/*! \file timer.c \brief System Timer function library. */
//*****************************************************************************
//
// File Name    : 'timer.c'
// Title                : System Timer function library
// Author               : Pascal Stang - Copyright (C) 2000-2002
// Created              : 11/22/2000
// Revised              : 07/09/2003
// Version              : 1.1
// Target MCU   : Atmel AVR Series
// Editor Tabs  : 4
//
// This code is distributed under the GNU Public License
//              which can be found at http://www.gnu.org/licenses/gpl.txt
//
//*****************************************************************************

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>

#include "global.h"
#include "timer.h"

#include "rprintf.h"

// Program ROM constants
// the prescale division values stored in order of timer control register index
// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
// the prescale division values stored in order of timer control register index
// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};

// Global variables
// time registers
volatile unsigned long TimerPauseReg;
volatile unsigned long Timer0Reg0;
volatile unsigned long Timer2Reg0;

typedef void (*voidFuncPtr)(void);
volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];

// delay for a minimum of <us> microseconds 
// the time resolution is dependent on the time the loop takes 
// e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us 
void delay_us(unsigned short time_us) 
{
        unsigned short delay_loops;
        register unsigned short i;

        delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) 

        // one loop takes 5 cpu cycles 
        for (i=0; i < delay_loops; i++) {};
}
/*
void delay_ms(unsigned char time_ms)
{
        unsigned short delay_count = F_CPU / 4000;

        unsigned short cnt;
        asm volatile ("\n"
                  "L_dl1%=:\n\t"
                  "mov %A0, %A2\n\t"
                  "mov %B0, %B2\n"
                  "L_dl2%=:\n\t"
                  "sbiw %A0, 1\n\t"
                  "brne L_dl2%=\n\t"
                  "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
                  :"r"(time_ms), "r"((unsigned short) (delay_count))
        );
}
*/
void timerInit(void)
{
        u08 intNum;
        // detach all user functions from interrupts
        for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
                timerDetach(intNum);

        // initialize all timers
        timer0Init();
        timer1Init();
        #ifdef TCNT2    // support timer2 only if it exists
        timer2Init();
        #endif
        // enable interrupts
        sei();
}

void timer0Init()
{
        // initialize timer 0
        timer0SetPrescaler( TIMER0PRESCALE );   // set prescaler
        outb(TCNT0, 0);                                                 // reset TCNT0
        sbi(TIMSK, TOIE0);                                              // enable TCNT0 overflow interrupt

        timer0ClearOverflowCount();                             // initialize time registers
}

void timer1Init(void)
{
        // initialize timer 1
        timer1SetPrescaler( TIMER1PRESCALE );   // set prescaler
        outb(TCNT1H, 0);                                                // reset TCNT1
        outb(TCNT1L, 0);
        sbi(TIMSK, TOIE1);                                              // enable TCNT1 overflow
}

#ifdef TCNT2    // support timer2 only if it exists
void timer2Init(void)
{
        // initialize timer 2
        timer2SetPrescaler( TIMER2PRESCALE );   // set prescaler
        outb(TCNT2, 0);                                                 // reset TCNT2
        sbi(TIMSK, TOIE2);                                              // enable TCNT2 overflow

        timer2ClearOverflowCount();                             // initialize time registers
}
#endif

void timer0SetPrescaler(u08 prescale)
{
        // set prescaler on timer 0
        outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
}

void timer1SetPrescaler(u08 prescale)
{
        // set prescaler on timer 1
        outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
}

#ifdef TCNT2    // support timer2 only if it exists
void timer2SetPrescaler(u08 prescale)
{
        // set prescaler on timer 2
        outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
}
#endif

u16 timer0GetPrescaler(void)
{
        // get the current prescaler setting
        return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
}

u16 timer1GetPrescaler(void)
{
        // get the current prescaler setting
        return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
}

#ifdef TCNT2    // support timer2 only if it exists
u16 timer2GetPrescaler(void)
{
        //TODO: can we assume for all 3-timer AVR processors,
        // that timer2 is the RTC timer?

