| Line No. | Rev | Author | Line |
|---|---|---|---|
| 1 | 32 | kaklik | /***************************************************************************** |
| 2 | * |
||
| 3 | * Simple SRAM Dynamic Memory Allocation |
||
| 4 | * |
||
| 5 | ***************************************************************************** |
||
| 6 | * FileName: sralloc.c |
||
| 7 | * Dependencies: |
||
| 8 | * Processor: PIC18F with CAN |
||
| 9 | * Compiler: C18 02.20.00 or higher |
||
| 10 | * Linker: MPLINK 03.40.00 or higher |
||
| 11 | * Company: Microchip Technology Incorporated |
||
| 12 | * |
||
| 13 | * Software License Agreement |
||
| 14 | * |
||
| 15 | * The software supplied herewith by Microchip Technology Incorporated |
||
| 16 | * (the "Company") is intended and supplied to you, the Company's |
||
| 17 | * customer, for use solely and exclusively with products manufactured |
||
| 18 | * by the Company. |
||
| 19 | * |
||
| 20 | * The software is owned by the Company and/or its supplier, and is |
||
| 21 | * protected under applicable copyright laws. All rights are reserved. |
||
| 22 | * Any use in violation of the foregoing restrictions may subject the |
||
| 23 | * user to criminal sanctions under applicable laws, as well as to |
||
| 24 | * civil liability for the breach of the terms and conditions of this |
||
| 25 | * license. |
||
| 26 | * |
||
| 27 | * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, |
||
| 28 | * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED |
||
| 29 | * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
||
| 30 | * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, |
||
| 31 | * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR |
||
| 32 | * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. |
||
| 33 | * |
||
| 34 | * |
||
| 35 | * This is a simple dynamic memory allocation module. The following are the |
||
| 36 | * supported services: |
||
| 37 | * |
||
| 38 | * unsigned char * NEAR SRAMalloc(NEAR unsigned char nBytes) |
||
| 39 | * void SRAMfree(unsigned char * NEAR pSRAM) |
||
| 40 | * void SRAMInitHeap(void) |
||
| 41 | * |
||
| 42 | * This version of the dynamic memory allocation limits the segment size |
||
| 43 | * to 126 bytes. This is specifically designed such to enable better |
||
| 44 | * performance by limiting pointer manipulation. |
||
| 45 | * |
||
| 46 | * |
||
| 47 | * How it works: |
||
| 48 | * The model is based on a simple form of a linked list. A block of memory |
||
| 49 | * refered to as the dynamic heap is split into segments. Each segment |
||
| 50 | * has a single byte header that references the next segment in the list |
||
| 51 | * as well as indicating whether the segment is allocated. Consiquently |
||
| 52 | * the reference implicitly identifies the length of the segment. |
||
| 53 | * |
||
| 54 | * This method also enables the possibility of allowing a large number |
||
| 55 | * of memory allocations. The maximum is limited by the defined heap size. |
||
| 56 | * |
||
| 57 | * SRAMalloc() is used to split or merge segments to be allocated. |
||
| 58 | * SRAMfree() is used to release segments. |
||
| 59 | * |
||
| 60 | * Example: |
||
| 61 | * ---------- |
||
| 62 | * | 0x7F | 0x200 Header Seg1 |
||
| 63 | * | | |
||
| 64 | * | | |
||
| 65 | * | | |
||
| 66 | * | | |
||
| 67 | * | | |
||
| 68 | * | | |
||
