| Line No. | Rev | Author | Line | 
|---|---|---|---|
| 1 | 32 | kaklik | /********************************************************************* | 
| 2 |  * | ||
| 3 |  *	Medium Access Control (MAC) Layer for Microchip ENC624J600/424J600 | ||
| 4 |  *  Module for Microchip TCP/IP Stack | ||
| 5 |  *	 -Provides access to ENC424J600/624J600 Ethernet controller | ||
| 6 |  *	 -Reference: ENC424J600/624J600 Data sheet (DS39935), IEEE 802.3  | ||
| 7 |  *    Standard | ||
| 8 |  * | ||
| 9 |  ********************************************************************* | ||
| 10 |  * FileName:        ENCX24J600.c | ||
| 11 |  * Dependencies:    ENCX24J600.h | ||
| 12 |  *					MAC.h | ||
| 13 |  *					string.h | ||
| 14 |  *                  Helpers.h | ||
| 15 |  *					Delay.h | ||
| 16 |  * Processor:       PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32 | ||
| 17 |  * Compiler:        Microchip C32 v1.05 or higher | ||
| 18 |  *					Microchip C30 v3.12 or higher | ||
| 19 |  *					Microchip C18 v3.30 or higher | ||
| 20 |  *					HI-TECH PICC-18 PRO 9.63PL2 or higher | ||
| 21 |  * Company:         Microchip Technology, Inc. | ||
| 22 |  * | ||
| 23 |  * Software License Agreement | ||
| 24 |  * | ||
| 25 |  * Copyright (C) 2002-2009 Microchip Technology Inc.  All rights | ||
| 26 |  * reserved. | ||
| 27 |  * | ||
| 28 |  * Microchip licenses to you the right to use, modify, copy, and | ||
| 29 |  * distribute: | ||
| 30 |  * (i)  the Software when embedded on a Microchip microcontroller or | ||
| 31 |  *      digital signal controller product ("Device") which is | ||
| 32 |  *      integrated into Licensee's product; or | ||
| 33 |  * (ii) ONLY the Software driver source files ENC28J60.c, ENC28J60.h, | ||
| 34 |  *		ENCX24J600.c and ENCX24J600.h ported to a non-Microchip device | ||
| 35 |  *		used in conjunction with a Microchip ethernet controller for | ||
| 36 |  *		the sole purpose of interfacing with the ethernet controller. | ||
| 37 |  * | ||
| 38 |  * You should refer to the license agreement accompanying this | ||
| 39 |  * Software for additional information regarding your rights and | ||
| 40 |  * obligations. | ||
| 41 |  * | ||
| 42 |  * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT | ||
| 43 |  * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT | ||
| 44 |  * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A | ||
| 45 |  * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL | ||
| 46 |  * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR | ||
| 47 |  * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF | ||
| 48 |  * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS | ||
| 49 |  * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE | ||
| 50 |  * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER | ||
| 51 |  * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT | ||
| 52 |  * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE. | ||
| 53 |  * | ||
| 54 |  * | ||
| 55 |  * Author               Date   		Comment | ||
| 56 |  *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| 57 |  * Howard Schlunder		12/07/07	Original | ||
| 58 |  ********************************************************************/ | ||
| 59 | #define __ENCX24J600_C | ||
| 60 | |||
| 61 | #include "HardwareProfile.h" | ||
| 62 | |||
| 63 | // Make sure that this hardware profile has an ENC424J600/624J600 in it | ||
| 64 | #if defined(ENC100_INTERFACE_MODE) | ||
| 65 | |||
| 66 | #include "TCPIP Stack/TCPIP.h" | ||
| 67 | #include "TCPIP Stack/ENCX24J600.h" | ||
| 68 | |||
| 69 | #include <stdarg.h> | ||
| 70 | |||
| 71 | /** D E F I N I T I O N S ****************************************************/ | ||
| 72 | #define ENC100_MAX_SPI_FREQ		(14000000ul)	// Hz | ||
| 73 | |||
| 74 | // Configuration constants for diagnostics only.  If you don't define any of  | ||
| 75 | // these constants, auto-negotiation will be used (strongly recommended). | ||
| 76 | //#define ENC100_FORCE_10MBPS_HALF_DUPLEX | ||
| 77 | //#define ENC100_FORCE_10MBPS_FULL_DUPLEX | ||
| 78 | //#define ENC100_FORCE_100MBPS_HALF_DUPLEX | ||
| 79 | //#define ENC100_FORCE_100MBPS_FULL_DUPLEX | ||
| 80 | |||
| 81 | |||
| 82 | // Pseudo Functions - these should not need changing unless porting to a new  | ||
| 83 | // processor type or speed. | ||
| 84 | // DelaySetupHold() should wait at least 75ns to meet Tpsp2 (RD to Data Valid) | ||
| 85 | #define DelaySetupHold()		do{Nop();Nop();}while(0) | ||
| 86 | #if (GetInstructionClock() > 16000000ul) | ||
| 87 | 	#undef DelaySetupHold | ||
| 88 | 	#define DelaySetupHold()	do{Nop();Nop();Nop();}while(0) | ||
| 89 | #endif | ||
| 90 | #if (GetInstructionClock() > 32000000ul) | ||
| 91 | 	#undef DelaySetupHold | ||
| 92 | 	#define DelaySetupHold()	do{Nop();Nop();Nop();Nop();}while(0) | ||
| 93 | #endif | ||
| 94 | #if (GetInstructionClock() > 48000000ul) | ||
| 95 | 	#undef DelaySetupHold | ||
| 96 | 	#define DelaySetupHold()	do{Nop();Nop();Nop();Nop();Nop();}while(0) | ||
| 97 | #endif | ||
| 98 | #if (GetInstructionClock() > 64000000ul) | ||
| 99 | 	#undef DelaySetupHold | ||
| 100 | 	#define DelaySetupHold()	do{Nop();Nop();Nop();Nop();Nop();Nop();}while(0) | ||
| 101 | #endif | ||
| 102 | |||
| 103 | #if defined(__PIC32MX__) | ||
| 104 | 	#define PMDIN1		PMDIN | ||
| 105 | #endif | ||
| 106 | #if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 107 | 	#if defined(ENC100_CS_TRIS) | ||
| 108 | 		#define AssertChipSelect()		do{ENC100_CS_IO = 1;}while(0) | ||
| 109 | 		#define DeassertChipSelect()	do{ENC100_CS_IO = 0;}while(0) | ||
| 110 | 	#else | ||
| 111 | 		#define AssertChipSelect() | ||
| 112 | 		#define DeassertChipSelect() | ||
| 113 | 	#endif | ||
| 114 | #else						// SPI mode | ||
| 115 | 	#define AssertChipSelect()			do{ENC100_CS_IO = 0;}while(0) | ||
| 116 | 	#define DeassertChipSelect()		do{ENC100_CS_IO = 1;}while(0) | ||
| 117 | |||
| 118 | 	#if defined (__18CXX) | ||
| 119 | 	    #define ClearSPIDoneFlag()  do{ENC100_SPI_IF = 0;}while(0) | ||
| 120 | 	    #define WaitForDataByte()   do{while(!ENC100_SPI_IF); ENC100_SPI_IF = 0;}while(0) | ||
| 121 | 	#elif defined(__C30__) | ||
| 122 | 	    #define ClearSPIDoneFlag() | ||
| 123 | 	    static inline __attribute__((__always_inline__)) void WaitForDataByte(void) | ||
| 124 | 	    { | ||
| 125 | 	        while ((ENC100_SPISTATbits.SPITBF == 1) || (ENC100_SPISTATbits.SPIRBF == 0)); | ||
| 126 | 	    } | ||
| 127 | 	#elif defined( __PIC32MX__ ) | ||
| 128 | 	    #define ClearSPIDoneFlag() | ||
| 129 | 	    static inline __attribute__((__always_inline__)) void WaitForDataByte(void) | ||
| 130 | 	    { | ||
| 131 | 	        while (!ENC100_SPISTATbits.SPITBE || !ENC100_SPISTATbits.SPIRBF); | ||
| 132 | 	    } | ||
| 133 | 	#else | ||
| 134 | 	    #error Determine SPI flag mechanism | ||
| 135 | 	#endif | ||
| 136 | #endif | ||
| 137 | |||
| 138 | |||
| 139 | // Binary constant identifiers for ReadMemoryWindow() and WriteMemoryWindow()  | ||
| 140 | // functions | ||
| 141 | #define UDA_WINDOW		(0x1) | ||
| 142 | #define GP_WINDOW		(0x2) | ||
| 143 | #define RX_WINDOW		(0x4) | ||
| 144 | |||
| 145 | |||
| 146 | #define ETHER_IP		((WORD)0x00) | ||
| 147 | #define ETHER_ARP		((WORD)0x06) | ||
| 148 | |||
| 149 | |||
| 150 | // A header appended at the start of all RX frames by the hardware | ||
| 151 | typedef struct  __attribute__((aligned(2), packed)) | ||
| 152 | { | ||
| 153 |     WORD			NextPacketPointer; | ||
| 154 |     RXSTATUS		StatusVector; | ||
| 155 | |||
| 156 |     MAC_ADDR        DestMACAddr; | ||
| 157 |     MAC_ADDR        SourceMACAddr; | ||
| 158 |     WORD_VAL        Type; | ||
| 159 | } ENC100_PREAMBLE; | ||
| 160 | |||
| 161 | |||
| 162 | |||
| 163 | // Internal MAC level variables and flags. | ||
| 164 | static BYTE vCurrentBank; | ||
| 165 | static WORD wCurrentPacketPointer; | ||
| 166 | static WORD wNextPacketPointer; | ||
| 167 | static struct | ||
| 168 | { | ||
| 169 | 	unsigned char bWasDiscarded:1;		// Status tracking bit indicating if the last received packet has been discarded via MACDiscardRx() or not. | ||
| 170 | 	unsigned char PoweredDown:1;		// Local cached bit indicating CRYPTEN == ETHEN == 0 and PSLEEP == 1 | ||
| 171 | 	unsigned char CryptoEnabled:1;		// Local cached bit indicating CRYPTEN == 1 | ||
| 172 | } ENC100Flags; | ||
| 173 | |||
| 174 | |||
| 175 | // Internal MAC level functions | ||
| 176 | void ENC100DumpState(void); | ||
| 177 | static void SendSystemReset(void); | ||
| 178 | static void ToggleCRYPTEN(void); | ||
| 179 | static WORD ReadReg(WORD wAddress); | ||
| 180 | static void WriteReg(WORD wAddress, WORD wValue); | ||
| 181 | static void BFSReg(WORD wAddress, WORD wBitMask); | ||
| 182 | static void BFCReg(WORD wAddress, WORD wBitMask); | ||
| 183 | static void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength); | ||
| 184 | static void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength); | ||
| 185 | #if ENC100_INTERFACE_MODE == 0 | ||
| 186 | 	static void Execute0(BYTE vOpcode); | ||
| 187 | 	//static BYTE Execute1(BYTE vOpcode, BYTE wDataIn);	// Not currently used | ||
| 188 | 	static WORD Execute2(BYTE vOpcode, WORD wDataIn); | ||
| 189 | 	static DWORD Execute3(BYTE vOpcode, DWORD dwDataIn); | ||
| 190 | 	static void ReadN(BYTE vOpcode, BYTE* vData, WORD wDataLen); | ||
| 191 | 	static void WriteN(BYTE vOpcode, BYTE* vData, WORD wDataLen); | ||
| 192 | #else | ||
| 193 | 	static void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength); | ||
| 194 | 	static void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength); | ||
| 195 | #endif | ||
| 196 | |||
| 197 | |||
| 198 | |||
| 199 | // Compute some PMP register values | ||
| 200 | #if   ENC100_INTERFACE_MODE == 1	// Parallel Mode 1: 8-bit demultiplexed (RD/WR) | ||
| 201 | 	#define PMP_ADRMUX		0x0			// Full demuxing of address and data | ||
| 202 | 	#define PMP_MODE16		0			// 8 bit | ||
| 203 | 	#define PMP_MODE		0x2			// Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB | ||
| 204 | 	#define PMP_ADR_PINS	ENC100_TRANSLATE_TO_PIN_ADDR(0x7FFF) | ||
| 205 | #elif ENC100_INTERFACE_MODE == 2	// Parallel Mode 2: 8-bit demultiplexed (RW/EN) | ||
| 206 | 	#define PMP_ADRMUX		0x0			// Full demuxing of address and data | ||
| 207 | 	#define PMP_MODE16		0			// 8 bit | ||
| 208 | 	#define PMP_MODE		0x3			// Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR | ||
| 209 | 	#define PMP_ADR_PINS	ENC100_TRANSLATE_TO_PIN_ADDR(0x7FFF) | ||
| 210 | #elif ENC100_INTERFACE_MODE == 3	// Parallel Mode 3: 16-bit demultiplexed (RD/WR) | ||
| 211 | 	#define PMP_ADRMUX		0x0			// Full demuxing of address and data | ||
| 212 | 	#define PMP_MODE16		1			// 16 bit | ||
| 213 | 	#define PMP_MODE		0x2			// Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB | ||
| 214 | 	#define PMP_ADR_PINS	ENC100_TRANSLATE_TO_PIN_ADDR(0x3FFF) | ||
| 215 | #elif ENC100_INTERFACE_MODE == 4	// Parallel Mode 4: 16-bit demultiplexed (RW/EN) | ||
| 216 | 	#define PMP_ADRMUX		0x0			// Full demuxing of address and data | ||
| 217 | 	#define PMP_MODE16		1			// 16 bit | ||
| 218 | 	#define PMP_MODE		0x3			// Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR | ||
| 219 | 	#define PMP_ADR_PINS	ENC100_TRANSLATE_TO_PIN_ADDR(0x3FFF) | ||
| 220 | #elif ENC100_INTERFACE_MODE == 5	// Parallel Mode 5: 8-bit multiplexed (RD/WR) | ||
| 221 | 	#define PMP_ADRMUX		0x1			// Partially multiplexed address and data | ||
| 222 | 	#define PMP_MODE16		0			// 8 bit | ||
| 223 | 	#define PMP_MODE		0x2			// Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB | ||
| 224 | 	#define PMP_ADR_PINS	(ENC100_TRANSLATE_TO_PIN_ADDR(0x7F00) | 0x0001) | ||
| 225 | #elif ENC100_INTERFACE_MODE == 6	// Parallel Mode 6: 8-bit multiplexed (RW/EN) | ||
| 226 | 	#define PMP_ADRMUX		0x1			// Partially multiplexed address and data | ||
| 227 | 	#define PMP_MODE16		0			// 8 bit | ||
| 228 | 	#define PMP_MODE		0x3			// Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR | ||
| 229 | 	#define PMP_ADR_PINS	(ENC100_TRANSLATE_TO_PIN_ADDR(0x7F00) | 0x0001) | ||
| 230 | #elif ENC100_INTERFACE_MODE == 9	// Parallel Mode 9: 16-bit multiplexed (RD/WR) | ||
| 231 | 	#define PMP_ADRMUX		0x3			// Fully multiplexed address and data | ||
| 232 | 	#define PMP_MODE16		1			// 16 bit | ||
| 233 | 	#define PMP_MODE		0x2			// Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB | ||
| 234 | 	#define PMP_ADR_PINS	0x0001 | ||
| 235 | #elif ENC100_INTERFACE_MODE == 10	// Parallel Mode 10: 16-bit multiplexed (RW/EN) | ||
| 236 | 	#define PMP_ADRMUX		0x3			// Fully multiplexed address and data | ||
| 237 | 	#define PMP_MODE16		1			// 16 bit | ||
| 238 | 	#define PMP_MODE		0x3			// Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR | ||
| 239 | 	#define PMP_ADR_PINS	0x0001 | ||
| 240 | #endif | ||
| 241 | |||
| 242 | // Calculate the minimum number of wait states to ensure a 75ns or longer pulse width for READ and WRITE strobes | ||
| 243 | #if defined(__PIC32MX__)	// PIC32 is offset by one (i.e. 0 = one wait state) | ||
| 244 | 	#define OPTIMAL_PMP_WAIT_STATES ((BYTE)((double)GetPeripheralClock()*0.000000075)) | ||
| 245 | #else | ||
| 246 | 	#define OPTIMAL_PMP_WAIT_STATES ((BYTE)((double)GetPeripheralClock()*0.000000075 + 0.9999)) | ||
| 247 | #endif | ||
| 248 | |||
| 249 | #if ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) && !defined(ENC100_BIT_BANG_PMP) | ||
| 250 | 	#if !defined(__PIC32MX__) | ||
| 251 | 		#error "16-bit PMP mode is only available on PIC32.  Use big bang mode or ENC100_INTERFACE_MODE of 1, 2, 5, or 6 (8-bit) instead." | ||
| 252 | 	#endif | ||
| 253 | #endif | ||
| 254 | |||
| 255 | |||
| 256 | |||
| 257 | // Compute optimal SPI speed and define the ConfigureSPIModule() macro function  | ||
| 258 | // to load it up quickly whenever we want to use the SPI | ||
| 259 | #if defined(__18CXX) | ||
| 260 | 	#define OPTIMAL_PRESCALE	0x00	// Default to divide by 4 setting | ||
| 261 | 	#if GetPeripheralClock() > ENC100_MAX_SPI_FREQ | ||
| 262 | 		#undef OPTIMAL_PRESCALE | ||
| 263 | 		#define OPTIMAL_PRESCALE 0x01	// Use divide by 16 setting | ||
| 264 | 	#endif	 | ||
| 265 | 	#if GetPeripheralClock()/16 > ENC100_MAX_SPI_FREQ | ||
| 266 | 		#undef OPTIMAL_PRESCALE | ||
| 267 | 		#define OPTIMAL_PRESCALE 0x02	// Use divide by 64 setting | ||
| 268 | 	#endif | ||
| 269 | 	#define ConfigureSPIModule()	do{																				\ | ||
| 270 | 										ENC100_SPICON1 = 0;							/* SSPEN = 0 */					\ | ||
| 271 | 										ENC100_SPISTAT = 0x40;						/* CKE = 1 (transmit data on rising edge), SMP = 0 (sample at middle of output time) */ \ | ||
| 272 | 										ENC100_SPICON1 = OPTIMAL_PRESCALE | 0x20;	/* SSPEN = 1, set clock speed */\ | ||
| 273 | 									}while(0) | ||
| 274 | 	#define PMCONbits	PMCONHbits	// Remap for PMPEN bit accessed inline | ||
| 275 | 	#define ConfigurePMPModule()	do{																				\ | ||
| 276 | 										PMCONHbits.PMPEN = 0;														\ | ||
| 277 | 										PMCONH = (PMP_ADRMUX<<3) | 0x03;	/* PTWREN = 1, PTRDEN = 1 */			\ | ||
| 278 | 										PMCONL = 0x23;						/* ALP = 1, WRSP = 1, RDSP = 1 */		\ | ||
| 279 | 										PMMODEH = (PMP_MODE16<<2) | (PMP_MODE);										\ | ||
| 280 | 										PMMODEL = (OPTIMAL_PMP_WAIT_STATES<<2);										\ | ||
| 281 | 										PMAENH = ((BYTE)(PMP_ADR_PINS>>8));											\ | ||
| 282 | 										PMAENL = ((BYTE)PMP_ADR_PINS);												\ | ||
| 283 | 										PMCONHbits.PMPEN = 1;														\ | ||
| 284 | 									}while(0) | ||
| 285 | #elif defined(__C30__) | ||
| 286 | 	// Ensure SPI doesn't exceed processor limit | ||
| 287 | 	#if (defined(__PIC24F__) || defined(__PIC24FK__) || defined(__PIC24H__) || defined(__dsPIC33F__)) && ENC100_MAX_SPI_FREQ > 8000000 | ||
| 288 | 		#undef ENC100_MAX_SPI_FREQ | ||
| 289 | 		#define ENC100_MAX_SPI_FREQ	8000000 | ||
| 290 | 	#endif | ||
| 291 | 	#if defined(__dsPIC30F__) && ENC100_MAX_SPI_FREQ > 10000000 | ||
| 292 | 		#undef ENC100_MAX_SPI_FREQ | ||
| 293 | 		#define ENC100_MAX_SPI_FREQ	10000000 | ||
| 294 | 	#endif | ||
| 295 | |||
| 296 |     // Calculate optimal primary and secondary prescalers to make an SPI clock no faster than ENC100_MAX_SPI_FREQ | ||
| 297 |    	#define OPTIMAL_PRESCALE		((((~((GetPeripheralClock()/64+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x0) | ||
| 298 |     #if GetPeripheralClock()/8/16 <= ENC100_MAX_SPI_FREQ | ||
| 299 |     	#undef OPTIMAL_PRESCALE | ||
| 300 |     	#define OPTIMAL_PRESCALE	((((~((GetPeripheralClock()/16+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x1) | ||
| 301 |     #endif | ||
| 302 |     #if GetPeripheralClock()/8/4 <= ENC100_MAX_SPI_FREQ | ||
| 303 |     	#undef OPTIMAL_PRESCALE | ||
| 304 |    		#define OPTIMAL_PRESCALE	((((~((GetPeripheralClock()/4+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x2) | ||
| 305 |     #endif | ||
| 306 |     #if GetPeripheralClock()/8/1 <= ENC100_MAX_SPI_FREQ | ||
| 307 |     	#undef OPTIMAL_PRESCALE | ||
| 308 |     	#define OPTIMAL_PRESCALE	((((~((GetPeripheralClock()/1+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x3) | ||
| 309 |     #endif | ||
| 310 | |||
| 311 | 	// Work around 1:1, 1:1 SPI errata on early PIC24FJ128GA010, PIC24HJ256GP610, dsPIC33FJ256GP710, etc. silicon where SCK stops running | ||
| 312 | 	#if (defined(__PIC24F__) || defined(__PIC24H__) || defined(__dsPIC33F__)) && (OPTIMAL_PRESCALE == 0x1F) | ||
| 313 | 		#undef OPTIMAL_PRESCALE | ||
| 314 | 		#define OPTIMAL_PRESCALE	0x1B | ||
| 315 | 	#endif | ||
| 316 | |||
| 317 | |||
| 318 | 	#define ConfigureSPIModule()	do{																									\ | ||
| 319 | 										ENC100_SPISTAT = 0;										/* Turn off SPI */						\ | ||
| 320 | 										ENC100_SPICON1 = OPTIMAL_PRESCALE | 0x0100 | 0x0020;	/* CKE = 1, MSTEN = 1 */				\ | ||
| 321 | 									    ENC100_SPICON2 = 0;										/* Legacy non enhanced buffering */		\ | ||
| 322 | 									    ENC100_SPISTAT = 0x8000;								/* Turn on SPI */						\ | ||
| 323 | 									}while(0) | ||
| 324 | |||
| 325 | 	#define ConfigurePMPModule()	do{																									\ | ||
| 326 | 										PMCONbits.PMPEN = 0;																			\ | ||
| 327 | 										PMCON = (PMP_ADRMUX<<11) | 0x0323;	/* PTWREN = 1, PTRDEN = 1, ALP = 1, WRSP = 1, RDSP = 1 */	\ | ||
| 328 | 										PMMODE = (PMP_MODE16<<10) | (PMP_MODE<<8) | (OPTIMAL_PMP_WAIT_STATES<<2);						\ | ||
| 329 | 										PMAEN = PMP_ADR_PINS;																			\ | ||
| 330 | 										PADCFG1bits.PMPTTL = 0;				/* Use schmitt trigger input buffers */						\ | ||
| 331 | 										PMCONbits.PMPEN = 1;																			\ | ||
| 332 | 									}while(0) | ||
| 333 | #elif defined(__C32__) | ||
| 334 | 	#define ConfigureSPIModule()	do{																									\ | ||
| 335 | 										ENC100_SPICON1 = 0;					/* Turn off SPI */											\ | ||
| 336 | 										ENC100_SPIBRG = (GetPeripheralClock()-1ul)/2ul/ENC100_MAX_SPI_FREQ;								\ | ||
| 337 | 										ENC100_SPICON1 = 0x00008320;		/* ON = 1, SMP = 1, CKE = 1, MSTEN = 1 */					\ | ||
| 338 | 									}while(0) | ||
| 339 | 	#define ConfigurePMPModule()	do{																									\ | ||
| 340 | 										PMCONbits.PMPEN = 0;																			\ | ||
| 341 | 										PMCON = (PMP_ADRMUX<<11) | 0x0323;	/* PMPTTL = 0, PTWREN = 1, PTRDEN = 1, ALP = 1, WRSP = 1, RDSP = 1 */	\ | ||
| 342 | 										PMMODE = (PMP_MODE16<<10) | (PMP_MODE<<8) | (OPTIMAL_PMP_WAIT_STATES<<2);						\ | ||
| 343 | 										PMAEN = PMP_ADR_PINS;																			\ | ||
| 344 | 										PMCONbits.PMPEN = 1;																			\ | ||
| 345 | 									}while(0) | ||
| 346 | #endif | ||
| 347 | |||
| 348 | /****************************************************************************** | ||
| 349 |  * Function:        void ENC100Init(void) | ||
| 350 |  * | ||
| 351 |  * PreCondition:    None | ||
| 352 |  * | ||
| 353 |  * Input:           None | ||
| 354 |  * | ||
| 355 |  * Output:          None | ||
| 356 |  * | ||
| 357 |  * Side Effects:    None | ||
| 358 |  * | ||
| 359 |  * Overview:        MACInit sets up the PIC's SPI module and all the  | ||
| 360 |  *					registers in the ENCX24J600 so that normal operation can  | ||
| 361 |  *					begin. | ||
| 362 |  * | ||
| 363 |  * Note:            None | ||
| 364 |  *****************************************************************************/ | ||
| 365 | void MACInit(void) | ||
| 366 | { | ||
| 367 | 	WORD w; | ||
| 368 | |||
| 369 | 	#if defined(ENC100_INT_TRIS)	// Interrupt output from ENCx24J600 | ||
| 370 | 		ENC100_INT_TRIS = 1; | ||
| 371 | 	#endif | ||
| 372 | 	#if defined(ENC100_MDIX_TRIS)	// MDIX control pin from PIC | ||
| 373 | 		ENC100_MDIX_TRIS = 0; | ||
| 374 | 		ENC100_MDIX_IO = 0; | ||
| 375 | 	#endif | ||
| 376 | |||
| 377 | 	#if defined(ENC100_CS_TRIS)		// Chip Select line from PIC | ||
| 378 | 		DeassertChipSelect(); | ||
| 379 | 		ENC100_CS_TRIS = 0; | ||
| 380 | 	#endif | ||
| 381 | |||
| 382 | 	#if (ENC100_INTERFACE_MODE >= 1) && defined(ENC100_BIT_BANG_PMP)	// Parallel bit-bang mode needs I/O pins to be configured.  PMP will control pins automatically. | ||
| 383 | 		ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 384 | 		ENC100_SO_WR_B0SEL_EN_TRIS = 0; | ||
| 385 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 386 | 		ENC100_SI_RD_RW_TRIS = 0; | ||
