CCS PCM C Compiler, Version 4.106, 47914               11-5-13 10:50

               Filename: D:\Honza\MLAB\Modules\Sensors\IMU01A\SW\PIC16F887\main.lst

               ROM used: 1146 words (14%)
                         Largest free fragment is 2048
               RAM used: 13 (4%) at main() level
                         26 (7%) worst case
               Stack:    3 locations

*
0000:  MOVLW  03
0001:  MOVWF  0A
0002:  GOTO   397
0003:  NOP
.................... //Akcelerometr IMU01A 
.................... //(c) MLAB Jan Chroust 2013 
....................  
....................  
.................... #include <main.h> 
.................... #include <16F887.h> 
.................... //////// Standard Header file for the PIC16F887 device //////////////// 
.................... #device PIC16F887 
.................... #list 
....................  
.................... #device adc=8 
....................  
.................... #FUSES NOWDT                       //No Watch Dog Timer 
.................... #FUSES INTRC                       //Internal RC Osc 
.................... #FUSES NOPUT                       //No Power Up Timer 
.................... #FUSES MCLR                        //Master Clear pin enabled 
.................... #FUSES NOPROTECT                   //Code not protected from reading 
.................... #FUSES NOCPD                       //No EE protection 
.................... #FUSES NOBROWNOUT                  //No brownout reset 
.................... #FUSES IESO                        //Internal External Switch Over mode enabled 
.................... #FUSES FCMEN                       //Fail-safe clock monitor enabled 
.................... #FUSES NOLVP                       //No low voltage prgming, B3(PIC16) or B5(PIC18) used for I/O 
.................... #FUSES NODEBUG                     //No Debug mode for ICD 
.................... #FUSES NOWRT                       //Program memory not write protected 
.................... #FUSES BORV40                      //Brownout reset at 4.0V 
....................  
.................... #use delay(clock=8000000) 
*
0381:  MOVLW  28
0382:  MOVWF  04
0383:  BCF    03.7
0384:  MOVF   00,W
0385:  BTFSC  03.2
0386:  GOTO   394
0387:  MOVLW  02
0388:  MOVWF  78
0389:  CLRF   77
038A:  DECFSZ 77,F
038B:  GOTO   38A
038C:  DECFSZ 78,F
038D:  GOTO   389
038E:  MOVLW  97
038F:  MOVWF  77
0390:  DECFSZ 77,F
0391:  GOTO   390
0392:  DECFSZ 00,F
0393:  GOTO   387
0394:  BCF    0A.3
0395:  BCF    0A.4
0396:  GOTO   476 (RETURN)
....................  
....................  
....................  
.................... #define PIN_SDA  PIN_C4 
.................... #define PIN_SCL  PIN_C3 
.................... #use i2c(master, sda=PIN_SDA, scl=PIN_SCL) //I2C 
*
0041:  MOVLW  08
0042:  MOVWF  78
0043:  NOP
0044:  BCF    07.3
0045:  BCF    20.3
0046:  MOVF   20,W
0047:  BSF    03.5
0048:  MOVWF  07
0049:  NOP
004A:  BCF    03.5
004B:  RLF    2F,F
004C:  BCF    07.4
004D:  BTFSS  03.0
004E:  GOTO   055
004F:  BSF    20.4
0050:  MOVF   20,W
0051:  BSF    03.5
0052:  MOVWF  07
0053:  GOTO   059
0054:  BCF    03.5
0055:  BCF    20.4
0056:  MOVF   20,W
0057:  BSF    03.5
0058:  MOVWF  07
0059:  NOP
005A:  BCF    03.5
005B:  BSF    20.3
005C:  MOVF   20,W
005D:  BSF    03.5
005E:  MOVWF  07
005F:  BCF    03.5
0060:  BTFSS  07.3
0061:  GOTO   060
0062:  DECFSZ 78,F
0063:  GOTO   043
0064:  NOP
0065:  BCF    07.3
0066:  BCF    20.3
0067:  MOVF   20,W
0068:  BSF    03.5
0069:  MOVWF  07
006A:  NOP
006B:  BCF    03.5
006C:  BSF    20.4
006D:  MOVF   20,W
006E:  BSF    03.5
006F:  MOVWF  07
0070:  NOP
0071:  NOP
0072:  BCF    03.5
0073:  BSF    20.3
0074:  MOVF   20,W
0075:  BSF    03.5
0076:  MOVWF  07
0077:  BCF    03.5
0078:  BTFSS  07.3
0079:  GOTO   078
007A:  CLRF   78
007B:  NOP
007C:  BTFSC  07.4
007D:  BSF    78.0
007E:  BCF    07.3
007F:  BCF    20.3
0080:  MOVF   20,W
0081:  BSF    03.5
0082:  MOVWF  07
0083:  BCF    03.5
0084:  BCF    07.4
0085:  BCF    20.4
0086:  MOVF   20,W
0087:  BSF    03.5
0088:  MOVWF  07
0089:  BCF    03.5
008A:  RETURN
*
0130:  MOVLW  08
0131:  MOVWF  30
0132:  MOVF   77,W
0133:  MOVWF  31
0134:  BSF    20.4
0135:  MOVF   20,W
0136:  BSF    03.5
0137:  MOVWF  07
0138:  NOP
0139:  BCF    03.5
013A:  BSF    20.3
013B:  MOVF   20,W
013C:  BSF    03.5
013D:  MOVWF  07
013E:  BCF    03.5
013F:  BTFSS  07.3
0140:  GOTO   13F
0141:  BTFSC  07.4
0142:  BSF    03.0
0143:  BTFSS  07.4
0144:  BCF    03.0
0145:  RLF    78,F
0146:  NOP
0147:  BCF    20.3
0148:  MOVF   20,W
0149:  BSF    03.5
014A:  MOVWF  07
014B:  BCF    03.5
014C:  BCF    07.3
014D:  DECFSZ 30,F
014E:  GOTO   134
014F:  BSF    20.4
0150:  MOVF   20,W
0151:  BSF    03.5
0152:  MOVWF  07
0153:  NOP
0154:  BCF    03.5
0155:  BCF    07.4
0156:  MOVF   31,W
0157:  BTFSC  03.2
0158:  GOTO   15E
0159:  BCF    20.4
015A:  MOVF   20,W
015B:  BSF    03.5
015C:  MOVWF  07
015D:  BCF    03.5
015E:  NOP
015F:  BSF    20.3
0160:  MOVF   20,W
0161:  BSF    03.5
0162:  MOVWF  07
0163:  BCF    03.5
0164:  BTFSS  07.3
0165:  GOTO   164
0166:  NOP
0167:  BCF    07.3
0168:  BCF    20.3
0169:  MOVF   20,W
016A:  BSF    03.5
016B:  MOVWF  07
016C:  NOP
016D:  BCF    03.5
016E:  BCF    07.4
016F:  BCF    20.4
0170:  MOVF   20,W
0171:  BSF    03.5
0172:  MOVWF  07
0173:  BCF    03.5
0174:  RETURN
.................... #use rs232(baud=9600,parity=N,xmit=PIN_C7,rcv=PIN_C6,bits=8) //rcv TXD xmit RXD 
*
00C6:  BCF    20.7
00C7:  MOVF   20,W
00C8:  BSF    03.5
00C9:  MOVWF  07
00CA:  BCF    03.5
00CB:  BCF    07.7
00CC:  MOVLW  08
00CD:  MOVWF  78
00CE:  GOTO   0CF
00CF:  NOP
00D0:  BSF    78.7
00D1:  GOTO   0E0
00D2:  BCF    78.7
00D3:  RRF    30,F
00D4:  BTFSC  03.0
00D5:  BSF    07.7
00D6:  BTFSS  03.0
00D7:  BCF    07.7
00D8:  BSF    78.6
00D9:  GOTO   0E0
00DA:  BCF    78.6
00DB:  DECFSZ 78,F
00DC:  GOTO   0D3
00DD:  GOTO   0DE
00DE:  NOP
00DF:  BSF    07.7
00E0:  MOVLW  3F
00E1:  MOVWF  04
00E2:  DECFSZ 04,F
00E3:  GOTO   0E2
00E4:  NOP
00E5:  BTFSC  78.7
00E6:  GOTO   0D2
00E7:  BTFSC  78.6
00E8:  GOTO   0DA
00E9:  RETURN
.................... #include <math.h> 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... ////        (C) Copyright 1996,2008 Custom Computer Services            //// 
.................... //// This source code may only be used by licensed users of the CCS C   //// 
.................... //// compiler.  This source code may only be distributed to other       //// 
.................... //// licensed users of the CCS C compiler.  No other use, reproduction  //// 
.................... //// or distribution is permitted without written permission.           //// 
.................... //// Derivative programs created using this software in object code     //// 
.................... //// form are not restricted in any way.                                //// 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... ////                                                                    //// 
.................... //// History:                                                           //// 
.................... ////  * 9/20/2001 :  Improvments are made to sin/cos code.              //// 
.................... ////                 The code now is small, much faster,                //// 
.................... ////                 and more accurate.                                 //// 
.................... ////  * 2/21/2007 :  Compiler handles & operator differently and does 
.................... ////                 not return generic (int8 *) so type cast is done   //// 
.................... ////                                                                    //// 
.................... //////////////////////////////////////////////////////////////////////////// 
....................  
.................... #ifndef MATH_H 
.................... #define MATH_H 
....................  
.................... #ifdef PI 
.................... #undef  PI 
.................... #endif 
.................... #define PI     3.1415926535897932 
....................  
....................  
.................... #define SQRT2  1.4142135623730950 
....................  
.................... //float const ps[4] = {5.9304945, 21.125224, 8.9403076, 0.29730279}; 
.................... //float const qs[4] = {1.0000000, 15.035723, 17.764134, 2.4934718}; 
....................  
.................... ///////////////////////////// Round Functions ////////////////////////////// 
....................  
.................... float32 CEIL_FLOOR(float32 x, unsigned int8 n) 
.................... { 
....................    float32 y, res; 
....................    unsigned int16 l; 
....................    int1 s; 
....................  
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y <= 32768.0) 
....................   res = (float32)(unsigned int16)y; 
....................  
....................  else if (y < 10000000.0) 
....................    { 
....................   l = (unsigned int16)(y/32768.0); 
....................       y = 32768.0*(y/32768.0 - (float32)l); 
....................   res = 32768.0*(float32)l; 
....................   res += (float32)(unsigned int16)y; 
....................  } 
....................  
....................  else 
....................   res = y; 
....................  
....................  y = y - (float32)(unsigned int16)y; 
....................  
....................  if (s) 
....................   res = -res; 
....................  
....................  if (y != 0) 
....................  { 
....................   if (s == 1 && n == 0) 
....................    res -= 1.0; 
....................  