| 69 | * | 0x89 | 0x27F Header Seg2 (allocated) |
||
| 70 | * | | |
||
| 71 | * | | |
||
| 72 | * | 0x77 | 0x288 Header Seg3 |
||
| 73 | * | | |
||
| 74 | * | | |
||
| 75 | * | | |
||
| 76 | * | | |
||
| 77 | * | | |
||
| 78 | * | | |
||
| 79 | * | | |
||
| 80 | * | 0x00 | 0x2FF Tail |
||
| 81 | * ---------- |
||
| 82 | * |
||
| 83 | * |
||
| 84 | * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 |
||
| 85 | * |
||
| 86 | * Alloc ------------- reference to next Header -------------- |
||
| 87 | * |
||
| 88 | * |
||
| 89 | * Recomendations: |
||
| 90 | * Although this model will allow dynamic allocation down to a single byte, |
||
| 91 | * doing so sacrifices performance. With more segments within the heap, more |
||
| 92 | * time is required to attempt to allocate memory. Plus every segment requires |
||
| 93 | * a header byte; therefore, smaller segments require more memory. There is |
||
| 94 | * also the possibility of fragmentation, which could ultimately doom an |
||
| 95 | * application by reducing the largest allocatable block of memory. Thus the |
||
| 96 | * recomendation is to allocate at least 8 bytes of memory. |
||
| 97 | * |
||
| 98 | * |
||
| 99 | * |
||
| 100 | * Author Date Version Comment |
||
| 101 | *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
||
| 102 | * Ross Fosler 05/25/03 v1.03 ... First release |
||
| 103 | * |
||
| 104 | *****************************************************************************/ |
||
| 105 | |||
| 106 | // Summary: A macro used to enable nead-model RAM addressing |
||
| 107 | // Description: By uncommenting the NEAR_MODEL macro, the user can enable near-model RAM addressing when using dynamic FSFILE object |
||
| 108 | // allocation with PIC18 |
||
| 109 | #define NEAR_MODEL |
||
| 110 | |||
| 111 | // Summary: A macro used to define the heap size for PIC18 |
||
| 112 | // Description: When using dynamic FSFILE object allocation with PIC18, the MAX_HEAP_SIZE will allow the user to specify the size |
||
| 113 | // of the dynamic heap to use |
||
| 114 | #define MAX_HEAP_SIZE 0x100 |
||
| 115 | |||
| 116 | |||
| 117 | |||
| 118 | #if defined(NEAR_MODEL) |
||
| 119 | // Summary: A macro used to specify the near-model action |
||
| 120 | // Description: Functions can be declared using the NEAR macro. If the NEAR_MODEL macro is uncommented, the NEAR macro will be ignored. |
||
| 121 | #define NEAR near |
||
| 122 | #else |
||
| 123 | #define NEAR |
||
| 124 | #endif |
||
| 125 | |||
| 126 | // Description: A macro used to determine the maximum size of a dynamic memory segment. |
||
| 127 | #define _MAX_SEGMENT_SIZE 0x7F |
||
| 128 | // Description: A macro used to determine the heap initialization size. |
||
| 129 | #define _MAX_HEAP_SIZE MAX_HEAP_SIZE-1 |
||
| 130 | |||
| 131 | |||
| 132 | |||
| 133 | // Summary: The segment header data type |
||
| 134 | // Description: The SALLOC union allows the PIC18 dynamic memory allocation algorithm to perform bitwise accesses on segment headers. |
||
| 135 | typedef union _SALLOC |
||
| 136 | { |
||
| 137 | unsigned char byte; |
||
| 138 | struct _BITS |
||
| 139 | { |
||
| 140 | unsigned count:7; |
||
| 141 | unsigned alloc:1; |
||
| 142 | }bits; |
||
| 143 | }SALLOC; |
||
| 144 | |||
| 145 | |||
| 146 | |||
| 147 | |||
| 148 | |||
| 149 | /********************************************************************* |
