Line No. | Rev | Author | Line |
---|---|---|---|
1 | 32 | kaklik | /********************************************************************* |
2 | * |
||
3 | * Medium Access Control (MAC) Layer for Microchip ENC624J600/424J600 |
||
4 | * Module for Microchip TCP/IP Stack |
||
5 | * -Provides access to ENC424J600/624J600 Ethernet controller |
||
6 | * -Reference: ENC424J600/624J600 Data sheet (DS39935), IEEE 802.3 |
||
7 | * Standard |
||
8 | * |
||
9 | ********************************************************************* |
||
10 | * FileName: ENCX24J600.c |
||
11 | * Dependencies: ENCX24J600.h |
||
12 | * MAC.h |
||
13 | * string.h |
||
14 | * Helpers.h |
||
15 | * Delay.h |
||
16 | * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32 |
||
17 | * Compiler: Microchip C32 v1.05 or higher |
||
18 | * Microchip C30 v3.12 or higher |
||
19 | * Microchip C18 v3.30 or higher |
||
20 | * HI-TECH PICC-18 PRO 9.63PL2 or higher |
||
21 | * Company: Microchip Technology, Inc. |
||
22 | * |
||
23 | * Software License Agreement |
||
24 | * |
||
25 | * Copyright (C) 2002-2009 Microchip Technology Inc. All rights |
||
26 | * reserved. |
||
27 | * |
||
28 | * Microchip licenses to you the right to use, modify, copy, and |
||
29 | * distribute: |
||
30 | * (i) the Software when embedded on a Microchip microcontroller or |
||
31 | * digital signal controller product ("Device") which is |
||
32 | * integrated into Licensee's product; or |
||
33 | * (ii) ONLY the Software driver source files ENC28J60.c, ENC28J60.h, |
||
34 | * ENCX24J600.c and ENCX24J600.h ported to a non-Microchip device |
||
35 | * used in conjunction with a Microchip ethernet controller for |
||
36 | * the sole purpose of interfacing with the ethernet controller. |
||
37 | * |
||
38 | * You should refer to the license agreement accompanying this |
||
39 | * Software for additional information regarding your rights and |
||
40 | * obligations. |
||
41 | * |
||
42 | * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT |
||
43 | * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT |
||
44 | * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A |
||
45 | * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
||
46 | * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR |
||
47 | * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF |
||
48 | * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS |
||
49 | * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE |
||
50 | * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER |
||
51 | * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT |
||
52 | * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE. |
||
53 | * |
||
54 | * |
||
55 | * Author Date Comment |
||
56 | *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
||
57 | * Howard Schlunder 12/07/07 Original |
||
58 | ********************************************************************/ |
||
59 | #define __ENCX24J600_C |
||
60 | |||
61 | #include "HardwareProfile.h" |
||
62 | |||
63 | // Make sure that this hardware profile has an ENC424J600/624J600 in it |
||
64 | #if defined(ENC100_INTERFACE_MODE) |
||
65 | |||
66 | #include "TCPIP Stack/TCPIP.h" |
||
67 | #include "TCPIP Stack/ENCX24J600.h" |
||
68 | |||
69 | #include <stdarg.h> |
||
70 | |||
71 | /** D E F I N I T I O N S ****************************************************/ |
||
72 | #define ENC100_MAX_SPI_FREQ (14000000ul) // Hz |
||
73 | |||
74 | // Configuration constants for diagnostics only. If you don't define any of |
||
75 | // these constants, auto-negotiation will be used (strongly recommended). |
||
76 | //#define ENC100_FORCE_10MBPS_HALF_DUPLEX |
||
77 | //#define ENC100_FORCE_10MBPS_FULL_DUPLEX |
||
78 | //#define ENC100_FORCE_100MBPS_HALF_DUPLEX |
||
79 | //#define ENC100_FORCE_100MBPS_FULL_DUPLEX |
||
80 | |||
81 | |||
82 | // Pseudo Functions - these should not need changing unless porting to a new |
||
83 | // processor type or speed. |
||
84 | // DelaySetupHold() should wait at least 75ns to meet Tpsp2 (RD to Data Valid) |
||
85 | #define DelaySetupHold() do{Nop();Nop();}while(0) |
||
86 | #if (GetInstructionClock() > 16000000ul) |
||
87 | #undef DelaySetupHold |
||
88 | #define DelaySetupHold() do{Nop();Nop();Nop();}while(0) |
||
89 | #endif |
||
90 | #if (GetInstructionClock() > 32000000ul) |
||
91 | #undef DelaySetupHold |
||
92 | #define DelaySetupHold() do{Nop();Nop();Nop();Nop();}while(0) |
||
93 | #endif |
||
94 | #if (GetInstructionClock() > 48000000ul) |
||
95 | #undef DelaySetupHold |
||
96 | #define DelaySetupHold() do{Nop();Nop();Nop();Nop();Nop();}while(0) |
||
97 | #endif |
||
98 | #if (GetInstructionClock() > 64000000ul) |
||
99 | #undef DelaySetupHold |
||
100 | #define DelaySetupHold() do{Nop();Nop();Nop();Nop();Nop();Nop();}while(0) |
||
101 | #endif |
||
102 | |||
103 | #if defined(__PIC32MX__) |
||
104 | #define PMDIN1 PMDIN |
||
105 | #endif |
||
106 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
107 | #if defined(ENC100_CS_TRIS) |
||
108 | #define AssertChipSelect() do{ENC100_CS_IO = 1;}while(0) |
||
109 | #define DeassertChipSelect() do{ENC100_CS_IO = 0;}while(0) |
||
110 | #else |
||
111 | #define AssertChipSelect() |
||
112 | #define DeassertChipSelect() |
||
113 | #endif |
||
114 | #else // SPI mode |
||
115 | #define AssertChipSelect() do{ENC100_CS_IO = 0;}while(0) |
||
116 | #define DeassertChipSelect() do{ENC100_CS_IO = 1;}while(0) |
||
117 | |||
118 | #if defined (__18CXX) |
||
119 | #define ClearSPIDoneFlag() do{ENC100_SPI_IF = 0;}while(0) |
||
120 | #define WaitForDataByte() do{while(!ENC100_SPI_IF); ENC100_SPI_IF = 0;}while(0) |
||
121 | #elif defined(__C30__) |
||
122 | #define ClearSPIDoneFlag() |
||
123 | static inline __attribute__((__always_inline__)) void WaitForDataByte(void) |
||
124 | { |
||
125 | while ((ENC100_SPISTATbits.SPITBF == 1) || (ENC100_SPISTATbits.SPIRBF == 0)); |
||
126 | } |
||
127 | #elif defined( __PIC32MX__ ) |
||
128 | #define ClearSPIDoneFlag() |
||
129 | static inline __attribute__((__always_inline__)) void WaitForDataByte(void) |
||
130 | { |
||
131 | while (!ENC100_SPISTATbits.SPITBE || !ENC100_SPISTATbits.SPIRBF); |
||
132 | } |
||
133 | #else |
||
134 | #error Determine SPI flag mechanism |
||
135 | #endif |
||
136 | #endif |
||
137 | |||
138 | |||
139 | // Binary constant identifiers for ReadMemoryWindow() and WriteMemoryWindow() |
||
140 | // functions |
||
141 | #define UDA_WINDOW (0x1) |
||
142 | #define GP_WINDOW (0x2) |
||
143 | #define RX_WINDOW (0x4) |
||
144 | |||
145 | |||
146 | #define ETHER_IP ((WORD)0x00) |
||
147 | #define ETHER_ARP ((WORD)0x06) |
||
148 | |||
149 | |||
150 | // A header appended at the start of all RX frames by the hardware |
||
151 | typedef struct __attribute__((aligned(2), packed)) |
||
152 | { |
||
153 | WORD NextPacketPointer; |
||
154 | RXSTATUS StatusVector; |
||
155 | |||
156 | MAC_ADDR DestMACAddr; |
||
157 | MAC_ADDR SourceMACAddr; |
||
158 | WORD_VAL Type; |
||
159 | } ENC100_PREAMBLE; |
||
160 | |||
161 | |||
162 | |||
163 | // Internal MAC level variables and flags. |
||
164 | static BYTE vCurrentBank; |
||
165 | static WORD wCurrentPacketPointer; |
||
166 | static WORD wNextPacketPointer; |
||
167 | static struct |
||
168 | { |
||
169 | unsigned char bWasDiscarded:1; // Status tracking bit indicating if the last received packet has been discarded via MACDiscardRx() or not. |
||
170 | unsigned char PoweredDown:1; // Local cached bit indicating CRYPTEN == ETHEN == 0 and PSLEEP == 1 |
||
171 | unsigned char CryptoEnabled:1; // Local cached bit indicating CRYPTEN == 1 |
||
172 | } ENC100Flags; |
||
173 | |||
174 | |||
175 | // Internal MAC level functions |
||
176 | void ENC100DumpState(void); |
||
177 | static void SendSystemReset(void); |
||
178 | static void ToggleCRYPTEN(void); |
||
179 | static WORD ReadReg(WORD wAddress); |
||
180 | static void WriteReg(WORD wAddress, WORD wValue); |
||
181 | static void BFSReg(WORD wAddress, WORD wBitMask); |
||
182 | static void BFCReg(WORD wAddress, WORD wBitMask); |
||
183 | static void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength); |
||
184 | static void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength); |
||
185 | #if ENC100_INTERFACE_MODE == 0 |
||
186 | static void Execute0(BYTE vOpcode); |
||
187 | //static BYTE Execute1(BYTE vOpcode, BYTE wDataIn); // Not currently used |
||
188 | static WORD Execute2(BYTE vOpcode, WORD wDataIn); |
||
189 | static DWORD Execute3(BYTE vOpcode, DWORD dwDataIn); |
||
190 | static void ReadN(BYTE vOpcode, BYTE* vData, WORD wDataLen); |
||
191 | static void WriteN(BYTE vOpcode, BYTE* vData, WORD wDataLen); |
||
192 | #else |
||
193 | static void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength); |
||
194 | static void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength); |
||
195 | #endif |
||
196 | |||
197 | |||
198 | |||
199 | // Compute some PMP register values |
||
200 | #if ENC100_INTERFACE_MODE == 1 // Parallel Mode 1: 8-bit demultiplexed (RD/WR) |
||
201 | #define PMP_ADRMUX 0x0 // Full demuxing of address and data |
||
202 | #define PMP_MODE16 0 // 8 bit |
||
203 | #define PMP_MODE 0x2 // Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB |
||
204 | #define PMP_ADR_PINS ENC100_TRANSLATE_TO_PIN_ADDR(0x7FFF) |
||
205 | #elif ENC100_INTERFACE_MODE == 2 // Parallel Mode 2: 8-bit demultiplexed (RW/EN) |
||
206 | #define PMP_ADRMUX 0x0 // Full demuxing of address and data |
||
207 | #define PMP_MODE16 0 // 8 bit |
||
208 | #define PMP_MODE 0x3 // Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR |
||
209 | #define PMP_ADR_PINS ENC100_TRANSLATE_TO_PIN_ADDR(0x7FFF) |
||
210 | #elif ENC100_INTERFACE_MODE == 3 // Parallel Mode 3: 16-bit demultiplexed (RD/WR) |
||
211 | #define PMP_ADRMUX 0x0 // Full demuxing of address and data |
||
212 | #define PMP_MODE16 1 // 16 bit |
||
213 | #define PMP_MODE 0x2 // Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB |
||
214 | #define PMP_ADR_PINS ENC100_TRANSLATE_TO_PIN_ADDR(0x3FFF) |
||
215 | #elif ENC100_INTERFACE_MODE == 4 // Parallel Mode 4: 16-bit demultiplexed (RW/EN) |
||
216 | #define PMP_ADRMUX 0x0 // Full demuxing of address and data |
||
217 | #define PMP_MODE16 1 // 16 bit |
||
218 | #define PMP_MODE 0x3 // Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR |
||
219 | #define PMP_ADR_PINS ENC100_TRANSLATE_TO_PIN_ADDR(0x3FFF) |
||
220 | #elif ENC100_INTERFACE_MODE == 5 // Parallel Mode 5: 8-bit multiplexed (RD/WR) |
||
221 | #define PMP_ADRMUX 0x1 // Partially multiplexed address and data |
||
222 | #define PMP_MODE16 0 // 8 bit |
||
223 | #define PMP_MODE 0x2 // Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB |
||
224 | #define PMP_ADR_PINS (ENC100_TRANSLATE_TO_PIN_ADDR(0x7F00) | 0x0001) |
||
225 | #elif ENC100_INTERFACE_MODE == 6 // Parallel Mode 6: 8-bit multiplexed (RW/EN) |
||
226 | #define PMP_ADRMUX 0x1 // Partially multiplexed address and data |
||
227 | #define PMP_MODE16 0 // 8 bit |
||
228 | #define PMP_MODE 0x3 // Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR |
||
229 | #define PMP_ADR_PINS (ENC100_TRANSLATE_TO_PIN_ADDR(0x7F00) | 0x0001) |
||
230 | #elif ENC100_INTERFACE_MODE == 9 // Parallel Mode 9: 16-bit multiplexed (RD/WR) |
||
231 | #define PMP_ADRMUX 0x3 // Fully multiplexed address and data |
||
232 | #define PMP_MODE16 1 // 16 bit |
||
233 | #define PMP_MODE 0x2 // Master mode 2: PMRD & PMWR, not PMRD/PMWR & PMENB |
||
234 | #define PMP_ADR_PINS 0x0001 |
||
235 | #elif ENC100_INTERFACE_MODE == 10 // Parallel Mode 10: 16-bit multiplexed (RW/EN) |
||
236 | #define PMP_ADRMUX 0x3 // Fully multiplexed address and data |
||
237 | #define PMP_MODE16 1 // 16 bit |
||
238 | #define PMP_MODE 0x3 // Master mode 1: PMRD/PMWR & PMENB, not PMRD & PMWR |
||
239 | #define PMP_ADR_PINS 0x0001 |
||
240 | #endif |
||
241 | |||
242 | // Calculate the minimum number of wait states to ensure a 75ns or longer pulse width for READ and WRITE strobes |
||
243 | #if defined(__PIC32MX__) // PIC32 is offset by one (i.e. 0 = one wait state) |
||
244 | #define OPTIMAL_PMP_WAIT_STATES ((BYTE)((double)GetPeripheralClock()*0.000000075)) |
||
245 | #else |
||
246 | #define OPTIMAL_PMP_WAIT_STATES ((BYTE)((double)GetPeripheralClock()*0.000000075 + 0.9999)) |
||
247 | #endif |
||
248 | |||
249 | #if ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) && !defined(ENC100_BIT_BANG_PMP) |
||
250 | #if !defined(__PIC32MX__) |
||
251 | #error "16-bit PMP mode is only available on PIC32. Use big bang mode or ENC100_INTERFACE_MODE of 1, 2, 5, or 6 (8-bit) instead." |
||
252 | #endif |
||
253 | #endif |
||
254 | |||
255 | |||
256 | |||
257 | // Compute optimal SPI speed and define the ConfigureSPIModule() macro function |
||
258 | // to load it up quickly whenever we want to use the SPI |
||
259 | #if defined(__18CXX) |
||
260 | #define OPTIMAL_PRESCALE 0x00 // Default to divide by 4 setting |
||
261 | #if GetPeripheralClock() > ENC100_MAX_SPI_FREQ |
||
262 | #undef OPTIMAL_PRESCALE |
||
263 | #define OPTIMAL_PRESCALE 0x01 // Use divide by 16 setting |
||
264 | #endif |
||
265 | #if GetPeripheralClock()/16 > ENC100_MAX_SPI_FREQ |
||
266 | #undef OPTIMAL_PRESCALE |
||
267 | #define OPTIMAL_PRESCALE 0x02 // Use divide by 64 setting |
||
268 | #endif |
||
269 | #define ConfigureSPIModule() do{ \ |
||
270 | ENC100_SPICON1 = 0; /* SSPEN = 0 */ \ |
||
271 | ENC100_SPISTAT = 0x40; /* CKE = 1 (transmit data on rising edge), SMP = 0 (sample at middle of output time) */ \ |
||
272 | ENC100_SPICON1 = OPTIMAL_PRESCALE | 0x20; /* SSPEN = 1, set clock speed */\ |
||
273 | }while(0) |
||
274 | #define PMCONbits PMCONHbits // Remap for PMPEN bit accessed inline |
||
275 | #define ConfigurePMPModule() do{ \ |
||
276 | PMCONHbits.PMPEN = 0; \ |
||
277 | PMCONH = (PMP_ADRMUX<<3) | 0x03; /* PTWREN = 1, PTRDEN = 1 */ \ |
||
278 | PMCONL = 0x23; /* ALP = 1, WRSP = 1, RDSP = 1 */ \ |
||
279 | PMMODEH = (PMP_MODE16<<2) | (PMP_MODE); \ |
||
280 | PMMODEL = (OPTIMAL_PMP_WAIT_STATES<<2); \ |
||
281 | PMAENH = ((BYTE)(PMP_ADR_PINS>>8)); \ |
||
282 | PMAENL = ((BYTE)PMP_ADR_PINS); \ |
||
283 | PMCONHbits.PMPEN = 1; \ |
||
284 | }while(0) |
||
285 | #elif defined(__C30__) |
||
286 | // Ensure SPI doesn't exceed processor limit |
||
287 | #if (defined(__PIC24F__) || defined(__PIC24FK__) || defined(__PIC24H__) || defined(__dsPIC33F__)) && ENC100_MAX_SPI_FREQ > 8000000 |
||
288 | #undef ENC100_MAX_SPI_FREQ |
||
289 | #define ENC100_MAX_SPI_FREQ 8000000 |
||
290 | #endif |
||
291 | #if defined(__dsPIC30F__) && ENC100_MAX_SPI_FREQ > 10000000 |
||
292 | #undef ENC100_MAX_SPI_FREQ |
||
293 | #define ENC100_MAX_SPI_FREQ 10000000 |
||
294 | #endif |
||
295 | |||
296 | // Calculate optimal primary and secondary prescalers to make an SPI clock no faster than ENC100_MAX_SPI_FREQ |
||
297 | #define OPTIMAL_PRESCALE ((((~((GetPeripheralClock()/64+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x0) |
||
298 | #if GetPeripheralClock()/8/16 <= ENC100_MAX_SPI_FREQ |
||
299 | #undef OPTIMAL_PRESCALE |
||
300 | #define OPTIMAL_PRESCALE ((((~((GetPeripheralClock()/16+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x1) |
||
301 | #endif |
||
302 | #if GetPeripheralClock()/8/4 <= ENC100_MAX_SPI_FREQ |
||
303 | #undef OPTIMAL_PRESCALE |
||
304 | #define OPTIMAL_PRESCALE ((((~((GetPeripheralClock()/4+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x2) |
||
305 | #endif |
||
306 | #if GetPeripheralClock()/8/1 <= ENC100_MAX_SPI_FREQ |
||
307 | #undef OPTIMAL_PRESCALE |
||
308 | #define OPTIMAL_PRESCALE ((((~((GetPeripheralClock()/1+ENC100_MAX_SPI_FREQ-1)/ENC100_MAX_SPI_FREQ - 1)) & 0x7)<<2) | 0x3) |
||
309 | #endif |
||
310 | |||
311 | // Work around 1:1, 1:1 SPI errata on early PIC24FJ128GA010, PIC24HJ256GP610, dsPIC33FJ256GP710, etc. silicon where SCK stops running |
||
312 | #if (defined(__PIC24F__) || defined(__PIC24H__) || defined(__dsPIC33F__)) && (OPTIMAL_PRESCALE == 0x1F) |
||
313 | #undef OPTIMAL_PRESCALE |
||
314 | #define OPTIMAL_PRESCALE 0x1B |
||
315 | #endif |
||
316 | |||
317 | |||
318 | #define ConfigureSPIModule() do{ \ |
||
319 | ENC100_SPISTAT = 0; /* Turn off SPI */ \ |
||
320 | ENC100_SPICON1 = OPTIMAL_PRESCALE | 0x0100 | 0x0020; /* CKE = 1, MSTEN = 1 */ \ |
||
321 | ENC100_SPICON2 = 0; /* Legacy non enhanced buffering */ \ |
||
322 | ENC100_SPISTAT = 0x8000; /* Turn on SPI */ \ |
||
323 | }while(0) |
||
324 | |||
325 | #define ConfigurePMPModule() do{ \ |
||
326 | PMCONbits.PMPEN = 0; \ |
||
327 | PMCON = (PMP_ADRMUX<<11) | 0x0323; /* PTWREN = 1, PTRDEN = 1, ALP = 1, WRSP = 1, RDSP = 1 */ \ |
||
328 | PMMODE = (PMP_MODE16<<10) | (PMP_MODE<<8) | (OPTIMAL_PMP_WAIT_STATES<<2); \ |
||
329 | PMAEN = PMP_ADR_PINS; \ |
||
330 | PADCFG1bits.PMPTTL = 0; /* Use schmitt trigger input buffers */ \ |
||
331 | PMCONbits.PMPEN = 1; \ |
||
332 | }while(0) |
||
333 | #elif defined(__C32__) |
||
334 | #define ConfigureSPIModule() do{ \ |
||
335 | ENC100_SPICON1 = 0; /* Turn off SPI */ \ |
||
336 | ENC100_SPIBRG = (GetPeripheralClock()-1ul)/2ul/ENC100_MAX_SPI_FREQ; \ |
||
337 | ENC100_SPICON1 = 0x00008320; /* ON = 1, SMP = 1, CKE = 1, MSTEN = 1 */ \ |
||
338 | }while(0) |
||
339 | #define ConfigurePMPModule() do{ \ |
||
340 | PMCONbits.PMPEN = 0; \ |
||
341 | PMCON = (PMP_ADRMUX<<11) | 0x0323; /* PMPTTL = 0, PTWREN = 1, PTRDEN = 1, ALP = 1, WRSP = 1, RDSP = 1 */ \ |
||
342 | PMMODE = (PMP_MODE16<<10) | (PMP_MODE<<8) | (OPTIMAL_PMP_WAIT_STATES<<2); \ |
||
343 | PMAEN = PMP_ADR_PINS; \ |
||
344 | PMCONbits.PMPEN = 1; \ |
||
345 | }while(0) |
||
346 | #endif |
||
347 | |||
348 | /****************************************************************************** |
||
349 | * Function: void ENC100Init(void) |
||
350 | * |
||
351 | * PreCondition: None |
||
352 | * |
||
353 | * Input: None |
||
354 | * |
||
355 | * Output: None |
||
356 | * |
||
357 | * Side Effects: None |
||
358 | * |
||
359 | * Overview: MACInit sets up the PIC's SPI module and all the |
||
360 | * registers in the ENCX24J600 so that normal operation can |
||
361 | * begin. |
||
362 | * |
||
363 | * Note: None |
||
364 | *****************************************************************************/ |
||
365 | void MACInit(void) |
||
366 | { |
||
367 | WORD w; |
||
368 | |||
369 | #if defined(ENC100_INT_TRIS) // Interrupt output from ENCx24J600 |
||
370 | ENC100_INT_TRIS = 1; |
||
371 | #endif |
||
372 | #if defined(ENC100_MDIX_TRIS) // MDIX control pin from PIC |
||
373 | ENC100_MDIX_TRIS = 0; |
||
374 | ENC100_MDIX_IO = 0; |
||
375 | #endif |
||
376 | |||
377 | #if defined(ENC100_CS_TRIS) // Chip Select line from PIC |
||
378 | DeassertChipSelect(); |
||
379 | ENC100_CS_TRIS = 0; |
||
380 | #endif |
||
381 | |||
382 | #if (ENC100_INTERFACE_MODE >= 1) && defined(ENC100_BIT_BANG_PMP) // Parallel bit-bang mode needs I/O pins to be configured. PMP will control pins automatically. |
