#!/usr/bin/python
# MLAB meteostation wind speed gauge with magnetic rotation sensor.
# This simple algorithm calculate difference between five time equidistant points during the rotation. The result is angular speed per time step.
# Size of time-step could be varied depending on expected wind speed range to measure.
# Algorithm should be expanded by Kalman filtering to minimize dependence on fast reading.
# The measuring principle could introduce time-stamped reading to increase precision of measurement. It could be possible because the readings are not exactly time equidistant in real Linux word.
#uncomment for debbug purposes
#import logging
#logging.basicConfig(level=logging.DEBUG)
import time
import datetime
import sys
import numpy as np
from pymlab import config
#### Script Arguments ###############################################
if len(sys.argv) != 2:
sys.stderr.write("Invalid number of arguments.\n")
sys.stderr.write("Usage: %s PORT ADDRESS\n" % (sys.argv[0], ))
sys.exit(1)
port = eval(sys.argv[1])
#### Sensor Configuration ###########################################
''''
cfg = config.Config(
i2c = {
"port": port,
},
bus = [
{
"type": "i2chub",
"address": 0x72,
"children": [
{"name": "encoder", "type": "rps01", "channel": 1, }
],
},
],
)
'''
cfg = config.Config(
i2c = {
"port": port,
},
bus = [
{
"name": "encoder",
"type": "rps01",
},
],
)
cfg.initialize()
print "RPS01A magnetic position sensor RPS01 readout example \r\n"
sensor = cfg.get_device("encoder")
print sensor.get_address()
print sensor.get_zero_position()
#### Data Logging ###################################################
try:
angles = np.zeros(5)
angles[4] = sensor.get_angle(verify = False)
time.sleep(0.01)
angles[3] = sensor.get_angle(verify = False)
time.sleep(0.01)
angles[2] = sensor.get_angle(verify = False)
time.sleep(0.01)
angles[1] = sensor.get_angle(verify = False)
n = 0
speed = 0
AVERAGING = 50
while True:
for i in range(AVERAGING):
time.sleep(0.01)
angles[0] = sensor.get_angle(verify = False)
if (angles[0] + n*360 - angles[1]) > 300:
n -= 1
angles[0] = angles[0] + n*360
elif (angles[0] + n*360 - angles[1]) < -300: # compute angular speed in backward direction.
n += 1
angles[0] = angles[0] + n*360
else:
angles[0] = angles[0] + n*360
speed += (-angles[4] + 8*angles[3] - 8*angles[1] + angles[0])/12
angles = np.roll(angles, 1)
speed = speed/AVERAGING # apply averaging on acummulated value.
print "Speed: %0.2f \t Total Angle: %0.2f \r\n" % (speed, angles[0])
except KeyboardInterrupt:
sys.exit(0)