| 387 | 		#if ENC100_INTERFACE_MODE >= 5	// If PSP address bus is multiplexed, then set Address Latch TRIS bit to output | ||
| 388 | 			ENC100_SCK_AL_IO = 0; | ||
| 389 | 			ENC100_SCK_AL_TRIS = 0; | ||
| 390 | 		#endif | ||
| 391 | 		#if (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)	// If PSP data width is 16-bits, set Write High/Byte 1 select as output | ||
| 392 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 393 | 			ENC100_WRH_B1SEL_TRIS = 0; | ||
| 394 | 		#endif | ||
| 395 | |||
| 396 | 		ENC100_INIT_PSP_BIT_BANG(); | ||
| 397 | 	#elif (ENC100_INTERFACE_MODE == 0)	// Use SPI interface | ||
| 398 | 		vCurrentBank = 0;			// Needed for SPI only | ||
| 399 | |||
| 400 | 	    // Set up SPI pins on PIC18s | ||
| 401 | 		#if defined(__18CXX) | ||
| 402 | 			ENC100_SCK_AL_TRIS = 0; | ||
| 403 | 			ENC100_SI_RD_RW_TRIS = 0; | ||
| 404 | 			ENC100_SO_WR_B0SEL_EN_TRIS = 1; | ||
| 405 | 			ENC100_SPI_IF = 0; | ||
| 406 | 		#endif | ||
| 407 | |||
| 408 | 		ConfigureSPIModule(); | ||
| 409 | 	#endif | ||
| 410 | |||
| 411 | 	// Perform a reliable reset | ||
| 412 | 	SendSystemReset(); | ||
| 413 | |||
| 414 | 	// Initialize RX tracking variables and other control state flags | ||
| 415 | 	wNextPacketPointer = RXSTART; | ||
| 416 | 	wCurrentPacketPointer = 0x0000; | ||
| 417 | 	ENC100Flags.bWasDiscarded = 1; | ||
| 418 | 	ENC100Flags.PoweredDown = 0; | ||
| 419 | 	ENC100Flags.CryptoEnabled = 0; | ||
| 420 | |||
| 421 | 	// Set up TX/RX/UDA buffer addresses | ||
| 422 | 	WriteReg(ETXST, TXSTART); | ||
| 423 | 	WriteReg(ERXST, RXSTART); | ||
| 424 | 	WriteReg(ERXTAIL, ENC100_RAM_SIZE-2); | ||
| 425 | 	WriteReg(EUDAST, ENC100_RAM_SIZE); | ||
| 426 | 	WriteReg(EUDAND, ENC100_RAM_SIZE+1); | ||
| 427 | |||
| 428 | 	// Use ENCx24J600 preprogrammed MAC address, if AppConfig is not already set | ||
| 429 | 	if(((AppConfig.MyMACAddr.v[0] == 0x00u) && (AppConfig.MyMACAddr.v[1] == 0x04u) && (AppConfig.MyMACAddr.v[2] == 0xA3u) && (AppConfig.MyMACAddr.v[3] == 0x00u) && (AppConfig.MyMACAddr.v[4] == 0x00u) && (AppConfig.MyMACAddr.v[5] == 0x00u)) || | ||
| 430 | 		((AppConfig.MyMACAddr.v[0] | AppConfig.MyMACAddr.v[1] | AppConfig.MyMACAddr.v[2] | AppConfig.MyMACAddr.v[3] | AppConfig.MyMACAddr.v[4] | AppConfig.MyMACAddr.v[5]) == 0x00u)) | ||
| 431 | 	{ | ||
| 432 | 		w = ReadReg(MAADR1); | ||
| 433 | 		AppConfig.MyMACAddr.v[0] = ((BYTE*)&w)[0]; | ||
| 434 | 		AppConfig.MyMACAddr.v[1] = ((BYTE*)&w)[1]; | ||
| 435 | 		w = ReadReg(MAADR2); | ||
| 436 | 		AppConfig.MyMACAddr.v[2] = ((BYTE*)&w)[0]; | ||
| 437 | 		AppConfig.MyMACAddr.v[3] = ((BYTE*)&w)[1]; | ||
| 438 | 		w = ReadReg(MAADR3); | ||
| 439 | 		AppConfig.MyMACAddr.v[4] = ((BYTE*)&w)[0]; | ||
| 440 | 		AppConfig.MyMACAddr.v[5] = ((BYTE*)&w)[1]; | ||
| 441 | 	} | ||
| 442 | 	else | ||
| 443 | 	{		 | ||
| 444 | 		((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[0]; | ||
| 445 | 		((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[1]; | ||
| 446 | 		WriteReg(MAADR1, w); | ||
| 447 | 		((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[2]; | ||
| 448 | 		((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[3]; | ||
| 449 | 		WriteReg(MAADR2, w); | ||
| 450 | 		((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[4]; | ||
| 451 | 		((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[5]; | ||
| 452 | 		WriteReg(MAADR3, w); | ||
| 453 | 	} | ||
| 454 | |||
| 455 | 	// Set PHY Auto-negotiation to support 10BaseT Half duplex,  | ||
| 456 | 	// 10BaseT Full duplex, 100BaseTX Half Duplex, 100BaseTX Full Duplex, | ||
| 457 | 	// and symmetric PAUSE capability | ||
| 458 | 	WritePHYReg(PHANA, PHANA_ADPAUS0 | PHANA_AD10FD | PHANA_AD10 | PHANA_AD100FD | PHANA_AD100 | PHANA_ADIEEE0); | ||
| 459 | |||
| 460 | 	// Force operating mode, for debugging only.  If none of these statements  | ||
| 461 | 	// are executed, auto-negotiation/parallel detection is used which will  | ||
| 462 | 	// always select the proper mode. | ||
| 463 | 	#if defined(ENC100_FORCE_10MBPS_HALF_DUPLEX) | ||
| 464 | 		WritePHYReg(PHCON1, 0x0000); | ||
| 465 | 	#elif defined(ENC100_FORCE_10MBPS_FULL_DUPLEX) | ||
| 466 | 		WritePHYReg(PHCON1, PHCON1_PFULDPX); | ||
| 467 | 	#elif defined(ENC100_FORCE_100MBPS_HALF_DUPLEX) | ||
| 468 | 		WritePHYReg(PHCON1, PHCON1_SPD100); | ||
| 469 | 	#elif defined(ENC100_FORCE_100MBPS_FULL_DUPLEX) | ||
| 470 | 		WritePHYReg(PHCON1, PHCON1_SPD100 | PHCON1_PFULDPX); | ||
| 471 | 	#endif | ||
| 472 | |||
| 473 | 	// Enable RX packet reception | ||
| 474 | 	BFSReg(ECON1, ECON1_RXEN); | ||
| 475 | }//end MACInit | ||
| 476 | |||
| 477 | |||
| 478 | /****************************************************************************** | ||
| 479 |  * Function:        BOOL MACIsLinked(void) | ||
| 480 |  * | ||
| 481 |  * PreCondition:    None | ||
| 482 |  * | ||
| 483 |  * Input:           None | ||
| 484 |  * | ||
| 485 |  * Output:          TRUE: An Ethernet link is established | ||
| 486 |  *					FALSE: Ethernet link is not established | ||
| 487 |  * | ||
| 488 |  * Side Effects:    None | ||
| 489 |  * | ||
| 490 |  * Overview:        Returns the ESTAT<PHYLNK> bit. | ||
| 491 |  * | ||
| 492 |  * Note:            None | ||
| 493 |  *****************************************************************************/ | ||
| 494 | BOOL MACIsLinked(void) | ||
| 495 | { | ||
| 496 | 	return (ReadReg(ESTAT) & ESTAT_PHYLNK) != 0u; | ||
| 497 | } | ||
| 498 | |||
| 499 | /****************************************************************************** | ||
| 500 |  * Function:        BOOL MACIsTxReady(void) | ||
| 501 |  * | ||
| 502 |  * PreCondition:    None | ||
| 503 |  * | ||
| 504 |  * Input:           None | ||
| 505 |  * | ||
| 506 |  * Output:          TRUE: If no Ethernet transmission is in progress | ||
| 507 |  *					FALSE: If a previous transmission was started, and it has  | ||
| 508 |  *						   not completed yet.  While FALSE, the data in the  | ||
| 509 |  *						   transmit buffer and the TXST/TXLEN pointers must not | ||
| 510 |  *						   be changed. | ||
| 511 |  * | ||
| 512 |  * Side Effects:    None | ||
| 513 |  * | ||
| 514 |  * Overview:        Returns the ECON1<TXRTS> bit | ||
| 515 |  * | ||
| 516 |  * Note:            None | ||
| 517 |  *****************************************************************************/ | ||
| 518 | BOOL MACIsTxReady(void) | ||
| 519 | { | ||
| 520 | 	return !(ReadReg(ECON1) & ECON1_TXRTS); | ||
| 521 | } | ||
| 522 | |||
| 523 | |||
| 524 | /****************************************************************************** | ||
| 525 |  * Function:        void MACDiscardRx(void) | ||
| 526 |  * | ||
| 527 |  * PreCondition:    None | ||
| 528 |  * | ||
| 529 |  * Input:           None | ||
| 530 |  * | ||
| 531 |  * Output:          None | ||
| 532 |  * | ||
| 533 |  * Side Effects:    None | ||
| 534 |  * | ||
| 535 |  * Overview:        Marks the last received packet (obtained using  | ||
| 536 |  *					MACGetHeader())as being processed and frees the buffer  | ||
| 537 |  *					memory associated with it | ||
| 538 |  * | ||
| 539 |  * Note:            Is is safe to call this function multiple times between  | ||
| 540 |  *					MACGetHeader() calls.  Extra packets won't be thrown away  | ||
| 541 |  *					until MACGetHeader() makes it available. | ||
| 542 |  *****************************************************************************/ | ||
| 543 | void MACDiscardRx(void) | ||
| 544 | { | ||
| 545 | 	WORD wNewRXTail; | ||
| 546 | |||
| 547 | 	// Make sure the current packet was not already discarded | ||
| 548 | 	if(ENC100Flags.bWasDiscarded) | ||
| 549 | 		return; | ||
| 550 | 	ENC100Flags.bWasDiscarded = 1; | ||
| 551 | |||
| 552 | 	// Decrement the next packet pointer before writing it into  | ||
| 553 | 	// the ERXRDPT registers. RX buffer wrapping must be taken into account if the  | ||
| 554 | 	// NextPacketLocation is precisely RXSTART. | ||
| 555 | 	wNewRXTail = wNextPacketPointer - 2; | ||
| 556 | 	if(wNextPacketPointer == RXSTART) | ||
| 557 | 		wNewRXTail = ENC100_RAM_SIZE - 2; | ||
| 558 | |||
| 559 | 	// Decrement the RX packet counter register, EPKTCNT | ||
| 560 | 	BFSReg(ECON1, ECON1_PKTDEC); | ||
| 561 | |||
| 562 | 	// Move the receive read pointer to unwrite-protect the memory used by the  | ||
| 563 | 	// last packet.  The writing order is important: set the low byte first,  | ||
| 564 | 	// high byte last (handled automatically in WriteReg()). | ||
| 565 | 	WriteReg(ERXTAIL, wNewRXTail); | ||
| 566 | } | ||
| 567 | |||
| 568 | |||
| 569 | /****************************************************************************** | ||
| 570 |  * Function:        WORD MACGetFreeRxSize(void) | ||
| 571 |  * | ||
| 572 |  * PreCondition:    None | ||
| 573 |  * | ||
| 574 |  * Input:           None | ||
| 575 |  * | ||
| 576 |  * Output:          A WORD estimate of how much RX buffer space is free at  | ||
| 577 |  *					the present time. | ||
| 578 |  * | ||
| 579 |  * Side Effects:    None | ||
| 580 |  * | ||
| 581 |  * Overview:        None | ||
| 582 |  * | ||
| 583 |  * Note:            None | ||
| 584 |  *****************************************************************************/ | ||
| 585 | WORD MACGetFreeRxSize(void) | ||
| 586 | { | ||
| 587 | 	WORD wHeadPtr; | ||
| 588 | |||
| 589 | 	wHeadPtr = ReadReg(ERXHEAD); | ||
| 590 | |||
| 591 | 	// Calculate the difference between the pointers, taking care to account  | ||
| 592 | 	// for buffer wrapping conditions | ||
| 593 | 	if(wHeadPtr > wCurrentPacketPointer) | ||
| 594 | 		return (RXSTOP - RXSTART) - (wHeadPtr - wCurrentPacketPointer); | ||
| 595 | |||
| 596 | 	return wCurrentPacketPointer - wHeadPtr - 2; | ||
| 597 | } | ||
| 598 | |||
| 599 | |||
| 600 | /****************************************************************************** | ||
| 601 |  * Function:        BOOL MACGetHeader(MAC_ADDR *remote, BYTE* type) | ||
| 602 |  * | ||
| 603 |  * PreCondition:    None | ||
| 604 |  * | ||
| 605 |  * Input:           *remote: Location to store the Source MAC address of the  | ||
| 606 |  *							 received frame. | ||
| 607 |  *					*type: Location of a BYTE to store the constant  | ||
| 608 |  *						   MAC_UNKNOWN, ETHER_IP, or ETHER_ARP, representing  | ||
| 609 |  *						   the contents of the Ethernet type field. | ||
| 610 |  * | ||
| 611 |  * Output:          TRUE: If a packet was waiting in the RX buffer.  The  | ||
| 612 |  *						  remote, and type values are updated. | ||
| 613 |  *					FALSE: If a packet was not pending.  remote and type are  | ||
| 614 |  *						   not changed. | ||
| 615 |  * | ||
| 616 |  * Side Effects:    Last packet is discarded if MACDiscardRx() hasn't already | ||
| 617 |  *					been called. | ||
| 618 |  * | ||
| 619 |  * Overview:        None | ||
| 620 |  * | ||
| 621 |  * Note:            None | ||
| 622 |  *****************************************************************************/ | ||
| 623 | BOOL MACGetHeader(MAC_ADDR *remote, BYTE* type) | ||
| 624 | { | ||
| 625 | 	ENC100_PREAMBLE header; | ||
| 626 | |||
| 627 | 	// Test if at least one packet has been received and is waiting | ||
| 628 | 	if(!(ReadReg(EIR) & EIR_PKTIF)) | ||
| 629 | 	{ | ||
| 630 | 		// No packets are waiting.  See if we are unlinked and need to process  | ||
| 631 | 		// auto crossover timers. | ||
| 632 | 		#if defined(ENC100_MDIX_TRIS) | ||
| 633 | 		{ | ||
| 634 | 			static WORD wMDIXTimer = 0; | ||
| 635 | |||
| 636 | 			// See if it is time to swap MDI mode | ||
| 637 | 			if((WORD)(wMDIXTimer - (WORD)TickGetDiv256()) > (WORD)(2u*TICK_SECOND/256u)) | ||
| 638 | 			{ | ||
| 639 | 				// If we are linked, then we should simply reset the timer to a  | ||
| 640 | 				// max of 1.3 seconds and do nothing | ||
| 641 | 				if(MACIsLinked()) | ||
| 642 | 				{ | ||
| 643 | 					wMDIXTimer = (WORD)TickGetDiv256() + (WORD)(13u*TICK_SECOND/256u/10u); | ||
| 644 | 				} | ||
| 645 | 				else | ||
| 646 | 				{ | ||
| 647 | 					// We are unlinked and the MDI-X timer expired, lets swap MDI mode | ||
| 648 | 					ENC100_MDIX_IO ^= 1; | ||
| 649 | |||
| 650 | 					// Set up new timer to expire sometime randomly between 1.0 | ||
| 651 | 					// seconds and 1.55 seconds in the future.  This needs to  | ||
| 652 | 					// have randomness so that if you plug two similar devices  | ||
| 653 | 					// into each other, you don't have a lock-step switching  | ||
| 654 | 					// problem in which both devices swap MDI mode  | ||
| 655 | 					// simultaneously and never link up. | ||
| 656 | 					wMDIXTimer = (WORD)TickGetDiv256() + (WORD)(TICK_SECOND/256u) + (WORD)(55ul*TICK_SECOND/256ul/100ul*(DWORD)rand()/(DWORD)RAND_MAX); | ||
| 657 | |||
| 658 | 					//// Restart auto-negotiation | ||
| 659 | 					//WritePHYReg(PHCON1, PHCON1_ANEN | PHCON1_RENEG); | ||
| 660 | 				} | ||
| 661 | 			} | ||
| 662 | 		} | ||
| 663 | 		#endif | ||
| 664 | |||
| 665 | 		return FALSE; | ||
| 666 | 	} | ||
| 667 | |||
| 668 | 	// Discard the last packet, if the user application hasn't done so already | ||
| 669 | 	if(!ENC100Flags.bWasDiscarded) | ||
| 670 | 	{ | ||
| 671 | 		MACDiscardRx(); | ||
| 672 | |||
| 673 | 		// Test again if at least one packet has been received and is waiting | ||
| 674 | 		if(!(ReadReg(EIR) & EIR_PKTIF)) | ||
| 675 | 			return FALSE; | ||
| 676 | 	} | ||
| 677 | |||
| 678 | 	// Set the RX Read Pointer to the beginning of the next unprocessed packet | ||
| 679 | 	wCurrentPacketPointer = wNextPacketPointer; | ||
| 680 | 	WriteReg(ERXRDPT, wCurrentPacketPointer); | ||
| 681 | |||
| 682 | 	// Obtain the MAC header from the Ethernet buffer | ||
| 683 | 	ReadMemoryWindow(RX_WINDOW, (BYTE*)&header, sizeof(header)); | ||
| 684 | |||
| 685 | 	// The EtherType field, like most items transmitted on the Ethernet medium | ||
| 686 | 	// are in big endian. | ||
| 687 | 	header.Type.Val = swaps(header.Type.Val); | ||
| 688 | |||
| 689 | 	// Validate the data returned from the ENC624J600 Family device.  Random  | ||
| 690 | 	// data corruption, such as if a single SPI/PSP bit error occurs while  | ||
| 691 | 	// communicating or a momentary power glitch could cause this to occur  | ||
| 692 | 	// in rare circumstances.  Also, certain hardware bugs such as violations  | ||
| 693 | 	// of the absolute maximum electrical specs can cause this.  For example, | ||
| 694 | 	// if an MCU with a high slew rate were to access the interface, parasitic  | ||
| 695 | 	// inductance in the traces could cause excessive voltage undershoot.   | ||
| 696 | 	// If the voltage goes too far below ground, the ENCx24J600's internal | ||
| 697 | 	// ESD structure may activate and disrupt the communication.  To prevent  | ||
| 698 | 	// this, ensure that you have a clean board layout and consider adding  | ||
| 699 | 	// resistors in series with the MCU output pins to limit the slew rate  | ||
| 700 | 	// of signals going to the ENCx24J600. 100 Ohm resistors is a good value  | ||
| 701 | 	// to start testing with. | ||
| 702 | 	if(header.NextPacketPointer > RXSTOP || ((BYTE_VAL*)(&header.NextPacketPointer))->bits.b0 || | ||
| 703 | 	   header.StatusVector.bits.Zero || header.StatusVector.bits.ZeroH ||  | ||
| 704 | 	   header.StatusVector.bits.CRCError || | ||
| 705 | 	   header.StatusVector.bits.ByteCount > 1522u || | ||
| 706 | 	   !header.StatusVector.bits.ReceiveOk) | ||
| 707 | 	{ | ||
| 708 | 		//ENC100DumpState(); | ||
| 709 | 		Nop(); | ||
| 710 | |||
| 711 | 		Reset(); | ||
| 712 | 	} | ||
| 713 | |||
| 714 | 	// Save the location where the hardware will write the next packet to | ||
| 715 | 	wNextPacketPointer = header.NextPacketPointer; | ||
| 716 | |||
| 717 | 	// Return the Ethernet frame's Source MAC address field to the caller | ||
| 718 | 	// This parameter is useful for replying to requests without requiring an  | ||
| 719 | 	// ARP cycle. | ||
| 720 |     memcpy((void*)remote->v, (void*)header.SourceMACAddr.v, sizeof(*remote)); | ||
| 721 | |||
| 722 | 	// Return a simplified version of the EtherType field to the caller | ||
| 723 |     *type = MAC_UNKNOWN; | ||
| 724 |     if( (header.Type.v[1] == 0x08u) &&  | ||
| 725 |     	((header.Type.v[0] == (BYTE)ETHER_IP) || (header.Type.v[0] == (BYTE)ETHER_ARP)) ) | ||
| 726 |     { | ||
| 727 |     	*type = header.Type.v[0]; | ||
| 728 |     } | ||
| 729 | |||
| 730 |     // Mark this packet as discardable | ||
| 731 |     ENC100Flags.bWasDiscarded = 0; | ||
| 732 | 	return TRUE; | ||
| 733 | } | ||
| 734 | |||
| 735 | |||
| 736 | /****************************************************************************** | ||
| 737 |  * Function:        void MACPutHeader(MAC_ADDR *remote, BYTE type, WORD dataLen) | ||
| 738 |  * | ||
| 739 |  * PreCondition:    MACIsTxReady() must return TRUE. | ||
| 740 |  * | ||
| 741 |  * Input:           *remote: Pointer to memory which contains the destination | ||
| 742 |  * 							 MAC address (6 bytes) | ||
| 743 |  *					type: The constant ETHER_ARP or ETHER_IP, defining which  | ||
| 744 |  *						  value to write into the Ethernet header's type field. | ||
| 745 |  *					dataLen: Length of the Ethernet data payload | ||
| 746 |  * | ||
| 747 |  * Output:          None | ||
| 748 |  * | ||
| 749 |  * Side Effects:    None | ||
| 750 |  * | ||
| 751 |  * Overview:        None | ||
| 752 |  * | ||
| 753 |  * Note:            Because of the dataLen parameter, it is probably  | ||
| 754 |  *					advantagous to call this function immediately before  | ||
| 755 |  *					transmitting a packet rather than initially when the  | ||
| 756 |  *					packet is first created.  The order in which the packet | ||
| 757 |  *					is constructed (header first or data first) is not  | ||
| 758 |  *					important. | ||
| 759 |  *****************************************************************************/ | ||
| 760 | void MACPutHeader(MAC_ADDR *remote, BYTE type, WORD dataLen) | ||
| 761 | { | ||
| 762 | 	WORD wEthernetType; | ||
| 763 | |||
| 764 | 	wEthernetType = 0x08 | ((type == MAC_IP) ? (ETHER_IP<<8) : (ETHER_ARP<<8)); | ||
| 765 | |||
| 766 | 	// Set the Window Write Pointer to the beginning of the transmit buffer | ||
| 767 | 	WriteReg(EGPWRPT, TXSTART); | ||
| 768 | 	WriteReg(ETXLEN, dataLen + sizeof(ETHER_HEADER)); | ||
| 769 | |||
| 770 | 	// Write the Ethernet destination MAC address, our source MAC address,  | ||
| 771 | 	// and the Ethernet Type field. | ||
| 772 |     WriteMemoryWindow(GP_WINDOW, (BYTE*)remote, sizeof(*remote)); | ||
| 773 |     WriteMemoryWindow(GP_WINDOW, (BYTE*)&AppConfig.MyMACAddr, 6); | ||
| 774 |     WriteMemoryWindow(GP_WINDOW, (BYTE*)&wEthernetType, 2); | ||
| 775 | } | ||
| 776 | |||
| 777 | |||
| 778 | |||
| 779 | /****************************************************************************** | ||
| 780 |  * Function:        void MACFlush(void) | ||
| 781 |  * | ||
| 782 |  * PreCondition:    A packet has been created by calling MACPut() and  | ||
| 783 |  *					MACPutHeader(). | ||
| 784 |  * | ||
| 785 |  * Input:           None | ||
| 786 |  * | ||
| 787 |  * Output:          None | ||
| 788 |  * | ||
| 789 |  * Side Effects:    None | ||
| 790 |  * | ||
| 791 |  * Overview:        MACFlush causes the current TX packet to be sent out on  | ||
| 792 |  *					the Ethernet medium.  The hardware MAC will take control | ||
| 793 |  *					and handle CRC generation, collision retransmission and  | ||
| 794 |  *					other details. | ||
| 795 |  * | ||
| 796 |  * Note:			After transmission completes (MACIsTxReady() returns TRUE),  | ||
| 797 |  *					the packet can be modified and transmitted again by calling  | ||
| 798 |  *					MACFlush() again.  Until MACPutHeader() or MACPut() is  | ||
| 799 |  *					called (in the TX data area), the data in the TX buffer  | ||
| 800 |  *					will not be corrupted. | ||
| 801 |  *****************************************************************************/ | ||
| 802 | void MACFlush(void) | ||
| 803 | { | ||
| 804 | 	WORD w; | ||
| 805 | |||
| 806 | 	// Check to see if the duplex status has changed.  This can  | ||
| 807 | 	// change if the user unplugs the cable and plugs it into a  | ||
| 808 | 	// different node.  Auto-negotiation will automatically set  | ||
| 809 | 	// the duplex in the PHY, but we must also update the MAC  | ||
| 810 | 	// inter-packet gap timing and duplex state to match. | ||
| 811 | 	if(ReadReg(EIR) & EIR_LINKIF) | ||
| 812 | 	{ | ||
| 813 | 		BFCReg(EIR, EIR_LINKIF); | ||
| 814 | |||
| 815 | 		// Update MAC duplex settings to match PHY duplex setting | ||
| 816 | 		w = ReadReg(MACON2); | ||
| 817 | 		if(ReadReg(ESTAT) & ESTAT_PHYDPX) | ||
| 818 | 		{ | ||
| 819 | 			// Switching to full duplex | ||
| 820 | 			WriteReg(MABBIPG, 0x15); | ||
| 821 | 			w |= MACON2_FULDPX; | ||
| 822 | 		} | ||
| 823 | 		else | ||
| 824 | 		{ | ||
| 825 | 			// Switching to half duplex | ||
| 826 | 			WriteReg(MABBIPG, 0x12); | ||
| 827 | 			w &= ~MACON2_FULDPX; | ||
| 828 | 		} | ||
| 829 | 		WriteReg(MACON2, w); | ||
| 830 | 	} | ||
| 831 | |||
| 832 | |||
| 833 | 	// Start the transmission, but only if we are linked.  Supressing  | ||
| 834 | 	// transmissing when unlinked is necessary to avoid stalling the TX engine  | ||
| 835 | 	// if we are in PHY energy detect power down mode and no link is present.   | ||
