

Fully integrated microstepping motor driver using the L6470

Introduction

This application note describes the demonstration board for the fully integrated microstepping motor driver L6470.

The board is designed to be used with IBU universal interface (IBU-UI) or universal USB-toserial communication interface (UUSCI) board and the dSPIN Evaluation tool software.

Figure 1. EVAL6470 demonstration board

Contents

1	Board	Board description 5					
2	Conn	ection to	o IBU universal interface board				
3	dSPI	N Evalua	Ition tool				
	3.1	Software	e installation				
	3.2	Main for	m 13				
		3.2.1	Menu and toolbars				
		3.2.2	Positioning commands tab 14				
		3.2.3	Speed command tab14				
		3.2.4	HardStop, SoftStop, HardHiZ and SoftHiZ buttons $\hdots \ldots 14$				
		3.2.5	Device status panel				
	3.3	Register	[•] map				
	3.4	Device of	configuration				
4	Revis	ion hist	ory				

List of tables

Table 1.	EVAL6470: jumper and connector description	5
Table 2.	EVAL6470: master SPI connector pinout (J10)	6
Table 3.	EVAL6470: slave SPI connector pinout (J11)	6
Table 4.	EVAL6470: electrical specification (recommended values)	7
Table 5.	EVAL6470: component list 1	0
Table 6.	Document revision history 1	7

List of figures

Figure 1.	EVAL6470 demonstration board
Figure 2.	EVAL6470 demonstration board jumper and connector locations
Figure 3.	EVAL6470 schematic - part 18
Figure 4.	EVAL6470 schematic - part 29
Figure 5.	EVAL6470 layout (top layer)11
Figure 6.	EVAL6470 layout (bottom layer)11
Figure 7.	dSPIN Evaluation tool main form
Figure 8.	dSPIN Evaluation tool Register Map form15
Figure 9.	dSPIN Evaluation tool device configuration16

1 Board description

Figure 2. EVAL6470 demonstration board jumper and connector locations

 Table 1.
 EVAL6470: jumper and connector description

Name	Туре	Function				
J4	Power supply	Board power supply				
J2	Power outputs	Bridge A outputs				
J3	Power outputs	Bridge B outputs				
J10	SPI connector	Master SPI connector				
J11	SPI connector	Slave SPI connector				
SW	NM test point	External switch connector				
VS	Test point	Motor supply voltage				
V _{REG}	Test point	Internal 3 V regulator output				
V _{DD}	Test point	Logic interface voltage				
GND	Test point	Ground				
JP7	Jumper	Selects SPI connector PWM2 GPIO functionality				

Name	Туре	Function						
JP2	Jumper	Daisy chain termination						
JP5	Jumper	EXT_VDD (SPI connector) to V _{DD} connection						
JP3	Jumper	V _{DD} to V _{REG} connection						
JP4	Jumper	Selects ADCIN source						

 Table 1.
 EVAL6470: jumper and connector description (continued)

Table 2. EVAL6470: master SPI connector pinout (J10)

Pin number	Description			
1	L6470 BUSY open drain output			
2	L6470 FLAG open drain output			
3	Ground			
4	EXT_VDD (can be used as external logic power supply)			
5	SPI <i>master in</i> , <i>slave out</i> signal (connected to L6470 SDO output through daisy chain termination jumper JP2)			
6	SPI serial clock signal (connected to L6470 CK input)			
7	SPI master out, slave in signal (connected to L6470 SDI input)			
8	SPI slave select signal (connected to L6470 CS input)			
9	PWM1 input			
10	PWM2 input			

Table 3. EVAL6470: slave SPI connector pinout (J11)

Pin number	Description					
1	L6470 BUSY open drain output					
2	L6470 FLAG open drain output					
3	Ground					
4	EXT_VDD (can be used as external logic power supply)					
5	SPI master in, slave out signal (connected to pin 5 of J10)					
6	SPI serial clock signal (connected to L6470 CK input)					
7	SPI master out, slave in signal (connected to L6470 SDO output)					
8	SPI slave select signal (connected to L6470 CS input)					
9	PWM1 input					
10	PWM2 input					

· · · · · · · · · · · · · · · · · · ·	··· (···· · ··· · · · · · · · · · · ·
Supply voltage range (VS)	8 to 45 V
Output current rating	Up to 3 A _{rms}
Logic supply voltage (V _{REG})	3.3 V (when externally supplied)
Logic interface voltage (V _{DD})	3.3 V or 5 V (when externally supplied)
Logic inputs voltage range	0 to +5 V
Operating temperature range	-25 to +125 °C
L6470H thermal resistance junction-to-ambient	TBD °C/W