....................   if (s == 0 && n == 1) 
....................    res += 1.0; 
....................  } 
....................  if (x == 0) 
....................     res = 0; 
....................  
....................  return (res); 
.................... } 
....................  
.................... // Overloaded Functions to take care for new Data types in PCD 
.................... // Overloaded function CEIL_FLOOR() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 CEIL_FLOOR(float48 x, unsigned int8 n) 
.................... { 
....................    float48 y, res; 
....................    unsigned int16 l; 
....................    int1 s; 
....................  
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y <= 32768.0) 
....................   res = (float48)(unsigned int16)y; 
....................  
....................  else if (y < 10000000.0) 
....................    { 
....................   l = (unsigned int16)(y/32768.0); 
....................       y = 32768.0*(y/32768.0 - (float48)l); 
....................   res = 32768.0*(float32)l; 
....................   res += (float48)(unsigned int16)y; 
....................  } 
....................  
....................  else 
....................   res = y; 
....................  
....................  y = y - (float48)(unsigned int16)y; 
....................  
....................  if (s) 
....................   res = -res; 
....................  
....................  if (y != 0) 
....................  { 
....................   if (s == 1 && n == 0) 
....................    res -= 1.0; 
....................  
....................   if (s == 0 && n == 1) 
....................    res += 1.0; 
....................  } 
....................  if (x == 0) 
....................     res = 0; 
....................  
....................  return (res); 
.................... } 
....................  
....................  
.................... // Overloaded function CEIL_FLOOR() for data type - Float64 
.................... float64 CEIL_FLOOR(float64 x, unsigned int8 n) 
.................... { 
....................    float64 y, res; 
....................    unsigned int16 l; 
....................    int1 s; 
....................  
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y <= 32768.0) 
....................   res = (float64)(unsigned int16)y; 
....................  
....................  else if (y < 10000000.0) 
....................    { 
....................   l = (unsigned int16)(y/32768.0); 
....................       y = 32768.0*(y/32768.0 - (float64)l); 
....................   res = 32768.0*(float64)l; 
....................   res += (float64)(unsigned int16)y; 
....................  } 
....................  
....................  else 
....................   res = y; 
....................  
....................  y = y - (float64)(unsigned int16)y; 
....................  
....................  if (s) 
....................   res = -res; 
....................  
....................  if (y != 0) 
....................  { 
....................   if (s == 1 && n == 0) 
....................    res -= 1.0; 
....................  
....................   if (s == 0 && n == 1) 
....................    res += 1.0; 
....................  } 
....................  if (x == 0) 
....................     res = 0; 
....................  
....................  return (res); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float floor(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : rounds down the number x. 
.................... // Date : N/A 
.................... // 
.................... float32 floor(float32 x) 
.................... { 
....................    return CEIL_FLOOR(x, 0); 
.................... } 
.................... // Following 2 functions are overloaded functions of floor() for PCD 
.................... // Overloaded function floor() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 floor(float48 x) 
.................... { 
....................    return CEIL_FLOOR(x, 0); 
.................... } 
....................  
.................... // Overloaded function floor() for data type - Float64 
.................... float64 floor(float64 x) 
.................... { 
....................    return CEIL_FLOOR(x, 0); 
.................... } 
.................... #endif 
....................  
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float ceil(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : rounds up the number x. 
.................... // Date : N/A 
.................... // 
.................... float32 ceil(float32 x) 
.................... { 
....................    return CEIL_FLOOR(x, 1); 
.................... } 
.................... // Following 2 functions are overloaded functions of ceil() for PCD 
.................... // Overloaded function ceil() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 ceil(float48 x) 
.................... { 
....................    return CEIL_FLOOR(x, 1); 
.................... } 
....................  
.................... // Overloaded function ceil() for data type - Float64 
.................... float64 ceil(float64 x) 
.................... { 
....................    return CEIL_FLOOR(x, 1); 
.................... } 
.................... #endif 
....................  
....................  //////////////////////////////////////////////////////////////////////////// 
.................... //   float fabs(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : Computes the absolute value of floating point number x 
.................... // Returns : returns the absolute value of x 
.................... // Date : N/A 
.................... // 
.................... #define fabs abs 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float fmod(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : Computes the floating point remainder of x/y 
.................... // Returns : returns the value of x= i*y, for some integer i such that, if y 
.................... // is non zero, the result has the same isgn of x na dmagnitude less than the 
.................... // magnitude of y. If y is zero then a domain error occurs. 
.................... // Date : N/A 
.................... // 
....................  
.................... float fmod(float32 x,float32 y) 
.................... { 
....................    float32 i; 
....................    if (y!=0.0) 
....................    { 
....................       i=(x/y < 0.0)? ceil(x/y): floor(x/y); 
....................       return(x-(i*y)); 
....................    } 
....................    else 
....................    { 
....................    #ifdef _ERRNO 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    } 
.................... } 
.................... //Overloaded function for fmod() for PCD 
.................... // Overloaded function fmod() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 fmod(float48 x,float48 y) 
.................... { 
....................    float48 i; 
....................    if (y!=0.0) 
....................    { 
....................       i=(x/y < 0.0)? ceil(x/y): floor(x/y); 
....................       return(x-(i*y)); 
....................    } 
....................    else 
....................    { 
....................    #ifdef _ERRNO 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    } 
.................... } 
.................... // Overloaded function fmod() for data type - Float64 
.................... float64 fmod(float64 x,float64 y) 
.................... { 
....................    float64 i; 
....................    if (y!=0.0) 
....................    { 
....................       i=(x/y < 0.0)? ceil(x/y): floor(x/y); 
....................       return(x-(i*y)); 
....................    } 
....................    else 
....................    { 
....................    #ifdef _ERRNO 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    } 
.................... } 
.................... #endif 
.................... //////////////////// Exponential and logarithmic functions //////////////////// 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float exp(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the value (e^x) 
.................... // Date : N/A 
.................... // 
.................... #define LN2 0.6931471805599453 
....................  
.................... float const pe[6] = {0.000207455774, 0.00127100575, 0.00965065093, 
....................                      0.0554965651,  0.240227138,  0.693147172}; 
....................  
....................  
.................... float32 exp(float32 x) 
.................... { 
....................    float32 y, res, r; 
....................    #if defined(__PCD__) 
....................    int8 data1; 
....................    #endif 
....................    signed int8 n; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x > 88.722838) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    n = (signed int16)(x/LN2); 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       n = -n; 
....................       y = -y; 
....................    } 
....................  
....................    res = 0.0; 
.................... #if !defined(__PCD__) 
....................    *((unsigned int8 *)(&res)) = n + 0x7F; 
.................... #endif 
....................  
.................... #if defined(__PCD__)  // Takes care of IEEE format for PCD 
....................    data1 = n+0x7F; 
....................    if(bit_test(data1,0)) 
....................    bit_set(*(((unsigned int8 *)(&res)+2)),7); 
....................    rotate_right(&data1,1); 
....................    bit_clear(data1,7); 
....................    *(((unsigned int8 *)(&res)+3)) = data1; 
.................... #endif 
....................  
....................    y = y/LN2 - (float32)n; 
....................  
....................    r = pe[0]*y + pe[1]; 
....................    r = r*y + pe[2]; 
....................    r = r*y + pe[3]; 
....................    r = r*y + pe[4]; 
....................    r = r*y + pe[5]; 
....................  
....................    res = res*(1.0 + y*r); 
....................  
....................    if (s) 
....................       res = 1.0/res; 
....................    return(res); 
.................... } 
....................  
....................  
.................... //Overloaded function for exp() for PCD 
.................... // Overloaded function exp() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 exp(float48 x) 
.................... { 
....................    float48 y, res, r; 
....................    int8 data1; 
....................    signed int8 n; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x > 88.722838) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    n = (signed int16)(x/LN2); 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       n = -n; 
....................       y = -y; 
....................    } 
....................  
....................    res = 0.0; 
....................  
....................    data1 = n+0x7F; 
....................    if(bit_test(data1,0)) 
....................    bit_set(*(((unsigned int8 *)(&res)+4)),7); 
....................    rotate_right(&data1,1); 
....................    bit_clear(data1,7); 
....................    *(((unsigned int8 *)(&res)+5)) = data1; 
....................  
....................    y = y/LN2 - (float48)n; 
....................  
....................    r = pe[0]*y + pe[1]; 
....................    r = r*y + pe[2]; 
....................    r = r*y + pe[3]; 
....................    r = r*y + pe[4]; 
....................    r = r*y + pe[5]; 
....................  
....................    res = res*(1.0 + y*r); 
....................  
....................    if (s) 
....................       res = 1.0/res; 
....................    return(res); 
.................... } 
....................  
.................... // Overloaded function exp() for data type - Float64 
.................... float64 exp(float64 x) 
.................... { 
....................    float64 y, res, r; 
....................    unsigned int16 data1, data2; 
....................    unsigned int16 *p; 
....................    signed int16 n; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x > 709.7827128) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    n = (signed int16)(x/LN2); 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       n = -n; 
....................       y = -y; 
....................    } 
....................  
....................    res = 0.0; 
....................  
.................... #if !defined(__PCD__) 
....................    *((unsigned int16 *)(&res)) = n + 0x7F; 
.................... #endif 
....................    p= (((unsigned int16 *)(&res))+3); 
....................    data1 = *p; 
....................    data2 = *p;    
....................    data1 = n + 0x3FF; 
....................    data1 = data1 <<4; 
....................    if(bit_test(data2,15)) 
....................    bit_set(data1,15); 
....................    data2 = data2 & 0x000F; 
....................    data1 ^= data2; 
....................  
....................    *(((unsigned int16 *)(&res)+3)) = data1; 
....................  
....................  
....................    y = y/LN2 - (float64)n; 
....................  
....................    r = pe[0]*y + pe[1]; 
....................    r = r*y + pe[2]; 
....................    r = r*y + pe[3]; 
....................    r = r*y + pe[4]; 
....................    r = r*y + pe[5]; 
....................  
....................    res = res*(1.0 + y*r); 
....................  
....................    if (s) 
....................       res = 1.0/res; 
....................    return(res); 
.................... } 
....................  
.................... #ENDIF 
....................  
....................  
.................... /************************************************************/ 
....................  
.................... float32 const pl[4] = {0.45145214, -9.0558803, 26.940971, -19.860189}; 
.................... float32 const ql[4] = {1.0000000,  -8.1354259, 16.780517, -9.9300943}; 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float log(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the the natural log of x 
.................... // Date : N/A 
.................... // 
.................... float32 log(float32 x) 
.................... { 
....................    float32 y, res, r, y2; 
....................    #if defined(__PCD__) 
....................    unsigned int8  data1,data2; 
....................    #endif 
....................    signed int8 n; 
....................    #ifdef _ERRNO 
....................    if(x <0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    if(x ==0) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    y = x; 
....................  