||
| 150 | * Reserve the memory heap |
||
| 151 | ********************************************************************/ |
||
| 152 | #pragma udata _SRAM_ALLOC_HEAP |
||
| 153 | // Summary: The PIC18 dynamic memory heap |
||
| 154 | // Description: The _uDynamicHeap array is used as a heap for PIC18 dynamic memory allocation. |
||
| 155 | unsigned char _uDynamicHeap[MAX_HEAP_SIZE]; |
||
| 156 | |||
| 157 | |||
| 158 | /********************************************************************* |
||
| 159 | * Set the memory type |
||
| 160 | ********************************************************************/ |
||
| 161 | #if defined(NEAR_MODEL) |
||
| 162 | #pragma udata access _SRAM_ALLOC |
||
| 163 | #else |
||
| 164 | #pragma udata _SRAM_ALLOC |
||
| 165 | #endif |
||
| 166 | |||
| 167 | |||
| 168 | |||
| 169 | /********************************************************************* |
||
| 170 | * Private function declarations |
||
| 171 | ********************************************************************/ |
||
| 172 | NEAR unsigned char _SRAMmerge(SALLOC * NEAR pSegA); |
||
| 173 | |||
| 174 | |||
| 175 | |||
| 176 | |||
| 177 | /********************************************************************* |
||
| 178 | * Function: unsigned char * SRAMalloc(unsigned char length) |
||
| 179 | * |
||
| 180 | * PreCondition: A memory block must be allocated in the linker, |
||
| 181 | * and the memory headers and tail must already be |
||
| 182 | * set via the function SRAMInitHeap(). |
||
| 183 | * |
||
| 184 | * Input: unsigned char nBytes - Number of bytes to allocate. |
||
| 185 | * |
||
| 186 | * Output: unsigned char * - A pointer to the requested block |
||
| 187 | * of memory. |
||
| 188 | * |
||
| 189 | * Side Effects: |
||
| 190 | * |
||
| 191 | * Overview: This functions allocates a chunk of memory from |
||
| 192 | * the heap. The maximum segment size for this |
||
| 193 | * version is 126 bytes. If the heap does not have |
||
| 194 | * an available segment of sufficient size it will |
||
| 195 | * attempt to create a segment; otherwise a NULL |
||
| 196 | * pointer is returned. If allocation is succeessful |
||
| 197 | * then a pointer to the requested block is returned. |
||
| 198 | * |
||
| 199 | * Note: The calling function must maintain the pointer |
||
| 200 | * to correctly free memory at runtime. |
||
| 201 | ********************************************************************/ |
||
| 202 | unsigned char * NEAR SRAMalloc(NEAR unsigned char nBytes) |
||
| 203 | { |
||
| 204 | SALLOC * NEAR pHeap; |
||
| 205 | SALLOC * NEAR temp; |
||
| 206 | NEAR SALLOC segHeader; |
||
| 207 | NEAR unsigned char segLen; |
||
| 208 | |||
| 209 | // Do not allow allocation above the max minus one bytes |
||
| 210 | if (nBytes > (_MAX_SEGMENT_SIZE - 1)) return (0); |
||
| 211 | |||
| 212 | // Init the pointer to the heap |
||
| 213 | pHeap = (SALLOC *)_uDynamicHeap; |
||
| 214 | |||
| 215 | while (1) |
||
| 216 | { |
||
| 217 | // Get the header of the segment |
||
| 218 | segHeader = *pHeap; |
||
| 219 | |||
| 220 | // Extract the segment length from the segment |
||
| 221 | segLen = segHeader.bits.count - 1; |
||
| 222 | |||
| 223 | // A null segment indicates the end of the table |
||
| 224 | if (segHeader.byte == 0) return (0); |
||
| 225 | |||
| 226 | // If this segment is not allocated then attempt to allocate it |