||
383 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
384 | ENC100_SO_WR_B0SEL_EN_TRIS = 0; |
||
385 | ENC100_SI_RD_RW_IO = 0; |
||
386 | ENC100_SI_RD_RW_TRIS = 0; |
||
387 | #if ENC100_INTERFACE_MODE >= 5 // If PSP address bus is multiplexed, then set Address Latch TRIS bit to output |
||
388 | ENC100_SCK_AL_IO = 0; |
||
389 | ENC100_SCK_AL_TRIS = 0; |
||
390 | #endif |
||
391 | #if (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10) // If PSP data width is 16-bits, set Write High/Byte 1 select as output |
||
392 | ENC100_WRH_B1SEL_IO = 0; |
||
393 | ENC100_WRH_B1SEL_TRIS = 0; |
||
394 | #endif |
||
395 | |||
396 | ENC100_INIT_PSP_BIT_BANG(); |
||
397 | #elif (ENC100_INTERFACE_MODE == 0) // Use SPI interface |
||
398 | vCurrentBank = 0; // Needed for SPI only |
||
399 | |||
400 | // Set up SPI pins on PIC18s |
||
401 | #if defined(__18CXX) |
||
402 | ENC100_SCK_AL_TRIS = 0; |
||
403 | ENC100_SI_RD_RW_TRIS = 0; |
||
404 | ENC100_SO_WR_B0SEL_EN_TRIS = 1; |
||
405 | ENC100_SPI_IF = 0; |
||
406 | #endif |
||
407 | |||
408 | ConfigureSPIModule(); |
||
409 | #endif |
||
410 | |||
411 | // Perform a reliable reset |
||
412 | SendSystemReset(); |
||
413 | |||
414 | // Initialize RX tracking variables and other control state flags |
||
415 | wNextPacketPointer = RXSTART; |
||
416 | wCurrentPacketPointer = 0x0000; |
||
417 | ENC100Flags.bWasDiscarded = 1; |
||
418 | ENC100Flags.PoweredDown = 0; |
||
419 | ENC100Flags.CryptoEnabled = 0; |
||
420 | |||
421 | // Set up TX/RX/UDA buffer addresses |
||
422 | WriteReg(ETXST, TXSTART); |
||
423 | WriteReg(ERXST, RXSTART); |
||
424 | WriteReg(ERXTAIL, ENC100_RAM_SIZE-2); |
||
425 | WriteReg(EUDAST, ENC100_RAM_SIZE); |
||
426 | WriteReg(EUDAND, ENC100_RAM_SIZE+1); |
||
427 | |||
428 | // Use ENCx24J600 preprogrammed MAC address, if AppConfig is not already set |
||
429 | if(((AppConfig.MyMACAddr.v[0] == 0x00u) && (AppConfig.MyMACAddr.v[1] == 0x04u) && (AppConfig.MyMACAddr.v[2] == 0xA3u) && (AppConfig.MyMACAddr.v[3] == 0x00u) && (AppConfig.MyMACAddr.v[4] == 0x00u) && (AppConfig.MyMACAddr.v[5] == 0x00u)) || |
||
430 | ((AppConfig.MyMACAddr.v[0] | AppConfig.MyMACAddr.v[1] | AppConfig.MyMACAddr.v[2] | AppConfig.MyMACAddr.v[3] | AppConfig.MyMACAddr.v[4] | AppConfig.MyMACAddr.v[5]) == 0x00u)) |
||
431 | { |
||
432 | w = ReadReg(MAADR1); |
||
433 | AppConfig.MyMACAddr.v[0] = ((BYTE*)&w)[0]; |
||
434 | AppConfig.MyMACAddr.v[1] = ((BYTE*)&w)[1]; |
||
435 | w = ReadReg(MAADR2); |
||
436 | AppConfig.MyMACAddr.v[2] = ((BYTE*)&w)[0]; |
||
437 | AppConfig.MyMACAddr.v[3] = ((BYTE*)&w)[1]; |
||
438 | w = ReadReg(MAADR3); |
||
439 | AppConfig.MyMACAddr.v[4] = ((BYTE*)&w)[0]; |
||
440 | AppConfig.MyMACAddr.v[5] = ((BYTE*)&w)[1]; |
||
441 | } |
||
442 | else |
||
443 | { |
||
444 | ((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[0]; |
||
445 | ((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[1]; |
||
446 | WriteReg(MAADR1, w); |
||
447 | ((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[2]; |
||
448 | ((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[3]; |
||
449 | WriteReg(MAADR2, w); |
||
450 | ((BYTE*)&w)[0] = AppConfig.MyMACAddr.v[4]; |
||
451 | ((BYTE*)&w)[1] = AppConfig.MyMACAddr.v[5]; |
||
452 | WriteReg(MAADR3, w); |
||
453 | } |
||
454 | |||
455 | // Set PHY Auto-negotiation to support 10BaseT Half duplex, |
||
456 | // 10BaseT Full duplex, 100BaseTX Half Duplex, 100BaseTX Full Duplex, |
||
457 | // and symmetric PAUSE capability |
||
458 | WritePHYReg(PHANA, PHANA_ADPAUS0 | PHANA_AD10FD | PHANA_AD10 | PHANA_AD100FD | PHANA_AD100 | PHANA_ADIEEE0); |
||
459 | |||
460 | // Force operating mode, for debugging only. If none of these statements |
||
461 | // are executed, auto-negotiation/parallel detection is used which will |
||
462 | // always select the proper mode. |
||
463 | #if defined(ENC100_FORCE_10MBPS_HALF_DUPLEX) |
||
464 | WritePHYReg(PHCON1, 0x0000); |
||
465 | #elif defined(ENC100_FORCE_10MBPS_FULL_DUPLEX) |
||
466 | WritePHYReg(PHCON1, PHCON1_PFULDPX); |
||
467 | #elif defined(ENC100_FORCE_100MBPS_HALF_DUPLEX) |
||
468 | WritePHYReg(PHCON1, PHCON1_SPD100); |
||
469 | #elif defined(ENC100_FORCE_100MBPS_FULL_DUPLEX) |
||
470 | WritePHYReg(PHCON1, PHCON1_SPD100 | PHCON1_PFULDPX); |
||
471 | #endif |
||
472 | |||
473 | // Enable RX packet reception |
||
474 | BFSReg(ECON1, ECON1_RXEN); |
||
475 | }//end MACInit |
||
476 | |||
477 | |||
478 | /****************************************************************************** |
||
479 | * Function: BOOL MACIsLinked(void) |
||
480 | * |
||
481 | * PreCondition: None |
||
482 | * |
||
483 | * Input: None |
||
484 | * |
||
485 | * Output: TRUE: An Ethernet link is established |
||
486 | * FALSE: Ethernet link is not established |
||
487 | * |
||
488 | * Side Effects: None |
||
489 | * |
||
490 | * Overview: Returns the ESTAT<PHYLNK> bit. |
||
491 | * |
||
492 | * Note: None |
||
493 | *****************************************************************************/ |
||
494 | BOOL MACIsLinked(void) |
||
495 | { |
||
496 | return (ReadReg(ESTAT) & ESTAT_PHYLNK) != 0u; |
||
497 | } |
||
498 | |||
499 | /****************************************************************************** |
||
500 | * Function: BOOL MACIsTxReady(void) |
||
501 | * |
||
502 | * PreCondition: None |
||
503 | * |
||
504 | * Input: None |
||
505 | * |
||
506 | * Output: TRUE: If no Ethernet transmission is in progress |
||
507 | * FALSE: If a previous transmission was started, and it has |
||
508 | * not completed yet. While FALSE, the data in the |
||
509 | * transmit buffer and the TXST/TXLEN pointers must not |
||
510 | * be changed. |
||
511 | * |
||
512 | * Side Effects: None |
||
513 | * |
||
514 | * Overview: Returns the ECON1<TXRTS> bit |
||
515 | * |
||
516 | * Note: None |
||
517 | *****************************************************************************/ |
||
518 | BOOL MACIsTxReady(void) |
||
519 | { |
||
520 | return !(ReadReg(ECON1) & ECON1_TXRTS); |
||
521 | } |
||
522 | |||
523 | |||
524 | /****************************************************************************** |
||
525 | * Function: void MACDiscardRx(void) |
||
526 | * |
||
527 | * PreCondition: None |
||
528 | * |
||
529 | * Input: None |
||
530 | * |
||
531 | * Output: None |
||
532 | * |
||
533 | * Side Effects: None |
||
534 | * |
||
535 | * Overview: Marks the last received packet (obtained using |
||
536 | * MACGetHeader())as being processed and frees the buffer |
||
537 | * memory associated with it |
||
538 | * |
||
539 | * Note: Is is safe to call this function multiple times between |
||
540 | * MACGetHeader() calls. Extra packets won't be thrown away |
||
541 | * until MACGetHeader() makes it available. |
||
542 | *****************************************************************************/ |
||
543 | void MACDiscardRx(void) |
||
544 | { |
||
545 | WORD wNewRXTail; |
||
546 | |||
547 | // Make sure the current packet was not already discarded |
||
548 | if(ENC100Flags.bWasDiscarded) |
||
549 | return; |
||
550 | ENC100Flags.bWasDiscarded = 1; |
||
551 | |||
552 | // Decrement the next packet pointer before writing it into |
||
553 | // the ERXRDPT registers. RX buffer wrapping must be taken into account if the |
||
554 | // NextPacketLocation is precisely RXSTART. |
||
555 | wNewRXTail = wNextPacketPointer - 2; |
||
556 | if(wNextPacketPointer == RXSTART) |
||
557 | wNewRXTail = ENC100_RAM_SIZE - 2; |
||
558 | |||
559 | // Decrement the RX packet counter register, EPKTCNT |
||
560 | BFSReg(ECON1, ECON1_PKTDEC); |
||
561 | |||
562 | // Move the receive read pointer to unwrite-protect the memory used by the |
||
563 | // last packet. The writing order is important: set the low byte first, |
||
564 | // high byte last (handled automatically in WriteReg()). |
||
565 | WriteReg(ERXTAIL, wNewRXTail); |
||
566 | } |
||
567 | |||
568 | |||
569 | /****************************************************************************** |
||
570 | * Function: WORD MACGetFreeRxSize(void) |
||
571 | * |
||
572 | * PreCondition: None |
||
573 | * |
||
574 | * Input: None |
||
575 | * |
||
576 | * Output: A WORD estimate of how much RX buffer space is free at |
||
577 | * the present time. |
||
578 | * |
||
579 | * Side Effects: None |
||
580 | * |
||
581 | * Overview: None |
||
582 | * |
||
583 | * Note: None |
||
584 | *****************************************************************************/ |
||
585 | WORD MACGetFreeRxSize(void) |
||
586 | { |
||
587 | WORD wHeadPtr; |
||
588 | |||
589 | wHeadPtr = ReadReg(ERXHEAD); |
||
590 | |||
591 | // Calculate the difference between the pointers, taking care to account |
||
592 | // for buffer wrapping conditions |
||
593 | if(wHeadPtr > wCurrentPacketPointer) |
||
594 | return (RXSTOP - RXSTART) - (wHeadPtr - wCurrentPacketPointer); |
||
595 | |||
596 | return wCurrentPacketPointer - wHeadPtr - 2; |
||
597 | } |
||
598 | |||
599 | |||
600 | /****************************************************************************** |
||
601 | * Function: BOOL MACGetHeader(MAC_ADDR *remote, BYTE* type) |
||
602 | * |
||
603 | * PreCondition: None |
||
604 | * |
||
605 | * Input: *remote: Location to store the Source MAC address of the |
||
606 | * received frame. |
||
607 | * *type: Location of a BYTE to store the constant |
||
608 | * MAC_UNKNOWN, ETHER_IP, or ETHER_ARP, representing |
||
609 | * the contents of the Ethernet type field. |
||
610 | * |
||
611 | * Output: TRUE: If a packet was waiting in the RX buffer. The |
||
612 | * remote, and type values are updated. |
||
613 | * FALSE: If a packet was not pending. remote and type are |
||
614 | * not changed. |
||
615 | * |
||
616 | * Side Effects: Last packet is discarded if MACDiscardRx() hasn't already |
||
617 | * been called. |
||
618 | * |
||
619 | * Overview: None |
||
620 | * |
||
621 | * Note: None |
||
622 | *****************************************************************************/ |
||
623 | BOOL MACGetHeader(MAC_ADDR *remote, BYTE* type) |
||
624 | { |
||
625 | ENC100_PREAMBLE header; |
||
626 | |||
627 | // Test if at least one packet has been received and is waiting |
||
628 | if(!(ReadReg(EIR) & EIR_PKTIF)) |
||
629 | { |
||
630 | // No packets are waiting. See if we are unlinked and need to process |
||
631 | // auto crossover timers. |
||
632 | #if defined(ENC100_MDIX_TRIS) |
||
633 | { |
||
634 | static WORD wMDIXTimer = 0; |
||
635 | |||
636 | // See if it is time to swap MDI mode |
||
637 | if((WORD)(wMDIXTimer - (WORD)TickGetDiv256()) > (WORD)(2u*TICK_SECOND/256u)) |
||
638 | { |
||
639 | // If we are linked, then we should simply reset the timer to a |
||
640 | // max of 1.3 seconds and do nothing |
||
641 | if(MACIsLinked()) |
||
642 | { |
||
643 | wMDIXTimer = (WORD)TickGetDiv256() + (WORD)(13u*TICK_SECOND/256u/10u); |
||
644 | } |
||
645 | else |
||
646 | { |
||
647 | // We are unlinked and the MDI-X timer expired, lets swap MDI mode |
||
648 | ENC100_MDIX_IO ^= 1; |
||
649 | |||
650 | // Set up new timer to expire sometime randomly between 1.0 |
||
651 | // seconds and 1.55 seconds in the future. This needs to |
||
652 | // have randomness so that if you plug two similar devices |
||
653 | // into each other, you don't have a lock-step switching |
||
654 | // problem in which both devices swap MDI mode |
||
655 | // simultaneously and never link up. |
||
656 | wMDIXTimer = (WORD)TickGetDiv256() + (WORD)(TICK_SECOND/256u) + (WORD)(55ul*TICK_SECOND/256ul/100ul*(DWORD)rand()/(DWORD)RAND_MAX); |
||
657 | |||
658 | //// Restart auto-negotiation |
||
659 | //WritePHYReg(PHCON1, PHCON1_ANEN | PHCON1_RENEG); |
||
660 | } |
||
661 | } |
||
662 | } |
||
663 | #endif |
||
664 | |||
665 | return FALSE; |
||
666 | } |
||
667 | |||
668 | // Discard the last packet, if the user application hasn't done so already |
||
669 | if(!ENC100Flags.bWasDiscarded) |
||
670 | { |
||
671 | MACDiscardRx(); |
||
672 | |||
673 | // Test again if at least one packet has been received and is waiting |
||
674 | if(!(ReadReg(EIR) & EIR_PKTIF)) |
||
675 | return FALSE; |
||
676 | } |
||
677 | |||
678 | // Set the RX Read Pointer to the beginning of the next unprocessed packet |
||
679 | wCurrentPacketPointer = wNextPacketPointer; |
||
680 | WriteReg(ERXRDPT, wCurrentPacketPointer); |
||
681 | |||
682 | // Obtain the MAC header from the Ethernet buffer |
||
683 | ReadMemoryWindow(RX_WINDOW, (BYTE*)&header, sizeof(header)); |
||
684 | |||
685 | // The EtherType field, like most items transmitted on the Ethernet medium |
||
686 | // are in big endian. |
||
687 | header.Type.Val = swaps(header.Type.Val); |
||
688 | |||
689 | // Validate the data returned from the ENC624J600 Family device. Random |
||
690 | // data corruption, such as if a single SPI/PSP bit error occurs while |
||
691 | // communicating or a momentary power glitch could cause this to occur |
||
692 | // in rare circumstances. Also, certain hardware bugs such as violations |
||
693 | // of the absolute maximum electrical specs can cause this. For example, |
||
694 | // if an MCU with a high slew rate were to access the interface, parasitic |
||
695 | // inductance in the traces could cause excessive voltage undershoot. |
||
696 | // If the voltage goes too far below ground, the ENCx24J600's internal |
||
697 | // ESD structure may activate and disrupt the communication. To prevent |
||
698 | // this, ensure that you have a clean board layout and consider adding |
||
699 | // resistors in series with the MCU output pins to limit the slew rate |
||
700 | // of signals going to the ENCx24J600. 100 Ohm resistors is a good value |
||
701 | // to start testing with. |
||
702 | if(header.NextPacketPointer > RXSTOP || ((BYTE_VAL*)(&header.NextPacketPointer))->bits.b0 || |
||
703 | header.StatusVector.bits.Zero || header.StatusVector.bits.ZeroH || |
||
704 | header.StatusVector.bits.CRCError || |
||
705 | header.StatusVector.bits.ByteCount > 1522u || |
||
706 | !header.StatusVector.bits.ReceiveOk) |
||
707 | { |
||
708 | //ENC100DumpState(); |
||
709 | Nop(); |
||
710 | |||
711 | Reset(); |
||
712 | } |
||
713 | |||
714 | // Save the location where the hardware will write the next packet to |
||
715 | wNextPacketPointer = header.NextPacketPointer; |
||
716 | |||
717 | // Return the Ethernet frame's Source MAC address field to the caller |
||
718 | // This parameter is useful for replying to requests without requiring an |
||
719 | // ARP cycle. |
||
720 | memcpy((void*)remote->v, (void*)header.SourceMACAddr.v, sizeof(*remote)); |
||
721 | |||
722 | // Return a simplified version of the EtherType field to the caller |
||
723 | *type = MAC_UNKNOWN; |
||
724 | if( (header.Type.v[1] == 0x08u) && |
||
725 | ((header.Type.v[0] == (BYTE)ETHER_IP) || (header.Type.v[0] == (BYTE)ETHER_ARP)) ) |
||
726 | { |
||
727 | *type = header.Type.v[0]; |
||
728 | } |
||
729 | |||
730 | // Mark this packet as discardable |
||
731 | ENC100Flags.bWasDiscarded = 0; |
||
732 | return TRUE; |
||
733 | } |
||
734 | |||
735 | |||
736 | /****************************************************************************** |
||
737 | * Function: void MACPutHeader(MAC_ADDR *remote, BYTE type, WORD dataLen) |
||
738 | * |
||
739 | * PreCondition: MACIsTxReady() must return TRUE. |
||
740 | * |
||
741 | * Input: *remote: Pointer to memory which contains the destination |
||
742 | * MAC address (6 bytes) |
||
743 | * type: The constant ETHER_ARP or ETHER_IP, defining which |
||
744 | * value to write into the Ethernet header's type field. |
||
745 | * dataLen: Length of the Ethernet data payload |
||
746 | * |
||
747 | * Output: None |
||
748 | * |
||
749 | * Side Effects: None |
||
750 | * |
||
751 | * Overview: None |
||
752 | * |
||
753 | * Note: Because of the dataLen parameter, it is probably |
||
754 | * advantagous to call this function immediately before |
||
755 | * transmitting a packet rather than initially when the |
||
756 | * packet is first created. The order in which the packet |
||
757 | * is constructed (header first or data first) is not |
||
758 | * important. |
||
759 | *****************************************************************************/ |
||
760 | void MACPutHeader(MAC_ADDR *remote, BYTE type, WORD dataLen) |
||
761 | { |
||
762 | WORD wEthernetType; |
||
763 | |||
764 | wEthernetType = 0x08 | ((type == MAC_IP) ? (ETHER_IP<<8) : (ETHER_ARP<<8)); |
||
765 | |||
766 | // Set the Window Write Pointer to the beginning of the transmit buffer |
||
767 | WriteReg(EGPWRPT, TXSTART); |
||
768 | WriteReg(ETXLEN, dataLen + sizeof(ETHER_HEADER)); |
||
769 | |||
770 | // Write the Ethernet destination MAC address, our source MAC address, |
||
771 | // and the Ethernet Type field. |
||
772 | WriteMemoryWindow(GP_WINDOW, (BYTE*)remote, sizeof(*remote)); |
||
773 | WriteMemoryWindow(GP_WINDOW, (BYTE*)&AppConfig.MyMACAddr, 6); |
||
774 | WriteMemoryWindow(GP_WINDOW, (BYTE*)&wEthernetType, 2); |
||
775 | } |
||
776 | |||
777 | |||
778 | |||
779 | /****************************************************************************** |
||
780 | * Function: void MACFlush(void) |
||
781 | * |
||
782 | * PreCondition: A packet has been created by calling MACPut() and |
||
783 | * MACPutHeader(). |
||
784 | * |
||
785 | * Input: None |
||
786 | * |
||
787 | * Output: None |
||
788 | * |
||
789 | * Side Effects: None |
||
790 | * |
||
791 | * Overview: MACFlush causes the current TX packet to be sent out on |
||
792 | * the Ethernet medium. The hardware MAC will take control |
||
793 | * and handle CRC generation, collision retransmission and |
||
794 | * other details. |
||
795 | * |
||
796 | * Note: After transmission completes (MACIsTxReady() returns TRUE), |
||
797 | * the packet can be modified and transmitted again by calling |
||
798 | * MACFlush() again. Until MACPutHeader() or MACPut() is |
||
799 | * called (in the TX data area), the data in the TX buffer |
||
800 | * will not be corrupted. |
||
801 | *****************************************************************************/ |
||
802 | void MACFlush(void) |
||
803 | { |
||
804 | WORD w; |
||
805 | |||
806 | // Check to see if the duplex status has changed. This can |
||
807 | // change if the user unplugs the cable and plugs it into a |
||
808 | // different node. Auto-negotiation will automatically set |
||
809 | // the duplex in the PHY, but we must also update the MAC |
||
810 | // inter-packet gap timing and duplex state to match. |
||
811 | if(ReadReg(EIR) & EIR_LINKIF) |
||
812 | { |
||
813 | BFCReg(EIR, EIR_LINKIF); |
||
814 | |||
815 | // Update MAC duplex settings to match PHY duplex setting |
||
816 | w = ReadReg(MACON2); |
||
817 | if(ReadReg(ESTAT) & ESTAT_PHYDPX) |
||
818 | { |
||
819 | // Switching to full duplex |
||
820 | WriteReg(MABBIPG, 0x15); |
