{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Uk\u00e1zka pou\u017eit\u00ed n\u00e1stroje IPython na manipulaci se senzorov\u00fdmi daty z modulu ALTIMET01A\n",
"=======\n",
"\n",
"P\u0159\u00edklad vyu\u017e\u00edv\u00e1 modulovou stavebnici MLAB a jej\u00ed Python knihovnu [pymlab](https://github.com/MLAB-project/MLAB-I2c-modules)\n",
"\n",
"Pou\u017eit\u00fd sn\u00edma\u010d [MPL3115A2](http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPL3115A2) m\u00e1 n\u00e1sleduj\u00edc\u00ed katalogov\u00e9 parametry: \n",
"\n",
"* Tlakov\u00e9 rozli\u0161en\u00ed: 1,5 Pa\n",
"* Relativn\u00ed p\u0159esnost: 0,1 kPa\n",
"* Absolutn\u00ed tlakov\u00e1 p\u0159esnost 0,4 kPa\n",
"\n",
"Katalogov\u00fd rozsah m\u011b\u0159en\u00ed tlaku je 50 kPa a\u017e 110 kPa, co\u017e by odpov\u00eddalo rozsahu m\u011b\u0159en\u00fdch v\u00fd\u0161ek p\u0159ibli\u017en\u011b -1 km a\u017e 6 km. Z [jin\u00fdch experiment\u016f](http://wiki.mlab.cz/doku.php?id=cs:altimet#parametry) s t\u00edmto tlakov\u00fdm \u010didlem ale v\u00edme \u017ee jeho m\u011b\u0159\u00edc\u00ed rozsah je podstatn\u011b v\u011bt\u0161\u00ed zejm\u00e9na v oblasti n\u00edzk\u00fdch tlak\u016f, a lze s n\u00edm m\u011b\u0159it minim\u00e1ln\u011b do v\u00fd\u0161ky 16 km. \n",
"\n",
"Zprovozn\u011bn\u00ed demo k\u00f3du\n",
"---------------------\n",
"\n",
"Nejd\u0159\u00edve zjist\u00edme zda m\u00e1me p\u0159\u00edstup pro z\u00e1pis a \u010dten\u00ed do syst\u00e9mov\u00e9ho za\u0159\u00edzen\u00ed. A jak\u00e9 \u010d\u00edslo m\u00e1 I\u00b2C sb\u011brnice na kterou m\u00e1me p\u0159ipojen\u00e1 \u010didla. \n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"!i2cdetect -l"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i2c-0\ti2c \ti915 gmbus ssc \tI2C adapter\r\n",
"i2c-1\ti2c \ti915 gmbus vga \tI2C adapter\r\n",
"i2c-2\ti2c \ti915 gmbus panel \tI2C adapter\r\n",
"i2c-3\ti2c \ti915 gmbus dpc \tI2C adapter\r\n",
"i2c-4\ti2c \ti915 gmbus dpb \tI2C adapter\r\n",
"i2c-5\ti2c \ti915 gmbus dpd \tI2C adapter\r\n",
"i2c-6\ti2c \tDPDDC-C \tI2C adapter\r\n",
"i2c-7\ti2c \tDPDDC-D \tI2C adapter\r\n",
"i2c-8\ti2c \ti2c-tiny-usb at bus 001 device 008\tI2C adapter\r\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Proto\u017ee pro p\u0159ipojen\u00ed \u010didel k po\u010d\u00edta\u010di pou\u017e\u00edv\u00e1me adapt\u00e9r i2c-tiny-usb. Vid\u00edme, \u017ee sb\u011brnice m\u00e1 aktu\u00e1ln\u011b ozna\u010den\u00ed nap\u0159\u00edklad i2c-8. \n",
"\n",
"V p\u0159\u00edpad\u011b, \u017ee v\u00fd\u0161e uveden\u00fd p\u0159\u00edklad vr\u00e1t\u00ed chybu, nebo pojmenov\u00e1n\u00ed \"unknown\" tak nem\u00e1me p\u0159\u00edstup k syst\u00e9mov\u00fdm rozhran\u00edm. Ten z\u00edsk\u00e1me vytvo\u0159en\u00edm souboru s n\u00e1sleduj\u00edc\u00edm obsahem ve slo\u017ece: /etc/udev/rules.d/i2c-devices.rules"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"KERNEL==\"i2c-[0-9]*\", GROUP=\"i2c\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Toto ozna\u010den\u00ed budeme je\u0161t\u011b d\u00e1le pot\u0159ebovat, proto si jej ulo\u017e\u00edme da prom\u011bnn\u00e9. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"port = 8"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Budeme pokra\u010dovat na\u010dten\u00edm pot\u0159ebn\u00fdch modul\u016f pro zach\u00e1zen\u00ed s I\u00b2C sn\u00edma\u010di."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import time\n",
"import datetime\n",
"import sys\n",
"\n",
"from pymlab import config\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nyn\u00ed si nadefinujeme strukturu p\u0159ipojen\u00ed jednotliv\u00fdch \u010didel na I\u00b2C sb\u011brnici."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"cfg = config.Config(\n",
" i2c = {\n",
" \"port\": port,\n",
" },\n",
" bus = [\n",
" {\n",
" \"type\": \"i2chub\",\n",
" \"address\": 0x72,\n",
" \n",
" \"children\": [\n",
" {\"name\": \"altimet\", \"type\": \"altimet01\" , \"channel\": 7, }, \n",
" ],\n",
" },\n",
" ],\n",
")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tuto strukturu inicializujeme, aby jsme dos\u00e1hli definovan\u00e9 konfigurace \u010didel."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"cfg.initialize()\n",
"gauge = cfg.get_device(\"altimet\")\n",
"time.sleep(0.5)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING:pymlab.sensors.iic:HID device does not exist, we will try SMBus directly...\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nyn\u00ed u\u017e m\u016f\u017eeme p\u0159\u00edmo komunikovat se za\u0159\u00edzen\u00edm pojmenovan\u00fdm jako gauge. A vy\u010d\u00edst z n\u011bj s\u00e9rii 100 vzork\u016f. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"MEASUREMENTS = 100\n",
"t = np.zeros(MEASUREMENTS)\n",
"p = np.zeros(MEASUREMENTS)\n",
"\n",
"# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
"for n in range(MEASUREMENTS):\n",
" (t[n], p[n]) = gauge.get_tp()\n",
" print(n,t[n], p[n])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(0, 22.625, 98286.0)\n",
"(1, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(2, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(3, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(4, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(5, 22.625, 98284.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(6, 22.625, 98284.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(7, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(8, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(9, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(10, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(11, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(12, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(13, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(14, 22.625, 98284.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(15, 22.625, 98284.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(16, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(17, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(18, 22.625, 98284.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(19, 22.625, 98284.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(20, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(21, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(22, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(23, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(24, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(25, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(26, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(27, 22.625, 98290.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(28, 22.625, 98290.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(29, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(30, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(31, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(32, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(33, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(34, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(35, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(36, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(37, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(38, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(39, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(40, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(41, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(42, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(43, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(44, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(45, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(46, 22.625, 98288.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(47, 22.625, 98288.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(48, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(49, 22.625, 98286.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(50, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(51, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(52, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(53, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(54, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(55, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(56, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(57, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(58, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(59, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(60, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(61, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(62, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(63, 22.625, 98282.