        // get the current prescaler setting
        return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
}
#endif

void timerAttach(u08 interruptNum, void (*userFunc)(void) )
{
        // make sure the interrupt number is within bounds
        if(interruptNum < TIMER_NUM_INTERRUPTS)
        {
                // set the interrupt function to run
                // the supplied user's function
                TimerIntFunc[interruptNum] = userFunc;
        }
}

void timerDetach(u08 interruptNum)
{
        // make sure the interrupt number is within bounds
        if(interruptNum < TIMER_NUM_INTERRUPTS)
        {
                // set the interrupt function to run nothing
                TimerIntFunc[interruptNum] = 0;
        }
}
/*
u32 timerMsToTics(u16 ms)
{
        // calculate the prescaler division rate
        u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
        // calculate the number of timer tics in x milliseconds
        return (ms*(F_CPU/(prescaleDiv*256)))/1000;
}

u16 timerTicsToMs(u32 tics)
{
        // calculate the prescaler division rate
        u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
        // calculate the number of milliseconds in x timer tics
        return (tics*1000*(prescaleDiv*256))/F_CPU;
}
*/
void timerPause(unsigned short pause_ms)
{
        // pauses for exactly <pause_ms> number of milliseconds
        u08 timerThres;
        u32 ticRateHz;
        u32 pause;

        // capture current pause timer value
        timerThres = inb(TCNT0);
        // reset pause timer overflow count
        TimerPauseReg = 0;
        // calculate delay for [pause_ms] milliseconds
        // prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))
        ticRateHz = F_CPU/timer0GetPrescaler();
        // precision management
        // prevent overflow and precision underflow
        //      -could add more conditions to improve accuracy
        if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
                pause = (pause_ms*ticRateHz)/1000;
        else
                pause = pause_ms*(ticRateHz/1000);

        // loop until time expires
        while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )
        {
                if( TimerPauseReg < (pause>>8));
                {
                        // save power by idling the processor
                        set_sleep_mode(SLEEP_MODE_IDLE);
                        sleep_mode();
                }
        }

        /* old inaccurate code, for reference
        
        // calculate delay for [pause_ms] milliseconds
        u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
        u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;
        
        TimerPauseReg = 0;
        while(TimerPauseReg < pause);

        */
}

void timer0ClearOverflowCount(void)
{
        // clear the timer overflow counter registers
        Timer0Reg0 = 0; // initialize time registers
}

long timer0GetOverflowCount(void)
{
        // return the current timer overflow count
        // (this is since the last timer0ClearOverflowCount() command was called)
        return Timer0Reg0;
}

#ifdef TCNT2    // support timer2 only if it exists
void timer2ClearOverflowCount(void)
{
        // clear the timer overflow counter registers
        Timer2Reg0 = 0; // initialize time registers
}

long timer2GetOverflowCount(void)
{
        // return the current timer overflow count
        // (this is since the last timer2ClearOverflowCount() command was called)
        return Timer2Reg0;
}
#endif

void timer1PWMInit(u08 bitRes)
{
        // configures timer1 for use with PWM output
        // on OC1A and OC1B pins

        // enable timer1 as 8,9,10bit PWM
        if(bitRes == 9)
        {       // 9bit mode
                sbi(TCCR1A,PWM11);
                cbi(TCCR1A,PWM10);
        }
        else if( bitRes == 10 )
        {       // 10bit mode
                sbi(TCCR1A,PWM11);
                sbi(TCCR1A,PWM10);
        }
        else
        {       // default 8bit mode
                cbi(TCCR1A,PWM11);
                sbi(TCCR1A,PWM10);
        }

        // clear output compare value A
        outb(OCR1AH, 0);
        outb(OCR1AL, 0);
        // clear output compare value B
        outb(OCR1BH, 0);
        outb(OCR1BL, 0);
}

#ifdef WGM10
// include support for arbitrary top-count PWM
// on new AVR processors that support it
void timer1PWMInitICR(u16 topcount)
{
        // set PWM mode with ICR top-count
        cbi(TCCR1A,WGM10);
        sbi(TCCR1A,WGM11);
        sbi(TCCR1B,WGM12);
        sbi(TCCR1B,WGM13);
        