||
| 227 | if (!(segHeader.bits.alloc)) |
||
| 228 | { |
||
| 229 | // If the free segment is too small then attempt to merge |
||
| 230 | if (nBytes > segLen) |
||
| 231 | { |
||
| 232 | // If the merge fails them move on to the next segment |
||
| 233 | if (!(_SRAMmerge(pHeap))) pHeap += segHeader.bits.count; |
||
| 234 | } |
||
| 235 | else |
||
| 236 | |||
| 237 | // If the segment length matches the request then allocate the |
||
| 238 | // header and return the pointer |
||
| 239 | if (nBytes == segLen) |
||
| 240 | { |
||
| 241 | // Allocate the segment |
||
| 242 | (*pHeap).bits.alloc = 1; |
||
| 243 | |||
| 244 | // Return the pointer to the caller |
||
| 245 | return ((unsigned char *)(pHeap + 1)); |
||
| 246 | } |
||
| 247 | |||
| 248 | // Else create a new segment |
||
| 249 | else |
||
| 250 | { |
||
| 251 | // Reset the header to point to a new segment |
||
| 252 | (*pHeap).byte = nBytes + 0x81; |
||
| 253 | |||
| 254 | // Remember the pointer to the first segment |
||
| 255 | temp = pHeap + 1; |
||
| 256 | |||
| 257 | // Point to the new segment |
||
| 258 | pHeap += (nBytes + 1); |
||
| 259 | |||
| 260 | // Insert the header for the new segment |
||
| 261 | (*pHeap).byte = segLen - nBytes; |
||
| 262 | |||
| 263 | // Return the pointer to the user |
||
| 264 | return ((unsigned char *) temp); |
||
| 265 | } |
||
| 266 | } |
||
| 267 | |||
| 268 | // else set the pointer to the next segment header in the heap |
||
| 269 | else |
||
| 270 | { |
||
| 271 | pHeap += segHeader.bits.count; |
||
| 272 | } |
||
| 273 | } |
||
| 274 | } |
||
| 275 | |||
| 276 | |||
| 277 | |||
| 278 | /********************************************************************* |
||
| 279 | * Function: void SRAMfree(unsigned char * pSRAM) |
||
| 280 | * |
||
| 281 | * PreCondition: The pointer must have been returned from a |
||
| 282 | * previously allocation via SRAMalloc(). |
||
| 283 | * |
||
| 284 | * Input: unsigned char * pSRAM - pointer to the allocated |
||
| 285 | * |
||
| 286 | * Output: void |
||
| 287 | * |
||
| 288 | * Side Effects: |
||
| 289 | * |
||
| 290 | * Overview: This function de-allocates a previously allocated |
||
| 291 | * segment of memory. |
||
| 292 | * |
||
| 293 | * Note: The pointer must be a valid pointer returned from |
||
| 294 | * SRAMalloc(); otherwise, the segment may not be |
||
| 295 | * successfully de-allocated, and the heap may be |
||
| 296 | * corrupted. |
||
| 297 | ********************************************************************/ |
||
| 298 | void SRAMfree(unsigned char * NEAR pSRAM) |
||
| 299 | { |
||
| 300 | // Release the segment |
||
| 301 | (*(SALLOC *)(pSRAM - 1)).bits.alloc = 0; |
||
| 302 | } |
||
| 303 | |||
| 304 | |||
| 305 | |||
| 306 | /********************************************************************* |
||
| 307 | * Function: void SRAMInitHeap(void) |
||
| 308 | * |
||
| 309 | * PreCondition: |
||
| 310 | * |
||
| 311 | * Input: void |
||
| 312 | * |
||
| 313 | * Output: void |
||
| 314 | * |
||
| 315 | * Side Effects: |
||
| 316 | * |
||
| 317 | * Overview: This function initializes the dynamic heap. It |
||
| 318 | * inserts segment headers to maximize segment space. |
||
| 319 | * |
||
| 320 | * Note: This function must be called at least one time. |
||
| 321 | * And it could be called more times to reset the |