| 836 | 	// A stalled TX engine won't do any harm in itself, but will cause the  | ||
| 837 | 	// MACIsTXReady() function to continuously return FALSE, which will  | ||
| 838 | 	// ultimately stall the Microchip TCP/IP stack since there is blocking code  | ||
| 839 | 	// elsewhere in other files that expect the TX engine to always self-free  | ||
| 840 | 	// itself very quickly. | ||
| 841 | 	if(ReadReg(ESTAT) & ESTAT_PHYLNK) | ||
| 842 | 		BFSReg(ECON1, ECON1_TXRTS); | ||
| 843 | } | ||
| 844 | |||
| 845 | |||
| 846 | /****************************************************************************** | ||
| 847 |  * Function:        void MACSetReadPtrInRx(WORD offset) | ||
| 848 |  * | ||
| 849 |  * PreCondition:    A packet has been obtained by calling MACGetHeader() and  | ||
| 850 |  *					getting a TRUE result. | ||
| 851 |  * | ||
| 852 |  * Input:           offset: WORD specifying how many bytes beyond the Ethernet  | ||
| 853 |  *							header's type field to relocate the SPI read  | ||
| 854 |  *							pointer. | ||
| 855 |  * | ||
| 856 |  * Output:          None | ||
| 857 |  * | ||
| 858 |  * Side Effects:    None | ||
| 859 |  * | ||
| 860 |  * Overview:        SPI read pointer are updated.  All calls to  | ||
| 861 |  *					MACGet() and MACGetArray() will use these new values. | ||
| 862 |  * | ||
| 863 |  * Note:			RXSTOP must be statically defined as being > RXSTART for  | ||
| 864 |  *					this function to work correctly.  In other words, do not  | ||
| 865 |  *					define an RX buffer which spans the 0x1FFF->0x0000 memory | ||
| 866 |  *					boundary. | ||
| 867 |  *****************************************************************************/ | ||
| 868 | void MACSetReadPtrInRx(WORD offset) | ||
| 869 | { | ||
| 870 | 	WORD wReadPtr; | ||
| 871 | |||
| 872 | 	// Determine the address of the beginning of the entire packet | ||
| 873 | 	// and adjust the address to the desired location | ||
| 874 | 	wReadPtr = wCurrentPacketPointer + sizeof(ENC100_PREAMBLE) + offset; | ||
| 875 | |||
| 876 | 	// Since the receive buffer is circular, adjust if a wraparound is needed | ||
| 877 | 	if(wReadPtr > RXSTOP) | ||
| 878 | 		wReadPtr -= RXSIZE; | ||
| 879 | |||
| 880 | 	// Set the RX Window Read pointer to the new calculated value | ||
| 881 | 	WriteReg(ERXRDPT, wReadPtr); | ||
| 882 | } | ||
| 883 | |||
| 884 | |||
| 885 | /****************************************************************************** | ||
| 886 |  * Function:        PTR_BASE MACSetWritePtr(PTR_BASE address) | ||
| 887 |  * | ||
| 888 |  * PreCondition:    None | ||
| 889 |  * | ||
| 890 |  * Input:           Address: Address to seek to | ||
| 891 |  * | ||
| 892 |  * Output:          WORD: Old EWRPT location | ||
| 893 |  * | ||
| 894 |  * Side Effects:    None | ||
| 895 |  * | ||
| 896 |  * Overview:        SPI write pointer is updated.  All calls to  | ||
| 897 |  *					MACPut() and MACPutArray() will use this new value. | ||
| 898 |  * | ||
| 899 |  * Note:			None | ||
| 900 |  *****************************************************************************/ | ||
| 901 | PTR_BASE MACSetWritePtr(PTR_BASE address) | ||
| 902 | { | ||
| 903 | 	WORD wOldWritePtr; | ||
| 904 | |||
| 905 | 	wOldWritePtr = ReadReg(EGPWRPT); | ||
| 906 | |||
| 907 | 	// Set the TX Write Pointer to the new calculated value | ||
| 908 | 	WriteReg(EGPWRPT, address); | ||
| 909 | |||
| 910 | 	return wOldWritePtr; | ||
| 911 | } | ||
| 912 | |||
| 913 | |||
| 914 | /****************************************************************************** | ||
| 915 |  * Function:        PTR_BASE MACSetReadPtr(PTR_BASE Address) | ||
| 916 |  * | ||
| 917 |  * PreCondition:    None | ||
| 918 |  * | ||
| 919 |  * Input:           Address: Address to seek to | ||
| 920 |  * | ||
| 921 |  * Output:          WORD: Old ERDPT value | ||
| 922 |  * | ||
| 923 |  * Side Effects:    None | ||
| 924 |  * | ||
| 925 |  * Overview:        SPI write pointer is updated.  All calls to  | ||
| 926 |  *					MACPut() and MACPutArray() will use this new value. | ||
| 927 |  * | ||
| 928 |  * Note:			None | ||
| 929 |  *****************************************************************************/ | ||
| 930 | PTR_BASE MACSetReadPtr(PTR_BASE address) | ||
| 931 | { | ||
| 932 | 	WORD wOldReadPtr; | ||
| 933 | |||
| 934 | 	wOldReadPtr = ReadReg(ERXRDPT); | ||
| 935 | |||
| 936 | 	// Set the RX Read Pointer to the new calculated value | ||
| 937 | 	WriteReg(ERXRDPT, address); | ||
| 938 | |||
| 939 | 	return wOldReadPtr; | ||
| 940 | } | ||
| 941 | |||
| 942 | |||
| 943 | /****************************************************************************** | ||
| 944 |  * Function:        WORD MACCalcRxChecksum(WORD offset, WORD len) | ||
| 945 |  * | ||
| 946 |  * PreCondition:    None | ||
| 947 |  * | ||
| 948 |  * Input:           offset	- Number of bytes beyond the beginning of the  | ||
| 949 |  *							Ethernet data (first byte after the type field)  | ||
| 950 |  *							where the checksum should begin | ||
| 951 |  *					len		- Total number of bytes to include in the checksum | ||
| 952 |  * | ||
| 953 |  * Output:          16-bit checksum as defined by RFC 793. | ||
| 954 |  * | ||
| 955 |  * Side Effects:    None | ||
| 956 |  * | ||
| 957 |  * Overview:        This function performs a checksum calculation in the MAC | ||
| 958 |  *                  buffer itself | ||
| 959 |  * | ||
| 960 |  * Note:            None | ||
| 961 |  *****************************************************************************/ | ||
| 962 | WORD MACCalcRxChecksum(WORD offset, WORD len) | ||
| 963 | { | ||
| 964 | 	WORD wStartAddress; | ||
| 965 | |||
| 966 | 	// Add the offset requested by firmware plus the Ethernet header | ||
| 967 | 	wStartAddress = wCurrentPacketPointer + sizeof(ENC100_PREAMBLE) + offset; | ||
| 968 | 	if(wStartAddress > RXSTOP) | ||
| 969 | 		wStartAddress -= RXSIZE; | ||
| 970 | |||
| 971 | 	// If in power down, temporarily bring power up so we can use the DMA | ||
| 972 | 	if(ENC100Flags.PoweredDown) | ||
| 973 | 		BFSReg(ECON2, ECON2_ETHEN); | ||
| 974 | |||
| 975 | 	// Calculate the checksum using the ENCX24J600 DMA engine		 | ||
| 976 | 	while(ReadReg(ECON1) & ECON1_DMAST); | ||
| 977 | 	WriteReg(EDMAST, wStartAddress); | ||
| 978 | 	WriteReg(EDMALEN, len); | ||
| 979 | 	BFCReg(ECON1, ECON1_DMACPY | ECON1_DMANOCS | ECON1_DMACSSD); | ||
| 980 | 	BFSReg(ECON1, ECON1_DMAST); | ||
| 981 | 	while(ReadReg(ECON1) & ECON1_DMAST); | ||
| 982 | |||
| 983 | 	// Restore power down state, if applicable | ||
| 984 | 	if(ENC100Flags.PoweredDown) | ||
| 985 | 		BFCReg(ECON2, ECON2_ETHEN); | ||
| 986 | |||
| 987 | 	return ReadReg(EDMACS); | ||
| 988 | } | ||
| 989 | |||
| 990 | /****************************************************************************** | ||
| 991 |  * Function:        WORD CalcIPBufferChecksum(WORD len) | ||
| 992 |  * | ||
| 993 |  * PreCondition:    Read buffer pointer set to starting of checksum data | ||
| 994 |  * | ||
| 995 |  * Input:           len: Total number of bytes to calculate the checksum over.  | ||
| 996 |  *						 The first byte included in the checksum is the byte  | ||
| 997 |  *						 pointed to by ERDPT, which is updated by calls to  | ||
| 998 |  *						 MACSetReadPtr(), MACGet(), MACGetArray(),  | ||
| 999 |  *						 MACGetHeader(), etc. | ||
| 1000 |  * | ||
| 1001 |  * Output:          16-bit checksum as defined by RFC 793 | ||
| 1002 |  * | ||
| 1003 |  * Side Effects:    None | ||
| 1004 |  * | ||
| 1005 |  * Overview:        This function performs a checksum calculation in the MAC | ||
| 1006 |  *                  buffer itself.  The ENCx24J600 has a hardware DMA module  | ||
| 1007 |  *					which can calculate the checksum faster than software, so  | ||
| 1008 |  *					this function replaces the CaclIPBufferChecksum() function  | ||
| 1009 |  *					defined in the helpers.c file.  Through the use of  | ||
| 1010 |  *					preprocessor defines, this replacement is automatic. | ||
| 1011 |  * | ||
| 1012 |  * Note:            This function works either in the RX buffer area or the TX | ||
| 1013 |  *					buffer area.  No validation is done on the len parameter. | ||
| 1014 |  *****************************************************************************/ | ||
| 1015 | WORD CalcIPBufferChecksum(WORD len) | ||
| 1016 | { | ||
| 1017 | 	// If in power down, temporarily bring power up so we can use the DMA | ||
| 1018 | 	if(ENC100Flags.PoweredDown) | ||
| 1019 | 		BFSReg(ECON2, ECON2_ETHEN); | ||
| 1020 | |||
| 1021 | 	// Calculate the checksum using the ENCX24J600 DMA engine | ||
| 1022 | 	while(ReadReg(ECON1) & ECON1_DMAST); | ||
| 1023 | 	WriteReg(EDMAST, ReadReg(ERXRDPT)); | ||
| 1024 | 	WriteReg(EDMALEN, len); | ||
| 1025 | 	BFCReg(ECON1, ECON1_DMACPY | ECON1_DMANOCS | ECON1_DMACSSD); | ||
| 1026 | 	BFSReg(ECON1, ECON1_DMAST); | ||
| 1027 | 	while(ReadReg(ECON1) & ECON1_DMAST); | ||
| 1028 | |||
| 1029 | 	// Restore power down state, if applicable | ||
| 1030 | 	if(ENC100Flags.PoweredDown) | ||
| 1031 | 		BFCReg(ECON2, ECON2_ETHEN); | ||
| 1032 | |||
| 1033 | 	return ReadReg(EDMACS); | ||
| 1034 | } | ||
| 1035 | |||
| 1036 | |||
| 1037 | /***************************************************************************** | ||
| 1038 |   Function: | ||
| 1039 | 	void MACMemCopyAsync(PTR_BASE destAddr, PTR_BASE sourceAddr, WORD len) | ||
| 1040 | |||
| 1041 |   Summary: | ||
| 1042 | 	Asynchronously copies data from one address to another within the 24KB  | ||
| 1043 | 	Ethernet memory. | ||
| 1044 | |||
| 1045 |   Description: | ||
| 1046 | 	Asynchronously copies data from one address to another within the 24KB  | ||
| 1047 | 	Ethernet memory using the ENCX24J600 hardware DMA engine (very fast).   | ||
| 1048 | 	Overlapped memory regions are allowed (with restrictions).  The addresses  | ||
| 1049 | 	do not have to be aligned. | ||
| 1050 | |||
| 1051 |   Precondition: | ||
| 1052 | 	SPI bus must be initialized (done in MACInit()). | ||
| 1053 | |||
| 1054 |   Parameters: | ||
| 1055 | 	destAddr - Destination address in the Ethernet memory to copy to.  If  | ||
| 1056 | 		(PTR_BASE)-1 is specified, the current EGPWRPT value will be used  | ||
| 1057 | 		instead. | ||
| 1058 | 	sourceAddr - Source address to read from.  If (PTR_BASE)-1 is specified,  | ||
| 1059 | 		the current EGPRDPT value will be used instead. | ||
| 1060 | 	len - Number of bytes to copy | ||
| 1061 | |||
| 1062 |   Returns: | ||
| 1063 | 	None | ||
| 1064 | |||
| 1065 |   Remarks: | ||
| 1066 |   	Call MACIsMemCopyDone() to see when the transfer is complete. | ||
| 1067 | |||
| 1068 | 	Copying to a destination region that overlaps with the source address  | ||
| 1069 | 	is supported only if the destination start address is at a lower memory  | ||
| 1070 | 	address (closer to 0x0000) than the source pointer.  However, if they do  | ||
| 1071 | 	overlap there must be at least 2 bytes of non-overlap to ensure correct  | ||
| 1072 | 	results due to hardware DMA requirements.  For example, destAddr = 0;  | ||
| 1073 | 	sourceAddr = 1; is illegal while destAddr = 0; sourceAddr = 2; is fine. | ||
| 1074 | |||
| 1075 |  	If a prior transfer is already in progress prior to calling this function,  | ||
| 1076 |  	this function will block until it can start this transfer. | ||
| 1077 | |||
| 1078 |  	If (PTR_BASE)-1 is used for the sourceAddr or destAddr parameters,  | ||
| 1079 |  	then that pointer will get updated with the next address after the read or  | ||
| 1080 |  	write. | ||
| 1081 |  *****************************************************************************/ | ||
| 1082 | void MACMemCopyAsync(PTR_BASE destAddr, PTR_BASE sourceAddr, WORD len) | ||
| 1083 | { | ||
| 1084 | 	WORD wNewReadPtr; | ||
| 1085 | |||
| 1086 | 	// Decode destination and source addresses | ||
| 1087 | 	if(destAddr == (PTR_BASE)-1) | ||
| 1088 | 	{ | ||
| 1089 | 		destAddr = ReadReg(EGPWRPT); | ||
| 1090 | 		WriteReg(EGPWRPT, destAddr + len); | ||
| 1091 | 	} | ||
| 1092 | 	if(sourceAddr == (PTR_BASE)-1) | ||
| 1093 | 	{ | ||
| 1094 | 		sourceAddr = ReadReg(ERXRDPT); | ||
| 1095 | 		wNewReadPtr = sourceAddr + len; | ||
| 1096 | 		if(wNewReadPtr > RXSTOP) | ||
| 1097 | 			wNewReadPtr -= RXSIZE; | ||
| 1098 | 		WriteReg(ERXRDPT, wNewReadPtr); | ||
| 1099 | 	} | ||
| 1100 | |||
| 1101 | 	// If in power down, temporarily bring power up so we can use the DMA | ||
| 1102 | 	if(ENC100Flags.PoweredDown) | ||
| 1103 | 		BFSReg(ECON2, ECON2_ETHEN); | ||
| 1104 | |||
| 1105 | 	// Start the copy using the DMA  | ||
| 1106 | 	while(ReadReg(ECON1) & ECON1_DMAST); | ||
| 1107 | 	WriteReg(EDMAST, sourceAddr); | ||
| 1108 | 	WriteReg(EDMADST, destAddr); | ||
| 1109 | 	WriteReg(EDMALEN, len); | ||
| 1110 | 	BFSReg(ECON1, ECON1_DMAST | ECON1_DMACPY); | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | BOOL MACIsMemCopyDone(void) | ||
| 1114 | { | ||
| 1115 | 	BOOL bDone; | ||
| 1116 | |||
| 1117 | 	bDone = !(ReadReg(ECON1) & ECON1_DMAST); | ||
| 1118 | |||
| 1119 | 	// Restore power down state, if applicable | ||
| 1120 | 	if(bDone && ENC100Flags.PoweredDown) | ||
| 1121 | 		BFCReg(ECON2, ECON2_ETHEN); | ||
| 1122 | |||
| 1123 | 	return bDone; | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | |||
| 1127 | /****************************************************************************** | ||
| 1128 |  * Function:        BYTE MACGet() | ||
| 1129 |  * | ||
| 1130 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1131 |  * 					ERDPT must point to the place to read from. | ||
| 1132 |  * | ||
| 1133 |  * Input:           None | ||
| 1134 |  * | ||
| 1135 |  * Output:          Byte read from the ENCx24J600's RAM | ||
| 1136 |  * | ||
| 1137 |  * Side Effects:    None | ||
| 1138 |  * | ||
| 1139 |  * Overview:        MACGet returns the byte pointed to by ERDPT and  | ||
| 1140 |  *					increments ERDPT so MACGet() can be called again.  The  | ||
| 1141 |  *					increment will follow the receive buffer wrapping boundary. | ||
| 1142 |  * | ||
| 1143 |  * Note:            None | ||
| 1144 |  *****************************************************************************/ | ||
| 1145 | BYTE MACGet() | ||
| 1146 | { | ||
| 1147 | 	BYTE i; | ||
| 1148 | |||
| 1149 | 	ReadMemoryWindow(RX_WINDOW, &i, 1); | ||
| 1150 | 	return i; | ||
| 1151 | }//end MACGet | ||
| 1152 | |||
| 1153 | |||
| 1154 | /****************************************************************************** | ||
| 1155 |  * Function:        WORD MACGetArray(BYTE *val, WORD len) | ||
| 1156 |  * | ||
| 1157 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1158 |  * 					ERDPT must point to the place to read from. | ||
| 1159 |  * | ||
| 1160 |  * Input:           *val: Pointer to storage location | ||
| 1161 |  *					len:  Number of bytes to read from the data buffer. | ||
| 1162 |  * | ||
| 1163 |  * Output:          Byte(s) of data read from the data buffer. | ||
| 1164 |  * | ||
| 1165 |  * Side Effects:    None | ||
| 1166 |  * | ||
| 1167 |  * Overview:        Burst reads several sequential bytes from the data buffer  | ||
| 1168 |  *					and places them into local memory.  With SPI burst support,  | ||
| 1169 |  *					it performs much faster than multiple MACGet() calls. | ||
| 1170 |  *					ERDPT is incremented after each byte, following the same  | ||
| 1171 |  *					rules as MACGet(). | ||
| 1172 |  * | ||
| 1173 |  * Note:            None | ||
| 1174 |  *****************************************************************************/ | ||
| 1175 | WORD MACGetArray(BYTE *val, WORD len) | ||
| 1176 | { | ||
| 1177 | 	WORD wNewReadPtr; | ||
| 1178 | |||
| 1179 | 	if(val) | ||
| 1180 | 	{ | ||
| 1181 | 		ReadMemoryWindow(RX_WINDOW, val, len); | ||
| 1182 | 	} | ||
| 1183 | 	else | ||
| 1184 | 	{ | ||
| 1185 | 		wNewReadPtr = ReadReg(ERXRDPT) + len; | ||
| 1186 | 		if(wNewReadPtr > RXSTOP) | ||
| 1187 | 			wNewReadPtr -= RXSIZE; | ||
| 1188 | 		WriteReg(ERXRDPT, wNewReadPtr); | ||
| 1189 | 	} | ||
| 1190 | |||
| 1191 | 	return len; | ||
| 1192 | }//end MACGetArray | ||
| 1193 | |||
| 1194 | |||
| 1195 | /****************************************************************************** | ||
| 1196 |  * Function:        void MACPut(BYTE val) | ||
| 1197 |  * | ||
| 1198 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1199 |  * 					EWRPT must point to the location to begin writing. | ||
| 1200 |  * | ||
| 1201 |  * Input:           Byte to write into the ENCx24J600 buffer memory | ||
| 1202 |  * | ||
| 1203 |  * Output:          None | ||
| 1204 |  * | ||
| 1205 |  * Side Effects:    None | ||
| 1206 |  * | ||
| 1207 |  * Overview:        MACPut outputs the Write Buffer Memory opcode/constant  | ||
| 1208 |  *					(8 bits) and data to write (8 bits) over the SPI.   | ||
| 1209 |  *					EWRPT is incremented after the write. | ||
| 1210 |  * | ||
| 1211 |  * Note:            None | ||
| 1212 |  *****************************************************************************/ | ||
| 1213 | void MACPut(BYTE val) | ||
| 1214 | { | ||
| 1215 | 	WriteMemoryWindow(GP_WINDOW, &val, 1); | ||
| 1216 | }//end MACPut | ||
| 1217 | |||
| 1218 | |||
| 1219 | /****************************************************************************** | ||
| 1220 |  * Function:        void MACPutArray(BYTE *val, WORD len) | ||
| 1221 |  * | ||
| 1222 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1223 |  * 					EWRPT must point to the location to begin writing. | ||
| 1224 |  * | ||
| 1225 |  * Input:           *val: Pointer to source of bytes to copy. | ||
| 1226 |  *					len:  Number of bytes to write to the data buffer. | ||
| 1227 |  * | ||
| 1228 |  * Output:          None | ||
| 1229 |  * | ||
| 1230 |  * Side Effects:    None | ||
| 1231 |  * | ||
| 1232 |  * Overview:        MACPutArray writes several sequential bytes to the  | ||
| 1233 |  *					ENCx24J600 RAM.  It performs faster than multiple MACPut() | ||
| 1234 |  *					calls.  EWRPT is incremented by len. | ||
| 1235 |  * | ||
| 1236 |  * Note:            None | ||
| 1237 |  *****************************************************************************/ | ||
| 1238 | void MACPutArray(BYTE *val, WORD len) | ||
| 1239 | { | ||
| 1240 | 	WriteMemoryWindow(GP_WINDOW, val, len); | ||
| 1241 | }//end MACPutArray | ||
| 1242 | |||
| 1243 | |||
| 1244 | #if defined(__18CXX) | ||
| 1245 | /****************************************************************************** | ||
| 1246 |  * Function:        void MACPutROMArray(ROM BYTE *val, WORD len) | ||
| 1247 |  * | ||
| 1248 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1249 |  * 					EWRPT must point to the location to begin writing. | ||
| 1250 |  * | ||
| 1251 |  * Input:           *val: Pointer to source of bytes to copy. | ||
| 1252 |  *					len:  Number of bytes to write to the data buffer. | ||
| 1253 |  * | ||
| 1254 |  * Output:          None | ||
| 1255 |  * | ||
| 1256 |  * Side Effects:    None | ||
| 1257 |  * | ||
| 1258 |  * Overview:        MACPutArray writes several sequential bytes to the  | ||
| 1259 |  *					ENCx24J600 RAM.  It performs faster than multiple MACPut() | ||
| 1260 |  *					calls.  EWRPT is incremented by len. | ||
| 1261 |  * | ||
| 1262 |  * Note:            None | ||
| 1263 |  *****************************************************************************/ | ||
| 1264 | void MACPutROMArray(ROM BYTE *val, WORD len) | ||
| 1265 | { | ||
| 1266 | 	WORD wChunkLen; | ||
| 1267 | 	BYTE vBuffer[12]; | ||
| 1268 | |||
| 1269 | 	while(len) | ||
| 1270 | 	{ | ||
| 1271 | 		wChunkLen = sizeof(vBuffer); | ||
| 1272 | 		if(len < wChunkLen) | ||
| 1273 | 			wChunkLen = len; | ||
| 1274 | |||
| 1275 | 		memcpypgm2ram((void*)vBuffer, (ROM void*)val, wChunkLen); | ||
| 1276 | 		WriteMemoryWindow(GP_WINDOW, vBuffer, wChunkLen); | ||
| 1277 | |||
| 1278 | 		len -= wChunkLen; | ||
| 1279 | 		val += wChunkLen; | ||
| 1280 | 	} | ||
| 1281 | }//end MACPutROMArray | ||
| 1282 | #endif | ||
| 1283 | |||
| 1284 | |||
| 1285 | /****************************************************************************** | ||
| 1286 |  * Function:        void MACPowerDown(void) | ||
| 1287 |  * | ||
| 1288 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1289 |  * | ||
| 1290 |  * Input:           None | ||
| 1291 |  * | ||
| 1292 |  * Output:          None | ||
| 1293 |  * | ||
| 1294 |  * Side Effects:    None | ||
| 1295 |  * | ||
| 1296 |  * Overview:        MACPowerDown puts the ENCx24J600 in low power sleep mode. In | ||
| 1297 |  *					sleep mode, no packets can be transmitted or received.   | ||
| 1298 |  *					All MAC and PHY registers should not be accessed. | ||
| 1299 |  * | ||
| 1300 |  *					To exit power down, call MACPowerUp(). | ||
| 1301 |  * | ||
| 1302 |  * Note:            If a packet is being transmitted while this function is  | ||
| 1303 |  * 					called, this function will block until it is it complete. | ||
| 1304 |  *					If anything is being received, it will be completed. | ||
| 1305 |  *****************************************************************************/ | ||
| 1306 | void MACPowerDown(void) | ||
| 1307 | { | ||
| 1308 | 	// Disable packet reception | ||
| 1309 | 	BFCReg(ECON1, ECON1_RXEN); | ||
| 1310 | |||
| 1311 | 	// Make sure any last packet which was in-progress when RXEN was cleared  | ||