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(64, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(65, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(66, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(67, 22.625, 98288.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(68, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(69, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(70, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(71, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(72, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(73, 22.625, 98286.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(74, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(75, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(76, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(77, 22.625, 98284.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(78, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(79, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(80, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(81, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(82, 22.625, 98290.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(83, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(84, 22.625, 98286.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(85, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(86, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(87, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(88, 22.625, 98288.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(89, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(90, 22.625, 98286.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(91, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(92, 22.625, 98290.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(93, 22.625, 98288.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(94, 22.625, 98288.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(95, 22.625, 98288.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(96, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(97, 22.625, 98290.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(98, 22.625, 98290.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(99, 22.625, 98290.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nam\u011b\u0159en\u00e1 data si ulo\u017e\u00edme pro pozd\u011bj\u0161\u00ed zpracov\u00e1n\u00ed. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"np.savez(\"data_desk\", temp = t, preassure = p)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 35
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nyn\u00ed p\u0159em\u00edst\u00edme m\u011b\u0159\u00edc\u00ed p\u0159\u00edpravek ze stolu na zem, a zopakujeme m\u011b\u0159en\u00ed"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"MEASUREMENTS = 100\n",
"t = np.zeros(MEASUREMENTS)\n",
"p = np.zeros(MEASUREMENTS)\n",
"\n",
"# gauge.route() V p\u0159\u00edpad\u011b v\u00edce \u010didel je pot\u0159eba ke ka\u017ed\u00e9mu p\u0159ed jeho pou\u017eit\u00edm nechat vyroutovat cesutu na sb\u011brnici.\n",
"for n in range(MEASUREMENTS):\n",
" (t[n], p[n]) = gauge.get_tp()\n",
" print(n,t[n], p[n])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(0, 22.5625, 98296.25)\n",
"(1, 22.5625, 98296.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(2, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(3, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(4, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(5, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(6, 22.5625, 98302.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(7, 22.5625, 98302.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(8, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(9, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(10, 22.5625, 98304.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(11, 22.5625, 98304.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(12, 22.5625, 98304.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(13, 22.5625, 98304.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(14, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(15, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(16, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(17, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(18, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(19, 22.5625, 98304.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(20, 22.5625, 98304.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(21, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(22, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(23, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(24, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(25, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(26, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(27, 22.5625, 98296.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(28, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(29, 22.5625, 98306.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(30, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(31, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(32, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(33, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(34, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(35, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(36, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(37, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(38, 22.5625, 98296.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(39, 22.5625, 98296.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(40, 22.5625, 98296.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(41, 22.5625, 98296.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(42, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(43, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(44, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(45, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(46, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(47, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(48, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(49, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(50, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(51, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(52, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(53, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(54, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(55, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(56, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(57, 22.5625, 98296.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(58, 22.5625, 98296.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(59, 22.5625, 98296.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(60, 22.5625, 98298.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(61, 22.5625, 98298.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(62, 22.5625, 98298.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(63, 22.5625, 98298.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(64, 22.5625, 98304.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(65, 22.5625, 98304.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(66, 22.5625, 98298.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(67, 22.5625, 98298.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(68, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(69, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(70, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(71, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(72, 22.5625, 98298.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(73, 22.5625, 98298.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(74, 22.5625, 98298.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(75, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(76, 22.5625, 98302.