....................    if (y != 1.0) 
....................    { 
.................... #if !defined(__PCD__) 
....................     *((unsigned int8 *)(&y)) = 0x7E;  
.................... #endif 
....................  
.................... #if defined(__PCD__) // Takes care of IEEE format 
....................    data2 = *(((unsigned int8 *)(&y))+3); 
....................    *(((unsigned int8 *)(&y))+3) = 0x3F; 
....................    data1 = *(((unsigned int8 *)(&y))+2); 
....................    bit_clear(data1,7); 
....................    *(((unsigned int8 *)(&y))+2) = data1; 
....................    if(bit_test(data2,7)) 
....................    bit_set(*(((unsigned int8 *)(&y))+3),7); 
.................... #endif 
....................  
....................       y = (y - 1.0)/(y + 1.0); 
....................  
....................       y2=y*y; 
....................  
....................       res = pl[0]*y2 + pl[1]; 
....................       res = res*y2 + pl[2]; 
....................       res = res*y2 + pl[3]; 
....................  
....................       r = ql[0]*y2 + ql[1]; 
....................       r = r*y2 + ql[2]; 
....................       r = r*y2 + ql[3]; 
....................  
....................       res = y*res/r; 
.................... #if !defined(__PCD__) 
....................       n = *((unsigned int8 *)(&x)) - 0x7E; 
.................... #endif 
.................... #if defined(__PCD__)  
....................     data1 = *(((unsigned int8 *)(&x)+3)); 
....................     rotate_left(&data1,1); 
....................     data2 = *(((unsigned int8 *)(&x)+2)); 
....................     if(bit_test (data2,7)) 
....................       bit_set(data1,0); 
....................     n = data1 - 0x7E; 
.................... #endif 
....................  
....................       if (n<0)  
....................          r = -(float32)-n; 
....................       else 
....................          r = (float32)n; 
....................  
....................       res += r*LN2; 
....................    } 
....................  
....................    else 
....................       res = 0.0; 
....................  
....................    return(res); 
.................... } 
....................  
.................... //Overloaded function for log() for PCD 
.................... // Overloaded function log() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 log(float48 x) 
.................... { 
....................    float48 y, res, r, y2; 
....................    unsigned int8  data1,data2; 
....................    signed int8 n; 
....................    #ifdef _ERRNO 
....................    if(x <0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    if(x ==0) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    y = x; 
....................  
....................    if (y != 1.0) 
....................    { 
....................     
....................    #if !defined(__PCD__) 
....................        *((unsigned int8 *)(&y)) = 0x7E;  
....................    #endif 
....................       data2 = *(((unsigned int8 *)(&y))+5); 
....................       *(((unsigned int8 *)(&y))+5) = 0x3F; 
....................       data1 = *(((unsigned int8 *)(&y))+4); 
....................       bit_clear(data1,7); 
....................       *(((unsigned int8 *)(&y))+4) = data1; 
....................    
....................       if(bit_test(data2,7)) 
....................          bit_set(*(((unsigned int8 *)(&y))+4),7); 
....................       y = (y - 1.0)/(y + 1.0); 
....................  
....................       y2=y*y; 
....................  
....................       res = pl[0]*y2 + pl[1]; 
....................       res = res*y2 + pl[2]; 
....................       res = res*y2 + pl[3]; 
....................  
....................       r = ql[0]*y2 + ql[1]; 
....................       r = r*y2 + ql[2]; 
....................       r = r*y2 + ql[3]; 
....................  
....................       res = y*res/r; 
....................  
....................     data1 = *(((unsigned int8 *)(&x)+5)); 
....................     rotate_left(&data1,1); 
....................     data2 = *(((unsigned int8 *)(&x)+4)); 
....................     if(bit_test (data2,7)) 
....................        bit_set(data1,0); 
....................       
....................     n = data1 - 0x7E; 
....................  
....................       if (n<0) 
....................          r = -(float48)-n; 
....................       else 
....................          r = (float48)n; 
....................  
....................       res += r*LN2; 
....................    } 
....................  
....................    else 
....................       res = 0.0; 
....................  
....................    return(res); 
.................... } 
....................  
.................... // Overloaded function log() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float32 const pl_64[4] = {0.45145214, -9.0558803, 26.940971, -19.860189}; 
.................... float32 const ql_64[4] = {1.0000000,  -8.1354259, 16.780517, -9.9300943}; 
.................... #endif 
.................... float64 log(float64 x) 
.................... { 
....................    float64 y, res, r, y2; 
....................    unsigned int16  data1,data2; 
....................    unsigned int16 *p; 
....................    signed int16 n; 
....................    #ifdef _ERRNO 
....................    if(x <0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    if(x ==0) 
....................    { 
....................       errno=ERANGE; 
....................       return(0); 
....................    } 
....................    #endif 
....................    y = x; 
....................  
....................    if (y != 1.0) 
....................    { 
....................    #if !defined(__PCD__) 
....................        *((unsigned int8 *)(&y)) = 0x7E;  
....................    #endif 
....................       p= (((unsigned int16 *)(&y))+3); 
....................       data1 = *p; 
....................       data2 = *p; 
....................       data1 = 0x3FE; 
....................       data1 = data1 <<4; 
....................       if(bit_test (data2,15)) 
....................       bit_set(data1,15); 
....................       data2 = data2 & 0x000F; 
....................       data1 ^=data2; 
....................  
....................       *p = data1; 
....................  
....................       y = (y - 1.0)/(y + 1.0); 
....................  
....................       y2=y*y; 
....................  
....................       res = pl_64[0]*y2 + pl_64[1]; 
....................       res = res*y2 + pl_64[2]; 
....................       res = res*y2 + pl_64[3]; 
....................  
....................       r = ql_64[0]*y2 + ql_64[1]; 
....................       r = r*y2 + ql_64[2]; 
....................       r = r*y2 + ql_64[3]; 
....................  
....................       res = y*res/r; 
....................   
....................       p= (((unsigned int16 *)(&x))+3); 
....................       data1 = *p; 
....................       bit_clear(data1,15); 
....................       data1 = data1 >>4;     
....................       n = data1 - 0x3FE; 
....................  
....................  
....................       if (n<0) 
....................          r = -(float64)-n; 
....................       else 
....................          r = (float64)n; 
....................  
....................       res += r*LN2; 
....................    } 
....................  
....................    else 
....................       res = 0.0; 
....................  
....................    return(res); 
.................... } 
.................... #endif 
....................  
....................  
.................... #define LN10 2.3025850929940456 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float log10(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the the log base 10 of x 
.................... // Date : N/A 
.................... // 
.................... float32 log10(float32 x) 
.................... { 
....................    float32 r; 
....................  
....................    r = log(x); 
....................    r = r/LN10; 
....................    return(r); 
.................... } 
....................  
.................... //Overloaded functions for log10() for PCD 
.................... // Overloaded function log10() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 log10(float48 x) 
.................... { 
....................    float48 r; 
....................  
....................    r = log(x); 
....................    r = r/LN10; 
....................    return(r); 
.................... } 
....................  
.................... // Overloaded function log10() for data type - Float64 
.................... float64 log10(float64 x) 
.................... { 
....................    float64 r; 
....................  
....................    r = log(x); 
....................    r = r/LN10; 
....................    return(r); 
.................... } 
.................... #endif 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float modf(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description :breaks the argument value int integral and fractional parts, 
.................... // ach of which have the same sign as the argument.  It stores the integral part 
.................... // as a float in the object pointed to by the iptr 
.................... // Returns : returns the signed fractional part of value. 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 modf(float32 value,float32 *iptr) 
.................... { 
....................    *iptr=(value < 0.0)? ceil(value): floor(value); 
....................    return(value - *iptr); 
.................... } 
.................... //Overloaded functions for modf() for PCD 
.................... // Overloaded function modf() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 modf(float48 value,float48 *iptr) 
.................... { 
....................    *iptr=(value < 0.0)? ceil(value): floor(value); 
....................    return(value - *iptr); 
.................... } 
.................... // Overloaded function modf() for data type - Float64 
.................... float64 modf(float64 value,float64 *iptr) 
.................... { 
....................    *iptr=(value < 0.0)? ceil(value): floor(value); 
....................    return(value - *iptr); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float pwr(float x,float y) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the value (x^y) 
.................... // Date : N/A 
.................... // Note : 0 is returned when the function will generate an imaginary number 
.................... // 
.................... float32 pwr(float32 x,float32 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
.................... //Overloaded functions for pwr() for PCD 
.................... // Overloaded function pwr() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 pwr(float48 x,float48 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
.................... // Overloaded function pwr() for data type - Float64 
.................... float64 pwr(float64 x,float64 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
.................... #endif 
....................  
.................... //////////////////// Power functions //////////////////// 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float pow(float x,float y) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the value (x^y) 
.................... // Date : N/A 
.................... // Note : 0 is returned when the function will generate an imaginary number 
.................... // 
.................... float32 pow(float32 x,float32 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
.................... //Overloaded functions for pow() for PCD 
.................... // Overloaded function for pow() data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 pow(float48 x,float48 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
....................  
.................... // Overloaded function pow() for data type - Float64 
.................... float64 pow(float64 x,float64 y) 
.................... { 
....................    if(0 > x && fmod(y, 1) == 0) { 
....................       if(fmod(y, 2) == 0) { 
....................          return (exp(log(-x) * y)); 
....................       } else { 
....................          return (-exp(log(-x) * y)); 
....................       } 
....................    } else if(0 > x && fmod(y, 1) != 0) { 
....................       return 0; 
....................    } else { 
....................       if(x != 0 || 0 >= y) { 
....................          return (exp(log(x) * y)); 
....................       } 
....................    } 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float sqrt(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the square root of x 
.................... // Date : N/A 
.................... // 
.................... float32 sqrt(float32 x) 
.................... { 
....................    float32 y, res; 
....................    #if defined(__PCD__) 
....................    unsigned int16 data1,data2; 
....................    #endif 
....................    BYTE *p; 
....................  
....................    #ifdef _ERRNO 
....................    if(x < 0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................  
....................    if( x<=0.0) 
....................       return(0.0); 
....................  
....................    y=x; 
....................     
....................    #if !defined(__PCD__) 
....................     p=&y; 
....................    (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1); 
....................    #endif 
....................     
....................    #if defined(__PCD__) 
....................     p = (((unsigned int8 *)(&y))+3); 
....................     data1 = *(((unsigned int8 *)(&y))+3); 
....................     data2 = *(((unsigned int8 *)(&y))+2); 
....................     rotate_left(&data1,1);     
....................     if(bit_test(data2,7))     
....................     bit_set(data1,0);     
....................     data1 = ((data1+127) >>1); 
....................     bit_clear(data2,7); 
....................     if(bit_test(data1,0)) 
....................     bit_set(data2,7); 
....................     data1 = data1 >>1; 
....................     *(((unsigned int8 *)(&y))+3) = data1; 
....................     *(((unsigned int8 *)(&y))+2) = data2; 
....................      