||
821 | w |= MACON2_FULDPX; |
||
822 | } |
||
823 | else |
||
824 | { |
||
825 | // Switching to half duplex |
||
826 | WriteReg(MABBIPG, 0x12); |
||
827 | w &= ~MACON2_FULDPX; |
||
828 | } |
||
829 | WriteReg(MACON2, w); |
||
830 | } |
||
831 | |||
832 | |||
833 | // Start the transmission, but only if we are linked. Supressing |
||
834 | // transmissing when unlinked is necessary to avoid stalling the TX engine |
||
835 | // if we are in PHY energy detect power down mode and no link is present. |
||
836 | // A stalled TX engine won't do any harm in itself, but will cause the |
||
837 | // MACIsTXReady() function to continuously return FALSE, which will |
||
838 | // ultimately stall the Microchip TCP/IP stack since there is blocking code |
||
839 | // elsewhere in other files that expect the TX engine to always self-free |
||
840 | // itself very quickly. |
||
841 | if(ReadReg(ESTAT) & ESTAT_PHYLNK) |
||
842 | BFSReg(ECON1, ECON1_TXRTS); |
||
843 | } |
||
844 | |||
845 | |||
846 | /****************************************************************************** |
||
847 | * Function: void MACSetReadPtrInRx(WORD offset) |
||
848 | * |
||
849 | * PreCondition: A packet has been obtained by calling MACGetHeader() and |
||
850 | * getting a TRUE result. |
||
851 | * |
||
852 | * Input: offset: WORD specifying how many bytes beyond the Ethernet |
||
853 | * header's type field to relocate the SPI read |
||
854 | * pointer. |
||
855 | * |
||
856 | * Output: None |
||
857 | * |
||
858 | * Side Effects: None |
||
859 | * |
||
860 | * Overview: SPI read pointer are updated. All calls to |
||
861 | * MACGet() and MACGetArray() will use these new values. |
||
862 | * |
||
863 | * Note: RXSTOP must be statically defined as being > RXSTART for |
||
864 | * this function to work correctly. In other words, do not |
||
865 | * define an RX buffer which spans the 0x1FFF->0x0000 memory |
||
866 | * boundary. |
||
867 | *****************************************************************************/ |
||
868 | void MACSetReadPtrInRx(WORD offset) |
||
869 | { |
||
870 | WORD wReadPtr; |
||
871 | |||
872 | // Determine the address of the beginning of the entire packet |
||
873 | // and adjust the address to the desired location |
||
874 | wReadPtr = wCurrentPacketPointer + sizeof(ENC100_PREAMBLE) + offset; |
||
875 | |||
876 | // Since the receive buffer is circular, adjust if a wraparound is needed |
||
877 | if(wReadPtr > RXSTOP) |
||
878 | wReadPtr -= RXSIZE; |
||
879 | |||
880 | // Set the RX Window Read pointer to the new calculated value |
||
881 | WriteReg(ERXRDPT, wReadPtr); |
||
882 | } |
||
883 | |||
884 | |||
885 | /****************************************************************************** |
||
886 | * Function: PTR_BASE MACSetWritePtr(PTR_BASE address) |
||
887 | * |
||
888 | * PreCondition: None |
||
889 | * |
||
890 | * Input: Address: Address to seek to |
||
891 | * |
||
892 | * Output: WORD: Old EWRPT location |
||
893 | * |
||
894 | * Side Effects: None |
||
895 | * |
||
896 | * Overview: SPI write pointer is updated. All calls to |
||
897 | * MACPut() and MACPutArray() will use this new value. |
||
898 | * |
||
899 | * Note: None |
||
900 | *****************************************************************************/ |
||
901 | PTR_BASE MACSetWritePtr(PTR_BASE address) |
||
902 | { |
||
903 | WORD wOldWritePtr; |
||
904 | |||
905 | wOldWritePtr = ReadReg(EGPWRPT); |
||
906 | |||
907 | // Set the TX Write Pointer to the new calculated value |
||
908 | WriteReg(EGPWRPT, address); |
||
909 | |||
910 | return wOldWritePtr; |
||
911 | } |
||
912 | |||
913 | |||
914 | /****************************************************************************** |
||
915 | * Function: PTR_BASE MACSetReadPtr(PTR_BASE Address) |
||
916 | * |
||
917 | * PreCondition: None |
||
918 | * |
||
919 | * Input: Address: Address to seek to |
||
920 | * |
||
921 | * Output: WORD: Old ERDPT value |
||
922 | * |
||
923 | * Side Effects: None |
||
924 | * |
||
925 | * Overview: SPI write pointer is updated. All calls to |
||
926 | * MACPut() and MACPutArray() will use this new value. |
||
927 | * |
||
928 | * Note: None |
||
929 | *****************************************************************************/ |
||
930 | PTR_BASE MACSetReadPtr(PTR_BASE address) |
||
931 | { |
||
932 | WORD wOldReadPtr; |
||
933 | |||
934 | wOldReadPtr = ReadReg(ERXRDPT); |
||
935 | |||
936 | // Set the RX Read Pointer to the new calculated value |
||
937 | WriteReg(ERXRDPT, address); |
||
938 | |||
939 | return wOldReadPtr; |
||
940 | } |
||
941 | |||
942 | |||
943 | /****************************************************************************** |
||
944 | * Function: WORD MACCalcRxChecksum(WORD offset, WORD len) |
||
945 | * |
||
946 | * PreCondition: None |
||
947 | * |
||
948 | * Input: offset - Number of bytes beyond the beginning of the |
||
949 | * Ethernet data (first byte after the type field) |
||
950 | * where the checksum should begin |
||
951 | * len - Total number of bytes to include in the checksum |
||
952 | * |
||
953 | * Output: 16-bit checksum as defined by RFC 793. |
||
954 | * |
||
955 | * Side Effects: None |
||
956 | * |
||
957 | * Overview: This function performs a checksum calculation in the MAC |
||
958 | * buffer itself |
||
959 | * |
||
960 | * Note: None |
||
961 | *****************************************************************************/ |
||
962 | WORD MACCalcRxChecksum(WORD offset, WORD len) |
||
963 | { |
||
964 | WORD wStartAddress; |
||
965 | |||
966 | // Add the offset requested by firmware plus the Ethernet header |
||
967 | wStartAddress = wCurrentPacketPointer + sizeof(ENC100_PREAMBLE) + offset; |
||
968 | if(wStartAddress > RXSTOP) |
||
969 | wStartAddress -= RXSIZE; |
||
970 | |||
971 | // If in power down, temporarily bring power up so we can use the DMA |
||
972 | if(ENC100Flags.PoweredDown) |
||
973 | BFSReg(ECON2, ECON2_ETHEN); |
||
974 | |||
975 | // Calculate the checksum using the ENCX24J600 DMA engine |
||
976 | while(ReadReg(ECON1) & ECON1_DMAST); |
||
977 | WriteReg(EDMAST, wStartAddress); |
||
978 | WriteReg(EDMALEN, len); |
||
979 | BFCReg(ECON1, ECON1_DMACPY | ECON1_DMANOCS | ECON1_DMACSSD); |
||
980 | BFSReg(ECON1, ECON1_DMAST); |
||
981 | while(ReadReg(ECON1) & ECON1_DMAST); |
||
982 | |||
983 | // Restore power down state, if applicable |
||
984 | if(ENC100Flags.PoweredDown) |
||
985 | BFCReg(ECON2, ECON2_ETHEN); |
||
986 | |||
987 | return ReadReg(EDMACS); |
||
988 | } |
||
989 | |||
990 | /****************************************************************************** |
||
991 | * Function: WORD CalcIPBufferChecksum(WORD len) |
||
992 | * |
||
993 | * PreCondition: Read buffer pointer set to starting of checksum data |
||
994 | * |
||
995 | * Input: len: Total number of bytes to calculate the checksum over. |
||
996 | * The first byte included in the checksum is the byte |
||
997 | * pointed to by ERDPT, which is updated by calls to |
||
998 | * MACSetReadPtr(), MACGet(), MACGetArray(), |
||
999 | * MACGetHeader(), etc. |
||
1000 | * |
||
1001 | * Output: 16-bit checksum as defined by RFC 793 |
||
1002 | * |
||
1003 | * Side Effects: None |
||
1004 | * |
||
1005 | * Overview: This function performs a checksum calculation in the MAC |
||
1006 | * buffer itself. The ENCx24J600 has a hardware DMA module |
||
1007 | * which can calculate the checksum faster than software, so |
||
1008 | * this function replaces the CaclIPBufferChecksum() function |
||
1009 | * defined in the helpers.c file. Through the use of |
||
1010 | * preprocessor defines, this replacement is automatic. |
||
1011 | * |
||
1012 | * Note: This function works either in the RX buffer area or the TX |
||
1013 | * buffer area. No validation is done on the len parameter. |
||
1014 | *****************************************************************************/ |
||
1015 | WORD CalcIPBufferChecksum(WORD len) |
||
1016 | { |
||
1017 | // If in power down, temporarily bring power up so we can use the DMA |
||
1018 | if(ENC100Flags.PoweredDown) |
||
1019 | BFSReg(ECON2, ECON2_ETHEN); |
||
1020 | |||
1021 | // Calculate the checksum using the ENCX24J600 DMA engine |
||
1022 | while(ReadReg(ECON1) & ECON1_DMAST); |
||
1023 | WriteReg(EDMAST, ReadReg(ERXRDPT)); |
||
1024 | WriteReg(EDMALEN, len); |
||
1025 | BFCReg(ECON1, ECON1_DMACPY | ECON1_DMANOCS | ECON1_DMACSSD); |
||
1026 | BFSReg(ECON1, ECON1_DMAST); |
||
1027 | while(ReadReg(ECON1) & ECON1_DMAST); |
||
1028 | |||
1029 | // Restore power down state, if applicable |
||
1030 | if(ENC100Flags.PoweredDown) |
||
1031 | BFCReg(ECON2, ECON2_ETHEN); |
||
1032 | |||
1033 | return ReadReg(EDMACS); |
||
1034 | } |
||
1035 | |||
1036 | |||
1037 | /***************************************************************************** |
||
1038 | Function: |
||
1039 | void MACMemCopyAsync(PTR_BASE destAddr, PTR_BASE sourceAddr, WORD len) |
||
1040 | |||
1041 | Summary: |
||
1042 | Asynchronously copies data from one address to another within the 24KB |
||
1043 | Ethernet memory. |
||
1044 | |||
1045 | Description: |
||
1046 | Asynchronously copies data from one address to another within the 24KB |
||
1047 | Ethernet memory using the ENCX24J600 hardware DMA engine (very fast). |
||
1048 | Overlapped memory regions are allowed (with restrictions). The addresses |
||
1049 | do not have to be aligned. |
||
1050 | |||
1051 | Precondition: |
||
1052 | SPI bus must be initialized (done in MACInit()). |
||
1053 | |||
1054 | Parameters: |
||
1055 | destAddr - Destination address in the Ethernet memory to copy to. If |
||
1056 | (PTR_BASE)-1 is specified, the current EGPWRPT value will be used |
||
1057 | instead. |
||
1058 | sourceAddr - Source address to read from. If (PTR_BASE)-1 is specified, |
||
1059 | the current EGPRDPT value will be used instead. |
||
1060 | len - Number of bytes to copy |
||
1061 | |||
1062 | Returns: |
||
1063 | None |
||
1064 | |||
1065 | Remarks: |
||
1066 | Call MACIsMemCopyDone() to see when the transfer is complete. |
||
1067 | |||
1068 | Copying to a destination region that overlaps with the source address |
||
1069 | is supported only if the destination start address is at a lower memory |
||
1070 | address (closer to 0x0000) than the source pointer. However, if they do |
||
1071 | overlap there must be at least 2 bytes of non-overlap to ensure correct |
||
1072 | results due to hardware DMA requirements. For example, destAddr = 0; |
||
1073 | sourceAddr = 1; is illegal while destAddr = 0; sourceAddr = 2; is fine. |
||
1074 | |||
1075 | If a prior transfer is already in progress prior to calling this function, |
||
1076 | this function will block until it can start this transfer. |
||
1077 | |||
1078 | If (PTR_BASE)-1 is used for the sourceAddr or destAddr parameters, |
||
1079 | then that pointer will get updated with the next address after the read or |
||
1080 | write. |
||
1081 | *****************************************************************************/ |
||
1082 | void MACMemCopyAsync(PTR_BASE destAddr, PTR_BASE sourceAddr, WORD len) |
||
1083 | { |
||
1084 | WORD wNewReadPtr; |
||
1085 | |||
1086 | // Decode destination and source addresses |
||
1087 | if(destAddr == (PTR_BASE)-1) |
||
1088 | { |
||
1089 | destAddr = ReadReg(EGPWRPT); |
||
1090 | WriteReg(EGPWRPT, destAddr + len); |
||
1091 | } |
||
1092 | if(sourceAddr == (PTR_BASE)-1) |
||
1093 | { |
||
1094 | sourceAddr = ReadReg(ERXRDPT); |
||
1095 | wNewReadPtr = sourceAddr + len; |
||
1096 | if(wNewReadPtr > RXSTOP) |
||
1097 | wNewReadPtr -= RXSIZE; |
||
1098 | WriteReg(ERXRDPT, wNewReadPtr); |
||
1099 | } |
||
1100 | |||
1101 | // If in power down, temporarily bring power up so we can use the DMA |
||
1102 | if(ENC100Flags.PoweredDown) |
||
1103 | BFSReg(ECON2, ECON2_ETHEN); |
||
1104 | |||
1105 | // Start the copy using the DMA |
||
1106 | while(ReadReg(ECON1) & ECON1_DMAST); |
||
1107 | WriteReg(EDMAST, sourceAddr); |
||
1108 | WriteReg(EDMADST, destAddr); |
||
1109 | WriteReg(EDMALEN, len); |
||
1110 | BFSReg(ECON1, ECON1_DMAST | ECON1_DMACPY); |
||
1111 | } |
||
1112 | |||
1113 | BOOL MACIsMemCopyDone(void) |
||
1114 | { |
||
1115 | BOOL bDone; |
||
1116 | |||
1117 | bDone = !(ReadReg(ECON1) & ECON1_DMAST); |
||
1118 | |||
1119 | // Restore power down state, if applicable |
||
1120 | if(bDone && ENC100Flags.PoweredDown) |
||
1121 | BFCReg(ECON2, ECON2_ETHEN); |
||
1122 | |||
1123 | return bDone; |
||
1124 | } |
||
1125 | |||
1126 | |||
1127 | /****************************************************************************** |
||
1128 | * Function: BYTE MACGet() |
||
1129 | * |
||
1130 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1131 | * ERDPT must point to the place to read from. |
||
1132 | * |
||
1133 | * Input: None |
||
1134 | * |
||
1135 | * Output: Byte read from the ENCx24J600's RAM |
||
1136 | * |
||
1137 | * Side Effects: None |
||
1138 | * |
||
1139 | * Overview: MACGet returns the byte pointed to by ERDPT and |
||
1140 | * increments ERDPT so MACGet() can be called again. The |
||
1141 | * increment will follow the receive buffer wrapping boundary. |
||
1142 | * |
||
1143 | * Note: None |
||
1144 | *****************************************************************************/ |
||
1145 | BYTE MACGet() |
||
1146 | { |
||
1147 | BYTE i; |
||
1148 | |||
1149 | ReadMemoryWindow(RX_WINDOW, &i, 1); |
||
1150 | return i; |
||
1151 | }//end MACGet |
||
1152 | |||
1153 | |||
1154 | /****************************************************************************** |
||
1155 | * Function: WORD MACGetArray(BYTE *val, WORD len) |
||
1156 | * |
||
1157 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1158 | * ERDPT must point to the place to read from. |
||
1159 | * |
||
1160 | * Input: *val: Pointer to storage location |
||
1161 | * len: Number of bytes to read from the data buffer. |
||
1162 | * |
||
1163 | * Output: Byte(s) of data read from the data buffer. |
||
1164 | * |
||
1165 | * Side Effects: None |
||
1166 | * |
||
1167 | * Overview: Burst reads several sequential bytes from the data buffer |
||
1168 | * and places them into local memory. With SPI burst support, |
||
1169 | * it performs much faster than multiple MACGet() calls. |
||
1170 | * ERDPT is incremented after each byte, following the same |
||
1171 | * rules as MACGet(). |
||
1172 | * |
||
1173 | * Note: None |
||
1174 | *****************************************************************************/ |
||
1175 | WORD MACGetArray(BYTE *val, WORD len) |
||
1176 | { |
||
1177 | WORD wNewReadPtr; |
||
1178 | |||
1179 | if(val) |
||
1180 | { |
||
1181 | ReadMemoryWindow(RX_WINDOW, val, len); |
||
1182 | } |
||
1183 | else |
||
1184 | { |
||
1185 | wNewReadPtr = ReadReg(ERXRDPT) + len; |
||
1186 | if(wNewReadPtr > RXSTOP) |
||
1187 | wNewReadPtr -= RXSIZE; |
||
1188 | WriteReg(ERXRDPT, wNewReadPtr); |
||
1189 | } |
||
1190 | |||
1191 | return len; |
||
1192 | }//end MACGetArray |
||
1193 | |||
1194 | |||
1195 | /****************************************************************************** |
||
1196 | * Function: void MACPut(BYTE val) |
||
1197 | * |
||
1198 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1199 | * EWRPT must point to the location to begin writing. |
||
1200 | * |
||
1201 | * Input: Byte to write into the ENCx24J600 buffer memory |
||
1202 | * |
||
1203 | * Output: None |
||
1204 | * |
||
1205 | * Side Effects: None |
||
1206 | * |
||
1207 | * Overview: MACPut outputs the Write Buffer Memory opcode/constant |
||
1208 | * (8 bits) and data to write (8 bits) over the SPI. |
||
1209 | * EWRPT is incremented after the write. |
||
1210 | * |
||
1211 | * Note: None |
||
1212 | *****************************************************************************/ |
||
1213 | void MACPut(BYTE val) |
||
1214 | { |
||
1215 | WriteMemoryWindow(GP_WINDOW, &val, 1); |
||
1216 | }//end MACPut |
||
1217 | |||
1218 | |||
1219 | /****************************************************************************** |
||
1220 | * Function: void MACPutArray(BYTE *val, WORD len) |
||
1221 | * |
||
1222 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1223 | * EWRPT must point to the location to begin writing. |
||
1224 | * |
||
1225 | * Input: *val: Pointer to source of bytes to copy. |
||
1226 | * len: Number of bytes to write to the data buffer. |
||
1227 | * |
||
1228 | * Output: None |
||
1229 | * |
||
1230 | * Side Effects: None |
||
1231 | * |
||
1232 | * Overview: MACPutArray writes several sequential bytes to the |
||
1233 | * ENCx24J600 RAM. It performs faster than multiple MACPut() |
||
1234 | * calls. EWRPT is incremented by len. |
||
1235 | * |
||
1236 | * Note: None |
||
1237 | *****************************************************************************/ |
||
1238 | void MACPutArray(BYTE *val, WORD len) |
||
1239 | { |
||
1240 | WriteMemoryWindow(GP_WINDOW, val, len); |
||
1241 | }//end MACPutArray |
||
1242 | |||
1243 | |||
1244 | #if defined(__18CXX) |
||
1245 | /****************************************************************************** |
||
1246 | * Function: void MACPutROMArray(ROM BYTE *val, WORD len) |
||
1247 | * |
||
1248 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1249 | * EWRPT must point to the location to begin writing. |
||
1250 | * |
||
1251 | * Input: *val: Pointer to source of bytes to copy. |
||
1252 | * len: Number of bytes to write to the data buffer. |
||
1253 | * |
||
1254 | * Output: None |
||
1255 | * |
||
1256 | * Side Effects: None |
||
1257 | * |
||
1258 | * Overview: MACPutArray writes several sequential bytes to the |
||
1259 | * ENCx24J600 RAM. It performs faster than multiple MACPut() |
||
1260 | * calls. EWRPT is incremented by len. |
||
1261 | * |
||
1262 | * Note: None |
||
1263 | *****************************************************************************/ |
||
1264 | void MACPutROMArray(ROM BYTE *val, WORD len) |
||
1265 | { |
||
1266 | WORD wChunkLen; |
||
1267 | BYTE vBuffer[12]; |
||
1268 | |||
1269 | while(len) |
||
1270 | { |
||
1271 | wChunkLen = sizeof(vBuffer); |
||
1272 | if(len < wChunkLen) |
||
1273 | wChunkLen = len; |
||
1274 | |||
1275 | memcpypgm2ram((void*)vBuffer, (ROM void*)val, wChunkLen); |
||
1276 | WriteMemoryWindow(GP_WINDOW, vBuffer, wChunkLen); |
||
1277 | |||
1278 | len -= wChunkLen; |
||
1279 | val += wChunkLen; |
||
1280 | } |
||
1281 | }//end MACPutROMArray |
||
1282 | #endif |
||
1283 | |||
1284 | |||
1285 | /****************************************************************************** |
||
1286 | * Function: void MACPowerDown(void) |
||
1287 | * |
||
1288 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1289 | * |
||
1290 | * Input: None |
||
1291 | * |
||
1292 | * Output: None |
||
1293 | * |
||
1294 | * Side Effects: None |
||
1295 | * |