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(77, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(78, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(79, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(80, 22.5625, 98300.25)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(81, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(82, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(83, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(84, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(85, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(86, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(87, 22.5625, 98302.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(88, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(89, 22.5625, 98300.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(90, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(91, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(92, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(93, 22.5625, 98300.0)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(94, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(95, 22.5625, 98298.5)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(96, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(97, 22.5625, 98298.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(98, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(99, 22.5625, 98300.75)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"np.savez(\"data_floor\", temp = t, preassure = p)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 11
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"D\u00e1le bude pracov\u00e1no s daty ulo\u017een\u00fdmi do souboru, kter\u00e9 m\u016f\u017eeme na\u010d\u00edst n\u00e1sleduj\u00edc\u00edm blokem."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = np.load('./data_desk.npz')\n",
"th=data['temp']\n",
"ph=data['preassure']"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 24
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Na\u010dten\u00e1 data nyn\u00ed budeme statisticky analyzovat. Najdeme minim\u00e1ln\u00ed a maxim\u00e1ln\u00ed hodnoty a spo\u010d\u00edt\u00e1me sm\u011brodatnou odchylku. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Minim\u00e1ln\u00ed nam\u011b\u0159en\u00e1 hodnota tlaku:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amin(ph)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 27,
"text": [
"98346.0"
]
}
],
"prompt_number": 27
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Minim\u00e1ln\u00ed nam\u011b\u0159en\u00e1 hodnota teploty:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amin(th)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 28,
"text": [
"22.5625"
]
}
],
"prompt_number": 28
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Maxim\u00e1ln\u00ed tlak"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amax(ph)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 29,
"text": [
"98358.25"
]
}
],
"prompt_number": 29
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Maxim\u00e1ln\u00ed hodnota teploty"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amax(th)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 30,
"text": [
"22.625"
]
}
],
"prompt_number": 30
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sm\u011brodatn\u00e1 odchylka tlaku"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"std(ph)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 31,
"text": [
"2.3781768226942255"
]
}
],
"prompt_number": 31
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sm\u011brodatn\u00e1 odchylka teploty"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"std(th)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 32,
"text": [
"0.024518806557416305"
]
}
],
"prompt_number": 32
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Otev\u0159eme soubor s m\u011b\u0159en\u00edm z podlahy a zpo\u010d\u00edt\u00e1me znovu statistick\u00e9 parametry. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = np.load('./data_floor.npz')\n",
"tl=data['temp']\n",
"pl=data['preassure']"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 25
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amin(pl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 15,
"text": [
"98296.0"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amin(tl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 16,
"text": [
"22.5625"
]
}
],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amax(pl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 17,
"text": [
"98306.75"
]
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"amax(tl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 18,
"text": [
"22.5625"
]
}
],
"prompt_number": 18
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"std(pl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 19,
"text": [
"2.2464082442868674"
]
}
],
"prompt_number": 19
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"std(tl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 14,
"text": [
"0.0"
]
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pro porovn\u00e1n\u00ed je nyn\u00ed mo\u017en\u00e9 vykreslit graf z hodnot nam\u011b\u0159en\u00fdch na stole a na zemi. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#fig, ax = plt.subplots()\n",
"\n",
"plt.plot( pl, label=\"Podlaha\")\n",
"plt.plot( ph, label=\"Stul\")\n",
"plt.legend(loc=2); # upper left corner\n",
"plt.xlabel('vzorek')\n",
"plt.ylabel('Tlak [Pa]')\n",
"plt.title('Namerene tlaky');\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEVCAYAAAAGrllxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8U/X+/19pWroXpUBLCwWKQBmllNEWKG1RliAFAUVk\nKAqiXhyI43tVcFWG4PYi1ys40Kven4iAICAtqKWMIkuQClLoBDpI98zn98fxpBknyTlpTpI27+fj\nwUOTnPHJ6cl5fd7zo2CMMRAEQRBOiYu9B0AQBEHYDxIBgiAIJ4ZEgCAIwokhESAIgnBiSAQIgiCc\nGBIBgiAIJ4ZEgLA7ubm5cHFxwX/+8x+d99944w3cd999dhqVfOzatQsrV64EAGzZsgVTp041uX1u\nbi58fX1tMTTCCSERIBwCFxcXrFixAn/++afmPYVCYccRycexY8dQVlZm72EQBAASAcJB8PT0xPLl\nyzFnzhw0NjYCALTrGHNycnDbbbchISEBERERSE1NRX19PQDAw8MD//d//4fBgwcjIiIC33zzDWbP\nno3+/ftj3LhxqKmpAQCcP38eEyZMwLBhwxATE4PNmzcDADIyMhAdHY1Ro0YhJiYGDQ0N2LFjB+Li\n4jB06FCMHj0aWVlZAIBVq1Zh4cKFmDhxIvr374/ExEQUFRUBAAoKCjBjxgwMGzYM0dHReP311w2+\n55EjR/Dhhx/iq6++wvPPP68jdFlZWRg7dizi4uLQo0cPPPDAAwb7nz9/Hr169cJ3332HtLQ0zJ07\nV/PZr7/+iqFDh7bq70A4IawNUFZWxqZMmcJGjx7Nxo8fz65cuWKwzQcffMCGDRvGhg8fzrZt28YY\nY+zmzZtsypQpbOzYsSw+Pp4dPnyYMcbYL7/8wkaOHMni4uLY888/L2oMW7duZfHx8db7UoSGy5cv\nMx8fH6ZWq1liYiJ76qmnGGOMrVu3ji1cuJAxxtiKFSvY1q1bGWOMNTY2ssGDB7Nvv/2WMcaY
QqFg\n7777LmOMsTVr1jA/Pz9WWFjI1Go1i42NZV9++SVrbGxkUVFR7MSJE4wx7t6IiopiWVlZLD09nSmV\nSnb16lXGGGM5OTls0KBBrKysjDHG2NmzZ1lISAirrq5mK1euZL1792aVlZWMMcbuuOMOtnLlSsYY\nY8nJyWzHjh2MMcZqa2tZcnIy+/rrrw2+76pVq9g//vEPxhhjmzdvZlOmTGGMMTZnzhx28OBBxhhj\nlZWVLDg4mJ04cUJzfc6cOcMiIyPZgQMHGGOMXb9+nfn7+7Py8nLGGGPz5s1jmzZtav0fhHAqXO0t\nQmJIS0vDqFGj8Oyzz+Knn37CsmXL8N1332k+r6qqwrp165CTk4OqqioMGTIEqampePPNN3Hbbbdh\n2bJlyMnJwZw5c5CdnY3ly5djy5Yt6NevH8aMGYOzZ89i4MCBRs//22+/4eOPP7bFV3VqFAoFPv/8\nc8TExGDChAk6s+Q1a9Zg7969WLduHS5cuIDCwkJUVVVpPr/zzjsBAL169cKgQYMQEhICAOjZsyfK\nysqQk5ODv/76C/fff79mn7q6Opw8eRJ9+/ZFeHg4wsPDAQD79u1DUVERUlJSNNsqlUpcvHgRCoUC\nycnJ8PHxAQDExMSgvLwcNTU1OHjwIMrLy/HCCy8AAKqrq3Hq1CnMmjVL53syxnSsHJ5PPvkEu3bt\nwuuvv47z58+jpqYGVVVVCAwMRF1dHVJSUpCUlITk5GQAQHBwMKZMmYJPP/0U8+bNw969e7Fx40bL\n/wCEU+KwIrBq1SqEhIRgyZIlOHfuHF577TUAQEJCAmbOnKmzLf+wqKqqQmVlJZRKJQDgiSeegLu7\nOwCgsbERnp6eADjXQ2lpKRoaGlBXVwdXV+4yPPfcc/jll1/Q3NyMJ598EjNnzkRpaSn++c9/4q23\n3sKDDz5ok+/uzISHh2Pjxo1YsGAB5s+fr3n/7rvvRnNzM+666y7cfvvtyMvL03mQ8n9nAHBzczM4\nrlq
tRkBAAH777TfNe8XFxQgICEBWVpbmoc5vO27cOPz3v//VvHf16lWEhYVh27Zt8PDw0LyvUCjA\nGENzczMA4PDhw5rPS0pKNPecNgqFQjDeMXr0aMTExGDixImYPXs2jh49qvmOCoUC27dvx7333ott\n27Zh+vTpAIBHHnkES5cuhaurK2bOnAkvLy9jl5YgBHG4mMDXX3+N5ORkfPLJJ9iwYQOSk5Nx8+ZN\nfP/99wCA77//XuPj5fH29sacOXMQFRWFYcOGYdmyZQAAf39/eHh4oLi4GPPmzdP4aJ966ilMmTIF\nUVFR6N69O/r27Yvdu3cjNzcXP//8Mw4cOIDXXnsNZWVlWLRoETZs2KDzkCDkZebMmZg0aRLeeust\nzcNy7969ePHFFzWz6iNHjmgevGLo27cvPDw8sHXrVgBAXl4eoqOjdUSBJyUlBXv37sWFCxcAAHv2\n7MGQIUNQV1dnMIPnZ/W+vr6Ii4vD+vXrAQAqlQpjxozR3LfauLq6oqGhQee9mzdvIjs7G6tXr0Zq\nairy8/Nx8eJFzXd0d3dHfHw8Pv74Yzz00EO4du0aACA+Ph4uLi544403sHTpUtHXgyB4HM4SmD17\nNmbPno2XXnoJISEhWLx4MaqqqrBs2TKMHTsWt99+u8Zs58nMzMThw4eRm5sLxhgmTJiAhIQEDB8+\nHGfOnMGcOXOwfv16jBkzBrW1tVi2bBnOnz+Prl274plnnsH69evBGEN2drbG1G5qasKlS5dw8eJF\nLF26FHV1dTh37hyefPJJbNiwwR6Xpl2jPzN+55138Msvv2hep6WlYfr06ejSpQu6d++OO++8Excv\nXjTY19gs283NDdu3b8djjz2GtWvXorGxEa+88gri4+ORkZGhs09UVBQ2bdqEu+++G4wxuLm5YceO\nHfDy8jI4vvbrL774Ao8++igGDx6MhoYG3HPPPZgzZ47BWMaNG4cZM2bA3d0dQ4cOhUKhQEBAAJ57\n7jkMHToUoaGh