....................   #endif 
....................  
....................    do { 
....................       res=y; 
....................       y+=(x/y); 
....................  
....................       #if !defined(__PCD__) 
....................      (*p)--; 
....................    #endif 
....................     
....................    #if defined(__PCD__) 
....................     data1 = *(((unsigned int8 *)(&y))+3); 
....................     data2 = *(((unsigned int8 *)(&y))+2); 
....................     rotate_left(&data1,1); 
....................     if(bit_test(data2,7)) 
....................     bit_set(data1,0);     
....................     data1--; 
....................     bit_clear(data2,7); 
....................     if(bit_test(data1,0)) 
....................     bit_set(data2,7); 
....................     data1 = data1 >>1; 
....................     *(((unsigned int8 *)(&y))+3) = data1; 
....................     *(((unsigned int8 *)(&y))+2) = data2; 
....................      
....................   #endif 
....................    } while(res != y); 
....................  
....................    return(res); 
.................... } 
.................... //Overloaded functions for sqrt() for PCD 
.................... // Overloaded function sqrt() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 sqrt(float48 x) 
.................... { 
....................    float48 y, res; 
....................    unsigned int16 data1,data2; 
....................    BYTE *p; 
....................  
....................    #ifdef _ERRNO 
....................    if(x < 0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................  
....................    if( x<=0.0) 
....................       return(0.0); 
....................  
....................    y=x; 
....................     
....................    #if !defined(__PCD__) 
....................     p=&y; 
....................    (*p)=(BYTE)((((unsigned int16)(*p)) + 127) >> 1); 
....................    #endif 
....................     
....................    #if defined(__PCD__) 
....................     p = (((unsigned int8 *)(&y))+5); 
....................     data1 = *(((unsigned int8 *)(&y))+5); 
....................     data2 = *(((unsigned int8 *)(&y))+4); 
....................     rotate_left(&data1,1); 
....................     if(bit_test(data2,7)) 
....................     bit_set(data1,0);     
....................     data1 = ((data1+127) >>1); 
....................     bit_clear(data2,7); 
....................     if(bit_test(data1,0)) 
....................     bit_set(data2,7); 
....................     data1 = data1 >>1; 
....................     *(((unsigned int8 *)(&y))+5) = data1; 
....................     *(((unsigned int8 *)(&y))+4) = data2; 
....................      
....................   #endif 
....................  
....................    do { 
....................       res=y; 
....................       y+=(x/y); 
....................  
....................       #if !defined(__PCD__) 
....................      (*p)--; 
....................    #endif 
....................     
....................     data1 = *(((unsigned int8 *)(&y))+5); 
....................     data2 = *(((unsigned int8 *)(&y))+4); 
....................     rotate_left(&data1,1); 
....................     if(bit_test(data2,7)) 
....................     bit_set(data1,0);     
....................     data1--; 
....................     bit_clear(data2,7); 
....................     if(bit_test(data1,0)) 
....................     bit_set(data2,7); 
....................     data1 = data1 >>1; 
....................     *(((unsigned int8 *)(&y))+5) = data1; 
....................     *(((unsigned int8 *)(&y))+4) = data2; 
....................      
....................    } while(res != y); 
....................  
....................    return(res); 
.................... } 
....................  
.................... // Overloaded function sqrt() for data type - Float64 
.................... float64 sqrt(float64 x) 
.................... { 
....................    float64 y, res; 
....................    unsigned int16 *p; 
....................    unsigned int16 temp1,temp2; 
....................  
....................    #ifdef _ERRNO 
....................    if(x < 0) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................  
....................    if( x<=0.0) 
....................       return(0.0); 
....................  
....................    y=x; 
....................    p= (((unsigned int16 *)(&y))+3); 
....................    temp1 = *p; 
....................    temp2 = *p; 
....................    bit_clear(temp1,15); 
....................    temp1 = (temp1>>4)+1023; 
....................    temp1 = temp1 >> 1; 
....................    temp1 = (temp1<<4) & 0xFFF0; 
....................    if(bit_test(temp2,15)) 
....................    bit_set(temp1,15); 
....................    temp2 = temp2 & 0x000F; 
....................    temp1 ^= temp2; 
....................     
....................    (*p) = temp1; 
....................     
....................    do { 
....................       res=y; 
....................       y+=(x/y); 
....................      temp1 = *p; 
....................      temp2 = *p; 
....................      bit_clear(temp1,15); 
....................      temp1 = (temp1>>4); 
....................      temp1--; 
....................      temp1 = (temp1<<4) & 0xFFF0; 
....................      if(bit_test(temp2,15)) 
....................      bit_set(temp1,15); 
....................      temp2 = temp2 & 0x000F; 
....................      temp1 ^= temp2; 
....................      (*p) = temp1; 
....................  
....................    } while(res != y); 
....................  
....................    return(res); 
.................... } 
.................... #endif 
....................  
.................... ////////////////////////////// Trig Functions ////////////////////////////// 
.................... #ifdef PI_DIV_BY_TWO 
.................... #undef PI_DIV_BY_TWO 
.................... #endif 
.................... #define PI_DIV_BY_TWO   1.5707963267948966 
.................... #ifdef TWOBYPI 
.................... #undef TWOBYPI 
.................... #define TWOBYPI          0.6366197723675813 
.................... #endif 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float cos(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the cosine value of the angle x, which is in radian 
.................... // Date : 9/20/2001 
.................... // 
.................... float32 cos(float32 x) 
.................... { 
....................    float32 y, t, t2 = 1.0; 
....................    unsigned int8 quad, i; 
....................    float32 frac; 
....................    float32 p[6] = {                    //by the series definition for cosine 
....................       -0.5,                            // sum ( ( (-1)^n * x^2n )/(2n)! ) 
....................        0.04166666666667, 
....................       -0.00138888888889, 
....................        0.00002480158730, 
....................       -0.00000027557319, 
....................        0.00000000208767, 
....................       //-0.00000000001147, 
....................       // 0.00000000000005 
....................    }; 
....................  
....................    if (x < 0) x = -x;                  // absolute value of input 
....................  
....................    quad = (unsigned int8)(x / PI_DIV_BY_TWO);    // quadrant 
....................    frac = (x / PI_DIV_BY_TWO) - quad;  // fractional part of input 
....................    quad = quad % 4;                    // quadrant (0 to 3) 
....................  
....................    if (quad == 0 || quad == 2) 
....................       t = frac * PI_DIV_BY_TWO; 
....................    else if (quad == 1) 
....................       t = (1-frac) * PI_DIV_BY_TWO; 
....................    else // should be 3 
....................       t = (frac-1) * PI_DIV_BY_TWO; 
....................  
....................    y = 1.0; 
....................    t = t * t; 
....................    for (i = 0; i <= 5; i++) 
....................    { 
....................       t2 = t2 * t; 
....................       y = y + p[i] * t2; 
....................    } 
....................  
....................    if (quad == 2 || quad == 1) 
....................       y = -y;  // correct sign 
....................  
....................    return (y); 
.................... } 
....................  
....................  
.................... //Overloaded functions for cos() for PCD 
.................... // Overloaded function cos() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 cos(float48 x) 
.................... { 
....................    float48 y, t, t2 = 1.0; 
....................    unsigned int8 quad, i; 
....................    float48 frac; 
....................    float48 p[6] = {                    //by the series definition for cosine 
....................       -0.5,                            // sum ( ( (-1)^n * x^2n )/(2n)! ) 
....................        0.04166666666667, 
....................       -0.00138888888889, 
....................        0.00002480158730, 
....................       -0.00000027557319, 
....................        0.00000000208767, 
....................       //-0.00000000001147, 
....................       // 0.00000000000005 
....................    }; 
....................  
....................    if (x < 0) x = -x;                  // absolute value of input 
....................  
....................    quad = (unsigned int8)(x / PI_DIV_BY_TWO);    // quadrant 
....................    frac = (x / PI_DIV_BY_TWO) - quad;  // fractional part of input 
....................    quad = quad % 4;                    // quadrant (0 to 3) 
....................  
....................    if (quad == 0 || quad == 2) 
....................       t = frac * PI_DIV_BY_TWO; 
....................    else if (quad == 1) 
....................       t = (1-frac) * PI_DIV_BY_TWO; 
....................    else // should be 3 
....................       t = (frac-1) * PI_DIV_BY_TWO; 
....................  
....................    y = 0.999999999781; 
....................    t = t * t; 
....................    for (i = 0; i <= 5; i++) 
....................    { 
....................       t2 = t2 * t; 
....................       y = y + p[i] * t2; 
....................    } 
....................  
....................    if (quad == 2 || quad == 1) 
....................       y = -y;  // correct sign 
....................  
....................    return (y); 
.................... } 
....................  
.................... // Overloaded function cos() for data type - Float48 
.................... float64 cos(float64 x) 
.................... { 
....................    float64 y, t, t2 = 1.0; 
....................    unsigned int8 quad, i; 
....................    float64 frac; 
....................    float64 p[6] = {                    //by the series definition for cosine 
....................       -0.5,                            // sum ( ( (-1)^n * x^2n )/(2n)! ) 
....................        0.04166666666667, 
....................       -0.00138888888889, 
....................        0.00002480158730, 
....................       -0.00000027557319, 
....................        0.00000000208767, 
....................       //-0.00000000001147, 
....................       // 0.00000000000005 
....................    }; 
....................  
....................    if (x < 0) x = -x;                  // absolute value of input 
....................  
....................    quad = (unsigned int8)(x / PI_DIV_BY_TWO);    // quadrant 
....................    frac = (x / PI_DIV_BY_TWO) - quad;  // fractional part of input 
....................    quad = quad % 4;                    // quadrant (0 to 3) 
....................  
....................    if (quad == 0 || quad == 2) 
....................       t = frac * PI_DIV_BY_TWO; 
....................    else if (quad == 1) 
....................       t = (1-frac) * PI_DIV_BY_TWO; 
....................    else // should be 3 
....................       t = (frac-1) * PI_DIV_BY_TWO; 
....................  
....................    y = 0.999999999781; 
....................    t = t * t; 
....................    for (i = 0; i <= 5; i++) 
....................    { 
....................       t2 = t2 * t; 
....................       y = y + p[i] * t2; 
....................    } 
....................  
....................    if (quad == 2 || quad == 1) 
....................       y = -y;  // correct sign 
....................  
....................    return (y); 
.................... } 
....................  