||
1296 | * Overview: MACPowerDown puts the ENCx24J600 in low power sleep mode. In |
||
1297 | * sleep mode, no packets can be transmitted or received. |
||
1298 | * All MAC and PHY registers should not be accessed. |
||
1299 | * |
||
1300 | * To exit power down, call MACPowerUp(). |
||
1301 | * |
||
1302 | * Note: If a packet is being transmitted while this function is |
||
1303 | * called, this function will block until it is it complete. |
||
1304 | * If anything is being received, it will be completed. |
||
1305 | *****************************************************************************/ |
||
1306 | void MACPowerDown(void) |
||
1307 | { |
||
1308 | // Disable packet reception |
||
1309 | BFCReg(ECON1, ECON1_RXEN); |
||
1310 | |||
1311 | // Make sure any last packet which was in-progress when RXEN was cleared |
||
1312 | // is completed |
||
1313 | while(ReadReg(ESTAT) & ESTAT_RXBUSY); |
||
1314 | |||
1315 | // If a packet is being transmitted, the DMA is operating, the Modular |
||
1316 | // Exponentiation or AES engine is running, wait for it to finish |
||
1317 | while(ReadReg(ECON1) & (ECON1_TXRTS | ECON1_DMAST | ECON1_MODEXST | ECON1_AESST)); |
||
1318 | |||
1319 | // Enter sleep mode |
||
1320 | ENC100Flags.PoweredDown = 1; |
||
1321 | ENC100Flags.CryptoEnabled = 0; |
||
1322 | if(ReadReg(EIR) & EIR_CRYPTEN) // Turn off ModdEx/AES clock |
||
1323 | ToggleCRYPTEN(); |
||
1324 | WritePHYReg(PHCON1, PHCON1_PSLEEP); // Turn off the PHY |
||
1325 | BFCReg(ECON2, ECON2_ETHEN | ECON2_STRCH); // Turn off general internal clocks and LED stretching so they immediately turn off and don't get stuck on |
||
1326 | }//end MACPowerDown |
||
1327 | |||
1328 | |||
1329 | /****************************************************************************** |
||
1330 | * Function: void MACEDPowerDown(void) |
||
1331 | * |
||
1332 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1333 | * |
||
1334 | * Input: None |
||
1335 | * |
||
1336 | * Output: None |
||
1337 | * |
||
1338 | * Side Effects: None |
||
1339 | * |
||
1340 | * Overview: MACEDPowerDown puts the ENCx24J600 PHY in Energy Detect |
||
1341 | * mode. In this mode, the PHY will passively listen for link |
||
1342 | * pulses and automatically link up, if detected. This can be |
||
1343 | * detected via the MACIsLinkned() function. This power state |
||
1344 | * will save power only when an Ethernet cable is unattached. |
||
1345 | * |
||
1346 | * To exit energy detect power down, call MACPowerUp(). |
||
1347 | * |
||
1348 | * Note: The ENCx24J600 is fully operational when in energy detect |
||
1349 | * mode. If a Ethernet link is detected or already established, |
||
1350 | * full TX/RX activity will work as normal and no power saving |
||
1351 | * will occur. |
||
1352 | *****************************************************************************/ |
||
1353 | void MACEDPowerDown(void) |
||
1354 | { |
||
1355 | // Put the PHY into energy detect mode |
||
1356 | WritePHYReg(PHCON2, PHCON2_EDPWRDN); |
||
1357 | |||
1358 | // Go into general power down |
||
1359 | ENC100Flags.CryptoEnabled = 0; |
||
1360 | if(ReadReg(EIR) & EIR_CRYPTEN) // Turn off ModdEx/AES clock |
||
1361 | ToggleCRYPTEN(); |
||
1362 | ENC100Flags.PoweredDown = 1; |
||
1363 | BFCReg(ECON2, ECON2_ETHEN | ECON2_STRCH); |
||
1364 | }//end MACEDPowerDown |
||
1365 | |||
1366 | /****************************************************************************** |
||
1367 | * Function: void MACPowerUp(void) |
||
1368 | * |
||
1369 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1370 | * |
||
1371 | * Input: None |
||
1372 | * |
||
1373 | * Output: None |
||
1374 | * |
||
1375 | * Side Effects: None |
||
1376 | * |
||
1377 | * Overview: MACPowerUp returns the ENCx24J600 back to normal operation |
||
1378 | * after a previous call to MACPowerDown(). Calling this |
||
1379 | * function when already powered up will have no effect. |
||
1380 | * |
||
1381 | * Note: If a link partner is present, it will take 10s of |
||
1382 | * milliseconds before a new link will be established after |
||
1383 | * waking up. While not linked, packets which are |
||
1384 | * transmitted will most likely be lost. MACIsLinked() can |
||
1385 | * be called to determine if a link is established. |
||
1386 | *****************************************************************************/ |
||
1387 | void MACPowerUp(void) |
||
1388 | { |
||
1389 | // Start up general clocks and reenable LED stretching |
||
1390 | ENC100Flags.PoweredDown = 0; |
||
1391 | BFSReg(ECON2, ECON2_ETHEN | ECON2_STRCH); |
||
1392 | |||
1393 | // Power PHY back up and put in auto-negotation mode to reestablish a link |
||
1394 | if(ReadPHYReg(PHCON1) & PHCON1_PSLEEP) |
||
1395 | WritePHYReg(PHCON1, PHCON1_ANEN); |
||
1396 | |||
1397 | // Disable energy detect PHY power down |
||
1398 | WritePHYReg(PHCON2, 0x0000); |
||
1399 | |||
1400 | // Ensure the PLL and PHY are ready |
||
1401 | while(!(ReadReg(ESTAT) & (ESTAT_PHYRDY | ESTAT_CLKRDY))); |
||
1402 | |||
1403 | // Enable packet reception |
||
1404 | BFSReg(ECON1, ECON1_RXEN); |
||
1405 | }//end MACPowerUp |
||
1406 | |||
1407 | |||
1408 | /****************************************************************************** |
||
1409 | * Function: void SetCLKOUT(BYTE NewConfig) |
||
1410 | * |
||
1411 | * PreCondition: SPI or Parallel bus must be initialized (done in MACInit()). |
||
1412 | * |
||
1413 | * Input: NewConfig - 0x00: CLKOUT disabled (pin driven low) |
||
1414 | * 0x01: 33.333 MHz |
||
1415 | * 0x02: 25.000 MHz |
||
1416 | * 0x03: 20.000 MHz |
||
1417 | * 0x04: 16.667 MHz |
||
1418 | * 0x05: 12.500 MHz |
||
1419 | * 0x06: 10.000 MHz |
||
1420 | * 0x07: 8.333 MHz |
||
1421 | * 0x08: 8.000 MHz (47.5% duty cycle) |
||
1422 | * 0x09: 6.250 MHz |
||
1423 | * 0x0A: 5.000 MHz |
||
1424 | * 0x0B: 4.000 MHz |
||
1425 | * 0x0C: 3.125 MHz |
||
1426 | * 0x0D: CLKOUT disabled (pin driven low) |
||
1427 | * 0x0E: 100.00 kHz |
||
1428 | * 0x0F: 50.00 kHz |
||
1429 | * |
||
1430 | * Output: None |
||
1431 | * |
||
1432 | * Side Effects: None |
||
1433 | * |
||
1434 | * Overview: Writes the value of NewConfig into the COCON bits of ECON2 |
||
1435 | * register. The CLKOUT pin will beginning outputting the |
||
1436 | * new frequency immediately. |
||
1437 | * |
||
1438 | * Note: |
||
1439 | *****************************************************************************/ |
||
1440 | void SetCLKOUT(BYTE NewConfig) |
||
1441 | { |
||
1442 | WORD w; |
||
1443 | |||
1444 | w = ReadReg(ECON2) & 0xF0FF; |
||
1445 | ((BYTE*)&w)[1] |= (NewConfig & 0x0F); |
||
1446 | WriteReg(ECON2, w); |
||
1447 | }//end SetCLKOUT |
||
1448 | |||
1449 | |||
1450 | /****************************************************************************** |
||
1451 | * Function: BYTE GetCLKOUT(void) |
||
1452 | * |
||
1453 | * PreCondition: SPI or Parallel bus must be initialized (done in MACInit()). |
||
1454 | * |
||
1455 | * Input: None |
||
1456 | * |
||
1457 | * Output: BYTE - 0x00: CLKOUT disabled (pin driven low) |
||
1458 | * 0x01: 33.333 MHz |
||
1459 | * 0x02: 25.000 MHz |
||
1460 | * 0x03: 20.000 MHz |
||
1461 | * 0x04: 16.667 MHz |
||
1462 | * 0x05: 12.500 MHz |
||
1463 | * 0x06: 10.000 MHz |
||
1464 | * 0x07: 8.333 MHz |
||
1465 | * 0x08: 8.000 MHz (47.5% duty cycle) |
||
1466 | * 0x09: 6.250 MHz |
||
1467 | * 0x0A: 5.000 MHz |
||
1468 | * 0x0B: 4.000 MHz |
||
1469 | * 0x0C: 3.125 MHz |
||
1470 | * 0x0D: CLKOUT disabled (pin driven low) |
||
1471 | * 0x0E: 100.00 kHz |
||
1472 | * 0x0F: 50.00 kHz |
||
1473 | * |
||
1474 | * Side Effects: None |
||
1475 | * |
||
1476 | * Overview: Returns the current value of the COCON bits of ECON2 |
||
1477 | * register. |
||
1478 | * |
||
1479 | * Note: None |
||
1480 | *****************************************************************************/ |
||
1481 | BYTE GetCLKOUT(void) |
||
1482 | { |
||
1483 | WORD w; |
||
1484 | |||
1485 | w = ReadReg(ECON2); |
||
1486 | |||
1487 | return ((BYTE*)&w)[1] & 0x0F; |
||
1488 | }//end GetCLKOUT |
||
1489 | |||
1490 | |||
1491 | /****************************************************************************** |
||
1492 | * Function: void SetRXHashTableEntry(MAC_ADDR DestMACAddr) |
||
1493 | * |
||
1494 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
1495 | * |
||
1496 | * Input: DestMACAddr: 6 byte group destination MAC address to allow |
||
1497 | * through the Hash Table Filter |
||
1498 | * |
||
1499 | * Output: Sets the appropriate bit in the EHT* registers to allow |
||
1500 | * packets sent to DestMACAddr to be received if the Hash |
||
1501 | * Table receive filter is enabled |
||
1502 | * |
||
1503 | * Side Effects: None |
||
1504 | * |
||
1505 | * Overview: Calculates a CRC-32 using polynomial 0x4C11DB7 and then, |
||
1506 | * using bits 28:23 of the CRC, sets the appropriate bit in |
||
1507 | * the EHT* registers |
||
1508 | * |
||
1509 | * Note: This code is commented out to save code space on systems |
||
1510 | * that do not need this function. Change the "#if 0" line |
||
1511 | * to "#if 1" to uncomment it. |
||
1512 | *****************************************************************************/ |
||
1513 | #if 0 |
||
1514 | void SetRXHashTableEntry(MAC_ADDR DestMACAddr) |
||
1515 | { |
||
1516 | DWORD_VAL CRC = {0xFFFFFFFF}; |
||
1517 | WORD HTRegister; |
||
1518 | BYTE i, j; |
||
1519 | |||
1520 | // Calculate a CRC-32 over the 6 byte MAC address |
||
1521 | // using polynomial 0x4C11DB7 |
||
1522 | for(i = 0; i < sizeof(MAC_ADDR); i++) |
||
1523 | { |
||
1524 | BYTE crcnext; |
||
1525 | |||
1526 | // shift in 8 bits |
||
1527 | for(j = 0; j < 8; j++) |
||
1528 | { |
||
1529 | crcnext = 0; |
||
1530 | if(((BYTE_VAL*)&(CRC.v[3]))->bits.b7) |
||
1531 | crcnext = 1; |
||
1532 | crcnext ^= (((BYTE_VAL*)&DestMACAddr.v[i])->bits.b0); |
||
1533 | |||
1534 | CRC.Val <<= 1; |
||
1535 | if(crcnext) |
||
1536 | CRC.Val ^= 0x4C11DB7; |
||
1537 | // next bit |
||
1538 | DestMACAddr.v[i] >>= 1; |
||
1539 | } |
||
1540 | } |
||
1541 | |||
1542 | // CRC-32 calculated, now extract bits 28:23 |
||
1543 | // Bits 25:23 define where within the Hash Table byte the bit needs to be set |
||
1544 | // Bits 28:26 define which of the 8 Hash Table bytes that bits 25:23 apply to |
||
1545 | i = CRC.v[3] & 0x1F; |
||
1546 | HTRegister = (i >> 2) + EHT1; |
||
1547 | i = (i << 1) & 0x06; |
||
1548 | ((BYTE_VAL*)&i)->bits.b0 = ((BYTE_VAL*)&CRC.v[2])->bits.b7; |
||
1549 | |||
1550 | // Set the proper bit in the Hash Table |
||
1551 | BFSReg(HTRegister, 1<<i); |
||
1552 | } |
||
1553 | #endif |
||
1554 | |||
1555 | /****************************************************************************** |
||
1556 | * Function: static void SendSystemReset(void) |
||
1557 | * |
||
1558 | * PreCondition: SPI or PSP bus must be initialized (done in MACInit()). |
||
1559 | * |
||
1560 | * Input: None |
||
1561 | * |
||
1562 | * Output: None |
||
1563 | * |
||
1564 | * Side Effects: None |
||
1565 | * |
||
1566 | * Overview: SendSystemReset reliably resets the Ethernet controller. |
||
1567 | * It resets all register contents (except for COCON bits of |
||
1568 | * ECON2) and returns the device to the power on default state. |
||
1569 | * This function should be called instead of directly |
||
1570 | * attempting to perform a reset via the ECON2<ETHRST> bit. |
||
1571 | * If using the PSP, SendSystemReset also does basic checks to |
||
1572 | * look for unsoldered pins or solder bridges on the PSP pins. |
||
1573 | * |
||
1574 | * Note: This function is a blocking function and will lock up the |
||
1575 | * application if a non-recoverable problem is present. |
||
1576 | * Possible non-recoverable problems include: |
||
1577 | * - SPI module not configured correctly |
||
1578 | * - PMP module not configured correctly |
||
1579 | * - HardwareProfile pins not defined correctly |
||
1580 | * - Solder bridge on SPI/PSP/PMP lines |
||
1581 | * - Unsoldered pins on SPI/PSP/PMP lines |
||
1582 | * - 25MHz Ethernet oscillator not running |
||
1583 | * - Vdd lower than ENCX24J600 operating range |
||
1584 | * - I/O levels out of range (for example if the PIC is at |
||
1585 | * 2V without level shifting) |
||
1586 | * - Bus contention on SPI/PSP/PMP lines with other slaves |
||
1587 | * - One or more Vdd or Vss pins are not connected. |
||
1588 | *****************************************************************************/ |
||
1589 | static void SendSystemReset(void) |
||
1590 | { |
||
1591 | // Power cycle the ENCx24J600 device, if any sort of POR pin is defined |
||
1592 | #if defined(ENC100_POR_IO) |
||
1593 | ENC100_POR_IO = 0; |
||
1594 | ENC100_POR_TRIS = 0; |
||
1595 | DelayMs(2); |
||
1596 | |||
1597 | // If the INT/SPISEL signal is connected, force it to the correct state |
||
1598 | // for latching SPI or PSP mode. |
||
1599 | #if defined(ENC100_INT_TRIS) |
||
1600 | #if ENC100_INTERFACE_MODE == 0 // SPI |
||
1601 | ENC100_INT_IO = 1; |
||
1602 | #else // PSP |
||
1603 | ENC100_INT_IO = 0; |
||
1604 | #endif |
||
1605 | ENC100_INT_TRIS = 0; |
||
1606 | #endif |
||
1607 | |||
1608 | // Turn on power and wait for interface latching to occur |
||
1609 | ENC100_POR_IO = 1; |
||
1610 | vCurrentBank = 0; |
||
1611 | Delay10us(40); |
||
1612 | |||
1613 | // Tri-state interrupt GPIO so that we don't cause bus contention. |
||
1614 | #if defined(ENC100_INT_TRIS) |
||
1615 | ENC100_INT_TRIS = 1; |
||
1616 | #endif |
||
1617 | #endif |
||
1618 | |||
1619 | // Perform a reset via the SPI/PSP interface |
||
1620 | do |
||
1621 | { |
||
1622 | // Set and clear a few bits that clears themselves upon reset. |
||
1623 | // If EUDAST cannot be written to and your code gets stuck in this |
||
1624 | // loop, you have a hardware problem of some sort (SPI or PMP not |
||
1625 | // initialized correctly, I/O pins aren't connected or are |
||
1626 | // shorted to something, power isn't available, etc.) |
||
1627 | do |
||
1628 | { |
||
1629 | WriteReg(EUDAST, 0x1234); |
||
1630 | } while(ReadReg(EUDAST) != 0x1234u); |
||
1631 | |||
1632 | // Issue a reset and wait for it to complete |
||
1633 | BFSReg(ECON2, ECON2_ETHRST); |
||
1634 | vCurrentBank = 0; |
||
1635 | while((ReadReg(ESTAT) & (ESTAT_CLKRDY | ESTAT_RSTDONE | ESTAT_PHYRDY)) != (ESTAT_CLKRDY | ESTAT_RSTDONE | ESTAT_PHYRDY)); |
||
1636 | Delay10us(3); |
||
1637 | |||
1638 | // Check to see if the reset operation was successful by |
||
1639 | // checking if EUDAST went back to its reset default. This test |
||
1640 | // should always pass, but certain special conditions might make |
||
1641 | // this test fail, such as a PSP pin shorted to logic high. |
||
1642 | } while(ReadReg(EUDAST) != 0x0000u); |
||
1643 | |||
1644 | |||
1645 | // Really ensure reset is done and give some time for power to be stable |
||
1646 | DelayMs(1); |
||
1647 | |||
1648 | |||
1649 | // If using PSP, verify all address and data lines are working |
||
1650 | #if (ENC100_INTERFACE_MODE >= 1) && (ENC100_INTERFACE_MODE < 9) && defined(ENC100_PSP_USE_INDIRECT_RAM_ADDRESSING) |
||
1651 | { |
||
1652 | BYTE i; |
||
1653 | WORD wTestWriteData, wTestReadData; |
||
1654 | |||
1655 | // If we have a PSP interface, but are using indirect addressing, we |
||
1656 | // can't use the ReadMemory()/WriteMemory() functions directly to access |
||
1657 | // RAM. Instead, lets do a simple test to verify all data lines only. |
||
1658 | |||
1659 | // Check marching zero data pattern, then marching one data pattern |
||
1660 | wTestWriteData = 0xFFFE; |
||
1661 | for(i = 0; i < 34u; i++) |
||
1662 | { |
||
1663 | WriteReg(EHT1, wTestWriteData); |
||
1664 | wTestReadData = ReadReg(EHT1); |
||
1665 | |||
1666 | // See if the data matches. If your application gets stuck here, |
||
1667 | // it means you have a hardware failure. Check all of your PSP |
||
1668 | // address and data lines. |
||
1669 | if(wTestWriteData != wTestReadData) |
||
1670 | while(1); |
||
1671 | |||
1672 | // March the data over left by one bit |
||
1673 | wTestWriteData <<= 1; |
||
1674 | if(i == 16u) |
||
1675 | wTestWriteData = 0x0001; |
||
1676 | else if(i < 16u) |
||
1677 | wTestWriteData |= 0x0001; |
||
1678 | } |
||
1679 | } |
||
1680 | #elif (ENC100_INTERFACE_MODE >= 1) // Parallel direct addressing |
||
1681 | { |
||
1682 | WORD w; |
||
1683 | WORD wTestWriteData, wTestReadData; |
||
1684 | |||
1685 | // Initialize RAM contents with a random pattern and read back to verify |
||
1686 | // This step is critical if using a PSP interface since some functionality |
||
1687 | // may appear to work while a solder bridge or disconnect will cause |
||
1688 | // certain memory ranges to fail. |
||
1689 | |||
1690 | // Generate and write random pattern |
||
1691 | srand(600); |
||
1692 | for(w = 0; w < ENC100_RAM_SIZE; w += sizeof(wTestWriteData)) |
||
1693 | { |
||
1694 | wTestWriteData = rand() + rand(); |
||
1695 | WriteMemory(w, (BYTE*)&wTestWriteData, sizeof(wTestWriteData)); |
||
1696 | ReadMemory(w, (BYTE*)&wTestReadData, sizeof(wTestReadData)); |
||
1697 | |||
1698 | // See if the data matches. If your application gets stuck here, |
||
1699 | // it means you have a hardware failure. Check all of your PSP |
||
1700 | // address and data lines. |
||
1701 | if(wTestWriteData != wTestReadData) |
||
1702 | while(1); |
||
1703 | } |
||
1704 | |||
1705 | // Read back and verify random pattern |
||
1706 | srand(600); |
||
1707 | for(w = 0; w < ENC100_RAM_SIZE; w += sizeof(wTestWriteData)) |
||
1708 | { |
||
1709 | wTestWriteData = rand() + rand(); |
||
1710 | ReadMemory(w, (BYTE*)&wTestReadData, sizeof(wTestReadData)); |
||
1711 | |||
1712 | // See if the data matches. If your application gets stuck here, |
||
1713 | // it means you have a hardware failure. Check all of your PSP |
||
1714 | // address and data lines. |
||
1715 | if(wTestWriteData != wTestReadData) |
||
1716 | while(1); |
||
1717 | } |
||
1718 | } |
||
1719 | #endif |
||
1720 | |||
1721 | }//end SendSystemReset |
||
1722 | |||
1723 | |||
1724 | #if ENC100_INTERFACE_MODE // WriteMemory() is not currently needed in SPI mode |
||
1725 | /****************************************************************************** |
||
1726 | * Function: void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength) |
||
1727 | * |
||
1728 | * PreCondition: None |
||
1729 | * |
||
1730 | * Input: wAddress: ENCX24J600 RAM or SFR address to write to |
||
1731 | * *vData: Pointer to local PIC RAM which needs to be written |
||
1732 | * to the ENCX24J600 |
||
1733 | * wLength: Number of bytes to copy from vData to wAddress |
||
1734 | * |
||
1735 | * Output: None |
||
1736 | * |
||
1737 | * Side Effects: None |
||
1738 | * |
||
1739 | * Overview: Copys 0 or more bytes to the ENCX24J600 RAM |
||
1740 | * |
||
1741 | * Note: Can be used to access SFRs and ESFRs when using PSP |