iIqKwuTJk3Hx4kX06tVLc46xY8fi7rvvxqJFi7Bz504AwMKFC/HNN99gwIABkq87\nQThsYHjVqlXsww8/ZIwxtnPnTpaZmckYY+x///ufJljIs3fvXjZ58mTN62nTprF9+/ax33//nfXt\n25edPn1a81lVVRULDw9nKpWKMcbYhg0b2D//+U/2/fffs8WLFzPGuMDjSy+9xKqqqjT75ebmsri4\nOHm+LEFYSGNjI5syZYpgAJogxCCLJdDc3IwHH3wQOTk5UCgU2LhxI9zd3bFw4UK4uLhg4MCBeP/9\n903mgfPFNADQr18/LFiwAIwxdOzYUZPa9+abbyIyMhJTp07Fvn37MHLkSCiVSowZMwa33norUlNT\n0dDQoHEPBQQEYNu2bVizZg1uvfVWeHl5ITAwEFu2bIG/vz8yMjKQmJiIqqoqzJgxA97e3tpi2W7z\n1om2yblz5zB69GjcfvvtBsFnghCLgjHrLyqzfft27NixAx999BEOHjyocZ8sX74ciYmJWLp0KSZM\nmIDU1FRrn5ogCIKQgCyB4WnTpuHDDz8EwJW8BwYGIjs7G4mJiQCASZMmYf/+/XKcmiAIgpCAbNlB\nSqUSCxcuxGOPPYa5c+fqZFX4+PhApVLJdWqCIAhCJLJmB23ZsgXXrl3DiBEjUFdXp3m/srISAQEB\ngvtERkbi0qVLcg6LIAiiXdG7d29NtpxUZLEEPvvsM01OvqenJ5RKJYYNG4aDBw8CAHbv3q1xDelz\n6dIlTe61s/9buXKl3cfgKP/oWtC1oGth/F9rJs6yWAIzZ87EwoULMXbsWDQ2NuLtt99Gv3798OCD\nD6KhoQFRUVEGVb8EQRCE7ZFFBDw9PfHVV18ZvJ+RkSHH6QiCIAgLcbi2EUQLSUlJ9h6Cw0DXogW6\nFi3QtWg9stQJtAa+IRdBEAQhjtY8Nx2ud5AxOnbsiPLycnsPo10RGBhIK1wRhJPTZiwBshCsD11T\ngmgftOa3TDEBgiAIJ4ZEg
CAIwokhESAIgnBiSARaSW5uLpRKJWJiYjT/hgwZoml3LZaBAwfi0KFD\nyM3Nha+vr9ntIyIicOLECUuHTRAEAaANZQc5Ml5eXjrLFBYWFmLgwIEYNmwYBg0aJOoYUtcqoKAu\nQRDWgCwBGQgNDUWfPn2Qk5ODV155BQMGDEB0dDRmzZqlWRv23LlziIuLQ3R0NGbPno2qqiqD41y7\ndg2pqalISEhAr169kJycjBs3bmg+//DDDzF8+HD06NEDzz//PABukfTHHnsMcXFxGDBgAKKiopCZ\nmWmbL04QRJuDREAGDh8+jIsXL+L8+fPYs2cPjh8/jlOnTmHgwIFYuHAhAGDu3LlYsmQJTp06heXL\nlyMvL8/gOF999RVGjRqFzMxM/PXXX/Dy8sJnn32m+dzT0xPHjh3D0aNHsX79ehQUFODIkSMoLi5G\nVlYWfv/9d8yfPx+rV6+21VcnCKKN0W7cQdZa+dESD0ttbS1iYmIAcAvUBwcH44svvsDHH3+M+++/\nH56engCAZcuW4bXXXsP169dx5swZzJ8/HwAwcuRIREdHGxx32bJl+Pnnn7Fhwwb8+eefOHv2LOLi\n4jSf33PPPQCALl26oEuXLrh+/Tri4+MRFBSEf/3rX/jrr7+QkZEBPz8/6V+KIAinoN2IgD3d456e\nnjoxAZ6PPvpIx2+vVqvR1NSk81qpVAIAXF0N/xTPPPMMjh07hkWLFiElJQVNTU06x3Nzc9P8Px8j\n2LVrFx5//HE89dRTSE1NRb9+/fD5559b5XsSBNH+IHeQjEyYMAGbN29GTU0NAOCdd97B2LFj0blz\nZ8TGxuKjjz4CAJw8eRInT5402H/v3r14/PHHMXfuXAQHB2Pfvn1obm42ej7GGPbv34+pU6diyZIl\niI2NxbZt20zuQxCEc9NuLAF7YiyzZ9GiRcjLy8OIESOgVqvRp08fbN26FQDw5Zdf4r777sO//vUv\nREZGon///gbHe/HFF/HUU08hLS0NnT
t3xsyZM02uHqRQKPDQQw/hnnvuQUxMDAIDAzFt2jSsX7/e\nit+WIIj2BPUOcmLomhJE+4B6BxEEQRAWQSJAEAThxJAIEARBODEkAoQO77wDXLpk71EQBGErKDuI\n0OHLL4GOHYHeve09EoIgbAFZAoQO5eWAQAcLgiDaKSQChA4kAgThXJAIEBoYIxEgCGeDRMAKZGVl\nISUlBdHR0Rg0aBAmT56Mc+fOAQDGjx+PsrIyk/uLXUhGbmpqgMZGID/f3iMhCMJWUGC4ldTX12PK\nlCnYv38/hgwZAgDYunUrJk2ahL/++gv79+9vM1W55eWAuztZAgThTJAl0EpqamqgUqlQWVmpeW/u\n3Ll477338OCDDwIAUlJSkJ+fj4iICGRnZ2u2c7QlIsvLuaygqirOKiAIov3TbiwBxUvWWVCArZQ2\naw8MDMTatWsxceJEdO3aFaNGjUJycjLuvvtuTJ06FVu2bEF6ejo6duwIhUKh02xO6pKSclNezqWH\n1tVxLqFbbrH3iAiCkJt2IwJSH97W5IknnsDixYuRkZGBQ4cOYc2aNVizZg2OHDlitzFZQnk5EBgI\nKJWcS4hEgCDaP7K4gxobGzFv3jwkJiZi5MiR2LFjB3777Td069YNycnJSE5Oxtdffy3HqW3Or7/+\ninXr1sHb2xu333471qxZg99//x0uLi7Yv3+/zrb6nf4aGhpsPVyT8CIQHk7BYYJwFmSxBLZu3Yrg\n4GB89tlnKC8vR3R0NFauXInly5fjySeflOOUdiM4OBivvfYaRo4cicTERABAQUEBqqurMWjQICiV\nSs3DPjg4GMeOHUNsbCyysrJQVFRkz6EbUFbGiYCXFwWHCcJZkGU9gerqajDG4OPjg9LSUowYMQIT\nJkzAhQsX0NTUhD59+uCtt96Cj4+P4YDa4HoCGRkZWLlyJa5evQovLy/4+/tj1apVGD9+PO666y5k\nZ2fj+++/x/Xr17F06VJ4eHggNjYWp0+fxsaNG9G
xY0cMHjwYFRUVNh23/jV94QXA1RUIDgZOnQI+\n/NCmwyEIwkJa83yUdVGZyspKTJs2DYsXL0ZdXR2io6MRExODtLQ0lJeXY926dYYDaoMi0FbRv6aP\nPsrFAXr2BP71L+CHH+w4OIIgRNOa56NsgeG8vDzMmDEDjzzyCO6++26oVCr4+/sDAFJTU7Fs2TKj\n+65atUrz/0lJSUhKSpJrmIQW2jEBcgcRhOOSkZGBjIwMqxxLFkvg2rVrSEpKwgcffIDk5GQAQHx8\nPN555x0MHz4c7777LgoKCrB69WrDAZElYDP0r+nkycAjjwBxcUBkJCcKBEE4Pg5nCaSlpUGlUuHl\nl1/Gyy+/DAB466238MQTT8DNzQ0hISHYtGmTHKcmWgFvCXTsCNTXc0VjAmEbgiDaEbTQvBOjf037\n9QO2bQP69+diA9u3c/9PEIRj43CWANE24S0BoCUuQCLQ9qmvB4qLW14HBAB/h+cIou2IQGBgoMO1\nWWjrBPJPfLS0kdYWASoYax+sXAls2gT4+nJdYrt1A44ds/eoCEehzYiAuXbM1mLqVGDRIiA11fR2\nZ88Cs2YB589b57yMAZmZXN8eAOjQARg9GrCV7tXUcDUC7u7ca8oQaj8UFgIbNgALFwJXrwKjRtl7\nRIQj0WZEwFZcuQL06GF+O/4hyZh1HtQ7dwIPPggMGMC9PnKEm63Zyh2jbQUA3Pc7etQ25ybkpbQU\nCAri/r9jR64ynCB4qJW0HmJFwN8fcHEBVCrrnHf7duDZZ4GffuL+DR0KXLtmnWOLQUgEyBJoH2iL\ngLc30NTUYnESBImAFioVoFbrPgxNERZmnQelWg3s2gVMmdLyXnAwcONG648tFn0RsNZ3I+xPSQnQ\nqRP3/woFWQOELiQCWly5AnTvLt69Y63ZcnY2l7ERGdnynr1FgALD7QdtSwDgRKC01H7jIRwLEgEt\nxLqCeKwlAjt2cAFpbewtAv7+XLzDWu4uwj40NQGVldwkgyco
iCwBogUSAS0sEQFrzJYdQQT4NtI8\nCgXFBdoD5eWcoCuVLe+RJUBoQyKgxdWrtrcE8vO5Y8TH675vb0sAIBFoD5SWtsQDeMgSILQhEdCC\njwmIxRrB0507gUmTuBx9bUgECGtQUqIbDwAoMEzoQiKghT1iAjt26GYF8TiCCISFUXC4raMfFAa4\n1+QOInhIBLSwNCZgaV+76mrg55+BiRMNP+vUyf4i0K8fkJbGLTfZmn/bt9vuexC6CIkAWQLCDBum\ne986y8p6baZiuKQE4NdlVyqBzp2t21Khvp77wYSEiN/Hx4drs1BWZvhDM4ZKxT38Aa4obPhw4WZe\nnTpx41GruaI0uSkv5x4O2tx9N3DHHa077htvAL/8Akyb1rrjEJZhTATEWAI3bnC9hszh4wP4+Ukb\nV00NcPOm7pg8PKQdw5o0NQGnT3PPGVdX4KuvgD17gCVL7DcmW9EmRKCgAIiI4FwkAPfQ3bsX+Htd\nd6uQl8c11tLOohADHxcQIwKMcS2aXVxaBGzDBuFt3d252cjNm4YPZzkQsgQAbgytITYWeOed1h2D\nsBxLA8MXL3ItS/jfnDHUau5evXJF2rhmzQKysrh96+uBW2/lHrz2oqiI+668mMXFAa+9Zr/x2JI2\nIQJFRcDgwVxRFQA8/jjXW8eaIiDVFcTDxwWGDDG/7eXLgJubeD97cDA3M7GnCLSWwYO5GRZhH0pK\ngF69dN8T4w7KzeV+Xz/9ZHq7piZuotDUZJjcYO74GRnAoEHcJC862nZWrxB5edxvmeeWW7i2LXL9\nLhyJNhET0He3xMa2CIK1aK0IiCE7mxu7WGwVHNZvI21NwsK4PjXXr1v/2IR5LA0MFxaKc426unLH\nk9rnSvv43bpx1oo9Jwv6IqBUchO7EyfsNyZb0SZEoLRUdzYcGwscP25+v6NHgc2bW/7l5Bjf9upV\naemhPFJE4PhxxxQB/TbS1kSh4KyBM2esf2zCPJYGhouKgNBQcecIDeW2F
0ttLXfPaY8rJQU4cED8\nMaxNfr6uCADyTDYdkTYhAvqWQN++3MxDO7AkxPz5wO7dwKFDwPffA/PmGd+2NZaAWPdOdjaXgSAW\nW4mA3CYvuYTsh1BMwNOTs/5qaozvV1goXgRCQrjtxVJUxO2jndiRnAykp4s/hrXJy+OsVm1IBByI\nsjJdS0CMqVZQwD1A//tfzgr45hvuQX/hgvD2loqA2IIxxrjxOqIlQCLQfhGyBBQK88Fhse4gQLol\nwIuANklJXLp0U5P441gTfXcQwE3YSAQcBH13EGBepdPTuRuLDzS5ugJz5gBbtwpvL7VlBI9Yd9Dl\ny1wArUsX8ccmESBaA2PCIgCYTxOV6g6SYgkIWRnBwdzvz14PXSER0A4Ot2fahAgI5eGLEYGUFN33\n5s0DPv/csLhLrRb2CYohLIyzOtRq09tJDQoD7UcEBgzgluG01yzPWamo4HLvO3Qw/MyaloBUd5Cx\nY9szLiAkAs4SHG4TImCJJXDggKEIxMRwP4rDh3XfLy7mCrY8PaWPzcuLK5Yx97B2ZhHw8eEyQP78\nU75zEIYYswIA08FhxoRdNsawxB0kZGXYSwQaGrhr1bWr4WfOEBdoEyIgZAn07cs9vIWCw5cvc2mJ\n/frpvq9QAPfey1kD2lgaD+ARExw+flxaUBiwnQjot5GWg8GDgVOn5D0HoYtQUJjHVJrozZtcppi3\nt7jzWGIJCIlAYiJXQFZfL/5Y1qCwkBMAoUJREgEHQcgSUCq5AhMhU+3AAS7bQKitxD33AF9/3dKC\nArA8HsBjLjhsSVAYaD+WAEBxAXtgqSUgxRUEWCcwDHDWeP/+XCGoLRFyBfGITUdvy7QJETDWm8eY\nSgu5gngiIoCoKC51lEdqC2l9zAWHLQkKAy0iYGmDOrGQCLRPhNpI85gKDEsJCgNcH6+SEvExH1Pp\np/ZwCZkSgb59uULH9hwcdngRUKs581R7eTweoRQuxkyLAMC5hLZs4W7ckhKuiKy17i
BTImBJPADg\nhEOpBKqqLB+bGGwhAtHRbU8Eamtb7hEpDzlHwZQlYCowLNUScHXl3E5iq4ZNHT8lBdi3r+Wal5bK\nPwkyJQKOFByur9e9HysrrXNchxcBlYoLLAr1JRGyBP74g/Nn9uxp/JizZgHnznExg379uFbHYnr/\nGMNcTEBqkZg2tmgpbQsRiIjgztMWZlS1tcDq1Zybj79HevYEHn3U3iOThjl3kLUsAUC8S0ioWlib\nUaO44/DXvUcPrleYnEIgVCimjaPEBe64A4iMbLk2Tz9tneM6fAM5U22atYPDvKVgKh7AExhovGjM\nEsRYAk88YdmxeZeQfhMwMfz2W0uQTakEhg4VDn4JtZG2Ni4uXLOwM2es2/hPDIxx10I7DmSMP/4A\nVq7kfviHD3O54gBw8iQXT2oNxcVc4zSeiAjhjBRrUVrK+diFMGcJmJpECSE2OCxULayNtzfw118t\nr1Uq7n5ZvRp47jlpYxJLfr5pz0FsLFdfxN+3bm7cb8marezN0dQEZGZyzxkhr0hrkEUEGhsbcf/9\n9+PKlSuor6/H888/j/79+2PhwoVwcXHBwIED8f7770Mh4ioKBYV5tIPD/B8xPd32vetNBYYZs9wd\nBFgeHD57lrtpBwzgXv/xB2fxjB1ruK2tOiXycQFbi8D//R+XEdatm/ltAwO5bceM0X1/4EDuYaFf\nvS6FOXM4M97bm3u49enDtTORi9YEhhMSpJ1LrCUgJfUU4ILFu3dzFkJICLBwobRxicGUOwjgik4/\n/JCzSACu5mXvXmDkSOuPxRinT3NxS2sLACCTCGzduhXBwcH47LPPUF5ejujoaMTExCAtLQ2JiYlY\nunQptm/fjtTUVLPHMrdgS2ws8MknLbOQ9HTgrbes9EVEEhbGnf+zzwxnBzdvWhYU5uHbSUvl11+B\nmTO5lhkAN4s15rKypQh8913LjeztDaSmyjujeucdYNs2zhIwli4pBldXbgGgrCxg8mTp+9fUAMe
O\ncdaAjw9nWcyfb/l4xGAqMGwqRdQSd5BYS0BKTyKe0FBugZexY7kx878lT09uadbWNj40JwLh4dzC\nSDyPPMLNym0pApmZ0oVZLLLEBGbNmoWXX34ZAKBWq+Hm5oYTJ04g8e8p4KRJk7B//35RxzJlCQDA\n3LlAczN3k+zZAzzwgGn/nhy4u3OzhB9/bBkH/y8rC3j2WcuPbaklkJkJxMe3vDb2I5WzjbQ+Eydy\n7g/+2sybx1Vby8VXXwFr13J/l9YIAE9CgmGhoVgyMzmr1ceHe92jh/SFWKRiyhIIDOQmWEK+dksf\n1GItAanHBjjX786dnHjy989773Hurq+/tjxmUFfHWWWdO4vfJz6e+3vaksOHdX/P1kQWS8D77yqT\nyspKzJo1C6+++iqeeuopzec+Pj5QqVSijmXO/B4xwrD4yx6sXSvPcS0VgcOHgRUrWl6Hhgo/cOVs\nI61Pr17Ap5+2vI6L42o0LBXtykrg7beFs3bq6oCPPwb2729d5pc28fHA+vWW7aufsRYQwD24jGW+\nWQNTxWKenpw7tbq6RZgA6dXCPKGhwI4d5reTmnmkzbBhnLWtzYEDwFNPAW++CUyYIO44Cxdy8RiA\ns45DQ6UtZpOQADzzDHetTFmx27dzFijP9OncRMASMjOBF16wbF9zyBYYzsvLw4wZM/DII49gzpw5\neForlF1ZWYkAE3f+qlWrNP+fm5uEHj2S5BqmwxMcLD2IfeMGl9scFdXyXkgI547Qp7hY2izImnTv\nzs2GLTVzs7I4V+DcuYafeXgAu3ZxLihrERfHXUOpq2gBnJsyLa3ltULBff+rV+UVAVOuVD44rC0C\nfLWw1GVFpbiD9Cv5W0NKClfM9fXXXNzLHGfPAqtWcSnigGU9w3r25O6BvDzj9UX19Zy7b9kyTmxz\ncznh2LNH2rkATpRVqpYkBQDIyMhARkaG9IMJIIsIXLt2DePHj8cHH3yA5ORkAEBMTAwOHjyIsWPH\nYvfu3R