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float sin(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the sine value of the angle x, which is in radian 
.................... // Date : 9/20/2001 
.................... // 
.................... float32 sin(float32 x) 
.................... { 
....................    return cos(x - PI_DIV_BY_TWO); 
.................... } 
....................  
.................... //Overloaded functions for sin() for PCD 
.................... // Overloaded function sin() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 sin(float48 x) 
.................... { 
....................    return cos(x - PI_DIV_BY_TWO); 
.................... } 
....................  
.................... // Overloaded function sin() for data type - Float48 
.................... float64 sin(float64 x) 
.................... { 
....................    return cos(x - PI_DIV_BY_TWO); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float tan(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the tangent value of the angle x, which is in radian 
.................... // Date : 9/20/2001 
.................... // 
.................... float32 tan(float32 x) 
.................... { 
....................    float32 c, s; 
....................  
....................    c = cos(x); 
....................    if (c == 0.0) 
....................       return (1.0e+36); 
....................  
....................    s = sin(x); 
....................    return(s/c); 
.................... } 
.................... //Overloaded functions for tan() for PCD 
.................... // Overloaded function tan() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 tan(float48 x) 
.................... { 
....................    float48 c, s; 
....................  
....................    c = cos(x); 
....................    if (c == 0.0) 
....................       return (1.0e+36); 
....................  
....................    s = sin(x); 
....................    return(s/c); 
.................... } 
....................  
.................... // Overloaded function tan() for data type - Float48 
.................... float64 tan(float64 x) 
.................... { 
....................    float64 c, s; 
....................  
....................    c = cos(x); 
....................    if (c == 0.0) 
....................       return (1.0e+36); 
....................  
....................    s = sin(x); 
....................    return(s/c); 
.................... } 
.................... #endif 
....................  
.................... float32 const pas[3] = {0.49559947, -4.6145309, 5.6036290}; 
.................... float32 const qas[3] = {1.0000000,  -5.5484666, 5.6036290}; 
....................  
.................... float32 ASIN_COS(float32 x, unsigned int8 n) 
.................... { 
....................    float32 y, res, r, y2; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x <-1 || x > 1) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 0.5) 
....................    { 
....................       y = sqrt((1.0 - y)/2.0); 
....................       n += 2; 
....................    } 
....................  
....................    y2=y*y; 
....................  
....................    res = pas[0]*y2 + pas[1]; 
....................    res = res*y2 + pas[2]; 
....................  
....................    r = qas[0]*y2 + qas[1]; 
....................    r = r*y2 + qas[2]; 
....................  
....................    res = y*res/r; 
....................  
....................    if (n & 2)     // |x| > 0.5 
....................       res = PI_DIV_BY_TWO - 2.0*res; 
....................    if (s) 
....................       res = -res; 
....................    if (n & 1)           // take arccos 
....................       res = PI_DIV_BY_TWO - res; 
....................  
....................    return(res); 
.................... } 
....................  
.................... //Overloaded functions for ASIN_COS() for PCD 
.................... // Overloaded function ASIN_COS() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 ASIN_COS(float48 x, unsigned int8 n) 
.................... { 
....................    float48 y, res, r, y2; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x <-1 || x > 1) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 0.5) 
....................    { 
....................       y = sqrt((1.0 - y)/2.0); 
....................       n += 2; 
....................    } 
....................  
....................    y2=y*y; 
....................  
....................    res = pas[0]*y2 + pas[1]; 
....................    res = res*y2 + pas[2]; 
....................  
....................    r = qas[0]*y2 + qas[1]; 
....................    r = r*y2 + qas[2]; 
....................  
....................    res = y*res/r; 
....................  
....................    if (n & 2)     // |x| > 0.5 
....................       res = PI_DIV_BY_TWO - 2.0*res; 
....................    if (s) 
....................       res = -res; 
....................    if (n & 1)           // take arccos 
....................       res = PI_DIV_BY_TWO - res; 
....................  
....................    return(res); 
.................... } 
....................  
.................... // Overloaded function ASIN_COS() for data type - Float64 
.................... float64 ASIN_COS(float64 x, unsigned int8 n) 
.................... { 
....................    float64 y, res, r, y2; 
....................    int1 s; 
....................    #ifdef _ERRNO 
....................    if(x <-1 || x > 1) 
....................    { 
....................       errno=EDOM; 
....................    } 
....................    #endif 
....................    s = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 0.5) 
....................    { 
....................       y = sqrt((1.0 - y)/2.0); 
....................       n += 2; 
....................    } 
....................  
....................    y2=y*y; 
....................  
....................    res = pas[0]*y2 + pas[1]; 
....................    res = res*y2 + pas[2]; 
....................  
....................    r = qas[0]*y2 + qas[1]; 
....................    r = r*y2 + qas[2]; 
....................  
....................    res = y*res/r; 
....................  
....................    if (n & 2)     // |x| > 0.5 
....................       res = PI_DIV_BY_TWO - 2.0*res; 
....................    if (s) 
....................       res = -res; 
....................    if (n & 1)           // take arccos 
....................       res = PI_DIV_BY_TWO - res; 
....................  
....................    return(res); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float asin(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the arcsine value of the value x. 
.................... // Date : N/A 
.................... // 
.................... float32 asin(float32 x) 
.................... { 
....................    float32 r; 
....................  
....................    r = ASIN_COS(x, 0); 
....................    return(r); 
.................... } 
.................... //Overloaded functions for asin() for PCD 
.................... // Overloaded function asin() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 asin(float48 x) 
.................... { 
....................    float48 r; 
....................  
....................    r = ASIN_COS(x, 0); 
....................    return(r); 
.................... } 
....................  
.................... // Overloaded function asin() for data type - Float64 
.................... float64 asin(float64 x) 
.................... { 
....................    float64 r; 
....................  
....................    r = ASIN_COS(x, 0); 
....................    return(r); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float acos(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the arccosine value of the value x. 
.................... // Date : N/A 
.................... // 
.................... float32 acos(float32 x) 
.................... { 
....................    float32 r; 
....................  
....................    r = ASIN_COS(x, 1); 
....................    return(r); 
.................... } 
.................... //Overloaded functions for acos() for PCD 
.................... // Overloaded function acos() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 acos(float48 x) 
.................... { 
....................    float48 r; 
....................  
....................    r = ASIN_COS(x, 1); 
....................    return(r); 
.................... } 
....................  
.................... // Overloaded function acos() for data type - Float64 
.................... float64 acos(float64 x) 
.................... { 
....................    float64 r; 
....................  
....................    r = ASIN_COS(x, 1); 
....................    return(r); 
.................... } 
.................... #endif 
....................  
.................... float32 const pat[4] = {0.17630401, 5.6710795, 22.376096, 19.818457}; 
.................... float32 const qat[4] = {1.0000000,  11.368190, 28.982246, 19.818457}; 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float atan(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : returns the arctangent value of the value x. 
.................... // Date : N/A 
.................... // 
.................... float32 atan(float32 x) 
.................... { 
....................    float32 y, res, r; 
....................    int1 s, flag; 
....................  
....................    s = 0; 
....................    flag = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 1.0) 
....................    { 
....................       y = 1.0/y; 
....................       flag = 1; 
....................    } 
....................  
....................    res = pat[0]*y*y + pat[1]; 
....................    res = res*y*y + pat[2]; 
....................    res = res*y*y + pat[3]; 
....................  
....................    r = qat[0]*y*y + qat[1]; 
....................    r = r*y*y + qat[2]; 
....................    r = r*y*y + qat[3]; 
....................  
....................    res = y*res/r; 
....................  
....................  
....................    if (flag)                              // for |x| > 1 
....................       res = PI_DIV_BY_TWO - res; 
....................    if (s) 
....................       res = -res; 
....................  
....................    return(res); 
.................... } 
.................... //Overloaded functions for atan() for PCD 
.................... // Overloaded function atan() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 atan(float48 x) 
.................... { 
....................    float48 y, res, r; 
....................    int1 s, flag; 
....................  
....................    s = 0; 
....................    flag = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 1.0) 
....................    { 
....................       y = 1.0/y; 
....................       flag = 1; 
....................    } 
....................  
....................    res = pat[0]*y*y + pat[1]; 
....................    res = res*y*y + pat[2]; 
....................    res = res*y*y + pat[3]; 
....................  
....................    r = qat[0]*y*y + qat[1]; 
....................    r = r*y*y + qat[2]; 
....................    r = r*y*y + qat[3]; 
....................  
....................    res = y*res/r; 
....................  
....................  
....................    if (flag)                              // for |x| > 1 
....................       res = PI_DIV_BY_TWO - res; 
....................    if (s) 
....................       res = -res; 
....................  
....................    return(res); 
.................... } 
....................  
.................... // Overloaded function atan() for data type - Float64 
.................... float64 atan(float64 x) 
.................... { 
....................    float64 y, res, r; 
....................    int1 s, flag; 
....................  
....................    s = 0; 
....................    flag = 0; 
....................    y = x; 
....................  
....................    if (x < 0) 
....................    { 
....................       s = 1; 
....................       y = -y; 
....................    } 
....................  
....................    if (y > 1.0) 
....................    { 
....................       y = 1.0/y; 
....................       flag = 1; 
....................    } 
....................  
....................    res = pat[0]*y*y + pat[1]; 
....................    res = res*y*y + pat[2]; 
....................    res = res*y*y + pat[3]; 
....................  
....................    r = qat[0]*y*y + qat[1]; 
....................    r = r*y*y + qat[2]; 
....................    r = r*y*y + qat[3]; 
....................  
....................    res = y*res/r; 
....................  
....................  
....................    if (flag)                              // for |x| > 1 
....................       res = PI_DIV_BY_TWO - res; 
....................    if (s) 
....................       res = -res; 
....................  
....................    return(res); 
.................... } 
.................... #endif 
....................  