||
1742 | *****************************************************************************/ |
||
1743 | void WriteMemory(WORD wAddress, BYTE *vData, WORD wLength) |
||
1744 | { |
||
1745 | BOOL bISREnabled; |
||
1746 | |||
1747 | if(wLength == 0u) |
||
1748 | return; |
||
1749 | |||
1750 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
1751 | bISREnabled = ENC100_ISR_ENABLE; |
||
1752 | ENC100_ISR_ENABLE = 0; |
||
1753 | #endif |
||
1754 | |||
1755 | #if !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6)) |
||
1756 | { |
||
1757 | ConfigurePMPModule(); |
||
1758 | AssertChipSelect(); |
||
1759 | while(wLength--) |
||
1760 | { |
||
1761 | PMADDR = wAddress++; // NOTE: Performance might be improvable if you use PMP address increment |
||
1762 | while(PMMODEbits.BUSY); |
||
1763 | PMDIN1 = *vData++; |
||
1764 | } |
||
1765 | while(PMMODEbits.BUSY); |
||
1766 | DeassertChipSelect(); |
||
1767 | PMCONbits.PMPEN = 0; |
||
1768 | } |
||
1769 | #elif !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) |
||
1770 | { |
||
1771 | WORD wWORDAddress; |
||
1772 | volatile WORD wDummy; |
||
1773 | |||
1774 | wWORDAddress = wAddress>>1; |
||
1775 | ConfigurePMPModule(); |
||
1776 | AssertChipSelect(); |
||
1777 | if(wAddress & 0x1) |
||
1778 | { |
||
1779 | PMADDR = wWORDAddress++; |
||
1780 | wDummy = PMDIN1; // Can't write to a single byte address by itself, so we will do a read-modify-write |
||
1781 | wLength--; |
||
1782 | ((BYTE*)&wDummy)[1] = *vData++; |
||
1783 | while(PMMODEbits.BUSY); |
||
1784 | ((BYTE*)&wDummy)[0] = ((BYTE*)&PMDIN1)[0]; |
||
1785 | while(PMMODEbits.BUSY); |
||
1786 | PMDIN1 = wDummy; |
||
1787 | } |
||
1788 | while(wLength >= 2u) |
||
1789 | { |
||
1790 | PMADDR = wWORDAddress++; // NOTE: Performance might be improvable if you use PMP address increment |
||
1791 | wLength -= 2; |
||
1792 | ((BYTE*)&wDummy)[0] = *vData++; |
||
1793 | ((BYTE*)&wDummy)[1] = *vData++; |
||
1794 | while(PMMODEbits.BUSY); |
||
1795 | PMDIN1 = wDummy; |
||
1796 | } |
||
1797 | if(wLength) |
||
1798 | { |
||
1799 | PMADDR = wWORDAddress; |
||
1800 | wDummy = PMDIN1; // Can't write to a single byte address by itself, so we will do a read-modify-write |
||
1801 | ((BYTE*)&wDummy)[0] = *vData++; |
||
1802 | while(PMMODEbits.BUSY); |
||
1803 | ((BYTE*)&wDummy)[1] = ((BYTE*)&PMDIN1)[1]; |
||
1804 | while(PMMODEbits.BUSY); |
||
1805 | PMDIN1 = wDummy; |
||
1806 | } |
||
1807 | while(PMMODEbits.BUSY); |
||
1808 | DeassertChipSelect(); |
||
1809 | PMCONbits.PMPEN = 0; |
||
1810 | } |
||
1811 | #elif ENC100_INTERFACE_MODE == 1 |
||
1812 | ENC100_SET_ADDR_TRIS_OUT(); |
||
1813 | ENC100_SET_AD_TRIS_OUT(); |
||
1814 | AssertChipSelect(); |
||
1815 | while(wLength--) |
||
1816 | { |
||
1817 | ENC100_SET_ADDR_IO(wAddress++); |
||
1818 | ENC100_SET_AD_IO(*vData++); |
||
1819 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1820 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1821 | } |
||
1822 | DeassertChipSelect(); |
||
1823 | #elif ENC100_INTERFACE_MODE == 2 |
||
1824 | ENC100_SET_ADDR_TRIS_OUT(); |
||
1825 | ENC100_SET_AD_TRIS_OUT(); |
||
1826 | AssertChipSelect(); |
||
1827 | ENC100_SI_RD_RW_IO = 0; |
||
1828 | while(wLength--) |
||
1829 | { |
||
1830 | ENC100_SET_ADDR_IO(wAddress++); |
||
1831 | ENC100_SET_AD_IO(*vData++); |
||
1832 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1833 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1834 | } |
||
1835 | DeassertChipSelect(); |
||
1836 | #elif ENC100_INTERFACE_MODE == 3 |
||
1837 | { |
||
1838 | WORD wData; |
||
1839 | |||
1840 | ENC100_SET_ADDR_TRIS_OUT(); |
||
1841 | ENC100_SET_AD_TRIS_OUT(); |
||
1842 | AssertChipSelect(); |
||
1843 | if(wAddress & 0x1) // Write high byte to odd address, if not WORD aligned |
||
1844 | { |
||
1845 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1846 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
1847 | ENC100_SET_AD_TRIS_IN(); |
||
1848 | ENC100_SI_RD_RW_IO = 1; |
||
1849 | DelaySetupHold(); |
||
1850 | ((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); |
||
1851 | ENC100_SI_RD_RW_IO = 0; |
||
1852 | ENC100_SET_AD_TRIS_OUT(); |
||
1853 | #endif |
||
1854 | ((BYTE*)&wData)[1] = *vData++; |
||
1855 | ENC100_SET_AD_IO(wData); |
||
1856 | ENC100_WRH_B1SEL_IO = 1; |
||
1857 | ENC100_WRH_B1SEL_IO = 0; |
||
1858 | wAddress++; |
||
1859 | wLength--; |
||
1860 | } |
||
1861 | while(wLength >= 2u) // Write all possible WORDs |
||
1862 | { |
||
1863 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1864 | ((BYTE*)&wData)[0] = *vData++; |
||
1865 | ((BYTE*)&wData)[1] = *vData++; |
||
1866 | ENC100_SET_AD_IO(wData); |
||
1867 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1868 | ENC100_WRH_B1SEL_IO = 1; |
||
1869 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1870 | ENC100_WRH_B1SEL_IO = 0; |
||
1871 | wAddress += 2; |
||
1872 | wLength -= 2; |
||
1873 | } |
||
1874 | if(wLength) // Write final byte to low byte address, if needed |
||
1875 | { |
||
1876 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1877 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
1878 | ENC100_SET_AD_TRIS_IN(); |
||
1879 | ENC100_SI_RD_RW_IO = 1; |
||
1880 | DelaySetupHold(); |
||
1881 | ((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); |
||
1882 | ENC100_SI_RD_RW_IO = 0; |
||
1883 | ENC100_SET_AD_TRIS_OUT(); |
||
1884 | #endif |
||
1885 | ((BYTE*)&wData)[0] = *vData++; |
||
1886 | ENC100_SET_AD_IO(wData); |
||
1887 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1888 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1889 | } |
||
1890 | DeassertChipSelect(); |
||
1891 | } |
||
1892 | #elif ENC100_INTERFACE_MODE == 4 |
||
1893 | { |
||
1894 | WORD wData; |
||
1895 | |||
1896 | ENC100_SET_ADDR_TRIS_OUT(); |
||
1897 | ENC100_SET_AD_TRIS_OUT(); |
||
1898 | AssertChipSelect(); |
||
1899 | ENC100_SI_RD_RW_IO = 0; |
||
1900 | if(wAddress & 0x1) // Write high byte to odd address, if not WORD aligned |
||
1901 | { |
||
1902 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1903 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
1904 | ENC100_SET_AD_TRIS_IN(); |
||
1905 | ENC100_SI_RD_RW_IO = 1; |
||
1906 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1907 | DelaySetupHold(); |
||
1908 | ((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); |
||
1909 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1910 | ENC100_SI_RD_RW_IO = 0; |
||
1911 | ENC100_SET_AD_TRIS_OUT(); |
||
1912 | #endif |
||
1913 | ((BYTE*)&wData)[1] = *vData++; |
||
1914 | ENC100_SET_AD_IO(wData); |
||
1915 | ENC100_WRH_B1SEL_IO = 1; |
||
1916 | ENC100_WRH_B1SEL_IO = 0; |
||
1917 | wAddress++; |
||
1918 | wLength--; |
||
1919 | } |
||
1920 | while(wLength >= 2u) // Write all possible WORDs |
||
1921 | { |
||
1922 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1923 | ((BYTE*)&wData)[0] = *vData++; |
||
1924 | ((BYTE*)&wData)[1] = *vData++; |
||
1925 | ENC100_SET_AD_IO(wData); |
||
1926 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1927 | ENC100_WRH_B1SEL_IO = 1; |
||
1928 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1929 | ENC100_WRH_B1SEL_IO = 0; |
||
1930 | wAddress += 2; |
||
1931 | wLength -= 2; |
||
1932 | } |
||
1933 | if(wLength) // Write final byte to low byte address, if needed |
||
1934 | { |
||
1935 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
1936 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
1937 | ENC100_SET_AD_TRIS_IN(); |
||
1938 | ENC100_SI_RD_RW_IO = 1; |
||
1939 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1940 | DelaySetupHold(); |
||
1941 | ((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); |
||
1942 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1943 | ENC100_SI_RD_RW_IO = 0; |
||
1944 | ENC100_SET_AD_TRIS_OUT(); |
||
1945 | #endif |
||
1946 | ((BYTE*)&wData)[0] = *vData++; |
||
1947 | ENC100_SET_AD_IO(wData); |
||
1948 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1949 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1950 | } |
||
1951 | DeassertChipSelect(); |
||
1952 | } |
||
1953 | #elif ENC100_INTERFACE_MODE == 5 |
||
1954 | { |
||
1955 | ENC100_SET_AD_TRIS_OUT(); |
||
1956 | AssertChipSelect(); |
||
1957 | while(wLength--) |
||
1958 | { |
||
1959 | ENC100_SET_AD_IO(wAddress); |
||
1960 | ENC100_SCK_AL_IO = 1; |
||
1961 | ENC100_SCK_AL_IO = 0; |
||
1962 | ENC100_SET_AD_IOL(*vData++); |
||
1963 | wAddress++; |
||
1964 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1965 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1966 | } |
||
1967 | DeassertChipSelect(); |
||
1968 | } |
||
1969 | #elif ENC100_INTERFACE_MODE == 6 |
||
1970 | { |
||
1971 | ENC100_SET_AD_TRIS_OUT(); |
||
1972 | AssertChipSelect(); |
||
1973 | ENC100_SI_RD_RW_IO = 0; |
||
1974 | while(wLength--) |
||
1975 | { |
||
1976 | ENC100_SET_AD_IO(wAddress); |
||
1977 | ENC100_SCK_AL_IO = 1; |
||
1978 | ENC100_SCK_AL_IO = 0; |
||
1979 | ENC100_SET_AD_IOL(*vData++); |
||
1980 | wAddress++; |
||
1981 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
1982 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
1983 | } |
||
1984 | DeassertChipSelect(); |
||
1985 | } |
||
1986 | #elif ENC100_INTERFACE_MODE == 9 |
||
1987 | { |
||
1988 | WORD wData; |
||
1989 | |||
1990 | ENC100_SET_AD_TRIS_OUT(); |
||
1991 | AssertChipSelect(); |
||
1992 | if(wAddress & 0x1) // Write high byte to odd address, if not WORD aligned |
||
1993 | { |
||
1994 | ENC100_SET_AD_IO(wAddress>>1); |
||
1995 | ENC100_SCK_AL_IO = 1; |
||
1996 | ENC100_SCK_AL_IO = 0; |
||
1997 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
1998 | ENC100_SET_AD_TRIS_IN(); |
||
1999 | ENC100_SI_RD_RW_IO = 1; |
||
2000 | DelaySetupHold(); |
||
2001 | ((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); |
||
2002 | ENC100_SI_RD_RW_IO = 0; |
||
2003 | ENC100_SET_AD_TRIS_OUT(); |
||
2004 | #endif |
||
2005 | ((BYTE*)&wData)[1] = *vData++; |
||
2006 | ENC100_SET_AD_IO(wData); |
||
2007 | ENC100_WRH_B1SEL_IO = 1; |
||
2008 | wAddress++; |
||
2009 | wLength--; |
||
2010 | DelaySetupHold(); |
||
2011 | ENC100_WRH_B1SEL_IO = 0; |
||
2012 | } |
||
2013 | while(wLength >= 2u) // Write all possible WORDs |
||
2014 | { |
||
2015 | ENC100_SET_AD_IO(wAddress>>1); |
||
2016 | ENC100_SCK_AL_IO = 1; |
||
2017 | ENC100_SCK_AL_IO = 0; |
||
2018 | ((BYTE*)&wData)[0] = *vData++; |
||
2019 | ((BYTE*)&wData)[1] = *vData++; |
||
2020 | ENC100_SET_AD_IO(wData); |
||
2021 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2022 | ENC100_WRH_B1SEL_IO = 1; |
||
2023 | wAddress += 2; |
||
2024 | wLength -= 2; |
||
2025 | DelaySetupHold(); |
||
2026 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2027 | ENC100_WRH_B1SEL_IO = 0; |
||
2028 | } |
||
2029 | if(wLength) // Write final byte to low byte address, if needed |
||
2030 | { |
||
2031 | ENC100_SET_AD_IO(wAddress>>1); |
||
2032 | ENC100_SCK_AL_IO = 1; |
||
2033 | ENC100_SCK_AL_IO = 0; |
||
2034 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
2035 | ENC100_SET_AD_TRIS_IN(); |
||
2036 | ENC100_SI_RD_RW_IO = 1; |
||
2037 | DelaySetupHold(); |
||
2038 | ((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); |
||
2039 | ENC100_SI_RD_RW_IO = 0; |
||
2040 | ENC100_SET_AD_TRIS_OUT(); |
||
2041 | #endif |
||
2042 | ((BYTE*)&wData)[0] = *vData++; |
||
2043 | ENC100_SET_AD_IO(wData); |
||
2044 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2045 | DelaySetupHold(); |
||
2046 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2047 | } |
||
2048 | DeassertChipSelect(); |
||
2049 | } |
||
2050 | #elif ENC100_INTERFACE_MODE == 10 |
||
2051 | { |
||
2052 | WORD wData; |
||
2053 | |||
2054 | ENC100_SET_AD_TRIS_OUT(); |
||
2055 | AssertChipSelect(); |
||
2056 | if(wAddress & 0x1) // Write high byte to odd address, if not WORD aligned |
||
2057 | { |
||
2058 | ENC100_SET_AD_IO(wAddress>>1); |
||
2059 | ENC100_SCK_AL_IO = 1; |
||
2060 | ENC100_SCK_AL_IO = 0; |
||
2061 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
2062 | ENC100_SET_AD_TRIS_IN(); |
||
2063 | ENC100_SI_RD_RW_IO = 1; |
||
2064 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2065 | DelaySetupHold(); |
||
2066 | ((BYTE*)&wData)[0] = ENC100_GET_AD_IOL(); |
||
2067 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2068 | ENC100_SET_AD_TRIS_OUT(); |
||
2069 | #endif |
||
2070 | ENC100_SI_RD_RW_IO = 0; |
||
2071 | ((BYTE*)&wData)[1] = *vData++; |
||
2072 | ENC100_SET_AD_IO(wData); |
||
2073 | ENC100_WRH_B1SEL_IO = 1; |
||
2074 | wAddress++; |
||
2075 | wLength--; |
||
2076 | DelaySetupHold(); |
||
2077 | ENC100_WRH_B1SEL_IO = 0; |
||
2078 | } |
||
2079 | ENC100_SI_RD_RW_IO = 0; |
||
2080 | while(wLength >= 2u) // Write all possible WORDs |
||
2081 | { |
||
2082 | ENC100_SET_AD_IO(wAddress>>1); |
||
2083 | ENC100_SCK_AL_IO = 1; |
||
2084 | ENC100_SCK_AL_IO = 0; |
||
2085 | ((BYTE*)&wData)[0] = *vData++; |
||
2086 | ((BYTE*)&wData)[1] = *vData++; |
||
2087 | ENC100_SET_AD_IO(wData); |
||
2088 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2089 | ENC100_WRH_B1SEL_IO = 1; |
||
2090 | wAddress += 2; |
||
2091 | wLength -= 2; |
||
2092 | DelaySetupHold(); |
||
2093 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2094 | ENC100_WRH_B1SEL_IO = 0; |
||
2095 | } |
||
2096 | if(wLength) // Write final byte to low byte address, if needed |
||
2097 | { |
||
2098 | ENC100_SET_AD_IO(wAddress>>1); |
||
2099 | ENC100_SCK_AL_IO = 1; |
||
2100 | ENC100_SCK_AL_IO = 0; |
||
2101 | #if 1 // ENC100_WRH_B1SEL_IO == ENC100_SO_WR_B0SEL_EN_IO // Word writes only -- need to perform read-modify-write |
||
2102 | ENC100_SET_AD_TRIS_IN(); |
||
2103 | ENC100_SI_RD_RW_IO = 1; |
||
2104 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2105 | DelaySetupHold(); |
||
2106 | ((BYTE*)&wData)[1] = ENC100_GET_AD_IOH(); |
||
2107 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2108 | ENC100_SET_AD_TRIS_OUT(); |
||
2109 | #endif |
||
2110 | ENC100_SI_RD_RW_IO = 0; |
||
2111 | ((BYTE*)&wData)[0] = *vData++; |
||
2112 | ENC100_SET_AD_IO(wData); |
||
2113 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2114 | DelaySetupHold(); |
||
2115 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2116 | } |
||
2117 | DeassertChipSelect(); |
||
2118 | } |
||
2119 | #else // SPI mode |
||
2120 | { |
||
2121 | WORD w; |
||
2122 | |||
2123 | // Use RX window |
||
2124 | w = Execute2(RRXWRPT, 0x0000); |
||
2125 | Execute2(WRXWRPT, wAddress); |
||
2126 | WriteN(WBMRX, vData, wLength); |
||
2127 | Execute2(WRXWRPT, w); |
||
2128 | } |
||
2129 | #endif |
||
2130 | |||
2131 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2132 | ENC100_ISR_ENABLE = bISREnabled; |
||
2133 | #endif |
||
2134 | } |
||
2135 | #endif |
||
2136 | |||
2137 | |||
2138 | /****************************************************************************** |
||
2139 | * Function: void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) |
||
2140 | * |
||
2141 | * PreCondition: None |
||
2142 | * |
||
2143 | * Input: vWindow: UDA_WINDOW, GP_WINDOW, or RX_WINDOW corresponding |
||
2144 | * to the window register to write to |
||
2145 | * *vData: Pointer to local PIC RAM which contains the |
||
2146 | * source data |
||
2147 | * wLength: Number of bytes to copy from vData to window |
||
2148 | * |
||
2149 | * Output: None |
||
2150 | * |
||
2151 | * Side Effects: None |
||
2152 | * |
||
2153 | * Overview: Copys 0 or more bytes from CPU RAM to the ENCX24J600 |
||
2154 | * Family RAM using one of the UDA, TX, or RX write window |
||
2155 | * pointers. This pointer is incremented by the number of |
||
2156 | * bytes writen. |
||
2157 | * |
||
2158 | * Note: None |
||
2159 | *****************************************************************************/ |
||
2160 | void WriteMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) |
||
2161 | { |
||
2162 | BOOL bISREnabled; |
||
2163 | |||
2164 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
2165 | WORD wAddress; |
||
2166 | #endif |
||
2167 | |||
2168 | // If we are in the middle of a SPI/PSP read/write operation, an interrupt |
||
2169 | // cannot be immediately processed (which would also require SPI/PSP |
||
2170 | // read/write operations). Therefore, we must disable the Ethernet |
||
2171 | // interrupt temporarily to ensure this illegal reentrancy doesn't occur. |
||
2172 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2173 | bISREnabled = ENC100_ISR_ENABLE; |
||
2174 | ENC100_ISR_ENABLE = 0; |
||
2175 | #endif |
||
2176 | |||
2177 | // Decode the vWindow handle to the litteral SFR address to read/write from/to |
||
2178 | #if (ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) |
||
2179 | wAddress = EUDADATA; |
||
2180 | if(vWindow & GP_WINDOW) |
||
2181 | wAddress = EGPDATA; |
||
2182 | if(vWindow & RX_WINDOW) |
||
2183 | wAddress = ERXDATA; |
||
2184 | #elif (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10) |
||
2185 | wAddress = (EUDADATA>>1); |
||
2186 | if(vWindow & GP_WINDOW) |
||
2187 | wAddress = (EGPDATA>>1); |
||
2188 | if(vWindow & RX_WINDOW) |
||
2189 | wAddress = (ERXDATA>>1); |
||
2190 | #endif |
||
2191 | |||
2192 | #if (ENC100_INTERFACE_MODE >= 1) && !defined(ENC100_BIT_BANG_PMP) // PMP under hardware control |
||
2193 | { |
||
2194 | ConfigurePMPModule(); |
||
2195 | AssertChipSelect(); |
||
2196 | PMADDR = wAddress; |
||
2197 | while(wLength--) |
||
2198 | { |
||
2199 | while(PMMODEbits.BUSY); |
||
2200 | PMDIN1 = *vData++; |
||
2201 | } |
||
2202 | while(PMMODEbits.BUSY); |
||
2203 | DeassertChipSelect(); |
||
2204 | PMCONbits.PMPEN = 0; |
||
2205 | } |
||
2206 | #elif ENC100_INTERFACE_MODE == 1 // Bit bang PMP |
||
2207 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2208 | ENC100_SET_AD_TRIS_OUT(); |
||
2209 | AssertChipSelect(); |
||
2210 | ENC100_SET_ADDR_IO(wAddress); |
||
2211 | while(wLength--) |
||
2212 | { |
||
2213 | ENC100_SET_AD_IO(*vData++); |
||
2214 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2215 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2216 | } |
||
2217 | DeassertChipSelect(); |
||
2218 | #elif ENC100_INTERFACE_MODE == 2 // Bit bang PMP |
||
2219 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2220 | ENC100_SET_AD_TRIS_OUT(); |
||
2221 | AssertChipSelect(); |
||
2222 | ENC100_SI_RD_RW_IO = 0; |
||
2223 | ENC100_SET_ADDR_IO(wAddress); |
||
2224 | while(wLength--) |
||
2225 | { |
||
2226 | ENC100_SET_AD_IO(*vData++); |
||
2227 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2228 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2229 | } |
||
2230 | DeassertChipSelect(); |
||
2231 | #elif ENC100_INTERFACE_MODE == 3 // Bit bang PMP |
||
2232 | { |
||
2233 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2234 | ENC100_SET_AD_TRIS_OUT(); |
||
2235 | AssertChipSelect(); |
||
2236 | ENC100_SET_ADDR_IO(wAddress); |
||
2237 | while(wLength--) |
||
2238 | { |
||
2239 | ENC100_SET_AD_IOL(*vData++); |