 Table 4.
 EVAL6470: electrical specification (recommended values)

57

Figure 3. EVAL6470 schematic - part 1

Doc ID 16760 Rev 1

Figure 4. EVAL6470 schematic - part 2

57

	onent list				
Part reference	Part value	Part description			
C1	100 nF	50 V ceramic capacitor			
C2	10 nF	63 V ceramic capacitor			
C3, C8	100 nF	Ceramic capacitor			
C4	100 µF	63 V electrolytic capacitor			
C5	220 nF	16 V ceramic capacitor			
C6, C7	NM	Ceramic capacitor			
C9, C10	100 pF	Ceramic capacitor			
C11	1 nF	Ceramic capacitor			
C12	3.3 nF	Ceramic capacitor			
C13	10 nF	Ceramic capacitor			
C14	10 µF	6.3 V ceramic capacitor			
C15	47 µF	6.3 V ceramic capacitor			
D1	BAT46SW	Low drop diode couple			
D2	BZX284C3V6	3.6 V Zener diode			
JP2, JP3		Jumper 2 x 1			
JP5	JP5 Jum				
JP4		Jumper 3 x 1			
JP7		Jumper 3 x 1			
J2, J3, J4		Connector			
J5	NM	Strip pin			
J10		Vertical 5 x 2 male connector			
J11		Vertical 5 x 2 male connector			
R1	31.6 kΩ	Resistor 1%			
R2	8.2 kΩ	Resistor 1%			
R5, R6, R7	39 kΩ	Resistor 1%			
R9	10 kΩ	Resistor 1%			
R3	200 kΩ	Trimmer			
R8	100 Ω	Resistor 1%			
R10	0 Ω	Resistor 1/8 W			
TP5		Test point			
TP4, TP6		Test point			
U1	L6470H	L6470 dSPIN			
Y1	NM	Crystal			
Y2 NM Ceramic resona					

Table 5. EVAL6470: component list

Figure 5. EVAL6470 layout (top layer)

Figure 6. EVAL6470 layout (bottom layer)

2 Connection to IBU universal interface board

The EVAL6470 should be connected to the interface board (IBU-UI or UUSCI), and the following steps performed:

- 1. Connect the interface board to the PC through the USB cable
- 2. If requested, install interface board drivers
- 3. Verify interface board operation (check if operation LED diode is turned on)
- 4. Connect the interface board 10-pin connector to the EVAL6470 J10 connector (master SPI) through the 10-pole flat cable
- 5. Connect motor phases to the EVAL6470 J2 and J3 connectors
- 6. Connect the power supply (8 V to 45 V) to the EVAL6470 J4 connector
- 7. Start the dSPIN Evaluation tool.

3 dSPIN Evaluation tool

The dSPIN Evaluation tool allows users to program the L6470 registers and to perform all basic positioning and speed control commands.

3.1 Software installation

Run the Setup.exe and follow the installation instructions. A link to the application is automatically added to the PC desktop and the Start menu. Microsoft[®].NET Framework 3.5 is required.

Note: If a previous version of the software is already installed, it should be removed.

3.2 Main form

When the application is started, the main form is displayed.

🔜 dSpin Evaluation SW BETA File Tools 🗁 📙 👒 🔰 💥 🐺 🔘 Positioning Speed ABS_POS 0 RD WR HOME \$ BW AUTO 0 FW GoTo \$ \$ FW Move 0 BW HardStop HardHiZ SoftStop SoftHiZ Status UVLO OCD Themal ΗiΖ Stall A Stall B status SW Status BUSY Motor SW Event StepClock Command status mode error Autorefresh U Board Connection Status

Figure 7. dSPIN Evaluation tool main form

The main form is composed of the following elements:

- Menu and toolbars
- Positioning commands tab
- Speed commands tab
- HardStop, SoftStop, HardHiZ and SoftHiZ buttons
- Device status panel

3.2.1 Menu and toolbars

The menu and toolbars include all the main commands.

3.2.2 Positioning commands tab

This tab is used to:

- read, write and reset (set home position) the L6470 position register (ABS_POS)
- perform an absolute positioning command using the minimum path algorithm (GoTo command) or to force a direction (GoTo_DIR command)
- perform a relative positioning command (Move command)

3.2.3 Speed command tab

This tab is used to:

- read the L6470 speed register (SPEED)
- perform a constant speed command (Run command)

3.2.4 HardStop, SoftStop, HardHiZ and SoftHiZ buttons

Those buttons allow quick sending of the respective L6470 commands.