| 1312 | 	// is completed | ||
| 1313 | 	while(ReadReg(ESTAT) & ESTAT_RXBUSY); | ||
| 1314 | |||
| 1315 | 	// If a packet is being transmitted, the DMA is operating, the Modular  | ||
| 1316 | 	// Exponentiation or AES engine is running, wait for it to finish | ||
| 1317 | 	while(ReadReg(ECON1) & (ECON1_TXRTS | ECON1_DMAST | ECON1_MODEXST | ECON1_AESST)); | ||
| 1318 | |||
| 1319 | 	// Enter sleep mode | ||
| 1320 | 	ENC100Flags.PoweredDown = 1; | ||
| 1321 | 	ENC100Flags.CryptoEnabled = 0; | ||
| 1322 | 	if(ReadReg(EIR) & EIR_CRYPTEN)				// Turn off ModdEx/AES clock | ||
| 1323 | 		ToggleCRYPTEN(); | ||
| 1324 | 	WritePHYReg(PHCON1, PHCON1_PSLEEP);			// Turn off the PHY | ||
| 1325 | 	BFCReg(ECON2, ECON2_ETHEN | ECON2_STRCH);	// Turn off general internal clocks and LED stretching so they immediately turn off and don't get stuck on | ||
| 1326 | }//end MACPowerDown | ||
| 1327 | |||
| 1328 | |||
| 1329 | /****************************************************************************** | ||
| 1330 |  * Function:        void MACEDPowerDown(void) | ||
| 1331 |  * | ||
| 1332 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1333 |  * | ||
| 1334 |  * Input:           None | ||
| 1335 |  * | ||
| 1336 |  * Output:          None | ||
| 1337 |  * | ||
| 1338 |  * Side Effects:    None | ||
| 1339 |  * | ||
| 1340 |  * Overview:        MACEDPowerDown puts the ENCx24J600 PHY in Energy Detect  | ||
| 1341 |  *					mode. In this mode, the PHY will passively listen for link  | ||
| 1342 |  *					pulses and automatically link up, if detected. This can be  | ||
| 1343 |  *					detected via the MACIsLinkned() function.  This power state  | ||
| 1344 |  *					will save power only when an Ethernet cable is unattached. | ||
| 1345 |  * | ||
| 1346 |  *					To exit energy detect power down, call MACPowerUp(). | ||
| 1347 |  * | ||
| 1348 |  * Note:            The ENCx24J600 is fully operational when in energy detect  | ||
| 1349 |  *					mode.  If a Ethernet link is detected or already established, | ||
| 1350 |  *					full TX/RX activity will work as normal and no power saving  | ||
| 1351 |  *					will occur. | ||
| 1352 |  *****************************************************************************/ | ||
| 1353 | void MACEDPowerDown(void) | ||
| 1354 | { | ||
| 1355 | 	// Put the PHY into energy detect mode | ||
| 1356 | 	WritePHYReg(PHCON2, PHCON2_EDPWRDN);		 | ||
| 1357 | |||
| 1358 | 	// Go into general power down | ||
| 1359 | 	ENC100Flags.CryptoEnabled = 0; | ||
| 1360 | 	if(ReadReg(EIR) & EIR_CRYPTEN)				// Turn off ModdEx/AES clock | ||
| 1361 | 		ToggleCRYPTEN(); | ||
| 1362 | 	ENC100Flags.PoweredDown = 1; | ||
| 1363 | 	BFCReg(ECON2, ECON2_ETHEN | ECON2_STRCH);	 | ||
| 1364 | }//end MACEDPowerDown | ||
| 1365 | |||
| 1366 | /****************************************************************************** | ||
| 1367 |  * Function:        void MACPowerUp(void) | ||
| 1368 |  * | ||
| 1369 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1370 |  * | ||
| 1371 |  * Input:           None | ||
| 1372 |  * | ||
| 1373 |  * Output:          None | ||
| 1374 |  * | ||
| 1375 |  * Side Effects:    None | ||
| 1376 |  * | ||
| 1377 |  * Overview:        MACPowerUp returns the ENCx24J600 back to normal operation | ||
| 1378 |  *					after a previous call to MACPowerDown().  Calling this  | ||
| 1379 |  *					function when already powered up will have no effect. | ||
| 1380 |  * | ||
| 1381 |  * Note:            If a link partner is present, it will take 10s of  | ||
| 1382 |  *					milliseconds before a new link will be established after | ||
| 1383 |  *					waking up.  While not linked, packets which are  | ||
| 1384 |  *					transmitted will most likely be lost.  MACIsLinked() can  | ||
| 1385 |  *					be called to determine if a link is established. | ||
| 1386 |  *****************************************************************************/ | ||
| 1387 | void MACPowerUp(void) | ||
| 1388 | {	 | ||
| 1389 | 	// Start up general clocks and reenable LED stretching | ||
| 1390 | 	ENC100Flags.PoweredDown = 0; | ||
| 1391 | 	BFSReg(ECON2, ECON2_ETHEN | ECON2_STRCH); | ||
| 1392 | |||
| 1393 | 	// Power PHY back up and put in auto-negotation mode to reestablish a link | ||
| 1394 | 	if(ReadPHYReg(PHCON1) & PHCON1_PSLEEP) | ||
| 1395 | 		WritePHYReg(PHCON1, PHCON1_ANEN); | ||
| 1396 | |||
| 1397 | 	// Disable energy detect PHY power down | ||
| 1398 | 	WritePHYReg(PHCON2, 0x0000); | ||
| 1399 | |||
| 1400 | 	// Ensure the PLL and PHY are ready | ||
| 1401 | 	while(!(ReadReg(ESTAT) & (ESTAT_PHYRDY | ESTAT_CLKRDY))); | ||
| 1402 | |||
| 1403 | 	// Enable packet reception | ||
| 1404 | 	BFSReg(ECON1, ECON1_RXEN); | ||
| 1405 | }//end MACPowerUp | ||
| 1406 | |||
| 1407 | |||
| 1408 | /****************************************************************************** | ||
| 1409 |  * Function:        void SetCLKOUT(BYTE NewConfig) | ||
| 1410 |  * | ||
| 1411 |  * PreCondition:    SPI or Parallel bus must be initialized (done in MACInit()). | ||
| 1412 |  * | ||
| 1413 |  * Input:           NewConfig - 0x00: CLKOUT disabled (pin driven low) | ||
| 1414 |  *								0x01: 33.333 MHz | ||
| 1415 |  *								0x02: 25.000 MHz | ||
| 1416 |  *								0x03: 20.000 MHz | ||
| 1417 |  *								0x04: 16.667 MHz | ||
| 1418 |  *								0x05: 12.500 MHz | ||
| 1419 |  *								0x06: 10.000 MHz | ||
| 1420 |  *								0x07:  8.333 MHz | ||
| 1421 |  *								0x08:  8.000 MHz (47.5% duty cycle) | ||
| 1422 |  *								0x09:  6.250 MHz | ||
| 1423 |  *								0x0A:  5.000 MHz | ||
| 1424 |  *								0x0B:  4.000 MHz | ||
| 1425 |  *								0x0C:  3.125 MHz | ||
| 1426 |  *								0x0D: CLKOUT disabled (pin driven low) | ||
| 1427 |  *								0x0E: 100.00 kHz | ||
| 1428 |  *								0x0F:  50.00 kHz | ||
| 1429 |  * | ||
| 1430 |  * Output:          None | ||
| 1431 |  * | ||
| 1432 |  * Side Effects:    None | ||
| 1433 |  * | ||
| 1434 |  * Overview:        Writes the value of NewConfig into the COCON bits of ECON2 | ||
| 1435 |  *					register.  The CLKOUT pin will beginning outputting the  | ||
| 1436 |  *					new frequency immediately. | ||
| 1437 |  * | ||
| 1438 |  * Note:             | ||
| 1439 |  *****************************************************************************/ | ||
| 1440 | void SetCLKOUT(BYTE NewConfig) | ||
| 1441 | {	 | ||
| 1442 | 	WORD w; | ||
| 1443 | |||
| 1444 | 	w = ReadReg(ECON2) & 0xF0FF;	 | ||
| 1445 | 	((BYTE*)&w)[1] |= (NewConfig & 0x0F); | ||
| 1446 | 	WriteReg(ECON2, w); | ||
| 1447 | }//end SetCLKOUT | ||
| 1448 | |||
| 1449 | |||
| 1450 | /****************************************************************************** | ||
| 1451 |  * Function:        BYTE GetCLKOUT(void) | ||
| 1452 |  * | ||
| 1453 |  * PreCondition:    SPI or Parallel bus must be initialized (done in MACInit()). | ||
| 1454 |  * | ||
| 1455 |  * Input:           None | ||
| 1456 |  * | ||
| 1457 |  * Output:          BYTE -	0x00: CLKOUT disabled (pin driven low) | ||
| 1458 |  *							0x01: 33.333 MHz | ||
| 1459 |  *							0x02: 25.000 MHz | ||
| 1460 |  *							0x03: 20.000 MHz | ||
| 1461 |  *							0x04: 16.667 MHz | ||
| 1462 |  *							0x05: 12.500 MHz | ||
| 1463 |  *							0x06: 10.000 MHz | ||
| 1464 |  *							0x07:  8.333 MHz | ||
| 1465 |  *							0x08:  8.000 MHz (47.5% duty cycle) | ||
| 1466 |  *							0x09:  6.250 MHz | ||
| 1467 |  *							0x0A:  5.000 MHz | ||
| 1468 |  *							0x0B:  4.000 MHz | ||
| 1469 |  *							0x0C:  3.125 MHz | ||
| 1470 |  *							0x0D: CLKOUT disabled (pin driven low) | ||
| 1471 |  *							0x0E: 100.00 kHz | ||
| 1472 |  *							0x0F:  50.00 kHz | ||
| 1473 |  * | ||
| 1474 |  * Side Effects:    None | ||
| 1475 |  * | ||
| 1476 |  * Overview:        Returns the current value of the COCON bits of ECON2  | ||
| 1477 |  *					register. | ||
| 1478 |  * | ||
| 1479 |  * Note:            None | ||
| 1480 |  *****************************************************************************/ | ||
| 1481 | BYTE GetCLKOUT(void) | ||
| 1482 | {	 | ||
| 1483 | 	WORD w; | ||
| 1484 | |||
| 1485 | 	w = ReadReg(ECON2);	 | ||
| 1486 | |||
| 1487 | 	return ((BYTE*)&w)[1] & 0x0F; | ||
| 1488 | }//end GetCLKOUT | ||
| 1489 | |||
| 1490 | |||
| 1491 | /****************************************************************************** | ||
| 1492 |  * Function:        void SetRXHashTableEntry(MAC_ADDR DestMACAddr) | ||
| 1493 |  * | ||
| 1494 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 1495 |  * | ||
| 1496 |  * Input:           DestMACAddr: 6 byte group destination MAC address to allow  | ||
| 1497 |  *								 through the Hash Table Filter | ||
| 1498 |  * | ||
| 1499 |  * Output:          Sets the appropriate bit in the EHT* registers to allow  | ||
| 1500 |  *					packets sent to DestMACAddr to be received if the Hash  | ||
| 1501 |  *					Table receive filter is enabled | ||
| 1502 |  * | ||
| 1503 |  * Side Effects:    None | ||
| 1504 |  * | ||
| 1505 |  * Overview:        Calculates a CRC-32 using polynomial 0x4C11DB7 and then,  | ||
| 1506 |  *					using bits 28:23 of the CRC, sets the appropriate bit in  | ||
| 1507 |  *					the EHT* registers | ||
| 1508 |  * | ||
| 1509 |  * Note:            This code is commented out to save code space on systems  | ||
| 1510 |  *					that do not need this function.  Change the "#if 0" line  | ||
| 1511 |  *					to "#if 1" to uncomment it. | ||
| 1512 |  *****************************************************************************/ | ||
| 1513 | #if 0 | ||
| 1514 | void SetRXHashTableEntry(MAC_ADDR DestMACAddr) | ||
| 1515 | { | ||
| 1516 | 	DWORD_VAL CRC = {0xFFFFFFFF}; | ||
| 1517 | 	WORD HTRegister; | ||
| 1518 | 	BYTE i, j; | ||
| 1519 | |||
| 1520 | 	// Calculate a CRC-32 over the 6 byte MAC address  | ||
| 1521 | 	// using polynomial 0x4C11DB7 | ||
| 1522 | 	for(i = 0; i < sizeof(MAC_ADDR); i++) | ||
| 1523 | 	{ | ||
| 1524 | 		BYTE  crcnext; | ||
| 1525 | |||
| 1526 | 		// shift in 8 bits | ||
| 1527 | 		for(j = 0; j < 8; j++) | ||
| 1528 | 		{ | ||
| 1529 | 			crcnext = 0; | ||
| 1530 | 			if(((BYTE_VAL*)&(CRC.v[3]))->bits.b7) | ||
| 1531 | 				crcnext = 1; | ||
| 1532 | 			crcnext ^= (((BYTE_VAL*)&DestMACAddr.v[i])->bits.b0); | ||
| 1533 | |||
| 1534 | 			CRC.Val <<= 1; | ||
| 1535 | 			if(crcnext) | ||
| 1536 | 				CRC.Val ^= 0x4C11DB7; | ||
| 1537 | 			// next bit | ||
| 1538 | 			DestMACAddr.v[i] >>= 1; | ||
| 1539 | 		} | ||
| 1540 | 	} | ||
| 1541 | |||
| 1542 | 	// CRC-32 calculated, now extract bits 28:23 | ||
| 1543 | 	// Bits 25:23 define where within the Hash Table byte the bit needs to be set | ||
| 1544 | 	// Bits 28:26 define which of the 8 Hash Table bytes that bits 25:23 apply to | ||
| 1545 | 	i = CRC.v[3] & 0x1F; | ||
| 1546 | 	HTRegister = (i >> 2) + EHT1; | ||
| 1547 | 	i = (i << 1) & 0x06; | ||
| 1548 | 	((BYTE_VAL*)&i)->bits.b0 = ((BYTE_VAL*)&CRC.v[2])->bits.b7; | ||
| 1549 | |||
| 1550 | 	// Set the proper bit in the Hash Table | ||
| 1551 | 	BFSReg(HTRegister, 1<<i); | ||
| 1552 | } | ||
| 1553 | #endif | ||
| 1554 | |||
| 1555 | /****************************************************************************** | ||
| 1556 |  * Function:        static void SendSystemReset(void) | ||
| 1557 |  * | ||
| 1558 |  * PreCondition:    SPI or PSP bus must be initialized (done in MACInit()). | ||
| 1559 |  * | ||
| 1560 |  * Input:           None | ||
| 1561 |  * | ||
| 1562 |  * Output:          None | ||
| 1563 |  * | ||
| 1564 |  * Side Effects:    None | ||
| 1565 |  * | ||
| 1566 |  * Overview:        SendSystemReset reliably resets the Ethernet controller.   | ||
| 1567 |  *					It resets all register contents (except for COCON bits of  | ||
| 1568 |  *					ECON2) and returns the device to the power on default state. | ||
| 1569 |  *					This function should be called instead of directly  | ||
| 1570 |  *					attempting to perform a reset via the ECON2<ETHRST> bit.   | ||
| 1571 |  *					If using the PSP, SendSystemReset also does basic checks to  | ||
| 1572 |  *					look for unsoldered pins or solder bridges on the PSP pins. | ||
| 1573 |  * | ||
| 1574 |  * Note:            This function is a blocking function and will lock up the  | ||
| 1575 |  *					application if a non-recoverable problem is present.   | ||
| 1576 |  *					Possible non-recoverable problems include: | ||
| 1577 |  *						- SPI module not configured correctly | ||
| 1578 |  *						- PMP module not configured correctly | ||
| 1579 |  *						- HardwareProfile pins not defined correctly | ||
| 1580 |  *						- Solder bridge on SPI/PSP/PMP lines | ||
| 1581 |  *						- Unsoldered pins on SPI/PSP/PMP lines | ||
| 1582 |  *						- 25MHz Ethernet oscillator not running | ||
| 1583 |  *						- Vdd lower than ENCX24J600 operating range | ||
| 1584 |  *						- I/O levels out of range (for example if the PIC is at  | ||
| 1585 |  *						  2V without level shifting) | ||
| 1586 |  *						- Bus contention on SPI/PSP/PMP lines with other slaves | ||
| 1587 |  *						- One or more Vdd or Vss pins are not connected. | ||
| 1588 |  *****************************************************************************/ | ||
| 1589 | static void SendSystemReset(void) | ||
| 1590 | { | ||
| 1591 | 	// Power cycle the ENCx24J600 device, if any sort of POR pin is defined | ||
| 1592 | 	#if defined(ENC100_POR_IO) | ||
| 1593 | 		ENC100_POR_IO = 0; | ||
| 1594 | 		ENC100_POR_TRIS = 0; | ||
| 1595 | 		DelayMs(2); | ||
| 1596 | |||
| 1597 | 		// If the INT/SPISEL signal is connected, force it to the correct state  | ||
| 1598 | 		// for latching SPI or PSP mode. | ||
| 1599 | 		#if defined(ENC100_INT_TRIS)	 | ||
| 1600 | 			#if ENC100_INTERFACE_MODE == 0	// SPI | ||
| 1601 | 				ENC100_INT_IO = 1; | ||
| 1602 | 			#else	// PSP | ||
| 1603 | 				ENC100_INT_IO = 0; | ||
| 1604 | 			#endif | ||
| 1605 | 			ENC100_INT_TRIS = 0; | ||
| 1606 | 		#endif | ||
| 1607 | |||
| 1608 | 		// Turn on power and wait for interface latching to occur | ||
| 1609 | 		ENC100_POR_IO = 1; | ||
| 1610 | 		vCurrentBank = 0; | ||
| 1611 | 		Delay10us(40); | ||
| 1612 | |||
| 1613 | 		// Tri-state interrupt GPIO so that we don't cause bus contention. | ||
| 1614 | 		#if defined(ENC100_INT_TRIS) | ||
| 1615 | 			ENC100_INT_TRIS = 1; | ||
| 1616 | 		#endif | ||
| 1617 | 	#endif | ||
| 1618 | |||
| 1619 | 	// Perform a reset via the SPI/PSP interface | ||
| 1620 | 	do | ||
| 1621 | 	{ | ||
| 1622 | 		// Set and clear a few bits that clears themselves upon reset.   | ||
| 1623 | 		// If EUDAST cannot be written to and your code gets stuck in this  | ||
| 1624 | 		// loop, you have a hardware problem of some sort (SPI or PMP not  | ||
| 1625 | 		// initialized correctly, I/O pins aren't connected or are  | ||
| 1626 | 		// shorted to something, power isn't available, etc.) | ||
| 1627 | 		do | ||
| 1628 | 		{ | ||
| 1629 | 			WriteReg(EUDAST, 0x1234); | ||
| 1630 | 		} while(ReadReg(EUDAST) != 0x1234u); | ||
| 1631 | |||
| 1632 | 		// Issue a reset and wait for it to complete | ||
| 1633 | 		BFSReg(ECON2, ECON2_ETHRST); | ||
| 1634 | 		vCurrentBank = 0; | ||
| 1635 | 		while((ReadReg(ESTAT) & (ESTAT_CLKRDY | ESTAT_RSTDONE | ESTAT_PHYRDY)) != (ESTAT_CLKRDY | ESTAT_RSTDONE | ESTAT_PHYRDY)); | ||
| 1636 | 		Delay10us(3); | ||
| 1637 | |||
| 1638 | 		// Check to see if the reset operation was successful by  | ||
| 1639 | 		// checking if EUDAST went back to its reset default.  This test  | ||
| 1640 | 		// should always pass, but certain special conditions might make  | ||
| 1641 | 		// this test fail, such as a PSP pin shorted to logic high. | ||
| 1642 | 	} while(ReadReg(EUDAST) != 0x0000u); | ||
| 1643 | |||
| 1644 | |||
| 1645 | 	// Really ensure reset is done and give some time for power to be stable | ||
| 1646 | 	DelayMs(1); | ||
| 1647 | |||
| 1648 | |||
| 1649 | 	// If using PSP, verify all address and data lines are working | ||
| 1650 | 	#if (ENC100_INTERFACE_MODE >= 1) && (ENC100_INTERFACE_MODE < 9) && defined(ENC100_PSP_USE_INDIRECT_RAM_ADDRESSING) | ||
| 1651 | 	{ | ||
| 1652 | 		BYTE i; | ||
| 1653 | 		WORD wTestWriteData, wTestReadData; | ||
| 1654 | |||
| 1655 | 		// If we have a PSP interface, but are using indirect addressing, we  | ||
| 1656 | 		// can't use the ReadMemory()/WriteMemory() functions directly to access  | ||
| 1657 | 		// RAM.  Instead, lets do a simple test to verify all data lines only. | ||
| 1658 | |||
| 1659 | 		// Check marching zero data pattern, then marching one data pattern | ||
| 1660 | 		wTestWriteData = 0xFFFE; | ||
| 1661 | 		for(i = 0; i < 34u; i++) | ||
| 1662 | 		{ | ||
| 1663 | 			WriteReg(EHT1, wTestWriteData); | ||
| 1664 | 			wTestReadData = ReadReg(EHT1); | ||
| 1665 | |||
| 1666 | 			// See if the data matches.  If your application gets stuck here,  | ||
| 1667 | 			// it means you have a hardware failure.  Check all of your PSP  | ||
| 1668 | 			// address and data lines. | ||
| 1669 | 			if(wTestWriteData != wTestReadData) | ||
| 1670 | 				while(1); | ||
| 1671 | |||
| 1672 | 			// March the data over left by one bit | ||
| 1673 | 			wTestWriteData <<= 1; | ||
| 1674 | 			if(i == 16u) | ||
| 1675 | 				wTestWriteData = 0x0001; | ||
| 1676 | 			else if(i < 16u) | ||
| 1677 | 				wTestWriteData |= 0x0001; | ||
| 1678 | 		}	 | ||
| 1679 | 	} | ||
| 1680 | 	#elif (ENC100_INTERFACE_MODE >= 1) // Parallel direct addressing | ||
| 1681 | 	{ | ||
| 1682 | 		WORD w; | ||
| 1683 | 		WORD wTestWriteData, wTestReadData; | ||
| 1684 | |||
| 1685 | 		// Initialize RAM contents with a random pattern and read back to verify | ||
| 1686 | 		// This step is critical if using a PSP interface since some functionality  | ||
| 1687 | 		// may appear to work while a solder bridge or disconnect will cause  | ||
| 1688 | 		// certain memory ranges to fail. | ||
| 1689 | |||
| 1690 | 		// Generate and write random pattern | ||
| 1691 | 		srand(600); | ||
| 1692 | 		for(w = 0; w < ENC100_RAM_SIZE; w += sizeof(wTestWriteData)) | ||
| 1693 | 		{ | ||
| 1694 | 			wTestWriteData = rand() + rand(); | ||
| 1695 | 			WriteMemory(w, (BYTE*)&wTestWriteData, sizeof(wTestWriteData)); | ||
| 1696 | 			ReadMemory(w, (BYTE*)&wTestReadData, sizeof(wTestReadData)); | ||
| 1697 | |||
| 1698 | 			// See if the data matches.  If your application gets stuck here,  | ||
| 1699 | 			// it means you have a hardware failure.  Check all of your PSP  | ||
| 1700 | 			// address and data lines. | ||
| 1701 | 			if(wTestWriteData != wTestReadData) | ||
| 1702 | 				while(1); | ||
| 1703 | 		} | ||
| 1704 | |||
| 1705 | 		// Read back and verify random pattern | ||
| 1706 | 		srand(600); | ||
| 1707 | 		for(w = 0; w < ENC100_RAM_SIZE; w += sizeof(wTestWriteData)) | ||
| 1708 | 		{ | ||
| 1709 | 			wTestWriteData = rand() + rand(); | ||
| 1710 | 			ReadMemory(w, (BYTE*)&wTestReadData, sizeof(wTestReadData)); | ||
| 1711 | |||
| 1712 | 			// See if the data matches.  If your application gets stuck here,  | ||
| 1713 | 			// it means you have a hardware failure.  Check all of your PSP  | ||
| 1714 | 			// address and data lines. | ||
| 1715 | 			if(wTestWriteData != wTestReadData) | ||
| 1716 | 				while(1); | ||
| 1717 | 		} | ||
| 1718 | 	} | ||
| 1719 | 	#endif | ||
| 1720 | |||
| 1721 | }//end SendSystemReset | ||
| 1722 | |||
| 1723 | |||
| 1724 | #if ENC100_INTERFACE_MODE	// WriteMemory() is not currently needed in SPI mode | ||
| 1725 | /****************************************************************************** | ||
| 1726 |  * Function:        void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength) | ||
| 1727 |  * | ||
| 1728 |  * PreCondition:    None | ||
| 1729 |  * | ||
| 1730 |  * Input:           wAddress: ENCX24J600 RAM or SFR address to write to | ||
| 1731 |  *					*vData: Pointer to local PIC RAM which needs to be written  | ||
| 1732 |  *							to the ENCX24J600 | ||
| 1733 |  *					wLength: Number of bytes to copy from vData to wAddress | ||
| 1734 |  * | ||
| 1735 |  * Output:          None | ||
| 1736 |  * | ||
| 1737 |  * Side Effects:    None | ||
| 1738 |  * | ||
| 1739 |  * Overview:        Copys 0 or more bytes to the ENCX24J600 RAM | ||
| 1740 |  * | ||
| 1741 |  * Note:            Can be used to access SFRs and ESFRs when using PSP | ||
| 1742 |  *****************************************************************************/ | ||
| 1743 | void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength) | ||
| 1744 | { | ||
| 1745 | 	BOOL bISREnabled; | ||
| 1746 | |||
| 1747 | 	if(wLength == 0u) | ||
| 1748 | 		return; | ||
| 1749 | |||
| 1750 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 1751 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 1752 | 		ENC100_ISR_ENABLE = 0; | ||
| 1753 | 	#endif | ||
| 1754 | |||
| 1755 | 	#if !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6)) | ||
| 1756 | 	{ | ||
| 1757 | 		ConfigurePMPModule(); | ||
| 1758 | 		AssertChipSelect(); | ||
| 1759 | 		while(wLength--) | ||
| 1760 | 		{ | ||
| 1761 | 			PMADDR = wAddress++;	// NOTE: Performance might be improvable if you use PMP address increment | ||
| 1762 | 			while(PMMODEbits.BUSY); | ||
| 1763 | 			PMDIN1 = *vData++; | ||
| 1764 | 		} | ||
| 1765 | 		while(PMMODEbits.BUSY); | ||
| 1766 | 		DeassertChipSelect(); | ||
| 1767 | 		PMCONbits.PMPEN = 0; | ||
| 1768 | 	} | ||