||
2240 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2241 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2242 | } |
||
2243 | DeassertChipSelect(); |
||
2244 | } |
||
2245 | #elif ENC100_INTERFACE_MODE == 4 // Bit bang PMP |
||
2246 | { |
||
2247 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2248 | ENC100_SET_AD_TRIS_OUT(); |
||
2249 | AssertChipSelect(); |
||
2250 | ENC100_SI_RD_RW_IO = 0; |
||
2251 | ENC100_SET_ADDR_IO(wAddress); |
||
2252 | while(wLength--) |
||
2253 | { |
||
2254 | ENC100_SET_AD_IOL(*vData++); |
||
2255 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2256 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2257 | } |
||
2258 | DeassertChipSelect(); |
||
2259 | } |
||
2260 | #elif ENC100_INTERFACE_MODE == 5 // Bit bang PMP |
||
2261 | { |
||
2262 | ENC100_SET_AD_TRIS_OUT(); |
||
2263 | AssertChipSelect(); |
||
2264 | ENC100_SET_AD_IO(wAddress); |
||
2265 | ENC100_SCK_AL_IO = 1; |
||
2266 | ENC100_SCK_AL_IO = 0; |
||
2267 | while(wLength--) |
||
2268 | { |
||
2269 | ENC100_SET_AD_IO(*vData++); |
||
2270 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2271 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2272 | } |
||
2273 | DeassertChipSelect(); |
||
2274 | } |
||
2275 | #elif ENC100_INTERFACE_MODE == 6 // Bit bang PMP |
||
2276 | { |
||
2277 | ENC100_SET_AD_TRIS_OUT(); |
||
2278 | AssertChipSelect(); |
||
2279 | ENC100_SI_RD_RW_IO = 0; |
||
2280 | ENC100_SET_AD_IO(wAddress); |
||
2281 | ENC100_SCK_AL_IO = 1; |
||
2282 | ENC100_SCK_AL_IO = 0; |
||
2283 | while(wLength--) |
||
2284 | { |
||
2285 | ENC100_SET_AD_IO(*vData++); |
||
2286 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2287 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2288 | } |
||
2289 | DeassertChipSelect(); |
||
2290 | } |
||
2291 | #elif ENC100_INTERFACE_MODE == 9 // Bit bang PMP |
||
2292 | { |
||
2293 | ENC100_SET_AD_TRIS_OUT(); |
||
2294 | AssertChipSelect(); |
||
2295 | ENC100_SET_AD_IO(wAddress); |
||
2296 | ENC100_SCK_AL_IO = 1; |
||
2297 | ENC100_SCK_AL_IO = 0; |
||
2298 | while(wLength--) |
||
2299 | { |
||
2300 | ENC100_SET_AD_IOL(*vData++); |
||
2301 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2302 | DelaySetupHold(); |
||
2303 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2304 | } |
||
2305 | DeassertChipSelect(); |
||
2306 | } |
||
2307 | #elif ENC100_INTERFACE_MODE == 10 // Bit bang PMP |
||
2308 | { |
||
2309 | ENC100_SET_AD_TRIS_OUT(); |
||
2310 | AssertChipSelect(); |
||
2311 | ENC100_SI_RD_RW_IO = 0; |
||
2312 | ENC100_SET_AD_IO(wAddress); |
||
2313 | ENC100_SCK_AL_IO = 1; |
||
2314 | ENC100_SCK_AL_IO = 0; |
||
2315 | while(wLength--) |
||
2316 | { |
||
2317 | ENC100_SET_AD_IOL(*vData++); |
||
2318 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2319 | DelaySetupHold(); |
||
2320 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2321 | } |
||
2322 | DeassertChipSelect(); |
||
2323 | } |
||
2324 | #else // SPI mode |
||
2325 | { |
||
2326 | BYTE vOpcode; |
||
2327 | |||
2328 | vOpcode = WBMUDA; |
||
2329 | if(vWindow & GP_WINDOW) |
||
2330 | vOpcode = WBMGP; |
||
2331 | if(vWindow & RX_WINDOW) |
||
2332 | vOpcode = WBMRX; |
||
2333 | |||
2334 | WriteN(vOpcode, vData, wLength); |
||
2335 | } |
||
2336 | #endif |
||
2337 | |||
2338 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2339 | ENC100_ISR_ENABLE = bISREnabled; |
||
2340 | #endif |
||
2341 | } |
||
2342 | |||
2343 | |||
2344 | #if ENC100_INTERFACE_MODE // ReadMemory() is not currently needed in SPI mode |
||
2345 | /****************************************************************************** |
||
2346 | * Function: void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength) |
||
2347 | * |
||
2348 | * PreCondition: None |
||
2349 | * |
||
2350 | * Input: wAddress: ENCX24J600 RAM or SFR address to read from |
||
2351 | * *vData: Pointer to local PIC RAM which will be written |
||
2352 | * with data from the ENCX24J600. |
||
2353 | * wLength: Number of bytes to copy from wAddress to vData |
||
2354 | * |
||
2355 | * Output: None |
||
2356 | * |
||
2357 | * Side Effects: None |
||
2358 | * |
||
2359 | * Overview: Copys 0 or more bytes from the ENCX24J600 RAM |
||
2360 | * |
||
2361 | * Note: Can be used to access SFRs and ESFRs when using PSP |
||
2362 | *****************************************************************************/ |
||
2363 | void ReadMemory(WORD wAddress, BYTE *vData, WORD wLength) |
||
2364 | { |
||
2365 | BOOL bISREnabled; |
||
2366 | |||
2367 | if(wLength == 0u) |
||
2368 | return; |
||
2369 | |||
2370 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2371 | bISREnabled = ENC100_ISR_ENABLE; |
||
2372 | ENC100_ISR_ENABLE = 0; |
||
2373 | #endif |
||
2374 | |||
2375 | #if !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6)) |
||
2376 | { |
||
2377 | volatile BYTE vDummy; |
||
2378 | |||
2379 | ConfigurePMPModule(); |
||
2380 | AssertChipSelect(); |
||
2381 | PMADDR = wAddress++; |
||
2382 | vDummy = PMDIN1; |
||
2383 | while(--wLength) |
||
2384 | { |
||
2385 | PMADDR = wAddress++; |
||
2386 | while(PMMODEbits.BUSY); |
||
2387 | *vData++ = PMDIN1; |
||
2388 | } |
||
2389 | while(PMMODEbits.BUSY); |
||
2390 | DeassertChipSelect(); |
||
2391 | *vData = PMDIN1; |
||
2392 | PMCONbits.PMPEN = 0; |
||
2393 | } |
||
2394 | #elif !defined(ENC100_BIT_BANG_PMP) && ((ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10)) |
||
2395 | { |
||
2396 | WORD wWORDAddress; |
||
2397 | volatile WORD wDummy; |
||
2398 | |||
2399 | wWORDAddress = wAddress>>1; |
||
2400 | ConfigurePMPModule(); |
||
2401 | AssertChipSelect(); |
||
2402 | PMADDR = wWORDAddress++; |
||
2403 | wDummy = PMDIN1; |
||
2404 | if(wAddress & 0x1) |
||
2405 | { |
||
2406 | PMADDR = wWORDAddress++; |
||
2407 | wLength--; |
||
2408 | while(PMMODEbits.BUSY); |
||
2409 | *vData++ = ((BYTE*)&PMDIN1)[1]; |
||
2410 | } |
||
2411 | while(wLength >= 2) |
||
2412 | { |
||
2413 | PMADDR = wWORDAddress++; |
||
2414 | wLength -= 2; |
||
2415 | while(PMMODEbits.BUSY); |
||
2416 | wDummy = PMDIN1; |
||
2417 | *vData++ = ((BYTE*)&wDummy)[0]; |
||
2418 | *vData++ = ((BYTE*)&wDummy)[1]; |
||
2419 | } |
||
2420 | if(wLength) |
||
2421 | { |
||
2422 | while(PMMODEbits.BUSY); |
||
2423 | *vData = ((BYTE*)&PMDIN1)[0]; |
||
2424 | } |
||
2425 | DeassertChipSelect(); |
||
2426 | PMCONbits.PMPEN = 0; |
||
2427 | } |
||
2428 | #elif ENC100_INTERFACE_MODE == 1 |
||
2429 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2430 | ENC100_SET_AD_TRIS_IN(); |
||
2431 | AssertChipSelect(); |
||
2432 | while(wLength--) |
||
2433 | { |
||
2434 | ENC100_SET_ADDR_IO(wAddress); |
||
2435 | ENC100_SI_RD_RW_IO = 1; |
||
2436 | wAddress++; |
||
2437 | DelaySetupHold(); |
||
2438 | *vData++ = ENC100_GET_AD_IO(); |
||
2439 | ENC100_SI_RD_RW_IO = 0; |
||
2440 | } |
||
2441 | DeassertChipSelect(); |
||
2442 | |||
2443 | #elif ENC100_INTERFACE_MODE == 2 |
||
2444 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2445 | ENC100_SET_AD_TRIS_IN(); |
||
2446 | AssertChipSelect(); |
||
2447 | ENC100_SI_RD_RW_IO = 1; |
||
2448 | while(wLength--) |
||
2449 | { |
||
2450 | ENC100_SET_ADDR_IO(wAddress); |
||
2451 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2452 | wAddress++; |
||
2453 | DelaySetupHold(); |
||
2454 | *vData++ = ENC100_GET_AD_IO(); |
||
2455 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2456 | } |
||
2457 | DeassertChipSelect(); |
||
2458 | |||
2459 | #elif ENC100_INTERFACE_MODE == 3 |
||
2460 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2461 | ENC100_SET_AD_TRIS_IN(); |
||
2462 | AssertChipSelect(); |
||
2463 | if(wAddress & 0x1) // Read from high byte if not WORD aligned |
||
2464 | { |
||
2465 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2466 | ENC100_SI_RD_RW_IO = 1; |
||
2467 | DelaySetupHold(); |
||
2468 | wAddress++; |
||
2469 | wLength--; |
||
2470 | *vData++ = ENC100_GET_AD_IOH(); |
||
2471 | ENC100_SI_RD_RW_IO = 0; |
||
2472 | } |
||
2473 | while(wLength >= 2u) // Read all necessary WORDs |
||
2474 | { |
||
2475 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2476 | ENC100_SI_RD_RW_IO = 1; |
||
2477 | DelaySetupHold(); |
||
2478 | wLength -= 2; |
||
2479 | wAddress += 2; |
||
2480 | *vData++ = ENC100_GET_AD_IOL(); |
||
2481 | *vData++ = ENC100_GET_AD_IOH(); |
||
2482 | ENC100_SI_RD_RW_IO = 0; |
||
2483 | } |
||
2484 | if(wLength) // Read final low byte, if needed |
||
2485 | { |
||
2486 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2487 | ENC100_SI_RD_RW_IO = 1; |
||
2488 | DelaySetupHold(); |
||
2489 | *vData = ENC100_GET_AD_IOL(); |
||
2490 | ENC100_SI_RD_RW_IO = 0; |
||
2491 | } |
||
2492 | DeassertChipSelect(); |
||
2493 | |||
2494 | #elif ENC100_INTERFACE_MODE == 4 |
||
2495 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2496 | ENC100_SET_AD_TRIS_IN(); |
||
2497 | AssertChipSelect(); |
||
2498 | ENC100_SI_RD_RW_IO = 1; |
||
2499 | if(wAddress & 0x1) // Read from high byte if not WORD aligned |
||
2500 | { |
||
2501 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2502 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2503 | DelaySetupHold(); |
||
2504 | wAddress++; |
||
2505 | wLength--; |
||
2506 | *vData++ = ENC100_GET_AD_IOH(); |
||
2507 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2508 | } |
||
2509 | while(wLength >= 2u) // Read all necessary WORDs |
||
2510 | { |
||
2511 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2512 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2513 | DelaySetupHold(); |
||
2514 | wLength -= 2; |
||
2515 | wAddress += 2; |
||
2516 | *vData++ = ENC100_GET_AD_IOL(); |
||
2517 | *vData++ = ENC100_GET_AD_IOH(); |
||
2518 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2519 | } |
||
2520 | if(wLength) // Read final low byte, if needed |
||
2521 | { |
||
2522 | ENC100_SET_ADDR_IO(wAddress>>1); |
||
2523 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2524 | DelaySetupHold(); |
||
2525 | *vData = ENC100_GET_AD_IOL(); |
||
2526 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2527 | } |
||
2528 | |||
2529 | DeassertChipSelect(); |
||
2530 | |||
2531 | #elif ENC100_INTERFACE_MODE == 5 |
||
2532 | AssertChipSelect(); |
||
2533 | while(wLength--) |
||
2534 | { |
||
2535 | ENC100_SET_AD_TRIS_OUT(); |
||
2536 | ENC100_SET_AD_IO(wAddress); |
||
2537 | ENC100_SCK_AL_IO = 1; |
||
2538 | ENC100_SCK_AL_IO = 0; |
||
2539 | ENC100_SET_AD_TRIS_IN(); |
||
2540 | ENC100_SI_RD_RW_IO = 1; |
||
2541 | DelaySetupHold(); |
||
2542 | wAddress++; |
||
2543 | *vData++ = ENC100_GET_AD_IO(); |
||
2544 | ENC100_SI_RD_RW_IO = 0; |
||
2545 | } |
||
2546 | DeassertChipSelect(); |
||
2547 | |||
2548 | #elif ENC100_INTERFACE_MODE == 6 |
||
2549 | AssertChipSelect(); |
||
2550 | ENC100_SI_RD_RW_IO = 1; |
||
2551 | while(wLength--) |
||
2552 | { |
||
2553 | ENC100_SET_AD_TRIS_OUT(); |
||
2554 | ENC100_SET_AD_IO(wAddress); |
||
2555 | ENC100_SCK_AL_IO = 1; |
||
2556 | ENC100_SCK_AL_IO = 0; |
||
2557 | ENC100_SET_AD_TRIS_IN(); |
||
2558 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2559 | DelaySetupHold(); |
||
2560 | wAddress++; |
||
2561 | *vData++ = ENC100_GET_AD_IO(); |
||
2562 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2563 | } |
||
2564 | DeassertChipSelect(); |
||
2565 | |||
2566 | #elif ENC100_INTERFACE_MODE == 9 |
||
2567 | { |
||
2568 | AssertChipSelect(); |
||
2569 | if(wAddress & 0x1) // Read from high byte if not WORD aligned |
||
2570 | { |
||
2571 | ENC100_SET_AD_TRIS_OUT(); |
||
2572 | ENC100_SET_AD_IO(wAddress>>1); |
||
2573 | ENC100_SCK_AL_IO = 1; |
||
2574 | ENC100_SCK_AL_IO = 0; |
||
2575 | ENC100_SET_AD_TRIS_IN(); |
||
2576 | ENC100_SI_RD_RW_IO = 1; |
||
2577 | DelaySetupHold(); |
||
2578 | wAddress++; |
||
2579 | wLength--; |
||
2580 | *vData++ = ENC100_GET_AD_IOH(); |
||
2581 | ENC100_SI_RD_RW_IO = 0; |
||
2582 | } |
||
2583 | while(wLength >= 2u) // Read all necessary WORDs |
||
2584 | { |
||
2585 | ENC100_SET_AD_TRIS_OUT(); |
||
2586 | ENC100_SET_AD_IO(wAddress>>1); |
||
2587 | ENC100_SCK_AL_IO = 1; |
||
2588 | ENC100_SCK_AL_IO = 0; |
||
2589 | ENC100_SET_AD_TRIS_IN(); |
||
2590 | ENC100_SI_RD_RW_IO = 1; |
||
2591 | DelaySetupHold(); |
||
2592 | wAddress += 2; |
||
2593 | wLength -= 2; |
||
2594 | *vData++ = ENC100_GET_AD_IOL(); |
||
2595 | *vData++ = ENC100_GET_AD_IOH(); |
||
2596 | ENC100_SI_RD_RW_IO = 0; |
||
2597 | } |
||
2598 | if(wLength) // Read final low byte, if needed |
||
2599 | { |
||
2600 | ENC100_SET_AD_TRIS_OUT(); |
||
2601 | ENC100_SET_AD_IO(wAddress>>1); |
||
2602 | ENC100_SCK_AL_IO = 1; |
||
2603 | ENC100_SCK_AL_IO = 0; |
||
2604 | ENC100_SET_AD_TRIS_IN(); |
||
2605 | ENC100_SI_RD_RW_IO = 1; |
||
2606 | DelaySetupHold(); |
||
2607 | *vData++ = ENC100_GET_AD_IOL(); |
||
2608 | ENC100_SI_RD_RW_IO = 0; |
||
2609 | } |
||
2610 | DeassertChipSelect(); |
||
2611 | } |
||
2612 | #elif ENC100_INTERFACE_MODE == 10 |
||
2613 | { |
||
2614 | AssertChipSelect(); |
||
2615 | ENC100_SI_RD_RW_IO = 1; |
||
2616 | if(wAddress & 0x1) // Read from high byte if not WORD aligned |
||
2617 | { |
||
2618 | ENC100_SET_AD_TRIS_OUT(); |
||
2619 | ENC100_SET_AD_IO(wAddress>>1); |
||
2620 | ENC100_SCK_AL_IO = 1; |
||
2621 | ENC100_SCK_AL_IO = 0; |
||
2622 | ENC100_SET_AD_TRIS_IN(); |
||
2623 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2624 | DelaySetupHold(); |
||
2625 | wAddress++; |
||
2626 | wLength--; |
||
2627 | *vData++ = ENC100_GET_AD_IOH(); |
||
2628 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2629 | } |
||
2630 | while(wLength >= 2u) // Read all necessary WORDs |
||
2631 | { |
||
2632 | ENC100_SET_AD_TRIS_OUT(); |
||
2633 | ENC100_SET_AD_IO(wAddress>>1); |
||
2634 | ENC100_SCK_AL_IO = 1; |
||
2635 | ENC100_SCK_AL_IO = 0; |
||
2636 | ENC100_SET_AD_TRIS_IN(); |
||
2637 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2638 | DelaySetupHold(); |
||
2639 | wAddress += 2; |
||
2640 | wLength -= 2; |
||
2641 | *vData++ = ENC100_GET_AD_IOL(); |
||
2642 | *vData++ = ENC100_GET_AD_IOH(); |
||
2643 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2644 | } |
||
2645 | if(wLength) // Read final low byte, if needed |
||
2646 | { |
||
2647 | ENC100_SET_AD_TRIS_OUT(); |
||
2648 | ENC100_SET_AD_IO(wAddress>>1); |
||
2649 | ENC100_SCK_AL_IO = 1; |
||
2650 | ENC100_SCK_AL_IO = 0; |
||
2651 | ENC100_SET_AD_TRIS_IN(); |
||
2652 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2653 | DelaySetupHold(); |
||
2654 | *vData++ = ENC100_GET_AD_IOL(); |
||
2655 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2656 | } |
||
2657 | DeassertChipSelect(); |
||
2658 | } |
||
2659 | #else // SPI mode |
||
2660 | { |
||
2661 | WORD w; |
||
2662 | |||
2663 | // Use RX pointer |
||
2664 | w = Execute2(RRXRDPT, 0x0000); |
||
2665 | Execute2(WRXRDPT, wAddress); |
||
2666 | ReadN(RBMRX, vData, wLength); |
||
2667 | Execute2(WRXRDPT, w); |
||
2668 | } |
||
2669 | #endif |
||
2670 | |||
2671 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2672 | ENC100_ISR_ENABLE = bISREnabled; |
||
2673 | #endif |
||
2674 | } |
||
2675 | #endif |
||
2676 | |||
2677 | /****************************************************************************** |
||
2678 | * Function: void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) |
||
2679 | * |
||
2680 | * PreCondition: None |
||
2681 | * |
||
2682 | * Input: vWindow: UDA_WINDOW, GP_WINDOW, or RX_WINDOW corresponding |
||
2683 | * to the window register to read from |
||
2684 | * *vData: Pointer to local PIC RAM which will be written |
||
2685 | * with data from the ENC624J600 Family. |
||
2686 | * wLength: Number of bytes to copy from window to vData |
||
2687 | * |
||
2688 | * Output: None |
||
2689 | * |
||
2690 | * Side Effects: None |
||
2691 | * |
||
2692 | * Overview: Copys 0 or more bytes from the ENC624J600 Family RAM using |
||
2693 | * one of the UDA, TX, or RX read window pointers. This |
||
2694 | * pointer is incremented by the number of bytes read. |
||
2695 | * However, if using a 16-bit parallel interface, the pointer |
||
2696 | * will be incremented by 1 extra if the length parameter is |
||
2697 | * odd to ensure 16-bit alignment. |
||
2698 | * |
||
2699 | * Note: None |
||
2700 | *****************************************************************************/ |
||
2701 | void ReadMemoryWindow(BYTE vWindow, BYTE *vData, WORD wLength) |
||
2702 | { |
||
2703 | BOOL bISREnabled; |
||
2704 | |||
2705 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
2706 | WORD wAddress; |
||
2707 | #endif |
||
2708 | |||
2709 | if(wLength == 0u) |
||
2710 | return; |
||
2711 | |||
2712 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2713 | bISREnabled = ENC100_ISR_ENABLE; |
||
2714 | ENC100_ISR_ENABLE = 0; |
||
2715 | #endif |
||
2716 | |||
2717 | #if (ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) |
||
2718 | wAddress = EUDADATA; |
||
2719 | if(vWindow & GP_WINDOW) |
||
2720 | wAddress = EGPDATA; |
||
2721 | if(vWindow & RX_WINDOW) |
||
2722 | wAddress = ERXDATA; |
||
2723 | #elif (ENC100_INTERFACE_MODE == 3) || (ENC100_INTERFACE_MODE == 4) || (ENC100_INTERFACE_MODE == 9) || (ENC100_INTERFACE_MODE == 10) |
||
2724 | wAddress = (EUDADATA>>1); |
||
2725 | if(vWindow & GP_WINDOW) |
||
2726 | wAddress = (EGPDATA>>1); |
||
2727 | if(vWindow & RX_WINDOW) |
||
2728 | wAddress = (ERXDATA>>1); |
||
2729 | #endif |
||
2730 | |||
2731 | #if (ENC100_INTERFACE_MODE >= 1) && !defined(ENC100_BIT_BANG_PMP) |
||
2732 | { |
||
2733 | volatile BYTE vDummy; |
||
2734 | |||
2735 | ConfigurePMPModule(); |
||
2736 | AssertChipSelect(); |
||
2737 | PMADDR = wAddress; |
||
2738 | vDummy = PMDIN1; |
||
2739 | while(--wLength) |
||
2740 | { |
||
2741 | while(PMMODEbits.BUSY); |
||
2742 | *vData++ = PMDIN1; |
||
2743 | } |
||
2744 | while(PMMODEbits.BUSY); |
||
2745 | DeassertChipSelect(); |
||
2746 | PMCONbits.PMPEN = 0; |
||
2747 | *vData = PMDIN1; |
||
2748 | } |
||
2749 | #elif ENC100_INTERFACE_MODE == 1 |
||
2750 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2751 | ENC100_SET_AD_TRIS_IN(); |
||
2752 | AssertChipSelect(); |
||
2753 | ENC100_SET_ADDR_IO(wAddress); |
||
2754 | while(wLength--) |
||
2755 | { |
||
2756 | ENC100_SI_RD_RW_IO = 1; |
||
2757 | DelaySetupHold(); |
||
2758 | *vData++ = ENC100_GET_AD_IO(); |
||
2759 | ENC100_SI_RD_RW_IO = 0; |
||
2760 | } |
||
2761 | DeassertChipSelect(); |
||
2762 | #elif ENC100_INTERFACE_MODE == 2 |
||
2763 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2764 | ENC100_SET_AD_TRIS_IN(); |
||
2765 | AssertChipSelect(); |
||
2766 | ENC100_SI_RD_RW_IO = 1; |
||
2767 | ENC100_SET_ADDR_IO(wAddress); |
||
2768 | while(wLength--) |
||
2769 | { |
||
2770 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2771 | DelaySetupHold(); |
||
2772 | *vData++ = ENC100_GET_AD_IO(); |
||
2773 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2774 | } |
||
2775 | DeassertChipSelect(); |
||
2776 | #elif ENC100_INTERFACE_MODE == 3 |
