// Atomic counter with I2C and RS232 output
// Usage conditions:
// 1. The first I2C or RS232 readout can be performed minimally 20 s after power up.
// 2. The I2C internal address 0 has to be read first.
// 3. An I2C readout can be performed at 15-th, 35-th and 55-th second of UTC.
//
// Counter gives 32 bit value:
// I2C register address 0 = LSB
// I2C register address 3 = MSB
#define ID "$Id: main.c 2916 2013-04-14 17:42:03Z kaklik $"
#include "main.h"
#use i2c(SLAVE, Fast, sda=PIN_C4, scl=PIN_C3, force_hw, address=0xA2)
#include <string.h>
#define SEL0 PIN_E0 // external counter division ratio
#define SEL1 PIN_E1 // external counter division ratio
#define MR PIN_E2 // external counter master reset
#define CLKI PIN_C0 // internal counter input
unsigned int32 count; // count per second
#define BUF_LEN 4
int8 buffer[BUF_LEN]; // I2C buffer
int8 address=0;
unsigned int16 of=0; // count of overflow
// 1x 100 us per 10 s UTC synchronised
const char cmd[40]={0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x80, 0x96, 0x98, 0x00, 0xE0, 0xC8, 0x10, 0x00, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x73, 0x00, 0x00, 0x00, 0xC6, 0x51};
#INT_SSP
void ssp_interupt ()
{
int8 incoming, state;
state = i2c_isr_state();
if(state < 0x80) //Master is sending data
{
incoming = i2c_read(); // Read byte
if(state == 1) //Second received byte is address of register
{
address = incoming;
}
}
if(state == 0x80) //Master is requesting data
{
//i2c_read(); // Dummy read of I2C device address
if(address == 0) // Change buffer atomically at reading of the first byte
{
buffer[0]=make8(count,0);
buffer[1]=make8(count,1);
buffer[2]=make8(count,2);
buffer[3]=make8(count,3);
}
if(address <= BUF_LEN) i2c_write(buffer[address]); // Prepare one byte to SSP buffer
else
{
i2c_write(0x00); // There is nothing to prepare, so zero
}
}
if(state == 0x81) //Master is requesting data
{
i2c_write(buffer[1]); // Prepare next byte to SSP buffer
}
if(state == 0x82) //Master is requesting data
{
i2c_write(buffer[2]); // Prepare next byte to SSP buffer
}
if(state == 0x83) //Master is requesting data
{
i2c_write(buffer[3]); // Prepare next byte to SSP buffer
}
if(state > 0x83) //Master is requesting data
{
i2c_write(0x00); // There is nothing to prepare, so zero
}
}
#int_EXT // Interrupt from 1PPS (RB0)
void EXT_isr(void)
{
unsigned int16 countH;
unsigned int8 countL;
int16 of2;
of2=of; // read overflow counter
countH=get_timer1(); // read internal counter
countL=0;
output_low(SEL0);
output_low(SEL1);
countL=input(CLKI); // read bit 0 of external counter
output_high(SEL0);
// output_low(SEL1);
countL|=input(CLKI)<<1; // read bit 1 of external counter
output_low(SEL0);
output_high(SEL1);
countL|=input(CLKI)<<2; // read bit 2 of external counter
output_high(SEL0);
// output_high(SEL1);
countL|=input(CLKI)<<3; // read bit 3 of external counter
output_low(MR); // External counter Master Reset
output_high(MR);
set_timer1(0); // Internal counter reset
of=0; // Overflow counter reset
count=((unsigned int32)of2<<20)+((unsigned int32)countH<<4)+(unsigned int32)countL; // concatenate
printf("%010Lu\r\n", count);
}
#int_TIMER1 // Interrupf from overflow
void TIMER1_isr(void)
{
of++;
}
void main()
{
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_OFF);
// setup_spi(SPI_SS_DISABLED); //must not be set if I2C are in use!
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_wdt(WDT_2304MS);
setup_timer_1(T1_EXTERNAL|T1_DIV_BY_1);
setup_timer_2(T2_DISABLED,0,1);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);
restart_wdt();
delay_ms(1000);
restart_wdt();
// setup GPS
{
int n;
for (n=0;n<40;n++) putc(cmd[n]);
}
ext_int_edge( L_TO_H ); // set 1PPS active edge
enable_interrupts(INT_TIMER1);
enable_interrupts(INT_EXT);
enable_interrupts(INT_SSP);
enable_interrupts(GLOBAL);
buffer[0]=0x0; // Clear I2C output buffer
buffer[1]=0x0;
buffer[2]=0x0;
buffer[3]=0x0;
printf("\r\ncvak...\r\n");
while(true)
{
restart_wdt();
delay_ms(1000);
// printf("%X %X %X %X\r\n", buffer[0],buffer[1],buffer[2],buffer[3]);
}
}