3.2.5 Device status panel

The device status panel is a graphical representation of the status conditions stored in the L6470 STATUS register. When the Autorefresh checkbox is checked, the device STATUS register is periodically read (GetParam command) and its value is shown. Using the refresh button a GetStatus command is sent to the L6470 and the returned value is shown.

3.3 Register map

The register map form shows all device registers in a table form. Register values are reported in both hexadecimal and natural format.

Register can be written, read and reset to default values using the WR, RD and DEF buttons, respectively.

Register value can be changed by writing the new hexadecimal value (Hex column) or double-clicking on its natural value (Value column); in the second case a conversion form is opened.

When the value of a register is changed the new value is not immediately written to the device, but only when the WR button is used. In order for the value of a register to be written

as soon as it is changed into the GUI, the respective AWR (Automatic WRite) checkbox should be checked.

Device configuration can be saved or loaded using the toolbar open and save buttons.

Figure 8. dSPIN Evaluation tool Register Map form

🔜 RegMapf	Form							-	
	RST 😽						ſ	Device	
Name	Address	Description	Value	Hex	Default	AWR	WR	RD	DEF
ABS_POS	01	Current absolute position	0 ustep	0	0		WR	RD	DEF
EL_POS	02	Current electrical position (ustep)	0 step	0	0		WR	RD	DEF
MARK	03	Marked position	0 ustep	0	0		WR	RD	DEF
SPEED	04	Current speed	0 step/s	0	0		WR	RD	DEF
ACC	05	Acceleration	2008.164 step/s^2	8A	138		WR	RD	DEF
DEC	06	Deceleration	2008.164 step/s^2	8A	138		WR	RD	DEF
MAX_SPEED	07	Maximum speed	991.821 step/s	41	65		WR	RD	DEF
MIN_SPEED	08	Minimum speed	0 step/s	0	0		WR	RD	DEF
FS_SPEED	15	Full-step speed	595.093 step/s	27	39		WR	RD	DEF
KVAL_HOLD	09	Holding torque	16.016%	29	41		WR	RD	DEF
KVAL_RUN	0A	Run torque	16.016%	29	41		WR	RD	DEF
KVAL_ACC	OB	Acceleration torque	16.016%	29	41		WR	RD	DEF
KVAL_DEC	0C	Deceleration torque	16.016%	29	41		WR	RD	DEF
INT_SPD	0D	Intersect speed - BEMF compensation curve	246.048 step/s	408	1032		WR	RD	DEF
ST_SLP	0E	Starting slope - BEMF compensation curve	0.03815% s/step	19	25		WR	RD	DEF
FN_SLP_ACC	OF	Acceleration final slope - BEMF compensation curve	0.06256% s/step	29	41		WR	RD	DEF
FN_SLP_DEC	10	Deceleration final slope - BEMF compensation curve	0.06256% s/step	29	41		WR	RD	DEF
K_THERM	11	Thermal compensation coefficient	1	0	0		WR	RD	DEF
ADC_OUT	12	Internal ADC convertion result	0x00	0	0		WR	RD	DEF
OCD_TH	13	Overcurrent detection threshold	3.375 A	8	8		WR	RD	DEF
STALL_TH	14	Stall detection threshold	2.031 A	40	64		WR	RD	DEF
STEP_MODE	16	Driving mode and Step mode	VM, 1/128 Step	7	7		WR	RD	DEF
ALARM_EN	17	Allams sent to FLAG output	Overcurrent, Undervoltage, Thermal warning, Thermal shutdown, Stall detection (A), Stall detection (B), Switch	FF	255	1	WR	RD	DEF

3.4 Device configuration

The device configuration form makes it easy to modify the L6470 configuration. All device parameters are grouped into tree tabs and displayed in natural format.

Unlike the register map, no information regarding a single device register is shown, and their values cannot be individually written.

The current configuration can be read and written using respective toolbar buttons.

The device configuration can be saved or loaded using toolbar open and save buttons.

Speed Profile Pha	se current contro	ol Ot	hers					
Acceleration	2008,164	\$	step/s ²	Acc. Tq	16,02	\$	%	
Deceleration	2008,164	\$	step/s ²	Dec. Tq	16,02	\$	%	
Max speed	991,821	\$	step/s	Run Tq	16,02	*	%	
Min speed	0,000	*	step/s	Hold Tq	16,02	*	%	
Full-Step Speed	595.093	•	sten/s					

Figure 9. dSPIN Evaluation tool device configuration

4 Revision history

Table 6.Document revision history

Date	Revision	Changes
01-Mar-2010	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16760 Rev 1