g3bpzR/bVFYNky2yyv6KhYYgkcPsz5K7VnN8Y6PVraOM8atNYlcvky5yfWul1kpWNHLrh8\n9qy0lOKyhCraAAAgAElEQVSKCm4ffXOe//7WFCqe2lruQWWq9QMfHNZ+kFk6U5crMCwGFxfg7rvF\nbXvtGidCNTWc0JmLBwihUHATl8xM4yJw8CCXlPHKK9zrigrO4q2sBHx9pZ2PdwVp/56TkpKQlJSk\nef3SSy9JO6gWssQE0tLSoFKp8PLLLyM5ORnJycl49dVXsXLlSiQkJKCpqQkzZ84UdSxzs5n2jqUi\noD+7NvYjteRHYC169OBmwpZy+bL0VMbWwv/4pfDzz5zb0sND93054wL878aUu0IoOGypz15s1bAl\n8QZr0qULZ9Ft3869tvT+j483HR/asQOYOrXltZ8fd959+6SfS86gMCCTCLz99tsoLCxEenq65t/g\nwYORkZGBzMxMfPTRR6LSQ4HWpeS1BywRAaGbhjfX9QNo9hQB3h1kKfYSAanBYb52RZ/Wfn9TiJk8\nCaWJWvqQ5quGza0lbanIWBPtJpKW3v+mJgOMGYoAwL0WEzfRR86gMNAGKobNpYi2d6SKQGMjV5eg\nn77m68uZk/ql5uaqJeXEGu4gW4uAJZkhxtqYtNYSMoWpoDCPUNVwawK35uICtbVcINrek7rUVC6F\n+vp1y+//2Fiu64DQEp1nz3L/5Wt0eKZM4eJUzc3iz1Nfz2VEjRghfYxicXgRMJci2t7x8+MqXevq\nxG1/6hSXhePnZ/iZ0I/U3u6gK1csT++7fLkly8NW9OvHTUzE9skpLQUuXeJqDPSxhTvIFEJVw62Z\nqZtbYcxctbCt8PbmZuVffWX5/e/pyRUQCnUY5a0A/e/ZsyfnNjt6VPx5TpzgAsLawXtr4/Ai4Ozu\nIIVCWv8g/foAbYR+pPYMDPv7c99PaE0Ic1RVcf/kbLsghIuLeX+wNgcPAqNHc60G9LG3CFjbEjAX\nHJYjKGwpvEuoNfe
/MZfQzp2GriCeqVO5z8UiFN+zNg4tAs3NXFRdrhS6toIUl5CpIJLQj9SeloBC\nYfmDMDeX29ces0opLiFTHW27duUmOWKtPCmYqhbmsbYlYM4dZO+gsDbjxnH3XU2N5YWEQvfB9euc\nm0ioPQsgPS5galJnLRy6gdzNm5xbQ6jpmTMhRQQOH25JS9NH/0daU8PNpoODWz9GS+FFQGoXV3vE\nA3gSErgqcDGdJfftA774QvgzpZJLOc3P57pDWpPSUvPibs3AMMDtZ+qaOEJQmMfVlevltGOH5ROJ\nhASuhYR20dgPPwC33mq8+HLkSO46GFvNsLpat94hM1O+QlQehxYBZ08P5RHrDioo4B7sxh4o+lXD\n+fncQ8iePlpLg6P2FIGRI7l0z8WLzW/bo4dpgeNFUA4RMCes+imillYL84ixBBzFHQRwfz/9tF0p\nhIVx+1+8yDUDBISzgrRRKrneUzt26LYmb27m+ny9+CI3KeOLEYcOlf8+d2gRcPZ4AE9wMPDTT8J+\nZW1++40zHY091PWrhu3pCuKxNE3SniLg48Pl/lsDudJELUkRtbRamEdMTMCa1cKtpX9/4PXXW3eM\nhATggw+4GgDGuDYl//qX6X2mTgXWrWuxwKurubYXgYFc/YJQEoGcOLQIkCXAMXUq8NFHwLffmt92\nyRLjn+n/SO0ZFObp0cOyNVwvX+YCrm0duYLDlgSGWztTN5cd5GiWgDV44AHd3+bTT5tvwzJpEtfU\nkN/HxYVz4U6bZh+r3KFFgCwBjttu4/61Fn1z3REsAUsfgva0BKxJjx66bYrN8fnn4q7XpUviLQHe\np93awK121bBQbyVHCgxbC0t+m97ewL//Lc94LMGhs4NIBKwLP1Pj8/LtWSjGwzdRkwJj7UcEpLiD\n8vOBf/yDi/uY+7dsmfnr4+7O/eMLCFsbuDVXNexIgWGiBYe2BMgdZF20q4b9/DgRmDLFvmMKCeHW\nM6irEx+kKy/nZq7tIXVYiiW0
cycXVHztNeudPyiIc2l4ewO//86totUaQkOBhx82XJ+CMceoFiYM\ncWgRKCvjFpMgrAfvEuJFwN7uIBcXzhq5elW3Va4peCvA3pWn1qB7d26Gr1ab72m/Ywe3EI812bKl\nZd3jxEThHkdSeO894y2dZ89uH3+z9oZDiwBZAtaHDw736+cYgWGgxSUkVQTaAx4e3Ky5uNi0q6S6\nmstI2rrVuudv7UNfn/h4+YubCOtCMQEng7cEqqq45lSOcH2lBofbkwgA4uICP/3ErazVHlxghGPh\n0CLg7M3j5IAPDvNBYUcwz51dBMR8f3NFSARhKUbdQSFmEnoVCgUKxawn1wqcvY20HPBVw44QD+Dp\n0QM4dEj89pcvcwHS9oK5qmm1mgsKP/OM7cZEOA9GRaBv374m17BMam0agQjIHWR9+KphRxIBqVWz\n7c0S6N7d9DrS2dlcx1Vrt5YgCMCEO2jXrl2C7xf9XXJq7HNr0dTE+a39/WU9jdPBB4YdJSgMSHMH\nqdXctrZeR0BOzH1/U62JCaK1GBUB779XqH7hhRcQHBwMPz8/uLq6Yvr06Tqfy0V5ORcEM5c2R0iD\nDww7kiUQHs65qMSsuFRczNU7yHz72RRzIkDxAEJOzKaIfv/998jLy8OTTz6JJ598EqtXr7bFuCg9\nVCa0A8MzZth7NBzaaZLdupnetr25ggDOHZSbK9wbqrqaEwi5FxYhnBezIhASEgIPDw9UVFQgMjIS\nV+RaCkkPigfIg68vlxH0+++OYwkALbNhZxSBwECutz2/+Lk+r70m3IuHIKyB2VsrLCwM//nPf+Dj\n44Nnn30WN6Sset4KKD1UPkJDgT//dDwR2LjRfDO1gweBwYNtMyZboVAAmzbZexSEs2JWBDZt2oS8\nvDzMmjULW7ZswRfGlkmyMpQeKh98cNiRgu5LlwK7d3NdKE0xYABwzz22GRNBOAMKxviekroUFRXh\njTfegK+vL1asWCF7IFgzIIUCDz7I8Pvv3
OIKb71lk9M6FXPmACdPAufP23skBEFYA4VCASOPcrMY\nzb1ZsGAB+vTpAzc3Nzz99NMWD84Shg0DFizg1u8krE9oqGO5ggiCsB9G3UFNTU146KGHAADjxo2z\n2YAAcWu3EpYTFgZUVNh7FARBOAKicg7UarXc4yBsyIMPcv37CYIgjIpAdXU1cnJywBhDTU2N5v8V\nCgVuEdvzl3BIfHy4fwRBEEYDw0lJSVD83WKSf/jzpKenyzegVgQ4CIIgnJHWPDeNikB6ejqSTaw4\nkZGRYbaJ3JEjR/Dss88iPT0dv/32G6ZOnYo+ffoAAJYuXYrZs2cbDohEgCAIQhKyiEB0dDTWrVsn\nuBNjDE8//TROnTpl9MBr167F559/Dh8fH2RmZuKjjz5CRUUFnnzySdMDIhEgCIKQRGuem0ZjAjEx\nMfjyyy+N7jh06FCTB46MjMS3336LeX8vipqdnY2cnBxs374dffr0wVtvvQUfckwTBEHYFaOWgDXI\nzc3FnDlzcPjwYWzZsgXR0dGIiYlBWloaysvLBS0NsgQIgiCkIYslYG2mT58O/7/7FKSmpmLZsmVG\nt121apXm/5OSkmyygA1BEERbISMjw+SiX1KwmSUQHx+Pd955B8OHD8e7776LgoICwbbUZAkQBEFI\nQ5a2ETza6aA1NTVYsmSJpBPwqaUbN27EE088geTkZBw+fBjPP/+8xKESBEEQ1sasJTB69Gi8+eab\naG5uxgMPPIB7770Xzz77rHwDIkuAIAhCErKkiPLcuHED06ZNQ0NDAz799FNERUVZdCLRAyIRIAiC\nkIQsIvDcc89p/r+4uBg//vgjFixYAIVCgbS0NMtGKmZAJAIEQRCSkCU7qG/fvhp/fr9+/ShDhyAI\noh1i1h3U2NiIY8eOobGxEYwxFBYW4h4Zl3YiS4AgCEIastYJTJ8+HU1NTcjPz4darcbQoUNlFQGC\nIAjCdphNES0pKcGePXsQFxeH48ePo6amxhbjIgiCIG
yAWRHw9vYGYwxVVVXw8vJCibmVwAmCIIg2\ng9mYwHvvvYeysjK4ublh+/bt8Pb2xk8//STfgCgmQBAEIQlZ6wSAlkVlzpw5g8jISHh6elp0MlED\nIhEgCIKQhCyB4Tlz5hg92RdffGHRyQiCIAjHwqgIPPTQQwBgoC7ay0wSBEEQbRuj7qDZs2fj66+/\ntvV4yB1EEAQhEVm6iN64ccPiAREEQRBtA6OWQI8ePTB37lxBdxD1DiIIgnAcZAkMe3l5oW/fvhYP\niiAIgnB8jIpA165dsWDBAluOhSAIgrAxRmMCsbGxthwHQRAEYQdkXWPYEigmQBAEIQ1Z1xgmCIIg\n2i8kAgRBEE4MiQBBEIQTQyJAEAThxJAIEARBODEkAgRBEE4MiQBBEIQTQyJAEAThxJAIEARBODFG\newc5Mmt+WYMjBUc0r+cOmos7o+6044jaP83qZiz6fhEq6isAcBWKr6W8hn6d+sl+7hV7V+BS+SXN\n68fjHkdij0TZz+sIXCq7hGf2PwM1UwMAvDt44+M7Poab0s3OIyP0UdWpsGTnEjQ0NwAAlC5KvDvp\nXXT16WrnkZmmTVoCb2a9iam3TMW9g+9FuF84vs/53t5DavcUVxVjZ85O3Dv4Xtw7+F5U1Ffg16u/\nyn5exhjePfou7hpwF+4dfC883Tyx99Je2c/rKPya9ytKa0s1133PxT0oriq297AIAc5eP4tT105p\n/lYlNSXYd2mfvYdlljZnCVyruoaG5gYsHLIQCoUCbi5u+DD7Q3sPq91TUFmAiIAIzOg/AwBwougE\nCisLZT9veV05PFw9cNfAuwAApTWlOlZgeydPlYeR3UZqrvuqjFUoqy1DuH+4rOctrirG7V/cjsbm\nRgDcrPbeQffi0RGPwt3VXdZza/PKwVfwzblvBD/zdPPEYyMfw90D74aLQvp8Nqc0B3f97y40q5sB\nAO6u7tgzdw+CvIIsGmteRR4Gdh6o+VtdVV1FZl4m5kXPE32MXTm
78NxPz2led/LqhC/u/EJWa0JW\nEThy5AieffZZpKen4+LFi1i4cCFcXFwwcOBAvP/++xatV3zm+hkM7jJYs2+QVxBKa0utPXRCj4KK\nAnTz66Z5HeITgrPXz8p+3sLKQoT4hmhed/XpiqKqItnP6yjkVeRhUOdBmtcdPTva5H7/5eovCPQI\nxIYJGwAAFfUVWPvrWrx/7H2svnU1ZkXNssl64xlXMvCPEf/AyLCRBp8VVBRgZcZKvJn1JtaPXy/Z\nRXiq+BQ6eXXC+vHrAQD/2P0P/HL1F0zrN82iseap8hDu1yLOCeEJ2HJyi6Rj/Pf3/2JW1CzNGL46\n+xUmb52MgwsPwtfd16JxmUM2EVi7di0+//xz+Pj4AACefPJJpKWlITExEUuXLsX27duRmpoq+bin\nr53G4C6DNa+DPINQWkMiIDcFlQXo5tsiAqG+odj3l/ymblFlEUJ9QzWvu/p0dSp3SH5FPib3max5\nHeQVhLLaMtnPm12YjcQeiTq/tdHdR+PA5QN4au9TmL9tvmb23T+4P7IXZ5s8XmV9JXq90wvVDdUA\nABeFC/bN24f48HiT+5XUlCA2NFZnHDyDuwzGhMgJ+OrsV5i/bT6uV1/XfHZn1J34bPpnJo9dUFmA\nfkH9NMdOiUhBZl6mxSKQX5GPiIAIzeshXYfgYtlFVNRXwM/dz+z+jDEcuHwAK8euRGTHSADAoM6D\nUFpbihlfz8Cue3ahg7KDRWMzhWwxgcjISHz77bea9qYnTpxAYiKn1JMmTcL+/fstOq6BCJAlIBk1\nU6OwslDzT1WnMrtPQYWuCIT4htjEHVRYWYgQnxZLIMQ3xKlEIK8iD2F+YZrXHT062mTSk12UjdgQ\nwzVFUnqmIHtxNsqeKUPJ0yUoWl6EM9fOaFwqxriiuoIgzyCUPF2CkqdLcPstt+sE+41RWlOKTl6d\njH7uonDBnEFzcGnZJc2xDy48iBNFJ8weW9+6TQhPwOH8w2b3M0ZeRZ6Om66D
sgNiQmJwtOCoqP1z\nSnOgVCjRO7C35j2FQoH3J78Pnw4+WPjdQhRUFGh+t+W15RaPVRvZLIEZM2YgNzdX81q717WPjw9U\nKuMPnlWrVmn+PykpCUlJSZrXp6+dxsPDH9a8DvQIhKpOhWZ1M5QuSquMvb2z8fhGPL3vafi5+4GB\noaG5ASUrSkya9wWVBUjpmaJ5HeobahO3TFGVriXQ2bszblTfgJqpLfIDtzX0XQy2sAQYYzheeByx\nocILSykUCni5eXEv3DgX1bXqazp/J30KKgoQ7h+u2a+rd1eU1JSYHUtpbSmCPM376JUuSni5cMeO\n7BiJPFWe2X0KKgt0JpQjw0biRNEJNDQ3WDTj1hdsAEgIS8DhvMO4tdetZvdPz01HSs8Ug9+h0kWJ\nL2Z8gVnfzMLwfw8HANRfrEfvit46VqKl2Cww7OLS8oOtrKxEQECA0W21RUCbJnUT/ij5AwOCB2je\nU7oo4e/hj/K6cpMzBqKFS2WX8OLYF/H0qKcBAAGrA1BWW2YyIFZQWaBzg3f16YprVddkfxgXVhai\nV2AvzesOyg7wc/dDSU0JOnt3lu28jkB1QzVqm2p17uuOnh113B5ykHszF55unqKDkd38uiG/It+k\nCORX5OtYkp28OpkVgZrGGjDGWgRHJAEeAVAzNVR1Kvh7+BvdrqBS1xLwc/dDr8BeOFV8CsO7DZd0\nTsBQsAEgPjxedOLKgcsHMOWWKYKfebp5Yuc9O43u+9JLL4kfqB42m0rFxMTg4MGDAIDdu3drXENS\nyCnNQZhfGLw7eOu8T3EBaeRV6N6sPQN74vLNyyb30f8Rd1B2gL+HP25U35BtnABnCWi7gwDniQvw\nM0vtmWGQp/yWgDFXkDG6+XZDQUWByW30Y0piRKC0phRBXkGSA9AKhQLh/uHIqzBtDei7OAHOJZSZ\nlynpfABQ31SPstoyA+GMD4tHVn6Wps7DGGqmRnpuOpIjkiWfu7XILgL8H3D9+vVYuXIlE
hIS0NTU\nhJkzZ0o+1qniU4IBIooLSEPfd9kzoCculxsXAcaYgf8UsI1LqLCy0GCG6SxxgfyKfIOZZUfPjvKL\nQKEFIlBpRgT07h9RIiDSFSREuF848ivyjX7OGDOwBIC/RSBfugjwWWz6LukuPl0Q5BmEP0r+MLn/\n2etnEeARIHvqrxCyikBERAQyM7kL2qdPH2RkZCAzMxMfffSRRell+kFhHrIEpKFvtvYMMG0JVNRX\nQKFQGGQ4hPjIHxzWTxEFnMgSUBn6mG0x4ckuysaw0GGit+/mJ48lUFJTYrGLN8wvzGRcoLyuHB2U\nHeDTwUfn/fiweBzOkx4c1reudY4ZHm/Wujhw+QBSIlJMbiMXbSqydvq6sAiIuaEIjiZ1E65XX9eZ\nXfcMNG0J6P+AeUJ9Q2UVAcYYiioF3EHeXVFU2f5rBYQeLHJbAuaCwkKIsgQqLbAE/nYHWUK4n2l3\nUEFFgYHAAlxQubap1qQVIUSeKs/oLJ4PDpviwOUDOokXtqRticC104juEm3wfpAnuYPEUlRZhE5e\nnXR6z0QERJi0BIRcQcDf7iAZH8Z8tbB+DMiZLAH9B0tHT3lTRKUGhYG/LQEx7iCpMYHWuIPMxAT0\nY1w8CoXCImsgryIPYb6GogKYdzE1qZtw6MohJEUkSTqntWgzIlBWWwZVnQo9AnoYfBbkRe4gsejH\nAwDz7iBjloDc7qCiyiIDVxDwd0yg2glEwIQloJ1ybU2kBoUB84Hh+qZ63Ky7qZPNxbu1TH2P0hr5\nYgJC8QAeS4LDpiyBgZ0HoqCiwKgFd6LoBML8wtDFp4ukc1qLNiMCZ66dwaAugwTTEckSEI9QGltE\nQASuqq4azWAQyqIA5A8MCwWFAeexBPIr8g0eLB6uHnBTuqGqoUqWc0oNCgOc/92UJVBUVYSuPl11\ngqYdlB3g5eYFVb3xeqHSWsvdQeZiAsbuacCyorH8SsMgPo/SRYkR3UYgKz9L8PP0y+l2cwUBbaiB\n