        // set top count value
        ICR1 = topcount;
        
        // clear output compare value A
        OCR1A = 0;
        // clear output compare value B
        OCR1B = 0;

}
#endif

void timer1PWMOff(void)
{
        // turn off timer1 PWM mode
        cbi(TCCR1A,PWM11);
        cbi(TCCR1A,PWM10);
        // set PWM1A/B (OutputCompare action) to none
        timer1PWMAOff();
        timer1PWMBOff();
}

void timer1PWMAOn(void)
{
        // turn on channel A (OC1A) PWM output
        // set OC1A as non-inverted PWM
        sbi(TCCR1A,COM1A1);
        cbi(TCCR1A,COM1A0);
}

void timer1PWMBOn(void)
{
        // turn on channel B (OC1B) PWM output
        // set OC1B as non-inverted PWM
        sbi(TCCR1A,COM1B1);
        cbi(TCCR1A,COM1B0);
}

void timer1PWMAOff(void)
{
        // turn off channel A (OC1A) PWM output
        // set OC1A (OutputCompare action) to none
        cbi(TCCR1A,COM1A1);
        cbi(TCCR1A,COM1A0);
}

void timer1PWMBOff(void)
{
        // turn off channel B (OC1B) PWM output
        // set OC1B (OutputCompare action) to none
        cbi(TCCR1A,COM1B1);
        cbi(TCCR1A,COM1B0);
}

void timer1PWMASet(u16 pwmDuty)
{
        // set PWM (output compare) duty for channel A
        // this PWM output is generated on OC1A pin
        // NOTE:        pwmDuty should be in the range 0-255 for 8bit PWM
        //                      pwmDuty should be in the range 0-511 for 9bit PWM
        //                      pwmDuty should be in the range 0-1023 for 10bit PWM
        //outp( (pwmDuty>>8), OCR1AH);          // set the high 8bits of OCR1A
        //outp( (pwmDuty&0x00FF), OCR1AL);      // set the low 8bits of OCR1A
        OCR1A = pwmDuty;
}

void timer1PWMBSet(u16 pwmDuty)
{
        // set PWM (output compare) duty for channel B
        // this PWM output is generated on OC1B pin
        // NOTE:        pwmDuty should be in the range 0-255 for 8bit PWM
        //                      pwmDuty should be in the range 0-511 for 9bit PWM
        //                      pwmDuty should be in the range 0-1023 for 10bit PWM
        //outp( (pwmDuty>>8), OCR1BH);          // set the high 8bits of OCR1B
        //outp( (pwmDuty&0x00FF), OCR1BL);      // set the low 8bits of OCR1B
        OCR1B = pwmDuty;
}

//! Interrupt handler for tcnt0 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
{
        Timer0Reg0++;                   // increment low-order counter

        // increment pause counter
        TimerPauseReg++;

        // if a user function is defined, execute it too
        if(TimerIntFunc[TIMER0OVERFLOW_INT])
                TimerIntFunc[TIMER0OVERFLOW_INT]();
}

//! Interrupt handler for tcnt1 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER1OVERFLOW_INT])
                TimerIntFunc[TIMER1OVERFLOW_INT]();
}

#ifdef TCNT2    // support timer2 only if it exists
//! Interrupt handler for tcnt2 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
{
        Timer2Reg0++;                   // increment low-order counter

        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER2OVERFLOW_INT])
                TimerIntFunc[TIMER2OVERFLOW_INT]();
}
#endif

#ifdef OCR0
// include support for Output Compare 0 for new AVR processors that support it
//! Interrupt handler for OutputCompare0 match (OC0) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
                TimerIntFunc[TIMER0OUTCOMPARE_INT]();
}
#endif

//! Interrupt handler for CutputCompare1A match (OC1A) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
                TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
}

//! Interrupt handler for OutputCompare1B match (OC1B) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
                TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
}

//! Interrupt handler for InputCapture1 (IC1) interrupt
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
                TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
}

//! Interrupt handler for OutputCompare2 match (OC2) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
{
        // if a user function is defined, execute it
        if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
                TimerIntFunc[TIMER2OUTCOMPARE_INT]();
}