| 1769 | 	#elif !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) | ||
| 1770 | 	{ | ||
| 1771 | 		WORD wWORDAddress; | ||
| 1772 | 		volatile WORD wDummy; | ||
| 1773 | |||
| 1774 | 		wWORDAddress = wAddress>>1; | ||
| 1775 | 		ConfigurePMPModule(); | ||
| 1776 | 		AssertChipSelect(); | ||
| 1777 | 		if(wAddress & 0x1)		 | ||
| 1778 | 		{ | ||
| 1779 | 			PMADDR = wWORDAddress++; | ||
| 1780 | 			wDummy = PMDIN1;		// Can't write to a single byte address by itself, so we will do a read-modify-write | ||
| 1781 | 			wLength--; | ||
| 1782 | 			((BYTE*)&wDummy)[1] = *vData++; | ||
| 1783 | 			while(PMMODEbits.BUSY); | ||
| 1784 | 			((BYTE*)&wDummy)[0] = ((BYTE*)&PMDIN1)[0]; | ||
| 1785 | 			while(PMMODEbits.BUSY); | ||
| 1786 | 			PMDIN1 = wDummy; | ||
| 1787 | 		} | ||
| 1788 | 		while(wLength >= 2u) | ||
| 1789 | 		{ | ||
| 1790 | 			PMADDR = wWORDAddress++;	// NOTE: Performance might be improvable if you use PMP address increment | ||
| 1791 | 			wLength -= 2; | ||
| 1792 | 			((BYTE*)&wDummy)[0] = *vData++; | ||
| 1793 | 			((BYTE*)&wDummy)[1] = *vData++; | ||
| 1794 | 			while(PMMODEbits.BUSY); | ||
| 1795 | 			PMDIN1 = wDummy; | ||
| 1796 | 		} | ||
| 1797 | 		if(wLength) | ||
| 1798 | 		{ | ||
| 1799 | 			PMADDR = wWORDAddress; | ||
| 1800 | 			wDummy = PMDIN1;		// Can't write to a single byte address by itself, so we will do a read-modify-write | ||
| 1801 | 			((BYTE*)&wDummy)[0] = *vData++; | ||
| 1802 | 			while(PMMODEbits.BUSY); | ||
| 1803 | 			((BYTE*)&wDummy)[1] = ((BYTE*)&PMDIN1)[1]; | ||
| 1804 | 			while(PMMODEbits.BUSY); | ||
| 1805 | 			PMDIN1 = wDummy; | ||
| 1806 | 		}		 | ||
| 1807 | 		while(PMMODEbits.BUSY); | ||
| 1808 | 		DeassertChipSelect(); | ||
| 1809 | 		PMCONbits.PMPEN = 0; | ||
| 1810 | 	} | ||
| 1811 | 	#elif ENC100_INTERFACE_MODE == 1 | ||
| 1812 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 1813 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1814 | 		AssertChipSelect(); | ||
| 1815 | 		while(wLength--) | ||
| 1816 | 		{ | ||
| 1817 | 			ENC100_SET_ADDR_IO(wAddress++); | ||
| 1818 | 			ENC100_SET_AD_IO(*vData++); | ||
| 1819 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1820 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1821 | 		} | ||
| 1822 | 		DeassertChipSelect(); | ||
| 1823 | 	#elif ENC100_INTERFACE_MODE == 2 | ||
| 1824 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 1825 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1826 | 		AssertChipSelect(); | ||
| 1827 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 1828 | 		while(wLength--) | ||
| 1829 | 		{ | ||
| 1830 | 			ENC100_SET_ADDR_IO(wAddress++); | ||
| 1831 | 			ENC100_SET_AD_IO(*vData++); | ||
| 1832 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1833 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1834 | 		} | ||
| 1835 | 		DeassertChipSelect(); | ||
| 1836 | 	#elif ENC100_INTERFACE_MODE == 3 | ||
| 1837 | 	{ | ||
| 1838 | 		WORD wData; | ||
| 1839 | |||
| 1840 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 1841 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1842 | 		AssertChipSelect(); | ||
| 1843 | 		if(wAddress & 0x1)		// Write high byte to odd address, if not WORD aligned | ||
| 1844 | 		{ | ||
| 1845 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1846 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 1847 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 1848 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 1849 | 				DelaySetupHold(); | ||
| 1850 | 				((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); | ||
| 1851 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 1852 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 1853 | 			#endif | ||
| 1854 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 1855 | 			ENC100_SET_AD_IO(wData); | ||
| 1856 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 1857 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 1858 | 			wAddress++; | ||
| 1859 | 			wLength--; | ||
| 1860 | 		} | ||
| 1861 | 		while(wLength >= 2u)		// Write all possible WORDs | ||
| 1862 | 		{ | ||
| 1863 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1864 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 1865 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 1866 | 			ENC100_SET_AD_IO(wData); | ||
| 1867 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1868 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 1869 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1870 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 1871 | 			wAddress += 2; | ||
| 1872 | 			wLength -= 2; | ||
| 1873 | 		} | ||
| 1874 | 		if(wLength)				// Write final byte to low byte address, if needed | ||
| 1875 | 		{ | ||
| 1876 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1877 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 1878 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 1879 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 1880 | 				DelaySetupHold(); | ||
| 1881 | 				((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); | ||
| 1882 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 1883 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 1884 | 			#endif | ||
| 1885 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 1886 | 			ENC100_SET_AD_IO(wData); | ||
| 1887 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1888 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1889 | 		} | ||
| 1890 | 		DeassertChipSelect(); | ||
| 1891 | 	} | ||
| 1892 | 	#elif ENC100_INTERFACE_MODE == 4 | ||
| 1893 | 	{ | ||
| 1894 | 		WORD wData; | ||
| 1895 | |||
| 1896 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 1897 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1898 | 		AssertChipSelect(); | ||
| 1899 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 1900 | 		if(wAddress & 0x1)		// Write high byte to odd address, if not WORD aligned | ||
| 1901 | 		{ | ||
| 1902 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1903 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 1904 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 1905 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 1906 | 				ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1907 | 				DelaySetupHold(); | ||
| 1908 | 				((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); | ||
| 1909 | 				ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1910 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 1911 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 1912 | 			#endif | ||
| 1913 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 1914 | 			ENC100_SET_AD_IO(wData); | ||
| 1915 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 1916 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 1917 | 			wAddress++; | ||
| 1918 | 			wLength--; | ||
| 1919 | 		} | ||
| 1920 | 		while(wLength >= 2u)		// Write all possible WORDs | ||
| 1921 | 		{ | ||
| 1922 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1923 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 1924 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 1925 | 			ENC100_SET_AD_IO(wData); | ||
| 1926 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1927 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 1928 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1929 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 1930 | 			wAddress += 2; | ||
| 1931 | 			wLength -= 2; | ||
| 1932 | 		} | ||
| 1933 | 		if(wLength)				// Write final byte to low byte address, if needed | ||
| 1934 | 		{ | ||
| 1935 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 1936 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 1937 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 1938 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 1939 | 				ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1940 | 				DelaySetupHold(); | ||
| 1941 | 				((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); | ||
| 1942 | 				ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1943 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 1944 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 1945 | 			#endif | ||
| 1946 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 1947 | 			ENC100_SET_AD_IO(wData); | ||
| 1948 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1949 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1950 | 		} | ||
| 1951 | 		DeassertChipSelect(); | ||
| 1952 | 	} | ||
| 1953 | 	#elif ENC100_INTERFACE_MODE == 5 | ||
| 1954 | 	{ | ||
| 1955 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1956 | 		AssertChipSelect(); | ||
| 1957 | 		while(wLength--) | ||
| 1958 | 		{ | ||
| 1959 | 			ENC100_SET_AD_IO(wAddress); | ||
| 1960 | 			ENC100_SCK_AL_IO = 1; | ||
| 1961 | 			ENC100_SCK_AL_IO = 0; | ||
| 1962 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 1963 | 			wAddress++; | ||
| 1964 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1965 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1966 | 		} | ||
| 1967 | 		DeassertChipSelect(); | ||
| 1968 | 	} | ||
| 1969 | 	#elif ENC100_INTERFACE_MODE == 6 | ||
| 1970 | 	{ | ||
| 1971 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1972 | 		AssertChipSelect(); | ||
| 1973 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 1974 | 		while(wLength--) | ||
| 1975 | 		{ | ||
| 1976 | 			ENC100_SET_AD_IO(wAddress); | ||
| 1977 | 			ENC100_SCK_AL_IO = 1; | ||
| 1978 | 			ENC100_SCK_AL_IO = 0; | ||
| 1979 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 1980 | 			wAddress++; | ||
| 1981 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 1982 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 1983 | 		} | ||
| 1984 | 		DeassertChipSelect(); | ||
| 1985 | 	} | ||
| 1986 | 	#elif ENC100_INTERFACE_MODE == 9 | ||
| 1987 | 	{ | ||
| 1988 | 		WORD wData; | ||
| 1989 | |||
| 1990 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 1991 | 		AssertChipSelect(); | ||
| 1992 | 		if(wAddress & 0x1)		// Write high byte to odd address, if not WORD aligned | ||
| 1993 | 		{ | ||
| 1994 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 1995 | 			ENC100_SCK_AL_IO = 1; | ||
| 1996 | 			ENC100_SCK_AL_IO = 0; | ||
| 1997 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 1998 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 1999 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 2000 | 				DelaySetupHold(); | ||
| 2001 | 				((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); | ||
| 2002 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 2003 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 2004 | 			#endif | ||
| 2005 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 2006 | 			ENC100_SET_AD_IO(wData); | ||
| 2007 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 2008 | 			wAddress++; | ||
| 2009 | 			wLength--; | ||
| 2010 | 			DelaySetupHold(); | ||
| 2011 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 2012 | 		} | ||
| 2013 | 		while(wLength >= 2u)		// Write all possible WORDs | ||
| 2014 | 		{ | ||
| 2015 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2016 | 			ENC100_SCK_AL_IO = 1; | ||
| 2017 | 			ENC100_SCK_AL_IO = 0; | ||
| 2018 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 2019 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 2020 | 			ENC100_SET_AD_IO(wData); | ||
| 2021 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2022 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 2023 | 			wAddress += 2; | ||
| 2024 | 			wLength -= 2; | ||
| 2025 | 			DelaySetupHold(); | ||
| 2026 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2027 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 2028 | 		} | ||
| 2029 | 		if(wLength)				// Write final byte to low byte address, if needed | ||
| 2030 | 		{ | ||
| 2031 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2032 | 			ENC100_SCK_AL_IO = 1; | ||
| 2033 | 			ENC100_SCK_AL_IO = 0; | ||
| 2034 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 2035 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 2036 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 2037 | 				DelaySetupHold(); | ||
| 2038 | 				((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); | ||
| 2039 | 				ENC100_SI_RD_RW_IO = 0; | ||
| 2040 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 2041 | 			#endif | ||
| 2042 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 2043 | 			ENC100_SET_AD_IO(wData); | ||
| 2044 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2045 | 			DelaySetupHold(); | ||
| 2046 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2047 | 		} | ||
| 2048 | 		DeassertChipSelect(); | ||
| 2049 | 	} | ||
| 2050 | 	#elif ENC100_INTERFACE_MODE == 10 | ||
| 2051 | 	{ | ||
| 2052 | 		WORD wData; | ||
| 2053 | |||
| 2054 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2055 | 		AssertChipSelect(); | ||
| 2056 | 		if(wAddress & 0x1)		// Write high byte to odd address, if not WORD aligned | ||
| 2057 | 		{ | ||
| 2058 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2059 | 			ENC100_SCK_AL_IO = 1; | ||
| 2060 | 			ENC100_SCK_AL_IO = 0; | ||
| 2061 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 2062 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 2063 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 2064 | 				ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2065 | 				DelaySetupHold(); | ||
| 2066 | 				((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); | ||
| 2067 | 				ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2068 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 2069 | 			#endif | ||
| 2070 | 			ENC100_SI_RD_RW_IO = 0; | ||
| 2071 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 2072 | 			ENC100_SET_AD_IO(wData); | ||
| 2073 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 2074 | 			wAddress++; | ||
| 2075 | 			wLength--; | ||
| 2076 | 			DelaySetupHold(); | ||
| 2077 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 2078 | 		} | ||
| 2079 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 2080 | 		while(wLength >= 2u)		// Write all possible WORDs | ||
| 2081 | 		{ | ||
| 2082 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2083 | 			ENC100_SCK_AL_IO = 1; | ||
| 2084 | 			ENC100_SCK_AL_IO = 0; | ||
| 2085 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 2086 | 			((BYTE*)&wData)[1] = *vData++; | ||
| 2087 | 			ENC100_SET_AD_IO(wData); | ||
| 2088 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2089 | 			ENC100_WRH_B1SEL_IO = 1; | ||
| 2090 | 			wAddress += 2; | ||
| 2091 | 			wLength -= 2; | ||
| 2092 | 			DelaySetupHold(); | ||
| 2093 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2094 | 			ENC100_WRH_B1SEL_IO = 0; | ||
| 2095 | 		} | ||
| 2096 | 		if(wLength)				// Write final byte to low byte address, if needed | ||
| 2097 | 		{ | ||
| 2098 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2099 | 			ENC100_SCK_AL_IO = 1; | ||
| 2100 | 			ENC100_SCK_AL_IO = 0; | ||
| 2101 | 			#if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO	// Word writes only -- need to perform read-modify-write | ||
| 2102 | 				ENC100_SET_AD_TRIS_IN(); | ||
| 2103 | 				ENC100_SI_RD_RW_IO = 1; | ||
| 2104 | 				ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2105 | 				DelaySetupHold(); | ||
| 2106 | 				((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); | ||
| 2107 | 				ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2108 | 				ENC100_SET_AD_TRIS_OUT(); | ||
| 2109 | 			#endif | ||
| 2110 | 			ENC100_SI_RD_RW_IO = 0; | ||
| 2111 | 			((BYTE*)&wData)[0] = *vData++; | ||
| 2112 | 			ENC100_SET_AD_IO(wData); | ||
| 2113 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2114 | 			DelaySetupHold(); | ||
| 2115 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2116 | 		} | ||
| 2117 | 		DeassertChipSelect(); | ||
| 2118 | 	} | ||
| 2119 | 	#else	// SPI mode | ||
| 2120 | 	{ | ||
| 2121 | 		WORD w; | ||
| 2122 | |||
| 2123 | 		// Use RX window | ||
| 2124 | 		w = Execute2(RRXWRPT, 0x0000); | ||
| 2125 | 		Execute2(WRXWRPT, wAddress); | ||
| 2126 | 		WriteN(WBMRX, vData, wLength); | ||
| 2127 | 		Execute2(WRXWRPT, w); | ||
| 2128 | 	} | ||
| 2129 | 	#endif | ||
| 2130 | |||
| 2131 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2132 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2133 | 	#endif | ||
| 2134 | } | ||
| 2135 | #endif | ||
| 2136 | |||
| 2137 | |||
| 2138 | /****************************************************************************** | ||
| 2139 |  * Function:        void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) | ||
| 2140 |  * | ||
| 2141 |  * PreCondition:    None | ||
| 2142 |  * | ||
| 2143 |  * Input:           vWindow: UDA_WINDOW, GP_WINDOW, or RX_WINDOW corresponding  | ||
| 2144 |  *							 to the window register to write to | ||
| 2145 |  *					*vData: Pointer to local PIC RAM which contains the  | ||
| 2146 |  *							source data | ||
| 2147 |  *					wLength: Number of bytes to copy from vData to window | ||
| 2148 |  * | ||
| 2149 |  * Output:          None | ||
| 2150 |  * | ||
| 2151 |  * Side Effects:    None | ||
| 2152 |  * | ||
| 2153 |  * Overview:        Copys 0 or more bytes from CPU RAM to the ENCX24J600  | ||
| 2154 |  *					Family RAM using one of the UDA, TX, or RX write window  | ||
| 2155 |  *					pointers.  This pointer is incremented by the number of  | ||
| 2156 |  *					bytes writen. | ||
| 2157 |  * | ||
| 2158 |  * Note:            None | ||
| 2159 |  *****************************************************************************/ | ||
| 2160 |  void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) | ||
| 2161 | { | ||
| 2162 | 	BOOL bISREnabled; | ||
| 2163 | |||
| 2164 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 2165 | 		WORD wAddress; | ||
| 2166 | 	#endif | ||
| 2167 | |||
| 2168 | 	// If we are in the middle of a SPI/PSP read/write operation, an interrupt  | ||
| 2169 | 	// cannot be immediately processed (which would also require SPI/PSP  | ||
| 2170 | 	// read/write operations).  Therefore, we must disable the Ethernet  | ||
| 2171 | 	// interrupt temporarily to ensure this illegal reentrancy doesn't occur. | ||
| 2172 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2173 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2174 | 		ENC100_ISR_ENABLE = 0; | ||
| 2175 | 	#endif | ||
| 2176 | |||
| 2177 | 	// Decode the vWindow handle to the litteral SFR address to read/write from/to | ||
| 2178 | 	#if (ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) | ||
| 2179 | 		wAddress = EUDADATA; | ||
| 2180 | 		if(vWindow & GP_WINDOW) | ||
| 2181 | 			wAddress = EGPDATA; | ||
| 2182 | 		if(vWindow & RX_WINDOW) | ||
| 2183 | 			wAddress = ERXDATA; | ||
| 2184 | 	#elif (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10) | ||
| 2185 | 		wAddress = (EUDADATA>>1); | ||
| 2186 | 		if(vWindow & GP_WINDOW) | ||
| 2187 | 			wAddress = (EGPDATA>>1); | ||
| 2188 | 		if(vWindow & RX_WINDOW) | ||
| 2189 | 			wAddress = (ERXDATA>>1); | ||
| 2190 | 	#endif | ||
| 2191 | |||
| 2192 | 	#if (ENC100_INTERFACE_MODE >= 1) && !defined(ENC100_BIT_BANG_PMP)	// PMP under hardware control | ||
| 2193 | 	{	 | ||
| 2194 | 		ConfigurePMPModule(); | ||
| 2195 | 		AssertChipSelect(); | ||
| 2196 | 		PMADDR = wAddress; | ||
| 2197 | 		while(wLength--) | ||
| 2198 | 		{ | ||
| 2199 | 			while(PMMODEbits.BUSY); | ||
| 2200 | 			PMDIN1 = *vData++; | ||
| 2201 | 		} | ||
| 2202 | 		while(PMMODEbits.BUSY); | ||
| 2203 | 		DeassertChipSelect(); | ||
| 2204 | 		PMCONbits.PMPEN = 0; | ||
| 2205 | 	} | ||
| 2206 | 	#elif ENC100_INTERFACE_MODE == 1	// Bit bang PMP | ||
| 2207 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2208 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2209 | 		AssertChipSelect(); | ||
| 2210 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2211 | 		while(wLength--) | ||
| 2212 | 		{ | ||
| 2213 | 			ENC100_SET_AD_IO(*vData++); | ||
| 2214 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2215 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2216 | 		} | ||
| 2217 | 		DeassertChipSelect(); | ||
| 2218 | 	#elif ENC100_INTERFACE_MODE == 2		// Bit bang PMP | ||
| 2219 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2220 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2221 | 		AssertChipSelect(); | ||
| 2222 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 2223 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2224 | 		while(wLength--) | ||
| 2225 | 		{ | ||
| 2226 | 			ENC100_SET_AD_IO(*vData++); | ||
| 2227 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2228 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2229 | 		} | ||
| 2230 | 		DeassertChipSelect(); | ||
| 2231 | 	#elif ENC100_INTERFACE_MODE == 3		// Bit bang PMP | ||
| 2232 | 	{ | ||
| 2233 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2234 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2235 | 		AssertChipSelect(); | ||
| 2236 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2237 | 		while(wLength--) | ||
| 2238 | 		{ | ||
| 2239 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 2240 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2241 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2242 | 		} | ||