||
| 322 | * heap. |
||
| 323 | ********************************************************************/ |
||
| 324 | void SRAMInitHeap(void) |
||
| 325 | { |
||
| 326 | unsigned char * NEAR pHeap; |
||
| 327 | NEAR unsigned int count; |
||
| 328 | |||
| 329 | pHeap = _uDynamicHeap; |
||
| 330 | count = _MAX_HEAP_SIZE; |
||
| 331 | |||
| 332 | while (1) |
||
| 333 | { |
||
| 334 | if (count > _MAX_SEGMENT_SIZE) |
||
| 335 | { |
||
| 336 | *pHeap = _MAX_SEGMENT_SIZE; |
||
| 337 | pHeap += _MAX_SEGMENT_SIZE; |
||
| 338 | count = count - _MAX_SEGMENT_SIZE; |
||
| 339 | } |
||
| 340 | else |
||
| 341 | { |
||
| 342 | *pHeap = count; |
||
| 343 | *(pHeap + count) = 0; |
||
| 344 | return; |
||
| 345 | } |
||
| 346 | } |
||
| 347 | } |
||
| 348 | |||
| 349 | |||
| 350 | |||
| 351 | |||
| 352 | /********************************************************************* |
||
| 353 | * Function: unsigned char _SRAMmerge(SALLOC * NEAR pSegA) |
||
| 354 | * |
||
| 355 | * PreCondition: |
||
| 356 | * |
||
| 357 | * Input: SALLOC * NEAR pSegA - pointer to the first segment. |
||
| 358 | * |
||
| 359 | * Output: usnigned char - returns the length of the |
||
| 360 | * merged segment or zero if failed to merge. |
||
| 361 | * |
||
| 362 | * Side Effects: |
||
| 363 | * |
||
| 364 | * Overview: This function tries to merge adjacent segments |
||
| 365 | * that have not been allocated. The largest possible |
||
| 366 | * segment is merged if possible. |
||
| 367 | * |
||
| 368 | * Note: |
||
| 369 | ********************************************************************/ |
||
| 370 | NEAR unsigned char _SRAMmerge(SALLOC * NEAR pSegA) |
||
| 371 | { |
||
| 372 | SALLOC * NEAR pSegB; |
||
| 373 | NEAR SALLOC uSegA, uSegB, uSum; |
||
| 374 | |||
| 375 | |||
| 376 | // Init the pointer to the heap |
||
| 377 | pSegB = pSegA + (*pSegA).byte; |
||
| 378 | |||
| 379 | // Extract the headers for faster processing |
||
| 380 | uSegA = *pSegA; |
||
| 381 | uSegB = *pSegB; |
||
| 382 | |||
| 383 | // Quit if the tail has been found |
||
| 384 | if (uSegB.byte == 0) return (0); |
||
| 385 | |||
| 386 | // If either segment is allocated then do not merge |
||
| 387 | if (uSegA.bits.alloc || uSegB.bits.alloc) return (0); |
||
| 388 | |||
| 389 | // If the first segment is max then nothing to merge |
||
| 390 | if (uSegA.bits.count == _MAX_SEGMENT_SIZE) return (0); |
||
| 391 | |||
| 392 | // Get the sum of the two segments |
||
| 393 | uSum.byte = uSegA.byte + uSegB.byte; |
||
| 394 | |||
| 395 | |||
| 396 | // If the sum of the two segments are > than the largest segment |
||
| 397 | // then create a new segment equal to the max segment size and |
||
| 398 | // point to the next segments |
||
| 399 | if ((uSum.byte) > _MAX_SEGMENT_SIZE) |
||
| 400 | { |
||
| 401 | (*pSegA).byte = _MAX_SEGMENT_SIZE; |
||
| 402 | pSegA += _MAX_SEGMENT_SIZE; //(*pSeg1).byte; |
||
| 403 | pSegB += uSegB.byte; //(*pSeg2).byte ; |
||
| 404 | (*pSegA).byte = pSegB - pSegA; |
||
| 405 | |||
| 406 | return (_MAX_SEGMENT_SIZE); |
||
| 407 | } |
||
| 408 | // Else combine the two segments into one segment and |
||
| 409 | // do not adjust the pointers to the next segment |
||
| 410 | else |
||
| 411 | { |
||
| 412 | return ((*pSegA).byte = uSum.byte); |
||
| 413 | } |
||
| 414 | } |
||
| 415 | |||
| 416 | |||
| 417 |
Powered by WebSVN v2.8.3