||
2777 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2778 | ENC100_SET_AD_TRIS_IN(); |
||
2779 | AssertChipSelect(); |
||
2780 | ENC100_SET_ADDR_IO(wAddress); |
||
2781 | while(wLength--) |
||
2782 | { |
||
2783 | ENC100_SI_RD_RW_IO = 1; |
||
2784 | DelaySetupHold(); |
||
2785 | *vData++ = ENC100_GET_AD_IOL(); |
||
2786 | ENC100_SI_RD_RW_IO = 0; |
||
2787 | } |
||
2788 | DeassertChipSelect(); |
||
2789 | #elif ENC100_INTERFACE_MODE == 4 |
||
2790 | ENC100_SET_ADDR_TRIS_OUT(); |
||
2791 | ENC100_SET_AD_TRIS_IN(); |
||
2792 | AssertChipSelect(); |
||
2793 | ENC100_SI_RD_RW_IO = 1; |
||
2794 | ENC100_SET_ADDR_IO(wAddress); |
||
2795 | while(wLength--) |
||
2796 | { |
||
2797 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2798 | DelaySetupHold(); |
||
2799 | *vData++ = ENC100_GET_AD_IOL(); |
||
2800 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2801 | } |
||
2802 | DeassertChipSelect(); |
||
2803 | #elif ENC100_INTERFACE_MODE == 5 |
||
2804 | AssertChipSelect(); |
||
2805 | ENC100_SET_AD_TRIS_OUT(); |
||
2806 | ENC100_SET_AD_IO(wAddress); |
||
2807 | ENC100_SCK_AL_IO = 1; |
||
2808 | ENC100_SCK_AL_IO = 0; |
||
2809 | ENC100_SET_AD_TRIS_IN(); |
||
2810 | while(wLength--) |
||
2811 | { |
||
2812 | ENC100_SI_RD_RW_IO = 1; |
||
2813 | DelaySetupHold(); |
||
2814 | *vData++ = ENC100_GET_AD_IO(); |
||
2815 | ENC100_SI_RD_RW_IO = 0; |
||
2816 | } |
||
2817 | DeassertChipSelect(); |
||
2818 | #elif ENC100_INTERFACE_MODE == 6 |
||
2819 | AssertChipSelect(); |
||
2820 | ENC100_SI_RD_RW_IO = 1; |
||
2821 | ENC100_SET_AD_TRIS_OUT(); |
||
2822 | ENC100_SET_AD_IO(wAddress); |
||
2823 | ENC100_SCK_AL_IO = 1; |
||
2824 | ENC100_SCK_AL_IO = 0; |
||
2825 | ENC100_SET_AD_TRIS_IN(); |
||
2826 | while(wLength--) |
||
2827 | { |
||
2828 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2829 | DelaySetupHold(); |
||
2830 | *vData++ = ENC100_GET_AD_IO(); |
||
2831 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2832 | } |
||
2833 | DeassertChipSelect(); |
||
2834 | #elif ENC100_INTERFACE_MODE == 9 |
||
2835 | AssertChipSelect(); |
||
2836 | ENC100_SET_AD_TRIS_OUT(); |
||
2837 | ENC100_SET_AD_IO(wAddress); |
||
2838 | ENC100_SCK_AL_IO = 1; |
||
2839 | ENC100_SCK_AL_IO = 0; |
||
2840 | ENC100_SET_AD_TRIS_IN(); |
||
2841 | while(wLength--) |
||
2842 | { |
||
2843 | ENC100_SI_RD_RW_IO = 1; |
||
2844 | DelaySetupHold(); |
||
2845 | *vData++ = ENC100_GET_AD_IOL(); |
||
2846 | ENC100_SI_RD_RW_IO = 0; |
||
2847 | } |
||
2848 | DeassertChipSelect(); |
||
2849 | #elif ENC100_INTERFACE_MODE == 10 |
||
2850 | AssertChipSelect(); |
||
2851 | ENC100_SI_RD_RW_IO = 1; |
||
2852 | ENC100_SET_AD_TRIS_OUT(); |
||
2853 | ENC100_SET_AD_IO(wAddress); |
||
2854 | ENC100_SCK_AL_IO = 1; |
||
2855 | ENC100_SCK_AL_IO = 0; |
||
2856 | ENC100_SET_AD_TRIS_IN(); |
||
2857 | while(wLength--) |
||
2858 | { |
||
2859 | ENC100_SO_WR_B0SEL_EN_IO = 1; |
||
2860 | DelaySetupHold(); |
||
2861 | *vData++ = ENC100_GET_AD_IOL(); |
||
2862 | ENC100_SO_WR_B0SEL_EN_IO = 0; |
||
2863 | } |
||
2864 | DeassertChipSelect(); |
||
2865 | #else // SPI mode |
||
2866 | { |
||
2867 | BYTE vOpcode; |
||
2868 | |||
2869 | vOpcode = RBMUDA; |
||
2870 | if(vWindow & GP_WINDOW) |
||
2871 | vOpcode = RBMGP; |
||
2872 | if(vWindow & RX_WINDOW) |
||
2873 | vOpcode = RBMRX; |
||
2874 | |||
2875 | ReadN(vOpcode, vData, wLength); |
||
2876 | } |
||
2877 | #endif |
||
2878 | |||
2879 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2880 | ENC100_ISR_ENABLE = bISREnabled; |
||
2881 | #endif |
||
2882 | } |
||
2883 | |||
2884 | |||
2885 | |||
2886 | #if (ENC100_INTERFACE_MODE == 0) // These are SPI only functions |
||
2887 | /****************************************************************************** |
||
2888 | * Function: void Execute0(BYTE vOpcode) |
||
2889 | * |
||
2890 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
2891 | * |
||
2892 | * Input: None |
||
2893 | * |
||
2894 | * Output: None |
||
2895 | * |
||
2896 | * Side Effects: None |
||
2897 | * |
||
2898 | * Overview: Sends a single byte command with no parameters |
||
2899 | * |
||
2900 | * Note: None |
||
2901 | *****************************************************************************/ |
||
2902 | static void Execute0(BYTE vOpcode) |
||
2903 | { |
||
2904 | volatile BYTE vDummy; |
||
2905 | BOOL bISREnabled; |
||
2906 | |||
2907 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2908 | bISREnabled = ENC100_ISR_ENABLE; |
||
2909 | ENC100_ISR_ENABLE = 0; |
||
2910 | #endif |
||
2911 | |||
2912 | AssertChipSelect(); |
||
2913 | ClearSPIDoneFlag(); |
||
2914 | ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
2915 | WaitForDataByte(); |
||
2916 | vDummy = ENC100_SSPBUF; |
||
2917 | DeassertChipSelect(); |
||
2918 | |||
2919 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2920 | ENC100_ISR_ENABLE = bISREnabled; |
||
2921 | #endif |
||
2922 | }//end Execute0 |
||
2923 | |||
2924 | // This Execute1 function is not currently used |
||
2925 | //static BYTE Execute1(BYTE vOpcode, BYTE vData) |
||
2926 | //{ |
||
2927 | // volatile BYTE vReturn; |
||
2928 | // BOOL bISREnabled; |
||
2929 | // |
||
2930 | // #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2931 | // bISREnabled = ENC100_ISR_ENABLE; |
||
2932 | // ENC100_ISR_ENABLE = 0; |
||
2933 | // #endif |
||
2934 | // |
||
2935 | // AssertChipSelect(); |
||
2936 | // ClearSPIDoneFlag(); |
||
2937 | // ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
2938 | // WaitForDataByte(); |
||
2939 | // vReturn = ENC100_SSPBUF; |
||
2940 | // ENC100_SSPBUF = vData; // Send the data |
||
2941 | // WaitForDataByte(); |
||
2942 | // vReturn = ENC100_SSPBUF; |
||
2943 | // DeassertChipSelect(); |
||
2944 | // |
||
2945 | // #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2946 | // ENC100_ISR_ENABLE = bISREnabled; |
||
2947 | // #endif |
||
2948 | // |
||
2949 | // return vReturn; |
||
2950 | //}//end Execute1 |
||
2951 | |||
2952 | static WORD Execute2(BYTE vOpcode, WORD wData) |
||
2953 | { |
||
2954 | volatile WORD wReturn; |
||
2955 | BOOL bISREnabled; |
||
2956 | |||
2957 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2958 | bISREnabled = ENC100_ISR_ENABLE; |
||
2959 | ENC100_ISR_ENABLE = 0; |
||
2960 | #endif |
||
2961 | |||
2962 | AssertChipSelect(); |
||
2963 | ClearSPIDoneFlag(); |
||
2964 | ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
2965 | WaitForDataByte(); |
||
2966 | ((BYTE*)&wReturn)[0] = ENC100_SSPBUF; |
||
2967 | ENC100_SSPBUF = ((BYTE*)&wData)[0]; // Send low byte of data |
||
2968 | WaitForDataByte(); |
||
2969 | ((BYTE*)&wReturn)[0] = ENC100_SSPBUF; |
||
2970 | ENC100_SSPBUF = ((BYTE*)&wData)[1]; // Send high byte of data |
||
2971 | WaitForDataByte(); |
||
2972 | ((BYTE*)&wReturn)[1] = ENC100_SSPBUF; |
||
2973 | DeassertChipSelect(); |
||
2974 | |||
2975 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2976 | ENC100_ISR_ENABLE = bISREnabled; |
||
2977 | #endif |
||
2978 | |||
2979 | return wReturn; |
||
2980 | }//end Execute2 |
||
2981 | |||
2982 | static DWORD Execute3(BYTE vOpcode, DWORD dwData) |
||
2983 | { |
||
2984 | volatile DWORD dwReturn; |
||
2985 | BOOL bISREnabled; |
||
2986 | |||
2987 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
2988 | bISREnabled = ENC100_ISR_ENABLE; |
||
2989 | ENC100_ISR_ENABLE = 0; |
||
2990 | #endif |
||
2991 | |||
2992 | AssertChipSelect(); |
||
2993 | ClearSPIDoneFlag(); |
||
2994 | ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
2995 | ((BYTE*)&dwReturn)[3] = 0x00; |
||
2996 | WaitForDataByte(); |
||
2997 | ((BYTE*)&dwReturn)[0] = ENC100_SSPBUF; |
||
2998 | ENC100_SSPBUF = ((BYTE*)&dwData)[0]; // Send byte 0 of data |
||
2999 | WaitForDataByte(); |
||
3000 | ((BYTE*)&dwReturn)[0] = ENC100_SSPBUF; |
||
3001 | ENC100_SSPBUF = ((BYTE*)&dwData)[1]; // Send byte 1 of data |
||
3002 | WaitForDataByte(); |
||
3003 | ((BYTE*)&dwReturn)[1] = ENC100_SSPBUF; |
||
3004 | ENC100_SSPBUF = ((BYTE*)&dwData)[2]; // Send byte 2 of data |
||
3005 | WaitForDataByte(); |
||
3006 | ((BYTE*)&dwReturn)[2] = ENC100_SSPBUF; |
||
3007 | DeassertChipSelect(); |
||
3008 | |||
3009 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
3010 | ENC100_ISR_ENABLE = bISREnabled; |
||
3011 | #endif |
||
3012 | |||
3013 | return dwReturn; |
||
3014 | }//end Execute2 |
||
3015 | |||
3016 | static void ReadN(BYTE vOpcode, BYTE* vData, WORD wDataLen) |
||
3017 | { |
||
3018 | volatile BYTE vDummy; |
||
3019 | BOOL bISREnabled; |
||
3020 | |||
3021 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
3022 | bISREnabled = ENC100_ISR_ENABLE; |
||
3023 | ENC100_ISR_ENABLE = 0; |
||
3024 | #endif |
||
3025 | |||
3026 | AssertChipSelect(); |
||
3027 | ClearSPIDoneFlag(); |
||
3028 | ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
3029 | WaitForDataByte(); |
||
3030 | vDummy = ENC100_SSPBUF; |
||
3031 | while(wDataLen--) |
||
3032 | { |
||
3033 | ENC100_SSPBUF = 0x00; |
||
3034 | WaitForDataByte(); |
||
3035 | *vData++ = ENC100_SSPBUF; |
||
3036 | } |
||
3037 | DeassertChipSelect(); |
||
3038 | |||
3039 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
3040 | ENC100_ISR_ENABLE = bISREnabled; |
||
3041 | #endif |
||
3042 | } |
||
3043 | |||
3044 | static void WriteN(BYTE vOpcode, BYTE* vData, WORD wDataLen) |
||
3045 | { |
||
3046 | volatile BYTE vDummy; |
||
3047 | BOOL bISREnabled; |
||
3048 | |||
3049 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
3050 | bISREnabled = ENC100_ISR_ENABLE; |
||
3051 | ENC100_ISR_ENABLE = 0; |
||
3052 | #endif |
||
3053 | |||
3054 | AssertChipSelect(); |
||
3055 | ClearSPIDoneFlag(); |
||
3056 | ENC100_SSPBUF = vOpcode; // Send the command/opcode |
||
3057 | WaitForDataByte(); |
||
3058 | vDummy = ENC100_SSPBUF; |
||
3059 | |||
3060 | while(wDataLen--) |
||
3061 | { |
||
3062 | ENC100_SSPBUF = *vData++; |
||
3063 | WaitForDataByte(); |
||
3064 | vDummy = ENC100_SSPBUF; |
||
3065 | } |
||
3066 | DeassertChipSelect(); |
||
3067 | |||
3068 | #if defined(ENC100_ISR_ENABLE) && defined(ENC100_INT_TRIS) |
||
3069 | ENC100_ISR_ENABLE = bISREnabled; |
||
3070 | #endif |
||
3071 | } |
||
3072 | |||
3073 | #endif |
||
3074 | |||
3075 | /****************************************************************************** |
||
3076 | * Function: WORD ReadReg(WORD wAddress) |
||
3077 | * |
||
3078 | * PreCondition: SPI/PSP bus must be initialized (done in MACInit()). |
||
3079 | * |
||
3080 | * Input: wAddress: Address of SFR register to read from. |
||
3081 | * The LSb is ignored and treated as '0' always. |
||
3082 | * |
||
3083 | * Output: WORD value of register contents |
||
3084 | * |
||
3085 | * Side Effects: None |
||
3086 | * |
||
3087 | * Overview: Selects the correct bank (if needed), and reads the |
||
3088 | * corresponding 16-bit register |
||
3089 | * |
||
3090 | * Note: This routine cannot be used to read PHY registers. |
||
3091 | * Use the ReadPHYReg() function to read from PHY registers. |
||
3092 | *****************************************************************************/ |
||
3093 | static WORD ReadReg(WORD wAddress) |
||
3094 | { |
||
3095 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
3096 | { |
||
3097 | WORD w; |
||
3098 | |||
3099 | ReadMemory(wAddress, (BYTE*)&w, 2); |
||
3100 | return w; |
||
3101 | } |
||
3102 | #else // SPI mode |
||
3103 | { |
||
3104 | WORD w; |
||
3105 | BYTE vBank; |
||
3106 | |||
3107 | // See if we need to change register banks |
||
3108 | vBank = ((BYTE)wAddress) & 0xE0; |
||
3109 | if(vBank <= (0x3u<<5)) |
||
3110 | { |
||
3111 | if(vBank != vCurrentBank) |
||
3112 | { |
||
3113 | if(vBank == (0x0u<<5)) |
||
3114 | Execute0(B0SEL); |
||
3115 | else if(vBank == (0x1u<<5)) |
||
3116 | Execute0(B1SEL); |
||
3117 | else if(vBank == (0x2u<<5)) |
||
3118 | Execute0(B2SEL); |
||
3119 | else if(vBank == (0x3u<<5)) |
||
3120 | Execute0(B3SEL); |
||
3121 | |||
3122 | vCurrentBank = vBank; |
||
3123 | } |
||
3124 | |||
3125 | w = Execute2(RCR | (wAddress & 0x1F), 0x0000); |
||
3126 | } |
||
3127 | else |
||
3128 | { |
||
3129 | DWORD dw = Execute3(RCRU, (DWORD)wAddress); |
||
3130 | ((BYTE*)&w)[0] = ((BYTE*)&dw)[1]; |
||
3131 | ((BYTE*)&w)[1] = ((BYTE*)&dw)[2]; |
||
3132 | } |
||
3133 | |||
3134 | return w; |
||
3135 | } |
||
3136 | #endif |
||
3137 | }//end ReadReg |
||
3138 | |||
3139 | |||
3140 | /****************************************************************************** |
||
3141 | * Function: void WriteReg(WORD wAddress, WORD wValue) |
||
3142 | * |
||
3143 | * PreCondition: SPI/PSP bus must be initialized (done in MACInit()). |
||
3144 | * |
||
3145 | * Input: wAddress: Address of the SFR register to write to. |
||
3146 | * 16-bit WORD to be written into the register. |
||
3147 | * |
||
3148 | * Output: None |
||
3149 | * |
||
3150 | * Side Effects: None |
||
3151 | * |
||
3152 | * Overview: Selects the correct bank (if using the SPI and needed), and |
||
3153 | * writes the corresponding 16-bit register with wValue. |
||
3154 | * |
||
3155 | * Note: This routine cannot write to PHY registers. Use the |
||
3156 | * WritePHYReg() function for writing to PHY registers. |
||
3157 | *****************************************************************************/ |
||
3158 | static void WriteReg(WORD wAddress, WORD wValue) |
||
3159 | { |
||
3160 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
3161 | { |
||
3162 | WriteMemory(wAddress, (BYTE*)&wValue, 2); |
||
3163 | } |
||
3164 | #else // SPI mode |
||
3165 | { |
||
3166 | BYTE vBank; |
||
3167 | |||
3168 | // See if we need to change register banks |
||
3169 | vBank = ((BYTE)wAddress) & 0xE0; |
||
3170 | if(vBank <= (0x3u<<5)) |
||
3171 | { |
||
3172 | if(vBank != vCurrentBank) |
||
3173 | { |
||
3174 | if(vBank == (0x0u<<5)) |
||
3175 | Execute0(B0SEL); |
||
3176 | else if(vBank == (0x1u<<5)) |
||
3177 | Execute0(B1SEL); |
||
3178 | else if(vBank == (0x2u<<5)) |
||
3179 | Execute0(B2SEL); |
||
3180 | else if(vBank == (0x3u<<5)) |
||
3181 | Execute0(B3SEL); |
||
3182 | |||
3183 | vCurrentBank = vBank; |
||
3184 | } |
||
3185 | |||
3186 | Execute2(WCR | (wAddress & 0x1F), wValue); |
||
3187 | } |
||
3188 | else |
||
3189 | { |
||
3190 | DWORD dw; |
||
3191 | ((BYTE*)&dw)[0] = (BYTE)wAddress; |
||
3192 | ((BYTE*)&dw)[1] = ((BYTE*)&wValue)[0]; |
||
3193 | ((BYTE*)&dw)[2] = ((BYTE*)&wValue)[1]; |
||
3194 | Execute3(WCRU, dw); |
||
3195 | } |
||
3196 | |||
3197 | } |
||
3198 | #endif |
||
3199 | }//end WriteReg |
||
3200 | |||
3201 | |||
3202 | /****************************************************************************** |
||
3203 | * Function: void BFSReg(WORD wAddress, WORD wBitMask) |
||
3204 | * void BFCReg(WORD wAddress, WORD wBitMask) |
||
3205 | * |
||
3206 | * PreCondition: None |
||
3207 | * |
||
3208 | * Input: 7 bit address of the register to write to. |
||
3209 | * 16-bit WORD bitmask to set/clear in the register. |
||
3210 | * |
||
3211 | * Output: None |
||
3212 | * |
||
3213 | * Side Effects: None |
||
3214 | * |
||
3215 | * Overview: Sets/clears bits in Ethernet SFR registers |
||
3216 | * |
||
3217 | * Note: These functions cannot be used to access ESFR registers. |
||
3218 | *****************************************************************************/ |
||
3219 | static void BFSReg(WORD wAddress, WORD wBitMask) |
||
3220 | { |
||
3221 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
3222 | { |
||
3223 | WriteMemory(wAddress+SET_OFFSET, (BYTE*)&wBitMask, 2); |
||
3224 | } |
||
3225 | #else // SPI mode |
||
3226 | { |
||
3227 | BYTE vBank; |
||
3228 | |||
3229 | // See if we need to change register banks |
||
3230 | vBank = ((BYTE)wAddress) & 0xE0; |
||
3231 | if(vBank != vCurrentBank) |
||
3232 | { |
||
3233 | if(vBank == (0x0u<<5)) |
||
3234 | Execute0(B0SEL); |
||
3235 | else if(vBank == (0x1u<<5)) |
||
3236 | Execute0(B1SEL); |
||
3237 | else if(vBank == (0x2u<<5)) |
||
3238 | Execute0(B2SEL); |
||
3239 | else if(vBank == (0x3u<<5)) |
||
3240 | Execute0(B3SEL); |
||
3241 | |||
3242 | vCurrentBank = vBank; |
||
3243 | } |
||
3244 | |||
3245 | Execute2(BFS | (wAddress & 0x1F), wBitMask); |
||
3246 | } |
||
3247 | #endif |
||
3248 | }//end BFSReg |
||
3249 | |||
3250 | static void BFCReg(WORD wAddress, WORD wBitMask) |
||
3251 | { |
||
3252 | #if (ENC100_INTERFACE_MODE >= 1) // Parallel mode |
||
3253 | { |
||
3254 | WriteMemory(wAddress+CLR_OFFSET, (BYTE*)&wBitMask, 2); |
||
3255 | } |
||
3256 | #else // SPI mode |
||
3257 | { |
||
3258 | BYTE vBank; |
||
3259 | |||
3260 | // See if we need to change register banks |
||
3261 | vBank = ((BYTE)wAddress) & 0xE0; |
||
3262 | if(vBank != vCurrentBank) |
||
3263 | { |
||
3264 | if(vBank == (0x0u<<5)) |
||
3265 | Execute0(B0SEL); |
||
3266 | else if(vBank == (0x1u<<5)) |
||
3267 | Execute0(B1SEL); |
||
3268 | else if(vBank == (0x2u<<5)) |
||
3269 | Execute0(B2SEL); |
||
3270 | else if(vBank == (0x3u<<5)) |
||
3271 | Execute0(B3SEL); |
||
3272 | |||
3273 | vCurrentBank = vBank; |
||
3274 | } |
||
3275 | |||
3276 | Execute2(BFC | (wAddress & 0x1F), wBitMask); |
||
3277 | } |
||
3278 | #endif |
||
3279 | }//end BFCReg |
||
3280 | |||
3281 | |||
3282 | /****************************************************************************** |
||
3283 | * Function: WORD ReadPHYReg(BYTE Register) |
||
3284 | * |
||
3285 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
3286 | * |
||
3287 | * Input: Address of the PHY register to read from. |
||
3288 | * |
||
3289 | * Output: 16 bits of data read from the PHY register. |
||
3290 | * |
||
3291 | * Side Effects: None |
||
3292 | * |
||
3293 | * Overview: ReadPHYReg performs an MII read operation. While in |
||
3294 | * progress, it simply polls the MII BUSY bit wasting time |
||
3295 | * (25.6us). |
||
3296 | * |
||
3297 | * Note: None |
||
3298 | *****************************************************************************/ |
||
3299 | WORD ReadPHYReg(BYTE Register) |
||
3300 | { |
||
3301 | WORD wResult; |
||
3302 | |||
3303 | // Set the right address and start the register read operation |
||
3304 | WriteReg(MIREGADR, 0x0100 | Register); |
||
3305 | WriteReg(MICMD, MICMD_MIIRD); |
||
3306 | |||
3307 | // Loop to wait until the PHY register has been read through the MII |
||
3308 | // This requires 25.6us |
||
3309 | while(ReadReg(MISTAT) & MISTAT_BUSY); |
||
3310 | |||
3311 | // Stop reading |
||
3312 | WriteReg(MICMD, 0x0000); |
||
3313 | |||
3314 | // Obtain results and return |
||
3315 | wResult = ReadReg(MIRD); |
||
3316 | |||
3317 | return wResult; |
||
3318 | }//end ReadPHYReg |
||
3319 | |||
3320 | /****************************************************************************** |
||
3321 | * Function: WritePHYReg |
||
3322 | * |
||
3323 | * PreCondition: SPI bus must be initialized (done in MACInit()). |
||
3324 | * |
||
3325 | * Input: Address of the PHY register to write to. |
||
3326 | * 16 bits of data to write to PHY register. |