| 2243 | 		DeassertChipSelect(); | ||
| 2244 | 	} | ||
| 2245 | 	#elif ENC100_INTERFACE_MODE == 4		// Bit bang PMP | ||
| 2246 | 	{ | ||
| 2247 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2248 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2249 | 		AssertChipSelect(); | ||
| 2250 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 2251 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2252 | 		while(wLength--) | ||
| 2253 | 		{ | ||
| 2254 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 2255 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2256 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2257 | 		} | ||
| 2258 | 		DeassertChipSelect(); | ||
| 2259 | 	} | ||
| 2260 | 	#elif ENC100_INTERFACE_MODE == 5		// Bit bang PMP | ||
| 2261 | 	{ | ||
| 2262 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2263 | 		AssertChipSelect(); | ||
| 2264 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2265 | 		ENC100_SCK_AL_IO = 1; | ||
| 2266 | 		ENC100_SCK_AL_IO = 0; | ||
| 2267 | 		while(wLength--) | ||
| 2268 | 		{ | ||
| 2269 | 			ENC100_SET_AD_IO(*vData++); | ||
| 2270 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2271 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2272 | 		} | ||
| 2273 | 		DeassertChipSelect(); | ||
| 2274 | 	} | ||
| 2275 | 	#elif ENC100_INTERFACE_MODE == 6		// Bit bang PMP | ||
| 2276 | 	{ | ||
| 2277 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2278 | 		AssertChipSelect(); | ||
| 2279 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 2280 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2281 | 		ENC100_SCK_AL_IO = 1; | ||
| 2282 | 		ENC100_SCK_AL_IO = 0; | ||
| 2283 | 		while(wLength--) | ||
| 2284 | 		{ | ||
| 2285 | 			ENC100_SET_AD_IO(*vData++); | ||
| 2286 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2287 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2288 | 		} | ||
| 2289 | 		DeassertChipSelect(); | ||
| 2290 | 	} | ||
| 2291 | 	#elif ENC100_INTERFACE_MODE == 9		// Bit bang PMP | ||
| 2292 | 	{ | ||
| 2293 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2294 | 		AssertChipSelect(); | ||
| 2295 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2296 | 		ENC100_SCK_AL_IO = 1; | ||
| 2297 | 		ENC100_SCK_AL_IO = 0; | ||
| 2298 | 		while(wLength--) | ||
| 2299 | 		{ | ||
| 2300 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 2301 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2302 | 			DelaySetupHold(); | ||
| 2303 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2304 | 		} | ||
| 2305 | 		DeassertChipSelect(); | ||
| 2306 | 	} | ||
| 2307 | 	#elif ENC100_INTERFACE_MODE == 10		// Bit bang PMP | ||
| 2308 | 	{ | ||
| 2309 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2310 | 		AssertChipSelect(); | ||
| 2311 | 		ENC100_SI_RD_RW_IO = 0; | ||
| 2312 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2313 | 		ENC100_SCK_AL_IO = 1; | ||
| 2314 | 		ENC100_SCK_AL_IO = 0; | ||
| 2315 | 		while(wLength--) | ||
| 2316 | 		{ | ||
| 2317 | 			ENC100_SET_AD_IOL(*vData++); | ||
| 2318 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2319 | 			DelaySetupHold(); | ||
| 2320 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2321 | 		} | ||
| 2322 | 		DeassertChipSelect(); | ||
| 2323 | 	} | ||
| 2324 | 	#else	// SPI mode | ||
| 2325 | 	{ | ||
| 2326 | 		BYTE vOpcode; | ||
| 2327 | |||
| 2328 | 		vOpcode = WBMUDA; | ||
| 2329 | 		if(vWindow & GP_WINDOW) | ||
| 2330 | 			vOpcode = WBMGP; | ||
| 2331 | 		if(vWindow & RX_WINDOW) | ||
| 2332 | 			vOpcode = WBMRX; | ||
| 2333 | |||
| 2334 | 		WriteN(vOpcode, vData, wLength); | ||
| 2335 | 	} | ||
| 2336 | 	#endif | ||
| 2337 | |||
| 2338 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2339 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2340 | 	#endif | ||
| 2341 | } | ||
| 2342 | |||
| 2343 | |||
| 2344 | #if ENC100_INTERFACE_MODE	// ReadMemory() is not currently needed in SPI mode | ||
| 2345 | /****************************************************************************** | ||
| 2346 |  * Function:        void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength) | ||
| 2347 |  * | ||
| 2348 |  * PreCondition:    None | ||
| 2349 |  * | ||
| 2350 |  * Input:           wAddress: ENCX24J600 RAM or SFR address to read from | ||
| 2351 |  *					*vData: Pointer to local PIC RAM which will be written  | ||
| 2352 |  *							with data from the ENCX24J600. | ||
| 2353 |  *					wLength: Number of bytes to copy from wAddress to vData | ||
| 2354 |  * | ||
| 2355 |  * Output:          None | ||
| 2356 |  * | ||
| 2357 |  * Side Effects:    None | ||
| 2358 |  * | ||
| 2359 |  * Overview:        Copys 0 or more bytes from the ENCX24J600 RAM | ||
| 2360 |  * | ||
| 2361 |  * Note:            Can be used to access SFRs and ESFRs when using PSP | ||
| 2362 |  *****************************************************************************/ | ||
| 2363 | void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength) | ||
| 2364 | { | ||
| 2365 | 	BOOL bISREnabled; | ||
| 2366 | |||
| 2367 | 	if(wLength == 0u) | ||
| 2368 | 		return; | ||
| 2369 | |||
| 2370 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2371 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2372 | 		ENC100_ISR_ENABLE = 0; | ||
| 2373 | 	#endif | ||
| 2374 | |||
| 2375 | 	#if !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6)) | ||
| 2376 | 	{ | ||
| 2377 | 		volatile BYTE vDummy; | ||
| 2378 | |||
| 2379 | 		ConfigurePMPModule(); | ||
| 2380 | 		AssertChipSelect(); | ||
| 2381 | 		PMADDR = wAddress++; | ||
| 2382 | 		vDummy = PMDIN1; | ||
| 2383 | 		while(--wLength) | ||
| 2384 | 		{ | ||
| 2385 | 			PMADDR = wAddress++; | ||
| 2386 | 			while(PMMODEbits.BUSY); | ||
| 2387 | 			*vData++ = PMDIN1; | ||
| 2388 | 		} | ||
| 2389 | 		while(PMMODEbits.BUSY); | ||
| 2390 | 		DeassertChipSelect(); | ||
| 2391 | 		*vData = PMDIN1; | ||
| 2392 | 		PMCONbits.PMPEN = 0; | ||
| 2393 | 	} | ||
| 2394 | 	#elif !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) | ||
| 2395 | 	{ | ||
| 2396 | 		WORD wWORDAddress; | ||
| 2397 | 		volatile WORD wDummy; | ||
| 2398 | |||
| 2399 | 		wWORDAddress = wAddress>>1; | ||
| 2400 | 		ConfigurePMPModule(); | ||
| 2401 | 		AssertChipSelect(); | ||
| 2402 | 		PMADDR = wWORDAddress++; | ||
| 2403 | 		wDummy = PMDIN1; | ||
| 2404 | 		if(wAddress & 0x1) | ||
| 2405 | 		{ | ||
| 2406 | 			PMADDR = wWORDAddress++; | ||
| 2407 | 			wLength--; | ||
| 2408 | 			while(PMMODEbits.BUSY); | ||
| 2409 | 			*vData++ = ((BYTE*)&PMDIN1)[1]; | ||
| 2410 | 		} | ||
| 2411 | 		while(wLength >= 2) | ||
| 2412 | 		{ | ||
| 2413 | 			PMADDR = wWORDAddress++; | ||
| 2414 | 			wLength -= 2; | ||
| 2415 | 			while(PMMODEbits.BUSY); | ||
| 2416 | 			wDummy = PMDIN1; | ||
| 2417 | 			*vData++ = ((BYTE*)&wDummy)[0]; | ||
| 2418 | 			*vData++ = ((BYTE*)&wDummy)[1]; | ||
| 2419 | 		} | ||
| 2420 | 		if(wLength) | ||
| 2421 | 		{ | ||
| 2422 | 			while(PMMODEbits.BUSY); | ||
| 2423 | 			*vData = ((BYTE*)&PMDIN1)[0]; | ||
| 2424 | 		} | ||
| 2425 | 		DeassertChipSelect(); | ||
| 2426 | 		PMCONbits.PMPEN = 0; | ||
| 2427 | 	} | ||
| 2428 | 	#elif ENC100_INTERFACE_MODE == 1 | ||
| 2429 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2430 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2431 | 		AssertChipSelect(); | ||
| 2432 | 		while(wLength--) | ||
| 2433 | 		{ | ||
| 2434 | 			ENC100_SET_ADDR_IO(wAddress); | ||
| 2435 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2436 | 			wAddress++; | ||
| 2437 | 			DelaySetupHold(); | ||
| 2438 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2439 | 			ENC100_SI_RD_RW_IO = 0; | ||
| 2440 | 		} | ||
| 2441 | 		DeassertChipSelect(); | ||
| 2442 | |||
| 2443 | 	#elif ENC100_INTERFACE_MODE == 2 | ||
| 2444 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2445 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2446 | 		AssertChipSelect(); | ||
| 2447 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2448 | 		while(wLength--) | ||
| 2449 | 		{ | ||
| 2450 | 			ENC100_SET_ADDR_IO(wAddress); | ||
| 2451 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2452 | 			wAddress++; | ||
| 2453 | 			DelaySetupHold(); | ||
| 2454 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2455 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2456 | 		} | ||
| 2457 | 		DeassertChipSelect(); | ||
| 2458 | |||
| 2459 | 	#elif ENC100_INTERFACE_MODE == 3 | ||
| 2460 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2461 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2462 | 		AssertChipSelect(); | ||
| 2463 | 		if(wAddress & 0x1)		// Read from high byte if not WORD aligned | ||
| 2464 | 		{ | ||
| 2465 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2466 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2467 | 			DelaySetupHold(); | ||
| 2468 | 			wAddress++; | ||
| 2469 | 			wLength--; | ||
| 2470 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2471 | 			ENC100_SI_RD_RW_IO = 0; | ||
| 2472 | 		} | ||
| 2473 | 		while(wLength >= 2u)	// Read all necessary WORDs | ||
| 2474 | 		{ | ||
| 2475 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2476 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2477 | 			DelaySetupHold(); | ||
| 2478 | 			wLength -= 2; | ||
| 2479 | 			wAddress += 2; | ||
| 2480 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2481 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2482 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2483 | 		} | ||
| 2484 | 		if(wLength)				// Read final low byte, if needed | ||
| 2485 | 		{ | ||
| 2486 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2487 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2488 | 			DelaySetupHold(); | ||
| 2489 | 			*vData = ENC100_GET_AD_IOL(); | ||
| 2490 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2491 | 		} | ||
| 2492 | 		DeassertChipSelect(); | ||
| 2493 | |||
| 2494 | 	#elif ENC100_INTERFACE_MODE == 4 | ||
| 2495 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2496 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2497 | 		AssertChipSelect(); | ||
| 2498 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2499 | 		if(wAddress & 0x1)		// Read from high byte if not WORD aligned | ||
| 2500 | 		{ | ||
| 2501 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2502 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2503 | 			DelaySetupHold(); | ||
| 2504 | 			wAddress++; | ||
| 2505 | 			wLength--; | ||
| 2506 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2507 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2508 | 		} | ||
| 2509 | 		while(wLength >= 2u)	// Read all necessary WORDs | ||
| 2510 | 		{ | ||
| 2511 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2512 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2513 | 			DelaySetupHold(); | ||
| 2514 | 			wLength -= 2; | ||
| 2515 | 			wAddress += 2; | ||
| 2516 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2517 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2518 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2519 | 		} | ||
| 2520 | 		if(wLength)				// Read final low byte, if needed | ||
| 2521 | 		{ | ||
| 2522 | 			ENC100_SET_ADDR_IO(wAddress>>1); | ||
| 2523 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2524 | 			DelaySetupHold(); | ||
| 2525 | 			*vData = ENC100_GET_AD_IOL(); | ||
| 2526 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2527 | 		} | ||
| 2528 | |||
| 2529 | 		DeassertChipSelect(); | ||
| 2530 | |||
| 2531 | 	#elif ENC100_INTERFACE_MODE == 5 | ||
| 2532 | 		AssertChipSelect(); | ||
| 2533 | 		while(wLength--) | ||
| 2534 | 		{ | ||
| 2535 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2536 | 			ENC100_SET_AD_IO(wAddress); | ||
| 2537 | 			ENC100_SCK_AL_IO = 1; | ||
| 2538 | 			ENC100_SCK_AL_IO = 0; | ||
| 2539 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2540 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2541 | 			DelaySetupHold(); | ||
| 2542 | 			wAddress++; | ||
| 2543 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2544 | 			ENC100_SI_RD_RW_IO = 0;		 | ||
| 2545 | 		} | ||
| 2546 | 		DeassertChipSelect(); | ||
| 2547 | |||
| 2548 | 	#elif ENC100_INTERFACE_MODE == 6 | ||
| 2549 | 		AssertChipSelect(); | ||
| 2550 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2551 | 		while(wLength--) | ||
| 2552 | 		{ | ||
| 2553 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2554 | 			ENC100_SET_AD_IO(wAddress); | ||
| 2555 | 			ENC100_SCK_AL_IO = 1; | ||
| 2556 | 			ENC100_SCK_AL_IO = 0; | ||
| 2557 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2558 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2559 | 			DelaySetupHold(); | ||
| 2560 | 			wAddress++; | ||
| 2561 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2562 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;		 | ||
| 2563 | 		} | ||
| 2564 | 		DeassertChipSelect(); | ||
| 2565 | |||
| 2566 | 	#elif ENC100_INTERFACE_MODE == 9 | ||
| 2567 | 	{ | ||
| 2568 | 		AssertChipSelect(); | ||
| 2569 | 		if(wAddress & 0x1)		// Read from high byte if not WORD aligned | ||
| 2570 | 		{ | ||
| 2571 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2572 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2573 | 			ENC100_SCK_AL_IO = 1; | ||
| 2574 | 			ENC100_SCK_AL_IO = 0; | ||
| 2575 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2576 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2577 | 			DelaySetupHold(); | ||
| 2578 | 			wAddress++; | ||
| 2579 | 			wLength--; | ||
| 2580 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2581 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2582 | 		} | ||
| 2583 | 		while(wLength >= 2u)	// Read all necessary WORDs | ||
| 2584 | 		{ | ||
| 2585 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2586 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2587 | 			ENC100_SCK_AL_IO = 1; | ||
| 2588 | 			ENC100_SCK_AL_IO = 0; | ||
| 2589 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2590 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2591 | 			DelaySetupHold(); | ||
| 2592 | 			wAddress += 2; | ||
| 2593 | 			wLength -= 2; | ||
| 2594 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2595 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2596 | 			ENC100_SI_RD_RW_IO = 0;		 | ||
| 2597 | 		} | ||
| 2598 | 		if(wLength)				// Read final low byte, if needed | ||
| 2599 | 		{ | ||
| 2600 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2601 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2602 | 			ENC100_SCK_AL_IO = 1; | ||
| 2603 | 			ENC100_SCK_AL_IO = 0; | ||
| 2604 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2605 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2606 | 			DelaySetupHold(); | ||
| 2607 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2608 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2609 | 		} | ||
| 2610 | 		DeassertChipSelect(); | ||
| 2611 | 	} | ||
| 2612 | 	#elif ENC100_INTERFACE_MODE == 10 | ||
| 2613 | 	{ | ||
| 2614 | 		AssertChipSelect(); | ||
| 2615 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2616 | 		if(wAddress & 0x1)		// Read from high byte if not WORD aligned | ||
| 2617 | 		{ | ||
| 2618 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2619 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2620 | 			ENC100_SCK_AL_IO = 1; | ||
| 2621 | 			ENC100_SCK_AL_IO = 0; | ||
| 2622 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2623 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2624 | 			DelaySetupHold(); | ||
| 2625 | 			wAddress++; | ||
| 2626 | 			wLength--; | ||
| 2627 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2628 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;			 | ||
| 2629 | 		} | ||
| 2630 | 		while(wLength >= 2u)	// Read all necessary WORDs | ||
| 2631 | 		{ | ||
| 2632 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2633 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2634 | 			ENC100_SCK_AL_IO = 1; | ||
| 2635 | 			ENC100_SCK_AL_IO = 0; | ||
| 2636 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2637 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2638 | 			DelaySetupHold(); | ||
| 2639 | 			wAddress += 2; | ||
| 2640 | 			wLength -= 2; | ||
| 2641 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2642 | 			*vData++ = ENC100_GET_AD_IOH(); | ||
| 2643 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;		 | ||
| 2644 | 		} | ||
| 2645 | 		if(wLength)				// Read final low byte, if needed | ||
| 2646 | 		{ | ||
| 2647 | 			ENC100_SET_AD_TRIS_OUT(); | ||
| 2648 | 			ENC100_SET_AD_IO(wAddress>>1); | ||
| 2649 | 			ENC100_SCK_AL_IO = 1; | ||
| 2650 | 			ENC100_SCK_AL_IO = 0; | ||
| 2651 | 			ENC100_SET_AD_TRIS_IN(); | ||
| 2652 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2653 | 			DelaySetupHold(); | ||
| 2654 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2655 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;			 | ||
| 2656 | 		} | ||
| 2657 | 		DeassertChipSelect(); | ||
| 2658 | 	} | ||
| 2659 | 	#else // SPI mode | ||
| 2660 | 	{ | ||
| 2661 | 		WORD w; | ||
| 2662 | |||
| 2663 | 		// Use RX pointer | ||
| 2664 | 		w = Execute2(RRXRDPT, 0x0000); | ||
| 2665 | 		Execute2(WRXRDPT, wAddress); | ||
| 2666 | 		ReadN(RBMRX, vData, wLength); | ||
| 2667 | 		Execute2(WRXRDPT, w); | ||
| 2668 | 	}	 | ||
| 2669 | 	#endif | ||
| 2670 | |||
| 2671 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2672 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2673 | 	#endif | ||
| 2674 | } | ||
| 2675 | #endif | ||
| 2676 | |||
| 2677 | /****************************************************************************** | ||
| 2678 |  * Function:        void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) | ||
| 2679 |  * | ||
| 2680 |  * PreCondition:    None | ||
| 2681 |  * | ||
| 2682 |  * Input:           vWindow: UDA_WINDOW, GP_WINDOW, or RX_WINDOW corresponding  | ||
| 2683 |  *							 to the window register to read from | ||
| 2684 |  *					*vData: Pointer to local PIC RAM which will be written  | ||
| 2685 |  *							with data from the ENC624J600 Family. | ||
| 2686 |  *					wLength: Number of bytes to copy from window to vData | ||
| 2687 |  * | ||
| 2688 |  * Output:          None | ||
| 2689 |  * | ||
| 2690 |  * Side Effects:    None | ||
| 2691 |  * | ||
| 2692 |  * Overview:        Copys 0 or more bytes from the ENC624J600 Family RAM using  | ||
| 2693 |  *					one of the UDA, TX, or RX read window pointers.  This  | ||
| 2694 |  *					pointer is incremented by the number of bytes read.   | ||
| 2695 |  *					However, if using a 16-bit parallel interface, the pointer  | ||
| 2696 |  *					will be incremented by 1 extra if the length parameter is  | ||
| 2697 |  *					odd to ensure 16-bit alignment. | ||
| 2698 |  * | ||
| 2699 |  * Note:            None | ||
| 2700 |  *****************************************************************************/ | ||
| 2701 | void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) | ||
| 2702 | { | ||
| 2703 | 	BOOL bISREnabled; | ||
| 2704 | |||
| 2705 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 2706 | 		WORD wAddress; | ||
| 2707 | 	#endif | ||
| 2708 | |||
| 2709 | 	if(wLength == 0u) | ||
| 2710 | 		return; | ||
| 2711 | |||
| 2712 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2713 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2714 | 		ENC100_ISR_ENABLE = 0; | ||
| 2715 | 	#endif | ||
| 2716 | |||
| 2717 | 	#if (ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) | ||
| 2718 | 		wAddress = EUDADATA; | ||
| 2719 | 		if(vWindow & GP_WINDOW) | ||
| 2720 | 			wAddress = EGPDATA; | ||
| 2721 | 		if(vWindow & RX_WINDOW) | ||
| 2722 | 			wAddress = ERXDATA; | ||
| 2723 | 	#elif (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10) | ||
| 2724 | 		wAddress = (EUDADATA>>1); | ||
| 2725 | 		if(vWindow & GP_WINDOW) | ||
| 2726 | 			wAddress = (EGPDATA>>1); | ||
| 2727 | 		if(vWindow & RX_WINDOW) | ||
| 2728 | 			wAddress = (ERXDATA>>1); | ||
| 2729 | 	#endif | ||
| 2730 | |||
| 2731 | 	#if (ENC100_INTERFACE_MODE >= 1) && !defined(ENC100_BIT_BANG_PMP) | ||
| 2732 | 	{ | ||
| 2733 | 		volatile BYTE vDummy; | ||
| 2734 | |||
| 2735 | 		ConfigurePMPModule(); | ||
| 2736 | 		AssertChipSelect(); | ||
| 2737 | 		PMADDR = wAddress; | ||
| 2738 | 		vDummy = PMDIN1; | ||
| 2739 | 		while(--wLength) | ||
| 2740 | 		{ | ||
| 2741 | 			while(PMMODEbits.BUSY); | ||
| 2742 | 			*vData++ = PMDIN1; | ||
| 2743 | 		} | ||
| 2744 | 		while(PMMODEbits.BUSY); | ||
| 2745 | 		DeassertChipSelect(); | ||
| 2746 | 		PMCONbits.PMPEN = 0; | ||
| 2747 | 		*vData = PMDIN1; | ||
| 2748 | 	} | ||
| 2749 | 	#elif ENC100_INTERFACE_MODE == 1 | ||
| 2750 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2751 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2752 | 		AssertChipSelect(); | ||
| 2753 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2754 | 		while(wLength--) | ||
| 2755 | 		{ | ||
| 2756 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2757 | 			DelaySetupHold(); | ||
| 2758 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2759 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2760 | 		} | ||
| 2761 | 		DeassertChipSelect(); | ||
| 2762 | 	#elif ENC100_INTERFACE_MODE == 2 | ||