3OlrpzG4s2E8AKDsICkIZZx4d/CGn7sfiquKBR+6BZUFiAqOMnhf7qph/Wphnq4+rYsJLN25FEcL\nW6o4Hx3+KO6Luc/i48mFUPER0JImKkcvmeNFx/HYyMck7ePn7gfGmNH2CMbcibxLKMBDuGaopKYE\nQ0OGShoLD+8OYowJJqEUVBYgpmuM4L7DQofhzPUzqG2shaebp6jzmbIEAGBU+Cgs2blEsLYl92Yu\nPr7jY1HnkYM2JQLGboggzyAKDIskryIP3f27G7zPp4kaE4HxvccbvC93YFi/WpinNZYAYwxbz2zF\nznt2wtvNG79c/QXfnPvG4USgor4CTeomBHoEGnzGN5ETco22BsaYRZaAQqHQFIwJTRaM+d95EeD7\n5OjTmpiAn7sfXF1cUV5Xjo6eHQ0+L6gsMFqY5eXmhajgKGQXZWN099GizmcqOwgAnhn9DO7oe4fg\nZy4KF8GEF1vRdkTg+mksHLJQ8LNOXp2cIiZQXluOVw+9ipyyHOyYs8OiY+RV5CEhPMHgfb5gbFT3\nUQafGfsRd/XpiuvV12WrGtavFuYJ9AhEbVOtpJkaT0FlAbw7eGs6Tnb27oy0X9KMzhh5tp7eiod/\neFjwMxeFC7bfvd2qC93wbjuhMcnVOoIPCgvFYczBxwWERMBYTMlccLg12UHA3xlCqjxhETDhDgKA\npB5JuO2z2zTtI0Z0G4F984QbJtY21qKivgLB3sFGj+fl5iUp48qWOKwIqJlac6OrmRq/X/8dAzsP\nFNy2PbqDahprUNNYA4D7/l+c+QJpP6dhUp9JyMjNMPvQMoZQTAAwXTBmzJzXrhqWI6hVVFWEUeGG\noqRQKLi2FdXXdLo2iuHcjXM6D6owvzBN4ZCQ64Vn98XdeH3c65g7aK7BZ2t/XYudOTutKwICAXye\n1qaJlteWo5kZNnw7eOWgZCuAx1SGkDl3kDFaYwkAnEsovyIf0V0NMwpNBYYBYM1ta/B84vMAuOyd\nnm/3NCpK/
CSprfayclgRWPPLGrz686vwdOVmejEhMUb7gPDFYpY+GB2R2E2xuFZ1TXNjxYXFIX1B\nOqKCo/Dt+W9RUV9hsi+KMYw9XHoG9BQMhjU2N6KstgxdvIUf8nxwWA4RMBYYBlriAhaJQKcWEVAo\nFIgNjUV2YbZJEcjMy8Q/x/xT8JpPjJyIJ358QtI4zJFfkW90PK0pjjxacBSjPx5ttLXxS0mW9aAx\nlSFUUFkg6Mrt5CmvJRDmGyaYJlrfVA9Vncpk7ykXhYvO33p099HIyM0QXMZWKIDflnBYETicfxif\npn4qau1gd1d3dFB2QFVDlWwLL9gSNVPjr/K/UPFsheAqTnwhjFQRaGhuQGlNqWCwtWdgT3xx9guD\n94uqitDZu7PRDq18XGBI1yGSxiIG/bUEtLE0LnDuxjmDgGBsSCyOFx432ke+uKoYN+tuom+nvoKf\njwwbiQulF1BeW45AT0MfviUYs9iA1lkCh64cwkPDHsI7k95pzfAM6ObbDedLzgt+ZmzWbcoSaGxu\nRFVDldGgsRjC/cMFM4T4KnQpM/eUnilIz00XfB6Ziwc4Og5rv0itWgzyaj/B4evV1xHgEWB0GT9z\n6W/GKKwsRBefLoIPdGPuIGOmPI9ctQKMMcGWEdrntVQE9P3Ww0KHIbvI+KIoh/MOIz483uhDo4Oy\nAxLCE3DoyiHJ4zGGqQdLa1YXy8zLRHyY6YVcLMGsO0hiTKCstgyBnoGtcrEYqxo2FqMwRUrPFBy4\nfEDwM1OC3RZwSBEoqixCfXM9eviLz37o5NWp3cQFhHrGaGOuJN7UcY3drN39u6OoqghN6iad9839\nYOSqGuarhY21EbbEEmCMCYpAbEgssouyjRYuiXlwpkQYf0hYgqmYgKWdRBljOJx/WDAxoLUYcwfx\nYi7VEmhtPAAwXjWcX5FvcmIjRHSXaBRXFQve66b+Vm0BhxQBvmpRin+/PTWRM2deGjNzRR3XyM3q\npnRDV5+uBsc1l0Uhly
VgrFqYx5K1hq9VczEW/SwO7eCwEGIenMk9k3Eg13oiIFTPwWOpJZB7MxcK\nKARThFuLMUugtLYUnm6egmJuUgRaGQ8AjFcNm7unhVC6KDE2YizSc9MNPjMVv2kLOKYIWJCr3J4y\nhMyZl3JYAoBw+whzWRRyVQ2bCgoDllkCQlYAoBsc1qe+qR6/Ff+GEd1GmDz20JChyFPlWWXBF8aY\nSWvQ0hTRzLxMJIQnyJI80dWnK0prStHY3KjzvrFGbYD8lkCYXxjyK/INLDxL3EGAcWuPYgIykF2U\nLTmntt1ZAibMSz71TSqmZpfA343kyg1FwNQsR66CMWOFYjyWxASMiQAADAsRjgv8Vvwbbgm6xaDl\nsD6uLq5I7JGIjNwMSWMS4mbdTYPsFG0sbSInlysI4L5/sHewwYTAWI0JYFoEWtNGmse7gzc8XT0N\nzmFuYmMMPjisj7lqYUfHIUXgeOFxSf3MgfZVNWzWHWSpJWCkDQGPoCVgzh0kU+sIYy0jeKxpCQBA\nbCiXIaTP4bzDSAgT9+A0FTyUgrlJgKUxAbmCwjxCcQFTs+6Onh2hqlcJLlLfmuZx2gjFBSxxBwFA\nVHAUqhqqkHszV/NedUM16prqrDJWe+GQIiA1KAy0r8CwOR8jnx0ktZOkuYeL0DKT5oJo2lXD1sSc\nO6iLTxcUVxVLugbnS84bFwEjweHM/EzEh4t7cFpNBMy47QI9A1FeVy7pu1c1VOFC6QWLe/GIQSgu\nYCq7TOmihL87tz64Pq1pHqeNUFzAUktAoVBw1sDlFmtAaAnQtoZDioDUoDDQDmMCJh7Wvu6+6KDs\nIHk2KComoOUO0izBZ2LWJNdaw0JrC2vDrzMg5RqYsgSEgsOMMY0fXQwDOw9EeV25RUF7bcy57Too\nO8DT1RMV9RWij3ms4Biiu0QbTTu2BlItAcC4S8hqloCfbhKFJlvJAksAAJIjdBMA2nqhGODAIiCV\n9hITaFY3o7iq2OxNKmYhbW3qmuq
gqleZrOzVtwTK68rhrnQ3WNRFHzniAuYsAUBaXKCkpgT1TfVG\nhX60uJwAABKbSURBVEUoOJxXkYdmdTN6BvQUdQ4XhQuSIpIE/cZSMOe2A6QXjEkRM0sRWmHM3Kzb\nqAhYyRII89OtGi6pKYFPBx/JPad4eGuPt8LMpXO3BRxTBCxotNReLIGiKsOVv4TQn+GYo6CiAKG+\noSaLb0J9Q1FeW47axlrNPmLMZjkyhExVC/NIiQucv8G5gkxZmPrB4cw8zhUkxSod32s8luxcgk5r\nO6HT2k7o/35/s1bS9err6PdeP80+b2S+YbSzJo/UNFE5g8I8Rt1BFlgC1ggMA4aTJUszg3h6B/aG\nh6sHOq3j/laP7n4UkYGm/1aOjkO2jbDUEnDUwHBlfaXGZ+7q4mpyZi12ZmFu5SSD44qYXbooXNDd\nvzvOXj+LW4JuwZ9lf4r6wVi7VoAxxrmDzHSzlFIrYMoVxBMbGouNxzdCVcctdHLoyiHRQWGeB4Y+\ngOn9p2tev3zwZTz303P46I6PjO7z7P5nMaH3BLww9gXNe+ZcIVLSRPkisX9P/beo7S3FqDvIjCUg\nJJLWSBEFDCdLlhSKaaNQKHBm6RlNc0cAgu2+2xIOKQJSm4IBjttO+qe/fsLErRM1xTK1jbX467G/\njD6QxVYf6pu55hBb2h4fHo9bP7tV83rpsKVm97F21fDNuptwV7obrRbmkWIJiBGBuLA4LN6xGN3f\n4oqplAol9s/fL27Qf6NQKHRmsK8kv4L+7/dHVn4W4sLiDLY/nHcYP176EecfOW+0qZsQUtJEc0pz\n4OfuZ1GLaCnoWwK1jbWoaqgyOaM3GROwRmBYL53a0swgbbzcvMzem20JhxQBSyLtPh180NDcgPqm\nelmDX1L58dKPeH7M81iZtBIAMPXLqThacNSoCJgLCvKE+4fjp8s/iR6H2IKWT1I/EX1MnhCfEBy8\nclCw2MoSLt+8LOqBJSUmcK7kHCb1mWRym64+
XXF9ReuLvbTx9/DH2tvW4pEfHsHRB47q9G1qVjfj\n4R8exrrb1kkSAEBamqjcqaE8vCXAd/Pl4zqmXJCdvDoZTCAYY0YXg7FoTJUFOF54HAoocKLoRKtF\noL3hkCJgCQqFQhMXMOdLtiXpuenYMH6D5nVsCBd8nNF/huD2YmfsUmMCxlZ9sgYjuo3A5pObsXjn\nYqsdc0of4VWftOnq0xWnrp0SdbxzN86hf6f+rR2WRcwdNBebsjdhU/YmLB3eYlltPL4R/u7+mDNw\njuRjSokJnCw+KbnuxhJ83X3hpnTDzbqbCPQMFOV/7+TVCWeun9F5T1Wvgqerp2ZBl9bg6eaJyX0m\nY8nOJZr3Xh/3equP255oNyIAtGQIOYoIlNeW44+SPzAybKTmvdiQWLx37D2j++RV5InKSzeXHcQY\nw+6Lu1FZXwmAK8Cb0HuChNGLZ3i34Ti+2LDQSm66+nTFmetn8NXZr0xu19DcAFWdym6pfAqFAu9P\nfh8pn6bA38MfSoUSzawZLx18CQcWHLDI8g3yDMIV1RVR216tuGrVBW9M0c23Gzaf3Ixuvt2QlZ9l\n1v8u5A6yVlCYZ9td26x2rPZI+xIBB2snfejKISSEJ+jMaPg0RGML4IgJ4AJcTEDb9Nbn56s/Y9H3\nizQ//siOkRjebXgrvo3jMaTrEAzsPBDf/vGt2W1XJKyw68pPg7oMwqvJr2L7he2a915NedXoannm\n6OjZEb8V/yZqW1u2NVgcu1hncaK7BtxlcnshEbBWPIAQR7sSAUerGj5w+QBSIlJ03gv1DYWb0g1X\nVVcFFwoX6w7ycvOCTwcf3Ki5IbhC0o4LO7B46GK8lGzZSlFtgWDvYGydsdXewxDNkmFLsGTYEvMb\nikBKSrQtG5w9Hvc4HsfjorcXFAErZQYR4nDIOgFLcbSCsQO5B5DSM8XgfWOLmDQ2N6KkpkR0Foep\nxWV25OzAlFvM+9WJtonYYrH6pnrcrLspy/Kf1oAsAfvT/
kTAQSyBa1XXkF+Rj5iQGIPP+OUM9eFX\n/nJ1EWegGYsL/Fn6J1T1KouK7oi2gdgU0YLKAoT4SFtK0Zb4u/ujprEGDc0NmvfIErAtNncHDR06\nFP7+XIvcXr164T//+Y/Vjh3kFSTLKleWkJGbgTHdxwg+0I0Fh6Wa7cYyhHbm7MSUPlMc9odPtB6x\nKaKO3uZYoVBoLHjeArZ2YJgwjU1FoK6uDgCQnt663irGCPIMwtnrZ2U5tlQOXBZ2BQHGg8NS+5AY\naym9I2cHHo8T75cl2h6BnoG4WXcTaqY2KfZtYcET3iXEi0BpTanFAXNCOjadKp46dQo1NTWYMGEC\nxo0bhyNHjlj1+KYWqbA16bnpRkVAOzisjWRLQGBxmZt1N3G88Dhu7XWrkb2I9oCriyt8OvhoWlwY\noy0sgq7/u7VW8zhCHDYVAW9vb6xYsQI//vgjNm7ciLlz50Kttl4fekdpIpenykN5XbnJ2Qzfv15/\nPymmu1DriD0X9yCxR2K7KmsnhBETHG4Li6ALigDFBGyGTd1Bt9xyCyIjuY57ffr0QVBQEIqKitCt\nm25ByapVqzT/n5SUhKSkJFHHD/IMwo3qG5rmTgooLG4ZK5WG5gY0qZsAAHsv7UVyRLJJM31Y6DAc\nLzyuUzmcX5mPpIgk0ecUiglQVpDzwE96eqO30W3yKvIwvvd4G45KOgYiQNlBZsnIyEBGRoZVjmVT\nEdi8eTNOnz6N999/H4WFhaioqEBIiGE6pLYISCHENwQ3626i01ouqNSkbsKtvW7FutvWYUDnAa0Z\nulFUdSqs/mU13j36rs7qWpumbjK5n1Bw2BJLoLCyEM3qZihdlGhSN2HPxT1Yc+saaV+CaJOIsQTE\n9qKyJ/oiUFJTQpaAGfQnxy+9ZHk9kE1FYNGiRbjvvvuQmMhVsW7evBkuLtbzSPm5+6Hk6ZabqaG5\nAR8c+wDJnyRjer/pWBy72Gyffin8fOVnvHLoFUzuMxkXHr0gqUWtUH
BYbLUwj7urOwI9A3HoyiEE\neQXhzLUz6OHfo80vckGII8gzCCeLT2rapHTx7mJQD+Do2UEAJwLHC4/j9LXTADh3EGUH2Q4Fk7pQ\nrcwoFArJa+eao7y2HK/9/Br2Xtpr1eNGBETg5eSXMaTrEIv2D1kfgqxFWegR0AP1TfXwfd0Xtf+s\n1ek0aY4Hv38QRwpaAuzL45djwZAFFo2HaFu8f/R9fJj9IQBuXW7fDr46PZxqGmvQcU1H1P6z1qHX\nwD105RAe/eFRzetg72Dsn7ffocfsaLTmuekUIuCoTPliCqK7RCM2NBY3qm/g9V9eR+7jufYeFtEG\nqW2sRdDaIJQ9UwYPVw8A3DoCk7dOxsVlF+08OkJuWvPcbFe9g9oai2IW4bPTn+F8yXkAXPMtgrAE\nTzdP9AnqgzPXzmgaBbaH9W8J+SERsCPT+0/XWYqQIFoDn3asEYE2kB5K2B/qK0AQ7QR+wSKetpAZ\nRNgfEgGCaCfod6dtC9XChP0hESCIdsLgLoPxR8kfqGvienRJTTkmnBMSAYJoJ2gHhwGKCRDiIBEg\niHaEdk8qcgcRYiARIIh2BB8crqyvRENzAzp6drT3kAgHh0SAINoRsaGcJZBfkY9w/3CquiXMQiJA\nEO2I6C7R+KPkD1wsu0hBYUIUJAIE0Y7gg8M//PkDxQMIUZAIEEQ7IzYkFtsvbCcRIERBIkAQ7YzY\nkFgUVRVReighChIBgmhnxIbGAgBZAoQoSAQIop0R3SUaSoWSAsOEKEgECKKd4enmiQ+nfIi+nfra\neyhEG4AWlSEIgmjjtOa5SZYAQRCEE0MiQBAE4cSQCBAEQTgxJAIEQRBODIkAQRCEE0MiQBAE4cSQ\nCBAEQTgxJAIEQRBODIkAQRCEE0MiQBAE4cSQCBAEQTgxNhUBtVqNhx56CAkJCUhOTsalS5dsefo2\nR0ZGhr2H4DDQtWiBrkULdC1aj01F4LvvvkNDQwMyMzOxevVqLF++3Janb3PQDd4
CXYsW6Fq0QNei\n9dhUBH799VdMnDgRADBy5EgcP37clqcnCIIg9LCpCFRUVMDPz0/zWqlUQq1W23IIBEEQhBY2XU9g\n+fLliIuLw6xZswAA4eHhyMvL09kmMjKSYgUEQRAS6N27Ny5evGjRvq5WHotJRo0ahR07dmDWrFnI\nysrC4MGDDbax9IsQBEEQ0rGpJcAYw8MPP4zTp08DADZv3oxbbrnFVqcnCIIg9HC45SUJgiAI2+EQ\nxWLOXj/Q2NiIefPmITExESNHjsSOHTtw8eJFjB49GomJiXj44Yedbt3l69evIzw8HDk5OU59LV5/\n/XUkJCRg+PDh+OSTT5z2WqjVatx///2a737hwgWnvBZHjhxBcnIyABj9/v/+978xfPhwxMfHY9eu\nXeYPyhyA//f//h+77777GGOMZWVlsWnTptl5RLZl8+bN7IknnmCMMVZWVsbCw8PZHXfcwQ4ePMgY\nY+yhhx5i27Zts+cQbUpDQwNLTU1lffv2ZX/88QebOnWqU16L9PR0NnXqVMYYY1VVVezFF1902vti\n9+7dbPbs2Ywxxvbt28dmzJjhdNdizZo1bNCgQSw+Pp4xxgR/F0VFRWzQoEGsoaGBqVQqNmjQIFZf\nX2/yuA5hCTh7/cCsWbPw8ssvA+BmPG5ubjhx4gQSExMBAJMmTcL+/fvtOUSbsmLFCixduhQhISEA\n4LTXYu/evRg0aBBSU1MxdepU3HHHHcjOznbKa+Hp6QmVSgXGGFQqFTp06OB01yIyMhLffvutZsYv\n9Ls4duwYRo0aBTc3N/j5+SEyMlITgzWGQ4iAs9cPeHt7w8fHB5WVlZg1axZeffVVne/v4+MDlUpl\nxxHaji1btiA4OBjjx48HwCUTMC0z35muxY0bN5CdnY3//e9/2LhxI+655x6nvRajRo1CXV0d+vXr\nhyVLlmDZsmVOdy1mzJgBV9eWhE7t7+/r6wuVSoWKigr4+/sbvG8KhxABPz8/VFZWal6r1Wq4
uDjE\n0GxGXl4eUlJSMH/+fMyZM0fn+1dWViIgIMCOo7Mdmzdvxr59+5CcnIyTJ09iwYIFuHHjhuZzZ7oW\nnTp1wvjx4+Hq6opbbrkFHh4eOj9oZ7oWa9euxahRo3DhwgWcPHkS8+fPR2Njo+ZzZ7oWPNrPiIqK\nCgQEBBg8SysrKxEYGGj6OLKNUAKjRo3CDz/8AABG6wfaM9euXcP48eOxdu1aLFy4EAAQExODgwcP\nAgB2796tMfvaOwcPHkRGRgbS09MxZMgQfPrpp5g4caJTXovRo0djz549AIDCwkLU1NRg3LhxTnkt\nqqurNd6CwMBANDU1Oe1vhEfo+48YMQI///wz6uvroVKpcP78eQwcONDkcWxaLGaM6dOnY9++fRg1\nahQAbjboTKSlpUGlUuHll1/WxAbefvttLFu2DA0NDYiKisLMmTPtPEr7oFAosH79ejz44INOdy1u\nv/12HDp0CCNGjIBarcYHH3yAiIgIp7wWK1aswH333YcxY8agsbERr7/+OmJjY53yWigUCgAQ/F0o\nFAosW7YMY8aMgVqtRlpaGjp06GD6eIw5QV4VQRAEIYhDuIMIgiAI+0AiQBAE4cSQCBAEQTgxJAIE\nQRBODIkAQRCEE0MiQBAE4cSQCBCEFYmIiEBDQ4O9h0EQoiERIAgrwhfyEERbgUSAcCruvPNOHDp0\nCABw/PhxuLu7Izk5GcnJyQgLC8OiRYvQ1NSEe++9F6NGjUJcXBy+/vprAEBSUhLuuusujB8/Hg0N\nDVi0aBHGjh2LMWPGaMr3Aa6x18aNG3HnnXeSVUA4PCQChFPx/9u7Y9XEggAKw79iLwpiYaEmQdEH\nsBeCvUUEA1bhgsTCys43EGy0UIJFinQBNTYSBBGvhbWFglqotQiCCEJkC1m7Zdlms8s9Xz3DMNVh\nBuaMYRi8vr4Cl3qSZrNJv9+nVCoRCAQol8vUajW8Xi+j0Yher0exWGS73WKz2Xh8fOTz85NGo4HH\n42E
