 04
0C4C: MOVF 24,W
0C4D: MOVWF 36
0C4E: MOVF 23,W
0C4F: MOVWF 35
0C50: CALL 16B
0C51: MOVLW 20
0C52: BTFSS 0C.4
0C53: GOTO 452
0C54: MOVWF 19
0C55: MOVLW 10
0C56: MOVWF 04
0C57: MOVF 26,W
0C58: MOVWF 36
0C59: MOVF 25,W
0C5A: MOVWF 35
0C5B: CALL 16B
0C5C: MOVLW 20
0C5D: BTFSS 0C.4
0C5E: GOTO 45D
0C5F: MOVWF 19
0C60: MOVLW 0A
0C61: BTFSS 0C.4
0C62: GOTO 461
0C63: MOVWF 19
0C64: MOVLW 0D
0C65: BTFSS 0C.4
0C66: GOTO 465
0C67: MOVWF 19
.................... i++;
0C68: INCF 33,F
0C69: BTFSC 03.2
0C6A: INCF 34,F
.................... Delay_ms(100);
0C6B: MOVLW 64
0C6C: MOVWF 43
0C6D: BCF 0A.3
0C6E: CALL 0FB
0C6F: BSF 0A.3
.................... }
0C70: GOTO 383
....................
.................... }
0C71: SLEEP
Configuration Fuses:
Word 1: 2CF5 INTRC NOWDT NOPUT MCLR NOPROTECT NOCPD NOBROWNOUT IESO FCMEN NOLVP NODEBUG
Word 2: 3FFF NOWRT BORV40