| 2763 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2764 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2765 | 		AssertChipSelect(); | ||
| 2766 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2767 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2768 | 		while(wLength--) | ||
| 2769 | 		{ | ||
| 2770 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2771 | 			DelaySetupHold(); | ||
| 2772 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2773 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2774 | 		} | ||
| 2775 | 		DeassertChipSelect(); | ||
| 2776 | 	#elif ENC100_INTERFACE_MODE == 3 | ||
| 2777 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2778 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2779 | 		AssertChipSelect(); | ||
| 2780 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2781 | 		while(wLength--) | ||
| 2782 | 		{ | ||
| 2783 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2784 | 			DelaySetupHold(); | ||
| 2785 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2786 | 			ENC100_SI_RD_RW_IO = 0;	 | ||
| 2787 | 		} | ||
| 2788 | 		DeassertChipSelect(); | ||
| 2789 | 	#elif ENC100_INTERFACE_MODE == 4 | ||
| 2790 | 		ENC100_SET_ADDR_TRIS_OUT(); | ||
| 2791 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2792 | 		AssertChipSelect(); | ||
| 2793 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2794 | 		ENC100_SET_ADDR_IO(wAddress); | ||
| 2795 | 		while(wLength--) | ||
| 2796 | 		{ | ||
| 2797 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2798 | 			DelaySetupHold(); | ||
| 2799 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2800 | 			ENC100_SO_WR_B0SEL_EN_IO = 0; | ||
| 2801 | 		} | ||
| 2802 | 		DeassertChipSelect(); | ||
| 2803 | 	#elif ENC100_INTERFACE_MODE == 5 | ||
| 2804 | 		AssertChipSelect(); | ||
| 2805 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2806 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2807 | 		ENC100_SCK_AL_IO = 1; | ||
| 2808 | 		ENC100_SCK_AL_IO = 0; | ||
| 2809 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2810 | 		while(wLength--) | ||
| 2811 | 		{ | ||
| 2812 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2813 | 			DelaySetupHold(); | ||
| 2814 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2815 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2816 | 		} | ||
| 2817 | 		DeassertChipSelect(); | ||
| 2818 | 	#elif ENC100_INTERFACE_MODE == 6 | ||
| 2819 | 		AssertChipSelect(); | ||
| 2820 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2821 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2822 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2823 | 		ENC100_SCK_AL_IO = 1; | ||
| 2824 | 		ENC100_SCK_AL_IO = 0; | ||
| 2825 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2826 | 		while(wLength--) | ||
| 2827 | 		{ | ||
| 2828 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2829 | 			DelaySetupHold(); | ||
| 2830 | 			*vData++ = ENC100_GET_AD_IO(); | ||
| 2831 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;			 | ||
| 2832 | 		} | ||
| 2833 | 		DeassertChipSelect(); | ||
| 2834 | 	#elif ENC100_INTERFACE_MODE == 9 | ||
| 2835 | 		AssertChipSelect(); | ||
| 2836 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2837 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2838 | 		ENC100_SCK_AL_IO = 1; | ||
| 2839 | 		ENC100_SCK_AL_IO = 0; | ||
| 2840 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2841 | 		while(wLength--) | ||
| 2842 | 		{ | ||
| 2843 | 			ENC100_SI_RD_RW_IO = 1; | ||
| 2844 | 			DelaySetupHold(); | ||
| 2845 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2846 | 			ENC100_SI_RD_RW_IO = 0;			 | ||
| 2847 | 		} | ||
| 2848 | 		DeassertChipSelect(); | ||
| 2849 | 	#elif ENC100_INTERFACE_MODE == 10 | ||
| 2850 | 		AssertChipSelect(); | ||
| 2851 | 		ENC100_SI_RD_RW_IO = 1; | ||
| 2852 | 		ENC100_SET_AD_TRIS_OUT(); | ||
| 2853 | 		ENC100_SET_AD_IO(wAddress); | ||
| 2854 | 		ENC100_SCK_AL_IO = 1; | ||
| 2855 | 		ENC100_SCK_AL_IO = 0; | ||
| 2856 | 		ENC100_SET_AD_TRIS_IN(); | ||
| 2857 | 		while(wLength--) | ||
| 2858 | 		{ | ||
| 2859 | 			ENC100_SO_WR_B0SEL_EN_IO = 1; | ||
| 2860 | 			DelaySetupHold(); | ||
| 2861 | 			*vData++ = ENC100_GET_AD_IOL(); | ||
| 2862 | 			ENC100_SO_WR_B0SEL_EN_IO = 0;			 | ||
| 2863 | 		} | ||
| 2864 | 		DeassertChipSelect(); | ||
| 2865 | 	#else // SPI mode | ||
| 2866 | 	{ | ||
| 2867 | 		BYTE vOpcode; | ||
| 2868 | |||
| 2869 | 		vOpcode = RBMUDA; | ||
| 2870 | 		if(vWindow & GP_WINDOW) | ||
| 2871 | 			vOpcode = RBMGP; | ||
| 2872 | 		if(vWindow & RX_WINDOW) | ||
| 2873 | 			vOpcode = RBMRX; | ||
| 2874 | |||
| 2875 | 		ReadN(vOpcode, vData, wLength); | ||
| 2876 | 	} | ||
| 2877 | 	#endif | ||
| 2878 | |||
| 2879 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2880 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2881 | 	#endif | ||
| 2882 | } | ||
| 2883 | |||
| 2884 | |||
| 2885 | |||
| 2886 | #if (ENC100_INTERFACE_MODE == 0)	// These are SPI only functions | ||
| 2887 | /****************************************************************************** | ||
| 2888 |  * Function:        void Execute0(BYTE vOpcode) | ||
| 2889 |  * | ||
| 2890 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 2891 |  * | ||
| 2892 |  * Input:           None | ||
| 2893 |  * | ||
| 2894 |  * Output:          None | ||
| 2895 |  * | ||
| 2896 |  * Side Effects:    None | ||
| 2897 |  * | ||
| 2898 |  * Overview:        Sends a single byte command with no parameters | ||
| 2899 |  * | ||
| 2900 |  * Note:            None | ||
| 2901 |  *****************************************************************************/ | ||
| 2902 | static void Execute0(BYTE vOpcode) | ||
| 2903 | { | ||
| 2904 | 	volatile BYTE vDummy; | ||
| 2905 | 	BOOL bISREnabled; | ||
| 2906 | |||
| 2907 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2908 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2909 | 		ENC100_ISR_ENABLE = 0; | ||
| 2910 | 	#endif | ||
| 2911 | |||
| 2912 | 	AssertChipSelect(); | ||
| 2913 | 	ClearSPIDoneFlag(); | ||
| 2914 | 	ENC100_SSPBUF = vOpcode;	// Send the command/opcode | ||
| 2915 | 	WaitForDataByte(); | ||
| 2916 | 	vDummy = ENC100_SSPBUF; | ||
| 2917 | 	DeassertChipSelect(); | ||
| 2918 | |||
| 2919 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2920 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2921 | 	#endif | ||
| 2922 | }//end Execute0 | ||
| 2923 | |||
| 2924 | // This Execute1 function is not currently used | ||
| 2925 | //static BYTE Execute1(BYTE vOpcode, BYTE vData) | ||
| 2926 | //{ | ||
| 2927 | //	volatile BYTE vReturn; | ||
| 2928 | //	BOOL bISREnabled; | ||
| 2929 | // | ||
| 2930 | //	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2931 | //		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2932 | //		ENC100_ISR_ENABLE = 0; | ||
| 2933 | //	#endif | ||
| 2934 | // | ||
| 2935 | //	AssertChipSelect(); | ||
| 2936 | //	ClearSPIDoneFlag(); | ||
| 2937 | //	ENC100_SSPBUF = vOpcode;	// Send the command/opcode | ||
| 2938 | //	WaitForDataByte(); | ||
| 2939 | //	vReturn = ENC100_SSPBUF; | ||
| 2940 | //	ENC100_SSPBUF = vData;		// Send the data | ||
| 2941 | //	WaitForDataByte(); | ||
| 2942 | //	vReturn = ENC100_SSPBUF; | ||
| 2943 | //	DeassertChipSelect(); | ||
| 2944 | // | ||
| 2945 | //	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2946 | //		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2947 | //	#endif | ||
| 2948 | // | ||
| 2949 | //	return vReturn; | ||
| 2950 | //}//end Execute1 | ||
| 2951 | |||
| 2952 | static WORD Execute2(BYTE vOpcode, WORD wData) | ||
| 2953 | { | ||
| 2954 | 	volatile WORD wReturn; | ||
| 2955 | 	BOOL bISREnabled; | ||
| 2956 | |||
| 2957 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2958 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2959 | 		ENC100_ISR_ENABLE = 0; | ||
| 2960 | 	#endif | ||
| 2961 | |||
| 2962 | 	AssertChipSelect(); | ||
| 2963 | 	ClearSPIDoneFlag(); | ||
| 2964 | 	ENC100_SSPBUF = vOpcode;			// Send the command/opcode | ||
| 2965 | 	WaitForDataByte(); | ||
| 2966 | 	((BYTE*)&wReturn)[0] = ENC100_SSPBUF; | ||
| 2967 | 	ENC100_SSPBUF = ((BYTE*)&wData)[0];	// Send low byte of data | ||
| 2968 | 	WaitForDataByte(); | ||
| 2969 | 	((BYTE*)&wReturn)[0] = ENC100_SSPBUF; | ||
| 2970 | 	ENC100_SSPBUF = ((BYTE*)&wData)[1];	// Send high byte of data | ||
| 2971 | 	WaitForDataByte(); | ||
| 2972 | 	((BYTE*)&wReturn)[1] = ENC100_SSPBUF; | ||
| 2973 | 	DeassertChipSelect(); | ||
| 2974 | |||
| 2975 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2976 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 2977 | 	#endif | ||
| 2978 | |||
| 2979 | 	return wReturn; | ||
| 2980 | }//end Execute2 | ||
| 2981 | |||
| 2982 | static DWORD Execute3(BYTE vOpcode, DWORD dwData) | ||
| 2983 | { | ||
| 2984 | 	volatile DWORD dwReturn; | ||
| 2985 | 	BOOL bISREnabled; | ||
| 2986 | |||
| 2987 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 2988 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 2989 | 		ENC100_ISR_ENABLE = 0; | ||
| 2990 | 	#endif | ||
| 2991 | |||
| 2992 | 	AssertChipSelect(); | ||
| 2993 | 	ClearSPIDoneFlag(); | ||
| 2994 | 	ENC100_SSPBUF = vOpcode;				// Send the command/opcode | ||
| 2995 | 	((BYTE*)&dwReturn)[3] = 0x00; | ||
| 2996 | 	WaitForDataByte(); | ||
| 2997 | 	((BYTE*)&dwReturn)[0] = ENC100_SSPBUF; | ||
| 2998 | 	ENC100_SSPBUF = ((BYTE*)&dwData)[0];	// Send byte 0 of data | ||
| 2999 | 	WaitForDataByte(); | ||
| 3000 | 	((BYTE*)&dwReturn)[0] = ENC100_SSPBUF; | ||
| 3001 | 	ENC100_SSPBUF = ((BYTE*)&dwData)[1];	// Send byte 1 of data | ||
| 3002 | 	WaitForDataByte(); | ||
| 3003 | 	((BYTE*)&dwReturn)[1] = ENC100_SSPBUF; | ||
| 3004 | 	ENC100_SSPBUF = ((BYTE*)&dwData)[2];	// Send byte 2 of data | ||
| 3005 | 	WaitForDataByte(); | ||
| 3006 | 	((BYTE*)&dwReturn)[2] = ENC100_SSPBUF; | ||
| 3007 | 	DeassertChipSelect(); | ||
| 3008 | |||
| 3009 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 3010 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 3011 | 	#endif | ||
| 3012 | |||
| 3013 | 	return dwReturn; | ||
| 3014 | }//end Execute2 | ||
| 3015 | |||
| 3016 | static void ReadN(BYTE vOpcode, BYTE* vData, WORD wDataLen) | ||
| 3017 | { | ||
| 3018 | 	volatile BYTE vDummy; | ||
| 3019 | 	BOOL bISREnabled; | ||
| 3020 | |||
| 3021 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 3022 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 3023 | 		ENC100_ISR_ENABLE = 0; | ||
| 3024 | 	#endif | ||
| 3025 | |||
| 3026 | 	AssertChipSelect(); | ||
| 3027 | 	ClearSPIDoneFlag(); | ||
| 3028 | 	ENC100_SSPBUF = vOpcode;				// Send the command/opcode | ||
| 3029 | 	WaitForDataByte(); | ||
| 3030 | 	vDummy = ENC100_SSPBUF; | ||
| 3031 | 	while(wDataLen--) | ||
| 3032 | 	{ | ||
| 3033 | 		ENC100_SSPBUF = 0x00; | ||
| 3034 | 		WaitForDataByte(); | ||
| 3035 | 		*vData++ = ENC100_SSPBUF; | ||
| 3036 | 	} | ||
| 3037 | 	DeassertChipSelect(); | ||
| 3038 | |||
| 3039 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 3040 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 3041 | 	#endif | ||
| 3042 | } | ||
| 3043 | |||
| 3044 | static void WriteN(BYTE vOpcode, BYTE* vData, WORD wDataLen) | ||
| 3045 | { | ||
| 3046 | 	volatile BYTE vDummy; | ||
| 3047 | 	BOOL bISREnabled; | ||
| 3048 | |||
| 3049 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 3050 | 		bISREnabled = ENC100_ISR_ENABLE; | ||
| 3051 | 		ENC100_ISR_ENABLE = 0; | ||
| 3052 | 	#endif | ||
| 3053 | |||
| 3054 | 	AssertChipSelect(); | ||
| 3055 | 	ClearSPIDoneFlag(); | ||
| 3056 | 	ENC100_SSPBUF = vOpcode;				// Send the command/opcode | ||
| 3057 | 	WaitForDataByte(); | ||
| 3058 | 	vDummy = ENC100_SSPBUF; | ||
| 3059 | |||
| 3060 | 	while(wDataLen--) | ||
| 3061 | 	{ | ||
| 3062 | 		ENC100_SSPBUF = *vData++; | ||
| 3063 | 		WaitForDataByte(); | ||
| 3064 | 		vDummy = ENC100_SSPBUF; | ||
| 3065 | 	} | ||
| 3066 | 	DeassertChipSelect(); | ||
| 3067 | |||
| 3068 | 	#if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) | ||
| 3069 | 		ENC100_ISR_ENABLE = bISREnabled; | ||
| 3070 | 	#endif | ||
| 3071 | } | ||
| 3072 | |||
| 3073 | #endif | ||
| 3074 | |||
| 3075 | /****************************************************************************** | ||
| 3076 |  * Function:        WORD ReadReg(WORD wAddress) | ||
| 3077 |  * | ||
| 3078 |  * PreCondition:    SPI/PSP bus must be initialized (done in MACInit()). | ||
| 3079 |  * | ||
| 3080 |  * Input:           wAddress: Address of SFR register to read from.   | ||
| 3081 |  *							  The LSb is ignored and treated as '0' always. | ||
| 3082 |  * | ||
| 3083 |  * Output:          WORD value of register contents | ||
| 3084 |  * | ||
| 3085 |  * Side Effects:    None | ||
| 3086 |  * | ||
| 3087 |  * Overview:        Selects the correct bank (if needed), and reads the  | ||
| 3088 |  *					corresponding 16-bit register | ||
| 3089 |  * | ||
| 3090 |  * Note:            This routine cannot be used to read PHY registers.   | ||
| 3091 |  *					Use the ReadPHYReg() function to read from PHY registers. | ||
| 3092 |  *****************************************************************************/ | ||
| 3093 | static WORD ReadReg(WORD wAddress) | ||
| 3094 | { | ||
| 3095 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 3096 | 	{ | ||
| 3097 | 		WORD w; | ||
| 3098 | |||
| 3099 | 		ReadMemory(wAddress, (BYTE*)&w, 2); | ||
| 3100 | 		return w; | ||
| 3101 | 	} | ||
| 3102 | 	#else	// SPI mode | ||
| 3103 | 	{ | ||
| 3104 | 		WORD w; | ||
| 3105 | 		BYTE vBank; | ||
| 3106 | |||
| 3107 | 		// See if we need to change register banks | ||
| 3108 | 		vBank = ((BYTE)wAddress) & 0xE0; | ||
| 3109 | 		if(vBank <= (0x3u<<5)) | ||
| 3110 | 		{ | ||
| 3111 | 			if(vBank != vCurrentBank) | ||
| 3112 | 			{ | ||
| 3113 | 				if(vBank == (0x0u<<5)) | ||
| 3114 | 					Execute0(B0SEL); | ||
| 3115 | 				else if(vBank == (0x1u<<5)) | ||
| 3116 | 					Execute0(B1SEL); | ||
| 3117 | 				else if(vBank == (0x2u<<5)) | ||
| 3118 | 					Execute0(B2SEL); | ||
| 3119 | 				else if(vBank == (0x3u<<5)) | ||
| 3120 | 					Execute0(B3SEL); | ||
| 3121 | |||
| 3122 | 				vCurrentBank = vBank; | ||
| 3123 | 			} | ||
| 3124 | |||
| 3125 | 			w = Execute2(RCR | (wAddress & 0x1F), 0x0000); | ||
| 3126 | 		} | ||
| 3127 | 		else | ||
| 3128 | 		{ | ||
| 3129 | 			DWORD dw = Execute3(RCRU, (DWORD)wAddress); | ||
| 3130 | 			((BYTE*)&w)[0] = ((BYTE*)&dw)[1]; | ||
| 3131 | 			((BYTE*)&w)[1] = ((BYTE*)&dw)[2]; | ||
| 3132 | 		} | ||
| 3133 | |||
| 3134 | 		return w; | ||
| 3135 | 	} | ||
| 3136 | 	#endif | ||
| 3137 | }//end ReadReg | ||
| 3138 | |||
| 3139 | |||
| 3140 | /****************************************************************************** | ||
| 3141 |  * Function:        void WriteReg(WORD wAddress, WORD wValue) | ||
| 3142 |  * | ||
| 3143 |  * PreCondition:    SPI/PSP bus must be initialized (done in MACInit()). | ||
| 3144 |  * | ||
| 3145 |  * Input:           wAddress: Address of the SFR register to write to.   | ||
| 3146 |  *					16-bit WORD to be written into the register. | ||
| 3147 |  * | ||
| 3148 |  * Output:          None | ||
| 3149 |  * | ||
| 3150 |  * Side Effects:    None | ||
| 3151 |  * | ||
| 3152 |  * Overview:        Selects the correct bank (if using the SPI and needed), and  | ||
| 3153 |  *					writes the corresponding 16-bit register with wValue. | ||
| 3154 |  * | ||
| 3155 |  * Note:            This routine cannot write to PHY registers.  Use the  | ||
| 3156 |  *					WritePHYReg() function for writing to PHY registers. | ||
| 3157 |  *****************************************************************************/ | ||
| 3158 | static void WriteReg(WORD wAddress, WORD wValue) | ||
| 3159 | { | ||
| 3160 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 3161 | 	{ | ||
| 3162 | 		WriteMemory(wAddress, (BYTE*)&wValue, 2); | ||
| 3163 | 	} | ||
| 3164 | 	#else	// SPI mode | ||
| 3165 | 	{ | ||
| 3166 | 		BYTE vBank; | ||
| 3167 | |||
| 3168 | 		// See if we need to change register banks | ||
| 3169 | 		vBank = ((BYTE)wAddress) & 0xE0; | ||
| 3170 | 		if(vBank <= (0x3u<<5)) | ||
| 3171 | 		{ | ||
| 3172 | 			if(vBank != vCurrentBank) | ||
| 3173 | 			{ | ||
| 3174 | 				if(vBank == (0x0u<<5)) | ||
| 3175 | 					Execute0(B0SEL); | ||
| 3176 | 				else if(vBank == (0x1u<<5)) | ||
| 3177 | 					Execute0(B1SEL); | ||
| 3178 | 				else if(vBank == (0x2u<<5)) | ||
| 3179 | 					Execute0(B2SEL); | ||
| 3180 | 				else if(vBank == (0x3u<<5)) | ||
| 3181 | 					Execute0(B3SEL); | ||
| 3182 | |||
| 3183 | 				vCurrentBank = vBank; | ||
| 3184 | 			} | ||
| 3185 | |||
| 3186 | 			Execute2(WCR | (wAddress & 0x1F), wValue); | ||
| 3187 | 		} | ||
| 3188 | 		else | ||
| 3189 | 		{ | ||
| 3190 | 			DWORD dw; | ||
| 3191 | 			((BYTE*)&dw)[0] = (BYTE)wAddress; | ||
| 3192 | 			((BYTE*)&dw)[1] = ((BYTE*)&wValue)[0]; | ||
| 3193 | 			((BYTE*)&dw)[2] = ((BYTE*)&wValue)[1]; | ||
| 3194 | 			Execute3(WCRU, dw); | ||
| 3195 | 		} | ||
| 3196 | |||
| 3197 | 	} | ||
| 3198 | 	#endif | ||
| 3199 | }//end WriteReg | ||
| 3200 | |||
| 3201 | |||
| 3202 | /****************************************************************************** | ||
| 3203 |  * Function:        void BFSReg(WORD wAddress, WORD wBitMask) | ||
| 3204 |  *					void BFCReg(WORD wAddress, WORD wBitMask) | ||
| 3205 |  * | ||
| 3206 |  * PreCondition:    None | ||
| 3207 |  * | ||
| 3208 |  * Input:           7 bit address of the register to write to.   | ||
| 3209 |  *					16-bit WORD bitmask to set/clear in the register. | ||
| 3210 |  * | ||
| 3211 |  * Output:          None | ||
| 3212 |  * | ||
| 3213 |  * Side Effects:    None | ||
| 3214 |  * | ||
| 3215 |  * Overview:        Sets/clears bits in Ethernet SFR registers | ||
| 3216 |  * | ||
| 3217 |  * Note:            These functions cannot be used to access ESFR registers. | ||
| 3218 |  *****************************************************************************/ | ||
| 3219 | static void BFSReg(WORD wAddress, WORD wBitMask) | ||
| 3220 | { | ||
| 3221 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 3222 | 	{ | ||
| 3223 | 		WriteMemory(wAddress+SET_OFFSET, (BYTE*)&wBitMask, 2); | ||
| 3224 | 	} | ||
| 3225 | 	#else	// SPI mode | ||
| 3226 | 	{ | ||
| 3227 | 		BYTE vBank; | ||
| 3228 | |||
| 3229 | 		// See if we need to change register banks | ||
| 3230 | 		vBank = ((BYTE)wAddress) & 0xE0; | ||
| 3231 | 		if(vBank != vCurrentBank) | ||
| 3232 | 		{ | ||
| 3233 | 			if(vBank == (0x0u<<5)) | ||
| 3234 | 				Execute0(B0SEL); | ||
| 3235 | 			else if(vBank == (0x1u<<5)) | ||
| 3236 | 				Execute0(B1SEL); | ||
| 3237 | 			else if(vBank == (0x2u<<5)) | ||
| 3238 | 				Execute0(B2SEL); | ||
| 3239 | 			else if(vBank == (0x3u<<5)) | ||
| 3240 | 				Execute0(B3SEL); | ||
| 3241 | |||
| 3242 | 			vCurrentBank = vBank; | ||
| 3243 | 		} | ||
| 3244 | |||
| 3245 | 		Execute2(BFS | (wAddress & 0x1F), wBitMask); | ||
| 3246 | 	} | ||
| 3247 | 	#endif | ||
| 3248 | }//end BFSReg | ||
| 3249 | |||
| 3250 | static void BFCReg(WORD wAddress, WORD wBitMask) | ||
| 3251 | { | ||
| 3252 | 	#if (ENC100_INTERFACE_MODE >= 1)	// Parallel mode | ||
| 3253 | 	{ | ||
| 3254 | 		WriteMemory(wAddress+CLR_OFFSET, (BYTE*)&wBitMask, 2); | ||
| 3255 | 	} | ||
| 3256 | 	#else	// SPI mode | ||
| 3257 | 	{ | ||
| 3258 | 		BYTE vBank; | ||
| 3259 | |||
| 3260 | 		// See if we need to change register banks | ||
| 3261 | 		vBank = ((BYTE)wAddress) & 0xE0; | ||
| 3262 | 		if(vBank != vCurrentBank) | ||
| 3263 | 		{ | ||
| 3264 | 			if(vBank == (0x0u<<5)) | ||
| 3265 | 				Execute0(B0SEL); | ||
| 3266 | 			else if(vBank == (0x1u<<5)) | ||
| 3267 | 				Execute0(B1SEL); | ||
| 3268 | 			else if(vBank == (0x2u<<5)) | ||
| 3269 | 				Execute0(B2SEL); | ||
| 3270 | 			else if(vBank == (0x3u<<5)) | ||
| 3271 | 				Execute0(B3SEL); | ||
| 3272 | |||
| 3273 | 			vCurrentBank = vBank; | ||
| 3274 | 		} | ||
| 3275 | |||
| 3276 | 		Execute2(BFC | (wAddress & 0x1F), wBitMask); | ||
| 3277 | 	} | ||
| 3278 | 	#endif | ||
| 3279 | }//end BFCReg | ||
| 3280 | |||
| 3281 | |||
| 3282 | /****************************************************************************** | ||
| 3283 |  * Function:        WORD ReadPHYReg(BYTE Register) | ||
| 3284 |  * | ||
| 3285 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 3286 |  * | ||
| 3287 |  * Input:           Address of the PHY register to read from. | ||
| 3288 |  * | ||
| 3289 |  * Output:          16 bits of data read from the PHY register. | ||
| 3290 |  * | ||
| 3291 |  * Side Effects:    None | ||
| 3292 |  * | ||
| 3293 |  * Overview:        ReadPHYReg performs an MII read operation.  While in  | ||
| 3294 |  *					progress, it simply polls the MII BUSY bit wasting time  | ||
| 3295 |  *					(25.6us). | ||
| 3296 |  * | ||
| 3297 |  * Note:            None | ||
| 3298 |  *****************************************************************************/ | ||
| 3299 | WORD ReadPHYReg(BYTE Register) | ||
| 3300 | { | ||
| 3301 | 	WORD wResult; | ||
| 3302 | |||
| 3303 | 	// Set the right address and start the register read operation | ||
| 3304 | 	WriteReg(MIREGADR, 0x0100 | Register); | ||
| 3305 | 	WriteReg(MICMD, MICMD_MIIRD); | ||
| 3306 | |||
| 3307 | 	// Loop to wait until the PHY register has been read through the MII | ||
| 3308 | 	// This requires 25.6us | ||