wGNBqtcjlctc1KpUKpmny/v7+2yf7It/tn+gOEvlbEokEhUKB3W6HaZpUq1Wm0ynZbJZOp4PT\n6WQ2m3F/fw9cKoqj0ej1t7twOAzAZDLBNE3G4zEAX19fbLdbAHq9Hg6HQ1dD8l/QSUAsxW638/Dw\nQDabJZlMsl6vSafTvL29XT+xiUQiDIdD4FLFO5lMCAaD1/k/x6TTafr9Pu12m1QqhdvtBuDj4wOX\ny0W9Xv+GHYr8GRXIieVsNhvu7u6Yz+c8Pz+zWCzw+Xycz2f8fj8vLy8YhsFyueR4PJLP58lkMsTj\ncer1OqFQiNPphGEYrFYr9vs9uVyOp6cnbm5umM1mHA4HYrEY3W6X29vb796yyC8pBERELEzXQSIi\nFqYQEBGxMIWAiIiFKQRERCxMISAiYmEKARERC1MIiIhYmEJARMTCfgCZinoJ0V/GkAAAAABJRU5E\nrkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f04e70453d0>"
]
}
],
"prompt_number": 59
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#fig, ax = plt.subplots()\n",
"\n",
"plt.plot( tl, label=\"Podlaha\")\n",
"plt.plot( th, label=\"Stul\")\n",
"plt.legend(loc=2); # upper left corner\n",
"plt.xlabel('vzorek')\n",
"plt.ylabel('Teplota [deg C]')\n",
"plt.title('Namerene teploty');\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEVCAYAAAAVeRmFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0Tff+//HnydASkiOK3rRXq8RQsyLhnCCHK0m/LUXR\n0haVpg3uj1thVeegxn6rt8NqKW24HdwOX1IpWrEqUiK5olcpIYZLFTXmZjBlOPv3R5ZTaWwRcpKQ\n12Mta+Wcz9mf895bzn7lcz57sBiGYSAiInIZHlVdgIiIVF8KCRERMaWQEBERUwoJERExpZAQERFT\nCgkRETGlkJBq5cCBA3h4ePDhhx+WeP5///d/efLJJ6uoKvdZuXIlr7766nX14eHhwenTp93+PlIz\nKSSk2vHw8GDy5Mns2bPH9ZzFYqnCitxn8+bNZe7gb6T3kZuPQkKqndq1axMTE8OwYcMoKCgA4NJz\nPjMzM+nbty82m40mTZowYMAALly4AECtWrV44YUXaN++PU2aNOHLL79k6NCh3HvvvfTp04ezZ88C\nkJGRQXh4OF26dKFTp07ExcUBkJSURIcOHbDb7XTq1In8/HwSEhLo1q0b9913HyEhIaSmpgIQGxvL\nqFGjiIiI4N5776Vnz54cPXoUgMOHDzNo0CC6dOlChw4dmDVrVqn1TEtLY8GCBXz++ee8/PLLAHz4\n4Yd06dKF++67j759+7J7924ARo0axahRo7DZbAQGBjJ27FgKCwtL9Tl9+nTatGlDhw4dGDJkCMeO\nHSvxPi+99BJhYWEsXLjQtcyMGTOYOHHi9f2nyc3LuAn897//NR588EGjV69eRvfu3Y1NmzaVes28\nefOM4OBgIzg42Jg6daphGIbhdDqNO+64wwgNDTVCQ0ONF154wTAMw9izZ4/xl7/8xejZs6cRHh5u\nnD59uswa/va3vxnz58+v2BWrgf7zn/8YdevWNZxOp9GzZ09j0qRJhmEYxuuvv26MGjXKMAzD
mDx5\nsvHpp58ahmEYBQUFRvv27Y1ly5YZhmEYFovFeOeddwzDMIw5c+YYfn5+xpEjRwyn02l07tzZWLp0\nqVFQUGC0bt3a+PHHHw3DKP79ad26tZGammqsW7fO8PT0NH755RfDMAwjMzPTaNeunet34OeffzYC\nAgKMM2fOGK+++qrRrFkzIzc31zAMw+jfv7/x6quvGoZhGA6Hw0hISDAMwzDOnTtnOBwO44svvii1\nvrGxscb/+3//zzAMw0hKSjJ69uxpnD171jAMw/juu++M1q1bG4ZhGCNHjjQ6duxo5OXlGRcuXDB6\n9eplvPvuu651PnXqlPHRRx8ZNpvNtXxsbKwRERFR6n3i4+ONoKAgwzAMo6ioyLjnnnuMzMzMa/4/\nk5ubV1WHVEV488036du3L+PHjyczM5Nhw4axZcsWV/v+/fv57LPP+Ne//oXFYiEkJISBAwdSu3Zt\nOnfuzIoVK0r09/TTTzN79myCgoJYtmwZu3btonv37pd97xMnTjBixAj27NnDvffe69b1rEksFguf\nfPIJnTp1Ijw8vMTXTXPmzGHNmjW8/vrr7N69myNHjpCXl+dqf/jhhwFo2rQp7dq1IyAgAIB77rmH\n06dPk5mZyf79+xk9erRrmfPnz7N161ZatmxJ48aNady4MQCJiYkcPXqU3r17u17r6enJ3r17sVgs\nOBwO6tatC0CnTp3Iysri7NmzrF+/nqysLNcI4cyZM/z0008MGTKkxHoahuEaJa1cuZK9e/dis9lc\n7VlZWWRlZWGxWBg5ciR16tQBYMSIEcTHxzNu3DhXP6tXr2b06NHUrl0bgAkTJjBjxgwKCgpKvM+D\nDz7I+PHj2bZtG4cPH6Zp06Y0b9782v6j5KZ3w4ZEbGwsAQEBPPPMMzz77LPceuutABQUFLg+JBfd\nddddfPfdd64dzcXXbNmyhcOHD9O7d29q167Nm2++SePGjTlx4gQrVqzgueeeo0uXLsyZMweA559/\nng0
bNlBUVMTEiRMZPHgwZ86cYerUqaxevbrEVyJy/Ro3bsz8+fMZOXIkI0aMcD3/6KOPUlRUxCOP\nPMIDDzzAoUOHSmz7i78LAN7e3qX6dTqd1KtXj3//+9+u53777Tfq1atHamqqa6d/8bV9+vThn//8\np+u5X375hT//+c8sX76cWrVquZ63WCwYhkFRUREAmzZtcrWfPHmy1O/lxWUu/l46nU6eeOIJZs+e\nDRTv+A8dOoS/vz9QHE4XFRUV4eVV8uN7aRBcfE1hYWGp30tPT0+io6P58MMPOXr0KNHR0aXqErno\nhpuT+OKLL3A4HCxZsoR58+bhcDjYvHkztWrV4rfffuOJJ54o9f2vl5cX9evXxzAMJk2axH333Udg\nYCB33HEHL7zwAt9//z0vvPACjz/+OFlZWezYsYO+ffuybt06srKyWLJkCatXr+bAgQP88MMPfP/9\n98yYMYPs7GyaNGlCUFBQFW2Nm9/gwYO5//77+fvf/+7ama5Zs4ZXXnnF9Vd5Wlqaa8d8NVq2bEmt\nWrX49NNPATh06BAdOnQoERoX9e7dmzVr1rjmBr799ls6duzI+fPnS+18L+6kfX196datG2+88QYA\n2dnZ9OjRo9SIFYp/N/Pz8wEICwtj6dKl/PbbbwAsXLiQsLAwV99ffPEF+fn5nD9/nn/84x/069fP\n1Y/FYiE8PJy4uDjXvMvbb79Nr169uOWWW/D29nbN7wA89dRTLF++nB9//JGBAwde9baTmueGG0kM\nHTqUoUOHMnXqVAICAnj66acB2L59O8OGDeONN96gR48epZY7f/48o0ePxmq18t577wHQpUsX119j\ndrudI0eOUL9+fXx9fenVqxdQPDRPTEykSZMmbNmyBYfDAUBhYSEHDx6kffv2lbHaNcofj2R6++23\n2bBhg+vxzJkzGThwILfffjt33XUXDz/8MHv37i217KV/pV/K29ubr7/+mgkTJjB37lwKCgqYPn06\n3bt3JykpqcQy
rVu35oMPPuDRRx/FMAy8vb1JSEjAx8enVP+XPv7ss8/461//Svv27cnPz2f48OEM\nGzasVC19+vRh0KBB3Hrrrbz11ls899xz9O3bFw8PD6xWK8uXL3f1XbduXXr06EFWVhYPP/yw65Dg\ni+8ZGRnJoUOHCAoKwul00rx5c1cQ/vF9GjZsSNeuXWndunWJEYpIKZU9CVJRYmNjjQULFhiGYRg7\nduwwWrZsaWzbtu2yr3U6nUZYWJgxZ86cEs9PmTLFmDt3rmEYhrF161aje/fuhmEYRpcuXYwffvjB\nMIziCen33nvPWLFihfH0008bhlE8WTp16lTXhOXFejRxLe4yatSoUr+/1+PEiRPGPffcY/z6668V\n1qfcnNwyknA6nYwdO5Zt27Zx6623smjRIpo1a+ZqT0hIYPr06Xh5eTF69GieeuopFi9ezJIlSwA4\nd+4cP/30E8eOHcPPz++y73HpiUEvvPAC+fn5jB8/HoB69eqxfPly3nzzTQIDAykqKiI5OZmCggJW\nr14NwOzZs5kyZQqPP/44q1atwsvLi8WLFwPFhyGOGzeOwsJCmjZtyuuvv46XlxdJSUn07NmTvLw8\nBg0aVOK7a7h5j+WXm8vChQt58cUXefHFF7nzzjuruhyp5iyGUfGzrcuWLeObb77ho48+Ii0tjVmz\nZhEfHw8UTxq3bt2a9PR0fHx8sNvtfPPNNzRq1Mi1/F//+lc6duzIU089VdGliYhIObhl4nrjxo1E\nREQAEBwcTHp6uqstIyODwMBArFYr3t7ehISEkJyc7GpPT09nx44dCggRkWrALSGRk5NT4msiT09P\nnE6nq81qtbrafH19yc7Odj2eOXMmsbGx7ihLRETKyS1zEn5+fuTm5roeO51OPDyK88hqtZZoy83N\ndR0H/t///pfMzEzXkUWXExgYyL59+9xRtojITatZs2auowDLwy0jCbvdzqpVqwBITU0tcZhoq1at\n2LNnD1lZWeTn55OcnOw6m
zk5OZk+ffpcse99+/a5jkev6f9effXVKq+huvzTttC20La48r9r/ePa\nLSOJgQMHkpiYiN1uByAuLo6lS5eSl5dHVFQU8+bNIzw8HKfTSWRkpOuyCZmZmSWOghIRkarllpCw\nWCy8//77JZ5r0aKF6+cHH3yQBx98sNRykyZNckc5IiJyjW64y3LI70JDQ6u6hGpD2+J32ha/07a4\nfm45T8KdLl5ETURErt617jtvuGs3malfvz5ZWVlVXcZNxd/fX3czE6nhbpqRhEYYFU/bVOTmca2f\nZ81JiIiIKYWEiIiYUkiIiIgphYSbHThwAE9PTzp16uT617FjR+Li4srVT9u2bUlOTubAgQP4+vqW\n+fomTZrw448/XmvZIiLATXR0U3Xm4+NT4taYR44coW3btnTp0oV27dpdVR/lvVeFJp1FpCJoJFEF\n7rjjDpo3b05mZibTp0+nTZs2dOjQgSFDhnDs2DEAdu7cSbdu3ejQoQNDhw4lLy+vVD/Hjh1jwIAB\n2Gw2mjZtisPh4MSJE672BQsW0LVrV+6++25eeukloPhiixMmTKBbt260adOG1q1bk5KSUjkrLiI3\nHIVEFdi0aRN79+4lIyODb7/9lvT0dH766Sfatm3LqFGjAHjsscd45pln+Omnn4iJieHQoUOl+vn8\n88+x2+2kpKSwf/9+fHx8+Pjjj13ttWvXZvPmzfzrX//ijTfe4PDhw6SlpfHbb7+RmprKjh07GDFi\nBLNnz66sVReRG0yN+bqpou4sei3f4Jw7d45OnToBUFhYSMOGDfnss8/46KOPGD16NLVr1wZg/Pjx\nzJgxg+PHj7N9+3ZGjBgBFN+4qUOHDqX6HT9+PD/88APz5s1jz549/Pzzz3Tr1s3VPnz4cABuv/12\nbr/9do4fP0737t257bbbeP/999m/fz9JSUmmt4gVEbkhQ8Iytfx7/Kr8er527dol5iQuWrRoUYl5\nA6fTSWFhYYnHnp6eAHh5lf6veu6559
i8eTORkZH07t2bwsLCEv15e3u7fr44R7Fy5Ur+9re/MWnS\nJAYMGECrVq345JNPTGu/lm0tItWD8er17/huyJC43IpbYm+8nVl4eDhxcXEMHz4cHx8f3n77bXr1\n6kWjRo3o3LkzixYtYsyYMWzdupWtW7eWWn7NmjVMnTqV/v37c/jwYRITExk5cqTp+xmGwdq1a+nX\nrx/PPPMM58+fZ9asWRQVFZkvUwG/ZCJy47ohQ+JGY3ZkUmRkJIcOHSIoKAin00nz5s359NNPAVi6\ndClPPvkk77//PoGBgdx7772l+nvllVeYNGkSM2fOpFGjRgwePPiKd56yWCxER0czfPhwOnXqhL+/\nPw899BBvvPFGBa6tiNxMdO0mMaVtKnLz0LWbRESkwikkRETElEJCRERMKSRERMSUQkJEREwpJERE\nxJRCQkRETCkkRETElFtCwul0Eh0djc1mw+FwsG/fvhLtCQkJBAUFYbPZWLRokev5WbNmYbPZ6Nq1\nK0uWLHFHaVUiNTWV3r1706FDB9q1a8f//M//sHPnTgDCwsI4ffr0FZe/2hsNiYhUNLdcliM+Pp78\n/HxSUlJIS0sjJiaG+Ph4AAoKCpg4cSLp6en4+Phgt9vp378/O3fuZNOmTaSkpHDmzBnmzp3rjtIq\n3YULF3jwwQdZu3YtHTt2BODTTz/l/vvvZ//+/axdu1ZnNYtIteWWkcTGjRuJiIgAii9znZ6e7mrL\nyMggMDAQq9WKt7c3ISEhJCcns2bNGtq1a8eAAQPo168f/fv3d0dple7s2bNkZ2eTm5vreu6xxx7j\n3XffJSoqCoDevXvz66+/0qRJE7Zs2eJ6nW5BKiJVzS0jiZycnBL3KPD09MTpdOLh4UFOTg5Wq9XV\n5uvrS3Z2NidPnuTgwYOsXLmS/fv3079/f3bt2nXZ/mNjY10/h4aGEhoaWmZNFXXJ6/JeFdXf35+5\nc+cSERHBn/70J+x2Ow6Hg0cffZR+/fqxePFi1q1
bR/369bFYLCUuBljeW5aKiFyUlJREUlLSdffj\nlpDw8/Mr8ZfzxYAAsFqtJdpyc3OpV68et912G61atcLLy4sWLVpQq1YtTp48SYMGDUr1f2lIXK2q\nvOT1s88+y9NPP01SUhLJycnMmTOHOXPmkJaWVmU1icjN7Y9/QE+dOvWa+nHL1012u51Vq1YBxZO2\n7du3d7W1atWKPXv2kJWVRX5+PsnJydhsNkJCQvj2228BOHLkCGfOnOG2225zR3mVauPGjbz++uvU\nqVOHBx54gDlz5rBjxw48PDxYu3Ztidf+8SqN+fn5lV2uiEgJbhlJDBw4kMTEROx2OwBxcXEsXbqU\nvLw8oqKimDdvHuHh4TidTiIjIwkICOCBBx4gOTnZdW+F995776b4uqVhw4bMmDGD4OBgevbsCcDh\nw4c5c+YM7dq1w9PT0xUGDRs2ZPPmzXTu3JnU1FSOHj1alaWLiOh+EpUhKSmJV199lV9++QUfHx+s\nViuxsbGEhYXxyCOPsGXLFlasWMHx48cZM2YMtWrVonPnzmzbto358+dTv3592rdvT05OTqXWXZ23\nqYiUz7V+nhUSYkrbVOTmoZsOiYhIhVNIiIiIKYWEiIiYUkiIiIgphYSIiJhyy3kSVcHf3/+mOK+i\nOvH396/qEkSkit00h8CKiIg5HQIrIiIVTiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJi\nSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqbcEhJOp5Po\n6GhsNhsOh4N9+/aVaE9ISCAoKAibzcaiRYtcz9933304HA4cDgeRkZHuKE1ERMrBLbcvjY+PJz8/\nn5SUFNLS0oiJiSE+Ph6AgoICJk6cSHp6Oj4+Ptjtdh566CF8fX0BWLdunTtKEhGRa+CWkcTGjRuJ\niIgAIDg4mPT0dFdbRkYGgYGBWK1WvL29CQkJYf369fz000+c