.................... ///////////////////////////////////////////////////////////////////////////// 
.................... //   float atan2(float y, float x) 
.................... ///////////////////////////////////////////////////////////////////////////// 
.................... // Description :computes the principal value of arc tangent of y/x, using the 
.................... // signs of both the arguments to determine the quadrant of the return value 
.................... // Returns : returns the arc tangent of y/x. 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 atan2(float32 y,float32 x) 
.................... { 
....................    float32 z; 
....................    int1 sign; 
....................    unsigned int8 quad; 
....................    sign=0; 
....................    quad=0; //quadrant 
....................    quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); 
....................    if(y<0.0) 
....................    { 
....................       sign=1; 
....................       y=-y; 
....................    } 
....................    if(x<0.0) 
....................    { 
....................       x=-x; 
....................    } 
....................    if (x==0.0) 
....................    { 
....................       if(y==0.0) 
....................       { 
....................       #ifdef _ERRNO 
....................       { 
....................          errno=EDOM; 
....................       } 
....................       #endif 
....................       } 
....................       else 
....................       { 
....................          if(sign) 
....................          { 
....................          return (-(PI_DIV_BY_TWO)); 
....................          } 
....................          else 
....................          { 
....................          return (PI_DIV_BY_TWO); 
....................          } 
....................       } 
....................    } 
....................    else 
....................    { 
....................       z=y/x; 
....................       switch(quad) 
....................       { 
....................          case 1: 
....................          { 
....................             return atan(z); 
....................             break; 
....................          } 
....................          case 2: 
....................          { 
.................... //            return (atan(z)+PI_DIV_BY_TWO);  //2L3122 
....................             return (PI-atan(z)); 
....................             break; 
....................          } 
....................          case 3: 
....................          { 
....................             return (atan(z)-PI); 
....................             break; 
....................          } 
....................          case 4: 
....................          { 
....................             return (-atan(z)); 
....................             break; 
....................          } 
....................       } 
....................    } 
.................... } 
....................  
.................... //Overloaded functions for atan2() for PCD 
.................... // Overloaded function atan2() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 atan2(float48 y,float48 x) 
.................... { 
....................    float48 z; 
....................    int1 sign; 
....................    unsigned int8 quad; 
....................    sign=0; 
....................    quad=0; //quadrant 
....................    quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); 
....................    if(y<0.0) 
....................    { 
....................       sign=1; 
....................       y=-y; 
....................    } 
....................    if(x<0.0) 
....................    { 
....................       x=-x; 
....................    } 
....................    if (x==0.0) 
....................    { 
....................       if(y==0.0) 
....................       { 
....................       #ifdef _ERRNO 
....................       { 
....................          errno=EDOM; 
....................       } 
....................       #endif 
....................       } 
....................       else 
....................       { 
....................          if(sign) 
....................          { 
....................          return (-(PI_DIV_BY_TWO)); 
....................          } 
....................          else 
....................          { 
....................          return (PI_DIV_BY_TWO); 
....................          } 
....................       } 
....................    } 
....................    else 
....................    { 
....................       z=y/x; 
....................       switch(quad) 
....................       { 
....................          case 1: 
....................          { 
....................             return atan(z); 
....................             break; 
....................          } 
....................          case 2: 
....................          { 
.................... //            return (atan(z)+PI_DIV_BY_TWO);  //2L3122 
....................             return (PI-atan(z)); 
....................             break; 
....................          } 
....................          case 3: 
....................          { 
....................             return (atan(z)-PI); 
....................             break; 
....................          } 
....................          case 4: 
....................          { 
....................             return (-atan(z)); 
....................             break; 
....................          } 
....................       } 
....................    } 
.................... } 
....................  
.................... // Overloaded function atan2() for data type - Float64 
.................... float64 atan2(float64 y,float64 x) 
.................... { 
....................    float64 z; 
....................    int1 sign; 
....................    unsigned int8 quad; 
....................    sign=0; 
....................    quad=0; //quadrant 
....................    quad=((y<=0.0)?((x<=0.0)?3:4):((x<0.0)?2:1)); 
....................    if(y<0.0) 
....................    { 
....................       sign=1; 
....................       y=-y; 
....................    } 
....................    if(x<0.0) 
....................    { 
....................       x=-x; 
....................    } 
....................    if (x==0.0) 
....................    { 
....................       if(y==0.0) 
....................       { 
....................       #ifdef _ERRNO 
....................       { 
....................          errno=EDOM; 
....................       } 
....................       #endif 
....................       } 
....................       else 
....................       { 
....................          if(sign) 
....................          { 
....................          return (-(PI_DIV_BY_TWO)); 
....................          } 
....................          else 
....................          { 
....................          return (PI_DIV_BY_TWO); 
....................          } 
....................       } 
....................    } 
....................    else 
....................    { 
....................       z=y/x; 
....................       switch(quad) 
....................       { 
....................          case 1: 
....................          { 
....................             return atan(z); 
....................             break; 
....................          } 
....................          case 2: 
....................          { 
.................... //            return (atan(z)+PI_DIV_BY_TWO);  //2L3122 
....................             return (PI-atan(z)); 
....................             break; 
....................          } 
....................          case 3: 
....................          { 
....................             return (atan(z)-PI); 
....................             break; 
....................          } 
....................          case 4: 
....................          { 
....................             return (-atan(z)); 
....................             break; 
....................          } 
....................       } 
....................    } 
.................... } 
.................... #endif 
....................  
.................... //////////////////// Hyperbolic functions //////////////////// 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float cosh(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : Computes the hyperbolic cosine value of x 
.................... // Returns : returns the hyperbolic cosine value of x 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 cosh(float32 x) 
.................... { 
....................    return ((exp(x)+exp(-x))/2); 
.................... } 
.................... //Overloaded functions for cosh() for PCD 
.................... // Overloaded function cosh() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 cosh(float48 x) 
.................... { 
....................    return ((exp(x)+exp(-x))/2); 
.................... } 
....................  
.................... // Overloaded function cosh() for data type - Float64 
.................... float64 cosh(float64 x) 
.................... { 
....................    return ((exp(x)+exp(-x))/2); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float sinh(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : Computes the hyperbolic sine value of x 
.................... // Returns : returns the hyperbolic sine value of x 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 sinh(float32 x) 
.................... { 
....................  
....................    return ((exp(x) - exp(-x))/2); 
.................... } 
.................... //Overloaded functions for sinh() for PCD 
.................... // Overloaded function sinh() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 sinh(float48 x) 
.................... { 
....................  
....................    return ((exp(x) - exp(-x))/2); 
.................... } 
....................  
.................... // Overloaded function sinh() for data type - Float48 
.................... float64 sinh(float64 x) 
.................... { 
....................  
....................    return ((exp(x) - exp(-x))/2); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float tanh(float x) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : Computes the hyperbolic tangent value of x 
.................... // Returns : returns the hyperbolic tangent value of x 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 tanh(float32 x) 
.................... { 
....................    return(sinh(x)/cosh(x)); 
.................... } 
.................... //Overloaded functions for tanh() for PCD 
.................... // Overloaded function tanh() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 tanh(float48 x) 
.................... { 
....................    return(sinh(x)/cosh(x)); 
.................... } 
....................  
.................... // Overloaded function tanh() for data type - Float64 
.................... float64 tanh(float64 x) 
.................... { 
....................    return(sinh(x)/cosh(x)); 
.................... } 
.................... #endif 
....................  
.................... //////////////////////////////////////////////////////////////////////////// 
.................... //   float frexp(float x, signed int *exp) 
.................... //////////////////////////////////////////////////////////////////////////// 
.................... // Description : breaks a floating point number into a normalized fraction and an integral 
.................... // power of 2. It stores the integer in the signed int object pointed to by exp. 
.................... // Returns : returns the value x, such that x is a double with magnitude in the interval 
.................... // [1/2,1) or zero, and value equals x times 2 raised to the power *exp.If value is zero, 
.................... // both parts of the result are zero. 
.................... // Date : N/A 
.................... // 
....................  
.................... #define LOG2 .30102999566398119521 
.................... float32 frexp(float32 x, signed int8 *exp) 
.................... { 
....................    float32 res; 
....................    int1 sign = 0; 
....................    if(x == 0.0) 
....................    { 
....................       *exp=0; 
....................       return (0.0); 
....................    } 
....................    if(x < 0.0) 
....................    { 
....................      x=-x; 
....................      sign=1; 
....................    } 
....................    if (x > 1.0) 
....................    { 
....................       *exp=(ceil(log10(x)/LOG2)); 
....................       res=x/(pow(2, *exp)); 
....................       if (res == 1) 
....................       { 
....................          *exp=*exp+1; 
....................           res=.5; 
....................       } 
....................    } 
....................    else 
....................    { 
....................       if(x < 0.5) 
....................       { 
....................          *exp=-1; 
....................          res=x*2; 
....................       } 
....................       else 
....................       { 
....................          *exp=0; 
....................           res=x; 
....................       } 
....................    } 
....................    if(sign) 
....................    { 
....................       res=-res; 
....................    } 
....................    return res; 
.................... } 
....................  
.................... //Overloaded functions for frexp() for PCD 
.................... // Overloaded function frexp() for data type - Float48 
.................... #if defined(__PCD__) 
.................... float48 frexp(float48 x, signed int8 *exp) 
.................... { 
....................    float48 res; 
....................    int1 sign = 0; 
....................    if(x == 0.0) 
....................    { 
....................       *exp=0; 
....................       return (0.0); 
....................    } 
....................    if(x < 0.0) 
....................    { 
....................      x=-x; 
....................      sign=1; 
....................    } 
....................    if (x > 1.0) 
....................    { 
....................       *exp=(ceil(log10(x)/LOG2)); 
....................       res=x/(pow(2, *exp)); 
....................       if (res == 1) 
....................       { 
....................          *exp=*exp+1; 
....................           res=.5; 
....................       } 
....................    } 
....................    else 
....................    { 
....................       if(x < 0.5) 
....................       { 
....................          *exp=-1; 
....................          res=x*2; 
....................       } 
....................       else 
....................       { 
....................          *exp=0; 
....................           res=x; 
....................       } 
....................    } 
....................    if(sign) 
....................    { 
....................       res=-res; 
....................    } 
....................    return res; 
.................... } 
....................  
.................... // Overloaded function frexp() for data type - Float64 
.................... float64 frexp(float64 x, signed int8 *exp) 
.................... { 
....................    float64 res; 
....................    int1 sign = 0; 
....................    if(x == 0.0) 
....................    { 
....................       *exp=0; 
....................       return (0.0); 
....................    } 
....................    if(x < 0.0) 
....................    { 
....................      x=-x; 
....................      sign=1; 
....................    } 
....................    if (x > 1.0) 
....................    { 
....................       *exp=(ceil(log10(x)/LOG2)); 
....................       res=x/(pow(2, *exp)); 
....................       if (res == 1) 
....................       { 
....................          *exp=*exp+1; 
....................           res=.5; 
....................       } 
....................    } 
....................    else 
....................    { 
....................       if(x < 0.5) 
....................       { 
....................          *exp=-1; 
....................          res=x*2; 
....................       } 
....................       else 
....................       { 
....................          *exp=0; 
....................           res=x; 
....................       } 
....................    } 
....................    if(sign) 
....................    { 
....................       res=-res; 
....................    } 
....................    return res; 
.................... } 
.................... #endif 
....................  
.................... ////////////////////////////////////////////////////////////////////////////// 
.................... //   float ldexp(float x, signed int *exp) 
.................... ////////////////////////////////////////////////////////////////////////////// 
.................... // Description : multiplies a floating point number by an integral power of 2. 