| 3309 | 	while(ReadReg(MISTAT) & MISTAT_BUSY); | ||
| 3310 | |||
| 3311 | 	// Stop reading | ||
| 3312 | 	WriteReg(MICMD, 0x0000); | ||
| 3313 | |||
| 3314 | 	// Obtain results and return | ||
| 3315 | 	wResult = ReadReg(MIRD); | ||
| 3316 | |||
| 3317 | 	return wResult; | ||
| 3318 | }//end ReadPHYReg | ||
| 3319 | |||
| 3320 | /****************************************************************************** | ||
| 3321 |  * Function:        WritePHYReg | ||
| 3322 |  * | ||
| 3323 |  * PreCondition:    SPI bus must be initialized (done in MACInit()). | ||
| 3324 |  * | ||
| 3325 |  * Input:           Address of the PHY register to write to. | ||
| 3326 |  *					16 bits of data to write to PHY register. | ||
| 3327 |  * | ||
| 3328 |  * Output:          None | ||
| 3329 |  * | ||
| 3330 |  * Side Effects:    None | ||
| 3331 |  * | ||
| 3332 |  * Overview:        WritePHYReg performs an MII write operation.  While in  | ||
| 3333 |  *					progress, it simply polls the MII BUSY bit wasting time. | ||
| 3334 |  * | ||
| 3335 |  * Note:            None | ||
| 3336 |  *****************************************************************************/ | ||
| 3337 | void WritePHYReg(BYTE Register, WORD Data) | ||
| 3338 | { | ||
| 3339 | 	// Write the register address | ||
| 3340 | 	WriteReg(MIREGADR,  0x0100 | Register); | ||
| 3341 | |||
| 3342 | 	// Write the data | ||
| 3343 | 	WriteReg(MIWR, Data); | ||
| 3344 | |||
| 3345 | 	// Wait until the PHY register has been written | ||
| 3346 | 	while(ReadReg(MISTAT) & MISTAT_BUSY); | ||
| 3347 | }//end WritePHYReg | ||
| 3348 | |||
| 3349 | |||
| 3350 | |||
| 3351 | /***************************************************************************** | ||
| 3352 |   Function: | ||
| 3353 | 	static void ToggleCRYPTEN(void) | ||
| 3354 | |||
| 3355 |   Summary: | ||
| 3356 | 	Toggles the CRYPTEN (EIR<15>) cryptographic enable bit in an errata safe  | ||
| 3357 | 	way. | ||
| 3358 | |||
| 3359 |   Description: | ||
| 3360 | 	Due to an ENC424J600/624J600 Rev. A2 silicon errata, it is not possible to  | ||
| 3361 | 	set or clear the CRYPTEN bit (EIR<15>) by using the BFSReg() or BFCReg()  | ||
| 3362 | 	functions.  Instead a register write to the volatile EIR interrupt flags  | ||
| 3363 | 	register is required.  This function reads EIR, toggles the CRYPTEN state,  | ||
| 3364 | 	and writes the value back to EIR in a manner that does not destroy or  | ||
| 3365 | 	glitch the interrupt states. | ||
| 3366 | |||
| 3367 |   Precondition: | ||
| 3368 | 	None | ||
| 3369 | |||
| 3370 |   Parameters: | ||
| 3371 | 	None | ||
| 3372 | |||
| 3373 |   Returns: | ||
| 3374 | 	None | ||
| 3375 |   ***************************************************************************/ | ||
| 3376 | static void ToggleCRYPTEN(void) | ||
| 3377 | { | ||
| 3378 | 	WORD wLinkStat; | ||
| 3379 | 	WORD wInterruptEnable; | ||
| 3380 | |||
| 3381 | 	// About to do read-modify-write to interrupt flags - disable interrupts  | ||
| 3382 | 	// temporarily. | ||
| 3383 | 	wInterruptEnable = ReadReg(EIE); | ||
| 3384 | 	if(wInterruptEnable & EIE_INTIE) | ||
| 3385 | 		BFCReg(EIE, EIE_INTIE); | ||
| 3386 | |||
| 3387 | 	// Get current link status so that we can regenerate LINKIF if it is missed | ||
| 3388 | 	wLinkStat = ReadReg(ESTAT); | ||
| 3389 | |||
| 3390 | 	#if(ENC100_INTERFACE_MODE == 0)	// SPI | ||
| 3391 | 	{ | ||
| 3392 | 		BYTE i; | ||
| 3393 | |||
| 3394 | 		ReadN(RCR | EIRH, &i, 1);	// Read EIR high byte only | ||
| 3395 | 		i ^= 0x80;					// Modify - toggle CRYPTEN	 | ||
| 3396 | 		WriteN(WCR | EIRH, &i, 1);	// Write EIR high byte only | ||
| 3397 | 	} | ||
| 3398 | 	#elif(ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) 	// 8-bit PSP modes | ||
| 3399 | 	{ | ||
| 3400 | 		BYTE i; | ||
| 3401 | |||
| 3402 | 		ReadMemory(EIRH, &i, 1);	// Read EIR high byte only | ||
| 3403 | 		i ^= 0x80;					// Modify - toggle CRYPTEN	 | ||
| 3404 | 		WriteMemory(EIRH, &i, 1);	// Write EIR high byte only | ||
| 3405 | 	} | ||
| 3406 | 	#else	// 16-bit PSP | ||
| 3407 | 	{ | ||
| 3408 | 		WORD w; | ||
| 3409 | |||
| 3410 | 		// Wait for any pending transmit and DMA operations to complete so that  | ||
| 3411 | 		// the interrupt flags get set appropriately | ||
| 3412 | 		while(ReadReg(ECON1) & (ECON1_DMAST | ECON1_TXRTS)); | ||
| 3413 | |||
| 3414 | 		// Turn on/off crypto enable | ||
| 3415 | 		ReadMemory(EIR, (BYTE*)&w, 2);	// Read EIR | ||
| 3416 | 		w ^= EIR_CRYPTEN;				// Modify - set CRYPTEN	 | ||
| 3417 | 		WriteMemory(EIR, (BYTE*)&w, 2);	// Write EIR - has to be 16 bits | ||
| 3418 | |||
| 3419 | 		// Regenerate packet counter full interrupt flag, PCFULIF, if it was  | ||
| 3420 | 		// missed (unlikley but possible)  | ||
| 3421 | 		if((ReadReg(ESTAT) & 0xFFu) == 0xFFu) | ||
| 3422 | 			BFSReg(EIR, EIR_PCFULIF); | ||
| 3423 | 	} | ||
| 3424 | 	#endif | ||
| 3425 | |||
| 3426 | 	// Generate link change interrupt if the status has changed while we were  | ||
| 3427 | 	// doing the read-modify-write operation (unlikely but possible) | ||
| 3428 | 	if((ReadReg(ESTAT) ^ wLinkStat) & ESTAT_PHYLNK) | ||
| 3429 | 		BFSReg(EIR, EIR_LINKIF); | ||
| 3430 | |||
| 3431 | 	// Restore interrupts | ||
| 3432 | 	if(wInterruptEnable & EIE_INTIE) | ||
| 3433 | 		BFSReg(EIE, EIE_INTIE); | ||
| 3434 | } | ||
| 3435 | |||
| 3436 | |||
| 3437 | /**************************************************************************** | ||
| 3438 |   Section: | ||
| 3439 | 	Global RSA Variables | ||
| 3440 |   ***************************************************************************/ | ||
| 3441 | #if defined(STACK_USE_SSL_SERVER) || defined(STACK_USE_SSL_CLIENT) | ||
| 3442 | |||
| 3443 | static SM_RSA smRSA;					// State machine variable | ||
| 3444 | static BYTE keyLength;					// Length of the input key | ||
| 3445 | static BYTE* vOutput;					// Where output should be stored | ||
| 3446 | |||
| 3447 | extern ROM BYTE SSL_N[SSL_RSA_KEY_SIZE/8], SSL_D[SSL_RSA_KEY_SIZE/8]; | ||
| 3448 | |||
| 3449 | |||
| 3450 | /**************************************************************************** | ||
| 3451 |   Section: | ||
| 3452 | 	Function Implementations | ||
| 3453 |   ***************************************************************************/ | ||
| 3454 | |||
| 3455 | /***************************************************************************** | ||
| 3456 |   Function: | ||
| 3457 | 	void RSAInit(void) | ||
| 3458 | |||
| 3459 | Deleted Only | ||
| 3460 |   ***************************************************************************/ | ||
| 3461 | void RSAInit(void) | ||
| 3462 | { | ||
| 3463 | 	smRSA = SM_RSA_IDLE; | ||
| 3464 | } | ||
| 3465 | |||
| 3466 | /***************************************************************************** | ||
| 3467 |   Function: | ||
| 3468 | 	BOOL RSABeginUsage(RSA_OP op, BYTE vKeyByteLen) | ||
| 3469 | |||
| 3470 | Same | ||
| 3471 |   ***************************************************************************/ | ||
| 3472 | BOOL RSABeginUsage(RSA_OP op, BYTE vKeyByteLen) | ||
| 3473 | { | ||
| 3474 | 	if(smRSA != SM_RSA_IDLE) | ||
| 3475 | 		return FALSE; | ||
| 3476 | |||
| 3477 | 	keyLength = vKeyByteLen; | ||
| 3478 | |||
| 3479 | 	// ENCX24J600 modular exponentiation engine only supports 1024 bit, 768 bit,  | ||
| 3480 | 	// and 512 bit modulos.  Other values could cause the incorrect behavior so  | ||
| 3481 | 	// must be avoided. | ||
| 3482 | 	if(!((keyLength == 1024u/8u) || (keyLength == 768u/8u) || (keyLength == 512u/8u))) | ||
| 3483 | 		return FALSE; | ||
| 3484 | |||
| 3485 | 	// Set up the state machine | ||
| 3486 | 	if(op == RSA_OP_ENCRYPT) | ||
| 3487 | 	{ | ||
| 3488 | 		smRSA = SM_RSA_ENCRYPT_START; | ||
| 3489 | |||
| 3490 | 		// Turn on Modular Exponentiation hardware engine | ||
| 3491 | 		if(!(ReadReg(EIR) & EIR_CRYPTEN)) | ||
| 3492 | 			ToggleCRYPTEN(); | ||
| 3493 | 	} | ||
| 3494 | #if defined(STACK_USE_SSL_SERVER) || defined(STACK_USE_RSA_DECRYPT) | ||
| 3495 | 	else if(op == RSA_OP_DECRYPT) | ||
| 3496 | 	{ | ||
| 3497 | 		WORD oldPtr; | ||
| 3498 | |||
| 3499 | 		smRSA = SM_RSA_DECRYPT_START; | ||
| 3500 | |||
| 3501 | 		// Turn on Modular Exponentiation hardware engine | ||
| 3502 | 		if(!(ReadReg(EIR) & EIR_CRYPTEN)) | ||
| 3503 | 			ToggleCRYPTEN(); | ||
| 3504 | |||
| 3505 | 	    // Copy the decryption key and DMA into palce | ||
| 3506 | 	    oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); | ||
| 3507 | 	    MACPutROMArray(SSL_D, keyLength); | ||
| 3508 | 	    MACMemCopyAsync(ENC100_MODEX_E, BASE_CRYPTOB_ADDR, 128); | ||
| 3509 | 	    while(!MACIsMemCopyDone()); | ||
| 3510 | |||
| 3511 | 		// Copy the modulus and DMA into palce | ||
| 3512 | 		MACSetWritePtr(BASE_CRYPTOB_ADDR); | ||
| 3513 | 	    MACPutROMArray(SSL_N, keyLength); | ||
| 3514 | 	    MACMemCopyAsync(ENC100_MODEX_M, BASE_CRYPTOB_ADDR, 128); | ||
| 3515 | 	    while(!MACIsMemCopyDone()); | ||
| 3516 | |||
| 3517 | 		// Restore the write pointer | ||
| 3518 | 		MACSetWritePtr(oldPtr); | ||
| 3519 | 	} | ||
| 3520 | #endif | ||
| 3521 | 	else | ||
| 3522 | 		return FALSE; | ||
| 3523 | |||
| 3524 | 	return TRUE; | ||
| 3525 | } | ||
| 3526 | |||
| 3527 | /***************************************************************************** | ||
| 3528 |   Function: | ||
| 3529 | 	void RSAEndUsage(void) | ||
| 3530 | |||
| 3531 | Same | ||
| 3532 | Need to clear MODEXST to cancel | ||
| 3533 |   ***************************************************************************/ | ||
| 3534 | void RSAEndUsage(void) | ||
| 3535 | { | ||
| 3536 | 	smRSA = SM_RSA_IDLE; | ||
| 3537 | |||
| 3538 | 	// Turn off Modular Exponentiation hardware engine to save power | ||
| 3539 | 	if(ReadReg(EIR) & EIR_CRYPTEN) | ||
| 3540 | 		ToggleCRYPTEN(); | ||
| 3541 | } | ||
| 3542 | |||
| 3543 | /***************************************************************************** | ||
| 3544 |   Function: | ||
| 3545 | 	void RSASetData(BYTE* data, BYTE len, RSA_DATA_FORMAT format) | ||
| 3546 | |||
| 3547 | Replaced | ||
| 3548 |   ***************************************************************************/ | ||
| 3549 | void RSASetData(BYTE* data, BYTE len, RSA_DATA_FORMAT format) | ||
| 3550 | { | ||
| 3551 | 	WORD oldPtr; | ||
| 3552 | 	BYTE i; | ||
| 3553 | |||
| 3554 | 	// Little-endian input is not supported for ENC624 hardware crypto | ||
| 3555 | 	if(format == RSA_LITTLE_ENDIAN) | ||
| 3556 | 		while(1); | ||
| 3557 | |||
| 3558 | 	// Set the write pointer to reserved crypto area | ||
| 3559 |     oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); | ||
| 3560 | |||
| 3561 | 	// Pad the input data according to PKCS #1 Block 2 if doing an encryption  | ||
| 3562 | 	// operation | ||
| 3563 | 	#if defined(STACK_USE_SSL_CLIENT) || defined(STACK_USE_RSA_ENCRYPT) | ||
| 3564 | 	{ | ||
| 3565 | 		BYTE j; | ||
| 3566 | |||
| 3567 | 		if(smRSA == SM_RSA_ENCRYPT_START) | ||
| 3568 | 		{ | ||
| 3569 | 			if(len < keyLength-4) | ||
| 3570 | 			{ | ||
| 3571 | 				MACPut(0x00); | ||
| 3572 | 				MACPut(0x02); | ||
| 3573 | 				for(i = len + 3; i < keyLength; i++) | ||
| 3574 | 				{ | ||
| 3575 | 					do | ||
| 3576 | 					{ | ||
| 3577 | 						j = RandomGet(); | ||
| 3578 | 					} while(j == 0x00u); | ||
| 3579 | 					MACPut(j); | ||
| 3580 | 				} | ||
| 3581 | 				MACPut(0x00); | ||
| 3582 | 			} | ||
| 3583 | 		} | ||
| 3584 | 	} | ||
| 3585 | 	#endif | ||
| 3586 | |||
| 3587 |     // Left zero-pad the input for decrypt operations | ||
| 3588 |     if(smRSA == SM_RSA_DECRYPT_START) | ||
| 3589 |     { | ||
| 3590 | 	    for(i = len; i < keyLength; i++) | ||
| 3591 | 	    	MACPut(0x00); | ||
| 3592 | 	} | ||
| 3593 | |||
| 3594 | 	// Copy data into ENCX24J600 and DMA into ModEx engine | ||
| 3595 |     MACPutArray(data, len); | ||
| 3596 |     MACMemCopyAsync(ENC100_MODEX_X, BASE_CRYPTOB_ADDR, 128); | ||
| 3597 | |||
| 3598 | 	// Restore the write pointer | ||
| 3599 | 	MACSetWritePtr(oldPtr); | ||
| 3600 | |||
| 3601 | 	// Decrypt operations happen in place | ||
| 3602 | 	if(smRSA == SM_RSA_DECRYPT_START) | ||
| 3603 | 		RSASetResult(data, format); | ||
| 3604 | |||
| 3605 | 	// Wait for DMA engine to finish copying data into ModEx engine | ||
| 3606 |     while(!MACIsMemCopyDone()); | ||
| 3607 | } | ||
| 3608 | |||
| 3609 | /***************************************************************************** | ||
| 3610 |   Function: | ||
| 3611 | 	void RSASetResult(BYTE* data, RSA_DATA_FORMAT format) | ||
| 3612 | |||
| 3613 | Replaced | ||
| 3614 |   ***************************************************************************/ | ||
| 3615 | void RSASetResult(BYTE* data, RSA_DATA_FORMAT format) | ||
| 3616 | {	 | ||
| 3617 | 	// Little-endian input is not supported for ENC624 hardware crypto | ||
| 3618 | 	if(format == RSA_LITTLE_ENDIAN) | ||
| 3619 | 		while(1); | ||
| 3620 | |||
| 3621 | 	vOutput = data; | ||
| 3622 | } | ||
| 3623 | |||
| 3624 | /***************************************************************************** | ||
| 3625 |   Function: | ||
| 3626 | 	void RSASetE(BYTE *data, BYTE len, RSA_DATA_FORMAT format) | ||
| 3627 | |||
| 3628 | Replace | ||
| 3629 |   ***************************************************************************/ | ||
| 3630 | #if defined(STACK_USE_RSA_ENCRYPT) | ||
| 3631 | void RSASetE(BYTE* data, BYTE len, RSA_DATA_FORMAT format) | ||
| 3632 | { | ||
| 3633 | 	WORD oldPtr; | ||
| 3634 | 	BYTE i; | ||
| 3635 | |||
| 3636 | 	// Little-endian input is not supported for ENC624 hardware crypto | ||
| 3637 | 	if(format == RSA_LITTLE_ENDIAN) | ||
| 3638 | 		while(1); | ||
| 3639 | |||
| 3640 | 	// Set the write pointer to reserved crypto area | ||
| 3641 |     oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); | ||
| 3642 | |||
| 3643 |     // Zero-pad the input, copy data, and DMA into palce | ||
| 3644 |     for(i = len; i < keyLength; i++) | ||
| 3645 |     	MACPut(0x00); | ||
| 3646 |     MACPutArray(data, len); | ||
| 3647 |     MACMemCopyAsync(ENC100_MODEX_E, BASE_CRYPTOB_ADDR, 128); | ||
| 3648 | |||
| 3649 | 	// Restore the write pointer | ||
| 3650 | 	MACSetWritePtr(oldPtr); | ||
| 3651 | |||
| 3652 | 	// Wait for DMA copy to ModEx to complete | ||
| 3653 |     while(!MACIsMemCopyDone()); | ||
| 3654 | } | ||
| 3655 | #endif | ||
| 3656 | |||
| 3657 | /***************************************************************************** | ||
| 3658 |   Function: | ||
| 3659 | 	void RSASetN(BYTE* data, RSA_DATA_FORMAT format) | ||
| 3660 | |||
| 3661 | Replace | ||
| 3662 |   ***************************************************************************/ | ||
| 3663 | #if defined(STACK_USE_RSA_ENCRYPT) | ||
| 3664 | void RSASetN(BYTE* data, RSA_DATA_FORMAT format) | ||
| 3665 | { | ||
| 3666 | 	WORD oldPtr; | ||
| 3667 | |||
| 3668 | 	// Little-endian input is not supported for ENC624 hardware crypto | ||
| 3669 | 	if(format == RSA_LITTLE_ENDIAN) | ||
| 3670 | 		while(1); | ||
| 3671 | |||
| 3672 | 	// Set the write pointer to reserved crypto area | ||
| 3673 |     oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); | ||
| 3674 | |||
| 3675 |     // Copy data and DMA into palce | ||
| 3676 |     MACPutArray(data, keyLength); | ||
| 3677 |     MACMemCopyAsync(ENC100_MODEX_M, BASE_CRYPTOB_ADDR, 128); | ||
| 3678 | |||
| 3679 | 	// Restore the write pointer | ||
| 3680 | 	MACSetWritePtr(oldPtr); | ||
| 3681 | |||
| 3682 | 	// Wait for DMA copy to ModEx to complete | ||
| 3683 |     while(!MACIsMemCopyDone()); | ||
| 3684 | } | ||
| 3685 | #endif | ||
| 3686 | |||
| 3687 | /***************************************************************************** | ||
| 3688 |   Function: | ||
| 3689 | 	RSA_STATUS RSAStep(void) | ||
| 3690 | |||
| 3691 | Replace | ||
| 3692 |   ***************************************************************************/ | ||
| 3693 | RSA_STATUS RSAStep(void) | ||
| 3694 | { | ||
| 3695 | 	WORD oldPtr; | ||
| 3696 | |||
| 3697 | 	switch(smRSA) | ||
| 3698 | 	{ | ||
| 3699 | 		case SM_RSA_ENCRYPT_START: | ||
| 3700 | 		case SM_RSA_DECRYPT_START: | ||
| 3701 | 			// Set the correct key length | ||
| 3702 | 			BFCReg(ECON2, ECON2_MODLEN1 | ECON2_MODLEN0); | ||
| 3703 | 			if(keyLength == 1024u/8u) | ||
| 3704 | 				BFSReg(ECON2, ECON2_MODLEN1);				 | ||
| 3705 | 			if(keyLength == 768u/8u) | ||
| 3706 | 				BFSReg(ECON2, ECON2_MODLEN0); | ||
| 3707 | |||
| 3708 | 			// Start the engine | ||
| 3709 | 			BFSReg(ECON1, ECON1_MODEXST); | ||
| 3710 | |||
| 3711 | 			// Advance state machine to SM_RSA_ENCRYPT.  With the ENCX24J600  | ||
| 3712 | 			// Modular Exponentiation engine, the finishing of decryption is  | ||
| 3713 | 			// identical to the finishing of encryption. | ||
| 3714 | 			smRSA = SM_RSA_ENCRYPT; | ||
| 3715 | 			break; | ||
| 3716 | |||
| 3717 | 		case SM_RSA_ENCRYPT:	// Also used to finish decryption | ||
| 3718 | 			// Check if operation is complete | ||
| 3719 | 			if(ReadReg(ECON1) & ECON1_MODEXST) | ||
| 3720 | 				break; | ||
| 3721 | |||
| 3722 | 			// Copy the data out | ||
| 3723 | 			MACMemCopyAsync(BASE_CRYPTOB_ADDR, ENC100_MODEX_Y, 128); | ||
| 3724 |    			oldPtr = MACSetReadPtr(BASE_CRYPTOB_ADDR); | ||
| 3725 | 			while(!MACIsMemCopyDone()); | ||
| 3726 | 			MACGetArray(vOutput, keyLength); | ||
| 3727 | 			MACSetReadPtr(oldPtr); | ||
| 3728 | |||
| 3729 | 			// Indicate that we're finished | ||
| 3730 | 			smRSA = SM_RSA_DONE; | ||
| 3731 | 			return RSA_DONE; | ||
| 3732 | |||
| 3733 | 		default: | ||
| 3734 | 			// Unknown state | ||
| 3735 | 			return RSA_DONE; | ||
| 3736 | 	} | ||
| 3737 | |||
| 3738 | 	// Indicate that we're still working | ||
| 3739 | 	return RSA_WORKING; | ||
| 3740 | |||
| 3741 | } | ||
| 3742 | |||
| 3743 | |||
| 3744 | /**************************************************************************** | ||
| 3745 |   Section: | ||
| 3746 | 	Fundamental RSA Operations | ||
| 3747 |   ***************************************************************************/ | ||
| 3748 | |||
| 3749 | /***************************************************************************** | ||
| 3750 |   Function: | ||
| 3751 | 	static BOOL _RSAModExpROM(BIGINT* y, BIGINT* x, BIGINT_ROM* e,  | ||
| 3752 | 								BIGINT_ROM* n) | ||
| 3753 | |||
| 3754 | Not Needed | ||
| 3755 |   ***************************************************************************/ | ||
| 3756 | |||
| 3757 | /***************************************************************************** | ||
| 3758 |   Function: | ||
| 3759 | 	static BOOL _RSAModExp(BIGINT* y, BIGINT* x, BIGINT* e, BIGINT* n) | ||
| 3760 | |||
| 3761 | Not Needed | ||
| 3762 |   ***************************************************************************/ | ||
| 3763 | |||
| 3764 | #endif | ||
| 3765 | |||
| 3766 | |||
| 3767 | |||
| 3768 | /* // A function potentially useful for debugging, but a waste of code otherwise | ||
| 3769 | void ENC100DumpState(void) | ||
| 3770 | { | ||
| 3771 | 	WORD w; | ||
| 3772 | 	BYTE a[32]; | ||
| 3773 | 	BYTE i; | ||
| 3774 | |||
| 3775 | 	printf("\r\n  Current Packet Address = 0x%04hX", wCurrentPacketPointer); | ||
| 3776 | 	printf("\r\n  EIR     = 0x%04hX", ReadReg(EIR)); | ||
| 3777 | 	printf("\r\n  ERXST   = 0x%04hX", ReadReg(ERXST)); | ||
| 3778 | 	printf("\r\n  EUDAST  = 0x%04hX", ReadReg(EUDAST)); | ||
| 3779 | 	printf("\r\n  EUDAND  = 0x%04hX", ReadReg(EUDAND)); | ||
| 3780 | 	printf("\r\n  ERXTAIL = 0x%04hX", ReadReg(ERXTAIL)); | ||
| 3781 | 	printf("\r\n  ERXHEAD = 0x%04hX", ReadReg(ERXHEAD)); | ||
| 3782 | 	w = ReadReg(ESTAT); | ||
| 3783 | 	printf("\r\n  ESTAT   = 0x%04hX (Packet Count = %hhu)", w, (BYTE)w); | ||
| 3784 | 	printf("\r\n  ERXFCON = 0x%04hX", ReadReg(ERXFCON)); | ||
| 3785 | 	printf("\r\n  MACON1  = 0x%04hX", ReadReg(MACON1)); | ||
| 3786 | 	printf("\r\n  MACON2  = 0x%04hX", ReadReg(MACON2)); | ||
| 3787 | 	printf("\r\n  ECON1   = 0x%04hX", ReadReg(ECON1)); | ||
| 3788 | 	printf("\r\n  ECON2   = 0x%04hX", ReadReg(ECON2)); | ||
| 3789 | 	printf("\r\n  ETXST   = 0x%04hX", ReadReg(ETXST)); | ||
| 3790 | 	printf("\r\n  ETXLEN  = 0x%04hX", ReadReg(ETXLEN)); | ||
| 3791 | 	printf("\r\n  EDMAST  = 0x%04hX", ReadReg(EDMAST)); | ||
| 3792 | 	printf("\r\n  EDMALEN = 0x%04hX", ReadReg(EDMALEN)); | ||
| 3793 | 	printf("\r\n  EDMADST = 0x%04hX", ReadReg(EDMADST)); | ||
| 3794 | 	printf("\r\n  EDMACS  = 0x%04hX", ReadReg(EDMACS)); | ||
| 3795 | |||
| 3796 | 	for(w = 0; w < ENC100_RAM_SIZE; w += 16) | ||
| 3797 | 	{ | ||
| 3798 | 		ReadMemory(w, a, 16); | ||
| 3799 | |||
| 3800 | 		for(i = 0; i < 16u; i++) | ||
| 3801 | 		{ | ||
| 3802 | 			if((a[i] >= 0x20) && (a[i] <= 0x7E)) | ||
| 3803 | 				a[i+16] = a[i]; | ||
| 3804 | 			else | ||
| 3805 | 				a[i+16] = '.'; | ||
| 3806 | 		} | ||
| 3807 | |||
| 3808 | 		printf("\r\n%04hx  %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx  %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx   %hhc%hhc%hhc%hhc%hhc%hhc%hhc%hhc %hhc%hhc%hhc%hhc%hhc%hhc%hhc%hhc", w, a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15], a[16], a[17], a[18], a[19], a[20], a[21], a[22], a[23], a[24], a[25], a[26], a[27], a[28], a[29], a[30], a[31]); | ||
| 3809 | 	} | ||
| 3810 | 	printf("\r\n\r\n"); | ||
| 3811 | } | ||
| 3812 | */ | ||
| 3813 | |||
| 3814 | #endif //#if defined(ENC100_INTERFACE_MODE) | 
Powered by WebSVN v2.8.3