PXuW8PBw+vTpQ1pamjtKExGRcnDL\nSCInJwc/Pz/XY09PT5xOJx4eHuTk5GC1Wl1tvr6+ZGdn06pVKyZPnkxkZCR79uzh/vvvJzMzEw+P\n0jkWGxvr+jk0NJTQ0FB3rIaIyA0rKSmJpKSk6+7HLSHh5+dHbm6u6/HFgACwWq0l2nJzc/H396dF\nixYEBgYC0Lx5c2677TaOHj3KnXfeWar/S0NCRERK++Mf0FOnTr2mftzydZPdbmfVqlUApKam0r59\ne1dbq1at2LNnD1lZWeTn55OcnEz37t2Ji4sjJiYGgCNHjpCTk0NAQIA7yhMRkatkMQzDqOhODcNg\n7NixbNu2DYC4uDi2bNlCXl4eUVFRfPPNN0ybNg2n00lkZCRjxoyhsLCQJ598koMHDwIwd+5cunXr\nVrpgiwU3lCwiclO71n2nW0LCnRQSIiLld637Tp1MJyIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYU\nEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqZMLxU+bNiwKy5osVj47LPPKrwgERGpPkxD\nYteuXfz9738vdUGoixeJevbZZ91enIiIVC3Tq8Bu2LCBkJAQ1+PCwkK8vLxM2yuLrgIrIlJ+FX4V\n2CZNmmCz2cjKygLg888/Jzg4mMOHDwNUSUCIiEjlMh1JPPDAA0RFRTFgwADXc19++SUff/wxK1as\nqLQC/0gjCRGR8qvwkUReXl6JgAAYMmQIp0+fLn91IiJyQzINCbPE0V/xIiI1h2lIBAUF8fbbb5d4\n7p133qF9+/ZuL0pERKoH05B47bXX2LlzJ3fccQf33XcfTZs2ZefOncybN68y6xMRkSpkOnF9UX5+\nPqdOnaJBgwZ4e3tXVl2mNHEtIlJ+17rvLDMkqhuFhIhI+VX40U0iIiJuCQmn00l0dDQ2mw2Hw8G+\nfftKtCckJBAUFITNZmPRokUl2o4fP07jxo3JzMx0R2kiIlIOZYbEnXfei
ZeXFwEBAXh7e+Pr60vz\n5s1Zs2aN6TLx8fHk5+eTkpLC7NmziYmJcbUVFBQwceJEEhMTWb9+PR988AHHjx93tT3zzDPUqVOn\nAlZNRESuV5kh0bNnT3bs2MHRo0fZtWsXAwcOZNWqVbz88sumy2zcuJGIiAgAgoODSU9Pd7VlZGQQ\nGBiI1WrF29ubkJAQkpOTAZg8eTJjxowhICDgetdLREQqQJkhcejQIVq2bAlAs2bNOHjwIM2bN7/i\nkU45OTn4+fm5Hnt6euJ0Ol1tVqvV1ebr60t2djaLFy+mYcOGhIWFATppT0SkOjC9VPhFAQEBTJky\nhe7du7Np0yYCAgJITEzklltuMV3Gz8+P3Nxc12On04mHR3EeWa3WEm25ubnUq1ePt99+G4vFwtq1\na9m6dSsjR47k66+/5vbbby/Vf2xsrOvn0NBQQkNDr2ZdRURqjKSkJJKSkq67nzIPgT137hwffPAB\nu3btom3btkRGRvLvf/+bpk2bXnYHDrBs2TISEhKIi4sjNTWV6dOns3LlSqB43qFNmzakpaVRp04d\nbDYbCQkJJb5icjgcLFiwgBYtWpQuWIfAioiU27XuO8scSXh7e1OnTh0aNGhA27ZtycvLo3v37ldc\nZuDAgSQmJmK32wGIi4tj6dKl5OXlERUVxbx58wgPD8fpdBIZGak5CBGRaqrMkURkZCR33nkna9as\nYcqUKXzwwQesWrWqsuorRSMJEZHyc9vJdPv27WPatGnUrl2bAQMGkJ2dfU0FiojIjafMkCgqKuLk\nyZNA8STzxQloERG5+ZU5J/Haa69hs9n47bffCA4O5q233qqMukREpBq46gv8nThxggYNGmCxWNxd\n0xVpTkJEpPwq/Ogmh8Nh+kbff/99ud9IRERuPKYh8eWXXwIwadIkHnvsMXr06EFqair//Oc/K604\nERGpWqaz0A0aNKBBgwYcPHiQvn37UqtWLUJDQ9m1a1dl1iciIlWozIlrT09PPvzwQ7
p27cqGDRt0\nhVYRkRqkzInrY8eOMWPGDHbv3k3r1q15+eWXqV+/fmXVV4omrkVEyq/Cb186ZcoUZs+ebbpgWe3u\nopAQESm/Cg+JRo0a0adPH9MFv//+e44dO1buN7xeCgkRkfKr8JBISkq6YqcWi4VevXqV+w2vl0JC\nRKT8KjwkqiuFhIhI+bntAn8iIlJzKSRERMRUmedJbNq0ibi4OAoLC3E6nRw9epTvvvuuMmoTEZEq\nVuZIYsyYMTgcDrKzs2nSpAnBwcGVUZeIiFQDZYZEgwYNGDZsGL6+vsTGxpKenl4ZdYmISDVQZkh4\nenry888/c+7cOXbt2sWhQ4cqoy4REakGyjwE9ueff2bnzp3ccccdTJgwgccff5xnn322suorRYfA\nioiUn9sOgU1NTWXo0KGEhISwZcsW3b5URKQGMR1JLF26lBUrVvD999/Tu3dvAJxOJ9u3b2fnzp2V\nWuSlNJIQESm/Cr8zXUREBAEBAZw8eZLo6GgAPDw8aNq06bVXKSIiN5SruizHypUr2bFjBy1btuSh\nhx6qjLpMaSQhIlJ+bpuTmDJlCh999BG33HILS5YsISYmpsxOnU4n0dHR2Gw2HA4H+/btK9GekJBA\nUFAQNpuNRYsWAVBUVMTo0aMJCQmhR48e7Nixo9wrIyIiFavMM66Tk5NJSUkBYMKECVd1Ml18fDz5\n+fmkpKSQlpZGTEwM8fHxABQUFDBx4kTS09Px8fHBbrfTv39/UlJS8PDwYMOGDaxfv54XX3zRtYyI\niFSNMkOisLCQoqIiPD09cTqdV3V008aNG4mIiAAgODi4xAl4GRkZBAYGYrVaAQgJCSE5OZnBgwfT\nr18/AA4cOIC/v/81rZCIiFScMkPikUcewW63061bN9LS0njkkUfK7DQnJwc/Pz/X40sDJicnxxUQ\nAL6+vmRnZ7teN2rUKJYvX85XX311LesjIiIVqMyQiImJISwsjN27d/PUU0/Rtm3bMjv18/MjNzf
X\n9fjSEYjVai3RlpubW2LUsHjxYubMmUNwcDAZGRnUrl27VP+xsbGun0NDQwkNDS2zJhGRmiQpKYmk\npKTr7sf06Kbnn3/+8gtYLMycOfOKnS5btoyEhATi4uJITU1l+vTprFy5Eiiek2jTpg1paWnUqVMH\nm81GQkICa9eu5ddff+X5558nJyeHjh07kpGRwa233lrq/XV0k4hI+VT4eRItW7bEYrFcUzEDBw4k\nMTERu90OQFxcHEuXLiUvL4+oqCjmzZtHeHg4TqeTyMhIAgICGDx4MKNGjaJXr14UFBTw1ltvlQoI\nERGpXGWeJ3Hu3Dnmz59PZmYm7dq1IyoqCm9v78qqrxSNJEREys9t50kMHz6cw4cPEx4ezn/+8x8i\nIyOvqUAREbnxlDlxfeLECZYvXw7AgAEDCAkJcXtRIiJSPZQ5kmjevDnbt28His9faNy4sduLEhGR\n6qHMOQmbzcaxY8do1KgRJ0+exMvLCy8vLywWC9u2bausOl00JyEiUn7Xuu+8qgv8AZw6dYr69etf\n8xFPFUUhISJSfhV+COxF69evZ9y4cRQVFTF06FDuuusuTV6LiNQQZY4kevToQXx8PIMHD+brr78m\nNDSUH3/8sbLqK0UjCRGR8nPbIbAeHh7cdtttQPHlNi69JpOIiNzcygyJwMBApkyZwqlTp5g1axZ3\n3313ZdQlIiLVgGlIDB06FID58+dz9913ExISQt26dVm4cGGlFSciIlXLdOL6xIkTAHh7ezNmzJhK\nK0hERKoP04nru+++m8cee6zURMfVXAXWnTRxLSJSfhV+CKyPjw8tW7a8rqJEROTGZhoSf/rTnxg5\ncmRl1iIiItWM6cR1586dK7MOERGphq76shzVheYkRETKz20n04mISM2lkBAREVMKCRERMaWQEBER\nUwoJERExpZAQERFTCgkRETGlkBAREVNuCQmn00l0dDQ2mw2Hw8G+fftKtCckJBAUFITNZmPRokUA\nFBQU8M
QTT9CzZ0+Cg4NJSEhwR2kiIlIOZd7j+lrEx8eTn59PSkoKaWlpxMTEEB8fDxSHwcSJE0lP\nT8fHxwd/HM5QAAAL5klEQVS73U7//v1ZtWoVDRs25OOPPyYrK4uOHTvSr18/d5QnIiJXyS0hsXHj\nRiIiIgAIDg4mPT3d1ZaRkUFgYCBWqxWAkJAQkpOTGTJkCIMHDwaKRyJeXm4pTUREysEte+KcnJwS\n98L29PTE6XTi4eFBTk6OKyAAfH19yc7Opk6dOgDk5uYyZMgQZsyY4Y7SRESkHNwSEn5+fuTm5roe\nXwwIAKvVWqItNzcXf39/AA4dOsSgQYMYN24cjz76qGn/sbGxrp9DQ0MJDQ2t2BUQEbnBJSUlkZSU\ndN39uOUqsMuWLSMhIYG4uDhSU1OZPn06K1euBIrnJNq0aUNaWhp16tTBZrORkJCAh4cHoaGhvPfe\nezgcDvOCdRVYEZFyu9Z9p1tCwjAMxo4dy7Zt2wCIi4tjy5Yt5OXlERUVxTfffMO0adNwOp1ERkYy\nZswYJkyYwJdfflnibnirV6+mVq1aJQtWSIiIlFu1Cgl3UkiIiJSf7ichIiIVTiEhIiKmFBIiImJK\nISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEh\nIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKmFBIiImJKISEiIqYUEiIiYkohISIi\nptwaEk6nk+joaGw2Gw6Hg3379pVoT0hIICgoCJvNxqJFi0q0paWl4XA43FmeiIiUwcudncfHx5Of\nn09KSgppaWnExMQQHx8PQEFBARMnTiQ9PR0fHx/sdjv9+/enUaNGzJ07l08++YS6deu6szwRESmD\nW0cSGzduJCIiAoDg4GDS09NdbRkZGQQGBmK1WvH29iYkJITk5GQAAgMDWbZsGYZhuLM8EREpg1tD\nIicnBz8/P9djT09
PnE6nq81qtbrafH19yc7OBmDQoEF4ebl1kCMiIlfBrXtiPz8/cnNzXY+dTice\nHsW5ZLVaS7Tl5ubi7+9/Vf3Gxsa6fg4NDSU0NLRC6hURuVkkJSWRlJR03f1YDDd+p7Ns2TISEhKI\ni4sjNTWV6dOns3LlSqB4TqJNmzakpaVRp04dbDYbCQkJBAQEAHDgwAGGDRvGpk2bShZssehrKBGR\ncrrWfadbRxIDBw4kMTERu90OQFxcHEuXLiUvL4+oqCjmzZtHeHg4TqeTyMhIV0BcZLFY3FmeiIiU\nwa0jCXfQSEJEpPyudd+pk+lERMSUQkJEREwpJERExJRCQkRETCkkRETElEJCRERMKSRERMSUQkJE\nREwpJERExJRCQkRETCkkRETElEJCRERMKSRERMSUQkJEREwpJERExJRCQkRETCkkRETElEJCRERM\nKSRERMSUQkJEREx5VXUB18JiqeoKRESqP8O4/j5uyJCoiBUXEZGy6esmERExpZAQERFTbgkJp9NJ\ndHQ0NpsNh8PBvn37SrQnJCQQFBSEzWZj0aJFV7WMlJaUlFTVJVQb2ha/07b4nbbF9XNLSMTHx5Of\nn09KSgqzZ88mJibG1VZQUMDEiRNJTExk/fr1fPDBBxw/fpz4+HguXLhw2WXk8vQB+J22xe+0LX6n\nbXH93DJxvXHjRiIiIgAIDg4mPT3d1ZaRkUFgYCBWqxWAkJAQkpOT2bRpE/fff/9llxERkarhlpFE\nTk4Ofn5+rseenp44nU5X28WAAPD19SU7O/uKy4iISNVwy0jCz8+P3Nxc12On04mHR3EeWa3WEm25\nubnUq1fvistcqlmzZlh0ooTL1KlTq7qEakPb4nfaFr/TtijWrFmza1rOLSFht9tJSEhgyJAhpKam\n0r59e1dbq1at2LNnD1lZWdSpU4fk5GQmT56MxWIxXeZSe/fudUfJIiJyGRbDqPhT0wzDYOzYsWzb\ntg2AuLg4tmzZQl5eHlFRUXzz
zTdMmzYNp9NJZGQkY8aMuewyLVq0qOjSRESkHNwSEiIicnO4YU6m\nq+nnURQUFPDEE0/Qs2dPgoODSUhIYO/evYSEhNCzZ0/Gjh1LTcv748eP07hxYzIzM2v0tpg1axY2\nm42uXbuyZMmSGrstnE4no0ePdq377t27a9y2SEtLw+FwAJiu+8KFC+natSvdu3dn5cqVZXdq3CD+\n7//+z3jyyScNwzCM1NRU46GHHqriiipXXFyc8eyzzxqGYRinT582GjdubPTv399Yv369YRiGER0d\nbSxfvrwqS6xU+fn5xoABA4yWLVsau3btMvr161cjt8W6deuMfv36GYZhGHl5ecYrr7xSY38vVq9e\nbQwdOtQwDMNITEw0Bg0aVKO2xZw5c4x27doZ3bt3NwzDuOxn4ujRo0a7du2M/Px8Izs722jXrp1x\n4cKFK/Z7w4wkrnTuRU0wZMgQpk2bBhT/xeTt7c2PP/5Iz549Abj//vtZu3ZtVZZYqSZPnsyYMWMI\nCAgAqLHbYs2aNbRr144BAwbQr18/+vfvz5YtW2rktqhduzbZ2dkYhkF2dja33HJLjdoWgYGBLFu2\nzDViuNxnYvPmzdjtdry9vfHz8yMwMNA1D2zmhgmJmn4eRZ06dahbty65ubkMGTKE1157rcT6161b\nl+zs7CqssPIsXryYhg0bEhYWBhQfKGFc8jVCTdoWJ06cYMuWLXz11VfMnz+f4cOH19htYbfbOX/+\nPK1ateKZZ55h/PjxNWpbDBo0CC+v3w9YvXTdLz0f7XLnqV3JDRMSV3sexc3s0KFD9O7dmxEjRjBs\n2LAS63/xfJOaIC4ujsTERBwOB1u3bmXkyJGcOHHC1V6TtkWDBg0ICwvDy8uLFi1aUKtWrRIf+pq0\nLebOnYvdbmf37t1s3bqVESNGUFBQ4GqvSdsCKLF/yMnJuez5aLm5ufj7+1+5H7dVWMHsdjurVq0C\nuOJ5FDerY8eOERYWxty5cxk1ahQAnTp1Y
v369QCsXr3aNbS82a1fv56kpCTWrVtHx44d+cc//kFE\nRESN3BYhISF8++23ABw5coSzZ8/Sp0+fGrktzpw54/q2wd/fn8LCwhr7GYHL7x+CgoL44YcfuHDh\nAtnZ2WRkZNC2bdsr9nPD3HRo4MCBJCYmYrfbgeK/JmuSmTNnkp2dzbRp01xzE2+99Rbjx48nPz+f\n1q1bM3jw4CqusmpYLBbeeOMNoqKiaty2eOCBB0hOTiYoKAin08l7771HkyZNauS2mDx5Mk8++SQ9\nevSgoKCAWbNm0blz5xq3LS5ekeJynwmLxcL48ePp0aMHTqeTmTNncsstt1y5P8O4yY8JExGRa3bD\nfN0kIiKVTyEhIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIpWsSZMm5OfnV3UZIldFISFSyXT7\nXbmRKCRE/uDhhx8mOTkZgPT0dG699VYcDgcOh4M///nPREZGUlhYyOOPP47dbqdbt2588cUXAISG\nhvLII48QFhZGfn4+kZGR9OrVix49ergukQDFF1+bP38+Dz/8sEYVUq0pJET+ICoqiiVLlgDFl39Z\nvnw569at4/XXX6dJkybMmzeP+fPnc/vtt7Nx40bWrl3LSy+9xKlTp7BYLAwfPpw1a9bw4Ycf0rBh\nQ9avX098fDzjxo1zvcc777zDhg0b+Oqrr8q8LIJIVbphrt0kUlnCwsKYPHkyWVlZbNiwgXfffZeM\njAyio6NJSEjAarWya9cu/vKXvwDFl6Bu3bq1626JLVu2BGD79u1s2LCBtLQ0AIqKijh16hQAa9eu\nxcvLS189SbWnkYTIH3h4eDBkyBCio6MZOHAgv/zyC8OGDePTTz913eTo3nvv5YcffgCKL7e8fft2\n7rnnHtfyF18zbNgw1q1bx9dff83QoUOpX78+ACtWrMDf358FCxZUwRqKXD1d4E/kMg4dOkRgYCB7\n9uxh7Nix7N27lzvvvBOn08ndd9/NwoULiYqKYt++fZ
w7d44JEybwxBNP4HA4WLBgAS1atCA/P5+o\nqCgOHjxITk4O48aNIzIykqZNm7Jr1y7OnDlDUFAQ3377Lc2aNavqVRa5LIWEiIiY0tdNIiJiSiEh\nIiKmFBIiImJKISEiIqYUEiIiYkohISIiphQSIiJiSiEhIiKm/j99TrGB0ZKj+wAAAABJRU5ErkJg\ngg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f04e72c54d0>"
]
}
],
"prompt_number": 60
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}