||
3327 | * |
||
3328 | * Output: None |
||
3329 | * |
||
3330 | * Side Effects: None |
||
3331 | * |
||
3332 | * Overview: WritePHYReg performs an MII write operation. While in |
||
3333 | * progress, it simply polls the MII BUSY bit wasting time. |
||
3334 | * |
||
3335 | * Note: None |
||
3336 | *****************************************************************************/ |
||
3337 | void WritePHYReg(BYTE Register, WORD Data) |
||
3338 | { |
||
3339 | // Write the register address |
||
3340 | WriteReg(MIREGADR, 0x0100 | Register); |
||
3341 | |||
3342 | // Write the data |
||
3343 | WriteReg(MIWR, Data); |
||
3344 | |||
3345 | // Wait until the PHY register has been written |
||
3346 | while(ReadReg(MISTAT) & MISTAT_BUSY); |
||
3347 | }//end WritePHYReg |
||
3348 | |||
3349 | |||
3350 | |||
3351 | /***************************************************************************** |
||
3352 | Function: |
||
3353 | static void ToggleCRYPTEN(void) |
||
3354 | |||
3355 | Summary: |
||
3356 | Toggles the CRYPTEN (EIR<15>) cryptographic enable bit in an errata safe |
||
3357 | way. |
||
3358 | |||
3359 | Description: |
||
3360 | Due to an ENC424J600/624J600 Rev. A2 silicon errata, it is not possible to |
||
3361 | set or clear the CRYPTEN bit (EIR<15>) by using the BFSReg() or BFCReg() |
||
3362 | functions. Instead a register write to the volatile EIR interrupt flags |
||
3363 | register is required. This function reads EIR, toggles the CRYPTEN state, |
||
3364 | and writes the value back to EIR in a manner that does not destroy or |
||
3365 | glitch the interrupt states. |
||
3366 | |||
3367 | Precondition: |
||
3368 | None |
||
3369 | |||
3370 | Parameters: |
||
3371 | None |
||
3372 | |||
3373 | Returns: |
||
3374 | None |
||
3375 | ***************************************************************************/ |
||
3376 | static void ToggleCRYPTEN(void) |
||
3377 | { |
||
3378 | WORD wLinkStat; |
||
3379 | WORD wInterruptEnable; |
||
3380 | |||
3381 | // About to do read-modify-write to interrupt flags - disable interrupts |
||
3382 | // temporarily. |
||
3383 | wInterruptEnable = ReadReg(EIE); |
||
3384 | if(wInterruptEnable & EIE_INTIE) |
||
3385 | BFCReg(EIE, EIE_INTIE); |
||
3386 | |||
3387 | // Get current link status so that we can regenerate LINKIF if it is missed |
||
3388 | wLinkStat = ReadReg(ESTAT); |
||
3389 | |||
3390 | #if(ENC100_INTERFACE_MODE == 0) // SPI |
||
3391 | { |
||
3392 | BYTE i; |
||
3393 | |||
3394 | ReadN(RCR | EIRH, &i, 1); // Read EIR high byte only |
||
3395 | i ^= 0x80; // Modify - toggle CRYPTEN |
||
3396 | WriteN(WCR | EIRH, &i, 1); // Write EIR high byte only |
||
3397 | } |
||
3398 | #elif(ENC100_INTERFACE_MODE == 1) || (ENC100_INTERFACE_MODE == 2) || (ENC100_INTERFACE_MODE == 5) || (ENC100_INTERFACE_MODE == 6) // 8-bit PSP modes |
||
3399 | { |
||
3400 | BYTE i; |
||
3401 | |||
3402 | ReadMemory(EIRH, &i, 1); // Read EIR high byte only |
||
3403 | i ^= 0x80; // Modify - toggle CRYPTEN |
||
3404 | WriteMemory(EIRH, &i, 1); // Write EIR high byte only |
||
3405 | } |
||
3406 | #else // 16-bit PSP |
||
3407 | { |
||
3408 | WORD w; |
||
3409 | |||
3410 | // Wait for any pending transmit and DMA operations to complete so that |
||
3411 | // the interrupt flags get set appropriately |
||
3412 | while(ReadReg(ECON1) & (ECON1_DMAST | ECON1_TXRTS)); |
||
3413 | |||
3414 | // Turn on/off crypto enable |
||
3415 | ReadMemory(EIR, (BYTE*)&w, 2); // Read EIR |
||
3416 | w ^= EIR_CRYPTEN; // Modify - set CRYPTEN |
||
3417 | WriteMemory(EIR, (BYTE*)&w, 2); // Write EIR - has to be 16 bits |
||
3418 | |||
3419 | // Regenerate packet counter full interrupt flag, PCFULIF, if it was |
||
3420 | // missed (unlikley but possible) |
||
3421 | if((ReadReg(ESTAT) & 0xFFu) == 0xFFu) |
||
3422 | BFSReg(EIR, EIR_PCFULIF); |
||
3423 | } |
||
3424 | #endif |
||
3425 | |||
3426 | // Generate link change interrupt if the status has changed while we were |
||
3427 | // doing the read-modify-write operation (unlikely but possible) |
||
3428 | if((ReadReg(ESTAT) ^ wLinkStat) & ESTAT_PHYLNK) |
||
3429 | BFSReg(EIR, EIR_LINKIF); |
||
3430 | |||
3431 | // Restore interrupts |
||
3432 | if(wInterruptEnable & EIE_INTIE) |
||
3433 | BFSReg(EIE, EIE_INTIE); |
||
3434 | } |
||
3435 | |||
3436 | |||
3437 | /**************************************************************************** |
||
3438 | Section: |
||
3439 | Global RSA Variables |
||
3440 | ***************************************************************************/ |
||
3441 | #if defined(STACK_USE_SSL_SERVER) || defined(STACK_USE_SSL_CLIENT) |
||
3442 | |||
3443 | static SM_RSA smRSA; // State machine variable |
||
3444 | static BYTE keyLength; // Length of the input key |
||
3445 | static BYTE* vOutput; // Where output should be stored |
||
3446 | |||
3447 | extern ROM BYTE SSL_N[SSL_RSA_KEY_SIZE/8], SSL_D[SSL_RSA_KEY_SIZE/8]; |
||
3448 | |||
3449 | |||
3450 | /**************************************************************************** |
||
3451 | Section: |
||
3452 | Function Implementations |
||
3453 | ***************************************************************************/ |
||
3454 | |||
3455 | /***************************************************************************** |
||
3456 | Function: |
||
3457 | void RSAInit(void) |
||
3458 | |||
3459 | Deleted Only |
||
3460 | ***************************************************************************/ |
||
3461 | void RSAInit(void) |
||
3462 | { |
||
3463 | smRSA = SM_RSA_IDLE; |
||
3464 | } |
||
3465 | |||
3466 | /***************************************************************************** |
||
3467 | Function: |
||
3468 | BOOL RSABeginUsage(RSA_OP op, BYTE vKeyByteLen) |
||
3469 | |||
3470 | Same |
||
3471 | ***************************************************************************/ |
||
3472 | BOOL RSABeginUsage(RSA_OP op, BYTE vKeyByteLen) |
||
3473 | { |
||
3474 | if(smRSA != SM_RSA_IDLE) |
||
3475 | return FALSE; |
||
3476 | |||
3477 | keyLength = vKeyByteLen; |
||
3478 | |||
3479 | // ENCX24J600 modular exponentiation engine only supports 1024 bit, 768 bit, |
||
3480 | // and 512 bit modulos. Other values could cause the incorrect behavior so |
||
3481 | // must be avoided. |
||
3482 | if(!((keyLength == 1024u/8u) || (keyLength == 768u/8u) || (keyLength == 512u/8u))) |
||
3483 | return FALSE; |
||
3484 | |||
3485 | // Set up the state machine |
||
3486 | if(op == RSA_OP_ENCRYPT) |
||
3487 | { |
||
3488 | smRSA = SM_RSA_ENCRYPT_START; |
||
3489 | |||
3490 | // Turn on Modular Exponentiation hardware engine |
||
3491 | if(!(ReadReg(EIR) & EIR_CRYPTEN)) |
||
3492 | ToggleCRYPTEN(); |
||
3493 | } |
||
3494 | #if defined(STACK_USE_SSL_SERVER) || defined(STACK_USE_RSA_DECRYPT) |
||
3495 | else if(op == RSA_OP_DECRYPT) |
||
3496 | { |
||
3497 | WORD oldPtr; |
||
3498 | |||
3499 | smRSA = SM_RSA_DECRYPT_START; |
||
3500 | |||
3501 | // Turn on Modular Exponentiation hardware engine |
||
3502 | if(!(ReadReg(EIR) & EIR_CRYPTEN)) |
||
3503 | ToggleCRYPTEN(); |
||
3504 | |||
3505 | // Copy the decryption key and DMA into palce |
||
3506 | oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); |
||
3507 | MACPutROMArray(SSL_D, keyLength); |
||
3508 | MACMemCopyAsync(ENC100_MODEX_E, BASE_CRYPTOB_ADDR, 128); |
||
3509 | while(!MACIsMemCopyDone()); |
||
3510 | |||
3511 | // Copy the modulus and DMA into palce |
||
3512 | MACSetWritePtr(BASE_CRYPTOB_ADDR); |
||
3513 | MACPutROMArray(SSL_N, keyLength); |
||
3514 | MACMemCopyAsync(ENC100_MODEX_M, BASE_CRYPTOB_ADDR, 128); |
||
3515 | while(!MACIsMemCopyDone()); |
||
3516 | |||
3517 | // Restore the write pointer |
||
3518 | MACSetWritePtr(oldPtr); |
||
3519 | } |
||
3520 | #endif |
||
3521 | else |
||
3522 | return FALSE; |
||
3523 | |||
3524 | return TRUE; |
||
3525 | } |
||
3526 | |||
3527 | /***************************************************************************** |
||
3528 | Function: |
||
3529 | void RSAEndUsage(void) |
||
3530 | |||
3531 | Same |
||
3532 | Need to clear MODEXST to cancel |
||
3533 | ***************************************************************************/ |
||
3534 | void RSAEndUsage(void) |
||
3535 | { |
||
3536 | smRSA = SM_RSA_IDLE; |
||
3537 | |||
3538 | // Turn off Modular Exponentiation hardware engine to save power |
||
3539 | if(ReadReg(EIR) & EIR_CRYPTEN) |
||
3540 | ToggleCRYPTEN(); |
||
3541 | } |
||
3542 | |||
3543 | /***************************************************************************** |
||
3544 | Function: |
||
3545 | void RSASetData(BYTE* data, BYTE len, RSA_DATA_FORMAT format) |
||
3546 | |||
3547 | Replaced |
||
3548 | ***************************************************************************/ |
||
3549 | void RSASetData(BYTE* data, BYTE len, RSA_DATA_FORMAT format) |
||
3550 | { |
||
3551 | WORD oldPtr; |
||
3552 | BYTE i; |
||
3553 | |||
3554 | // Little-endian input is not supported for ENC624 hardware crypto |
||
3555 | if(format == RSA_LITTLE_ENDIAN) |
||
3556 | while(1); |
||
3557 | |||
3558 | // Set the write pointer to reserved crypto area |
||
3559 | oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); |
||
3560 | |||
3561 | // Pad the input data according to PKCS #1 Block 2 if doing an encryption |
||
3562 | // operation |
||
3563 | #if defined(STACK_USE_SSL_CLIENT) || defined(STACK_USE_RSA_ENCRYPT) |
||
3564 | { |
||
3565 | BYTE j; |
||
3566 | |||
3567 | if(smRSA == SM_RSA_ENCRYPT_START) |
||
3568 | { |
||
3569 | if(len < keyLength-4) |
||
3570 | { |
||
3571 | MACPut(0x00); |
||
3572 | MACPut(0x02); |
||
3573 | for(i = len + 3; i < keyLength; i++) |
||
3574 | { |
||
3575 | do |
||
3576 | { |
||
3577 | j = RandomGet(); |
||
3578 | } while(j == 0x00u); |
||
3579 | MACPut(j); |
||
3580 | } |
||
3581 | MACPut(0x00); |
||
3582 | } |
||
3583 | } |
||
3584 | } |
||
3585 | #endif |
||
3586 | |||
3587 | // Left zero-pad the input for decrypt operations |
||
3588 | if(smRSA == SM_RSA_DECRYPT_START) |
||
3589 | { |
||
3590 | for(i = len; i < keyLength; i++) |
||
3591 | MACPut(0x00); |
||
3592 | } |
||
3593 | |||
3594 | // Copy data into ENCX24J600 and DMA into ModEx engine |
||
3595 | MACPutArray(data, len); |
||
3596 | MACMemCopyAsync(ENC100_MODEX_X, BASE_CRYPTOB_ADDR, 128); |
||
3597 | |||
3598 | // Restore the write pointer |
||
3599 | MACSetWritePtr(oldPtr); |
||
3600 | |||
3601 | // Decrypt operations happen in place |
||
3602 | if(smRSA == SM_RSA_DECRYPT_START) |
||
3603 | RSASetResult(data, format); |
||
3604 | |||
3605 | // Wait for DMA engine to finish copying data into ModEx engine |
||
3606 | while(!MACIsMemCopyDone()); |
||
3607 | } |
||
3608 | |||
3609 | /***************************************************************************** |
||
3610 | Function: |
||
3611 | void RSASetResult(BYTE* data, RSA_DATA_FORMAT format) |
||
3612 | |||
3613 | Replaced |
||
3614 | ***************************************************************************/ |
||
3615 | void RSASetResult(BYTE* data, RSA_DATA_FORMAT format) |
||
3616 | { |
||
3617 | // Little-endian input is not supported for ENC624 hardware crypto |
||
3618 | if(format == RSA_LITTLE_ENDIAN) |
||
3619 | while(1); |
||
3620 | |||
3621 | vOutput = data; |
||
3622 | } |
||
3623 | |||
3624 | /***************************************************************************** |
||
3625 | Function: |
||
3626 | void RSASetE(BYTE *data, BYTE len, RSA_DATA_FORMAT format) |
||
3627 | |||
3628 | Replace |
||
3629 | ***************************************************************************/ |
||
3630 | #if defined(STACK_USE_RSA_ENCRYPT) |
||
3631 | void RSASetE(BYTE* data, BYTE len, RSA_DATA_FORMAT format) |
||
3632 | { |
||
3633 | WORD oldPtr; |
||
3634 | BYTE i; |
||
3635 | |||
3636 | // Little-endian input is not supported for ENC624 hardware crypto |
||
3637 | if(format == RSA_LITTLE_ENDIAN) |
||
3638 | while(1); |
||
3639 | |||
3640 | // Set the write pointer to reserved crypto area |
||
3641 | oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); |
||
3642 | |||
3643 | // Zero-pad the input, copy data, and DMA into palce |
||
3644 | for(i = len; i < keyLength; i++) |
||
3645 | MACPut(0x00); |
||
3646 | MACPutArray(data, len); |
||
3647 | MACMemCopyAsync(ENC100_MODEX_E, BASE_CRYPTOB_ADDR, 128); |
||
3648 | |||
3649 | // Restore the write pointer |
||
3650 | MACSetWritePtr(oldPtr); |
||
3651 | |||
3652 | // Wait for DMA copy to ModEx to complete |
||
3653 | while(!MACIsMemCopyDone()); |
||
3654 | } |
||
3655 | #endif |
||
3656 | |||
3657 | /***************************************************************************** |
||
3658 | Function: |
||
3659 | void RSASetN(BYTE* data, RSA_DATA_FORMAT format) |
||
3660 | |||
3661 | Replace |
||
3662 | ***************************************************************************/ |
||
3663 | #if defined(STACK_USE_RSA_ENCRYPT) |
||
3664 | void RSASetN(BYTE* data, RSA_DATA_FORMAT format) |
||
3665 | { |
||
3666 | WORD oldPtr; |
||
3667 | |||
3668 | // Little-endian input is not supported for ENC624 hardware crypto |
||
3669 | if(format == RSA_LITTLE_ENDIAN) |
||
3670 | while(1); |
||
3671 | |||
3672 | // Set the write pointer to reserved crypto area |
||
3673 | oldPtr = MACSetWritePtr(BASE_CRYPTOB_ADDR); |
||
3674 | |||
3675 | // Copy data and DMA into palce |
||
3676 | MACPutArray(data, keyLength); |
||
3677 | MACMemCopyAsync(ENC100_MODEX_M, BASE_CRYPTOB_ADDR, 128); |
||
3678 | |||
3679 | // Restore the write pointer |
||
3680 | MACSetWritePtr(oldPtr); |
||
3681 | |||
3682 | // Wait for DMA copy to ModEx to complete |
||
3683 | while(!MACIsMemCopyDone()); |
||
3684 | } |
||
3685 | #endif |
||
3686 | |||
3687 | /***************************************************************************** |
||
3688 | Function: |
||
3689 | RSA_STATUS RSAStep(void) |
||
3690 | |||
3691 | Replace |
||
3692 | ***************************************************************************/ |
||
3693 | RSA_STATUS RSAStep(void) |
||
3694 | { |
||
3695 | WORD oldPtr; |
||
3696 | |||
3697 | switch(smRSA) |
||
3698 | { |
||
3699 | case SM_RSA_ENCRYPT_START: |
||
3700 | case SM_RSA_DECRYPT_START: |
||
3701 | // Set the correct key length |
||
3702 | BFCReg(ECON2, ECON2_MODLEN1 | ECON2_MODLEN0); |
||
3703 | if(keyLength == 1024u/8u) |
||
3704 | BFSReg(ECON2, ECON2_MODLEN1); |
||
3705 | if(keyLength == 768u/8u) |
||
3706 | BFSReg(ECON2, ECON2_MODLEN0); |
||
3707 | |||
3708 | // Start the engine |
||
3709 | BFSReg(ECON1, ECON1_MODEXST); |
||
3710 | |||
3711 | // Advance state machine to SM_RSA_ENCRYPT. With the ENCX24J600 |
||
3712 | // Modular Exponentiation engine, the finishing of decryption is |
||
3713 | // identical to the finishing of encryption. |
||
3714 | smRSA = SM_RSA_ENCRYPT; |
||
3715 | break; |
||
3716 | |||
3717 | case SM_RSA_ENCRYPT: // Also used to finish decryption |
||
3718 | // Check if operation is complete |
||
3719 | if(ReadReg(ECON1) & ECON1_MODEXST) |
||
3720 | break; |
||
3721 | |||
3722 | // Copy the data out |
||
3723 | MACMemCopyAsync(BASE_CRYPTOB_ADDR, ENC100_MODEX_Y, 128); |
||
3724 | oldPtr = MACSetReadPtr(BASE_CRYPTOB_ADDR); |
||
3725 | while(!MACIsMemCopyDone()); |
||
3726 | MACGetArray(vOutput, keyLength); |
||
3727 | MACSetReadPtr(oldPtr); |
||
3728 | |||
3729 | // Indicate that we're finished |
||
3730 | smRSA = SM_RSA_DONE; |
||
3731 | return RSA_DONE; |
||
3732 | |||
3733 | default: |
||
3734 | // Unknown state |
||
3735 | return RSA_DONE; |
||
3736 | } |
||
3737 | |||
3738 | // Indicate that we're still working |
||
3739 | return RSA_WORKING; |
||
3740 | |||
3741 | } |
||
3742 | |||
3743 | |||
3744 | /**************************************************************************** |
||
3745 | Section: |
||
3746 | Fundamental RSA Operations |
||
3747 | ***************************************************************************/ |
||
3748 | |||
3749 | /***************************************************************************** |
||
3750 | Function: |
||
3751 | static BOOL _RSAModExpROM(BIGINT* y, BIGINT* x, BIGINT_ROM* e, |
||
3752 | BIGINT_ROM* n) |
||
3753 | |||
3754 | Not Needed |
||
3755 | ***************************************************************************/ |
||
3756 | |||
3757 | /***************************************************************************** |
||
3758 | Function: |
||
3759 | static BOOL _RSAModExp(BIGINT* y, BIGINT* x, BIGINT* e, BIGINT* n) |
||
3760 | |||
3761 | Not Needed |
||
3762 | ***************************************************************************/ |
||
3763 | |||
3764 | #endif |
||
3765 | |||
3766 | |||
3767 | |||
3768 | /* // A function potentially useful for debugging, but a waste of code otherwise |
||
3769 | void ENC100DumpState(void) |
||
3770 | { |
||
3771 | WORD w; |
||
3772 | BYTE a[32]; |
||
3773 | BYTE i; |
||
3774 | |||
3775 | printf("\r\n Current Packet Address = 0x%04hX", wCurrentPacketPointer); |
||
3776 | printf("\r\n EIR = 0x%04hX", ReadReg(EIR)); |
||
3777 | printf("\r\n ERXST = 0x%04hX", ReadReg(ERXST)); |
||
3778 | printf("\r\n EUDAST = 0x%04hX", ReadReg(EUDAST)); |
||
3779 | printf("\r\n EUDAND = 0x%04hX", ReadReg(EUDAND)); |
||
3780 | printf("\r\n ERXTAIL = 0x%04hX", ReadReg(ERXTAIL)); |
||
3781 | printf("\r\n ERXHEAD = 0x%04hX", ReadReg(ERXHEAD)); |
||
3782 | w = ReadReg(ESTAT); |
||
3783 | printf("\r\n ESTAT = 0x%04hX (Packet Count = %hhu)", w, (BYTE)w); |
||
3784 | printf("\r\n ERXFCON = 0x%04hX", ReadReg(ERXFCON)); |
||
3785 | printf("\r\n MACON1 = 0x%04hX", ReadReg(MACON1)); |
||
3786 | printf("\r\n MACON2 = 0x%04hX", ReadReg(MACON2)); |
||
3787 | printf("\r\n ECON1 = 0x%04hX", ReadReg(ECON1)); |
||
3788 | printf("\r\n ECON2 = 0x%04hX", ReadReg(ECON2)); |
||
3789 | printf("\r\n ETXST = 0x%04hX", ReadReg(ETXST)); |
||
3790 | printf("\r\n ETXLEN = 0x%04hX", ReadReg(ETXLEN)); |
||
3791 | printf("\r\n EDMAST = 0x%04hX", ReadReg(EDMAST)); |
||
3792 | printf("\r\n EDMALEN = 0x%04hX", ReadReg(EDMALEN)); |
||
3793 | printf("\r\n EDMADST = 0x%04hX", ReadReg(EDMADST)); |
||
3794 | printf("\r\n EDMACS = 0x%04hX", ReadReg(EDMACS)); |
||
3795 | |||
3796 | for(w = 0; w < ENC100_RAM_SIZE; w += 16) |
||
3797 | { |
||
3798 | ReadMemory(w, a, 16); |
||
3799 | |||
3800 | for(i = 0; i < 16u; i++) |
||
3801 | { |
||
3802 | if((a[i] >= 0x20) && (a[i] <= 0x7E)) |
||
3803 | a[i+16] = a[i]; |
||
3804 | else |
||
3805 | a[i+16] = '.'; |
||
3806 | } |
||
3807 | |||
3808 | printf("\r\n%04hx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %hhc%hhc%hhc%hhc%hhc%hhc%hhc%hhc %hhc%hhc%hhc%hhc%hhc%hhc%hhc%hhc", w, a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15], a[16], a[17], a[18], a[19], a[20], a[21], a[22], a[23], a[24], a[25], a[26], a[27], a[28], a[29], a[30], a[31]); |
||
3809 | } |
||
3810 | printf("\r\n\r\n"); |
||
3811 | } |
||
3812 | */ |
||
3813 | |||
3814 | #endif //#if defined(ENC100_INTERFACE_MODE) |
Powered by WebSVN v2.8.3