.................... // Returns : returns the value of x times 2 raised to the power exp. 
.................... // Date : N/A 
.................... // 
....................  
.................... float32 ldexp(float32 value, signed int8 exp) 
.................... { 
....................    return (value * pow(2,exp)); 
.................... } 
.................... //Overloaded functions for ldexp() for PCD 
.................... // Overloaded function ldexp() for data type - Float48 
....................  
.................... #if defined(__PCD__) 
.................... float48 ldexp(float48 value, signed int8 exp) 
.................... { 
....................    return (value * pow(2,exp)); 
.................... } 
.................... // Overloaded function ldexp() for data type - Float64 
.................... float64 ldexp(float64 value, signed int8 exp) 
.................... { 
....................    return (value * pow(2,exp)); 
.................... } 
.................... #endif 
....................  
.................... #endif 
....................  
.................... #include <MMA8451Q.h> 
.................... //Adresa obvodu 
.................... #define AK_W  0x38 //adresa akcelerometru zápis 
.................... #define AK_R  0x39 //adresa akcelerometru ètení 
....................  
....................  
.................... #define AK_XH 0x01 //osa X LSB 
.................... #define AK_XL 0x02 //osa X MSB 
.................... #define AK_YH 0x03 //osa Y LSB 
.................... #define AK_YL 0x04 //osa Y MSB 
.................... #define AK_ZH 0x05 //osa Z LSB 
.................... #define AK_ZL 0x06 //osa Z MSB 
....................  
....................  
.................... #include "MMA8451Q.c" 
.................... void setAK (void) //nastaveni akcelerometru 
.................... { 
....................    i2c_start(); 
*
008B:  BSF    20.4
008C:  MOVF   20,W
008D:  BSF    03.5
008E:  MOVWF  07
008F:  NOP
0090:  BCF    03.5
0091:  BSF    20.3
0092:  MOVF   20,W
0093:  BSF    03.5
0094:  MOVWF  07
0095:  NOP
0096:  BCF    03.5
0097:  BCF    07.4
0098:  BCF    20.4
0099:  MOVF   20,W
009A:  BSF    03.5
009B:  MOVWF  07
009C:  NOP
009D:  BCF    03.5
009E:  BCF    07.3
009F:  BCF    20.3
00A0:  MOVF   20,W
00A1:  BSF    03.5
00A2:  MOVWF  07
....................    I2C_Write(AK_W); 
00A3:  MOVLW  38
00A4:  BCF    03.5
00A5:  MOVWF  2F
00A6:  CALL   041
....................    I2C_write(0x2A); 
00A7:  MOVLW  2A
00A8:  MOVWF  2F
00A9:  CALL   041
....................    I2C_write(0x01); //nastavi aktivni stav 
00AA:  MOVLW  01
00AB:  MOVWF  2F
00AC:  CALL   041
....................   
....................    i2c_stop();  
00AD:  BCF    20.4
00AE:  MOVF   20,W
00AF:  BSF    03.5
00B0:  MOVWF  07
00B1:  NOP
00B2:  BCF    03.5
00B3:  BSF    20.3
00B4:  MOVF   20,W
00B5:  BSF    03.5
00B6:  MOVWF  07
00B7:  BCF    03.5
00B8:  BTFSS  07.3
00B9:  GOTO   0B8
00BA:  NOP
00BB:  GOTO   0BC
00BC:  NOP
00BD:  BSF    20.4
00BE:  MOVF   20,W
00BF:  BSF    03.5
00C0:  MOVWF  07
00C1:  NOP
.................... } 
00C2:  BCF    03.5
00C3:  BCF    0A.3
00C4:  BCF    0A.4
00C5:  GOTO   3FF (RETURN)
....................  
....................  
.................... int16 akR (int8 H, int8 L) //vycitani hodnot z akcelerometru 
.................... { 
*
0175:  CLRF   2B
0176:  CLRF   2C
.................... unsigned int8 XL=0,XH=0; 
.................... signed int16 x; 
....................  
....................    i2c_start(); 
0177:  BSF    20.4
0178:  MOVF   20,W
0179:  BSF    03.5
017A:  MOVWF  07
017B:  NOP
017C:  BCF    03.5
017D:  BSF    20.3
017E:  MOVF   20,W
017F:  BSF    03.5
0180:  MOVWF  07
0181:  NOP
0182:  BCF    03.5
0183:  BCF    07.4
0184:  BCF    20.4
0185:  MOVF   20,W
0186:  BSF    03.5
0187:  MOVWF  07
0188:  NOP
0189:  BCF    03.5
018A:  BCF    07.3
018B:  BCF    20.3
018C:  MOVF   20,W
018D:  BSF    03.5
018E:  MOVWF  07
....................    I2C_Write(AK_W); 
018F:  MOVLW  38
0190:  BCF    03.5
0191:  MOVWF  2F
0192:  CALL   041
....................    I2C_write(H); 
0193:  MOVF   29,W
0194:  MOVWF  2F
0195:  CALL   041
....................    i2c_start(); 
0196:  BSF    20.4
0197:  MOVF   20,W
0198:  BSF    03.5
0199:  MOVWF  07
019A:  NOP
019B:  BCF    03.5
019C:  BSF    20.3
019D:  MOVF   20,W
019E:  BSF    03.5
019F:  MOVWF  07
01A0:  NOP
01A1:  BCF    03.5
01A2:  BTFSS  07.3
01A3:  GOTO   1A2
01A4:  BCF    07.4
01A5:  BCF    20.4
01A6:  MOVF   20,W
01A7:  BSF    03.5
01A8:  MOVWF  07
01A9:  NOP
01AA:  BCF    03.5
01AB:  BCF    07.3
01AC:  BCF    20.3
01AD:  MOVF   20,W
01AE:  BSF    03.5
01AF:  MOVWF  07
....................    I2C_Write(AK_R); 
01B0:  MOVLW  39
01B1:  BCF    03.5
01B2:  MOVWF  2F
01B3:  CALL   041
....................    XH=i2c_read(0); 
01B4:  CLRF   77
01B5:  CALL   130
01B6:  MOVF   78,W
01B7:  MOVWF  2C
....................    i2c_stop();  
01B8:  BCF    20.4
01B9:  MOVF   20,W
01BA:  BSF    03.5
01BB:  MOVWF  07
01BC:  NOP
01BD:  BCF    03.5
01BE:  BSF    20.3
01BF:  MOVF   20,W
01C0:  BSF    03.5
01C1:  MOVWF  07
01C2:  BCF    03.5
01C3:  BTFSS  07.3
01C4:  GOTO   1C3
01C5:  NOP
01C6:  GOTO   1C7
01C7:  NOP
01C8:  BSF    20.4
01C9:  MOVF   20,W
01CA:  BSF    03.5
01CB:  MOVWF  07
01CC:  NOP
....................  
....................    i2c_start(); 
01CD:  BCF    03.5
01CE:  BSF    20.4
01CF:  MOVF   20,W
01D0:  BSF    03.5
01D1:  MOVWF  07
01D2:  NOP
01D3:  BCF    03.5
01D4:  BSF    20.3
01D5:  MOVF   20,W
01D6:  BSF    03.5
01D7:  MOVWF  07
01D8:  NOP
01D9:  BCF    03.5
01DA:  BCF    07.4
01DB:  BCF    20.4
01DC:  MOVF   20,W
01DD:  BSF    03.5
01DE:  MOVWF  07
01DF:  NOP
01E0:  BCF    03.5
01E1:  BCF    07.3
01E2:  BCF    20.3
01E3:  MOVF   20,W
01E4:  BSF    03.5
01E5:  MOVWF  07
....................    I2C_Write(AK_W); 
01E6:  MOVLW  38
01E7:  BCF    03.5
01E8:  MOVWF  2F
01E9:  CALL   041
....................    I2C_write(L); 
01EA:  MOVF   2A,W
01EB:  MOVWF  2F
01EC:  CALL   041
....................    i2c_start(); 
01ED:  BSF    20.4
01EE:  MOVF   20,W
01EF:  BSF    03.5
01F0:  MOVWF  07
01F1:  NOP
01F2:  BCF    03.5
01F3:  BSF    20.3
01F4:  MOVF   20,W
01F5:  BSF    03.5
01F6:  MOVWF  07
01F7:  NOP
01F8:  BCF    03.5
01F9:  BTFSS  07.3
01FA:  GOTO   1F9
01FB:  BCF    07.4
01FC:  BCF    20.4
01FD:  MOVF   20,W
01FE:  BSF    03.5
01FF:  MOVWF  07
0200:  NOP
0201:  BCF    03.5
0202:  BCF    07.3
0203:  BCF    20.3
0204:  MOVF   20,W
0205:  BSF    03.5
0206:  MOVWF  07
....................    I2C_Write(AK_R); 
0207:  MOVLW  39
0208:  BCF    03.5
0209:  MOVWF  2F
020A:  CALL   041
....................    XL=i2c_read(0); 
020B:  CLRF   77
020C:  CALL   130
020D:  MOVF   78,W
020E:  MOVWF  2B
....................    i2c_stop(); 
020F:  BCF    20.4
0210:  MOVF   20,W
0211:  BSF    03.5
0212:  MOVWF  07
0213:  NOP
0214:  BCF    03.5
0215:  BSF    20.3
0216:  MOVF   20,W
0217:  BSF    03.5
0218:  MOVWF  07
0219:  BCF    03.5
021A:  BTFSS  07.3
021B:  GOTO   21A
021C:  NOP
021D:  GOTO   21E
021E:  NOP
021F:  BSF    20.4
0220:  MOVF   20,W
0221:  BSF    03.5
0222:  MOVWF  07
0223:  NOP
....................     
....................    x = (((unsigned int16) XH << 8) + XL ); //prevod na 16bit hodnotu 
0224:  BCF    03.5
0225:  CLRF   30
0226:  MOVF   2C,W
0227:  MOVWF  2F
0228:  MOVWF  30
0229:  CLRF   2F
022A:  MOVF   2B,W
022B:  ADDWF  2F,W
022C:  MOVWF  78
022D:  MOVF   30,W
022E:  MOVWF  7A
022F:  BTFSC  03.0
0230:  INCF   7A,F
0231:  MOVF   78,W
0232:  MOVWF  2D
0233:  MOVF   7A,W
0234:  MOVWF  2E
....................    x=x/4; 
0235:  MOVF   2E,W
0236:  MOVWF  30
0237:  MOVF   2D,W
0238:  MOVWF  2F
0239:  CLRF   32
023A:  MOVLW  04
023B:  MOVWF  31
*
0279:  MOVF   79,W
027A:  MOVWF  2E
027B:  MOVF   78,W
027C:  MOVWF  2D
....................     
....................    return x; 
027D:  MOVF   2D,W
027E:  MOVWF  78
027F:  MOVF   2E,W
0280:  MOVWF  79
.................... } 
0281:  RETURN
....................  
.................... int16 akX (void) 
.................... { 
.................... int16 X; 
.................... X= akR (AK_XH, AK_XL); 
0282:  MOVLW  01
0283:  MOVWF  29
0284:  MOVLW  02
0285:  MOVWF  2A
0286:  CALL   175
0287:  MOVF   79,W
0288:  MOVWF  28
0289:  MOVF   78,W
028A:  MOVWF  27
.................... return X; 
028B:  MOVF   27,W
028C:  MOVWF  78
028D:  MOVF   28,W
028E:  MOVWF  79
.................... } 
028F:  BCF    0A.3
0290:  BCF    0A.4
0291:  GOTO   40E (RETURN)
....................  
.................... int16 akY (void) 
.................... { 
.................... int16 Y; 
.................... Y= akR (AK_YH, AK_YL); 
0292:  MOVLW  03
0293:  MOVWF  29
0294:  MOVLW  04
0295:  MOVWF  2A
0296:  CALL   175
0297:  MOVF   79,W
0298:  MOVWF  28
0299:  MOVF   78,W
029A:  MOVWF  27
.................... return Y; 
029B:  MOVF   27,W
029C:  MOVWF  78
029D:  MOVF   28,W
029E:  MOVWF  79
.................... } 
029F:  BCF    0A.3
02A0:  BCF    0A.4
02A1:  GOTO   413 (RETURN)
....................  
.................... int16 akZ (void) 
.................... { 
.................... int16 Z; 
.................... Z= akR (AK_ZH, AK_ZL); 
02A2:  MOVLW  05
02A3:  MOVWF  29
02A4:  MOVLW  06
02A5:  MOVWF  2A
02A6:  CALL   175
02A7:  MOVF   79,W
02A8:  MOVWF  28
02A9:  MOVF   78,W
02AA:  MOVWF  27
.................... return Z; 
02AB:  MOVF   27,W
02AC:  MOVWF  78
02AD:  MOVF   28,W
02AE:  MOVWF  79
.................... } 
02AF:  BCF    0A.3
02B0:  BCF    0A.4
02B1:  GOTO   418 (RETURN)
....................  
....................  
....................  
....................  
....................  
.................... signed int16 X, Y, Z; //promenne pro akcelerometr 
....................  
.................... void main() 
.................... { 
*
0397:  CLRF   04
0398:  BCF    03.7
0399:  MOVLW  1F
039A:  ANDWF  03,F
039B:  MOVLW  71
039C:  BSF    03.5
039D:  MOVWF  0F
039E:  MOVF   0F,W
039F:  BCF    03.5
03A0:  BCF    20.7
03A1:  MOVF   20,W
03A2:  BSF    03.5
03A3:  MOVWF  07
03A4:  BCF    03.5
03A5:  BSF    07.7
03A6:  BSF    03.5
03A7:  BSF    03.6
03A8:  MOVF   09,W
03A9:  ANDLW  C0
03AA:  MOVWF  09
03AB:  BCF    03.6
03AC:  BCF    1F.4
03AD:  BCF    1F.5
03AE:  MOVLW  00
03AF:  BSF    03.6
03B0:  MOVWF  08
03B1:  BCF    03.5
03B2:  CLRF   07
03B3:  CLRF   08
03B4:  CLRF   09
....................    setup_adc_ports(NO_ANALOGS|VSS_VDD); 
*
03B8:  BSF    03.5
03B9:  BSF    03.6
03BA:  MOVF   09,W
03BB:  ANDLW  C0
03BC:  MOVWF  09
03BD:  BCF    03.6
03BE:  BCF    1F.4
03BF:  BCF    1F.5
03C0:  MOVLW  00
03C1:  BSF    03.6
03C2:  MOVWF  08
....................    setup_adc(ADC_CLOCK_DIV_2); 
03C3:  BCF    03.5
03C4:  BCF    03.6
03C5:  BCF    1F.6
03C6:  BCF    1F.7
03C7:  BSF    03.5
03C8:  BCF    1F.7
03C9:  BCF    03.5
03CA:  BSF    1F.0
....................    setup_spi(SPI_SS_DISABLED); 
03CB:  BCF    14.5
03CC:  BCF    20.5
03CD:  MOVF   20,W
03CE:  BSF    03.5
03CF:  MOVWF  07
03D0:  BCF    03.5
03D1:  BSF    20.4
03D2:  MOVF   20,W
03D3:  BSF    03.5
03D4:  MOVWF  07
03D5:  BCF    03.5
03D6:  BCF    20.3
03D7:  MOVF   20,W
03D8:  BSF    03.5
03D9:  MOVWF  07
03DA:  MOVLW  01
03DB:  BCF    03.5
03DC:  MOVWF  14
03DD:  MOVLW  00
03DE:  BSF    03.5
03DF:  MOVWF  14
....................    setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); 
03E0:  MOVF   01,W
03E1:  ANDLW  C7
03E2:  IORLW  08
03E3:  MOVWF  01
....................    setup_timer_1(T1_DISABLED); 
03E4:  BCF    03.5
03E5:  CLRF   10
....................    setup_timer_2(T2_DISABLED,0,1); 
03E6:  MOVLW  00
03E7:  MOVWF  78
03E8:  MOVWF  12
03E9:  MOVLW  00
03EA:  BSF    03.5
03EB:  MOVWF  12
....................    setup_ccp1(CCP_OFF); 
03EC:  BCF    03.5
03ED:  BSF    20.2
03EE:  MOVF   20,W
03EF:  BSF    03.5
03F0:  MOVWF  07
03F1:  BCF    03.5
03F2:  CLRF   17
03F3:  BSF    03.5
03F4:  CLRF   1B
03F5:  CLRF   1C
03F6:  MOVLW  01
03F7:  MOVWF  1D
....................    setup_comparator(NC_NC_NC_NC);   
03F8:  BCF    03.5
03F9:  BSF    03.6
03FA:  CLRF   07
03FB:  CLRF   08
03FC:  CLRF   09
....................  
....................    setAK(); //nastaveni akcelerometru 
03FD:  BCF    03.6
03FE:  GOTO   08B
....................  
....................    printf("Akcelerometr IMU01A - MMA8451Q \r\n",); 
03FF:  MOVLW  04
0400:  BSF    03.6
0401:  MOVWF  0D
0402:  MOVLW  00
0403:  MOVWF  0F
0404:  BCF    03.6
0405:  CALL   0EA
....................    printf("(c) MLAB JACHO 2013  \r\n",);  
0406:  MOVLW  15
0407:  BSF    03.6
0408:  MOVWF  0D
0409:  MOVLW  00
040A:  MOVWF  0F
040B:  BCF    03.6
040C:  CALL   0EA
....................    
....................   while(TRUE) 
....................       {  
....................          X=akX (); 
040D:  GOTO   282
040E:  MOVF   79,W
040F:  MOVWF  22
0410:  MOVF   78,W
0411:  MOVWF  21
....................          Y=akY (); 
0412:  GOTO   292
0413:  MOVF   79,W
0414:  MOVWF  24
0415:  MOVF   78,W
0416:  MOVWF  23
....................          Z=akZ (); 
0417:  GOTO   2A2
0418:  MOVF   79,W
0419:  MOVWF  26
041A:  MOVF   78,W
041B:  MOVWF  25
....................          printf("Namerene hodnoty: \r\n",); 
041C:  MOVLW  21
041D:  BSF    03.6
041E:  MOVWF  0D
041F:  MOVLW  00
0420:  MOVWF  0F
0421:  BCF    03.6
0422:  CALL   0EA
....................          printf("Osa X: %Ld \r\n",X); 
0423:  MOVLW  2C
0424:  BSF    03.6
0425:  MOVWF  0D
0426:  MOVLW  00
0427:  MOVWF  0F
0428:  BCF    03.0
0429:  MOVLW  07
042A:  BCF    03.6
042B:  MOVWF  27
042C:  CALL   2B2
042D:  MOVLW  10
042E:  MOVWF  04
042F:  MOVF   22,W
0430:  MOVWF  28
0431:  MOVF   21,W
0432:  MOVWF  27
0433:  CALL   301
0434:  MOVLW  20
0435:  MOVWF  30
0436:  CALL   0C6
0437:  MOVLW  0D
0438:  MOVWF  30
0439:  CALL   0C6
043A:  MOVLW  0A
043B:  MOVWF  30
043C:  CALL   0C6
....................          printf("Osa Y: %Ld \r\n",Y); 
043D:  MOVLW  33
043E:  BSF    03.6
043F:  MOVWF  0D
0440:  MOVLW  00
0441:  MOVWF  0F
0442:  BCF    03.0
0443:  MOVLW  07
0444:  BCF    03.6
0445:  MOVWF  27
0446:  CALL   2B2
0447:  MOVLW  10
0448:  MOVWF  04
0449:  MOVF   24,W
044A:  MOVWF  28
044B:  MOVF   23,W
044C:  MOVWF  27
044D:  CALL   301
044E:  MOVLW  20
044F:  MOVWF  30
0450:  CALL   0C6
0451:  MOVLW  0D
0452:  MOVWF  30
0453:  CALL   0C6
0454:  MOVLW  0A
0455:  MOVWF  30
0456:  CALL   0C6
....................          printf("Osa Z: %Ld \r\n",Z); 
0457:  MOVLW  3A
0458:  BSF    03.6
0459:  MOVWF  0D
045A:  MOVLW  00
045B:  MOVWF  0F
045C:  BCF    03.0
045D:  MOVLW  07
045E:  BCF    03.6
045F:  MOVWF  27
0460:  CALL   2B2
0461:  MOVLW  10
0462:  MOVWF  04
0463:  MOVF   26,W
0464:  MOVWF  28
0465:  MOVF   25,W
0466:  MOVWF  27
0467:  CALL   301
0468:  MOVLW  20
0469:  MOVWF  30
046A:  CALL   0C6
046B:  MOVLW  0D
046C:  MOVWF  30
046D:  CALL   0C6
046E:  MOVLW  0A
046F:  MOVWF  30
0470:  CALL   0C6
....................          delay_ms (2000); 
0471:  MOVLW  08
0472:  MOVWF  27
0473:  MOVLW  FA
0474:  MOVWF  28
0475:  GOTO   381
0476:  DECFSZ 27,F
0477:  GOTO   473
....................    
....................       } 
0478:  GOTO   40D
.................... } 
....................  
0479:  SLEEP

Configuration Fuses:
   Word  1: 2CF5   INTRC NOWDT NOPUT MCLR NOPROTECT NOCPD NOBROWNOUT IESO FCMEN NOLVP NODEBUG
   Word  2: 3FFF   NOWRT BORV40